

Web service-based exploration of
Earth Observation time-series data

for analyzing environmental changes

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium

(Dr. rer. nat.)

vorgelegt dem Rat der Chemisch-Geowissenschaftlichen Fakultät

der Friedrich-Schiller-Universität Jena

von M. Sc. Jonas Eberle

geboren am 05.12.1984 in Heidelberg

Gutachter:

1. Prof. Dr. Christiane Schmullius (Friedrich-Schiller-Universität Jena)

2. Prof. Dr. Lars Bernard (Technische Universität Dresden)

Tag der Verteidigung: 07.11.2019

i

Abstract
The increasing amount of freely available Earth observation (EO) data requires a

tremendous change, in order to property handle the number of observations and storage

size thereof used for the environmental monitoring of land surfaces. In the near future, the

processing of EO data will need to be undertaken close to EO data archives as the

downloading of large amounts requires too much time and storage capacity. It is not only

scientists and geospatial processing specialists who work with EO data; stakeholders,

thematic experts, and software developers do too. Due to open data strategies and the

increasing size of data archives, a new market has been developed to provide analysis

and application-ready data, services, and platforms. There is thus a great demand for

improving the discovery, access, and analysis of EO data in line with the new possibilities

of web-based infrastructures. With the aim of bridging the gap between users and EO data

archives, various topics have been researched: 1) user requirements and their relation to

web services and output formats; 2) technical requirements for the discovery, access, and

analysis of multi-source EO time-series data, and 3) management of EO time-series data

focusing on analysis and application-ready data.

State of the Art: Current web technologies enable the interactive exploration of EO data

in distributed infrastructures based on web-service architectures. EO data has been made

available through web services for search, download, exploration, and analysis.

Standardized service specifications that support the interoperable use of the services exist

(e.g., from the Open Geospatial Consortium and the World Wide Web Consortium).

Although web services and cloud-based infrastructures are widely used in the EO domain

for data discovery, access, and processing, data providers employ different service

specifications, and response formats are mainly optimized for machine-to-machine

communication, in contrast to formats suitable for non-technical end users (e.g., scientists

and thematic experts). Although web technologies enable modern web services, there

remains a gap between users and providers.

Review: Existing web services for EO data discovery and access, time-series data

processing, and web-based EO platforms are reviewed and related to the requirements of

user personas. For multi-source discovery and access services, a key issue is having to

learn different service specifications. The diversity of data providers and web services

available means that specific knowledge of these systems and specifications is required.

Although standards for service specifications and brokering systems for the discovery of

EO data exist, improvements are still necessary to meet the requirements of different user

personas. For the processing of EO time-series data, various data formats and

Abstract

ii

preprocessing steps need to be considered. A conversion of the data format and structure

is often required to conduct analyses in programming languages and with analysis tools.

Today, there remains a gap between EO time-series data access and analysis tools, which

needs to be addressed to simplify work with such data. A variety of cloud infrastructures

and platforms for EO data processing have been launched in recent years (e.g., Google

Earth Engine, Copernicus Data and Information Access Services), and software exists to

provide web-based interactive platforms (e.g., Open Data Cube and Jupyter Notebook).

These enable users to access and process EO data using web browsers rather than

geographic information systems installed on the user’s computer. However, each

infrastructure or platform hosts different sets of EO data, analysis tools, algorithm

development environments, and other functions. Thus, the decision regarding which of

these to use depends on the specific knowledge of the user, the data, and the analysis to

be conducted.

Concepts, methods, and applications: To bridge the gap between users and data

providers, concepts and methods have been defined, focusing on service-based

exploration, multi-source EO time-series data discovery and access, and uniform EO time-

series data management and analysis. For each of these, the requirements of different

user personas are considered, which leads to a uniform service specification, multiple and

user-specific response formats, a harmonized data structure, and analysis tools directly

linked to EO data. New concepts and methods for user-aligned platforms, services, and

output formats are described. These are demonstrated in, for example, web and mobile

applications with the aim of simplifying discovery, access, and analysis in order to focus

on the exploration of EO time-series data.

Results: Results are presented and discussed in relation to user-specific exploitation of

EO time-series data: 1) the centralization of EO time-series data at regional scales enables

the development of user-specific platforms; 2) the harmonization of service interfaces

makes data discovery, access, and analysis uniform; and 3) the standardization of EO

time-series data structure and formats simplifies analysis and usage in geospatial tools.

Conclusions and outlook: The complete workflow of EO time-series data-handling, with

a focus on user-aligned web services, is reviewed and new concepts are designed and

developed. It can be concluded that there is a need for more user-driven design and

development of services, which would lead to automated workflows, harmonized service

interfaces, and user-aligned data formats. Research topics such as interoperable time-

series data discovery and access, data cubes, cloud-based infrastructures, and analysis-

ready data highlight the nature of the next generation of web-based EO data exploration.

iii

Kurzfassung
Die zunehmende Menge an frei verfügbaren Erdbeobachtungsdaten (EO-Daten) erfordert

eine Veränderung im Umgang mit der Anzahl an Beobachtungen sowie der

Speichergröße der Daten, die für Umweltüberwachungen von Landoberflächen

verwenden werden. Schon in naher Zukunft muss die Datenverarbeitung zu den

Datenarchiven geschoben werden, da das Herunterladen großer Zeitreihendaten zu viel

Zeit und Speicherkapazitäten erfordert. Darüber hinaus arbeiten nicht mehr nur

Wissenschaftler und GIS-Entwickler mit den Daten, sondern unter anderem auch

thematische Experten und allgemeine Softwareentwickler. Daher besteht ein hoher Bedarf

an einer Verbesserung der Suche, des Zugriffs und der Analyse von EO-Daten mit Bezug

auf neue Möglichkeiten in web- und cloud-basierten Infrastrukturen. Mit dem Ziel, die

Lücke zwischen Nutzern und Datenprovidern zu schließen, wurden in dieser Arbeit

verschiedene Aspekte untersucht und erforscht: 1) Benutzeranforderungen und deren

Auswirkungen auf die Bereitstellung von Webdiensten und Datenformate. 2) Technische

Anforderungen für die Suche, den Zugriff und die Analyse von EO-Zeitreihendaten. 3)

Verwaltung von EO-Zeitreihendaten in Verknüpfung mit anschließender Datenanalyse.

Stand der Technik und Forschung: Aktuelle Webtechnologien ermöglichen die

interaktive Erforschung von EO-Daten in verteilten Infrastrukturen auf Basis von

Webdienst-Architekturen. Webdienste für die Suche, den Zugriff und die Analyse stehen

zumeist über standardisierte Spezifikationen zur Verfügung, die eine interoperable

Nutzung der Dienste ermöglichen. Obwohl Webdienste und Cloud-basierte Infrastrukturen

für die Suche nach, den Zugriff auf und die Verarbeitung von EO-Daten weit verbreitet

sind, nutzen Datenanbieter unterschiedliche Spezifikationen und Ausgabeformate. Bisher

sind diese hauptsächlich für die Maschine-zu-Maschine-Kommunikation optimiert, die für

nicht-technische Endanwender (z.B. Wissenschaftler, thematische Experten) allerdings

nicht geeignet sind. Obwohl aktuelle Webtechnologien moderne Webdienste ermöglichen,

gibt es immer noch eine Lücke zwischen Nutzern und Anbietern im Bereich der

Erdbeobachtung.

Analyse: Eine Analyse vorhandener Webdienste für die Suche nach, den Zugriff auf und

die Verarbeitung von EO-Daten sowie web-basierten Verarbeitungs- und

Datenplattformen wurde durchgeführt und auf die Anforderungen verschiedener

Benutzergruppen untersucht. Die Vielfalt der Datenanbieter und deren Webdienste

erfordern spezifische Kenntnisse in diesen Systemen und Spezifikationen. Obwohl es

Standards für Webdienste und Brokeringsysteme im Geodatenbereich gibt, ist noch

Verbesserungsbedarf vorhanden, um den Anforderungen der Benutzer gerecht zu

Kurzfassung

iv

werden. Für die Verarbeitung von EO-Daten sind unterschiedliche Datenformate und

Vorverarbeitungsschritte zu berücksichtigen. Eine Konvertierung von Datenformat und -

struktur ist oft notwendig, um Analysen in Anwendungen durchführen zu können. Noch

heute besteht eine Lücke zwischen dem Zugriff auf EO-Zeitreihendaten und

Analysewerkzeugen. Diese muss geschlossen werden, um die Arbeit mit EO-Daten für

alle Benutzergruppen zu erleichtern. In den letzten Jahren wurde eine Vielzahl von Cloud-

Infrastrukturen und Plattformen für die Verarbeitung von EO-Daten eingeführt und

Software für webbasierte interaktive Plattformen zur Verfügung gestellt. Beide

ermöglichen es den Benutzern, über Webbrowser auf EO-Daten zuzugreifen und diese

zu verarbeiten, anstatt diese auf dem Computer des Benutzers durchzuführen. Jede

Infrastruktur und Plattform enthält jedoch verschiedene Daten und Analysetools. Somit

hängt eine Entscheidung, welches System verwendet werden kann, von den Kenntnissen

des Benutzers und den zu analysierenden Daten und Analysen ab.

Konzepte, Methoden und Anwendungen: Um das Auffinden, den Zugriff und die

Analyse von EO-Daten zu vereinfachen und damit die Lücke zwischen Nutzern und

Datenanbietern zu schließen, wurden die Bereiche Webdienst-basierte Erforschung von

EO-Daten, standardisierte Suche und Zugriff verschiedener EO-Daten sowie einheitliches

Datenmanagement und -analyse erforscht. Auf Basis der Anforderungen verschiedener

Benutzergruppen wurden einheitliche Webdienstspezifikationen, spezifische Daten-

formate sowie harmonisierte Datenstrukturen in Verbindung mit Analysewerkzeugen

entwickelt. Diese wurden in Beispielanwendungen demonstriert.

Ergebnisse: Der gesamte Ablauf zur Verarbeitung von EO-Daten wurde im Rahmen

dieser Arbeit analysiert sowie mit Schwerpunkt auf benutzerorientierten Webdiensten neu

entworfen und entwickelt. Ergebnisse in Bezug auf die benutzerspezifische Erforschung

von EO-Zeitreihendaten können wie folgt aufgezeigt werden: 1) Die Zentralisierung der

EO-Daten auf regionaler Ebene ermöglicht die Entwicklung benutzerspezifischer

Plattformen. 2) Die Harmonisierung der Webdienste vereinheitlicht die Datensuche, den

Zugriff und die Analyse. 3) Die Standardisierung der EO-Datenstruktur vereinfacht die

Analyse und die Anbindung an geografische Werkzeuge.

Schlussfolgerungen und Ausblick: Eindeutig erkennbar ist ein Bedarf an einer stärker

benutzerorientierten Gestaltung und Entwicklung von Diensten und Plattformen, die zu

automatisierten Arbeitsabläufen, benutzerorientierten Datenformaten und harmonisierten

Webdiensten führen muss. Diese sind auch für zukünftige Forschungsarbeiten wie

interoperable Zeitreihendatensuche und -datenzugriff, Datenwürfel, Cloud-basierte

Infrastrukturen und die Bereitstellung von analysierbaren Daten relevant.

v

Publications
Scientific peer-reviewed paper publications
O. Semenova, L. Lebedeva, N. Volkova, I. Korenev, M. Forkel, J. Eberle & M. Urban
(2015): Detecting immediate wildfire impact on runoff in a poorly-gauged mountainous
permafrost basin. Hydrological Sciences Journal. 60:7-8, 1225-1241.

Urban, M., M. Forkel, J. Eberle, C. Schmullius & M. Herold (2014): Pan-arctic climate and
land cover trends derived from multi-variate and multi-scale analysis (1981 - 2012). -
Remote Sensing - Special Issue on Remote Sensing of Changing Northern High Latitude
Ecosystems, 6, 3, 2296-2316.

Eberle, J., S. Clausnitzer, C. Hüttich & C. Schmullius (2013). Multi-Source Data
Processing Middleware for Land Monitoring within a Web-Based Spatial Data
Infrastructure for Siberia. ISPRS Int. J. Geo-Inf. 2013, 2, 553-576.

Urban, M., J. Eberle, C. Hüttich, C. Schmullius & M. Herold (2013). Comparison of
Satellite-Derived Land Surface Temperature and Air Temperature from Meteorological
Stations on the Pan-Arctic Scale. Remote Sensing. 2013, 5, 2348-2367.

Eberle, J. & C. Strobl (2012). Web-based Geoprocessing and Workflow Creation for
Generating and Providing Remote Sensing Products. - In: Li, S., S. Dragicevic, B.
Veenendaal & M. A. Brovelli (Hrsg.): Special Issue on "Analytical Geospatial Web
Services". GEOMATICA. Vol. 66, No. 1, 2012, pp. 13 - 26.

Book chapter
Eberle, J., M. Urban, A. Homolka, C. Huettich & C. Schmullius (2016): Multi-Source Data
Integration and Analysis for Land Monitoring in Siberia. In: Mueller, L., A. S. Sheudshen
& F. Eulenstein (ed.): Novel Methods for Monitoring and Managing Land and Water
Resources in Siberia. Springer Water, 471 - 488.

Selected conference proceedings
Eberle, J., T. Taylor and C. Schmullius (2016): Easy to use time-series data access and
analysis tools using standard-based geoprocessing services. In: Proceedings of IEEE
International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, 2016, pp.
3614-3617.

Eberle, J., C. Hüttich, C. Schmullius (2014): Operational Earth Observation data access
for automated time-series monitoring based on OGC Web Processing Services. -
Proceedings of the 2014 conference on Big Data from Space, 12-14 November 2014,
Frascati, Italy.

Eberle, J. & C. Schmullius (2013). User-driven data-integration for multi-source time-
series data. - Proceedings of Canadian Institute of Geomatics (CIG) Annual Conference
and International Conference on Earth Observation for Global Changes (EOGC), 5-7 June
2013, Toronto, Canada.

Eberle, J., S. Hese & C. Schmullius (2012). Siberian Earth System Science Cluster - A
Geoportal to provide user-friendly access and analysis for Earth Observation Products. -
Proceedings of EnviroInfo, 29-31 August 2012, Dessau, Germany.

Publications

vi

Selected contributions on scientific conferences
Eberle, J. (2018): The SWOS/GEO-Wetlands Community Portal. – EuroGEOSS
Workshop, 12-14 September 2018, Geneva, Switzerland.

Eberle, J. & C. Schmullius (2018): Automated Earth Observation data discovery and
access using open source web frameworks. – EGU General Assembly, 8-13 April 2018,
Vienna, Austria.

Eberle, J. & C. Schmullius (2017): Standardized Access and Processing of Multi-Source
Earth Observation Time-Series Data within a Regional Data Middleware. – AGU Fall
Meeting, 11-15 December 2017, New Orleans, USA.

Eberle, J., C. Hüttich & C. Schmullius (2016): From global observations to local
information: The Earth Observation Monitor - International Conference for Free and Open
Source Software for Geospatial, 24-26 August 2016, Bonn, Germany.

Eberle, J. (2016): MySeasons - Community-based mapping and monitoring of vegetation
phenology - GEO-XIII Plenary - Side-Event on Citizen Science, 7-10 November 2016, St.
Petersburg, Russia.

Eberle, J., A. Strauch, F. Cremer, C. Hüttich, G. Menz & C. Schmullius (2016): The SWOS
Data Portal & Brokering System - A next generation knowledge hub for free wetland data,
information and analysis tools - ESA Living Planet Symposium, 9-13 May 2016, Prague,
Czech Republic.

Eberle, J. & C. Schmullius (2015): Geoprocessing services for Earth Observation time-
series data access as basis for web and mobile application. - Earth Observation Open
Science 2.0, 12-14 October 2015, Frascati, Italy.

Eberle, J., C. Hüttich & C. Schmullius (2015): mobileEOM - Vegetation change analysis
in the field based on standard-compliant web services. - 9th GEO European Projects
Workshop, 15-16 June 2015, Copenhagen, Denmark.

Eberle, J., C. Hüttich & C. Schmullius (2015): Automated Earth Observation time-series
monitoring with OGC-compliant web services. - 36th International Symposium on Remote
Sensing of Environment (ISRSE), 11-15 May 2015, Berlin, Germany.

Eberle, J., C. Hüttich & C. Schmullius (2014): The Earth Observation Monitor - Automated
monitoring and alerting for spatial time-series data based on OGC web services. - AGU
Fall Meeting, 15-19 December 2014, San Francisco, USA.

Eberle, J., C. Hüttich, C. Schmullius (2014): Interoperable time-series tools and web
services for local land monitoring using multi-source Earth Observation data archives. -
Google Earth Engine Workshop, San Francisco, USA.

Eberle, J., C. Hüttich & C. Schmullius (2013). Web-based Multi-Source Data Processing
Middleware for Land Observations and Monitoring. - ESA Living Planet Symposium, 9-13
September 2013, Edinburgh, Scotland.

Eberle, J., R. Gerlach, S. Hese & C. Schmullius (2012). Siberian Earth System Science
Cluster - A web-based Geoportal to provide user-friendly Earth Observation Products. -
EGU General Assembly, 22-27 April 2012, Vienna, Austria.

vii

Table of contents

Abstract .. i

Kurzfassung .. iii

Publications .. v

Table of contents.. vii
List of figures .. x
List of tables .. xii
List of code listings ... xiii
Abbreviations ... xiv

Outline ... xvii

Chapter 1: Introduction .. 1
1.1 Motivation .. 3
1.2 History ... 5
1.3 Current State of Research .. 7
1.4 Scientific Questions .. 9

Chapter 2: Definitions and Requirements .. 11
2.1 Case Study: Satellite-based Vegetation Monitoring 12

2.1.1 Earth Observation data ... 13
2.1.2 Analysis tools .. 19
2.1.3 Conclusions .. 22

2.2 User Personas ... 23
2.2.1 Scientists .. 23
2.2.2 Thematic experts .. 23
2.2.3 Software developers ... 24
2.2.4 Summary .. 24

2.3 Requirements .. 25
2.3.1 Web platforms .. 25
2.3.2 Web technologies ... 26
2.3.3 Data formats ... 28
2.3.4 Summary and conclusions .. 30

Chapter 3: State of the Art ... 31
3.1 Web Technologies .. 32

3.1.1 Web service architectures ... 32
3.1.2 Standardization ... 35
3.1.3 Structured data formats .. 36
3.1.4 Web service software ... 38
3.1.5 Cloud-based infrastructures .. 42
3.1.6 Web platforms .. 44

3.2 EO Time-series Data Services and Formats .. 45
3.2.1 Discovery .. 45
3.2.2 Access .. 48
3.2.3 Brokering .. 51
3.2.4 Visualization ... 52

Table of contents

viii

3.2.5 Processing and analysis ... 54
3.2.6 Data formats ... 57

3.3 Summary and Evaluation ... 58

Chapter 4: Review of EO Web Services, Tools, and Platforms 61
4.1 Discovery of EO Time-series Data ... 62

4.1.1 Data provider solutions ... 63
4.1.2 Brokered web service solutions .. 65
4.1.3 Conclusions .. 67

4.2 Access to EO Time-series Data ... 69
4.2.1 Data access services .. 70
4.2.2 Data download links ... 71
4.2.3 Data extraction services ... 73
4.2.4 Conclusions .. 74

4.3 Processing of EO Time-series Data ... 75
4.3.1 Programming languages... 75
4.3.2 Geospatial tools .. 79
4.3.3 Conclusions .. 82

4.4 Cloud-based EO Time-series Data Platforms.. 83
4.4.1 Virtual environments ... 84
4.4.2 Processing platforms .. 85
4.4.3 Service platforms .. 89
4.4.4 Conclusions .. 89

4.5 Recommendations .. 93

Chapter 5: Concepts and Methods ... 95
5.1 Service-based EO Time-series Data Middleware .. 96

5.1.1 Concept of a regional data middleware system .. 97
5.1.2 User-aligned web services .. 102
5.1.3 User-aligned output formats ... 105
5.1.4 Implementation: Middleware software architecture and web services 107

5.2 Service Brokering for Multi-source Data Discovery and Access............... 114
5.2.1 The concept of web service brokering .. 115
5.2.2 Metadata model .. 118
5.2.3 Discovery output formats .. 122
5.2.4 Implementation: EO time-series data discovery and access brokering 124

5.3 Unified EO Time-series Data Structure and Analysis 129
5.3.1 Common EO time-series data structure .. 129
5.3.2 Specifications for data processing tools .. 132
5.3.3 Specifications for data analysis... 135
5.3.4 Implementation: EO time-series data processing and analysis 141

Chapter 6: Example Use Cases ... 147
6.1 The Siberian Earth System Science Cluster ... 148

6.1.1 SIB-ESS-C Middleware .. 148
6.1.2 Web portal .. 150

6.2 Earth Observation Monitor ... 152
6.2.1 EOM Middleware .. 152
6.2.2 webEOM .. 154

ix

6.2.3 mobileEOM ... 155
6.2.4 MySeasons App ... 157

6.3 GEO-Wetlands Community Portal .. 158
6.3.1 Middleware ... 158
6.3.2 Web portal .. 160
6.3.3 Open Data Cube for Wetlands .. 161
6.3.4 Sentinel–1 Surface Water Dynamics Toolkit ... 162

Chapter 7: Results and Discussion .. 163
7.1 Centralization of EO time-series data at regional scales 164

7.1.1 Regional data middleware approach ... 164
7.1.2 Application development ... 165
7.1.3 Regional use cases .. 166

7.2 Harmonization of EO Time-series Service Interfaces 169
7.2.1 WPS-based EO web services ... 169
7.2.2 EO data discovery broker ... 170

7.3 Standardization of EO Time-series Data Structure and Formats 171
7.3.1 EO time-series data structure and format ... 171
7.3.2 User-aligned output formats .. 172

Chapter 8: Conclusions and Outlook ... 173
8.1 Responses to the research questions ... 173
8.2 Conclusions .. 174
8.3 Outlook .. 176

References .. 179

Appendix A ... 195
A.1 Discovery of EO time-series data .. 195
A.2 Access to EO time-series data .. 198

Selbstständigkeitserklärung ... 200

Acknowledgements .. 201

Table of contents

x

List of figures
Figure 1.1: Overall structure of the thesis. ... 3

Figure 1.2: Framework of web-mapping eras. The stars indicate the approximate
commencement of the era. ... 6

Figure 1.3: Bridging the gap between user applications and EO data archives. 9

Figure 2.1: Multi-annual time-series of MODIS EVI of Stadtbruch in Anklam 12

Figure 2.2: MODIS sinusoidal tile grid. .. 14

Figure 2.3: Timeline of the satellites of the Landsat program. .. 16

Figure 2.4: WRS–2 tiles (ascending and descending) for parts of Thuringia. 16

Figure 2.5: EO data structures for individual Sentinel, Landsat, and MODIS scenes. 18

Figure 2.6: Greenbrown analyses for Stadtbruch Anklam. ... 21

Figure 2.7: BFAST analyses for Stadtbruch Anklam. ... 21

Figure 2.8: TIMESAT analyses for Stadtbruch Anklam. ... 21

Figure 3.1: Client-server model involving different services provided by the server and
the interactions between client and server/service (request and response). 32

Figure 3.2: Google search trend (October 2018): SOAP vs. REST. 33

Figure 3.3: Tasks of the individual standardization organizations in relation to “De Jure—
De Facto” and “Domain—Infrastructure” standards. ... 35

Figure 3.4: Structured data in XML and JSON formats. ... 37

Figure 3.5: Requests to EO data using individual services and service brokering. 51

Figure 3.6: Workflow of a web-based visualization of geospatial data. 52

Figure 4.1: Text file for spatial raster time-series data structure. 79

Figure 4.2: Results of the web-based NASA Giovanni tool analysis. 86

Figure 4.3: Results of the web-based MODIS Global Subsets tool from ORNL DAAC... 86

Figure 4.4: Google Earth Engine Playground web application. 88

Figure 4.5: Screenshot of a Google Earth Engine App. ... 88

Figure 4.6: User interface of the CEOS Open Data Cube. ... 88

Figure 5.1: Main concepts and methods of this thesis. .. 95

Figure 5.2: Concept of the methodological development ... 98

Figure 5.3: System architecture of the regional data middleware system 100

Figure 5.4: Connections of client applications to the geospatial service infrastructure. 102

Figure 5.5: Traditional discovery, access, and analysis request/response compared to a
uniform web service request. .. 104

Figure 5.6: Automated geoprocessing service chaining using data access and data
analysis services. ... 105

Figure 5.7: Time-series plots provided as outputs while accessing the data. 106

Figure 5.8: Spreadsheet file output showing statistical summaries. 107

Figure 5.9: WPS discovery request and an example of CSV output. 109

Figure 5.10: WPS access/integration request, file directory output, and CSV output ... 111

xi

Figure 5.11: WPS analysis requests for breakpoint and trend calculations. 113

Figure 5.12: Concept of the discovery and access broker for satellite data discovery. . 116

Figure 5.13: Comparison of quick-look images of a Sentinel–1 scene. 117

Figure 5.14: Metadata mapping between multiple data providersl. 118

Figure 5.15: The data discovery broker integrates post-processing steps 119

Figure 5.16: Cloud cover calculation for a Landsat-8 scene in an area of interest........ 121

Figure 5.17: On-the-fly visualization of a satellite scene using the NDVI layer. 122

Figure 5.18: Spreadsheet file output showing scenes from a data discovery request .. 123

Figure 5.19: Summary output generated from the discovery result list. 123

Figure 5.20: System architecture of the EO time-series data discovery and access
broker. .. 124

Figure 5.21: Time-series observations extracted for an area of interest. 131

Figure 5.22: Screenshot of a Jupyter Notebook with preloaded time-series data. 134

Figure 5.23: Graphic plots from geospatial data layers. ... 141

Figure 5.24: Visualization of the postprocessed vector Shapefile based on BFAST. 141

Figure 6.1: Comparison of MODIS Terra and Aqua LST estimates and air temperature
records from an individual meteorological station ... 149

Figure 6.2: Screenshots of the Siberian Earth System Science Cluster Geoportal 151

Figure 6.3: Screenshot of the webEOM portal. .. 155

Figure 6.4: Interactions between the mobileEOM app and EOM middleware services. 156

Figure 6.5: EOM middleware services are used in the MySeasons App. 157

Figure 6.6: Screenshot of the GEO-Wetlands Community Portal 160

Figure 6.7: User interface of the CEOS Open Data Cube .. 161

Figure 6.8: Sentinel–1 Water Dynamics Toolkit. .. 162

Figure 7.1: Top five countries with the most users and most active users of webEOM and
mobileEOM. .. 167

Figure 7.2: Combination of MODIS NDVI and MODIS Burned Area datasets 167

Figure 7.3: Twenty-six year Landsat time-series images showing a forest site near the
village of Yelwa on Mambilla Plateau, Nigeria. Results of MODIS analysis show the
pattern and years of deforestation. ... 168

Table of contents

xii

List of tables
Table 2.1: Sentinel missions of the EU Copernicus program. .. 17

Table 2.2: Data formats for each of the satellite missions. ... 18

Table 2.3: Potential output and response requirements for service outputs. 29

Table 3.1: Comparison of the synchronous and asynchronous execution of services. ... 34

Table 3.2: Limits of the serverless tools from Amazon and Google. 43

Table 3.3: Core methods of the OGC CSW specification. .. 46

Table 3.4: Core methods of the OGC WCS specification and WCS-EO extension.. 50

Table 3.5: Core methods of an OGC Web Map Service. ... 53

Table 3.6: Core methods of an OGC WPS. ... 56

Table 4.1: List of services for satellite data discovery for Landsat, Sentinel, MODIS. 62

Table 4.2: List of web services for Landsat, Sentinel, MODIS satellite data access. 69

Table 4.3: Data providers with services for the direct extraction of time-series data. 73

Table 4.4: EO time-series data infrastructure and web platforms. 83

Table 4.5: Comparison of user requirements between different web services providers
for discovery and access of EO data. ... 91

Table 4.6: Comparison of user requirements between different processing and service
platforms for access and analysis of EO data. .. 92

Table 5.1: Inputs and outputs for a user-specific EO time-series data discovery. 109

Table 5.2: Inputs and outputs for a user-specific EO time-series data access. 111

Table 5.3: Inputs and outputs for a user-specific EO time-series data analysis. 113

Table 5.4: Metadata items and their appearance in external metadata catalogues. 119

Table 5.5: Data inputs for the algorithms BFAST, Greenbrown, and TIMESAT 136

Table 5.6: Scientific time-series analysis tools and the resulting regular output files, as
defined by the algorithm, and the postprocessed output files. 140

Table 5.7: Metadata schema for a raster time-series dataset. 145

Table 6.1: Data sources integrated in the SIB-ESS-C middleware system. 149

Table 6.2: Data sources within the EOM middleware. ... 153

Table 7.1: Platforms developed in relation to user requirements. 165

Table A.1: List of search parameters for Sentinel data. ... 195

Table A.2: List of search parameters for collections within USGS Earth Explorer. 195

Table A.3: List of search parameters for scenes within USGS Earth Explorer. 196

Table A.4: List of search parameters for collections within NASA CMR. 196

Table A.5: List of search parameters for satellite scenes within NASA CMR. 196

Table A.6: List of parameters to use the Sentinel-Hub WFS service. 197

Table A.7: List of parameters to order pre-processed satellite data using ESPA. 198

Table A.8: List of parameters to use the Sentinel-Hub WCS service for download. 199

Table A.9: List of parameters to use the Sentinel-Hub FIS for data extraction. 199

xiii

List of code listings
Listing 3.1: Implementation of a process using PyWPS. ..39

Listing 3.2: Implementation of a process using OpenCPU. ..40

Listing 3.3: Provision of a web service using Python Flask. ...41

Listing 4.1: Python source code for working with Pandas ..76

Listing 4.2: Example work with the xarray library using raster time-series data76

Listing 4.3: Example of working with multi-band raster data using RasterBrick.78

Listing 4.4: Example of working with single time-series data using the TS function.78

Listing 4.5: Example of working with spatial time-series data using Raster*TS object78

Listing 4.6: Example of working in GRASS GIS with spatial time-series data80

Listing 4.7: Example workflow for ingesting raster time-series data into Open Data Cube.
 ...80

Listing 4.8: Example configuration file for ingestion into Rasdaman.81

Listing 5.1: Python-based source code for undertaking data discovery. 125

Listing 5.2: Python code to download all scenes found during the discovery search. ... 128

Listing 5.3: Python-based source code for conducting data extraction for Sentinel. 128

Listing 5.4: Example VRT files for two bands referencing external GeoTIFF files. 131

Listing 5.5: RasterBrick output in R using the VRT dataset. ... 131

Listing 5.6: The ingested data can be directly loaded using the datacube library. 135

Listing 5.7: Processing log file with download and processing steps. 138

Listing 5.8: Integration of MODIS Vegetation Index data for an area of interest with
further processing parameters applied. ... 143

Listing 5.9: Accessing pixel-based Landsat-8 and MODIS Vegetation index data for a
given point of interest from Google Earth Engine. ... 143

Listing 5.10: Using the DataManagement class of pyEOM .. 144

Listing 5.11: Using TIMESAT analysis tool from the pyEOM library. 146

Listing A.1: Filtering Sentinel-1 Collection using the Python Earth Engine library......... 196

Listing A.2: Data access for point-based extraction of time-series. 199

Table of contents

xiv

Abbreviations
API Application Programming Interface
ARD Analysis-ready data
AWS Amazon Web Services
BFAST Breaks For Additive Seasonal and Trend
CEN European Committee for Standardization
CEOS Committee on Earth Observation Satellites
CMR NASA Common Metadata Repository
CMS Content Management System
CODE-DE Copernicus Data and Exploitation Platform – Germany
CRS Coordinate Reference System
CSV Comma-separated values
CSW OGC Catalogue Service for Web
CWIC CEOSS WGISS Integrated Catalog
DAAC Distributed Active Archive Center
DIAS Copernicus Data and Information Access Services
EO Earth Observation
EOM Earth Observation Monitor
EROS Earth Resources Observation and Science
ESA European Space Agency
ESA RSS ESA Research & Service Support
ESA TEP ESA Thematic Exploitation Platform
ESPA EROS Science Processing Architecture
ETM+ Enhanced Mapper Plus
EU European Union
EVI Enhanced Vegetation Index
FedEO ESA Federated Earth Observation Gateway
FIS Feature Information Service
GDAL Geospatial Data Abstraction Library
GEE Google Earth Engine
GEO Group on Earth Observation
GEOSS Global Earth Observation System of Systems
GHCN Global Historical Climate Network
GIS Geographic Information System
GML Geography Markup Language
GRASS Geographic Resources Analysis Support System
GSOD Global Surface Summary of the Day
HDF Hierarchical Data Format
HDF-EOS Hierarchical Data Format-Earth Observing System
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IETF Internet Engineering Task Force
INSPIRE Infrastructure for spatial information in Europe
ISO International Organization of Standardization
JEODPP JRC Earth Observation Data and Processing Platform
JPEG Joint Photographic Experts Group
JSON JavaScript Object Notation

xv

LPDAAC Land Processed Distributed Active Archive Center
LST Land Surface Temperature
MODIS Moderate Resolution Imaging Spectroradiometer
MODIS VI MODIS Vegetation Index
MSS Multi-Spectral Sensor
NASA National Aeronautics and Space Administration
NDVI Normalized Difference Vegetation Index
NOAA National Oceanic and Atmospheric Administration
NSIDC National Snow and Ice Data Center
OASIS Organization for the Advancement of Structured Information Standards
ODC Open Data Cube
OGC Open Geospatial Consortium
OLCI Ocean and Land Colour Instrument
OLI Operational Land Imager
ORNL Oak Ridge National Laboratory
PNG Portable Network Graphics
QA Quality Assurance
RDF Resource Description Framework
REST Representational State Transfer
RPC Remote Procedure Calls
SDI Spatial Data Infrastructure
SIB-ESS-C Siberian Earth System Science Cluster
SLD OGC Styled Layer Descriptor
SLSTR Sea and Land Surface Temperature Radiometer
SNAP Sentinel Application Platform
SOAP Simple Object Access Protocol
SOS OGC Sensor Observation Service
STAC SpatioTemporal Asset Catalog
TIRS Thermal Infrared Sensor
TM Thematic Mapper
UI User Interface
URL Uniform Resource Locator
USGS United States Geological Survey
USGS EE USGS Earth Explorer
UTM Universal Transverse Mercator
UUID Unique identifier
VRT Virtual Raster Table
W3C World Wide Web Consortium
WCPS OGC Web Coverage Processing Service
WCS OGC Web Coverage Service
WFS OGC Web Feature Service
WGISS CEOS Working Group on Information Systems and Services
WKT Well-known-text
WMS OGC Web Map Service
WPS OGC Web Processing Service
WRS Worldwide Reference System
XML Extensible Markup Language
YAML YAML Ain’t Markup Language

Table of contents

xvi

xvii

Outline

Chapter 1: Introduction .. 1
1.1 Motivation ... 3
1.2 History ... 5
1.3 Current State of Research ... 7
1.4 Scientific Questions ... 9

Chapter 2: Definitions and Requirements .. 11
2.1 Case Study: Satellite-based Vegetation Monitoring ... 12
2.2 User Personas .. 23
2.3 Requirements .. 25

Chapter 3: State of the Art ... 31
3.1 Web Technologies .. 32
3.2 EO Time-series Data Services and Formats ... 45
3.3 Summary and Evaluation .. 58

Chapter 4: Review of EO Web Services, Tools, and Platforms 61
4.1 Discovery of EO Time-series Data .. 62
4.2 Access to EO Time-series Data .. 69
4.3 Processing of EO Time-series Data .. 75
4.4 Cloud-based EO Time-series Data Platforms .. 83
4.5 Recommendations .. 93

Chapter 5: Concepts and Methods ... 95
5.1 Service-based EO Time-series Data Middleware .. 96
5.2 Service Brokering for Multi-source Data Discovery and Access 114
5.3 Unified EO Time-series Data Structure and Analysis 129

Chapter 6: Example Use Cases ... 147
6.1 The Siberian Earth System Science Cluster .. 148
6.2 Earth Observation Monitor .. 152
6.3 GEO-Wetlands Community Portal ... 158

Chapter 7: Results and Discussion .. 163
7.1 Centralization of EO time-series data at regional scales.................................. 164
7.2 Harmonization of EO Time-series Service Interfaces 169
7.3 Standardization of EO Time-series Data Structure and Formats 171

Chapter 8: Conclusions and Outlook ... 173
8.1 Responses to the research questions ... 173
8.2 Conclusions .. 174
8.3 Outlook ... 176

References .. 179

Appendix ... 195

Outline

xviii

1

Chapter 1: Introduction
Changes of the environment are ongoing and need to be observed on an ongoing basis

to achieve environmental and sustainable development goals (Reid et al. 2010). Earth

observation (EO) data can foster monitoring activities to analyze these environmental

changes. The importance of EO data has been recognized by diverse research

communities, funding agencies, and governments, with new satellites continuing to be

launched (Berger et al. 2012). Archives of EO data enable the derivation of information

about the changing planet. Many of these data archives have been made available to the

public in recent years in terms of a free and open data policy (Woodcock et al. 2008;

Aschbacher & Milagro-Pérez 2012). This addresses the increasing demands of users

analyzing environmental changes and leads to research and the capability to establish

monitoring services for environmental purposes using EO data (Wulder et al. 2012; Roy

et al. 2014; Turner et al. 2015).

A wide range of activities is based on the analysis of EO time-series data as these can be

used on an ongoing basis to identify trends and changes of the environment (Gutman &

Masek 2012; Lasaponara & Lanorte 2012; Kuenzer et al. 2015). Using EO time-series

data allows the study of environmental changes around the world. EO data is accessible

as near real-time data, though it also comprises archival material dating back more than

40 years. This allows the derivation of ready-to-use information for several subjects (e.g.,

biodiversity, ecology, and agriculture) in support of science and policy-making (Atzberger

2013; Kuenzer et al. 2014; Pettorelli et al. 2014; Turner et al. 2015). Research on the

analysis of vegetation time-series data has been widely conducted, resulting in analysis

tools that can be used in operational land-monitoring systems and connected to EO data

archives (Verbesselt et al. 2010a; Forkel et al. 2013; De Jong et al. 2013).

With new satellites being launched regularly and the increasing amount of EO data that is

based on open data licenses, big data technologies have been introduced into the

geospatial domain (Birkin 2013). As the use of EO data in research and industry has

increased tremendously (Ma et al. 2015; Nativi et al. 2015), new technologies need to be

considered for handling EO time-series data. With the increasing size and number of EO

data archives, the processing of these data needs to be adjusted in order to lead to

automated workflows, distributed processing, parallelization, and scalable cloud-based

infrastructure (Yang et al. 2017a). Data cubes and web-based processing systems have

recently been combined with large EO data archives, enabling users to conduct

processing in close proximity to data archives (Pagani & Trani 2018; Yang et al. 2017b).

Chapter 1: Introduction

2

The geospatial web has evolved rapidly in recent years, allowing the development of

interactive web-based tools, applications for mobile devices, and web services

(Veenendaal et al. 2017). Brokering systems and data cubes have been introduced to

reduce limiting factors in relation to data discovery, access, and processing. Web-based

tools can be developed with commonly used scripting languages without the need to

conduct web development (Swain et al. 2016; Yin et al. 2017).

However, there are many challenges in terms of the discovery, access, and analysis of

EO time-series data that need to be improved: Data discovery and access of EO time-

series data still involve complex data processing tasks. For further analysis, EO data

needs to be prepared in order to be used in geographic information systems and analysis

tools. Although geospatial standards are available to provide discovery of and access to

EO time-series data (Nativi & Bigagli 2009), users need to learn many specifications to

handle the data provided by distributed environments. To answer a question such as “Was

my area of interest affected by floods in recent years?” the user has to find EO data for

the relevant area and conduct downloading and processing steps for each date. Many of

these technical challenges can be resolved and automated. Access to EO data and

analysis tools must be simplified in order to make it more user-friendly. Thus, in this thesis,

new approaches for providing user-aligned and standardized web services, which enable

a simplified exploration of EO time-series data, are investigated.

This thesis is structured as follows (also see Figure 1.1): An introduction is provided in this

chapter, including the motivation for this study, the history of digital EO, the current state

of research, and scientific questions. A scientific overview that includes definitions and

requirements, the state of the art, and a review of EO web services, tools, and platforms

is presented in Chapters 2–4. The case study, user personas, and user requirements are

described in Chapter 2. The state of the art (Chapter 3) focuses on web technologies and

EO time-series data services and formats. These are evaluated according to the user

requirements. An overall review is conducted in Chapter 4, which describes how data

providers offer web services and what kinds of cloud-based EO platforms are available.

The own research, developments, and results are described in Chapters 5–7, including

the concepts and methods, example use cases, and the results. Methodological concepts

and methods are defined and grouped into three fields which are described in Chapter 5:

1) service-based EO time-series data middleware, 2) service brokering for multi-source

data discovery and access, and 3) unified EO time-series data structure and analysis.

These methods have been implemented in several applications, which are described in

Chapter 6. The results are summarized and discussed in Chapter 7. Finally, Chapter 8

closes the thesis with responses to the research questions, conclusions, and outlook.

3

Figure 1.1: Overall structure of the thesis.

1.1 Motivation
For both the increasing amount of freely available EO data and the increasing demand for

ready-for-use information, new technologies need to be researched to improve data

discovery, access, and analysis. Although most of the data can already be accessed

through the World Wide Web, there remain limiting factors to making such data

discoverable and available with user-aligned and automated approaches. To benefit from

increasing data availability, a lowering of barriers to discovering, accessing, and analyzing

EO data is required. Scientists would then be able to focus on the use of analysis tools

and the interpretation of the results of analysis. Thematic experts, students, and citizens,

who mostly do not have a deep knowledge of geospatial data processing and web

services, would be able to make use of modern web and mobile applications with a direct

visualization of EO data and the results of analysis.

In recent years, the World Wide Web has been transformed from presenting only static

information to including dynamic applications and web services. Web technologies have

been improved with the further development of geospatial web and mobile applications

based on web services (Veenendaal et al. 2017). Combined with the processing

capabilities of centralized server infrastructures, EO data archives can be made available

using user-aligned services and applications. With the use of web services, the complex

Chapter 1: Introduction

4

processing of data in general can be hidden from users. There is an increasing demand

for the development and provision of web-based applications and services to support

scientists, thematic experts, stakeholders, decision-makers, and citizens with information

about the changing environment. Applications for environmental subjects, such as

deforestation, wetland observation, vegetation change, and disaster management, can be

based on EO data and provide useful information about environmental changes. To

ensure the easy use of EO data for all kind of users, applications need to be developed

by means of user-aligned approaches.

Providing geospatial data has been an important task in recent years. Several initiatives,

such as the Infrastructure for Spatial Information in Europe (INSPIRE; European

Commission 2018), have commenced to ensure that official geospatial data is being made

available in a standardized manner. The Group on Earth Observation (GEO) published its

Global Earth Observation System of Systems (GEOSS; Shibasaki & Pearlman 2008) to

provide a centralized entry point for EO data. Thus far, it comprises a vast range of

metadata for geospatial and EO data in a metadata catalogue. Within GEOSS, data

access, especially for time-series data, remains behind the possibilities of current web

technologies. As many data providers make their data publicly available, everyone is able

to access this data, derive information, and distribute it to other users. However, in most

cases, users need to have knowledge of data handling and processing in order to provide

data and derived information. Although interoperability has been established with

standardized specifications, the focus has primarily been on machine-to-machine

interaction. Nevertheless, with many existing tools, the requirements of multiple user

personas (e.g., scientists, thematic experts, stakeholders) have not yet been fully

considered. Domain experts, decision-makers, and general users are not familiar with

data-processing techniques and always need a considerable amount of time to

understand how they can retrieve and process EO data.

Today, many EO data archives are available on the World Wide Web and can be accessed

free of charge. Metadata catalogues exist for searching and finding data, which, in many

cases, is published as web services to be integrated in applications. Web portals are

available to search, find, and download data. In addition, web-based tools are available

for analyzing datasets. However, most of the tools are standalone software and cannot be

used or integrated in other applications. Such integrations are necessary to fulfill the

requirements of different users and to allow them to build their own applications. The tools

available often focus only on specific user personas and are not flexible enough to support

multiple personas. Integration in applications and the standardized provision of these tools

in particular need therefore to be considered in current research.

5

1.2 History
In the context of a digitizing Earth, former vice-president of the United Sates Al Gore made

a clear statement in 1998 about how to proceed with handling spatial data on

environmental change:

A new wave of technological innovation is allowing us to capture, store,

process and display an unprecedented amount of information about our

planet and a wide variety of environmental and cultural phenomena. Much

of this information will be geo-referenced […] I believe we need a Digital

Earth. A multi-resolution, three-dimensional representation of the planet,

into which we can embed vast quantities of geo-referenced data. (Gore

1998, p. 89)

Several international actions followed, such as measuring the Earth in the course of digital

elevation model datasets, the launch of operational satellites to monitor the Earth (e.g.,

NASA’s Terra and Aqua satellites), the development of international and national spatial

data infrastructures, and the establishment of sensor networks.

A review of geospatial web mapping is provided by Veenendaal et al. (2017), starting with

the beginning of the World Wide Web in 1989. Twenty-eight years of history is split into

nine web-mapping eras: static, dynamic, services, interactive, collaborative, digital globe,

mobile, cloud, and intelligent (Figure 1.2). Plewe (2007) and Tsou (2011) describe five

generations of web mapping, from static through dynamic, interactive, virtual globes, to

cloud computing. Both studies conclude that there needs to be a greater focus on the

needs of users and greater engagement of users in designing web-based applications and

services. Further directions for web mapping are towards the intelligent use of data for

knowledge generation for diverse users and applications, in addition to the generation of

better information and services focused and filtered to their needs (Veenendaal et al.

2017).

In the EO domain, the increasing availability of EO satellites fosters the analysis of

environmental change on Earth. The recently launched Sentinel satellites of the European

Copernicus program come with a free and open data policy and a wide range of new

satellites and data products. In addition, the extensive archives of the National Aeronautics

and Space Administration (NASA) and the United States Geological Survey (USGS) are

open to the public and widely used in research, and the satellites of these organizations

are still operational, with up-to-date datasets. With such free and open data policies, many

datasets are available to be used in research and decision-making processes related to

environmental and climate change. The demand of information about the changing

Chapter 1: Introduction

6

Earth—such as that pertaining to climate change, vegetation change, and disaster

management—is increasing. EO data can be used to fulfill many of these demands. The

recent era of EO-based web mapping comprises cloud-based processing (Evangelidis et

al. 2014), cloud-optimized data formats (COG 2018), data cube paradigms (Baumann &

Rossi 2016; Strobl et al. 2017), containerized data processing (Tao et al. 2018), raster

processing in browsers (EOX IT Services GmbH 2018), and scalable web services and

tools, which allow the generation of global thematically relevant products (Gorelick et al.

2017).

Several projects, such as the Future Earth initiative, require transferring EO-based

information on environmental and climate change into action to deal with societal

challenges. Future Earth, which was launched in 2012, was founded by international

research funding organizations with the aim of supporting interdisciplinary collaboration in

the area of global environmental change research and to address critical questions. In

addition to questions regarding how the Earth is changing and how knowledge in this area

can be used to move towards a sustainable future, an important “cross-cutting capability”

is the focus on data and observing systems. This aims to make “the research more useful

and accessible for decision makers” and to make it “accessible to all parties” (Future Earth

2013, p. 12,21). This program seeks to determine the best practices for integrating user

needs and for understanding research needs that are to be fostered by “developing and

diffusing useful tools for applying knowledge” (Future Earth 2013, p. 21).

Figure 1.2: Framework of web-mapping eras. The stars indicate the approximate commencement
of the era (Veenendaal et al. 2017, p. 7).

7

1.3 Current State of Research
Current research agendas and visions of a Digital Earth show trends in various topics,

such as spatial data infrastructures (Adams & Gahegan 2014; Bernard et al. 2014; Granell

et al. 2016), citizen science and crowd-sourced data (See et al. 2016; Higgins et al. 2016),

big data and cloud computing (Schade 2015; Guo et al. 2017; Koubarakis et al. 2017;

Boulton 2018), geospatial web services (Vinhas et al. 2016; Wagemann et al. 2018), the

semantic web (C. B. Tan et al. 2017; Janowicz & Hitzler 2017), and event-driven

infrastructures (Yue et al. 2015; Zhang et al. 2017; Rieke et al. 2018).

Spatial data infrastructures (SDIs) serve as fundamental systems for publishing geospatial

datasets and related meta-information. Research agendas have covered the needs and

further development of SDIs: Díaz et al. (2012) provide a comprehensive overview of the

state of SDIs with the conclusion that “SDIs have so far failed to achieve the desired level

of impact and penetration in the geospatial community” (Díaz et al. 2012, p. 380). Adams

and Gahegan (2014) see next-generation SDI becoming one that acts as mediator,

harmonizing data generated from heterogeneous sources. Tsinaraki and Schade (2016)

discuss the implications of big data on SDIs. They conclude that although existing

technologies can still be used, the growing user base needs to be better served. In

particular, more users lacking knowledge of geospatial fields are expected. They tend to

require service interfaces that are ready to be used and, thus, new interface specifications

need to simplify the use of the current services for application developers.

Standard-compliant web technologies have been used and studied in Earth system

science for many years now. Service-oriented architectures were provided in the early

years of the Internet. Today, there are several discussions of the use of web technologies

and web service methods (Vitolo et al. 2015; Baresi et al. 2016; Wagemann et al. 2018).

The provision of interoperable web services (Nativi et al. 2012; Miura 2016) for data

discovery, visualization, and access is an inherent component of an SDI. While there were

early approaches that involved standard-compliant visualization and discovery of

geospatial data, services for data access and data processing have improved in recent

years (C. B. Tan et al. 2017; Hempelmann et al. 2018; Herle & Blankenbach 2018;

Wagemann et al. 2018). Interoperability for the EO domain specifically has been

investigated by Mazzetti and Nativi (2012), who state three principles: 1) build on existing

capacities, 2) address different interoperability levels, and 3) lower the entry barriers for

both users and providers. Recent activities in the EO domain investigate the provision of

spatial data as time-series services. EO data can be provided either with the Web

Coverage Processing Service query language (Baumann 2009b; Karantzalos et al. 2015)

of the Open Geospatial Consortium (OGC) or using the OGC Sensor Observation Service,

Chapter 1: Introduction

8

which was originally designed for in-situ measurements, for raster data (Sorg & Kunkel

2015). When geospatial processes are made available using the standard-compliant OGC

Web Processing Service specification, several scientific aims can be investigated, such

as process orchestration (De Jesus et al. 2012; Kiehle et al. 2007), process mediation

(Giuliani et al. 2012), distributed processing (Bychkov et al. 2015; Tan et al. 2015), and

shared geoprocessing logic (Müller et al. 2013).

The challenges and opportunities associated with big data in the geospatial domain have

been discussed regularly in recent years (Lee & Kang 2015; Li et al. 2016; Guo et al. 2017;

Boulton 2018). In general, challenges related to the organization of data (Kiemle et al.

2016), big data analytics (Kambatla et al. 2014), and the use thereof combined with web

technologies (Vitolo et al. 2015) still need to be further investigated. Closely related to this

is the introduction of paradigms, software, and standards relating to data cubes. Baumann

and Rossi (2016) define “datacubes as a service paradigm,” concluding that they “are a

convenient model for presenting users with a simple, consolidated view on the massive

amount of data files gathered” (Baumann & Rossi 2016, p. 188). The “Datacube Manifesto”

(Baumann 2017) defines a data cube as a “multi-dimensional array” and presents the

requirements that lead to services that are “user-friendly, faster, and [more] scalable than

typical classical services” (Baumann 2017, p. 2). Strobl et al. (2017) describe the “six faces

of data cubes,” which are defined as the technical aspects that are required to allow data

ingestion, storage, provision, and the analysis of structured geospatial data within a

geospatial data cube (e.g., data organization, data processing levels defined as analysis-

ready data, infrastructure, user interfaces, and interoperability). Pagani and Trani (2018)

compare traditional and data cube approaches for geospatial computation, concluding that

“offering a ready-to-use data cube as-a-service might be a great value and save resources

avoiding multiple storage of data, eliminate the creation of multiple ad hoc ways to access

data, and make data easier to access” (Pagani & Trani 2018, p. 298).

Although there are standards for geospatial data, data management issues need to be

investigated especially for raster time-series data in order for them to be provided in a

user-aligned architecture. Big EO data management has recently been researched by

different organizations (Kiemle et al. 2016; Xie & Li 2016; Z. Tan et al. 2017). The term

“analysis-ready data” is defined by the Committee of Earth Observation Satellites (CEOS)

as “satellite data that have been processed to a minimum set of requirements and

organized into a form that allows for immediate analysis with a minimum of additional user

effort” (CEOS 2018a). Analysis-ready data have been applied and researched in the EO

domain by several researchers (Davis et al. 2015; Wyborn & Evans 2015; Szuba et al.

2016; Giuliani et al. 2017; Dwyer et al. 2018).

9

1.4 Scientific Questions
Based on the motivation and current state of research described in the previous sections,

three scientific questions with the overall objectives of investigating the use of web

technologies for EO time-series data exploration and bridging the gap between user

applications and EO data archives (Figure 1.3) are posed and answered in this thesis.

Figure 1.3: Overall objective: Bridging the gap between user applications (left) and EO data
archives (right) (Image on the right: Courtesy NASA/JPL-Caltech).

1. How to design a user-aligned discovery, access, and analysis for EO time-series

data based on standard-compliant web services?

The amount of EO data that is available for environmental analyses increases daily. New

satellites are continually being launched and various users are interested in using EO

data. With the increasing size of EO data archives, today especially for Landsat and

Sentinel satellites, data downloads in the near future to local computers will take too much

time and storage capacity to be practicable. Solutions are required that provide a simple

method to combine data discovery, access, and analysis. Although much EO data is

available at no cost, the discovery, access, and processing thereof need to be simplified

to meet the requirements of different users (e.g., scientists, thematic experts, and

developers). Thus, increasing user demands and data availability need to be brought

together, leading to the design of user-aligned web services for EO time-series data

exploration. In this thesis, system architectures and service specifications are explored

and investigated based on the use of standardized web technologies in order to foster this

new behavior.

2. What are the technical requirements for accessing and processing multi-source

EO time-series data?

Much of the EO data is available in a variety of data formats and data structures. Users

always need to work with multiple data formats and need to prepare data for their analysis

tools. Working with EO data from different satellite missions and data providers, in

particular, requires knowledge of different data formats and of data processing in general.

Chapter 1: Introduction

10

The processing and analysis of EO time-series data requires further knowledge of

automated data processing workflows to conform with large EO time-series data archives.

Accessing EO time-series data involves a complex workflow because different processing

steps need to be undertaken. Not only is the EO data provided in different data formats,

but each data provider also uses different technologies and specifications to provide the

data (e.g., protocols, such as HyperText Transfer Protocol and File Transfer Protocol or

specifications, such as Open Data Protocol and OGC Web Coverage Service). Any one

of these differences need to be considered when discovering and accessing EO time-

series data. To lower this barrier, a common, easy-to-use specification needs to be

investigated to make EO time-series data more easily discoverable and accessible within

a standardized approach. A uniform data format and the uniform handling of time-series

data are necessary and need to be directly linked to use in analysis tools.

3. What are the data requirements for analysis- and application-ready formats and

how must EO time-series data hence be organized?

In these times of large EO data archives, analysis tools need to be moved to the data,

rather than EO data being downloaded to local computers. Although data and analysis

tools can be used together, in most cases, further data processing steps need to be

undertaken before data analysis can be conducted. In recent research, the new approach

of taking algorithms or analysis tools to data has been defined as “moving code” (Müller

et al. 2010, 2013); however, so far, this has focused on general tools within geographic

information systems. The analysis of EO time-series data requires that tools be moved

and deployed close to the data. This allows users to conduct analyses without the need

to download data and install software. However, within the EO domain, EO time-series

data need to be available in a data format and structure that can be handled by each

analysis tool. Thus, the moving code approach needs to be connected to EO time-series

data. In addition, the results of analysis need to be further processed to meet the needs

of users (e.g., direct visualization of the results of analysis). As EO time-series data needs

to be prepared for the use of analysis tools, a direct link between these and access to

time-series data needs to be established to enable users to employ analysis tools without

prior data download and preparation.

11

Chapter 2: Definitions and Requirements
The overall framework of this thesis is defined and described by means of a thematic case

study, specific user personas, and specific functional and technical requirements. The

case study on satellite-based vegetation monitoring includes a description of EO data and

time-series analysis tools. Three different scientific algorithms that have been linked to the

EO time-series data are described. In order to focus on user-specific developments, three

user personas are defined and the requirements for web platforms, web technology, and

data formats are presented.

In the sections that follow, the following definitions and requirements are presented:

• Case Study: satellite-based vegetation monitoring (Section 2.1)

• Definition of user personas (Section 2.2)

• Description of functional and technical user requirements (Section 2.3)

Chapter 2: Definitions and Requirements

12

2.1 Case Study: Satellite-based Vegetation Monitoring
Climate-induced and anthropogenically induced changes in land cover and vegetation—

in particular, gradual changes in vegetation—can be identified based on EO time-series

data in order to analyze numerous land change processes, such as pan-arctic climate and

land cover trends (Urban et al. 2014), trends of light use and inherent water use efficiency

in African vegetation sensitive to climate and atmospheric carbon dioxide concentrations

(Traore et al. 2014), the detection of indicators of change processes in forest ecosystems

(Hüttich et al. 2007), and the derivation of the phenological metrics of vegetation types

(Jönsson & Eklundh 2004). Near real-time change detection—for example, to detect

deforestation or other events—are also based on EO time-series data (Verbesselt et al.

2012; Verbesselt et al. 2010a; DeVries et al. 2015; Dutrieux et al. 2015).

Indices for vegetation monitoring that use optical EO data are based on radiometric

measurements of photosynthetically active radiation in the leaves of the vegetation. The

index is based on different reflectance in red and near-infrared bands in the optical

spectrum. These act as a proxy for photosynthetic activity and the vitality of plants. Time-

series of vegetation indices, such as the Normalized Difference Vegetation Index (NDVI;

Tucker, 1979) and the Enhanced Vegetation Index (EVI; Huete et al., 2002), have proven

to be important data sources for vegetation change and dynamics analyses. Figure 2.1

shows an example of a regularly observed EVI for the “Stadtbruch” in Anklam, Germany,

from 2000 to 2016. A change of the vegetation index over time, which is linked to

renaturation (flooding of former moor area), can be identified from 2010 onwards.

Figure 2.1: Multi-annual time-series of MODIS EVI of Stadtbruch in Anklam (Germany).

13

2.1.1 Earth Observation data
A number of EO satellites exist, which provide free global time-series data in different

spatial and temporal resolutions. For vegetation analyses, satellites with optical sensors

are widely used and further derived vegetation datasets are provided automatically. For

example, NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) provides

daily to bi-weekly global data with a spatial resolution of 250 m to 1 km (Huete et al. 2002).

High-resolution USGS Landsat data (30 m spatial resolution) has also been used to study

changes in the vegetation (Zhu 2017), though the temporal resolution of only 16 days

repeating rate often leads to gaps in the time-series because of cloud cover. Sentinel-2 of

the European Space Agency (ESA) data provides up to 20 m spatial resolution and up to

6 days repeating rate from two satellites in orbit (Sentinel-2 A and B). It thus provides a

better temporal resolution than Landsat though the data has only been available since

2016. Vegetation index datasets are available from several other satellites, such as SPOT-

Vegetation, Proba-V, and the Advanced Very High Resolution Radiometer (Xie et al.

2008). In what follows, MODIS, Landsat, and Sentinel data, which have been used in this

thesis, are described.

MODIS

Data from MODIS is received from two satellites, Aqua and Terra. Both of these were

launched through NASA’s Earth Observation System program. Continuous observations

for Terra have been available since 2000 and for Aqua since 2002. The aim of the MODIS

sensor is to monitor the land surface, oceans, and atmosphere. Data from MODIS is

provided as land, atmospheric, and ocean products on a systematic basis (Justice et al.

2002). These standard products contain information about atmospheric profiles, surface

reflectance, clouds, land and sea surface temperature, thermal anomalies, vegetation

indices, snow cover, sea-ice cover, and the like (Xiong et al. 2009). The land products are

available in several spatial (0.05 deg, 1 km, 500 m, and 250 m) and temporal (monthly,

16-day, eight-day, four-day, and daily) resolutions.

Data is provided in the Hierarchical Data Format-Earth Observing System (HDF-EOS).

Based on the spatial resolution, data is available as 5 minute swaths, as tiles with a width

and height of 10 degrees (tile grid in Figure 2.2), and as a Climate Modeling Grid (CMG)

(Wolfe et al. 1998). Tiles have a sinusoidal projection; the CMG is based on the World

Geodetic System (WGS) 84 / Lat-Long projection. A detailed quality layer is available for

each standard product from MODIS. In the vegetation index product (MOD13), a “pixel

reliability” layer summarizes the information quality with ranked values describing the

overall quality of each pixel.

Chapter 2: Definitions and Requirements

14

Figure 2.2: MODIS sinusoidal tile grid (NASA LPDAAC 2014).

The NASA Land Processes Distributed Active Archive Center (LPDAAC) is one of the

official sources for obtaining MODIS data produced by the MODIS Land team (NASA

2019b). The data is provided in the original HDF-EOS data format on the file servers1.

Users need to know which specific MODIS tile they need for their area of interest. The

HDF-EOS file includes several layers that need to be extracted for further processing. To

reduce storage space, individual layers with floating-point values have been stored as

integers and need to be scaled to the original data range in the processing chain. Others,

like the detailed quality flag, are encoded as integers and need to be decoded bit-wise.

Thus, the layer name, units, bit type, no data (fill) value, valid data range, and scale factor

need to be known for further data processing.

In addition to the data being provided by NASA LPAAC, MODIS data is also available from

other data providers. The Distributed Active Archive Center at Oak Ridge National

Laboratory (ORNL DAAC) provides a MODIS Web Service 2 based on various web

technologies, which support several request methods, such as lists available products and

the dates the products will be available, subset extraction, and subset order. Google Earth

Engine3 provides access to several MODIS Level 3 products, such as a 16-day vegetation

index. This data can be directly processed within Google Earth Engine (e.g., quality

masking, clipping to the area of interest, and individual calculations) and either further

analyzed or directly downloaded by users.

1 https://e4ftl01.cr.usgs.gov
2 https://daac.ornl.gov/modiswebservice/
3 https://earthengine.google.com

https://e4ftl01.cr.usgs.gov/
https://daac.ornl.gov/modiswebservice/
https://earthengine.google.com/

15

Landsat

The Landsat program of the United States of America (USA) was established in 1966, and

the first satellite was launched in 1972. Landsat–8, launched in 2013, is the latest satellite

from this program. A graphic overview of all Landsat satellites is shown in Figure 2.3. In

contrast to MODIS, Landsat satellites provide data with up to 30 m spatial resolution but

with a lower temporal resolution (16-day global coverage). Since 1972, Landsat satellites

have used different sensors, starting with the Multi-Spectral Sensor (MSS) on Landsat 1–

3, followed by the Thematic Mapper (TM) on Landsat 4–5, the Enhanced Thematic Mapper

Plus (ETM+) on Landsat–7, and the Operational Land Imager (OLI) with the Thermal

InfraRed Sensor (TIRS) on Landsat–8 (USGS 2019c).

Landsat data is stored as tiles within the Worldwide Reference System (WRS), a global

notation system for Landsat data (Figure 2.4). Each tile of the WRS consists of a center

coordinate as well as path and row numbers. Each Landsat scene can be identified using

these numbers. Based on the Level–1 processing, different “Landsat Collection 1 Tiers”

are available: Tier 1 has the highest available data quality, including Precision and Terrain

corrected data; Tier 2, which does not meet the data quality criteria from Tier 1, includes

Systematic Terrain and Systematic processed data and real time data with additional post-

processing (USGS 2019b). Beyond this standard processing to Level–1, the Level–2

product, “Surface Reflectance,” is processed, which includes atmospheric corrections.

Level–3 products (e.g., surface water extent, burned area) are currently under

development. Landsat files are available as a zipped archive containing files for each

band. All Landsat data is provided in GeoTIFF data format, with a Universal Transverse

Mercator (UTM) map projection and a WGS-84 datum (USGS 2019b). The NDVI product

needs to be calculated separately using the red and near-infrared bands once the Landsat

data has been downloaded.

The web-based Earth Explorer4 application from the USGS is the first site that can be used

to search for and order Landsat images. In addition, other applications for EO data

searching and visualization (e.g., NASA Earthdata and Landsat Look) link to the Earth

Explorer when providing data download functions. In addition to data from the USGS,

collections from the NASA LPDAAC and a range of further datasets are available in the

Earth Explorer. With a user account, data can be downloaded directly or added to a cart,

which can be downloaded later with the bulk downloader tool. The USGS Earth Resources

Observation and Science Center provides a new service-based data access system5

4 https://earthexplorer.usgs.gov
5 https://espa.cr.usgs.gov

https://earthexplorer.usgs.gov/
https://espa.cr.usgs.gov/

Chapter 2: Definitions and Requirements

16

(USGS ESPA). It provides both a simple web-based interface and a service interface to

be used with programming languages. In addition to data access to the Landsat TM,

ETM+, and OLI sensors, processing tools can be applied automatically before

downloading the datasets. These processing tools include re-projection, spatial sub-

setting, and pixel resizing as well as various thematic products (e.g., top of atmosphere

reflectance, brightness temperature, cloud mask, and surface reflectance) and output

formats (e.g., GeoTIFF, ENVI binary, NetCDF, HDF-EOS2). Users of ESPA need to know

the Landsat scene identities prior to using the tool. An order first needs to be placed, and

the resulting data can be downloaded once the processing is done. Landsat 4 to 8 data

have been made available on the Google Cloud infrastructure6 and on Google Earth

Engine. When using Google Cloud, the individual scenes can be directly accessed on

cloud-based virtual machines. Amazon Web Services7 provides access to Landsat 8 data,

which are already unzipped and accessible by band.

Figure 2.3: Timeline of the satellites of the Landsat program: Landsat MSS (blue), Landsat TM
(orange), Landsat ETM+ (red), Landsat OLI (green). Visualization based on USGS (2019b).

Figure 2.4: WRS–2 tiles (ascending and descending, green rectangles) for parts of Thuringia,
Germany (own visualization, National Geographic World map as background).

6 https://cloud.google.com/storage/docs/public-datasets/landsat
7 https://aws.amazon.com/de/public-data-sets/landsat/

https://cloud.google.com/storage/docs/public-datasets/landsat
https://aws.amazon.com/de/public-data-sets/landsat/

17

Sentinel

The Copernicus program of the European Union (EU) has launched Sentinel satellites

since 2014. These provide EO data from a variety of sensors for numerous thematic

purposes (Aschbacher & Milagro-Pérez 2012; Berger et al. 2012). Table 2.1 lists the first

three Sentinel satellite missions, along with their sensor types, spatial and temporal

resolution, and launch dates. The Copernicus program provides satellites with high (10 m)

and medium (300 m) spatial resolution. The temporal resolution ranges from daily to 6-

day. As this is a long-term satellite mission, the European Commission has already been

ordered two more identical satellites for Sentinel 1, 2, and 3 (ESA 2016; Magan 2016).

The satellite data from the Copernicus program is made available through an open data

license (Aschbacher & Milagro-Pérez 2012). The data is available from the official

Copernicus Open Access Hub8 (SciHub) provided by ESA, national ground segments

(e.g., the German Copernicus Data and Exploitation Platform), and cloud-based data

providers (e.g., Amazon Web Services, Google Cloud, Google Earth Engine, and

Copernicus Data and Information Access Services (DIAS)). The ESA SciHub can be used

with a web portal or with standardized web service interfaces. Depending on the EO

mission, the data is available in various formats, such as netCDF, GeoTIFF, and

JPEG2000.

From Sentinel–2, the vegetation index can be calculated using red and near-infrared

bands. Specific vegetation data is provided by Sentinel–39. The Ocean and Land Colour

Instrument provides a Level–2 Land Full Resolution (300 m) product, which includes the

Fraction of Absorbed Photosynthetically Active Radiation as Global Vegetation Index. The

NDVI can be calculated individually using the red and near-infrared bands. The Sea and

Land Surface Temperature Radiometer provides a land surface temperature product,

which includes a pre-processed NDVI on 1 km spatial resolution.

Table 2.1: First three Sentinel missions of the EU Copernicus program (ESA 2019).
Satellite Sensor Resolution Launch dates

Sentinel–1 Radar imaging mission for land

and ocean services

5 m–40 m

2–6 days

3 April 2014

25 April 2016

Sentinel–2 Multispectral high-resolution

imaging for land monitoring

10 m–60 m

2–5 days

23 June 2015

7 March 2017

Sentinel–3 Multi-instrument for surface

temperature, land color, etc.

300 m

1–4 days

16 February 2016

25 April 2018

8 https://scihub.copernicus.eu/
9 https://sentinel.esa.int/web/sentinel/missions/sentinel-3/data-products

https://scihub.copernicus.eu/
https://sentinel.esa.int/web/sentinel/missions/sentinel-3/data-products

Chapter 2: Definitions and Requirements

18

EO data formats and data structures

Much of the data from different satellites is provided with an individual data structure and

data formats. Table 2.2 shows original data formats for MODIS, Landsat, and Sentinel.

While data from Landsat satellites has been in the same data format since the beginning,

many of the Sentinel satellites provide different data formats according to their specific

user community. Thus, users need to know how to work with those data formats or at least

need to convert data into other more commonly used formats. Although software exists

that can handle all of these data formats (e.g., GDAL, SNAP), users need to know exactly

how to handle the data with the software to be used within their individual processing

workflows (e.g., within Python or R).

Table 2.2: Data formats for each of the satellite missions.
Dataset Format

Sentinel-1 SAFE / GeoTIFF

Sentinel-2 SAFE / JPEG2000

Sentinel-3 netCDF

Landsat 1-8 GeoTIFF

MODIS (Level-3 products) HDF-EOS

Figure 2.5 shows the data structures for Sentinel, Landsat, and MODIS Level-3 data:

MODIS Level-3 data is provided within a single file including the measurements as bands

accompanied with additional files for metadata and quick-look image. Sentinel and

Landsat data is originally provided as zipped archive file. Measurements from Sentinel

and Landsat data is provided in individual files within the archive file. Additionally, files for

metadata, quick-look images, etc. are available.

Figure 2.5: EO data structures for individual Sentinel, Landsat, and MODIS satellite scenes.

19

2.1.2 Analysis tools
Evolving methods of vegetation change characterization include breakpoint detection

techniques that allow users to detect the point in time when a change event occurred.

Studies observing the increasing or declining net primary productivity of vegetation

(Verbesselt et al. 2010a; Verbesselt et al. 2010b) have fostered the development of

statistical tools for detecting trends such as greening or browning. Three analysis tools

based on vegetation time-series data are used in this thesis: Greenbrown for trend

calculations, BFAST for breakpoint detection, and TIMESAT for phenological analyses.

Greenbrown

The ‘Greenbrown’ software (Forkel et al. 2013) is a collection of functions designed to

analyze trends and trend changes in a gridded time-series, as with those from satellite

observations or climate model simulations. In the EO community, vegetation greenness

can be divided into positive (greening) and negative (browning) trends. The Greenbrown

methods are provided as software packages in the R statistical language. The methods

can be used within R, based on time-series objects. In addition to trend calculations for

individual pixels (Figure 2.6, left), it is possible to derive greening and browning

classifications for raster time-series data (Figure 2.6, right). Analyzing the increasing and

decreasing trends of the vegetation can help to identify regions of long-term vegetation

change. This can be demonstrated in the area of Anklam, where a former moor area was

recultivated following controlled water logging (Figure 2.6). This results in a decreasing

vegetation index, which can be analyzed using ‘Greenbrown.’ In addition, the significance

of the trends is available as result and can be used to classify trends into greening and

browning.

BFAST

The ‘Breaks For Additive Seasonal and Trend’ (BFAST) method (Verbesselt et al. 2010a)

allows the identification of changes in land cover by detecting phenological changes in the

inter-annual time-series. The BFAST software integrates the decomposition of time-series

into trend, seasonal, and remainder components and provides the times and number of

changes in the time-series (Figure 2.7, left). This method has been widely used to detect

deforestation and other disturbances (e.g., fire and floods) based on MODIS Vegetation

and Landsat data. BFAST is available as a method in the R statistical language. As with

Greenbrown, the methods are based on R time-series objects. In contrast to Greenbrown

though, only methods for single pixels are available; however, they can be iterated over a

spatial time-series object using standard functions in R. Other tools, such as ‘bfastSpatial’

(Dutrieux & DeVries 2014) based on BFAST, have been published to overcome this issue,

but have not been used in this thesis.

Chapter 2: Definitions and Requirements

20

Figure 2.7 shows an example output of BFAST, which demonstrates the advantages of

using BFAST in vegetation time-series analyses. In addition to the different breaks in a

trend, which have also been shown with the Greenbrown analysis, a break in the

seasonality of the vegetation was identified in 2008 followed by a visual change in the

vegetation index. With such breakpoint detection, the point at which changes in the time-

series occur can be identified automatically. The example shows the previously flooded

moor area that has been recultivated in the recent years (Stadtbruch Anklam).

TIMESAT

In addition to trend and breakpoint analyses, the derivation of phenological metrics

(phenometrics) for vegetation characterization and classification is another method used

to monitor changes in vegetation based on EO time-series data. TIMESAT software is

used for satellite-based phenological characterizations that analyze the seasonality of EO

time-series data and their relationship with the phenological cycles of vegetation (Jönsson

& Eklundh 2004). It furthermore enables the extraction of time-related phenological

metrics (e.g., start of season and length of season) and biomass-related metrics. The

extraction of phenometrics allows the analysis of short- and long-term changes in land

cover and the structural and species composition of vegetation types. TIMESAT is

provided as executable on Linux and Windows operating systems. It provides several

time-series fitting functions (e.g., a Savitzky-Golay filter, least-squares fitted asymmetric

Gaussian, and double logistic smoothing) that are undertaken automatically before the

phenological analysis is done. Time-series data need to be pre-processed to match the

TIMESAT input file format. The file format is based on flat binary files for spatial analyses

and text files for single pixel analyses.

The example in Figure 2.8 shows the seasonal parameters for the start, length, and end

of the vegetation season calculated based on the vegetation index time-series data. Using

the yearly chart (Figure 2.8, right), the change in the vegetation season can also be

identified easily by non-expert users.

21

Figure 2.6: Greenbrown analyses for Stadtbruch Anklam: on the left, an analysis of a single pixel
showing the vegetation observations and multiple trend calculations based on breakpoints; on the
right, a spatial analysis showing the greening and browning trend classification (own visualization).

Figure 2.7: BFAST analyses for Stadtbruch Anklam: on the left, an analysis of a single pixel showing
the vegetation observations (first line), the seasonality with breaks (second line), the trend with
breaks (third line), and the remainder signal (last line). The four graphics on the right show a spatial
analysis with number and year of the breakpoints in seasonality and trend (own visualization).

Figure 2.8: TIMESAT analyses for Stadtbruch Anklam: on the left, an analysis of a single pixel
showing the vegetation observations (blue line), the fitted data (green line), and the calculated start
and end of seasons (green and black points); on the right, the chart shows the different start, length,
and end of the vegetation season year by year (own visualization).

Chapter 2: Definitions and Requirements

22

2.1.3 Conclusions
For users who focus on vegetation time-series data, freely available EO data can be used

in combination with scientific analysis tools to study changes in vegetation. A specific

vegetation product with a coarse spatial resolution is available only from the MODIS

sensor. Vegetation indices from higher resolution data (e.g., Landsat, Sentinel–2) need to

be processed prior to analysis. From the point of view of an end-user (e.g., decision-

maker, stakeholder, or scientist), access to ready-to-use analysis tools to derive

information from EO time-series data is a relevant issue. Some of the tools that are

currently available can provide information about breakpoints in trends and seasonality,

which can be used as indicators of changes in vegetation. A great amount of information

can also be retrieved from phenological derivations, such as the start and end of a season,

the seasonal amplitude, and seasonal integral. However, to date, none of this information

is available as an on-demand processing service in web-based environments.

In summary, service-based access to time-series vegetation data is available only within

specific limits. Several key points can be stated after reviewing the available EO data and

analysis tools for EO-based vegetation time-series data analyses:

• The analysis of vegetation time-series based on EO data is relevant to studying

changes of the environment.

• Much data is freely available, but data processing is still too complex and too

diverse.

• Often, analysis tools require a specific data format and data structure, which is

challenging for users who are not familiar with time-series data processing.

23

2.2 User Personas
Various aspects need to be considered in order to provide tools for diverse kinds of users,

such as scientists, thematic experts, and software developers. Specific user types can be

represented as personas. User personas define “hypothetical archetypes of actual users”

in order to develop a precise description of users and their goals (Cooper 2004, pp. 123–

124). To conform with the different types of users in this thesis, three user personas and

their objectives have been defined in the following subsections.

2.2.1 Scientists
Scientists work with EO data to develop new algorithms to derive further information. They

require control over all processed data and need to be able to use analysis tools with

different parameters. Scientists need to download the datasets relevant to their study area

and conduct the analysis on their own computing infrastructure. Although scientists are

able to download data from the data provider, various processing steps are always

necessary to extract the relevant data and convert it to a data format that fits as an input

to the algorithms used by the scientists (e.g., GeoTIFF format instead of HDF format).

These steps can be automated and annotated by means of processing commands, which

have been undertaken on the data downloaded. Using such annotations, for example,

within log files, scientists are able to reproduce the processing done by an automated

processing service. Thus, scientists can be supported with data retrieval, clipping to the

area of interest, checking quality flags, and converting data formats. In addition, the

preparation of data for specific algorithms supports scientists by allowing them to focus on

algorithm parameters and the interpretation of the results of analysis.

The following key aspects for scientists have been identified:

• Easy-to-use EO time-series data discovery and access services,

• Reproducible and automated data access and extraction for a given pixel or area

of interest, and

• Executable algorithms linked with automated data extraction.

2.2.2 Thematic experts
Thematic experts have knowledge of specific environmental issues and understand the

general concepts of geographic information systems (GIS) and EO data. However, in most

cases, they are not familiar with complex data processing and the different EO data

formats. Data needs to be in common data formats (e.g., GeoTIFF or ESRI Shapefile) and

prepared for direct visualization and use in common GIS software. Web and mobile

applications can support thematic experts in obtaining access to EO data and derived

information, as well as to the results of analysis, either in the field using mobile applications

Chapter 2: Definitions and Requirements

24

or in the office using web applications. The post-processing of the results of analysis in

order to match the needs of the thematic experts is welcomed, for example, by making

data visualization and understanding easier due to familiar data formats and other tools

(e.g., interactive charts and pregenerated figures).

The following key aspects for thematic experts have been identified:

• On-the-fly visualization of the results of analysis,

• Web-based visualization of thematic products,

• Interactive exploration tools for EO data and data analysis,

• Mobile devices with on-the-fly extraction of EO time-series data, and

• Post-processing of the results of analysis to match common data formats.

2.2.3 Software developers
Software developers need ready-to-use services to build web and mobile applications. In

general, software developers for web and mobile applications do not have knowledge of

geospatial data processing. As such, ready-to-use services need to provide all the

processing steps needed by the application. In a best case scenario, these service-based

infrastructures make use of standard-compliant specifications so that existing software

tools can be reused by the software developer.

The following key aspects for developers have been identified:

• Service-based infrastructure for data discovery, access, extraction, and processing

based on state-of-the-art web technologies,

• Process chaining capabilities to combine different services (e.g., data extraction

and analysis tools), and

• Ready-to-use web services with data processing already included.

2.2.4 Summary
The following key aspects can be summarized and need to be investigated to simplify work

with EO time-series data for scientists, thematic experts, and software developers:

• Discovery, access, extraction, and processing tools provided by web services,

• Interactive exploration of EO time-series data and analysis tools,

• Service-based visualization of time-series data and the results of analysis, and

• Data and algorithms need to be linked directly and used together.

25

2.3 Requirements
Based on the various aspects of the user personas described in the previous section,

several requirements have been defined to ensure the user-aligned exploration of EO

time-series data. These functional and technical requirements have been grouped into the

following subsections:

1) Web platforms (Subsection 2.3.1)

2) Web technologies (Subsection 2.3.2)

3) Data formats relating to user aspects (Subsection 2.3.3)

2.3.1 Web platforms
As regards to future users of web platforms, various aspects, such as the availability of

data, functionality, services, and user management, need to be considered, investigated,

and defined when designing a web-based EO platform. These are described in the

following paragraphs.

Data availability

The availability of geospatial data is the fundamental basis of each platform. Thus, various

EO time-series and additional geospatial data need to be available in easy-to-use data

formats. The platform provider should be able to integrate further data, such as time-series

data from climate stations, which can be analyzed together with EO time-series data.

Functions

In terms of functionality, various tools for geospatial data are required, such as for data

visualization, data download, and pixel extraction. Visualization tools allow users to easily

work with data and analysis tools. Data download tools are important for allowing users to

work with the data on their own computers. Users need to be able to define an area of

interest or individual pixel for further exploration of the available geospatial data. Tools for

the analysis of time-series data are useful for exploring the data available on the platform.

As such, besides the provision of specific analysis tools, external applications and

interactive development environments for different programming languages (e.g., Python

and R) can be linked to the platform and made available to users.

Web services

All the functions of a platform can be presented as web services for use by external

applications (e.g., web and mobile applications and desktop software). Standardized web

services can be provided for data discovery, visualization, download, and analysis. These

can be used by external applications, such as desktop GIS tools or other web-based

applications, without any adjustments. Geospatial web services are necessary for

Chapter 2: Definitions and Requirements

26

geospatial data in order to allow the interactive exploration of data, the provision of

metadata catalogues, and for geoprocessing and analysis tools. In order to provide

standardized and geospatial web services, a few requirements need to be considered

when comparing software solutions:

1) Geospatial data needs to be published automatically as visualization and

download services with a pre-defined style for visualization,

2) Metadata needs to be published automatically for new datasets as output from

data integration and data analysis, and

3) Users working on their own areas of interest need their own metadata catalogue

and geospatial data-service instance separated from services for other users.

User management

The platform stores and manages various items of information about connected data

providers, available datasets, and users of the system. All this data must be made

available via web services, as various applications require access to this data. In addition,

user-specific data, such as areas of interest, data integration that has been undertaken,

and analytic tasks, can be stored and managed.

2.3.2 Web technologies
Different aspects of technologies can be considered and evaluated when providing web

services, such as their architecture, long-running processes, service chaining, standard-

compliant services, and uniform web service specifications. These are described in the

following paragraphs.

Web service architecture

Web services are available with various architectural styles and protocols for distributed

service architectures. As such, the evaluation of web service architectures is an important

component of the setup of web-based platforms.

Long-running processes

Both synchronous and asynchronous execution of web services can be considered for

user-aligned web services. The difference in both of these—whether or not to wait for the

result—depends on the application that makes use of the web service. When executing

web services asynchronously, the client needs to regularly check the status of the process.

In most cases, both execution types are relevant to the application and depend on each

individual process that is being provided. Thus, client and server applications need to

support both execution types. Asynchronous execution is especially important for long-

27

running processes, such as data analysis and large data-integration tasks. It allows users

to close the application and check the status later. In addition, the failure of an Internet

connection does not stop the web service executed by the user. A further issue in terms

of service execution involves allowing the web service to provide access to outputs

immediately, when it is ready, without waiting until all the outputs have been generated.

This allows the client application to show the results as soon as they are available. For

example, a time-series plot of the input data can be shown to the user although a further

analysis task is still running as part of the same process request.

Service chaining

Service chaining often includes only the direct use of a web service as input from another

web service. Thus, the output of the first web service is directly an input for the second.

As this is useful for many purposes, with the use of a large time-series data output it is

more complex to send this to the next web service. Therefore, a concept is necessary that

allows subsequent web services to know where to find the data of a previously executed

web service for further processing on the same server. For example, a data access

request is followed by a time-series analysis request that is conducted on the data of the

previously conducted access web service. In most cases, users are not only interested in

obtaining access to data but also in conducting analyses. If both web services are

available on the same infrastructure, discovery, access, and analysis services can be

linked. Thus, the output data of the first process needs to be available for the second

process. In addition, algorithms provided as web services (e.g., the breakpoint analysis

service) need to know where the data has been stored and how it has been managed. If

data location and structure are considered within these processes, the execution of

processing workflows—from data discovery through data access to data analysis—can be

realized.

Standard-compliant services

Standard-compliant web service specifications are available from the OGC. These can be

used by most GIS software and geospatial web applications. In comparison to a self-

developed web service specification, standardized specifications allow the use of web

services from standardized programming libraries and a wide range of geospatial tools.

Standards are available for various geospatial tasks, such as data visualization, discovery,

download, and processing.

Uniform web service specification

Web service specifications can be diverse as different tasks are provided (e.g., data

discovery, access, and analysis), and different data providers share their services with

Chapter 2: Definitions and Requirements

28

various service specifications (e.g., self-developed vs. standard-compliant interfaces).

Although standardization organizations, such as the OGC, provide different service

specifications for data discovery, access, and analysis, they share common methods and

data formats that are optimized for machine-to-machine communication with single output

results. A uniform web service specification is envisaged with the objective of providing

multiple output formats at the same time for all of the web service tasks (discovery, access,

and analysis).

2.3.3 Data formats
In contrast to current web service specifications for data discovery and data access,

multiple output formats are required to fulfill the needs of different user personas. This

allows the optimizing of the outputs individually for each service in respect of the user

personas and their requirements. Examples of output formats for data discovery, access,

and analysis are provided in the following paragraphs and summarized in Table 2.3.

Data discovery

Increasing amounts of EO data and the different requirements of users are challenges

when providing EO data archives. A complex task is to find suitable EO data for specific

areas of interest, time, and specific parameters (e.g., cloud coverage and sensor type).

Considering the user personas described in the previous section, different aspects need

to be evaluated. A thematic expert may be more interested in how many satellite scenes

are available in the area of interest (e.g., as provided in a figure or a summarized table),

while a researcher is interested in an output file, which can be processed by any other

software (e.g., by providing CSV or Shapefile formats). A developer is interested in a web

service feed, which can directly act as input to further processing workflows. It is not only

standardized web formats that are suitable for data discovery. In particular, additional

commonly used data formats, such as those of spreadsheets or geospatial data formats

increase the ability to use discovery results. Enabling discovery services to comply with

the different needs of users leads to the need for multiple data formats for the resulting

outputs. Table 2.3a shows the individual requirements of output formats for fostering their

re-use by different user personas.

Data access and extraction

Although the principle of “algorithm to data” is advanced today, many users still download

and process data on their own infrastructure. Therefore, EO data access is still an

important issue for discussion and evaluation. To comply with the needs of different user

personas, besides the requested EO data, it is necessary to provide different outputs

(Table 2.3b), such as statistical summaries (e.g., the mean minimum and maximum

29

standard deviation) for each date or chart of time-series data of individual pixels. In

addition, the data access service needs to provide processing capabilities to ensure the

delivery of pre-processed data that is ready for analysis, including the consideration of

quality masks and scaling factors applied to data. Furthermore, the resulting data can be

directly converted into formats that can be read by other software, such as the Rasdaman

database or Open Data Cube software. In addition, specific data formats for data

extraction services requested directly by applications are necessary (Table 2.3c).

Data analysis

The ability to provide analysis services enables users to convert data into information.

However, in many cases, the algorithms for analyzing time-series data need to have input

data in a specific data format and structure. In addition, in most cases, there are several

dependencies when setting up the algorithm on local computers. Thus, web processing

services, which allow the conducting of analyses in addition to accessing data, are an

important step forward in traditional EO data analysis. Furthermore, as the resulting output

formats of the algorithms are not always considered to be user-friendly, additional post-

processing steps are necessary to provide specific data formats, services, and tools

(Table 2.3d). This allows users direct visualization and interpretation of the results of

analysis without the use of additional software.

Table 2.3: Potential output and response requirements for data discovery (a), data access (b), data
extraction (c), and data analysis (d) service outputs.

a) Data
discovery

b) Data
access

c) Data
extraction

d) Data
analysis

Data formats
Vector (e.g., Shapefile)  
Raster (e.g., GeoTIFF)  
Figures (e.g., PNG, JPEG)    
CSV   
JSON  
Services
Web service feed  
OGC download service   
OGC visualization service   
Tools
Application-Ready-Data* 
Downloads   
Summaries   

* Output is directly transferred into an application or database

Chapter 2: Definitions and Requirements

30

2.3.4 Summary and conclusions
Several functional and technical requirements for user-aligned exploration of EO time-

series data have been explored and categorized into web platforms, web technology, and

data formats. These need to be considered when designing user-aligned services for the

exploration of EO data. The foundational basis of user-aligned exploration of EO data is

the availability of various, individual EO data sources as well as individual analysis tools

linked to the data. From a technical point of view, web services based on current web

technologies, user-specific output formats, and uniform and standardized specifications

are important requirements.

In this thesis, the following requirements are further considered and investigated:

Web platforms

• Multi-source EO and geospatial data

• Data visualization

• Data download

• Analysis tools

• Visualization of the results of analysis

• Support for various programming languages and tools

• Metadata for geospatial data

• User management

• Self-hosting

• Service interfaces

Web technology

• Service architectures

• Asynchronous execution

• Process chaining

• OGC standardization

• Uniform specifications

• Multiple output formats

Data formats

• Commonly used data formats

• Analysis and application-ready data

• Summarized results

• OGC web services

31

Chapter 3: State of the Art
Based on the user requirements presented in the previous chapter, the state of the art of

the principal web technologies, specifications, and formats for EO time-series data is

described in this chapter. The following main topics are explored and evaluated for their

use with EO time-series data:

1) Web technologies, including web service architectures, standardization, web data

formats, software for web services and web processing applications, cloud-based

infrastructures, and web platforms (Section 3.1).

2) Service and format specifications for EO time-series data, including data

discovery, access, visualization, brokering, and processing (Section 3.2).

Finally, an evaluation regarding the state of the art in relation to user requirements is

presented.

Chapter 3: State of the Art

32

3.1 Web Technologies
The Internet enables the retrieval of distributed web resources and the execution of tasks

on distributed computers. Modern web-based systems make use of web services and

interactive applications. The enhancements of browser applications and mobile devices

allow easy exploration of geospatial data in general. Advanced web development methods

can be used within the geographic domain to increase the availability and handling of EO

data archives. In recent years, more EO and geospatial data have been made available

through web services for data discovery, access, and analysis in combination with web-

and cloud-based applications (Vitolo et al. 2015; Wagemann et al. 2018). In the following

sections, basic information how to design and provide web services based on state-of-the-

art web technologies is presented and current solutions for web technologies are

evaluated in relation to user requirements.

3.1.1 Web service architectures
The provision of web services for client applications, such as web- or mobile-based

applications, is based on web service architectures that are compliant with the client-

server model (Svobodova 1985). Based on this model, a server can provide different

services requested by client applications. After requesting a service, the server delivers a

response according to the request parameters. Figure 3.1 shows the different components

and their interactions: The services provided by the server can be based on different

standards, such as the File Transfer Protocol for data exchange or the HyperText Transfer

Protocol (HTTP) for the World Wide Web. The response format may be diverse, depending

on the protocol and the service (e.g., text, images, or binary).

A uniform resource locator (URL) is used to identify the server, the service, and the

requested resource on the server (e.g., http://artemis.geogr.uni-jena.de:80/myfeed). In

this example, the URL is composed of the protocol identifier (“http” for HTTP-based

resources), followed by the hostname of the server (“artemis.geogr.uni-jena.de”), the port

number pointing to a specific service (this can be omitted for standard port 80), and the

resource requested (“myfeed”).

Figure 3.1: Client-server model involving different services provided by the server and the
interactions between client and server/service (request and response).

33

Web-based services and resources

Web services provide machine-to-machine communication by transferring machine-

readable file formats. The World Wide Web Consortium (W3C) defines a web service as

follows: “A Web service is a software system designed to support interoperable

machine-to-machine interaction over a network” (Booth et al. 2004).

Although in general web services have been based on the Simple Object Access Protocol

(SOAP), in recent years, the focus for providing service-based solutions has changed—

the principles of the World Wide Web have been adapted using resources based on the

Representational State Transfer (REST) specification. The W3C has identified two major

approaches to how web services can be built (Booth et al. 2004):

1) REST-compliant web services for manipulating representations of web resources

using a uniform set of stateless operations, and

2) Arbitrary web services providing a set of operations (e.g., using SOAP).

While SOAP provides an object-oriented approach with clearly defined web service

interfaces, REST is a simple approach with no interface specifications and is based on the

basic technologies of the Web. That is, two service architectures are available to publish

services, service-oriented architecture (MacKenzie et al., 2006) and resource-oriented

architecture (Overdick, 2007). Both of them can also be used for geospatial services.

Mazzetti et al. (2009) state that “it is not possible to say that one architecture is better than

the other. The selection of the most effective system architecture depends on application

requirements” (Mazzetti et al. 2009, p. 46). These authors selected the REST approach

for their Earth System Science applications. Figure 3.2 shows the increasing trend for

REST compared to the decreasing trend for SOAP within Google Search (Google 2018b).

Figure 3.2: Google search trend (October 2018): SOAP (blue) vs. REST (red) (Google 2018b).

In addition, the “Programmable Web” as a directory of web service applications shows the

importance of REST-based web services relative to other architectural styles, such as

Remote Procedure Calls (RPC), which is used by SOAP: “As expected, REST is by far

Chapter 3: State of the Art

34

the most commonly used architectural style given its prominence in API design over the

last decade plus. RPC is the next most commonly used, owing to the many SOAP and

XML-RPC-styled APIs that appeared, especially in the early days of our directory.”

(Santos 2017).

Synchronous and asynchronous service execution

Web services can be executed either synchronously or asynchronously. The latter means

that a response is given immediately, while the service is still processing the request. A

comparison of the synchronous and asynchronous execution of web services is listed in

Table 3.1. Whereas synchronous execution is less complex and produces no

communication overhead in server and client implementation, asynchronous execution

provides useful features, such as the independent provision of outputs, independence

from network failures, and “do not wait until execution is finished” behavior. Thus,

asynchronous execution is an important property for many processing tasks—especially

long-running tasks.

Table 3.1: Comparison of the synchronous and asynchronous execution of web services.

 Advantages Disadvantages
Synchronous
execution

• Immediate response includes
the requested output

• All output results at once
• Less complex in terms of

server and client
implementation

• Low overhead

• Connection to service required
until completion

• Server timeouts need to be
properly configured

Asynchronous
execution

• Provides outputs when ready
• Possible to close application

and check status later
• Network independent (in case

of failures)

• More complex in server and
client implementation

• Large overhead
• Client needs to regularly check

the status of the execution

Evaluation: A major advantage of RESTful web services is their ease of use in web

browsers, various applications, and programming languages. Thus, the provision and use

of RESTful web services has been increased in recent years relative to SOAP-based

services. Although the decision about which architecture to use depends on the

application, RESTful web services need to be considered. In addition, both synchronous

and asynchronous execution are relevant depending on the use case of the individual web

service. Long-running data integration or analysis tools should be supported by

asynchronous executions.

35

3.1.2 Standardization
Standardization of data and services is relevant to enable the exchange of data and the

use of services. Figure 3.3 shows the relationship between various standardization

organizations. Standards and specifications for basic web technologies are mainly

provided by the W3C, the Internet Engineering Task Force (IETF), and the Organization

for the Advancement of Structured Information Standards (OASIS). These provide

regulations for infrastructure and languages that are generally used for web-based

communication and data exchange (e.g., the Extensible Markup Language). For

geospatial purposes, the OGC specifies software interfaces and encodings with a domain-

and infrastructure-specific emphasis. Legal and domain-specific standardizations are

provided by the International Organization of Standardization (ISO) and the European

Committee for Standardization (CEN).

Figure 3.3: Tasks of the individual standardization organizations in relation to “De Jure—De Facto”
and “Domain—Infrastructure” standards (after Trakas 2010).

Within ISO, “Technical Committee 211— Geographic Information/Geomatics” develops

standards in the field of digital geographic information. These geographic information

standards are published in the ISO 19100 series. The specifications describe the

standards for basic geographic concepts, metadata, data content and definitions, core

data model, data exchange formats, data interchange and services, data quality, spatial

referencing, and imagery data. ISO specifies abstract models as well as their structures

and content. The technical implementation of geo-related models and services is mostly

specified by the OGC. Some of the specifications of the OGC have also been adopted by

ISO (e.g., ISO 19128 Geographic information—Web map server interface).

Chapter 3: State of the Art

36

The OGC comprises organizations and individuals from companies, governmental

agencies, and research institutions. The aim of the OGC is the development of standards

and technical specifications in the geospatial domain. The standards support interoperable

solutions to geo-enable the Web, wireless and location based services, and “mainstream”

IT (OGC 2018a). In contrast with standards published by ISO, OGC provides technical

implementation specifications for interfaces and encodings. Developers of software can

use these specifications to build and use services, which are compliant with the standards

of ISO and the OGC. Some of these specifications are described in Section 3.2.

Furthermore, specifications for data formats, such as the Geography Markup Language

(GML) are defined by the OGC.

Evaluation: Several international organizations exist to standardize web technologies,

geospatial data, and geospatial web services. The implementation specifications of the

OGC especially are important, as software exists that supports data and web services that

are provided with OGC specifications. Thus, the support of standardized specifications

can only be recommended.

3.1.3 Structured data formats
Structured data formats provide the possibility of transferring structured data over web

services based on text. Structured data are mostly provided in formats such as Extensible

Markup Language (XML) and the JavaScript Object Notation (JSON). Both XML and

JSON representations are shown in Figure 3.4, which describes structured data of a

specific person.

Extensible Markup Language

XML is a markup language developed by W3C and defined by W3C’s XML 1.0

specification (Bray et al. 2008). The specification consists of a set of rules for encoding

documents in a format that is human- and machine-readable (Figure 3.4, left). XML was

designed to work across the Internet. An XML document consists of elements (e.g., person

and address) and attributes (e.g., firstName). The content of an XML document is not

determined but can be defined in schemas. Schema systems, such as the XML Schema

(Fallside & Walsmley 2014), provide information about what kind of XML elements and

attributes are allowed in an XML document. This allows the standardizing of XML

documents for individual purposes and standard-compliant web services.

JavaScript Object Notation

JSON is a text format for structured data interchange between programming languages

defined by the JSON Data Interchange Standard of ECMA International (ECMA

37

International 2017). It was inspired by objects from the web programming language

JavaScript and has been adopted by other programming languages (e.g., Python). JSON

consists of name-value pairs in a structured format (Figure 3.4, right) and supports multiple

data types (e.g., String, Number, Boolean, Array, and Null value). Today, the JSON format

is preferred for modern web technologies as the data structure can be directly used as an

object in various programming languages.

Figure 3.4: Structured data in XML (left) and JSON (right) formats.

Evaluation: Both XML and JSON formats provide machine-readable structured data. The

structure of XML documents can be exactly defined (e.g., by the XML Schema). Although

XML is widely used, XML parsing, especially in web browsers, is always a complex task.

Thus, a major advantage of JSON is its ease of use in programming languages, as it can

be directly converted into regular objects. With JSON, individual document parsing is not

necessary.

Chapter 3: State of the Art

38

3.1.4 Web service software
Many types of software can be used to provide web services. Depending on the task of

the web service, different software may be of relevance. In light of this, web service

software for data processing and content management are distinguished in this section.

Processing web services

Processing web services can be provided with already-existing software or the

implementation of a self-developed web service. The OGC provides the Web Processing

Service (WPS) standard to specify the provision, description, and execution of processing

tools as interoperable web services. Based on the requirements described in Section 2.3,

several criteria for the evaluation of software are considered:

• Support for asynchronous execution

• Multiple output formats

• Support for technology (REST/SOAP)

• Output provision as inline and reference

• Standardization

• Reproducibility

• Support for JSON output format

Three software packages are compared: PyWPS as representative of standard-compliant

WPS software, OpenCPU as nonstandard-compliant software, and Python Flask as a self-

developed web service solution.

Standard-compliant web service software

PyWPS is a standard-compliant implementation of the OGC WPS specification (Schut

2007) written in Python and released with an open-source license (Čepický & Becchi 2007;

Čepický & De Sousa 2016). As the software uses the WPS specification, the provision of

web services is exactly defined.

Any Python library can be used in a process. In addition, command-line executable tools

can be used. Analysis tools from R or GRASS GIS can be used directly within Python

using the rpy2 or GRASS GIS Python libraries. For each of the processes, a description

is necessary for the process itself and for their input and output parameters that are

provided to client applications. The interaction with the service is based on the methods

defined in the WPS specification (GetCapabilities, DescribeProcess, and Execute). Listing

3.1 shows an example process implemented using PyWPS.

39

Based on the OGC WPS specification, PyWPS supports the following aspects (Čepický &

Becchi 2007):

• Encode requests for process execution and responses from process execution

• Embed data and metadata in process execution inputs/outputs

• Reference web-accessible data inputs/outputs

• Support long-running processes

• Return process status information

• Return processing errors

• Request storage of process outputs

Furthermore, multiple output formats and the provision of outputs as URL references are

features supported by PyWPS. Support of SOAP is available in PyWPS 3, but not in the

newly written PyWPS 4 due to a lack of interest from the user community. Any of the

executions of PyWPS are conducted with simple HTTP requests and REST-based

technology. XML is the execution response format compulsory in the WPS specification.

Unless the source code of the processes is not shared, reproducibility is not given.

Although links to external websites and documents can be integrated in the process

description (e.g., a link to the source code of the process), this is not mandatory for

processes. Furthermore, in many cases, reproducibility relies on specific versions of tools

installed on the server on which the process is running. These are not shown to the user.

The OGC WPS specification is also provided by other software, such as ZOO WPS and

52°North WPS. The main differences are the programming languages supported.

Overviews are provided by Zhao et al. (2012) and Lopez-Pellicer et al. (2012).

01 class SayHello(Process):
02 def __init__(self):
03 inputs = [LiteralInput('name', 'Input name', data_type='string')]
04 outputs = [LiteralOutput('response','Output, data_type='string')]
05
06 super(SayHello, self).__init__(
07 self._handler,
08 identifier='say_hello',
09 title='Process Say Hello',
10 abstract='Returns a string with Hello plus the inputted name',
11 version='1.3.3.7',
12 inputs=inputs,
13 outputs=outputs,
14 store_supported=True,
15 status_supported=True
16)
17
18 def _handler(self, request, response):
19 response.outputs['response'].data = 'Hello ' +
 request.inputs['name'][0].data
20 return response
Listing 3.1: Implementation of a process using PyWPS.

Chapter 3: State of the Art

40

Nonstandard-compliant web service software

OpenCPU focuses on making scientific computing reproducible based on an interoperable

HTTP web service interface for data analysis within R (Ooms 2014). Any standard R

function as well as specifically developed functions can be handled within a unique web

service interface. The parameters of the functions are the input parameters of the process.

The return values of the functions are the output data of the process. In addition, figures

plotted in the function are stored automatically and can be retrieved as further output data.

Although a list of processes can be retrieved, no further descriptions of the process, input

parameters, and output datasets are provided. Listing 3.2 shows an individually developed

function in R with input parameters ‘x’ and ‘y’, which can be requested using the web

service interface provided by OpenCPU.

1 extractWQ <- function(x,y) {
2 library(raster)
3 r <- brick("SWOS_WQ_CDOM_FUB_Monthly_France_Berre.vrt")
4 data <- extract(r,SpatialPoints(cbind(x,y)))
5 plt <- plot(c(data), type="l")
6 result <- list("values" = data)
7 return(result)
8 }
Listing 3.2: Implementation of a process using OpenCPU.

Multiple outputs as well as different execution response formats (e.g., text/plain, JSON,

CSV, graphics, and R-workspace) are supported but no description of each of the inputs

and outputs is provided. As the source code of the function can be retrieved, the names

of the input parameters are available. To keep the interface and server implementation

simple, only synchronous execution has been made currently available. This is not

suitable for long-running processes although the timeouts of the server can be configured.

OpenCPU follows its own standardization and thus client applications need to adapt the

building of execution requests and parsing of responses. The technology is based on

HTTP requests with a RESTful architecture; support for SOAP is not available.

Individual web service solutions

Processing tools can be published using various other forms of software, such as Flask

for Python and servr for R. In contrast to the previously services described, the methods

of web services need to be implemented by each application. A service example using the

Python Flask framework is shown in Listing 3.3 with a REST-based service providing

access to the resource /entries/<post_id> using methods of HTTP (e.g., GET, PUT,

and DELETE). Within this source code, any Python library and command-line tool can be

used. The same can be implemented using the servr library for R.

41

1 @app.route('/entries/<int:post_id>', methods=['GET','PUT','DELETE'])
2 def handle_post(post_id):
3 if request.method == 'PUT':
4 return change_post(post_id, request.data)
5 elif request.method == 'DELETE':
6 return delete_post(post_id)
7 else:
8 return get_post(post_id)
Listing 3.3: Provision of a web service using Python Flask.

Content management

Content management is important for providing functions for user authentication, available

datasets and analysis tools, or areas of interest specified by individual users. Several open

source software packages exist to provide functionalities for content management, such

as popular web content management software like Drupal CMS and Django Web

Framework. Both allow data management structured in individual “content types” with

“content fields,” which can be set up individually for each content type. While Drupal CMS

is based on Hypertext Preprocessor (PHP) scripting language, Django Web Framework is

based on Python scripting language. Both kinds of software support the management of

different data types, allow for user registration and authentication, and provide RESTful

web services.

Evaluation: In general, each of the software packages available has advantages and

disadvantages, which are more or less relevant for specific purposes. In most cases, the

programming language of software is the most important factor for selecting it, in addition

to the functions that the software provides.

While web services for content management are in most cases too application-specific,

services for geospatial processing tasks can easily be provided with standardized service

specifications (e.g., the OGC WPS). This processing service specification already

supports many of the features required to enable user-aligned web services. Others, such

as OpenCPU, are only suitable for specific purposes as it depends on the functions they

offer. For example, OpenCPU is better suited for prompt responses through the lack of

asynchronous support, for example, the extraction of a time-series from a raster time-

series stack. As OpenCPU as an application written in R, it is simple to provide R-functions

as web services. Therefore, R-functions can be provided and used as web service using

a simple approach.

Although anything can be provided with a self-developed web service, each of the

functions (e.g., asynchronous processing) needs to be implemented by the developer him-

or herself. As such, the use of already existing web service solutions (e.g., PyWPS or

OpenCPU) is preferred for the provision of processing services.

Chapter 3: State of the Art

42

3.1.5 Cloud-based infrastructures
Web services provide existing tools and applications to users. However, scientists and

developers especially are interested in applying algorithms to the data, in addition to data

discovery and data access. As the amount of available EO data increases daily, solutions

are needed to move algorithms to data. Cloud providers offer different kinds of

technologies to make use of their infrastructure. In addition to virtual machines that can

be launched and accessed via remote virtual environments, new technologies enable the

use of cloud infrastructures with serverless applications. Both are described and evaluated

in what follows.

Remote virtual environments

Virtual environments focus on providing a virtual operating system to users. Users are

able to use and install software tools, such as GIS and remote sensing-specific tools. EO

data archives can be directly accessed and used in the software packages. Two different

approaches can be distinguished, those that use either a virtual desktop or merely a virtual

command-line environment. With both, users connect using a remote accessing tool and

have the same experience as working on their local computer. Remote virtual

environments can either be used with local virtual servers or cloud-based infrastructures.

The connection to remote environments is either based on secure shells or remote

desktop tools, which provide access to command line and desktop applications. With

support of specific applications (e.g., Apache Guacamole), virtual desktops are available

through web browsers. Besides large cloud infrastructure platforms, such as Amazon Web

Services or Google Cloud, ESA and the European Union have also launched platforms,

such as ESA RSS Toolbox, EU RUS Copernicus, and the recently launched EU

Copernicus DIAS platforms. All of these provide on-demand virtual environments close to

EO data archives.

Serverless web services

Serverless infrastructure describes a technology for undertaking tasks for which the

underlying server infrastructure is set up and used only when the tasks are running.

Computational tasks can be triggered by an event, such as a request conducted by a web

service application. This allows the saving of resources and costs as the server

infrastructure is set up automatically only on demand. Due to the infrastructural concept

underlying Amazon Web Services (AWS) and Google Cloud, both support serverless

computing with their products, AWS Lambda and Google Cloud Functions. Limits

pertaining disk space, execution duration, request body size, memory allocation, and

software package size need to be considered when designing such web services (Table

3.2). Examples can be found on the remotepixel.ca website, which provides a Landsat

43

scene viewer (landsat-tiler10) and Landsat NDVI extraction (remotepixel-api11). Both web

applications make use of AWS Lambda web services to search for Landsat data, return

visualization images in different band combinations, and calculate NDVI data for the area

of interest.

Evaluation: Any application hosted on local servers can be transferred and hosted on

cloud-based infrastructure close to EO data archives. Various aspects need to be

considered when using virtual remote environments:

Serverless web services provide simple tools based on data that already is hosted by the

service provider. As such, data can be made available, but long-running data processing

or analysis tools are not supported due to the limitations of the serverless architecture.

Although it is not necessary to rent a server for the 24/7 time range, the cost is calculated

based on the number of requests and the computation resources used.

Table 3.2: Limits of the serverless tools from Amazon and Google (Status: Nov. 2018).

Limit AWS Lambda12 Google Cloud Functions13

Package size 50 MB 100 MB

Disk space 512 MB See memory allocation

Execution duration 300 seconds 540 seconds

Request body size 6 MB 10 MB

Response size 6 MB 10 MB

Memory allocation 128–3,008 MB 128–2,048 MB

10 https://viewer.remotepixel.ca
11 https://remotepixel.ca/projects/landsat8ndvi.html
12 https://docs.aws.amazon.com/lambda/latest/dg/limits.html
13 https://cloud.google.com/functions/quotas

• No data download is needed if the data is already available on the same

cloud.

• Costs for download bandwidth and storage when data required by the user is

not available on the server infrastructure.

• Costs for the 24/7 runtime of the processing infrastructure depends on

performance.

https://viewer.remotepixel.ca/
https://remotepixel.ca/projects/landsat8ndvi.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://cloud.google.com/functions/quotas

Chapter 3: State of the Art

44

3.1.6 Web platforms
Individual processing platforms automatically combine data access and data processing

tools. In contrast to virtual environments (see Subsection 3.1.5), only tools that are

published by the platform provider can be used. The general objectives of web-based

processing platforms are the provision of ready-to-use data in combination with convenient

tools and useable interfaces.

Different architectures and tools can be considered when designing infrastructures for

web-based EO data exploration. Soille et al. (2018) have compared several multi-petabyte

platforms for geospatial data processing and analysis, including NASA’s Earth Exchange,

the Australian Geoscience Data Cube, Google Earth Engine, and JRC Earth Observation

Data and Processing Platform (JEODPP). Different properties have been assessed: 1) the

capability to address users with remote desktop access, analysis software, and interactive

visualization and analysis tools; 2) access to its different services through a web browser

client; and 3) the possibility of running existing scientific workflows in a virtualized or

containerized environment. These criteria lead to the conclusion that a self-developed

infrastructure, such as the JEODPP, is best for use in terms of flexibility for users. Similar

web-based applications and infrastructures have been set up by the ESA Thematic

Exploitation Platforms (e.g., Esch et al., 2016) and the CEOS Open Data Cube initiative

(Ariza-Porras et al. 2017; Giuliani et al. 2017). Both of these can be hosted either on own

infrastructure or within commercial cloud providers close to EO Data archives, e.g., using

AWS, Google, Copernicus DIAS, or Terradue Cloud (Caumont et al. 2014). In contrast,

Google Earth Engine (Gorelick et al. 2017) provides highly scalable infrastructure that is

free to use after registration and has petabytes of EO and geospatial data. However, own

algorithms, for example, those available as an R package or command-line tool, need to

be rewritten with functions provided by Google. Although own datasets can be uploaded,

these are limited to raster and vector data.

Evaluation: Various web-based processing platforms exist that have different EO data,

analysis tools, service interfaces, and infrastructures. Although the development and use

of a self-developed platform is flexible for most of the requirements, it needs either to be

hosted on a cloud platform close to the data (e.g., Amazon, Google, and Copernicus DIAS)

or EO data needs to be downloaded. However, the use of existing platforms (e.g., Google

Earth Engine) can be limited in terms of the available EO data and analysis tools. A final

decision often depends on several aspects: the functionality of the web platform, the EO

data that is needed, or the own processing capabilities, and the like.

45

3.2 EO Time-series Data Services and Formats
Services for EO time-series data discovery, access, brokering, visualization, and

processing allow data exploration in various user-driven applications. In the following

subsections, state-of-the-art specifications and research on each of these services are

described and evaluated in relation to user requirements.

3.2.1 Discovery
Requests for geospatial data discovery include location and optional query parameters to

filter down the search result; the responses include the resulting metadata in the data

format requested (e.g., XML or JSON). In general, metadata cataloguing focuses on

individual geospatial data—not only that related to time-series data. A hierarchical

composition of satellite missions containing millions of satellite scenes has been

demonstrated by discovery brokers, such as the ESA Federated Earth Observation

Gateway (FedEO) and GEOSS metadata broker (Nativi et al. 2014; Craglia et al. 2017).

To allow interoperability between distributed metadata catalogues, standard-compliant

service specifications are available. The OGC has published the Catalogue Service for

Web (CSW) specification, which contains rules for querying metadata catalogues and

accessing metadata records. Other catalogue specifications, such as OpenSearch, which

was initially developed by Amazon, are available for general data discovery. The OGC

developed an extension for OpenSearch that specifies features relevant to geospatial

data, such as spatial and temporal properties and spatial filter methods. Metadata (e.g.,

title, abstract, and contact information) enables the discovery of geospatial datasets in

catalogues. Given this, ISO published the ISO 19115 specification (ISO 2003) to

determine what kind of information can be included. The structure of the metadata files is

defined in ISO 19139 as a standardized XML encoding schema. EO-specific metadata

can be made available using additional extensions of the existing metadata catalogue

standards, such as the OGC OpenSearch Extension for Earth Observation (Gonçalves &

Voges 2016) or the OGC EO Application Profile for CSW 2.0 (Gilles 2006).

Research has been conducted on semantic annotation of satellite data to automatically

enhance metadata, either by automated feature extraction (e.g., Cui et al. 2014) or

information linked to the footprint of each satellite scene extracted from additional data,

such as land cover, population, and the digital elevation model (Gasperi 2014). Semantic

information can be integrated using common discovery standards, such as OpenSearch

and OGC CSW, or based on a linked data approach using the Resource Description

Framework (RDF). As a result, a standardized query language can be used to search

within EO data archives for additional annotations and linked data (Koubarakis et al. 2012;

Chapter 3: State of the Art

46

Arenas et al. 2017). A combination of raster time-series discovery and access has been

researched within the EarthServer project (Baumann et al. 2016a). Based on the OGC

Web Coverage Processing Service (WCPS) specification, the XPath-enabled WCPS

extension has been developed to semantically search within the metadata of each raster

in the time-series (Liakos et al. 2015). To increase interoperability when searching for

spatial time-series data, the SpatioTemporal Asset Catalog (STAC, Holmes 2017b)

specification has been initiated by various international organizations. It aims to

standardize how geospatial data is made available online and can be queried using up-

to-date and modern web technologies. Currently, only an early version of the specification

is available and, hence, there is potential for some major changes (Radiant Earth 2018).

OGC Catalogue Service for Web

The CSW (Nebert et al. 2007) is a standard specification of the OGC for data discovery.

It uses a simple HTTP interface to make metadata discoverable and accessible. Within

the specification, requests, responses, and filtering parameters of the web service are

defined. Table 3.3 lists the core methods, which can be described as follows: The

“GetCapabilities” response lists methods with their parameters as well as filter capabilities,

such as geometry operands, spatial operators, comparison operations, and arithmetic

operators. The “DescribeRecord” method provides information about the metadata fields

that can be retrieved. The “GetRecords” method can be used to search the metadata

catalogue using keywords and other filters. Various parameters can be set to define the

resulting list of metadata (e.g., short or detailed). The “GetRecordById” method provides

the complete metadata record according to the identifier of the metadata record set in the

request.

Table 3.3: Core methods of the OGC CSW specification (Nebert et al. 2007).

Request method Description Output format

GetCapabilities Lists all available methods, parameters, and filter
capabilities

XML

DescribeRecord Describes the metadata elements available XML

GetRecords Discovers metadata catalogue XML

GetRecordById Retrieves metadata entry by unique metadata file
identifier

XML

Example of a CSW request (GetCapabilities):

http://artemis.geogr.uni-jena.de/pycsw/csw-
projects.py?service=CSW&request=GetCapabilities

47

Example of a CSW request (GetRecords):

http://artemis.geogr.uni-jena.de/pycsw/csw-
projects.py?service=CSW&request=GetRecords

OpenSearch

A non-domain-specific catalogue service specification is OpenSearch (Clinton 2018),

which uses standardized web output formats based on XML technologies. The JSON

format is additionally available. Depending on the configuration of OpenSearch, either only

a limited set of metadata or all metadata can be integrated in the output of the data

discovery request. However, another URL within the OpenSearch result can retrieve the

full metadata. OGC published a spatial and temporal extension to meet the needs of the

geospatial community (Gonçalves 2014).

Example of an OpenSearch description request:

http://artemis.geogr.uni-jena.de/ec/pycsw/swos/products.py?
service=CSW&request=GetCapabilities&mode=opensearch

Example of an OpenSearch search request:

http://artemis.geogr.uni-jena.de/ec/pycsw/swos/products.py?
service=CSW&version=2.0.2&request=GetRecords&mode=opensearch
&elementsetname=full&typenames=csw:Record&resulttype=results
&q=Azraq

Evaluation: Although the OGC CSW and OpenSearch specifications are used as

standards for data discovery, they can be improved for specific cases. More user-aligned

output formats for data discovery, which can be understood by a wide range of users,

need to be provided. Examples include summarized figures and charts as well as

commonly used data formats (e.g., Shapefile and CSV). To meet the needs of different

users, more than a single output needs to be available.

Chapter 3: State of the Art

48

3.2.2 Access
Geospatial raster data can be provided as direct file download or by using a web service

interface. The provision of data downloads through web services allows on-demand

requests of different projections, file formats, and subsettings. In addition to file download

and web services, new technologies allow the reading, writing, and visualizing of GeoTIFF

raster data in the browser (EOX IT Services GmbH 2018). An initiative to provide cloud-

optimized GeoTIFF data, which can be accessed by means of subsets when requesting

the data, has been initiated recently (COG 2018). This allows downloading of only parts

of a raster file without using a web service interface, rather than the user having to

download the complete raster file. In the following paragraphs current research and

standard-compliant specifications for raster time-series access are described.

Although single observations can be provided using the OGC Web Coverage Service

(WCS) specification, it is not optimized for large time-series data management and access.

The provision of time-series data is in general provided by the OGC Sensor Observation

Service (SOS) specification. Users can access data for a sensor of interest and further

user-specific parameters, such as the selection of a measurement or a temporal range.

This approach is mainly used for in-situ measurements when observing physical

phenomena (e.g., temperature or precipitation), which are always related to a

measurement station—a geographic point. In contrast, satellite-based EO delivers data

related to a certain geographic area. This has been addressed by Sorg and Kunkel (2015),

who published raster time-series data with the use of the OGC SOS specification. To allow

for efficient storage and search, which have been major challenges, the raster data is

made available with different grid solutions. The authors conclude that the “SOS approach

is predominant compared with the common WCS-EO) approach due especially to its

temporal and thematic filtering capabilities, but in particular due to the possibility of

describing measurement equipment, measurement processes, and observations in detail

by metadata standards, which are exactly defined for this purpose” (Sorg & Kunkel 2015,

pp. 1093–1094). Other access possibilities include the research of databases, such as

Rasdaman and SciDB (Baumann et al. 1998; Planthaber et al. 2012; Appel et al. 2018).

OGC Web Coverage Service

The WCS specification (Baumann 2012) allows the publishing of geospatial raster data

using an HTTP interface. Multiple output formats for raster data can be retrieved, such as

GeoTIFF or geo-referenced JPEG and PNG images. Using request parameters, users can

request specific projections and subsets of the original data. Table 3.4 lists the core

methods of the OGC WCS specification and the WCS-EO extension. A WCS-compliant

service can contain several geospatial data listed in the “GetCapabilities” response. In

49

addition, available projections and interpolation methods are listed. A dataset can be

further described with the “DescribeCoverage” request, which lists information about data

properties (e.g., pixel size, columns, rows, or no data value) and dimensions (e.g., bands

and time). The TIME extension of the WCS allows multi-temporal filtering before the

resulting data is returned as a response to the user. Based on WCS, it is possible to

integrate raster data into client applications, such as the GIS desktop system or web

applications using state-of-the-art browser technologies. Furthermore, it is possible to

download either the full dataset or only selected parts thereof by using subsetting and filter

functions.

An EO application profile meets the needs of the EO community. This profile adds the

methods “DescribeEOCoverage” and “GetEOCoverage,” with specific focus on multi-

bands and multi-temporal satellite data (Baumann et al. 2014). As such, temporal and

spatial information about various EO missions are included in the response formats.

OGC Web Coverage Processing Service

Another extension is the OGC WCPS, which allows the processing of raster data while

requesting it(Baumann 2009a). Baumann (2009a) developed a raster database combined

with the OGC WCPS specification to serve multi-dimensional raster data, which allows the

extracting and processing of data when conducting a service request. Although the WCPS

specification allows subsetting and processing of data while requesting it, the output of the

multi-temporal dataset consists of a multi-dimensional raster dataset. In most cases,

further metadata is necessary to relate each band to a date in the EO time-series data.

WCPS is reasonable for the retrieval of a single dimension; accessing a time-series of

raster data is more challenging because data management issues still need to be solved

by the user even if some of the steps (e.g., merging and clipping) have been undertaken

automatically by the web service. In the following examples, it is demonstrated how the

WCPS query language can be used to retrieve a vegetation index from satellite data

without the need to compute the index beforehand.

Evaluation: Existing data access services only partially meet the needs of users. They

mainly focus on machine-to-machine interaction and raw data access. Several

requirements, such as clipping and merging data to the area of interest, using quality

masks and scaling factors, and converting data to user-defined output formats have not

yet been fully addressed. Therefore, individual data integration and processing services

are necessary. While it is possible to provide the raster data for each date individually with

the OGC WCS and WCPS specifications, the handling of the requesting and further

processing of all datasets according to the needs of a user is left to the client application.

Chapter 3: State of the Art

50

Table 3.4: Core methods of the OGC WCS specification and the WCS-EO extension (Baumann
2012; Baumann et al. 2014).
Request method Description Output format

GetCapabilities Lists information about operations and
coverages available

XML

DescribeCoverage Retrieves information about a single
coverage

XML

DescribeEOCoverage Retrieves information about single EO
dataset collection

XML

DescribeEOCoverageSet Retrieves information about zero or
more EO datasets that meet the
request parameters (e.g., dataset IDs
and spatial/temporal dimensions)

XML

GetCoverage Downloads geospatial coverage based
on specific parameters

GeoTIFF/others

GetEOCoverage Downloads EO coverage based on
specific parameters

GeoTIFF/others

Example of a WCS request (GetCapabilities):

http://artemis.geogr.uni-jena.de/sibessc/modis?service=WCS&
version=2.0.0&request=GetCapabilities

Example of a WCS request (GetCoverage):

http://webgis.essi-services.org:8080/geoserver/ows?
service=WCS&version=2.0.1&request=GetCoverage&coverageid=web
gis__tuebingen-landcover_300m_band1

Example of a WCS request (GetCoverage with subsetting):

http://webgis.essi-services.org:8080/geoserver/ows?
service=WCS&version=2.0.1&request=GetCoverage&coverageid=tue
b_srtm_30m&subset=Long(9.05,9.15)&subset=Lat(48.50,48.55)&
subsettingcrs=http://www.opengis.net/def/crs/EPSG/0/4326

Example of a WCPS (ProcessCoverage) request calculating the NDVI for a subset of a

single image within a multi-temporal dataset (LT5):

http://yourserver/rasdaman/ows?service=WCPS&version=2.0.1

 &request=ProcessCoverage
 &query=for c in (LT5) return encode((((float)c.b4-
(float)c.b3)/((float)c.b4+(float)c.b3))[E(700000:784815),N(5
104285:5158115),ansi("1984-10-18")],"tiff")

51

3.2.3 Brokering
Brokering systems for geospatial data have been introduced by Nativi et al. (2012) to

achieve interoperable web services across multi-disciplinary systems and standards.

Nativi et al. (2012, p.6) defines a broker as follows: “A solution to reduce the

interoperability burden on data providers and applications is to introduce a third party to

interconnect the different service buses, mediating their existing (and future) models and

interface specifications.”

Figure 3.5 shows both approaches: The traditional approach with requests to each

individual data provider (right) and the service-brokering approach with a centralized

request to the broker instead of to each individual service of the data provider (left). The

service broker takes over the communication with each connected web service and adapts

requests from users to the service specifications of the data provider.

While the service-brokering approach has been implemented for data discovery by various

international organizations (e.g., GEOSS), the brokering of data access is more complex.

Although Nativi et al. (2013) propose service brokering for data access, it has been

introduced for individual geospatial data and does not focus on time-series data. Based

on the same approach, a brokered virtual hub layer for historical maps has been

developed (Previtali & Latre 2018). The study investigates how to remove the barrier

introduced by data and services by different user communities to ensure the effective

reuse and integration of geospatial data by software developers. It concludes that “the

capability to integrate different informative layers, both historical and modern, can be an

important opportunity of development with application areas still largely unexplored”

(Previtali & Latre 2018, p. 19). In addition, architectures with only a single point of access

ensure easy interoperability between different sources.

Evaluation: A brokering approach enables the use of a unified and harmonized interface

for the different services that are connected. Users only need to use a single service.

Figure 3.5: Requests to EO data using individual services (right) and service brokering (left).

Chapter 3: State of the Art

52

3.2.4 Visualization
Geospatial raster and vector data are visualized in the web browser by converting them

to RGB or greyscale images. Raw values from raster data and features from vector data

hence need to be converted into color schemes (Figure 3.6). The OGC allows visualization

using the Styled Layer Descriptor specification. For raster data, individual pixel values are

converted either into discrete colors or into a continuous range of colors. For vector data,

the color assignment is based on a column in the attribute table (e.g., different colors for

land-cover types specified in the attribute table).

OGC Web Map Service

The OGC Web Map Service (WMS, Beaujardiere 2006) specification provides a simple

HTTP interface to convert geospatial data to images in order to make them available on

the Web. Several parameters can be added when retrieving an image, such as a bounding

box or a specific styling. If data is provided using the OGC WMS specification, it can be

easily integrated in existing GIS desktop and web-mapping software. Within a web-based

system, geospatial data created on demand (e.g., outputs of the results of analysis) can

be directly visualized in an interactive map viewer when a WMS is provided. No data

download or additional software is required by the user. Table 3.5 lists the core methods

of the WMS specification. A WMS can contain several geospatial data, which are listed as

layers in the “GetCapabilities” request. In addition to the visualization of geospatial data,

a WMS provides on-demand projection in order to transfer geospatial data into other

projections within the “GetMap” request. It also supports the request for raw values of the

geospatial dataset for individual pixels in raster or features in vector datasets

(GetFeatureInfo). A legend graphic containing explanations of what the colors represent

can be requested using the “GetLegendGraphic” request.

Figure 3.6: Workflow of a web-based visualization of geospatial data: Either raster data (top left)
or vector data (bottom left) can be transferred into images (own visualization).

53

Table 3.5: Core methods of an OGC Web Map Service (Beaujardiere 2006).
Request method Description Output format

GetCapabilities Lists all available datasets XML

GetMap Retrieves images from given datasets in a
geographic area

Image

GetLegendGraphic Retrieves a legend graphic from given dataset Image

GetFeatureInfo Retrieves raw values from a specific dataset and
location

HTML/others

Example of a WMS request (GetCapabilities):

http://artemis.geogr.uni-jena.de/sibessc/modis?service=WMS&
version=1.3.0&request=GetCapabilities

Example of a WMS request (GetMap):

http://artemis.geogr.uni-jena.de/sibessc/modis?service=WMS&
request=GetMap&layers=myd10c2_snowcover&format=image/png&
srs=EPSG:900913&bbox=10018754,5009377,15028131,10018754&
width=256&height=256

WMS TIME Extension

The WMS TIME extension allows for the filtering of a multi-temporal dataset before the

visualization is undertaken. This is based on a catalogue (e.g., through a database or

vector file), which contains temporal information for each item in the multi-temporal

dataset. For each “GetMap” request, the TIME parameter comprises either a single time

period (e.g., year, month, or day) or a start and end date:

TIME=<start date>/<end date> Example: TIME=2018-01-01/2018-01-07

TIME=<date> Example: TIME=2018 (all scenes from 2018)

As the output is a single map, depending on the software, several strategies for the

resulting multi-temporal images can be defined, such as mosaicking all resulting images

or showing only the latest image within the given time range.

WMS Earth Observation Application Profile

The Earth Observation Application Profile of the WMS specification defines “conventions

for the Earth Observation (EO) community to use OGC Web Services” (Lankester 2009),

with the objective of providing an interoperable way to visualize EO data. That is, it defines

how EO data, which contains dataset collections as well as temporal and band

dimensions, can be provided using the OGC WMS specification. The temporal dimension

is provided by the WMS TIME parameter. If multiple bands are available in the EO data,

Chapter 3: State of the Art

54

they need to be provided by using an additional dimension (e.g., wavelength for optical

data or polarization for radar data). An example request that includes the TIME parameter

and the additional dimension for radar intensity (dim_sar) is shown below:

http://eoltd.co.uk/mapserver.cgi?version=1.3.0
&request=GetMap&crs=CRS:84
&bbox=78.105,24.913,94.794,36.358
&width=560&HEIGHT=350
&layers=ASA_IMP_1P_BANDS
&format=image/png
&time=2005-10-05T07:25:00
&dim_sar=INTENSITY

Evaluation: Visualization of EO time-series data can be realized using the TIME parameter

of the OGC WMS specification. In addition, the WMS EO application profile lists

specifications regarding how to provide raster time-series layers. Although this is suitable

for data provision, client applications need to support this extension.

3.2.5 Processing and analysis
The publishing of processing tasks as web service—close to the data or on dedicated

processing hardware—plays a major role in dealing with the emerging opportunities,

challenges, and needs for globally distributed data and increasing amounts of data. To

better support data exploration, algorithms need to be provided as web services to

transform data into information. Algorithms need to be directly linked with input data, which

needs to be prepared for direct analysis (“analysis-ready data”). Therefore, EO data

archives and analysis tools have to be linked. Web-based processing services enable the

further processing of output data of algorithms, for example, converting geospatial output

data to standardized web services for visualization and access. Furthermore, raster to

vector conversion and ready-to-use maps can be added to allow easy exploration of the

results of analysis without the need for further processing by the user. To ensure the

deployment of algorithms without the need to consider the dependencies of the software

and allow reproducible workflows, containerized solutions can be considered (Celesti et

al. 2016; Beaulieu-Jones & Greene 2017). This allows the execution of an algorithm

independently of server infrastructure.

Geoprocessing technologies are widely discussed in the research community. Hofer

(2014) undertook a systematic literature analysis of the use of online geoprocessing and

concluded that the field is still evolving and that further actions need to be focused on

increasing the use of this technology (e.g., provide best practices and resources, reduce

entry and access barriers, sharing of services, and the like). In 2009, a research agenda

for geoprocessing services was published by Brauner et al. that identified three main

55

topics: 1) semantic descriptions of geoprocessing services, 2) orchestration of

geoprocessing services, and 3) approaches for performance enhancements. A new

paradigm has already been introduced and was later further developed to bring algorithms

to the data (Friis-Christensen et al. 2007; Müller et al. 2010, 2013) to handle performance

issues and increasing data volumes. This paradigm leads to a reduction in the amount of

data transfer between different systems; however, it still needs to be further investigated.

In addition, algorithms can be provided with interoperable standards. This can be achieved

with geoprocessing services and is referred to as the “geo-enabled model web” (Geller &

Turner 2007; Nativi et al. 2013; Dubois et al. 2013). Current research projects aim to

standardize the connections to and between EO service providers by providing a

standardized service interface to query and process EO data (Schramm et al. 2019) and

“analysis-ready services” (Baumann 2019).

Further research has been conducted in several fields:

• Distributed processing (Friis-Christensen et al. 2007; Meng et al. 2010; Foerster et

al. 2011; Schaeffer et al. 2012)

• Semantic processing (Farnaghi & Mansourian 2013; Wosniok et al. 2014; Vitolo et

al. 2015; Sudmanns et al. 2018)

• Process orchestration (Nash et al. 2007; Meng et al. 2009; Eberle & Strobl 2012;

De Jesus et al. 2012; Wu et al. 2014; Xiao et al. 2016; Hofer et al. 2017)

• Cloud-based processing (Sun 2013; Evangelidis et al. 2014; Veenendaal et al.

2016; Shelestov et al. 2017; Gorelick et al. 2017)

• Sharing geoprocessing logic (Müller et al. 2013)

OGC Web Processing Service

Service providers for web-based processing services need to describe their processes

with input and output parameters, which can be individually set by the users. Process

descriptions and execution methods can be standardized with the use of the OGC WPS

specification (Schut 2007), which allows the publishing of processing tasks on the Web

using an HTTP interface. A WPS-compliant service can contain several processes, which

are connected to executable scripts on the server. Standardized methods (Table 3.6) allow

a unique execution of processes and the handling of status updates. Available processes

are listed in the “GetCapabilities” response. The process descriptions with information

about available inputs and outputs and descriptions of the process itself can be retrieved

using the “DescribeProcess” request. A process can be started using the “Execute”

request, which includes the input values and properties for running the process, such as

synchronous or asynchronous execution or whether the output values are stored on the

Chapter 3: State of the Art

56

server. With version 2.0 of the WPS specification, there are further request methods to

pause and cancel running processes. Using the WPS specification, processes can be

started directly using data available on the local machine, the server infrastructure, or on

the Web.

Table 3.6: Core methods of an OGC WPS (Schut 2007).
Request method Description Output format

GetCapabilities Lists processes available in the requested
WPS instance

XML

DescribeProcess Describes process with inputs and outputs XML

Execute Executes a process XML / Output file

Example of a WPS request (GetCapabilities):

http://artemis.geogr.uni-jena.de/cgi-bin/testbox.cgi?
service=WPS&request=GetCapabilities

Example of a WPS request (DescribeProcess):

http://artemis.geogr.uni-jena.de/cgi-bin/testbox.cgi?
service=WPS& version=1.0.0&request=DescribeProcess&
identifier=1013_single_ts_plot_point

Example of a WPS request (Execute):

http://artemis.geogr.uni-jena.de/cgi-bin/testbox.cgi?
service=WPS&version=1.0.0&request=Execute&identifier=1013_si
ngle_ts_plot_point&datainputs=datasetName=mod13q1_evi;pointX
=13.54;pointY=52.31

Evaluation: The OGC WPS specification allows a meeting of the needs of users though

further standards related to input and output data formats, service execution properties,

and the deployment of algorithms need to be defined (e.g., through WPS application

profiles).

57

3.2.6 Data formats
As already described in Subsection 2.1.1 and shown in Table 2.2, multi-source EO data

is available in different data formats (e.g., GeoTIFF, netCDF, HDF-EOS). The selection of

user-friendly data formats needs to be observed from different perspectives: the

technological perspective in order to provide efficient data access and visualization, and

the user perspective, with commonly used data formats. Bordogna et al. (2016)

recognized that there is still a gap to fill in order to enable the efficient access, retrieval,

integration, visualization, analysis, and interpretation of geospatial time-series data,

especially that with different data formats and from multiple sources. Furthermore, they

identified a lack of complex functionalities that would allow stakeholders to easily perform

queries on geospatial time-series data within current geoportals without the need to think

about data formats and data structures. In addition, graphic diagrams showing time-series

are mostly not available as query responses. Smith et al. (2016) describe similar needs,

as data platforms “often do not demonstrate that data are readily available and easy to

access and analyze [and] data insights are not realized without expertise in programming

or other technical skills” (Smith et al. 2016, p. 98). Thus, user-friendly tools to explore

aggregated time-series data and model outputs are necessary. In both of the above-

referenced studies, data are structured as files with a predefined data format (e.g.,

GeoTIFF for raster time-series and text files for single time-series). In contrast to the

GeoTIFF-based single layer data format and data structure (Astsatryan et al. 2015;

Bordogna et al. 2016), the Hierarchical Data Format (HDF) is preferred by other

researchers to allow a time-sequential representation of individual pixels for efficient raster

time-series data access (Colditz et al. 2008; Van den Bergh et al. 2012). Gallaher and

Grant (2012) propose the “data rods” time-series format for data management and data

analysis. This allows raster time-series data to be converted into single time-series pixel

objects that can be stored in object-based databases, which provide more efficient data

access than accessing data from the file system. For all of the studies presented above,

the main objective is overcome the current activities of data search, order, download, and

transformation into a web service-based exploration and analysis of time-series data in an

efficient and optimized way.

Evaluation: The choice of the “correct” data format is often not simple to answer as it

depends on various subjects (e.g., user communities and diverse data structures). While

the GeoTIFF format can only handle bands with the same raster dimensions in the same

file, the HDF format can include different raster dimensions. However, depending on the

user community, users may have more experience with one or the other data format.

Chapter 3: State of the Art

58

3.3 Summary and Evaluation
The state of the art for web technologies and EO time-series data services and formats is

summarized and evaluated in relation to user requirements in the following paragraphs.

Web technologies

Current web technologies are based on RESTful web services and make use of JSON for

the exchange of structured data. Although SOAP-based web services can be useful in

different domains and software architectures (e.g., orchestration engines), the RESTful

approach needs to be supported for web services. The JSON data format is to be preferred

in most cases as the data structure can be directly used as an object in various

programming languages. The selection of software to provide web services depends on

several aspects, such as the programming language and supported features (e.g.,

asynchronous processing) of the software. It often also depends on the use and the

content: Processing services need to be distinguished from the provision of content

management services. Cloud-based infrastructures and tools allow the hosting and

provision of both data platforms and single services but usage costs need to be taken into

account. EO-related web platforms can be based on several architectures, with different

EO data, analysis tools, service interfaces, and infrastructures available to users.

However, in most cases, they have been built for specific purposes and are therefore

limited in terms of the available EO data, analysis tools, and web services.

EO time-series data services and formats

Although commonly used web service specifications for data discovery, access,

visualization, and analysis exist, the focus has been mainly on machine-to-machine

communication. In particular, the response formats of those web services either focus on

web-specific formats (e.g., discovery results in XML or JSON) or are just not suitable for

EO time-series data (e.g., OGC WCS for time-series data access), which in most cases is

only usable by software developers. Other user personas, such as scientists and thematic

experts, need additional output formats. Access to raster time-series data especially

cannot be provided in a simple request using the existing services as they only provide

access to individual files (multiple files are needed for time-series data). In addition,

software developers who are not particularly familiar with the geospatial domain need to

learn many specifications to handle data discovery, access, and analysis services. Thus,

a uniform service specification and multiple output formats would foster the exploration of

EO time-series data with support of multiple user personas.

59

Evaluation according to user requirements

Web technologies and EO time-series data services and formats have been evaluated in

relation to the user requirements presented in Chapter 2.

The following conclusions can be drawn:

 Web services can be provided with support of different architectures (e.g., SOAP

or REST), OGC-compliant specifications, asynchronous execution, and service

chaining. However, no software supports all of these features.

 Multi-source EO data discovery and access and the harmonization of multiple

service specifications from different data providers can be realized by means of a

service-brokering approach.

 Several cloud-based infrastructures and processing platforms exist; however, pre-

defined platforms always have limitations. As such, as proposed from Soille et al.

(2018), the hosting of a self-developed platform offers the most flexible approach.

The following conclusions need to be further explored:

 Specifications for data discovery and data access provide only different output

schemata (e.g., JSON or XML) and do not support multiple output formats. Only

the OGC WPS specification supports the provision of multiple outputs.

 No uniform service specification for data discovery, access, and processing

(analysis) is available. Although the OGC specifications follow same rules, many

of the core methods and formats for requests and responses are different.

 Formats for EO time-series data need to be harmonized for further exploration

through the user in relation to existing geospatial applications and analysis tools.

Chapter 3: State of the Art

60

61

Chapter 4: Review of EO Web Services, Tools, and
Platforms
In this chapter, web services from existing EO data providers, geospatial tools to process

EO time-series data, and cloud-based EO infrastructure platforms are described and

evaluated focusing on their current state-of-the-art technologies and in relation to user

requirements.

The following questions are reviewed:

• Where and how to search for data and what kind of web services for data discovery

are provided? (Section 4.1)

• How to access EO data and what kind of web services are provided? (Section 4.2)

• How to process raster time-series data with geospatial tools? (Section 4.3)

• What kinds of EO data platforms exist and what do they offer? (Section 4.4)

In each of the sections, a conclusion is drawn. The review chapter concludes with a

summary and recommendations for multi-source EO data discovery and access, time-

series data processing, and cloud-based processing platforms.

Chapter 4: Review of EO Web Services, Tools, and Platforms

62

4.1 Discovery of EO Time-series Data
Services for the discovery of EO time-series data for Sentinel, Landsat, and MODIS have

been made available from space agencies (e.g., ESA and NASA), private companies (e.g.,

Google and Sinergise), and other organizations (e.g., USGS). As data discovery tools can

be provided using different kinds of technologies and specifications, there is no common

specification to fit all purposes of data discovery. The main specification for data

cataloguing from the OGC, the CSW, has been made available for many satellite data

providers through the brokering services offered by CEOS and GEOSS. Although this can

be seen as a common approach for data discovery, many data providers either use

additional standardized specifications (e.g., OpenSearch and OGC Web Feature Service)

or self-developed web service specifications.

The most common services for the discovery of Sentinel, Landsat, and MODIS data

archives today are listed in Table 4.1, including the specifications they provide and what

kind of EO data is available. Most EO satellite data is not only discoverable by the operator

of the satellite. Other data providers hosts copies of the EO data in different kind of formats

and provide different kind of services for data discovery. Although standardized

specifications for data discovery exist, many data providers, such as USGS, NASA, and

Google, offer web services with other specifications that are optimized for their own data

archives. In the following subsections, the services listed in Table 4.1 are described and

evaluated.

Table 4.1: List of services for satellite data discovery for Landsat, Sentinel, and MODIS.
Data provider Specifications provided Data

ESA/Copernicus Open Access Hub
https://scihub.copernicus.eu

OpenSearch Sentinel

USGS Earth Explorer
https://earthexplorer.usgs.gov/inventory

Self-developed service
specification

Landsat,
MODIS,
Sentinel–2

NASA CMR
https://cmr.earthdata.nasa.gov

Self-developed service
specification

Landsat, MODIS

Google Earth Engine
https://earthengine.google.com

Python library Landsat,
MODIS, Sentinel

Sinergise Sentinel-Hub
http://www.sentinel-hub.com

OGC Web Feature Service Landsat,
Sentinel

GEOSS broker
http://www.geodab.net

OGC Catalogue Service for Web
OpenSearch, Others (e.g., REST)

Landsat–8,
Sentinel

CEOS WGISS Integrated Catalogue
http://ceos.org/cwic

OGC Catalogue Service for Web
OpenSearch

Landsat–8,
MODIS

ESA FedEO
http://ceos.org/fedeo

OGC Catalogue Service for Web
OpenSearch

Landsat,
MODIS, Sentinel

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/inventory
https://cmr.earthdata.nasa.gov/
https://earthengine.google.com/
http://www.sentinel-hub.com/
http://www.geodab.net/
http://ceos.org/cwic
http://ceos.org/fedeo

63

4.1.1 Data provider solutions
Each of the EO data providers offers specific web services for data discovery. In the

following paragraphs, services from major public data providers, such as ESA, USGS, and

NASA, as well as commercial services from Google and Sinergise are described.

ESA/Copernicus Open Access Hub (Sentinel)—OpenSearch

ESA provides the REST-based OpenSearch specification for the discovery of EO data

from Sentinel satellites.14 Search parameters, such as dates, orbits, sensor modes, cloud

cover, and a full-text search, can be used in addition to mission-specific parameters to

filter the discovery request (Table A.1). An individual polygon can be used to intersect

spatially with the scene of the EO data. Either XML or JSON can be requested as a data

format for the response using the additional parameter “format.” The response includes all

available properties for each satellite scene, including the identifier, sensor mode,

footprint, product type, size, dates, as well as mission-specific properties (e.g., polarization

mode for radar data and cloud cover percentage for optical data). However, the quality

and format of quick look images can be improved for some satellite missions (e.g.,

Sentinel–1). Furthermore, a user account is necessary and only two parallel service

requests are allowed.

USGS Earth Explorer (Landsat, MODIS, Sentinel–2)—self-developed REST API

The inventory service of the USGS Earth Explorer allows searching for dataset collections

and satellite scenes.15 Spatial and temporal filters can be used for both search requests

(Table A.2 and Table A.3). Cloud coverage and individual months can be set for satellite-

scene searches. Furthermore, additional criteria can be used to filter the satellite-scene

search using dataset-related parameters. As the USGS Earth Explorer consists of a wide

range of EO data (e.g., Landsat, MODIS, and Sentinel–2), multi-source EO data can be

searched. The search parameters are encoded as JSON and sent to an individual web

service endpoint for login, collection search, or satellite-scene search. The response is

encoded as JSON. Each of the resulting scenes includes the following information: start

time, end time, polygon footprint, a bounding box, quick look image link, data ordering link,

data download page link, scene identifier, and metadata URL. However, only a non-

standardized web service interface is available and an interface key is required to conduct

requests to the service. This key can be obtained using the login web service with a

username and password. The full metadata information is only available when requesting

an additional external metadata URL.

14 https://scihub.copernicus.eu/dhus/search
15 https://earthexplorer.usgs.gov/inventory

https://scihub.copernicus.eu/dhus/search
https://earthexplorer.usgs.gov/inventory

Chapter 4: Review of EO Web Services, Tools, and Platforms

64

NASA CMR (Landsat, MODIS)—self-developed REST API

The Common Metadata Repository (CMR) of NASA contains metadata records for EO

data.16 Landsat and MODIS data are included in addition to others. A list of dataset

collections can be searched using multiple filter parameters (Table A.4). Based on a

collection identifier, the individual satellite scenes (granules) can be searched using further

parameters (Table A.5). Different kinds of output formats can be requested for the

responses (e.g., CSV, JSON, Keyhole Markup Language, and XML). With two web service

endpoints, dataset collections and satellite scenes can be searched. Each of the resulting

scenes includes the following information: start time, end time, polygon footprint, scene

identifier as title, quick look image link, and data download link. Although filtering through

cloud coverage can be effected within the request, this information is only available after

requesting the full metadata record. The services can be used without a user login.

However, only a fixed set of standardized filter parameters is available and no collection-

specific parameters can be used to query the catalogue. The responses include only a

limited set of parameters; a further request needs to be sent to retrieve the full metadata

record.

Sinergise Sentinel-Hub (Sentinel, Landsat)—OGC WFS

The Sentinel-Hub infrastructure from Sinergise provides web services that are compliant

with the OGC for data discovery.17 Although the common standard for providing data

discovery is the OGC CSW, Sinergise publishes the OGC Web Feature Service (WFS),

which is used for vector data access, to provide satellite-scene discovery. The WFS

includes a list of dataset collections, which is available with a “GetCapabilities” request.

To retrieve the scenes available for a specific dataset collection, the parameters from

Table A.6 can be used to filter them with a spatial bounding box within the “GetFeature”

request. The response is available as XML or in GeoJSON formats, which are both

standard formats for the OGC WFS specification. Each of the resulting scenes include

only a few metadata: date, time, coordinate reference system (crs), a bounding box, cloud

cover percentage, scene identifier (format dependent from satellite mission), polygon

footprint, and path to local data. However, only a limited set of parameters can be used to

discover scenes and only a limited set of metadata is provided in the results. Additional

metadata need to be requested from external services. A commercial interface key is

required to use the services.

16 https://cmr.earthdata.nasa.gov
17 https://www.sentinel-hub.com/develop/documentation/api/ogc_api/wfs-request

https://cmr.earthdata.nasa.gov/
https://www.sentinel-hub.com/develop/documentation/api/ogc_api/wfs-request

65

Google Earth Engine (Sentinel, Landsat, MODIS)—Python API

Google provides discovery, access, and analysis tools for a broad range of geospatial

datasets, including EO data archives from USGS Landsat, ESA Sentinel, and several

MODIS products (Gorelick et al. 2017). All tools are available using the web-based

JavaScript editor (Playground) and the Python library ‘earthengine-api’,18 which is based

on web services. A whitelisted service account is needed to run the Python Earth Engine

API in automated workflows (e.g., within a web processing service). Within Google Earth

Engine, satellite scenes can be filtered from dataset collections using several metadata

properties (e.g., cloud cover, temporal and spatial boundaries, or any metadata item). In

addition, individual properties can be calculated and used to filter the collection. No links

to external quick look images or data download links are included in the metadata as both

of these can be directly computed within and provided by Google Earth Engine. Listing

A.1 shows the request of a Sentinel–1 collection filtered by point geometry and additional

properties of the dataset (VV polarization and descending orbit direction). The response

within the Python API is a list of objects, which can directly be further processed in Python.

However, so far, only the Python library is available for use in self-developed applications.

Therefore, these applications need to be developed in Python or a Python script needs to

be available, which is executed through the command line.

4.1.2 Brokered web service solutions
Web service brokering describes the ability to search external services, which have been

connected seamlessly to the broker. Brokering solutions offer the possibility of providing

harmonized interfaces to connected data providers. In the following paragraphs, brokering

services for data discovery from international organizations are described and evaluated.

CEOS WGISS Integrated Catalog (CWIC)—OGC CSW, OpenSearch

The CEOS Working Group on Information Systems and Services (WGISS) provides with

CWIC 19 an integrated data catalogue for EO data providers based on a brokering

approach (Shao et al. 2013). The broker includes metadata catalogues from various

organizations, such as NASA (USA), USGS (USA), the Group for High Resolution Sea

Surface Temperature, the European Organisation for the Exploitation of Meteorological

Satellites, and further international space agencies from India, Brazil, China, and Canada.

This includes data from Terra, Aqua (both carrying a MODIS sensor) and Landsat–8

satellites. Standardized interfaces, such as OGC CSW and OpenSearch, are provided

through CWIC. The OpenSearch interface has been tested for Landsat–8 data. Filters,

18 https://pypi.org/project/earthengine-api/
19 http://ceos.org/ourwork/workinggroups/wgiss/access/cwic/

https://pypi.org/project/earthengine-api/
http://ceos.org/ourwork/workinggroups/wgiss/access/cwic/

Chapter 4: Review of EO Web Services, Tools, and Platforms

66

such as a bounding box, geometry, start time, and end time, can be applied to the

discovery request. Each of the resulting Landsat–8 scenes is described with the following

information: title (this relates to the unique identifier of each Landsat scene), CWIC

identifier, date, collection identifier, data center, and polygon footprint. Additional external

links are provided to access the data download page, quick look image, and full metadata

record. Although there are a good number of brokered resources from international space

agencies, there is currently no support for Sentinel satellites. Furthermore, it is not obvious

that historical Landsat missions are available through CWIC as they do not appear on the

list of dataset collections. However, Landsat data is registered in NASA’s CMR, which is

brokered by CWIC. The search functionalities are limited (e.g., no filtering for cloud cover).

The use of this broker depends on the satellites users are interested in and whether they

have been integrated in CWIC.

GEODAB (Sentinel, Landsat, MODIS)—OGC CSW, OpenSearch

The GEO Discovery and Access Broker (GEODAB; Nativi et al., 2014) acts as a brokering

service to mediate between and harmonize metadata and catalogue standards. Currently,

more than 150 data catalogues are registered with the broker. In addition to geospatial

data catalogues, data catalogues from EO data providers have been made available

through GEOSS, such as the Copernicus Open Access Hub from the ESA, the FedEO

from CEOS, USGS Landsat–8, and CWIC. Several REST-based resource interfaces are

available20, such as the OGC CSW and OpenSearch. Several search filters can be applied

to the discovery request, such as relative orbit, product type, product level, sensor

operation mode, sensor swath, processing level, cloud cover percentage, and polarization

mode. Additional parameters can be set, but the description shows only abbreviations,

such as “illazan,” “illzean,” “sarPolCh,” without any further description. The resulting

metadata for a Sentinel–2 scene includes the following data: a bounding box, start/end

date, platform name, instrument, instrument operation mode, product type, cloud cover

percentage, relative orbit, polygon footprint, processing baseline and level, orbit direction,

start orbit number, download link, and several OGC WMS layers added by GEOSS and

linked to the Sinergise Sentinel-Hub services. Additional metadata for other satellites (e.g.,

Sentinel–1) can be included in the request to the service. The scene identifier from the

original data provider is not provider, thus the subsequent retrieval of metadata from the

original data provider is not possible. Although the GEODAB can be used to search for

satellite data in different data catalogues, the resulting metadata per scene is limited. In

most cases, further metadata needs to be requested using other services.

20 http://production.geodab.eu/gi-cat-StP/ and https://www.geodab.net/apis

http://production.geodab.eu/gi-cat-StP/
https://www.geodab.net/apis

67

ESA FedEO (Landsat, Sentinel, MODIS)—OGC CSW, OpenSearch

The FedEO established by ESA provides a unique entry point for multi-source satellite

missions. 21 FedEO was initially developed as a prototype for GEOSS and has been

provided since 2012 by CEOS. It includes ESA EO data archives (e.g., Copernicus

satellites, Landsat data at ESA, and historical ESA SAR missions) as well as EO missions

from Canada, which is an associated ESA member state. In addition, NASA CMR has

been integrated into FedEO, which provides access to further EO data, such as Landsat

and MODIS data. OpenSearch and OGC CSW interfaces are provided through the FedEO

web service infrastructure. Multiple response formats are available, such as Atom, RDF,

JSON-LD (JSON for Linked Data), and GeoJSON, all of which are suitable formats for

developers. A ‘description document’ lists some available dataset collections as

“parentIdentifier,” which needs to be used in the search for satellite scenes. Although the

dataset collections from NASA CMR and from ESA/Copernicus Open Access Hub can be

searched, the collections are not shown in this list. Thus, users need to know in advance

how to search for collections from NASA CMR. Filters, such as cloud cover, orbit direction,

swath identifier, orbit number, start date, end date, and geometry, can be applied when

requesting the service. Each of the resulting Sentinel–2 scenes is described with the

following information: start time, end time, instrument, sensor type, operational mode, orbit

number, orbit direction, polygon footprint, quick-look image link, data download link, cloud

cover percentage, scene identifier, product type, relative orbit number, and tile identifier.

The resulting metadata includes a suitable amount of information, although this is

dependent on the brokered service provider. In general, no user login is necessary to use

this service. However, this may be necessary for some brokered services (e.g.,

Copernicus Open Access Hub).

4.1.3 Conclusions
The use of the FedEO brokering service from ESA seems to be the best brokering solution

in terms of EO data availability and available metadata in request filtering and output

responses. The ESA FedEO broker provides access to Landsat, Sentinel, and MODIS

and thus provides a harmonized web service interface for multi-source EO data. However,

a user login is necessary for some services and output formats are only suitable for users

who are familiar with XML or JSON formats. Although the ESA FedEO broker seems to

be quite unknown in science, its major focus is on providing a web service interface, which

can be used by software developers.

21 http://fedeo.esa.int/opensearch/readme.html

http://fedeo.esa.int/opensearch/readme.html

Chapter 4: Review of EO Web Services, Tools, and Platforms

68

The use of the Google Earth Engine Python API allows the integration of on-demand

processing steps while conducting the data discovery request (e.g., cloud cover

percentage of a specific area of interest). Although Sentinel, Landsat, and many MODIS

products are available, some specific drawbacks can be found:

• The service interface is currently only available in Python scripting language.

• The provision of quick-look images needs to be processed for each image when

conducting the data discovery request.

Table 4.5a lists a comparison between user requirements and the discovery services

described in this section. For most of the discovery services—except for the brokering

services and NASA CMR—user logins are necessary, which require multiple user

accounts to query multi-source datasets. The output format of the discovery services is

mainly based on XML and JSON structures, which are optimized for developers but not

for other users. Although asynchronous execution of these services is not available, all of

them deliver the response immediately so that no asynchronous execution is necessary.

Only a few provide OGC-compliant specifications. From the point of view of specific EO

dataset collections, the following services can be recommended:

• MODIS data in the NASA CMR

• Landsat data (USGS archive) in the USGS Earth Explorer

• Landsat data (ESA archive) in ESA FedEO or Sentinel-Hub OGC service

• Sentinel data in the ESA/Copernicus Open Access Hub

Advantages as well as limitations for most of the services need to be considered:

• The USGS Earth Explorer does not deliver all the metadata in the initial discovery

request. Thus, the full metadata records need to be requested afterwards.

• Quick-look images for Sentinel data can be retrieved from NASA Alaska Satellite

Facility (Sentinel–1) and USGS Earth Explorer (Sentinel–2) without user login, in

contrast to the ESA/Copernicus Open Access Hub.

• Sentinel–1 quick-look images from NASA Alaska Satellite Facility provide better

quality and geo-referenced images than ESA/Copernicus.

• Sentinel-Hub OGC services provide only a too-small set of metadata; most

metadata needs to be retrieved from other data providers.

69

4.2 Access to EO Time-series Data
Most EO data can be accessed through different data providers with various services and

tools. In addition to simple scene downloads, further services exist to download

preprocessed satellite scenes. As none of the data providers holds the archives for all EO

data, several services need to be requested when providing access to multi-source EO

datasets.

Table 4.2 lists selected data providers for Landsat, MODIS, and Sentinel data with their

service specification provided for data access. While cloud infrastructure providers, such

as Amazon Web Services and Google Cloud Storage, offer only scene downloads, this

data can be accessed directly within the virtual environments without the need to download

the data. Sinergise Sentinel-Hub OGC services provide standard-compliant access and

visualization. When requesting data, further processing tasks can be undertaken on

demand. Similarly, Google Earth Engine provides server-processing possibilities before

data is downloaded. The resulting data can be accessed through the Google Earth Engine

Python API. The USGS ESPA service provides an automated service for ordering Landsat

and MODIS time-series data preprocessed on demand depending on the parameters

selected by the user. As the request only submits an order to the service, data cannot be

accessed directly, but only when the order has been processed and scenes ordered are

ready for download.

Table 4.2: List of web services for Landsat, Sentinel, and MODIS satellite data access.

Data provider Specifications provided Data

ESA/Copernicus Open Access Hub
https://scihub.copernicus.eu

Scene download via Open
Data Protocol

Sentinel

USGS Earth Explorer
https://earthexplorer.usgs.gov/inventory

Scene download via
HTTP URL

MODIS

USGS ESPA
https://espa.cr.usgs.gov

On order via REST-based
API

Landsat, MODIS

NASA CMR
https://cmr.earthdata.nasa.gov

Scene download via
HTTP URL

MODIS

Google Earth Engine
https://earthengine.google.com

Python API Landsat, MODIS,
Sentinel

Sinergise Sentinel-Hub
http://www.sentinel-hub.com

OGC Web Coverage
Service, Feature
Information Service

Landsat, MODIS,
Sentinel

Amazon Web Services
https://registry.opendata.aws/landsat-8/

Scene download via
HTTP URL

Landsat–8

Google Cloud Storage
https://cloud.google.com/public-datasets/

Scene download via
HTTP URL

Landsat, Sentinel–
2

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/inventory
https://espa.cr.usgs.gov/
https://cmr.earthdata.nasa.gov/
https://earthengine.google.com/
http://www.sentinel-hub.com/
https://registry.opendata.aws/landsat-8/
https://cloud.google.com/public-datasets/

Chapter 4: Review of EO Web Services, Tools, and Platforms

70

4.2.1 Data access services
In the following paragraphs, specific services from data providers are described and

evaluated. The focus in this section is on web services—hence, data providers that only

provide scene downloads via HTTP URLs are omitted.

ESA/Copernicus Open Access Hub (Sentinel)—Open Data Protocol

The Sentinel data from the EU Copernicus program are provided with the Open Data

Protocol from the Copernicus Open Access Hub managed by ESA. The interface builds

on HTTP and REST-based methods. In addition to data access, the Open Data Protocol

allows for the querying of the data catalogue and the filtering of search results. Various

response formats are supported, such as XML, JSON, and CSV. Datasets are described

with metadata and provided as download files. In addition, quick look images can be

retrieved using this service. The metadata of a specific product identifier can be queried

with a defined URL. Additional links for data download and quick-look images are included

in the response. User credentials are needed for each data download. Only two

simultaneous data downloads are currently allowed. Since September 2018, not all of the

data is kept online, but can be ordered from the Copernicus Long Term Archive.22

USGS ESPA (Landsat, MODIS)—self-developed REST API

Preprocessed Landsat and MODIS data can be ordered using the Science Processing

Architecture (ESPA) interface of the USGS Earth Resources Observation and Science

Center. In the course of the ordering process, functions to reproject, subset, resize, and

convert to specific data formats can be optionally added (Table A.7). As an example, this

allows to the clipping of the EO data to the area of interest. Prior to the request to USGS

ESPA, the identifiers of satellite scenes to be ordered need to be sought elsewhere (e.g.,

through the USGS Earth Explorer, as described in the previous section). For each request,

the username and password from USGS need to be sent. After the order has been placed,

a web service request can be used to monitor its status and to download scenes once the

processing has been completed. With USGS ESPA, the complete process, from ordering

until download when data is ready, can be automated. However, users need to wait until

the processing has been completed in the USGS ESPA processing queue.

Google Earth Engine (Sentinel, Landsat, MODIS)—Python API

In addition to the data discovery functions described in the discovery review (Subsection

4.1.1), data access is also available using the Google Earth Engine Python API. A list of

scenes filtered by user-defined options can be exported, downloaded, or further processed

using Python. Prior to export and download, data can be processed, for example, by

22 https://scihub.copernicus.eu/userguide/LongTermArchive

https://scihub.copernicus.eu/userguide/LongTermArchive

71

extracting values for points or statistical summaries for polygons, calculating indices, or

conducting further computations, such as clipping, masking, and mathematical operations.

The data can either be exported to Google Drive (the preferred approach) or downloaded

by generating a HTTP link (though there are size limitations). The individual values of both

pixel and raster time-series can be exported as objects using the Python library. Using the

Python API in an automated workflow or in web services requires a service account, which

needs to be whitelisted by Google.

Sinergise Sentinel-Hub (Sentinel, Landsat)—OGC WCS, FIS

The Sentinel-Hub infrastructure from Sinergise provides services compliant with the OGC

for data access. The OGC WCS is provided for raster data download for a given temporal

period and spatial subset. Table A.8 lists the parameters for the WCS request for the

Sentinel-Hub services. The resulting data is a raster dataset containing a mosaic of the

selected dataset collection within the time ranges selected by the user (the TIME

parameter of the WCS request). In the course of the request, further processing, such as

classifications and indices calculation, can be integrated (see the EVALSCRIPT

parameter in Table A.8). For access to raster time-series data, individual requests need

to be conducted for each date. The Sentinel-Hub Feature Information Service performs

statistical computations on the area of interest requested. For each image in the filtered

data collection, statistical values are calculated, such as the mean, minimum, maximum,

and standard deviation. Table A.9 lists the request parameters available for defining a

dataset collection (e.g., layer and style), computation parameters (e.g., resolution and

geometry), as well as filtering parameters (e.g., time, geometry, and maximum cloud

cover).

4.2.2 Data download links
Today, many satellite scenes are no longer only available on the data archive of the

satellite’s operator (e.g., Sentinel data on the ESA/Copernicus Open Access Hub).

Additional third-party data providers, such as Google, Amazon, as well as national EO

data archiving centers, provide access to data using different technologies. For example,

Google Cloud hosts the complete Landsat archive in a web-based folder structure, which

allows direct access to individual scenes and bands in an automated manner without the

need for users to login. As such, the use of third-party data providers can be useful for

specific applications. In the following paragraphs, download links for complete satellite

scenes for the German Copernicus Data and Exploitation Platform, Google Cloud Storage,

and USGS Earth Explorer are described.

Chapter 4: Review of EO Web Services, Tools, and Platforms

72

German Copernicus Data and Exploitation Platform

The German Copernicus Data and Exploitation Platform (CODE-DE)23 provides discovery

and access tools for worldwide Sentinel data. A user login is required for data download.

As CODE-DE provides a rolling archive, not all the scenes are available (Reck et al. 2019).

The length of the rolling archive period depends on the geographic region and the EO

mission. The files are stored in the same format as on the ESA/Copernicus Open Access

Hub, providing a zipped archive file. The scenes can be accessed with the URLs below

and include variables for the year, month, and day of the scene acquisition date and the

scene identifier (Reck et al. 2019):

https://code-de.org/Sentinel1/{year}/{month}/{day}/{id}.zip

https://code-de.org/Sentinel2/{year}/{month}/{day}/{id}.zip

Google Cloud Storage

The complete Landsat archive24 as well as Sentinel–2 data,25 with access to individual

bands, are available on Google Cloud. Instead of a zipped archive file, all individual files

can be accessed directly. This may be useful depending on the application. For example,

if an NDVI needs to be calculated, only the red and near-infrared bands need to be

downloaded. The URLs below can be used to access the data with the following variables:

“path” as WRS path, “row” as WRS row, “utm” as UTM code, “lat” as latitude band, “grid”

as grid square, and “id” as the scene identifier. Various EO data and specific products are

available. No login is required to access the direct download links for EO data on the

Google Cloud Storage.

https://storage.googleapis.com/gcp-public-data-landsat

/LC08/01/{path}/{row}/{id}/*  Landsat-8
/LE07/01/{path}/{row}/{id}/*  Landsat-7 ETM+

/LT05/01/{path}/{row}/{id}/*  Landsat 5 TM
/LT04/01/{path}/{row}/{id}/*  Landsat 4 TM
/LM01/PRE/{path}/{row}/{id}/*  Landsat 1 MSS
/LM02/PRE/{path}/{row}/{id}/*  Landsat 2 MSS
/LM03/PRE/{path}/{row}/{id}/*  Landsat 3 MSS
/LM04/PRE/{path}/{row}/{id}/*  Landsat 4 MSS
/LM05/PRE/{path}/{row}/{id}/*  Landsat 5 MSS

https://storage.googleapis.com/gcp-public-data-sentinel-2

/L2/tiles/{utm}/{lat}/{grid}/{id}/*  Sentinel-2 Level 2

/tiles/{utm}/{lat}/{grid}/{id}/*  Sentinel-2 Level 1

23 https://code-de.org
24 https://cloud.google.com/storage/docs/public-datasets/landsat
25 https://cloud.google.com/storage/docs/public-datasets/sentinel-2

https://code-de.org/
https://cloud.google.com/storage/docs/public-datasets/landsat
https://cloud.google.com/storage/docs/public-datasets/sentinel-2

73

USGS Earth Explorer

Landsat (LM0*, LT0*, LE07, LC08) and Sentinel–2 (S2) scenes are available on the USGS

Earth Explorer. While the URLs below can be accessed without a user login, for the actual

download, a user does need to be logged in to the USGS Earth Explorer. Based on the

collection identifier (marked bold in the URLs) and the scene identifier (variable “id”), the

download pages for individual scenes can be accessed. For Sentinel, the internal scene

identifier used within Earth Explorer is needed (variable “usgs_id”).

LC08: https://earthexplorer.usgs.gov/download/12864/{id}/STANDARD/INVSVC
LE07: https://earthexplorer.usgs.gov/download/12267/{id}/STANDARD/INVSVC
LT0*: https://earthexplorer.usgs.gov/download/12266/{id}/STANDARD/INVSVC
LM0*: https://earthexplorer.usgs.gov/download/3120/{id}/STANDARD/INVSVC
S2 : https://earthexplorer.usgs.gov/download/10880/{usgs_id}/STANDARD/INVSVC

4.2.3 Data extraction services
Some applications require a direct extraction of time-series data from global EO data

archives to be retrieved in a few seconds for direct visualization and further processing in

mobile or web applications. Software developers can make use of data extraction services

to build applications based on EO time-series data and processing tools. Only two of the

previously mentioned data providers can directly extract values of EO time-series data in

their catalogue without setting up own services or downloading full satellite scenes (Table

4.3): Sinergise Sentinel-Hub, with the Feature Information Service, and Google Earth

Engine with the Python API, which can be integrated within a web service. Examples of

the data extraction services for the Sentinel-Hub services and Google Earth Engine are

provided in Section A.2 in the appendix.

Table 4.3: Data providers with services for the direct extraction of time-series data.
Data provider Datasets Features

Sinergise Sentinel-Hub
Feature Information Service

Sentinel–1, Sentinel–2,
Sentinel–3, Landsat–8,
Landsat 5–7 (ESA
archive)

Point extraction, area statistics
(mean, max, min, standard
deviation), area raster extraction

Google Earth Engine Python
API

Sentinel–1, Sentinel–2,
Landsat 4–8 (USGS
archive), MODIS, etc.

Point extraction, area statistics
(mean, max, min, standard
deviation, percentiles), area
raster extraction, individual
calculations

Chapter 4: Review of EO Web Services, Tools, and Platforms

74

4.2.4 Conclusions
EO data access is available in various ways, such as direct HTTP links, standardized web

services, and ordering web services. Most of the scenes are available by means of scene

downloads or by using cloud processing environments (Amazon and Google). Only

services from the commercial provider Sinergise or with the use of the Rasdaman software

allow direct EO data access based on standardized web services. Google Earth Engine

provides a Python API to access and process data. Although the order and download

approach of USGS ESPA does not provide immediate access to EO data, preprocessed

datasets are available based on users inputs (e.g., clipping or reprojection). Direct

extraction services are useful for many applications but are offered by only two data

providers (Sinergise and Google Earth Engine). As there is no simple standard for those

extraction services, the request and response formats are diverse. Table 4.5b lists a

comparison between user requirements and the access services described in this section.

Only a few services make use of standardized specifications, in particular there is only the

data provider Sinergise, which offers OGC-compliant services for data access.

Asynchronous access to EO data is only available from USGS ESPA and Google Earth

Engine. No alternative data formats, such as summarized results, are available by default,

but can be generated through Google Earth Engine. In addition, only a few services (e.g.,

Sentinel-Hub, USGS ESPA) provide the data within additional formats for geospatial data

(e.g., GeoTIFF instead of JPEG2000).

MODIS data can be accessed using download links to direct HTTP URLs from its original

data providers. Only the original data are provided—this needs to be processed further to

meet the requirements of users. For Landsat data, the best option to download data to a

local computer is either the use of the USGS ESPA web service, which allows the

conducting of preprocessing steps before downloading the data, or access through cloud

providers, such as Amazon, Google, and Copernicus DIAS. For Sentinel data, availability

also depends on the data provider (e.g., USGS Earth Explorer provides access to

Sentinel–2 data). While ESA provides a protocol with only scene download, the

commercial Sinergise Sentinel-Hub Services provides access with the OGC WCS

specification, which allows the subsetting of the data. In addition, further processing steps

can be integrated into the request.

All the data relevant to this thesis can also be accessed using the Google Earth Engine

Python API. This interface is extremely suitable for immediate time-series extraction of

single pixels or small areas. However, limitations occur when downloading large amounts

of time-series data (e.g., enough storage space on Google Drive or file-size limits for direct

HTTP downloads).

75

4.3 Processing of EO Time-series Data
The processing of raster time-series data is an essential step in producing derived

geospatial results from EO data. Work with spatial time-series data in particular needs to

be explored, as users need knowledge of the processing of multi-dimensional data when

dealing with large datasets with temporal and spatial extents. In the subsequent

subsections, popular programming languages and geospatial tools that can analyze raster

time-series data are reviewed with focus on their handling of raster time-series data.

4.3.1 Programming languages
Two commonly used programming languages, Python and R, are reviewed for their

handling of EO (raster) time-series data. For both languages, the relevant libraries to read

and analyze time-series data are described. A summary shows the requirements for time-

series data structures for each of the languages.

Python

Several Python libraries exist for working with spatial and time-series data, such as

Pandas (Python Data Analysis Library) and GeoPandas for single time-series, NumPy for

raster matrix operations, and xarray for multi-dimensional raster time-series operations.

The Pandas library provides high-performance data structures and data analysis tools for

the Python programming language (McKinney 2011). Relevant data formats can be read

and written, such as CSV, Microsoft Excel, and databases. With DataFrames in Pandas,

matrix data can be analyzed and manipulated. Using the GeoPandas extension,

geospatial data is supported and spatial operations on geometric types can be conducted

within the data structures. Listing 4.1 shows an example script for visualizing single time-

series data extracted for a pixel of a raster time-series stack.

The Python library xarray provides access and analysis tools for multi-dimensional data

(Hoyer & Hamman 2017). The project aims to provide a “pandas-like” toolkit for the

analysis of multi-dimensional arrays, rather than tabular data, which is the focus for

Pandas. Although the initial focus was on netCDF data structures, extensions have been

integrated for working with GDAL-compatible data formats (e.g., GeoTIFF) with the

introduction of the open_rasterio function. xarray makes internal use of the NumPy library

for multi-dimensional data manipulation. Listing 4.2 shows an example Python code for

loading a raster time-series dataset. For working with external data formats, such as

GeoTIFF, a list of files (each file for a date, see Line 5) and a list of dates related to the

files (Line 7) is required to combine the individual two-dimensional raster arrays to a three-

dimensional time-series data frame (Line 8). In this example, the list of dates is extracted

from the filenames.

Chapter 4: Review of EO Web Services, Tools, and Platforms

76

The following requirements for raster time-series data structures within Python can be

derived:

01 # extract pixel time-series from NumPy array
02 item = arr[:, 301:302, 301:302].reshape((arr.shape[0])).tolist()
03
04 # read dates from csv
05 df_dates = pandas.read_csv('/MOD13Q1.EVI.csv', sep=";")
06
07 # create Pandas dataframe using pixel time-series and dates column
08 df = pandas.DataFrame(item, index=list(df_dates['date']), columns=['evi'])
09 df.index = pandas.to_datetime(df.index, format='%Y-%m-%d')
10
11 # plot data
12 df.plot()
Listing 4.1: Python source code for working with Pandas after extracting a single time-series pixel
(item) from a raster time-series stack (arr). With Pandas, CSV files or list of objects can be easily
read, plotted, and further analyzed.

01 import glob
02 import pandas as pd
03 import xarray as xr
04
05 filenames = sorted(glob.glob('*.EVI.*.tif'))
06
07 time = xr.Variable('time', pd.DatetimeIndex([
 pd.Timestamp.strptime(f[9:16], '%Y%j') for f in filenames]))
08 da = xr.concat([xr.open_rasterio(f) for f in filenames], dim=time)
09 da
10
11 <xarray.DataArray (time: 389, band: 1, y: 694, x: 855)>
12 Coordinates:
13 * band (band) int64 1
14 * y (y) float64 5.743e+06 5.743e+06 5.743e+06 5.742e+06 ...
15 * x (x) float64 6.89e+05 6.892e+05 6.895e+05 6.897e+05 6.899e+05 ...
16 * time (time) datetime64[ns] 2000-02-18 2000-03-05 2000-03-21 ...
17 Attributes:
18 transform: (688899.88262, 231.656086344, 0.0, 5743120.7846271 ...
19 crs: +a=6371007.181 +b=6371007.181 +lon_0=0 +no_defs +proj=sinu
20 res: (231.65608634466076, 231.49636861726358)
21 is_tiled: 0
22 nodatavals: (-3000.0,)
Listing 4.2: Example work with the xarray library using raster time-series data. Dates are extracted
from the filenames (Line 7).

• Multi-band geospatial file (each band relating to a date) or multiple geospatial

files (each file relating to a date) converted to a list of files.

• Variables with a list of dates in the same order as the bands in the geospatial

file or the order in the multiple geospatial file list.

77

R Project for Statistical Computing

Within the statistical language R, three packages can be considered when working with

spatial time-series data: 1) the “raster” package, with the RasterStack object for dealing

with multi-band geospatial raster data, and 2) the “stats” package, with the ts function for

dealing with temporal information. Both are used with scientific time-series analysis tools,

such as BFAST and Greenbrown. 3) The “rts” package, with the Raster*TS object for

dealing with spatial raster time-series data.

A RasterStack combines raster objects with the same spatial extent and resolution. It can

be automatically created using either a multi-band raster file (each band results in an

individual raster object within the stack) or individual raster files. For multi-band files, a

RasterBrick can be used instead. This leads to performance increases when doing

calculations but limits the object to just a multi-band file instead of using multiple raster

files at once. Within R, the calc function can be used to conduct an operation for each

pixel time-series within a collection of raster objects (RasterStack or RasterBrick) and

results in a single raster output (e.g., the temporal mean of each pixel time-series). Listing

4.3 shows the source code of an example that loads a multi-band raster file into a

RasterBrick object.

R software comes with a large set of time-series tools. As such, the class ts from the “stats”

package can be used for regularly spaced single time-series. The parameters start and

frequency define the start and end of the time-series; start is the time of the first item of

the time-series, and frequency is the number of items per year (e.g., 1 = annual time-

series, 12 = monthly time-series, 365 = daily time-series). For irregular spaced time-series,

the class irts in the “stats” package can be used with the vector objects ‘time’ and ‘value’

as parameters. An example of the ts class is shown in Listing 4.4.

A Raster*TS object from the “rts” package automatically combines a multi-layer raster

object (RasterStack or RasterBrick) with temporal information. Both the multi-layer raster

object and a vector with temporal information need to be passed to the rts function to

create a Raster*TS object (Listing 4.5).

Chapter 4: Review of EO Web Services, Tools, and Platforms

78

For both the RasterStack with the ts object and the Raster*TS object, the following

requirements for data structures can be derived:

1 data <- stack("SWOS_WQ_CDOM_FUB_Monthly_France_Berre.vrt")
2 data
3
4 class : RasterStack
5 dimensions : 125, 135, 16875, 118 (nrow, ncol, ncell, nlayers)
6 resolution : 0.003593245, 0.003593245 (x, y)
7 extent : 4.807761, 5.292849, 43.30219, 43.75135
8 coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84
 +towgs84=0,0,0
9 names : SWOS_WQ_C//ce_Berre.1, SWOS_WQ_C//ce_Berre.2, …

Listing 4.3: Example of working with multi-band raster data using RasterBrick.

1 data <- brick("SWOS_WQ_CDOM_FUB_Monthly_France_Berre.vrt")
2 data <- as.vector(extract(data, SpatialPoints(cbind(5.1, 43.5))))
3 data_ts <- ts(data, start=c(2002, 6), frequency = 12)
Listing 4.4: Example of working with single time-series data using the TS function.

01 data <- stack('SWOS_LSTT_AL_Oued-Sebaou_2000-2016.vrt')
02 data
03
04 class : RasterStack
05 dimensions : 59, 73, 4307, 781 (nrow, ncol, ncell, nlayers)
06 resolution : 1000, 1000 (x, y)
07 extent : -1050090, -977090.1, 4166999, 4225999
08 coord. ref. : +proj=utm +zone=34 +datum=WGS84 +units=m +no_defs
 +ellps=WGS84 +towgs84=0,0,0
09
10 dates
11 [1] "2000-03-05" "2000-03-13" "2000-03-21" "2000-03-29" "2000-04-06"
...

21 library(rts)
22 rasterTS <- rts(data, dates)
23 rasterTS
24
25 Raster Time Series with monthly periodicity from 2000-03-05 to 2017-02-26
26 class : RasterStackTS
27 raster dimensions : 59, 73, 4307, 781 (nrow, ncol, ncell, nlayers)
28 raster resolution : 1000, 1000 (x, y)
29 raster extent : -1050090, -977090.1, 4166999, 4225999
30 coord. ref. : +proj=utm +zone=34 +datum=WGS84 +units=m +no_defs
 +ellps=WGS84 +towgs84=0,0,0
Listing 4.5: Example of working with spatial time-series data using Raster*TS object

• A multi-band geospatial file, in which each band relates to a date, is converted

to a RasterStack or RasterBrick object.

• A vector with dates, where the order of the dates needs to be the same as the

bands or layers of the raster object, is needed for Raster*TS and the irregular

irts function.

• For regular time-series, the ts object with the parameters start and frequency is

needed.

79

4.3.2 Geospatial tools
Geospatial tools allow the processing and analysis of EO time-series data. In the following

paragraphs, a few geospatial tools and their handling of raster time-series data are

described and the requirements for time-series data structures are summarized.

TIMESAT

Time-series data can be used within TIMESAT (Eklundh & Jönsson 2017) in different kinds

of data formats. Whereas individual time-series data can be provided in a text data file

(Figure 4.1, right), processing steps are required for raster time-series data. Raster time-

series data needs to be processed to a headerless binary format (e.g., ENVI HDR). Each

individual date needs to be represented by a raster file. An image file list in the form of a

text file contains the number of images (first line) and the relative path to the files for each

individual image in chronological order (Figure 4.1, left). As there is no provision of dates

within TIMESAT, the resulting outputs refer only to the index as date. This needs to be

converted to individual dates afterwards (Eklundh & Jönsson 2017).

Figure 4.1: Text file for spatial raster time-series data structure (left); text file for single time-series
data structure (right).

The following requirements for data structures for TIMESAT to analyze raster time-series

data can be derived:

GRASS GIS

With open source GRASS GIS software, several processing tools for raster time-series

data are available (Neteler et al. 2012). To enable users to use these tools, a space-time

dataset needs to be created (Gebbert & Pebesma 2014). Listing 4.6 shows example

processing steps: 1) Import each raster per date into GRASS GIS as a map, 2) create a

new space-time dataset, and 3) register previously imported maps with dates in the new

space-time dataset. For the last step, temporal information for each of the maps is

needed—either in a separate text file or as increment value for continuous time-series. In

Listing 4.6, a separate text file (.csv) has been used, which contains the name of the map

and the date in CSV format.

• A single geospatial data file for each date and a text file containing the number

of files and each filename on a separate line (Figure 4.1, left).

Chapter 4: Review of EO Web Services, Tools, and Platforms

80

01 # 1) import data
02 for file in SWOS_LSTT_ES_Fuente-de-Piedra_20*.tif; do
03 r.in.gdal input=$file output=$file;
04 done
05
06 # 2) create new space-time dataset
07 t.create output=modis title="MODIS LST" description="MODIS LST"
08
09 # 3) register maps into space-time dataset
10 t.register input=modis file=SWOS_LSTT_ES_Fuente-de-Piedra_2000-2016.csv

Listing 4.6: Example of working in GRASS GIS with spatial time-series data

The following requirements for data structures to create a space-time dataset in GRASS

GIS can be derived:

Open Data Cube

CEOS Open Data Cube software26 allows the managing and analyzing of raster time-

series data based on preprocessed raster data in netCDF format using the Python xarray

library. To ingest data into the Open Data Cube software, individual datasets need to be

registered and ingested. For each date, individual geospatial files (one per band and date)

need to be registered. Additionally, a metadata file in text format (.yaml), which includes

references to the files of each band, is needed for the data ingestion for each date. Listing

4.7 shows an example workflow using the datacube command-line executable: 1) A

product type is added, 2) configuration YAML files are created for each satellite scene, 3)

these are registered with the database, and 4) the data can finally be ingested into file

structure of the Open Data Cube.

01 # 1) add product type to data cube
02 datacube product add "ls8_collections_sr_scene.yaml"
03
04 # 2) create YAML files for each dataset
05 python "usgs_ls_ard_prepare.py" "MODIS_*.tif"
06
07 # 3) add YAML files to data cube
08 datacube dataset add MODIS_*.yaml --auto-match
09
10 # 4) ingest data into data cube format based on YAML description file
11 datacube -v ingest -c "ls8_collections_sr_fuente_de_piedra_example.yaml"

Listing 4.7: Example workflow for ingesting raster time-series data into Open Data Cube.

26 https://www.opendatacube.org

• A single geospatial data file for each date.

• A text file with relation between the GRASS GIS map name and date.

https://www.opendatacube.org/

81

The following requirements for data structures to ingest raster time-series data into the

Open Data Cube software can be derived:

Rasdaman

Rasdaman software (Baumann et al. 1998) allows the publishing of geospatial multi-

dimensional data using the OGC WCPS. For integrating geospatial data, an import script

is available that makes use of a “recipe” configuration file in JSON text format (Listing 4.8).

A common way to ingest data is the use of the import script “WCSTImport,” for which each

geospatial file represents a date. In the recipe JSON text file, the relation between files

and dates is given either by metadata tags (Lines 17-19) or by regular expressions based

on the filenames. In addition, further processing information (e.g., about tiling and

projection) can be configured within the recipe.

01 {
02 "config": {
03 "service_url": "http://localhost:8080/rasdaman/ows",
04 "tmp_directory": "/tmp/",
05 "default_crs": "http://localhost:8080/def/def/crs/OGC/0/Index2D",
06 "automated": false
07 },
08 "input": {
09 "coverage_id": "MyCoverage",
10 "paths": [
11 "/var/data/*.tif"
12]
13 },
14 "recipe": {
15 "name": "my_custom_recipe",
16 "options": {
17 "time_format": "auto",
18 "time_crs": "http://localhost:8080/def/crs/OGC/0/AnsiDate",
19 "time_tag": "MY_SPECIAL_TIME_TAG",
20 }
21 }
22 }
Listing 4.8: Example configuration file for ingestion into Rasdaman.

The following requirements for data structures for ingesting raster time-series data into

Rasdaman software can be derived:

• A YAML description file for each dataset collection.

• A single geospatial data file for each date (one per band), accompanied by a

YAML text file (one per dataset including all bands) used for data ingestion.

• A YAML description file for the collection ingestion

• A single geospatial data file for each date.

• A recipe JSON file, which is used for data ingestion.

Chapter 4: Review of EO Web Services, Tools, and Platforms

82

4.3.3 Conclusions
The programming languages and geospatial tools investigated here mostly work with

single-band rather than multi-band geospatial files for spatial time-series data. The use of

separate information regarding the date of each geospatial file applies to all of them—this

is either provided as a regular expression extracted from the filename or as list of dates in

the same order as the list of files. For some of the tools, either further processing or

ingestion steps are necessary for time-series data. This can either be provided to the users

as tutorial or directly adjusted in the analysis tools. Thus, a common data structure and

format for all EO time-series data, to which the user is accustomed, needs to be

considered when designing and setting up data platforms. Automated conversion tools for

converting from EO data formats into this common data format are necessary to simplify

the work with that data.

83

4.4 Cloud-based EO Time-series Data Platforms
In these times of large EO data archives, it seems obvious to bring geoprocessing and

analysis tools to the data instead of downloading the original EO data. Many cloud-based

infrastructures and platforms provide different kinds of EO data and are available with

different types of services (Table 4.4). In general, one can distinguish between cloud

infrastructures (e.g., Amazon, Google, and Copernicus DIAS) and processing and service

platforms (e.g., Google Earth Engine, Sentinel-Hub, and Open Data Cube). Cloud

infrastructures mainly provide virtual environments (Subsection 4.4.1), which were initially

focused on providing virtual operating systems, but today have improved to incorporate

serverless infrastructures and the execution of containerized application without the need

to setup and install virtual machines (see Subsection 3.1.5). On top of cloud-based

infrastructures or local server environments, processing platforms have been developed

to simplify work with EO data and the execution of algorithms provided on web-based

platforms (Subsection 4.4.2). Some web-based platforms also include an option to upload

or develop algorithms on the platform. In addition, service platforms exist that provide only

web services for data discovery, visualization, access, and analysis (Subsection 4.4.3),

which can be integrated in self-developed applications.

Table 4.4: EO time-series data infrastructure and web platforms (* Usage costs).
Provider EO data Type
Cloud infrastructures
Amazon Web Services* Sentinel–2, Landsat–8

https://aws.amazon.com/de/publ
ic-datasets/

Virtual Machines—any software
that can run on Linux/Windows.
Serverless.

Google Cloud (Compute
Engine)*

Sentinel–2, Landsat 1–8
(USGS archive)
https://cloud.google.com/storag
e/docs/public-datasets/

Virtual Machines—any software
that can run on Linux/Windows.
Serverless.

Copernicus DIAS* Sentinel, Landsat, others
(dependent on platform)

Virtual Machines, Web portal,
Services

Processing and service platforms
Google Earth Engine Sentinel–1, Sentinel–2,

Landsat 4–8 (USGS
archive), MODIS, etc.

JavaScript-Playground/Python API
(functions can be used individually)

Sinergise Sentinel-Hub
services*

Sentinel, MODIS, Landsat–
8, Landsat 5–7 (ESA)

OGC-compliant web services
(WMS, WFS, WCS)

Open Data Cube Landsat, Sentinel, MODIS,
others (dependent on platform)

Web portal, Services

NASA Giovanni MODIS Web portal
ORNL DAAC MODIS Web portal, Services
Rasdaman Dependent on platform OGC WCS, WCPS, WMS

https://aws.amazon.com/de/public-datasets/
https://aws.amazon.com/de/public-datasets/
https://cloud.google.com/storage/docs/public-datasets/
https://cloud.google.com/storage/docs/public-datasets/

Chapter 4: Review of EO Web Services, Tools, and Platforms

84

4.4.1 Virtual environments
Virtual environments offer infrastructure with the option to develop and use algorithms and

processing tools. Three currently available virtual environments are described and

evaluated in the following paragraphs: Amazon Web Services, Google Cloud Platform,

and Copernicus DIAS.

Amazon Web Services and Google Cloud Platform

Both Amazon Web Services and Google Cloud Platform provide solutions for scalable

infrastructure combined with access to large amounts of EO data. Fees are generally

calculated depending on the usage, hardware, operating system, and networking features

chosen by the user. Access to virtual machines is provided by command line,

programming libraries, or service interfaces. As described in Subsection 3.1.5, modern

technologies are provided by Amazon and Google (e.g., serverless web services). As all

data is provided unzipped, it can be used directly within self-developed applications. In

contrast to the various access services from data providers, the data can be directly

processed or analyzed.

Amazon Web Services provides on-demand computing platforms based on the

infrastructure of Amazon. USGS Landsat–8 data can be accessed via HTTP requests from

external applications. Other EO data is only available within the infrastructure or by using

libraries to access data externally. Several open datasets are publicly available,27 which

can be used without storage costs, such as:

- USGS Landsat–8

- ESA Sentinel–1 Ground Range Detected (one-year rolling archive)

- ESA Sentinel–2

- NASA MODIS (some products)

The Google Cloud Platform provides a suite of cloud computing services that runs on the

Google infrastructure. All data is available via HTTP requests from external applications

and can further be accessed using libraries. Several open datasets are publicly

available,28 and can be used without storage costs, such as:

- USGS Landsat 1–8 (complete USGS archive)

- ESA Sentinel–2

27 https://aws.amazon.com/de/public-datasets/
28 https://cloud.google.com/storage/docs/public-datasets/

https://aws.amazon.com/de/public-datasets/
https://cloud.google.com/storage/docs/public-datasets/

85

Copernicus Data and Information Access Services

The Copernicus DIAS program aims to provide discovery, access, and processing

capabilities for all Copernicus data and information. To this end, the European

Commission set up five platforms from different European consortiums in 2018 (European

Commission 2018b): Mundi Web Services, Sobloo, CREODIAS, ONDA-DIAS, and

WekEO. The European Association of Remote Sensing Companies has published a first

comparison of the DIAS platforms.29 Differences between the platforms are based on data

availability and the availability of processing tools (e.g., Jupyter Notebooks or virtual

desktops). All the platforms provide free discovery and access services, which allow for

searching and downloading of Copernicus data. In addition, virtual machines and other

services are provided on a pay-per-use basis, with direct access to EO data archives. The

data available on the different platforms differs: At least Sentinel data is available either

directly or on demand. Many DIAS platforms also provide access to Landsat data and data

from Copernicus Services. As these platforms are still new (all of them published in 2018),

additional features can be expected in the future.

4.4.2 Processing platforms
Processing platforms offer web-based applications with the option to develop and launch

algorithms and processing tools. Selected processing platforms for vegetation monitoring

are described and evaluated in the following paragraphs: NASA Giovanni, Oak Ridge

National Laboratory Distributed Active Archive Center (ORNL DAAC) MODIS Tools,

Google Earth Engine, and the Open Data Cube interfaces.

NASA Giovanni

The NASA Giovanni—Interactive Visualization and Analysis system offers a wide range

of MODIS Level–3 products as well as various time-series extraction and analysis tools

(Acker & Leptoukh 2007). Although it provides access to all input data for a given bounding

box and time range, these functions are not available as web services, which would enable

their integration into self-developed applications. As such, only the web-based system

provided by NASA Giovanni can be interactively used by users. After data integration and

data analysis has been conducted, input data and intermediate processing data can be

accessed. Results are shown in interactive charts and can be downloaded in various data

formats. In addition, all inputs and outputs from the processing steps can be downloaded

and reproduced. Interactive charts, netCDF, and CSV formats are available as output

formats (Figure 4.2).

29 http://earsc.org/news/dias-comparison

http://earsc.org/news/dias-comparison

Chapter 4: Review of EO Web Services, Tools, and Platforms

86

Figure 4.2: Results of the web-based NASA Giovanni tool analysis of MODIS time-series data.

ORNL DAAC MODIS Land Subsets

The MODIS Land Subsets30 tool from the ORNL DAAC in the United States provides time-

series extraction for a bounding box around a pixel location. In addition to time-series data

access, land-cover types and a phenology time-series plot for vegetation data are also

available. Both, SOAP and REST-based web services are available for querying the data

catalogue, extracting time-series, and submitting an order for data access and analysis

graphs. Although the tool can be accessed as a web service, further analysis can only be

conducted after an email with the resulting data has been received by the user. Results

are available on the web portal (Figure 4.3). As status responses from the ordered process

are not available, a solution to monitor the status of processing needs to be developed.

Figure 4.3: Results of the web-based MODIS Global Subsets tool from ORNL DAAC.

30 https://modis.ornl.gov/data/modis_webservice.html

https://modis.ornl.gov/data/modis_webservice.html

87

Google Earth Engine

Google provides a web-based Google Earth Engine Playground for interactively

discovering and analyzing EO data in a browser (Gorelick et al. 2017). The user interface

(Figure 4.4) consists of a code editor component, an interactive map showing the resulting

data and features, a console output, a script explorer, documentation, and an assets

window. Any code used in the editor can also be used by the Python API and integrated

in self-developed applications. Several geospatial tools have been provided by Google,

such as (un)supervised classifications, masking, mathematical operations, edge

detection, spectral transformations, operators to reduce dimensions, object-based

methods, array operations, and the like. Users can upload their own geospatial data and

use it in conjunction with the other datasets available. Any resulting data can be

downloaded either using HTTP requests or exported to Google Drive. Earth Engine allows

the sharing of applications with the public. Commercial use of Earth Engine needs to be

approved by Google.

Web-based applications can be published based on JavaScript source code integrated

into the Playground editor. With layouts, panels, and widgets, user interface components

can be integrated into applications. Without web development technologies, such as

HTML and Cascading Style Sheets, applications can be developed and provided based

on the Google Cloud Platform. The application can make use of the data, tools, and

processing capabilities available in Earth Engine. Figure 4.5 shows an application in which

users can select a point for the extraction of Sentinel–1 time-series data.

Open Data Cube interfaces

The user interface of the CEOS Open Data Cube visualizes the available EO data and

provides access to the analysis tools registered in the backend and their resulting data

after execution (Figure 4.6). The backend stores areas of interest and analysis tools linked

to these areas. Individual raster data and raster time-series data can be ingested into the

Open Data Cube. A fixed set of analysis tools is provided with the default installation.

Various output formats, such as GeoTIFF, netCDF, and PNG, for the results of the

analysis are available in the user interface. The interface makes use of a variety of

technologies, such as Celery for task scheduling and parallel executions. Extensions are

available to provide OGC-compliant visualization (WMS), download (WCS), and

processing (WPS) services. A Jupyter Notebook server can be connected to the Open

Data Cube on the same infrastructure. This allows the running of own analyses using

Python in the browser. Own analysis tools need to be implemented as Django applications

in consideration of the technologies used in the Open Data Cube user interface (e.g.,

Python Celery). The user interface provides RESTful web services.

Chapter 4: Review of EO Web Services, Tools, and Platforms

88

Figure 4.4: Google Earth Engine Playground web application: JavaScript and Earth Engine
functions are used to develop analysis algorithms, with the results presented in the map.

Figure 4.5: Screenshot of a Google Earth Engine App (Clauss 2018).

Figure 4.6: User interface of the CEOS Open Data Cube showing results of the water-detection
algorithm in the map and as time-series plots on the right.

89

4.4.3 Service platforms
Service platforms only provide web services, which can be used in other applications.

Focusing on standard-compliant web services (e.g., according to the OGC specifications),

the services can be used directly in many geospatial applications. The commercial web

services from Sentinel-Hub31 provided by Sinergise are an example of service platforms.

With OGC WMS, WFS, and WCS, they provide interoperable web services for EO data.

In addition, nonstandard-compliant web services are also provided to the user, such as

the Sentinel-Hub Feature Information Service,32 which provides statistical summaries for

a given area of interest over time for EO time-series data. Besides data discovery and

data access, data can be processed with pixel-based scripting possibilities 33 when

requesting the data.

A self-developed service can be created using Rasdaman software34. Rasdaman provides

web services compliant with the OGC WCS, WCPS, and WMS. EO data ingested into

Rasdaman can be analyzed using the WCPS specification for individual service requests.

Output formats of the WCPS includes GeoTIFF, PNG, and CSV.

4.4.4 Conclusions
While the potential of cloud data providers and their EO data archives in combination with

the execution of geoprocessing tools are immense, various limitations exist, such as

usage costs, limited functions, or data availability dependent on specific providers. Popular

cloud providers, such as Amazon or Google, offer a variety of tools to simplify the setup

of processing in the cloud (e.g., serverless infrastructure). Copernicus DIAS platforms

provide OGC-compliant data discovery, visualization, and access services in addition to

virtual processing environments, which are similar to those of Amazon and Google. The

use of cloud providers within self-developed platforms can have a major impact but must

be considered meaningful. Due to the distributed behavior of service-based

infrastructures, cloud providers can be used in various ways, for example, only for the

provision of web services for specific tasks or specific EO data.

Processing platforms are diverse in their technological implementation. While with Google

Earth Engine, only specific operations and functions can be used (e.g., own analysis tools

cannot be uploaded), other platforms can be extended by own tools or used directly within

programming languages (e.g., Jupyter Notebooks). The Open Data Cube provides simple

access to analysis tools, but for the implementation of own algorithms in the user interface,

31 https://www.sentinel-hub.com/develop/documentation/api/ogc_api
32 https://www.sentinel-hub.com/develop/documentation/api/fis-request
33 https://sentinel-hub.com/develop/documentation/api/custom-evaluation-script
34 http://rasdaman.org/

https://www.sentinel-hub.com/develop/documentation/api/ogc_api
https://www.sentinel-hub.com/develop/documentation/api/fis-request
https://sentinel-hub.com/develop/documentation/api/custom-evaluation-script
http://rasdaman.org/

Chapter 4: Review of EO Web Services, Tools, and Platforms

90

several technologies (e.g., Django, Celery) need to be known. Although there are

platforms that provide many of the platform-specific user requirements, there are often

important requirements that are still missing (e.g., the provision of own analysis tools, own

user management, and specific visualization outputs for the results of analysis). Service

platforms are still new but offer enormous opportunities for the direct processing and

visualization of EO data while conducting the service request. Although the analysis of EO

data can be integrated upon request, time-series analyses are not possible; only single

pixels of a single scene or a temporal mosaicked scene can be classified.

Table 4.6 presents a comparison of the user requirements and the various processing and

service platforms for EO data access and analysis described in this section. While EO

data access and visualization tools are available on most of the platforms, there are

differences pertaining data analysis, user management, and service interfaces. Especially

information about data lineage in relation to reproducible research (e.g., how the data has

been processed), is only provided in detail by the NASA Giovanni system. In addition,

most of the systems cannot be hosted on own platforms with specific EO data and analysis

tools. Thus, a self-developed standardized and flexible middleware system operating

between users and data providers fosters the exploration of EO time-series data.

91

T
ab

le
 4

.5
: C

om
pa

ris
on

 o
f u

se
r

re
qu

ire
m

en
ts

 b
et

w
ee

n
di

ffe
re

nt
 w

eb
 s

er
vi

ce
s

pr
ov

id
er

s
fo

r
di

sc
ov

er
y

an
d

ac
ce

ss
 o

f E
O

 d
at

a.

Chapter 4: Review of EO Web Services, Tools, and Platforms

92

 T
ab

le
 4

.6
: C

om
pa

ris
on

 o
f u

se
r

re
qu

ire
m

en
ts

 b
et

w
ee

n
di

ffe
re

nt
 p

ro
ce

ss
in

g
an

d
se

rv
ic

e
pl

at
fo

rm
s

fo
r

ac
ce

ss
 a

nd
 a

na
ly

si
s

of
 E

O
 d

at
a.

93

4.5 Recommendations
A key issue in discovering and accessing EO time-series data is the need to learn how to

use the different tools and services offered by each data provider. Focusing on the needs

of a user, a unique standardized and easy-to-use interface will foster the use of EO time-

series data. Solutions, such as brokering services, have been established to bring EO

data from different data providers together and to provide a standardized and harmonized

interface. However, often the results of a discovery request are still too complex. Data

providers often provide different web services for the discovery and accessing of EO time-

series data. In addition, data from the same EO mission is often available from several

data providers. As such, data discovery and access tools from multiple services can be

used.

The further processing and analysis of EO time-series data requires specific data

structures and data formats, which are often different for individual geospatial tools.

However, some common specifications can be derived from the review: Individual

geospatial files, which can be combined into a multi-band time-series dataset for each

observation, are necessary for each date and observation (e.g., bands and indices). Dates

need to be either extracted from the file name or included in a separate text file.

Various cloud-based virtual environments, processing platforms, and service platforms

exist, with different infrastructures, EO data, and analysis tools available. Which

infrastructure or platform is to be used is often a difficult decision but this depends on the

EO data and functions that need to be provided. In addition, open source software exists

that can be installed and hosted on own platforms with own EO data and analysis tools.

The following recommendations based on the previous review can be made:

• Provide multiple data formats to meet the requirements of different users.

• Establish service brokering to harmonize data discovery and access.

• Standardize data structures and formats for multi-source EO data.

• Provide a combined implementation of a self-developed data platform integrating

web services hosted by cloud-based infrastructures (e.g., services from virtual

environments or serverless web services and service platforms).

• Offer either the uploading of own analysis tools or a direct linking of data access

services with analysis services within a processing platform.

Chapter 4: Review of EO Web Services, Tools, and Platforms

94

95

Chapter 5: Concepts and Methods
Based on the previous chapters, concepts and methods have been defined and grouped

into three components to bridge the gap between EO data archives and user applications

(Figure 5.1):

1) Service-based EO time-series data middleware as an overall concept for an EO

data platform focusing on general methods for user-aligned web services and user-

aligned output formats,

2) Service brokering for multi-source EO time-series data discovery and access,

specifically focusing on user-aligned approaches for discovery and access, and

3) Uniform EO time-series data structure, processing, and analysis, specifically

focusing on the further provision, analysis, and processing of time-series data after

the data has been downloaded.

Figure 5.1: Main components of this thesis for bridging the gap between EO data archives and user
applications (Image on the right: Courtesy NASA/JPL-Caltech).

Chapter 5: Concepts and Methods

96

5.1 Service-based EO Time-series Data Middleware
The current state of web technologies offers tremendous potential to increase the

accessibility of EO time-series data and analysis tools. Today, global EO data archives

can be analyzed in virtual environments and processing platforms without data downloads

in scalable infrastructures on Amazon Web Services, Google Cloud, or Google Earth

Engine. However, not all EO data is available on clouds and, thus, traditional methods for

data discovery and download still need to be undertaken manually. As these methods

have in most cases been made available through web services, a centralized server

infrastructure can provide automated access to multi-source EO time-series data, which

enables users to access and analyze them.

In this thesis, a service-based infrastructure and data platform have been developed with

a focus on a user-driven design. As most of freely available EO data is available through

web services, platforms with user-aligned web services can easily be developed to simplify

the discovery, access, and analysis of EO time-series data. Desktop and mobile

applications can benefit from these user-aligned web services as the complexity of

geospatial time-series data processing is hidden.

In general, such a data platform needs to fulfill the following criteria to enable the provision

of user-aligned web services and user-aligned output formats:

• Automated access to user-requested data linked to scientific analysis tools:

Both data access and analysis need to be reproducible and to focus on user-

specific requirements.

• Uniform data processing: This includes data formats, processing interfaces, and

metadata descriptions for EO-based time-series data as key components to

provide automated and on-demand tools for data access and analysis. Various

output formats for each geospatial tool need to be considered.

• Interoperable web services for spatial time-series data, which can be used

within different applications: This includes web services for the visualization of

data and the results of analysis, discovery of available datasets, time-series data

access and extraction, and the execution of time-series analysis tools.

The overall concept of the regional data middleware system is described in the next

subsection (5.1.1), including the system and software architecture of the middleware. The

research towards user-aligned web services (Subsection 5.1.2) and user-aligned output

formats (Subsection 5.1.3) are explained thereafter. Finally, the software and services

implemented are presented (Subsection 5.1.4).

97

5.1.1 Concept of a regional data middleware system
The overall concept of the regional data middleware system focuses on providing easy

and standardized access to EO time-series data and analysis tools. It combines the

advantages of web service-based geoprocessing tools and user-aligned interfaces. Many

users spend a tremendous amount of time on data discovery, download, and

harmonization (Zhao et al. 2012). The middleware approach bridges existing limitations

between users and data providers with automated workflows for EO time-series data.

The data middleware system allows users to focus on their main interests:

• Software developers focus on the development of applications based on the web

services of the middleware.

• Scientific users focus on the development and use of algorithms without the need

to handle data preprocessing issues.

• Thematic experts focus on the execution of analysis tools and the interpretation of

the results of analysis in their area of interest.

The middleware approach supports the exploration of EO time-series data for regional

areas of interest. Although access to global EO data is available, the system is not aimed

at conducting global analyses, as data downloads of global datasets are not feasible. The

middleware aims to connect to major EO data providers, such as NASA, USGS, ESA,

Google, and Amazon. The main functions include time-series data discovery and access

for user-specific areas of interest, data analysis, and the provision of standard-compliant

web services. The results of analysis are automatically prepared for online visualization.

Different user personas can interact with the middleware: Scientists to retrieve data and

execute algorithms; software developers to use the services in their applications; and

thematic experts to explore the algorithms and their results.

5.1.1.1 Middleware components
The methodological concept is shown in Figure 5.2. A fundamental requirement for the

components of the middleware is direct access to global EO data. Thus, data discovery

and data integration need to be connected to external data providers. A centralized

management of time-series data (“analysis-ready data”) is necessary to combine data

access with additional processing and analysis steps (“data processing and analysis”).

Time-series data can be made available for external applications, such as Open Data

Cube or Rasdaman (“application-ready data”). The provision of the middleware with

standardized web services and metadata descriptions fosters the development of client

applications. All these components (Figure 5.2) are described in the following paragraphs.

Chapter 5: Concepts and Methods

98

Figure 5.2: Concept of the methodological development, including the middleware approach and
user-friendly client applications (e.g., web portals, mobile apps, scripts).

Data discovery

Questions regarding the availability of specific EO data (e.g., Landsat, Sentinel, and

MODIS) can be answered by the data discovery component within the middleware. Users

need to be able to search for datasets in their own area of interest by filtering through

sensors, cloud coverage, and other relevant parameters. A multi-source data discovery

approach involves different data providers. Thus, a brokering system harmonizes requests

to and responses from metadata catalogues and is connected to the web services of the

individual data providers. Specific user-aligned output formats need to be considered to

ensure use by different user personas. In many cases, data discovery is necessary to

conduct data access and data integration.

Data integration (data access)

Access to EO time-series data can be established by connections to external data

providers. As many of the data providers offer different types of web services for data

access, requests to the individual data providers need to be harmonized for each of the

services. Both data extraction and data integration need to be investigated:

1) Data extraction involves time-series data for a single pixel or statistical summary

of an area in order to provide a quick overview of the time-series values.

2) Data integration into the middleware includes data preprocessing steps and data

format conversions in order to enable further analysis.

99

Analysis- and application-ready data

The term “analysis-ready data” in this thesis describes the ability of handling time-series

data with a uniform data structure and format, which allows it to be easily used in

programming languages and by geoprocessing and analysis tools. Therefore, a uniform

data structure is necessary, and the data downloaded needs to be converted into this

structure and format. To foster the use of time-series data by external analysis tools, it is

also relevant to support data structures and formats used in other software, such as

GRASS GIS, Open Data Cube, Rasdaman, and OGC web services. In this thesis,

methods have been defined to automatically convert EO time-series data into the data

format required by other applications (“application-ready data”). With this accomplished,

users can directly use EO time-series data from the middleware in applications that are

supported by the middleware.

Data processing and analysis

The combination of data access and data processing allows users to analyze time-series

data using specific time-series analysis tools. A flexible approach has been considered in

order to enable user-specific data processing and analysis, which allows users to conduct

their own processing of the data. This includes the use of interactive data exploration and

analysis tools, such as the web-based Jupyter Notebooks, the algorithms in the Open Data

Cube, or others registered as applications in the middleware.

Standard-compliant web services

The methodological concept includes the provision of standard-compliant web services to

allow users and applications to interact with the middleware. Web services allow the

integration of the middleware into different types of applications, such as web and mobile

applications and programming scripts. In addition, these web services can be compiled

into processing chains, for example, to combine data access and data analysis tools. In

order to provide uniform and user-aligned web services, the use of standard-compliant

web services has been investigated.

Metadata descriptions

Descriptions of geospatial data are important to provide information about the kind of data

that is available in the middleware. Client applications can use a metadata catalogue,

which contains the metadata descriptions, provided by the middleware to search for

available data. In addition, further information about the geospatial data can be explored,

such as information about the data processing conducted.

Chapter 5: Concepts and Methods

100

5.1.1.2 System architecture
The architecture of the middleware system comprises three main components

accompanied with their respective web services (Figure 5.3):

1. Administration with RESTful services,

2. Geoprocessing tools with geospatial web services, and

3. Exploration tools with application services.

Based on a service-oriented infrastructure, the individual services can be provided by

different servers. Only those services that need to access the EO data within the

geospatial database need to be managed centrally. Figure 5.3 shows the architecture of

the system based on the administration services, geospatial web services for data

discovery, integration and analysis, geospatial database, and application services for the

external exploration tools. The three components and the geospatial database are

described in the following paragraphs.

Figure 5.3: System architecture of the regional data middleware system divided into administration,
geoprocessing tools, and external exploration tools.

Administration
The administration component manages the registration and authentication of user

accounts, the areas of interest registered in the middleware, the data integrated, and

analysis tools used. The provision of these functions by means of RESTful services allows

access to these data using different client applications. The web services are part of a web

content management system (CMS), which can be accessed through an additional

administration web interface. The CMS provides user management tools, such as user

registration, user removal, password resetting, login, and logout. In addition to content

management, the execution of processes can be controlled with process scheduling to

limit overloading of the server (e.g., only a single data integration process at the same

time). As the main interaction of client applications with the middleware is based on

RESTful services, the software behind the CMS can be changed.

101

Geospatial database
The geospatial database consists of EO time-series data and the results of analysis that

have been generated through the geoprocessing tools. A fixed folder structure and

filename scheme allows centralized data management and links to external exploration

tools. Standardized OGC-compliant web services allow simple use and integration into

GIS software (e.g., QGIS and ArcGIS) and web-mapping libraries (e.g., OpenLayers).

Geoprocessing tools
The geoprocessing tools manage the processing for data discovery, access, integration,

and analysis. Scripting languages, such as Python and R, are widely used for geospatial

data processing. For both languages, many packages exist to handle and process all kinds

of EO time-series data, including tools for data discovery, access, processing, and

analysis. Although both languages can be considered for the geospatial data discovery

and processing component, there are some external libraries, such as the Google Earth

Engine API or the Open Data Cube API, which only exist for Python. In addition, support

for command-line tools is necessary for some processing and analysis tools.

Communication with client applications is based on standard-compliant geospatial web

services, such as OGC WMS (visualization), WCS and WFS (access), WPS (processing),

and CSW (discovery).

Exploration tools
Web-based exploration tools allow users to work with data without having to download

and preprocess it and install software. As it is connected to the middleware system, data

in the geospatial database can be directly accessed by these applications. As a

prerequisite, the exploration tools need to have access to the geospatial database.

Depending on the specific tool, EO time-series data needs to be converted into the format

that the application requires (e.g., the specific data format for the Open Data Cube

software). For example, Jupyter Notebooks can be used to further process EO time-series

data by providing a web-based interactive development environment. Thus, after data

integration, users are able to open the dataset within a Jupyter Notebook application.

Other applications (e.g., Open Data Cube) can be linked to data ingested in the

middleware to allow users to work with algorithms that are available in the application. As

a centralized CMS, the middleware can manage links between the data ingested and

exploration tools available.

5.1.1.3 Spatial data infrastructure
The middleware concept is based on methods of SDIs. A relevant part of an SDI is the

provision of interoperable services. As such, standard-compliant web services for data

visualization, access, processing, and metadata cataloguing following the specifications

Chapter 5: Concepts and Methods

102

of the OGC are available. Figure 5.4 shows services from the SDI, which can be used by

several client applications connected through the Internet. In this thesis, the emphasis is

on the automated processing of EO time-series data. Processing tasks, such as data

downloading, processing, and analysis are provided using the OGC WPS specification.

Within the process algorithm (shown in Figure 5.4), external software can be made

available, for example, by executing software on the command line or through libraries

used in programming languages. This allows any kind of software to be integrated into a

service environment and provided as a web service.

Figure 5.4: Connections of client applications to the geospatial service infrastructure, including
processing based on OGC WPS in Python.

5.1.2 User-aligned web services
The use of web services facilitates the exploration of data based on web technologies.

Data and processing tools can be made available through web services to allow the

decentralized use of these tools in multiple applications, such as mobile applications,

scripting programs, and web portals. Hosted on a web server, services can be managed

in a central environment and used in various applications. In general, the use of web

services can be adjusted by means of the different input parameters defined by each web

service. A service-based infrastructure ensures the integration of EO time-series data and

processing tools in any kind of application. Linking EO data with web services provides a

range of opportunities for user-specific exploration tools. Thus, the approach of providing

EO time-series data with standard-compliant web services needs to align with the specific

needs of users. Web services allow the concealing of complex data processing behind

web-based resources. Simple requests to a web-based resource can initiate complex

103

processing on a server—the user retrieves only the resulting data. However, the resulting

data must be adapted to the respective user personas. Scientific users need to understand

the processing within a web service, while thematic experts are interested mainly in the

results. Therefore, multiple output formats, logging, documentation, and reproducible

services are key issues when providing an infrastructure based on web services. In

addition, several services can be linked by service chaining opportunities.

Research has been conducted to standardize web services for the provision of geospatial

data discovery and access (Bai & Di 2011; Baumann et al. 2016b). However, more focus

needs to be placed on user-aligned web-based interfaces for the exploration of big data

(Tsinaraki & Schade 2016). Although standardized specifications of web services for data

discovery, access, and analysis exist, the focus has been mainly on “machine-to-machine”

communication. With regard to the specific needs of users, this “machine-to-machine”

communication needs to be transferred to a more “human–machine” communication

interface.

5.1.2.1 The human–machine interface
As concluded in the state-of-the-art chapter, existing web services for EO time-series data

discovery, access, and analysis need to be enhanced to meet the requirements of different

user personas. Although response formats from commonly used web service

specifications (e.g., XML and JSON) can be used for individual user personas (e.g.,

developers), others prefer additionally processed output formats. Within the concept of a

“human–machine interface” specification, data discovery, access, and analysis need to be

available with uniform and standardized web service specifications. Output formats for the

resulting data and technical and functional aspects of web services—both suitable for the

user personas relevant to this thesis—must be reconsidered to enable user-aligned

services and applications. Thus, two main criteria are investigated:

1) The provision of multiple output formats to foster the use of services by different

user personas.

2) A uniform web service specification for data discovery, access, and analysis to

simplify the learning curve when using these services.

Figure 5.5 shows the concept of both the standard solution, with individual requests and

arbitrary output formats (left), and the uniform web service with multiple user-aligned

output formats (right). To fulfill both these criteria, the service specification for data

discovery, access, and analysis needs to be harmonized and the output formats need to

be adapted to the requirements of users.

Chapter 5: Concepts and Methods

104

Therefore, traditional service specifications, which only provide a fixed set of output

formats, such as OGC CSW, OpenSearch, and OGC WCS, need to be replaced by a more

generic specification. In this thesis, the OGC WPS specification has been evaluated for

the uniform web service specification as it allows for multiple input and output parameters,

diverse processing within the execution, and further requirements set by the user (e.g.,

support for long-running processes). The WPS specification allows a differentiation

between services (e.g., individual processes for data discovery and access), but the

execution and handling of the services remains the same. For each of the processes, a

flexible set of input parameters and output formats can be defined to meet the individual

requirements of the different user personas. In addition, WPS-compliant web services can

be used by existing geospatial software that is compliant with OGC standards.

Figure 5.5: Traditional discovery, access, and analysis request/response (left) compared to a
uniform web service request that provides multiple user-aligned output formats and a uniform web
service interface (right).

5.1.2.2 Service chaining
The chaining of services allows the consecutive execution of various steps in the course

of the exploration of geospatial data, such as data discovery, integration, and analysis. An

example of service chaining is presented in Figure 5.6, based on two services: 1) time-

series data access, and 2) time-series data analysis. To enable service chaining in the

centralized data middleware without transferring large amounts of data, specific rules for

the services are necessary.

The approach considered in this thesis and shown in Figure 5.6 is based on a centralized

output directory for each of the services in the middleware, which can also be retrieved by

other services on the same server (“local processing directory”). The results of a data

access service are stored in this processing directory on the server, which is accessible

by a unique identifier. Based on this unique identifier, the analysis service can access the

input data on the server (“Input dataset”). The analysis service needs to understand the

105

data structure and data management produced by the access services to allow direct use

of the previously integrated dataset. The local processing directory described by the

unique identifier allows for several subdirectories: The “data” directory stores the outputs

of the data access service. Further directories are specific to the analysis tools used (e.g.,

“greenbrown_*”, “bfast_*”, and “timesat_*”). A timestamp for each of the analysis

directories allows multiple executions of the same analysis, for example, when using

different parameters of the algorithm.

Figure 5.6: Automated geoprocessing service chaining using data access and data analysis
services: The results of the data access service are stored in a local processing directory, which is
accessed using a unique identifier from the subsequent data analysis service to retrieve the “Input
dataset.” The directory listing of the webserver for the folder belonging to the unique identifier
includes output results from different services (data access and data analysis).

5.1.3 User-aligned output formats
With focus on the user requirements, one of the aims is to simplify working with and

analyzing EO time-series data. Data output formats that are specifically provided to

individual user personas can facilitate and support further analysis of time-series data. For

example, users do not need to use other software to view the results of the analysis with

web-based on-the-fly visualization. In the following subsections, three user-aligned output

formats that have been explored in this thesis are described.

5.1.3.1 OGC web services
OGC web services allow the standardized integration of data into GIS and web-mapping

libraries. In light of this, it is important to publish geospatial data with OGC-compliant web

services. Raster data of spatial time-series data can be made available for visualization

using the OGC WMS and for data download using the OGC WCS. In general, software for

the provision of raster data often offers services that comply with both specifications. The

Chapter 5: Concepts and Methods

106

temporal dimension based on WMS-TIME and WCS-TIME needs to be considered for

raster time-series data. Although the visualization of raster data can be achieved

automatically using a black-white color profile, this is not suitable for most use cases.

Thus, individual stylings using the OGC Styled Layer Descriptor specification need to be

provided and used in the software for each data type (e.g., specific color styles for

vegetation index, snow cover, and natural color images). Both the EO data and the results

from the analysis tools need to be prepared for visualization, which is relevant when

providing analysis tools as web services.

5.1.3.2 Figures and charts
The extraction of EO time-series for single pixels allows the immediate analysis of the

pixels over time. While data access in general only provides time-series values, users

need to use further tools to visualize the time-series. Providing ready-to-use time-series

plots helps users to understand the data without further data processing having to be

conducted. Besides a general plot of the data (Figure 5.7, left), further analyses, such as

a decomposition analysis plot of a time-series (Figure 5.7, right), can be conducted

automatically and provided to the user.

Figure 5.7: Time-series plots provided as outputs while accessing the data (left: general time-series
plot; right: decomposition plot).

5.1.3.3 Statistical summaries
Statistical summaries of an area of interest are often used to make first assumptions

regarding the indications of the data within this area (e.g., to analyze trends or changes).

Without having to analyze each individual pixel within the area of interest, a CSV

spreadsheet file can foster this analysis. Figure 5.8 shows an example from an NDVI

extraction for an area of interest selected by the user: Statistical summaries are provided

as the mean, minimum, maximum, and standard deviation (stdev) values. Using

spreadsheet software, users can plot the data (e.g., maximum values versus mean values

for each date). In this example, a clear change in the maximum NDVI values is visible in

the time-series. This statistical summary is automatically calculated in addition to providing

access to raster time-series data.

107

Figure 5.8: Spreadsheet file output showing statistical summaries (min, max, mean, and standard
deviation) for an area of interest (polygon).

5.1.4 Implementation: Middleware software architecture and web services
The implementation of the software architecture and web services, which frames the

overall middleware, are described in the following subsections. In addition to a description

of the administration (Subsection 5.1.4.1) and the geospatial web services (Subsection

5.1.4.2), a definition of processing web services for data discovery, integration, and

analysis is provided (Subsection 5.1.4.3).

5.1.4.1 Content Management System
The CMS provides the overall software to manage user authentication, areas of interest,

registered data, and the analyses conducted. RESTful web services are provided by the

CMS for the registration of areas of interest, data ingestion, analysis execution, and user

registration and authentication. In addition, a list of available EO data collections and

analysis tools linked to the data collections are managed through the CMS. Although in

the latest middleware application the Django Web Framework is used as a CMS, older

instances of the middleware system are based on Drupal CMS (see Chapter 6, “Example

use cases”). As the client applications make use of the RESTful services, the CMS

software is exchangeable. The data in the CMS is stored in a PostgreSQL database with

geospatial support provided by the PostGIS extension. This enables the storage of

geometries from the areas of interest and provides support for geospatial operations.

5.1.4.2 Geospatial web services
Visualization and access services are provided using services compliant with OGC

specifications for geospatial data, which is available as the output of the data integration

and data analysis processes. Each of the processes contains its own service instance

using an individual configuration file for the open source software MapServer. This allows

for the simple management of the OGC services as a removal of the directory with the

analysis or integration results automatically removes the OGC service for the process

undertaken. For the data visualization, a set of visualization styles have been prepared for

each data type (e.g., vegetation index product, snow cover product, and land surface

Chapter 5: Concepts and Methods

108

temperature product) to convert geospatial raster data into RGB images. The provision of

raster time-series data is based on the TIME extension of OGC WMS and WCS.

The open source software pycsw is used to publish metadata catalogues with the OGC

CSW specification. Hence, each user registered in the middleware can have his or her

own instance of the metadata catalogue. The open source software PyWPS provides

services for data discovery, access, processing, and analysis based on the OGC WPS

specification. The CMS backend software acts as a proxy for long-running processing

services that are executed asynchronously.

5.1.4.3 Processing web services
Data discovery, integration, and analysis are made available using web services compliant

with the OGC WPS specification. Each process managed by the middleware is registered

in the CMS to retain the references to the inputs and outputs of the process. The

monitoring of asynchronous process executions allows for notifying users with an email

when the process is complete. In the following paragraphs, the processing services for

data discovery, data integration, and data analysis are specified, described, and example

service requests are presented.

Data discovery service

In general, geospatial data discovery is provided by the specifications of OpenSearch or

OGC CSW. As neither of these meet the requirements of the user personas described in

this thesis, the OGC WPS specification has been used for the specific use case of EO

time-series data discovery. As a processing service, several user-aligned processing

tasks can be integrated into the discovery service, such as the provision of multiple output

formats, summary statistics, and additional calculations for the area of interest. In contrast

to the general discovery specifications mentioned above, the WPS interface allows for

flexible inputs and outputs for each process, which are described in detail in Table 5.1 for

a data discovery process.

The processing service for EO data discovery designed in this thesis consists of an

interface for searching for EO data based on a location defined as an input parameter.

Both point and polygon geometries can be used as location input described using the well-

known-text (WKT) format. A list of EO data collections supported by the discovery process

needs to be defined by the processing service, as connections to external databases need

to be made for the purpose of data discovery. Further queries of the metadata can be set

up as a single input string of the WPS process. The additional input parameter

“MinOverlap” (minimum overlap percentage) can be used to filter the resulting scenes

based on the spatial overlap between the scene geometry and the given area of interest

109

(location input). Several outputs are provided to the user: The resulting scenes discovered

based on the input parameters in several formats (e.g., CSV, JSON, or Shapefile) as well

as a figure (“SummaryChart” output), which can be directly used for further interpretation

of the results (see Subsection 5.2.3).

The discovery process can be executed with a single WPS execute request (Figure 5.9).

Depending on the request, either all of the outputs or a single output can be returned to

the user. Figure 5.9 shows an example WPS request and the CSV output file for a given

polygon and Sentinel–1 GRD data.

Table 5.1: Inputs and outputs for a user-specific EO time-series data discovery service.
 Name Type Description

Input Location* WKT geometry Geometry in well-known-text format
(e.g., Point or Polygon)

Input Datasets* String Multiple selection of EO data
collections connected within this
service

Input MinOverlap Integer Minimum overlap percentage between
scene geometry and location input

Input Query String Filter query for discovery

Output CSV File URL Results in CSV format

Output JSON File URL Results in JSON format

Output Shapefile File URL Results in Shapefile format

Output SummaryChart File URL Summarized results in PNG chart

Output SummaryCSV File URL Summarized results in CSV format

* Mandatory

Figure 5.9: WPS discovery request (top) and an example of CSV output (bottom).

Data integration service

User-aligned services for EO time-series data access need to consider many geospatial

processing steps, such as clipping and merging to the area of interest, implementing

quality masks, and scaling factors, as well as handling missing values. None of these can

Chapter 5: Concepts and Methods

110

be easily provided in the existing access specifications for raster data, such as OGC WCS

or OGC WCPS. Although OGC WCPS can conduct data processing while accessing, only

processed data is returned—no additional output formats can be provided to support the

output formats for different user personas. Thus, a processing service for data access has

been investigated in this thesis (Table 5.2). Specifically, data integration into the

middleware has been considered in addition to general data access. Therefore, data

access not only passes the data to the user but also stores and manages the data

requested by the user in the middleware.

For any data access request, the location and the name of the EO data collection are

mandatory to start the data access process. The location input supports the WKT format

using points or polygons. The dataset input provides a predefined list of datasets, such as

Landsat–8, Sentinel–2, Sentinel–1, and so forth. Only data from EO data collections that

are connected to the middleware are supported by the process and can thus be accessed

and integrated. Quality masks and scaling factors are not available for all the collections

and depend on the collection selected. This is reflected in and implemented by the data

access process. Further queries used to filter the resulting scenes (e.g., maximum cloud

coverage, time ranges) can be added optionally to the data access request.

Different outputs are considered for single pixel and polygon-based raster extraction

(Table 5.2). As mentioned above, all the data accessed is stored in the middleware—in

contrast to the OGC WCS/WCPS specification. While the extraction of a single pixel

extraction is less complex and only a few additional files are required (e.g., time-series

plot, decomposition plot, and data CSV file), data access for areas of interest results in

individual geospatial data files for each date. For the latter, statistical summaries, such as

time-series values for the mean, minimum, maximum, and standard deviation, are

calculated and provided as output. Both single pixel extractions and area-based

extractions are provided in addition with OGC-compliant services, using either the OGC

SOS for pixel extractions or the OGC WMS for visualization and the OGC WCS for data

downloads for area-based extractions.

The concept of the unique identifier output (UUID output) allows users to reference the

accessed and integrated data in other services, such as the analysis service or the

download service (see Subsection 5.1.2.2 for service chaining). Users do not need to use

the OGC WCS to download the data to their local computer; instead, the complete

processing directory can be downloaded as a zipped archive file using an additional

download service in the middleware. This zipped archive file contains the complete folder

111

of the unique identifier, which also includes results from analysis services conducted after

the data integration.

Figure 5.10 shows an example WPS request as well as resulting outputs (excerpt). The

data integration request is conducted for the Enhanced Vegetation Index layer of the

MODIS Vegetation Index dataset (MOD13Q1) and a given point of interest. The directory

listing of the UUID (Figure 5.10, bottom-left) can also be accessed using a web browser.

Table 5.2: Inputs and outputs for a user-specific EO time-series data access service.
 Name Type Description

Input Location* WKT geometry Geometry in well-known-text format
(e.g., Point or Polygon)

Input DatasetName* String Single selection of an EO data collection

Input Query String Filter query for discovery used for data
access (e.g., only specific type)

Output Properties File URL Text file with dataset properties (e.g., no
data value, begin, end, scale factor)

Output TimeseriesCSV File URL Result in CSV for point geometry

Output TimeseriesChart File URL Time-series chart for point geometry

Output TimeseriesFiles File URL CSV file that connects date and
geospatial raster file

Output SummaryChart File URL Statistically summarized results in PNG
chart for polygon geometry

Output SummaryCSV File URL Statistically summarized results in CSV
format for polygon geometry

Output UUID String UUID to re-use the dataset as input for
analysis processes

* Mandatory

Figure 5.10: WPS access/integration request (top), file directory output (bottom left), and CSV
output (bottom right). The UUID output is a unique identifier for re-using the data integrated into the
system in analysis processes.

Chapter 5: Concepts and Methods

112

Data analysis service

EO time-series analysis processes can only be conducted based on existing input data.

Thus, either data needs to be uploaded to the server in the correct data format and data

structure, or it first needs to be integrated with the middleware service for data access and

integration (see the previous paragraphs). Using a UUID for the previously integrated

dataset as specified by the data integration service allows referencing of the input data

within the analysis process.

Table 5.3 describes the inputs and outputs of an analysis process in general. Each

analysis process needs to have different input parameters as they provide specific

parameters on their own. A mandatory input is the reference to the input data, for example,

using the UUID described above. Outputs of an analysis process need to be carefully

thought for each of the algorithms provided as a web service and included in the

middleware:

• What is relevant for users to understand the analysis result?

• What kind of figure simplifies the resulting output of the analysis?

Both questions need to be answered separately for any algorithm and a good compromise

needs to be found to serve different user personas. In addition, any geospatial data should

be made available with an OGC-compliant web service for interactive visualization (OGC

WMS) and access (OGC WCS for raster data, OGC WFS for vector data). Styling

information is required for each of the geospatial data outputs that are available as a

visualization service. For each of the analysis processes conducted, an independent

OGC-compliant service containing all geospatial data of the process is provided by the

middleware using MapServer software.

Figure 5.11 shows two example WPS requests for breakpoint detection and trend

calculations, both with the resulting output figure. The UUID for the data access and

integration service allows the chaining of access and analysis services. Therefore, both

need to be available: the data access process needs to provide the UUID and the analysis

process needs to integrate the data structure based on the UUID. In addition, the

algorithms need to be designed to fulfill the requirements of users by providing

documentation steps, such as log files, as well as suitable output formats (e.g., PNG

figures).

113

Table 5.3: Inputs and outputs for a user-specific EO time-series data analysis service.
 Name Type Description

Input UUID* String Relation to the previously
accessed/integrated dataset (UUID output
of data access process)

Input Multiple input
parameters

String, Number,
Complex

Dependent on algorithm/tool

Output Multiple output
parameters

String, Number,
Complex

Dependent on algorithm/tool

Output Figure File URL Main figure of the output as graphic file

Output ResultsOGC URL OGC-compliant service to serve OGC
WMS, WCS, WFS for geospatial outputs

* Mandatory

Figure 5.11: WPS analysis requests for breakpoint (top) and trend calculations (bottom), with a
figure output on the right.

Chapter 5: Concepts and Methods

114

5.2 Service Brokering for Multi-source Data Discovery and Access
Discovery of and access to EO data has improved continuously in recent years.

Standardized web service interfaces exist that are used by various data providers, such

as ESA, NASA, and USGS. However, data providers often offer additional interfaces to

provide functions and data formats that are more suitable—in contrast to the standardized

interfaces. This leads to various web service specifications, which need to be known by

users who want to discover and access multi-source EO data. Thus, a key issue is to find

and obtain access to EO time-series data without the need to learn how to use the various

tools and services that are provided by each data provider. A unique standardized and

easy-to-use interface needs to be developed that covers not only data discovery and

access, but also focuses on the needs of the user. Although international organizations,

such as GEO and CEOS, have established centralized brokering approaches that include

all kind of EO data, the resulting data is still too complex for responses to simple questions,

such as “What kind of data is available for specific years and months in my area of

interest?”

Finding suitable scenes of EO time-series data for a user-defined area of interest is an

essential task. Searching for useable data can be a difficult task as data needs to be of

good quality and may have to meet several conditions. For example, when working with

optical data, cloud coverage of satellite scenes is an important factor when searching for

data. However, if the area of interest is smaller than the satellite scene and clouds do not

cover this area even if the whole scene is mostly covered, then the cloud coverage

information of the satellite scene is useless for the real area of interest. Thus, on-the-fly

data processing for the specific area of interest while searching for data can be considered

to solve such issues and enhance the discovery of freely available EO data. In addition,

automated approaches for multi-source EO data access need to be established to simplify

the downloading of EO data. In most cases, only links to satellite scenes are provided in

data discovery; further processing needs to be undertaken by the user. For some

applications, on-the-fly extraction of EO time-series data for a user-defined area is

necessary. The downloading and processing of whole satellite scenes is not an option—

a web service can solve this.

In this section, a brokering approach to centralize EO data discovery and access based

on multiple data providers is described. In addition to the service-brokering concept

(Subsection 5.2.1), the metadata model and additional extensions are described

(Subsection 5.2.2). User-aligned output formats are further investigated to provide easy-

to-understand overviews and summaries (Subsection 5.2.3). Finally, the implementation

of the service brokering as a Python package is described (Subsection 5.2.4).

115

5.2.1 The concept of web service brokering
Brokering services forward requests to connected external web services. Therefore, a

translation of the initial request needs to be adapted for each of the connected data

providers. As each data provider offers different kinds of web services, a separate

translation of the user’s request to the specifications used by the data provider is

necessary. As shown in the review chapter, existing data catalogues provide different web

service interfaces, filter capabilities, and metadata for individual EO data. The following

main limitations of currently available data discovery services need to be addressed when

designing the brokering service:

• Different web service specifications need to be known by the user.

• Different data providers need to be requested individually by the user.

• The quality of metadata needs to be enhanced (e.g., quick-look images and sun

angles).

• Additional filter capabilities based on the area of interest are required.

• Simple overview charts are missing (e.g., what kind of data is available when).

Although brokering services already exist, such as FedEO, which supports many of the

EO missions used in this thesis, a new brokering concept is necessary to meet the

requirements of multiple user personas. Therefore, this concept focuses on “human–

machine” communication that provides multiple output formats to meet the requirements

of the different user personas. To ensure good quality of the metadata, the most relevant

metadata items are extracted from multiple data providers. The metadata from the

connected data providers is translated into a common abstract metadata model along with

the full metadata records. Extensions of the metadata model allow the integration of on-

the-fly computed properties and interactive visualization services (see Subsection 5.2.2).

The following subsections describe the methods for service brokering and the quality

enhancements of metadata in the brokering concept.

5.2.1.1 Brokering methods
The brokering approach provides a single entry point to search the external metadata

catalogues registered in the broker. Brokering for data discovery and access can be

separated into four main methods:

1. List of available collections (various EO missions)

2. Search for available satellite scenes

3. Downloading of satellite scenes

4. Direct extraction of time-series data (if applicable)

Chapter 5: Concepts and Methods

116

The brokering framework needs to know how to retrieve the list of available collections,

search for satellite scenes, obtain access to data from each data source, and extract data

for a given location. Depending on the available functionalities of each data provider, all

these functions need to be implemented within the brokering software. Figure 5.12 shows

the general concept of the brokering software for multi-source EO data that provides

access to different data providers based on uniform methods (get_datasets,

search_granules, get_data, and extract_data). These methods are described in the

following paragraphs.

Figure 5.12: Concept of the multi-source EO data discovery and access broker.

List available collections (get_datasets)

Metadata catalogues provide access to one or multiple collections (EO missions or several

products). With this method, a list of collections available within the catalogue is provided,

which can then be used to search for individual scenes. This method is not always

available within the specification used by the data provider (e.g., OpenSearch). In general,

OGC CSW does not support such queries either. However, extensions provided within the

ESA FedEO broker support this. Within the brokering framework developed in this thesis,

a list of collections available is generated for metadata catalogues that do not provide this

functionality.

Search for satellite scenes (granules) in a selected collection (search_granules)

Individual scenes for a given location and time range can be searched for within the

selected collection. In hierarchical metadata catalogues, the collection acts as a parent

metadata record. A list of satellite scenes available for the query with the given filter

parameters is provided, with multiple properties for each scene (e.g., UUID, cloud cover,

footprint, and begin and end date) depending on the results from each metadata catalogue

(see Section 4.1). For some metadata catalogues, it is necessary to request an additional

web service (e.g., NASA CMR) to obtain the full metadata record.

Data download (get_data)

Each of the satellite scene’s metadata responses provides a download link to access the

data. Depending on the data provider, either direct links to the complete scene (e.g.,

ESA/Copernicus Open Access Hub) or links to web pages (e.g., USGS Earth Explorer)

117

are available. In many cases, login credentials for each individual data provider are

necessary to download the data. A download can also be handled by a third-party data

provider using the search results from another metadata catalogue (e.g., using Amazon

Web Services for a data download with search results from USGS Earth Explorer).

Data extraction (extract_data)

A few data providers (e.g., Google Earth Engine and Sinergise Sentinel-Hub) support the

direct extraction of EO time-series data. In comparison to the data download method, this

allows the accessing of data without downloading complete scenes. In this thesis, only

statistical summaries of the area of interest over time for areas or time-series values for

single pixels are provided with this method.

5.2.1.2 Metadata quality enhancement
Collections available from different metadata catalogues or data providers may contain

different sets of metadata. Although most of the metadata relevant to users can be

extracted from the original metadata resource, data providers may provide different

thumbnails and quick look images as well as links for the downloading of data. To be able

to extract the best metadata and the files referenced to it, it may be necessary for individual

satellite scenes to obtain metadata from different data providers. For example, quick-look

images from Sentinel–1 demonstrate that the NASA Alaska Satellite Facility provides

better images as the original ESA/Copernicus Open Access Hub (see Figure 5.13). Thus,

providing Sentinel–1 quick-look images from NASA is preferable to using the original ones

from ESA. Another example shows that quick-look images from ESA/Copernicus Open

Access Hub can only be accessed with a user login; the same quick-look images from the

USGS Earth Explorer for Sentinel–2 can be accessed without login credentials, which

makes it easier to integrate them in own applications.

Figure 5.13: Comparison of quick-look images of a Sentinel–1 scene.35 On the left, the image from
the ESA/Copernicus Open Access Hub; on the right, the image provided by NASA. The latter
includes enhanced colors and is spatially oriented within the bounding box.

35 Granule-ID: S1A_IW_GRDH_1SDV_20180810T171655_20180810T171720_023187_0284ED_959E

Chapter 5: Concepts and Methods

118

5.2.2 Metadata model
A unique metadata model for the discovery of satellite scenes brings together the results

of each external discovery service. As each data catalogue provides different fields of

attributes, a set of three mandatory items has been drafted:

• Unique identifier (id)

• Geometry of the scene

• Start date and time of the scene (date of acquisition).

Depending on the data provider, these can be extended with additional data. Table 5.4

shows the metadata items supported by each data provider. A set of common metadata

items is defined to ensure the good quality of the data discovery:

Unique identifier (id) Title Geometry
Time start Time end Updated date time
Download URL Browse/Thumb URL Metadata URL
Filename Size Cloud cover percentage

Further information about collection-specific metadata can be added depending on the

type of data (e.g., optical or radar), if this information is provided by the discovery service.

As each of the data providers may name the attributes differently, a mapping of the

metadata to the common metadata model needs to be integrated into the brokering

framework, as shown in Figure 5.14. Items from the individual query responses for each

metadata catalogue are mapped to the common metadata model.

Figure 5.14: Metadata mapping between multiple data providers to establish a common metadata
model.

119

Table 5.4: Metadata items from the common metadata model and their appearance in external
metadata catalogues registered in the broker (* can be generated on request).

Metadata item

GEOSS
broker

ESA
FedEO

CEOS
CWIC

ESA
Sentinel

USGS
EE

NASA
CMR

Google
Earth

Engine

Sentinel-
Hub

Identifier      
Geometry        
Start date        
End date      
Filename  
File size 
Download URL      *
Browse URL     *
Metadata URL   
Cloud cover    

5.2.2.1 Metadata extensions
An extended metadata model enhances the discovery of satellite scenes with filter

capabilities and additional metadata elements to better meet the requirements of the user

personas. Figure 5.15 shows the connections between these methods in a flowchart,

starting with the user’s discovery request and extending to the resulting list of scenes.

Three different methods are described in the following subsections: on-the-fly computed

properties, additional download links, and interactive satellite scene browsing.

Figure 5.15: The data discovery broker integrates post-processing steps after the external data
search has been conducted and before the results are sent back to the user as a WPS response.
This includes optional on-the-fly computed properties (e.g., overlap calculation, cloud cover based
on the area of interest), added visualization layers (e.g., from Sentinel-Hub), and added external
download links (e.g., Google and USGS).

Chapter 5: Concepts and Methods

120

5.2.2.2 On-the-fly computed properties
Metadata properties of satellite scenes always relate to the full geospatial extent of the

scene. However, in many cases, users search for data for a specific area of interest that

either covers several scenes or is smaller than the satellite scene. In both cases, it is

relevant to calculate properties, such as cloud cover percentage or the size of the

overlapping geometry, on-the-fly based on the area of interest provided as input by the

user. This allows users to filter satellite scenes based on the real area of interest, in

contrast to the geometry of the satellite scene. Two on-the-fly computed properties are

described in the following paragraphs.

Calculation of overlap between scene geometry and the area of interest

In some cases, the satellite scene only covers a minimal percentage of the area in which

the user is interested. Therefore, filtering by overlapping area is introduced to minimize

the satellite scenes not relevant to the area of interest. For each of the resulting scenes,

a spatial intersection is effected and the size of the intersected area is set in relation to the

geometric size of the scene. This parameter is added to each metadata item as an

additional on-the-fly computed metadata property.

Calculation of cloud cover for the area of interest

Specific scene properties need to be calculated based on the area of interest in order to

be suitable for use as filter parameters (e.g., cloud coverage). To this end, data analysis

needs to be undertaken—either after the data download or using an online processing tool

available in a web service. Google Earth Engine was used to compute the cloud coverage

of Landsat scenes in the area of interest defined by users in their requests. Figure 5.16

shows the Google Earth Engine Playground, including the script editor, scene

visualization, and the area of interest (red area). In the script, the selected satellite scene

is loaded and clipped to the area of interest; afterwards the “simpleCloudScore” algorithm

from Earth Engine is executed (Google 2017, 2018a). This algorithm calculates “simple”

cloud coverage for the area of interest of the Landsat scene using a combination of

brightness, temperature, and the Normalized Difference Snow Index. Although Google

states that “it is not a robust cloud detector” (Google 2018a), it is used here only as an

example. Any other algorithm can be used for this kind of on-the-fly computed data

property. The result of this algorithm is a raster image with cloud scores of between 0 and

100 percent for each pixel, which can be summarized as mean value. Using the Google

Earth Engine API, this analysis can be conducted and retrieved as a JSON object (Landsat

scene identifier with cloud cover percentage for the area of interest), which can be further

processed in the brokering framework. The example used in Figure 5.16 shows that the

cloud cover of the scene (20%) is much larger than in the area of interest (4%). As such,

121

filtering satellite scenes according to the cloud cover for the complete scene at a level of

less than 20% would have removed this scene from the resulting list even though the cloud

cover over the area of interest is much less.

Figure 5.16: Cloud cover calculation for a Landsat-8 scene in an area of interest (red area) in
Google Earth Engine. While the cloud cover of the scene is 20 percent, it is only 4 percent in the
area of interest.

5.2.2.3 Additional download links
Today, EO data is available from a variety of data providers. When searching for data in

multiple metadata catalogues, download links from multiple data providers are available

(e.g., USGS Earth Explorer or ESA/Copernicus Open Access Hub). In addition, links can

be generated from various data providers based on their metadata, such as direct

download links for Amazon Web Services or CODE-DE (see Subsection 4.2.2). The

advantages of showing additional download links are diverse. For example, for download

links from Google Cloud, users need not have a user login and can access individual

bands of scenes—in contrast to the original services from USGS Earth Explorer. In

addition, the download speed or service performance may be different for each of the

external platforms (e.g., an increased data download speed from the CODE-DE platform

within German research networks).

5.2.2.4 Interactive satellite scene browsing
The visualization of individual satellite scenes is useful to obtain a first impression of the

data. Using the Sentinel-Hub web service provided by Sinergise, the OGC WMS-TIME

services can be used to visualize Landsat and Sentinel scenes based on data archives

from ESA and Amazon Web Services. If access to the Sentinel-Hub WMS is available (a

commercial interface key is required), a WMS link with multiple layers (e.g., used for

natural color, false color, and NDVI) can be added to the metadata of each of the satellite

Chapter 5: Concepts and Methods

122

scenes. This WMS can then be used in own applications. For example, Figure 5.17 shows

the integration of the visualization services in the “Satellite data explorer” on the GEO-

Wetlands Community Portal. Although it is not possible to filter the WMS down to an

individual scene, scenes from a selected day are automatically mosaicked and provided

by the Sentinel-Hub services.

Figure 5.17: On-the-fly visualization of a satellite scene using the NDVI layer.

5.2.3 Discovery output formats
Various output formats of data discovery results are needed to fulfill different needs of

applications and meet the requirements of user personas. To ensure ease of use of the

data discovery results, summarized outputs can be provided in simple formats (e.g., PNG

or CSV). To enable developers to build applications based on the discovery results,

geospatial output files need to be available in additional formats, such as GeoJSON or

SQLite database. Other output formats, such as CSV spreadsheet files and summarized

outputs, are described in this subsection.

5.2.3.1 CSV spreadsheet files
In order to enhance the analysis of results from EO data discovery, the data resulting from

a discovery request is converted to a CSV spreadsheet file so that it can used by any

spreadsheet software or programming language. In contrast to the usual formats, XML

and JSON, most users are familiar with the CSV file format. Both of these formats are

especially suitable for developers but can often not be handled by other user personas.

As an example of the CSV output, Figure 5.18 shows Landsat–8 scenes for a given area

of interest (only parts of the columns available are shown). Using the CSV file, users can

123

directly work within spreadsheet software to analyze the results (e.g., plotting the amount

of cloud cover of each scene over time, as shown in Figure 5.18).

Figure 5.18: Spreadsheet file output showing scenes from a data discovery request, including
scene metadata and download links.

5.2.3.2 Summary output by year and by satellite
An additional summary output format has been designed and is made available to provide

information about what kind of EO data is available from which sensor when. Therefore,

two additional outputs are calculated within the data discovery:

1) Graphic output shows the number of scenes per satellite sensor per year in a PNG file

(Figure 5.19, left). Especially for historical years, it is easy to identify when data is

available from which kind of satellite sensor.

2) Tabulated output shows the number of scenes per sensor in total, in addition to the

temporal range that includes the year of first and last scene from the sensor requested

(Figure 5.19, right). This output format is stored as a JSON file and as a spreadsheet

CSV file. It allows quick insight into how many scenes are available from each sensor

in the complete temporal dimension.

Figure 5.19: Summary output generated from the discovery result list: graphical output per year
and per satellite sensor (left); tabulated output per satellite sensor with the total number of
scenes, including the year of first and last scene (right).

Chapter 5: Concepts and Methods

124

5.2.4 Implementation: EO time-series data discovery and access brokering
An EO time-series data discovery and access broker has been developed to harmonize

discovery and access between multiple data providers. Different data providers, such

as USGS Earth Explorer, ESA/Copernicus Open Access Hub, NASA CMR, and Sentinel-

Hub from Sinergise, have been integrated and are available through the brokering

software, provided as a pyEOM Python library, which is developed within this thesis.

Access to Landsat and Sentinel satellite data as well as the MODIS sensor has also been

integrated in the broker.

Figure 5.20 shows the system architecture of the broker and integrated services: The

USGS archive of Landsat is requested from the USGS Earth Explorer; Sentinel–2 is

requested from both the USGS Earth Explorer and the ESA/Copernicus Open Access

Hub; Sentinel-Hub OGC services from Sinergise are used to query the ESA archive of

Landsat and to add WMS visualization services to the satellite scenes discovered. The

harmonized data discovery broker connects to the different specifications of the data

providers and provides a uniform metadata response. In addition to the data discovery,

automated data access has been integrated into the Python library.

Figure 5.20: System architecture of the satellite time-series data discovery and access broker
linked with three external data providers (Sinergise, USGS, and ESA), providing data discovery
and data access methods.

The discovery component of the brokering software described in Subsection 5.2.4.1

provides a unique interface for the user to discover data; the access component described

in Subsection 5.2.4.2 provides a unique interface for data access. Discovery and access

to the data providers mentioned above have been integrated based on the descriptions in

the previous sections. Users of this pyEOM Python library need to have user credentials

from each data provider to be able to discover and access EO data.

125

5.2.4.1 Discovery brokering software
Within the discovery brokering software, USGS and ESA archives for both Landsat and

Sentinel data can be searched for a given area of interest with a few lines of Python code

(Listing 5.1). Based on the common and extended metadata models, uniform records of

metadata are extracted and provided in different output formats. The main functions of the

discovery brokering (discovery search, post-processing, and metadata export) are

described in the following paragraphs. The pyEOM Python library makes use of external

libraries, such as Shapely, Fiona, Pandas, OWSlib, and GDAL.

01 from pyEOM import SatelliteBroker
02
03 # Register brokering services (ESA Science Hub, USGS Earth Explorer,
Sinergise Sentinel-Hub)
04 broker_all = SatelliteBroker(
05 esa_scihub=('*username*', '*password*', ['S1*_IW_GRD*']),
06 usgs=('*username*', '*password*', ['LANDSAT_MSS', 'LANDSAT_TM_C1',
 'LANDSAT_ETM_C1', 'LANDSAT_8_C1', 'SENTINEL_2A']),
07 sentinelhub=('http://example.org/v1/wfs/*apikey*', ['L5.TILE'])
08)
09
10 # Search for all scenes based on given geometry (geom_wkt)
11 scenes = broker_all.search(geom_wkt)
12
13 # Optional post processing of initial search results
14 scenes_meta = broker_all.post_process_results(scenes, min_overlap=0.1)
15 scenes_meta = broker_all.retrieve_metadata(scenes_meta)
16 scenes_meta = broker_all.get_external_quicklooks(scenes_meta)
17 scenes_meta = broker_all.add_sentinelhub_wms_url(scenes_meta)
18
19 # Export data to GeoJSON file
20 broker_all.export_results(scenes_meta, 'results.json')

Listing 5.1: Python-based source code for undertaking data discovery.

Discovery search

With the initialization of the SatelliteBroker class, each individual data provider needs to

be registered. Lines 4–8 in Listing 5.1 show the registration of the ESA/Copernicus Access

Hub (esa_scihub), the USGS Earth Explorer interface (usgs), and the Sinergise Sentinel-

Hub services (sentinelhub). For any of these services, login credentials or an interface key

are necessary. As described in the concept of the web service brokering, any of the data

providers’ methods for login, scene search, and metadata mapping are implemented.

Supported by this brokering software, data providers have been integrated with these

methods in individual Python files. The discovery search of all data providers registered

with their respective EO data collections is conducted using the “search” method of the

SatelliteBroker class. This method needs to have an area of interest in the WKT format as

the first argument (Line 11 in Listing 5.1). In this step, the different methods of login, scene

search, and metadata mapping for each registered data provider are executed. Finally, a

list of resulting scenes is returned after duplicate scenes from multiple data providers are

automatically removed.

Chapter 5: Concepts and Methods

126

Postprocessing of discovery results

Postprocessing steps can be conducted optionally to enhance the discovery result. An

additional filter for the initially scene results can be applied to remove scenes with a

minimal overlap with the area of interest (see Subsection 5.2.2.2). A minimum overlap

percentage can be defined between zero and one in order to reduce the number of scenes.

For example, if the overlap between scene geometry and area of interest geometry is less

than 10 percent, scenes are removed from the resulting list when the parameter is set to

0.1. This is effected with the “post_process_results” method with the parameter

“min_overlap” (Line 14 in Listing 5.1).

Additional metadata can be retrieved for each satellite scene that provides a metadata

URL and the method “read_metadata” is implemented for the data provider. As some of

the catalogues do not provide all the metadata for the scenes in the discovery search,

further metadata needs to be extracted from external URLs. This has been implemented

for the USGS Earth Explorer interface and the Sinergise Sentinel-Hub services, as neither

provide the full metadata record in the discovery results. This can be effected using the

“retrieve_metadata” method of the SatelliteBroker class (Line 15 in Listing 5.1).

When satellite scenes are discovered in data catalogues from several data providers,

some of the metadata information can be enhanced. For example, the quick-look images

for Sentinel–1 scenes at the NASA Alaska Satellite Facility are geo-referenced with an

enhanced color stretching (see Subsection 5.2.1.2). Although the data discovery search

was conducted in the ESA/Copernicus Open Access Hub, the link to the quick-look images

can be replaced using the “get_external_quicklooks” method for the Sentinel–1 results

(Line 16 in Listing 5.1).

For the visualization of satellite scenes, additional WMS links, layer names, and temporal

ranges (the acquisition date of the scene) can be added to the resulting metadata of each

scene. The OGC WMS service published by Sinergise provides visualizations for Landsat

and Sentinel time-series data. Using the “add_sentinelhub_wms_url” method, three

metadata items (“senhub_wms_url,” “senhub_wms_layers,” “senhub_wms_time”) are

added to each scene in the returned list (Line 17 in Listing 5.1).

Metadata export

The Pandas Python library is used to calculate a summary of the resulting scenes.

Depending on the data format given as an argument (“format”) for the “export_results”

method (Line 20 in Listing 5.1), different steps are conducted: Using the CSV format alone,

the built-in Pandas export to CSV is accomplished. When using either the default format

GeoJSON or other geospatial data formats additional files are stored:

127

• Lists of tiles that have appeared, collections, start and end year, as well as the total

number of scenes per collection are calculated and exported in JSON format.

• The full list of scenes and their metadata is exported to either GeoJSON or

Shapefile format depending on the “format” argument.

• An SQLite database can be exported based on the previously generated

GeoJSON file. The ogr2ogr command-line tool is used to convert GeoJSON to

SQLite.

Both graphic and tabular output, which summarize the resulting scenes, can be generated

with the “generate_table_chart” method of the SatelliteBroker class. The Pandas library is

used to generate summaries for each collection (e.g., Landsat MSS, Landsat TM, Landsat

ETM, Landsat 8, Sentinel–1, Sentinel–2). Two output formats are provided, as previously

shown in Figure 5.19 (Subsection 5.2.3.2):

1) A list of datasets with the total number of scenes, year of first scene, and year of

last scene stored into a JSON and a CSV file.

2) A graphic summary of available satellite scenes grouped by collection and year

stored in a PNG file.

5.2.4.2 Access brokering software
In this part of the brokering software, access to multi-source EO time-series data is

provided. Two different methods are implemented:

1) A scene-based data download to the computer based on a previously conducted

data discovery search.

2) Statistical extraction of EO time-series based on an area of interest (point or

polygon) for a selected collection.

For each of the data providers registered to support data access, login credentials or

specific user rights need to be available, such as access to NASA LPDAAC for

downloading MODIS data, credentials for USGS or ESA for their data access interfaces,

or a whitelisted service account to properly use the Google Earth Engine Python library.

Scene data download

Scene data downloads can only be conducted following the execution of a discovery

search. In general, the links in the “Download URL” metadata item for each satellite scene

are used to access each scene within the “download” method of the broker instance (Line

14 in Listing 5.2). For some of the data providers (e.g., USGS ESPA), data access is not

provided with a direct file download but rather using an ordering process. In this case, the

Chapter 5: Concepts and Methods

128

order is submitted and the process waits until data is available for download. In addition

to data discovery, access to download URLs has also been integrated for each of the data

providers. Thus, the “get_data” method has been integrated in the implementation of the

data provider’s configuration file.

01 from pyEOM import SatelliteBroker
02
03 # Register brokering services (ESA Science Hub, USGS Earth Explorer,
Sinergise Sentinel-Hub)
04 broker_all = SatelliteBroker(
05 esa_scihub=('*username*', '*password*', ['S1*_IW_GRD*']),
06 usgs=('*username*', '*password*', ['LANDSAT_MSS', 'LANDSAT_TM_C1',
 'LANDSAT_ETM_C1', 'LANDSAT_8_C1', 'SENTINEL_2A']),
07 sentinelhub=('http://example.org/v1/wfs/*apikey*', ['L5.TILE'])
08)
09
10 # Search for all scenes based on given geometry (geom_wkt)
11 scenes = broker_all.search(geom_wkt)
12
13 # Download all scenes from data discovery
14 broker_all.download(scenes)
Listing 5.2: Python code to download all scenes found during the discovery search.

Data extraction

Google Earth Engine and Sinergise Sentinel-Hub services allow for on-the-fly time-series

data extraction. The “extract” method of the brokering instance is integrated to standardize

extraction for the registered data providers. For each of the data providers, the

“extract_data” method is implemented in the provider’s configuration file, otherwise no

data extraction is possible. To use the extraction method from the broker, several inputs

are required: A geometry in WKT format containing the area of interest for statistical

computations, a temporal range, the data provider selected, and the name of the collection

supported by the selected data provider (Line 9 in Listing 5.3). The resulting object

contains a time-series “DataFrame” object from the Pandas library, which can be used for

further processing.

1 from pyEOM import SatelliteBroker
2
3 # Register brokering services (e.g., Sinergise Sentinel-Hub)
4 broker = SatelliteBroker(
5 esa_scihub=('http://services.eocloud.sentinel-hub.com/v1/fis/*apikey*')
6)
7
8 # Extract statistical information based on given geometry (geom_wkt), temporal
range, data provider and dataset
9 data = broker.extract(geom_wkt, time='2015-08-01/2017-10-01',
 provider='sentinelhub', dataset='EVI')
Listing 5.3: Python-based source code for conducting data extraction for Sentinel.

129

5.3 Unified EO Time-series Data Structure and Analysis
The exploration of geospatial time-series data is the basis for generating information and

knowledge. Geospatial software and analysis tools can be used to extract information from

time-series data. As such, users need to be able to work with time-series data in a

programming language and geospatial tool of their choice. As much EO data is provided

in different data formats (e.g., HDF, GeoTIFF, netCDF, and JPEG2000) and structures

(see Figure 2.5), a conversion of these is often necessary to enable users to analyze this

data. In addition, geospatial software and analysis tools handle raster time-series data

differently. Thus, time-series data needs to be standardized and harmonized in format and

structure as well as adjusted for the use in different processing and analysis tools.

Several questions are discussed in this section in order to standardize and harmonize the

spatial and temporal handling of spatial time-series data:

1. How to simplify working with spatial time-series data for different users?

2. How to standardize the analysis of time-series data in automated workflows?

3. What kinds of time-series data output formats are useful?

Based on the review of raster time-series processing tools (Section 4.3), a specification

has been drafted to standardize the management and handling of EO time-series data

(Subsection 5.3.1). This uniform data structure is linked to the commonly used data

processing tools described in Subsection 5.3.2. Further aspects of standardizing analysis

tools are investigated (Subsection 5.3.3). Finally, the standardized and automated data

processing and data analysis software are described (Subsection 5.3.4).

5.3.1 Common EO time-series data structure
Common data structure and data formats are necessary to provide data that can be

directly used for analysis (“analysis-ready data”). Various file formats exist for use as a

common data format however, in most cases, these are different in many user

communities. In addition, new file formats, such as GeoPackage (Yutzler 2017), which

focuses on providing a single format for both raster and vector data, should first further be

explored in order to be used as a common format. In general, what is more important is

the kinds of file formats users are familiar with, for example, using GeoTIFF for raster data

and Shapefile for vector data. Although the definition of a common file format is important,

in general most of available file formats can be read by the GDAL library, which is

integrated in much geospatial software. More relevant—especially for time-series data—

is the structure of the data due to the addition of the temporal dimension. In addition to file

storage, database storages (e.g., PostGIS or SciDB) can be useful, though all users need

to have knowledge of the specific database, which is often not the case. The structure of

Chapter 5: Concepts and Methods

130

time-series data needs to fulfill requirements from both point of views—the users’ (easy to

handle) and the services’ (optimized for both publishing and analysis).

Although many applications, such as Open Data Cube and Rasdaman, have other internal

data structures and formats, it is relevant to bridge the gap between accessing data from

the data archives and being able to analyze data within software applications and

programming languages. As such, it is important to define a uniform data structure, which

can easily be used or exported to other data structures with minimal effort.

5.3.1.1 Spatial time-series data management
Observations extracted for an area of interest consist of multiple observations per date

and can either be statistically reduced to values, such as the mean, minimum, maximum,

and standard deviation, or retained as geo-referenced raster objects. For data

management, both raster files and raster databases can be used. As explored in Section

4.3, the common approach with geospatial tools is to use raster files in combination with

date extraction from their filenames or from a separate text file. Although the use of raster

databases, such as SciDB, Rasdaman, or PostGIS Raster, can be considered useful, as

different processing steps can be conducted while the data is being accessed, access to

this database needs to be implemented for each geospatial tool. Rather than using raster

databases, individual files, consisting of an individual raster file for each acquisition date,

are proposed for storing data. The filename itself consists of a unique identifier for the

dataset combined with the date.

Figure 5.21 shows an example listing for a vegetation index dataset with final GeoTIFF

files. Rather than using one file per date, processing and analysis tools often work with a

single raster file that includes one band per date. This can be achieved by using the virtual

raster table (VRT) format from GDAL: VRT 36 is a lightweight XML-based format for

composing geospatial data, which can be read by the GDAL library and allows integrating

geospatial calculations to be applied on data access. A VRT file acts in the same way as

a geospatial data file, such as GeoTIFF, HDF, ENVI, and the like. The VRT format can be

used to restructure existing geospatial data without the need to process and store these

additional files. For the common raster time-series data format, a VRT-based text file

refers to each GeoTIFF file as individual band in the new geospatial dataset (see the

example file “timeseries.vrt” in Listing 5.4). This file, which is based on raster time-series

data, can be loaded into R as RasterBrick or RasterStack (Listing 5.5). Many analysis

algorithms, such as Greenbrown and BFAST for vegetation analyses, that have been

developed in R make use of this file format. Although there is no temporal information

36 https://www.gdal.org/gdal_vrttut.html

https://www.gdal.org/gdal_vrttut.html

131

stored in the VRT time-series data file, the link between the band number and the date

needs to be managed externally. Therefore, a CSV file is provided as part of the common

data structure, linking date, filename, and band number. This can be used in conjunction

with the VRT file.

Figure 5.21: Time-series observations extracted for an area of interest in the final GeoTIFF raster
file format (.tif from the output folder). Dates can be extracted either from the filenames, as shown
in this figure, or from the text CSV file (files.csv).

01 <VRTDataset rasterXSize="29" rasterYSize="22">
02 <SRS>...</SRS>
03 <GeoTransform>...</GeoTransform>
04 <VRTRasterBand dataType="Int32" band="1">
05 <NoDataValue>-3000</NoDataValue>
06 <ComplexSource>
07 <SourceFilename>MOD13Q1.EVI.20000218.tif</SourceFilename>
08 <SourceBand>1</SourceBand>
09 <SourceProperties RasterXSize="29" RasterYSize="22" DataType="Int32"
 BlockXSize="29" BlockYSize="22" />
10 <SrcRect xOff="0" yOff="0" xSize="29" ySize="22" />
11 <DstRect xOff="0" yOff="0" xSize="29" ySize="22" />
12 <NODATA>-3000</NODATA>
13 </ComplexSource>
14 </VRTRasterBand>
15 <VRTRasterBand dataType="Int32" band="2">
16 <NoDataValue>-3000</NoDataValue>
17 <ComplexSource>
18 <SourceFilename>MOD13Q1.EVI.20000305.tif</SourceFilename>
19 <SourceBand>1</SourceBand>
20 <SourceProperties RasterXSize="29" RasterYSize="22" DataType="Int32"
 BlockXSize="29" BlockYSize="22" />
21 <SrcRect xOff="0" yOff="0" xSize="29" ySize="22" />
22 <DstRect xOff="0" yOff="0" xSize="29" ySize="22" />
23 <NODATA>-3000</NODATA>
24 </ComplexSource>
25 </VRTRasterBand>
26 </VRTDataset>
Listing 5.4: Example VRT files for two bands referencing external GeoTIFF files.

1 class : RasterBrick
2 dimensions : 22, 29, 638, 393 (nrow, ncol, ncell, nlayers)
3 resolution : 231.6564, 231.6564 (x, y)
4 extent : 905776.4, 912494.4, 5982062, 5987159 (xmin, xmax, ymin, ymax)
5 coord. ref. : +proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181
 +b=6371007.181 +units=m +no_defs
6 data source : /data3/pywps/5bc4e83e2f95e/data/output/timeseries.vrt
Listing 5.5: RasterBrick output in R using the VRT dataset containing each date as a band.

Chapter 5: Concepts and Methods

132

5.3.1.2 Data processing information
Additional information about the raster dataset is often necessary for further data

processing. This includes information about temporal coverage and internal data settings

(e.g., no data value and scale factor). The common data structure stores this information

in a separate text file. This allows immediate data processing and analysis of the data

without having to calculate this information again. For example, with the ts function within

R, several parameters, such as start year, start offset, and temporal frequency, are needed

to conduct analysis (e.g., as used within Greenbrown and BFAST). The following

information has been extracted automatically from the data ingestion process and is stored

within a text file as part of the common data structure (example values from a 16-day

MODIS NDVI dataset are given in brackets):

• Temporal information

o Start year and start offset as number of items [2000, 4]

o Frequency—the number of items per year for regular time-series [23]

o Number of years [14]

o Number of dates [319]

• Data information

o Projection [SR-ORG:6842]

o No data value [-3000]

o Scale factor [0.0001]

o Number of pixels in X dimension [13]

o Number of pixels in Y dimension [17]

5.3.2 Specifications for data processing tools
In addition to the common EO time-series data structure, data processing tools often use

other data structures and formats. To simplify work with EO time-series data in various

programming languages (Subsection 5.3.2.1) and geospatial tools (Subsection 5.3.2.2),

additional data formats are provided as part of the common EO data structure. These can

be used to simplify the ingestion of EO data into GIS software, databases, or data cubes.

This subsection aims at bridging the gap between the data provided within this data

structure and linked processing applications (“application-ready data”).

5.3.2.1 Programming languages
To ease the handling of the common data structure and format in programming languages,

specific data formats can be stored for R and Python. In addition, web-based development

133

environments (e.g., Jupyter Notebooks) can be provided automatically. These are

described in the following paragraphs.

R workspace

Users working with the statistical language R can be provided with a ready-to-use

workspace that already includes data as time-series objects (for a single pixel) or raster

objects based on a single multi-band file or on multiple files (for multiple pixels). Both can

be created during an active session in R and saved as a workspace file. This file can then

be loaded in a new session and the data directly used in the analysis. Using the rpy237

Python library, it is possible to open an R session in Python. This library is used to load

the data, as described in Subsection 5.3.1, and save the content of the session to an R

workspace.

Python xarray

The recommended way to store xarray data structures is by using the netCDF format.38

Although xarray data structures based on the common data structure can be created with

few lines of Python code (see Subsection 4.3.1), the raster time-series data can

additionally be exported to the netCDF format. This automatically integrates the temporal

dimension into the netCDF format and stores all data previously managed in multiple

GeoTIFF files in one netCDF file. Without any further processing steps, this file format can

be loaded with the xarray Python library.

Jupyter Notebooks (Python, R)

Interactive Jupyter Notebooks provides a web-based development environment for

several programming languages. For Python and R, exporting the common data structure

allows users to work directly with the data automatically preloaded in the Jupyter Notebook

provided to the user. Using the Jupyter Notebook Format (nbformat)39 Python library,

preconfigured notebooks, in which access to raster time-series data has already been

implemented, can be created automatically and provided as a Jupyter Notebook file. An

example screenshot of such a Jupyter Notebook is shown in Figure 5.22.

37 https://rpy2.readthedocs.io/
38 http://xarray.pydata.org/en/stable/io.html#netcdf
39 https://github.com/jupyter/nbformat

https://rpy2.readthedocs.io/
http://xarray.pydata.org/en/stable/io.html#netcdf
https://github.com/jupyter/nbformat

Chapter 5: Concepts and Methods

134

Figure 5.22: Screenshot of a Jupyter Notebook with preloaded time-series data in Python.

5.3.2.2 Geospatial tools
In addition to programming languages, geospatial tools can be used to further process

and analyze EO time-series data. A connection to such applications allows a direct transfer

of data to other tools and subsequent processing by the users. Geospatial processing

tools for time-series data processing used and investigated in this thesis are described in

the following paragraphs.

GRASS GIS location and mapset

A new GRASS GIS location and mapset can be created automatically on the server

already containing the individual geospatial files from the raster time-series dataset and

already registered in a space-time dataset. Using the GRASS Python API, the location

and mapset can be created and datasets can be inserted without starting GRASS as

application. As GRASS GIS stores its locations and mapsets to a file-based structure in

the path of the location, this can be also provided as a download on a web server. As an

alternative, users can use Jupyter Notebooks to access this mapset and work with the

GRASS GIS Python API on the server.

Open Data Cube

Registration and ingestion of raster time-series data into the Open Data Cube software

are based upon a set of supported dataset types (e.g., MODIS EVI, MODIS NDVI, and

Landsat). Specific configuration files describing the dataset type and their content and

preprocessing scripts for creating metadata files need to be available. To publish datasets

into an instance of the Open Data Cube, access to the PostgreSQL database and the data

folder is required. If those requirements are met, the following steps can be conducted

automatically (see also Listing 4.8):

135

1. Registration of dataset type (if not already done).

2. Creation of metadata files for each of the geospatial data files (one per date).

3. Registration of metadata files.

4. Creation of a metadata file for the specific collection to be ingested.

5. Ingestion of the dataset based on the previously created collection metadata file.

Following successful ingestion into the data cube instance, the dataset can be loaded

using the Python API from the datacube library (Listing 5.6).

01 # load library and create datacube connection
02 import datacube
03 dc = datacube.Datacube(app = 'my_app', config = '/datacube/.datacube.conf')
04
05 # load dataset from datacube
06 landsat_dataset = dc.load(latitude = (37.04, 37.20),
07 longitude = (-4.89, -4.63),
08 platform = "LANDSAT_8",
09 time = ('2017-01-01', '2017-03-01'),
10 product = "ls8_lasrc_fuente_de_piedra_example",
11 measurements = ['red', 'green', 'blue', 'nir',
 'swir1', 'swir2', 'pixel_qa'])
12
13 # run water detection algorithm for the first scene in the time-series
14 first_scene = landsat_dataset.isel(time=0)
15 water_classification = wofs_classify(first_scene, mosaic = True)
16
17 # plot water detection result
18 water_classification.wofs.plot()
Listing 5.6: The ingested data can be directly loaded using the datacube Python library.

Rasdaman

Inserting data into Rasdaman software can be achieved using the recipe JSON

configuration file and the wcts_import Python script. To include the temporal information

of the time-series, a regular expression needs to be provided to extract the date and time

from the filename of each geospatial data file. As an export, the JSON configuration file

can be written automatically when the URL for the web service endpoint of the Rasdaman

instance is provided. Users can download the dataset directory and the Rasdaman recipe

JSON file and ingest data into their local Rasdaman server.

5.3.3 Specifications for data analysis
Analysis tools can be used to derive further information, such as breakpoints, trends, and

phenological information, from vegetation time-series data. In general, all analysis tools

follow the same principles: They are based on data inputs, process data, and provide

resulting outputs. To link analysis tools to EO time-series data, each of these steps need

to be investigated for each analysis tool. In the following subsections, the input data

formats (Subsection 5.3.3.1) and the output postprocessing (Subsection 5.3.3.3) are

described for the time-series analysis tools BFAST, Greenbrown, and TIMESAT, which

are used for vegetation time-series analysis (see Subsection 2.1.2). Subsection 5.3.3.2

Chapter 5: Concepts and Methods

136

describes additional aspects of the execution of algorithms, such as parallel computing,

logging, and documentation.

5.3.3.1 Preprocessing and inputs data formats
The input data of a process often needs to be adjusted because the data retrieval

component stores data in a different format. Especially for time-series data, it is often

necessary to preprocess the original data to match the format and structure specified by

the analysis tool. A raster time-series object is provided in R, which uses a multi-band file.

Therefore, algorithms developed in R should make use of this internal raster time-series

format, as occurs with BFAST and Greenbrown. Other tools, such as the TIMESAT

command-line executable, need preprocessed data in specific file formats. In such cases,

a connector is necessary to establish the link between the common EO time-series data

structure and the input data. In the best case scenario, the algorithm can directly use the

resulting outputs from the common data structure or a derived format, as described in the

previous sections.

Table 5.5 lists data inputs for the algorithms BFAST, Greenbrown, and TIMESAT.

Whereas BFAST and Greenbrown, both developed in R, use the standardized time-series

methods of R, a special file format is necessary for TIMESAT. Therefore, preprocessing

of the data input needs to occur only for TIMESAT. A Python class is written as a wrapper

for TIMESAT to overcome this issue.

Table 5.5: Data inputs for the algorithms BFAST, Greenbrown, and TIMESAT divided into execution
for single and spatial time-series data.
Analysis tool Description of data input

BFAST Single: univariate time-series (vector time-series, start, frequency)
Spatial: calc-function with multi-layer raster object using ts function

Greenbrown Single: univariate time-series (vector time-series, start, frequency)
Spatial: multi-layer raster object of class brick, start, frequency

TIMESAT Single: text data file
Spatial: headerless binary format and text reference file

5.3.3.2 Algorithm execution
The execution of an algorithm can be accompanied by parallel computing, process

logging, and documentation. This allows optimization of the execution of the analysis tool

and provides advantages to users, such as performance increase and reproducible

analysis. Users need to know what has been done with the input data, which enables the

reproducing of the results of the analysis. Thus, all processing steps need to be

documented, including information about the software used for processing, the individual

commands with parameters, the scripts executed for data access or data analysis, and

the parameters used for the analysis tools.

137

Parallel computing

Some algorithms, such as BFAST and TIMESAT, support high-performance and parallel

computing. With the BFAST algorithm, the high-performance option can be set to “foreach”

for the breakpoint detection method. The foreach package in R provides a looping

construct for executing code that repeatedly supports parallel computing (Calaway 2017).

This allows the running of operations on multiple processors and cores or on multiple

nodes of a cluster. As the BFAST algorithm is a pixel-based approach, another option is

the parallel execution of individual pixels. This approach is used by the TIMESAT software.

If multiple processors are activated, the software splits the spatial input data into the

number of multiple processors defined by the user. Each of the parts will be executed in

parallel; thereafter the results are merged in the final output.

Process logging

Returning responses to the user while the processing task runs is an important feature of

an algorithm that enable users to follow up on the progress of the execution of the process.

Although responses from the algorithm itself depends to a great extent on the structural

workflow of the algorithm, a few recommendations can be considered:

1) Process the fragmentation into steps, which can include the current step number

and the full number of steps within the response.

2) Loops within the process can be integrated into the response by including the

current index of the loop (e.g., for pixel-based analysis within a raster).

3) Responses of command-line tools should be directed to the standard output. This

enables access to response messages, which can be redirected to the user.

Logging packages exist in many programming languages, including Python and R. Such

packages allow the printing of log messages of different levels (e.g., warning, info, and

debug) into single or multiple output channels (e.g., files and standard output).

Process documentation

In contrast to process logging, from a technical point of view process documentation

contains the individual processing steps that have been conducted. The documentation

enables users to reproduce the steps undertaken in the processing workflow. When

command-line tools are used (e.g., to pre- or postprocess geospatial data), the exact

command, including the parameters can be saved in a documentation text file. Within

programming languages, the major functions should be included or otherwise exported as

script file (e.g., bfast.R or timesat.py) and stored alongside the documentation file. This

allows reproduction and debugging of the processing workflow.

Chapter 5: Concepts and Methods

138

Listing 5.7 shows an example (some parts have been truncated) for the processing of a

single date containing several MODIS tiles and the extraction of the NDVI dataset for a

user-defined area of interest. After the data download (Lines 4–10), the NDVI band is

extracted (Lines 14–15), and thereafter the individual tiles are merged (Line 18), projected

(Line 18), clipped to the area of interest (Line 24), and finally compressed (Line 27). Any

of these steps can be performed locally to reproduce or debug the processing workflow.

01 #processing MOD13A3 for study area: Forest Dragon
02
03 #download files
04 wget -c ftp://…/MODIS_Composites/MOLT/MOD13A3.005/2005.01.01/*.h28v04*.hdf*
05 wget -c ftp://…/MODIS_Composites/MOLT/MOD13A3.005/2005.01.01/*.h25v03*.hdf*
[... truncated ...]
11
12 #dataset extraction
13 #processing MOD_Grid_monthly_1km_VI:1 km monthly NDVI
14 gdal_translate -a_nodata -3000 -of GTiff -a_srs "+proj=sinu +lon_0=0 +x_0=0
 +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"
 HDF4_EOS:EOS_GRID:"MOD13A3.A2005001.h26v04.005.2007355120626.hdf":
 "MOD_Grid_monthly_1km_VI:1 km monthly NDVI"
 MOD13A3.A2005001.h26v04.005.2007355120626.NDVI.tif
15 [... gdal_translate is being executed for each tile ...]
16
17 #merge for selected study area
18 gdal_merge.py -o merge.tif *.h28v04.*.NDVI.tif *.h25v03.*.NDVI.tif
19
20 #set projection
21 gdalwarp -t_srs EPSG:4326 merge.tif MOD13A3.A2005001.NDVI.6.tif
22
23 #clip data to selected study area
24 gdalwarp -of GTiff -cutline PG:"dbname=sibessc" -csql "select
 ST_SetSRID(geom, 4326) from userdata.study_areas WHERE uid='6'" -cblend
 0 -crop_to_cutline MOD13A3.A2005001.NDVI.6.tif
 MOD13A3.A2005001.NDVI.6.clipped.tif
25
26 #compress data
27 gdal_translate -co COMPRESS=PACKBITS MOD13A3.A2005001.NDVI.6.clipped.tif
 MOD13A3.A2005001.NDVI.6.clipped.compressed.tif
Listing 5.7: Processing log file with download and processing steps.

5.3.3.3 Postprocessing and output data formats
The eventual datasets can be in a variety of data formats, as defined by the algorithm.

They can contain figures, charts, text files, or geospatial data. In most cases, it is

necessary to process the outputs to achieve better readability and easier evaluation of the

results. The BFAST and Greenbrown libraries do not provide any output files—these need

to be exported from the programming language R. Thus, exports of figures and geospatial

raster data as well as an optimized vector dataset need to be integrated and provided to

users. Other algorithms, such as TIMESAT, deliver functions or command-line tools to

export the results to geospatial data. Both of these need to be integrated in the

postprocessing to generate user-aligned output formats (e.g., GeoTIFF files or prepared

figures). In addition, the postprocessing of the results—including the generation of a vector

pixel Shapefile and the provision of OGC WMS and WFS web services—allows direct

139

exploration of the results by the user. For each analysis tool used within this thesis, Table

5.6 compares the resulting regular output files with the postprocessed output files

generated by the middleware and provided to the user. These additional output formats

are described in the following paragraphs.

Results CSV

The most important numbers of the results of the analysis (e.g., fitted time-series, trend

lines) are provided in a dedicated CSV spreadsheet file, which can be used directly either

in any spreadsheet software or with web-based interactive charting tools.

OGC web services

To allow direct visualization of the results in an interactive map, geospatial output data

needs to be made available using the OGC WMS specification for raster data and the

OGC WFS specification for vector data. Therefore, visualization styles need to be

prepared during the postprocessing of the execution of the algorithm for any geospatial

output of either algorithm. To provide these OGC web services, an OGC-compliant web

server needs to provide a service instance for each execution of the analysis.

Figures and charts

The provision of figures and charts allows immediate visualization of the results of the

analysis. Depending on the algorithm and the input time-series data (e.g., pixel or raster

based), different figures can be generated. Spatial map outputs can be shown for raster-

based analyses (Figure 5.23) and individual charts for single pixel analyses, which can be

used to provide a quick look at the results of the analysis. In addition to the figure

generated, the values for the results of an individual time-series analysis can be stored in

a CSV spreadsheet file (e.g., the “Results CSV” file for BFAST and Greenbrown or the

“Data CSV” file for Greenbrown).

Vector Shapefile

Raster output data from time-series analysis contains per-pixel information. The

exploration of individual raster pixels in web-based systems is best accomplished using

vector outputs, as individual pixels—transformed to rectangle vector features—can be

interactively selected in web-mapping libraries. Thus, geospatial raster outputs can be

converted to a vectorized data format, which can be made available with standard-

compliant web services (e.g., OGC Web Feature Service). In this vector file, each of the

pixels is represented by an individual polygon. A column with the value for each band is

integrated in the geospatial output data (Figure 5.24).

Chapter 5: Concepts and Methods

140

Table 5.6: Scientific time-series analysis tools (BFAST, Greenbrown, and TIMESAT) and the
resulting regular output files, as defined by the algorithm, and the postprocessed output files, as
specified within this thesis.

Analysis tool Resulting (regular) output files Postprocessed output files
BFAST—Single
(R)

• “BFAST” object—List with
various components (e.g., fitted
trend and seasonal,
deseasonalized, noise or
remainder, breakpoints),
including prepared plot figures

• PNG figure
• Results CSV (time-series with

original data, fitted season,
and trend)

• Dates of trend and
seasonality breaks as text
output

BFAST—Spatial
(R)

• “BFAST” object (see above) for
each pixel; converted to raster
objects in the postprocessing
steps

• PNG figure
• GeoTIFF file (multi-band)
• Vector Shapefile
• OGC WMS/WFS

Greenbrown—
TrendRaster
(R)

• RasterBrick with different trend
and breakpoint statistics (e.g.,
date of trend breakpoints;
slope, p-value, length of trend
per segment)

• Prepared plot figures based on
RasterBrick

• PNG figure
• GeoTIFF file (multi-band)
• Vector Shapefile
• OGC WMS/WFS

Greenbrown—
Trend
(R)

• Trend class, including prepared
plot figures

• PNG figure
• Results CSV (date, slope, p-

value per segment)
• Data CSV (trend-line per

segment)

TIMESAT—Spatial
(Command line)

• Fitted time-series data in binary
headerless format (ENVI HDR)

• Phenological values per season
and parameter in a geospatial
headerless format

• PNG figure
• GeoTIFF file (multi-band as

season) for each parameter
• Vector Shapefile
• OGC WMS/WFS

TIMESAT—Single
(Command line)

• Fitted time-series text file
• Phenological values per season

within binary file

• PNG figure
• Seasonality CSV (Phenolo-

gical values per season)
• Data CSV (time-series with

original, fitted, start of season,
and end of season data)

141

Figure 5.23: Graphic plots from geospatial data layers showing the outputs resulting from the
breakpoint detection algorithm BFAST.

Figure 5.24: Visualization of the postprocessed vector Shapefile based on BFAST results.

5.3.4 Implementation: EO time-series data processing and analysis
The pyEOM Python library is extended with tools for EO time-series data processing and

time-series data analysis. Tools for data access (Subsection 5.3.4.1) include data

transformation from downloaded satellite scenes to the uniform time-series data structure

for Landsat, Sentinel, and MODIS data based on different data providers. Predefined

information for each dataset stored within the library is used to generate the metadata

(Subsection 5.3.4.2). Time-series data analysis tools, which can be used with the

integrated datasets, are registered and managed using the pyEOM library (Subsection

5.3.4.3).

Chapter 5: Concepts and Methods

142

5.3.4.1 Data access software
The data access component of the pyEOM library includes EO time-series data integration

and management, as described in the following paragraphs.

EO time-series data integration

The DataIntegration class of the pyEOM library handles the processing and integration of

EO time-series data into the uniform EO time-series data structure. For each individual

satellite product (e.g., MODIS Level–3, Landsat, and Sentinel), various data structures

and formats are considered when converting to the uniform data structure. Whereas

MODIS Level–3 products contain individual bands in a single HDF file, Landsat and

Sentinel data provide each band in an individual file. As such, for each of the satellite

products, different processing steps are implemented. As an alternative, Google Earth

Engine can be used to extract data. Listings 5.8 and 5.9 show example integration tasks

for both the original data provider and Google Earth Engine using the pyEOM library.

MODIS Level–3 products on board the Terra and Aqua satellites are provided in the HDF-

EOS data format, which can be processed using the GDAL library. Depending on the

spatial resolution of the product, the data is either provided as a global HDF file in a

WGS84 projection or in a fixed tiling schema in a sinusoidal projection. In the latter case,

different tiles need to be merged if the area of interest contains multiple tiles. Thereafter,

the relevant bands need to be extracted (e.g., NDVI, EVI, and quality bands have been

considered for MODIS Vegetation Index data), clipped to the area of interest, have offset

and scaling factors applied, and converted to the final output format (e.g., GeoTIFF).

Landsat data can either be downloaded as original satellite scenes or ordered using the

USGS ESPA service, which already includes preprocessing steps, such as selection of

bands, calculation of indices, clipping to the area of interest, and reprojection of data. The

advantage in using the USGS ESPA ordering tool arises from the data itself as this can

be automatically clipped to the area of interest. As such, all the scenes offer the same

geospatial extent. For data downloads from both systems, each band is included in its own

GeoTIFF file prepending the unique scene identifier in the filename.

Sentinel data can be downloaded as zipped archive files from different data providers

(e.g., ESA/Copernicus Open Access Hub or national hubs). GDAL or SNAP40 can be used

to process the Sentinel data format and to convert it to the final output format (e.g.,

GeoTIFF). For Sentinel–1, the pyroSAR41 Python library is used.

40 http://step.esa.int/main/toolboxes/snap/
41 https://github.com/johntruckenbrodt/pyroSAR

http://step.esa.int/main/toolboxes/snap/
https://github.com/johntruckenbrodt/pyroSAR

143

Google Earth Engine can be used in addition to the previously mentioned original data

providers, as Landsat, Sentinel, as well as several MODIS Level–3 products are available.

Especially for pixel-based extractions, the usage of Google Earth Engine reduces the

amount of network transfer as only the resulting time-series data are transferred to the

requesting application (Listing 5.9). Although the intention of Google Earth Engine is to

conduct analyses within its system, it is possible to export data clipped to the area of

interest, with offset and scaling factors applied, reprojected and converted to the final

output format either to a Google Drive folder (the preferred location) or provided as

download link (deprecated). Data exported to Google Drive can be further downloaded to

the external application using Google Drive API requests.

01 from pyEOM import tasks
02 ingest = tasks.Ingestion({
03 'dataset': 'MODIS/MOD13Q1',
04 'geom': 'POLYGON((7.8 26.2, 7.4 25.6,8.5 25.0,9.0 25.8,7.8 26.2))',
05 'start': '2001-01-01',
06 'end': '2001-02-01',
07 'qualityValue': '0;1',
08 'qualityBand': 'PR',
09 'publishPath': '/tmp/pyEOM',
10 'format': 'HDF4Image',
11 'EPSG': None,
12 'resample': None,
13 'source': 'LPDAAC',
14 'userPwd': 'username:password'
15 })
16 output = ingest.start()

Listing 5.8: Integration of MODIS Vegetation Index data for an area of interest with further
processing parameters applied.

1 from pyEOM.datasets import Landsat
2 source = Landsat.GEE({'dataset': 'LANDSAT/LC8_L1T', 'geom': 'POINT(11 51)'})
3 output = source.ingest()
4
5 from pyEOM.datasets import MODIS
6 source = MODIS.GEE({'dataset': 'MODIS/MOD13Q1', 'geom': 'POINT(11 51)'})
7 output = source.ingest()

Listing 5.9: Accessing pixel-based Landsat-8 and MODIS Vegetation index data for a given point
of interest from Google Earth Engine.

EO time-series data management

The DataManagement class of the pyEOM library handles the uniform EO time-series data

structure and provides export functions to the user- and application-driven output formats

described in Subsection 5.3.2. This class understands the unique data structure defined

in Subsection 5.3.1 and provides access to all the relevant metadata and data. The class

is separated into single and spatial time-series data, as the handling and management of

these are different. An instance of this class can be created using the path to the data

directory, which contains the unique data structure. Further methods (e.g., the calculation

of statistics) can be used thereafter (Listing 5.10).

Chapter 5: Concepts and Methods

144

01 from pyEOM import DataManagement
02
03 # Instance DataManagement class for a specific directory
04 data = DataManagement('/data3/pywps/23454234234')
09
10 # Retrieve statistics from dataset
11 stats = data.stats()
12
13 # Plot data
14 data.plot()
Listing 5.10: Using the DataManagement class of pyEOM based on the common data structure.

5.3.4.2 Raster time-series metadata
Metadata records list information about the data, visualization and access services, as

well as the available time positions and time intervals (Table 5.7). In addition to general

metadata, such as the title, abstract, keywords, and lineage, further metadata is used to

describe the time-series data in detail. This includes information that is necessary for

processing the data, such as scale factors, resolution, or no data value. To link to OGC-

compliant services for visualization and downloading, the service endpoints (e.g., WCS

URL), service type (e.g., WCS Protocol), and name of the layer (e.g., WCS Name) are

provided in the metadata record. Based on this, a client can build requests for accessing

the data using the standard-compliant OGC web services. Metadata records are described

following the ISO 19115 specification (ISO 2003). A client can retrieve metadata records

based on a specific identifier or a search result, parse the information, and visualize or

download the data using the services provided. With the metadata, the client knows which

time positions are available and which services (e.g., WMS, WCS, or any other HTTP link)

can be used, in accordance with needs of the user. Client applications can further

distinguish between time-series raster data as physical measurements or as

classifications using the “Content Type” property. This distinction is important for aspects,

such as providing the correct analysis processes, which differ for classification results

(e.g., burned area), as opposed to continuous data, such as land surface temperature,

vegetation indices, and snow cover. Table 5.7 shows a detailed metadata record as an

example of a raster time-series dataset from the monthly MODIS Land Surface

Temperature product.

145

Table 5.7: Metadata schema for a raster time-series dataset with example values from the monthly
MODIS Land Surface Temperature product.

General metadata
File Identifier MODIS_MOD11_C3_LST_Day_Series

Title Monthly Land Surface Temperature from MODIS Terra

Abstract

Time-series of monthly Terra MODIS daytime land surface
temperature in Kelvin at 0.05 degrees spatial resolution. To retrieve
actual values in Kelvin, a scale factor of 0.02 has to be applied. The
no-data value is encoded as 0. Original MODIS data retrieved from
NASA LPDAAC.

Keywords MODIS, Terra, Temperature, Monthly, Series, Daytime

Lineage
MODIS HDF Level–2 product was converted to GeoTIFF using
gdal_translate (Version 1.9)

Data information

Description Land Surface Temperature

Data Type Raster

Content Type Physical Measurement

SRS EPSG:4326

BBOX 57.1301270 81.2734985 179.8292847 42.2901001

Columns 2,454

Rows 780

Resolution 0.05

Scale Factor 0.02

No Data Value 0

Time Begin 2000-03-01

Time End 2012-09-01

Time Interval P1M

Dates 2000-03-01, 2000-04-01, …, 2012-08-01, 2012-09-01

Visualization and access services

WMS URL http://artemis.geogr.uni-jena.de/sibessc/modis

WMS Protocol WebMapService:1.3.0:HTTP

WMS Description MODIS Terra LST Day Monthly

WMS Name mod11c3_lst_day

WCS URL http://artemis.geogr.uni-jena.de/sibessc/modis

WCS Protocol WebCoverageService:1.1.0:HTTP

WCS Description MODIS Terra LST Day Monthly

WCS Name mod11c3_lst_day

Chapter 5: Concepts and Methods

146

5.3.4.3 Time-series analysis software
The DataAnalysis class of the pyEOM library is an abstract class containing general

methods for registering, managing, and executing analysis tools. This abstract class

needs to be extended for each analysis tool. Examples are developed for the analysis

tools BFAST, Greenbrown, and TIMESAT in the pyEOM library.

Management of analysis tools

The management of analysis tools involves the main relevant metadata and methods,

which are relevant to conducting the analysis and to postprocessing the resulting outputs.

Prior to executing an analysis, input and output data needs to be defined in the extended

class of each analysis tool. In addition, the “run” method needs to be overwritten either

using an own method that includes some processing steps (e.g., TIMESAT) or by linking

to external scripts (e.g., R scripts for BFAST and Greenbrown). Output data can be

automatically postprocessed: GeoTIFF files can be converted to vector data. Geospatial

data in general can be provided as web services using the OGC WMS and WFS

specifications, as described in Subsection 5.3.3.3.

Execution of analysis tools

The execution of the analysis tools BFAST, Greenbrown, and TIMESAT is integrated and

connected to the data integration and management functions in the pyEOM library. As

defined in Table 5.6, several post-processed output formats are created to provide user-

aligned data formats (e.g., summarized statistics, a Pixel Shapefile, OGC web services,

and plots). Listing 5.11 shows an example execution of the TIMESAT phenology tool

(Lines 8–9) based on a previously integrated dataset (Line 5). Each of the analysis classes

imported in Line 2 (i.e., TIMESAT, Greenbrown, and BFAST) provides a bridge between

the analysis tool and pyEOM as a common time-series data handling and analysis

execution framework.

01 from pyEOM import DataManagement
02 from pyEOM.analyses import TIMESAT, Greenbrown, BFAST
03
04 # DataManagement instance for a specific directory (unique identifier)
05 data = DataManagement('/data3/pywps/23454234234')
06
07 # Execute TIMESAT with default parameters
08 timesat_inst = TIMESAT(data=data, parameters={})
09 timesat_inst.run()
10
11 # Export results (e.g., MapServer config, GeoTIFF, Shapefile, PNG plots)
10 timesat_inst.export()
11
12 # Show result as plot
13 timesat_inst.plot()
Listing 5.11: Using TIMESAT analysis tool from the pyEOM library.

147

Chapter 6: Example Use Cases
Various web and mobile applications have been developed to demonstrate how the

concepts and methods described in Chapter 5 can be used in applications and provided

to users. Three projects are described, which share the main objective of providing user-

aligned applications using a service-based middleware approach. However, each of the

applications focuses on different aspects:

1. The Siberian Earth System Science Cluster (Section 6.1) focuses on EO data

integration, standardized data distribution (downloading and visualization), time-

series extraction, simple time-series analyses, and user management.

2. The Earth Observation Monitor (Section 6.2) focuses on EO data integration,

common EO time-series data structure and formats, time-series extraction,

enhanced time-series analyses, and user management.

3. The GEO-Wetlands Community Portal (Section 6.3) focuses on multi-source EO

data discovery and access based on service brokering and additional web-based

processing applications, such as Open Data Cube and R-Shiny.

All the use cases are based on the service-oriented middleware approach (Chapter 5.1).

In addition, all make use of several findings from the unified EO time-series data structure

and analysis (Chapter 5.3). The service brokering approach described in Chapter 5.2 is

used in the GEO-Wetlands Community Portal.

Chapter 6: Example Use Cases

148

6.1 The Siberian Earth System Science Cluster
The Siberian Earth System Science Cluster (SIB-ESS-C) was developed with the aim of

providing operational tools for multi-source data access, analysis, and time-series

monitoring in Siberia (Eberle et al. 2013). Data from remote sensing satellites, climate data

from meteorological stations, and outcomes of research projects are stored in the SIB-

ESS-C. All the geospatial data is described with standard-compliant metadata and

provided within a standard-compliant metadata catalogue. The system comprises a

metadata catalog that allows for data searching, as well as interoperable interfaces for

data visualization, downloading, and processing. The advantage of representing different

products within a single system is the integration of users’ needs into web-based

processing services. Concerning climate change and land monitoring, the SIB-ESS-C

focuses on land-based information products. The objective of the middleware within the

SIB-ESS-C is to build an operational web-based system in which data from different

sources is provided and regularly updated. The middleware automatically collects data

from external EO data archives to provide standard-compliant web services for data

access and visualization. Datasets are then available for further visualization and analysis.

In relation to the user requirements for platforms and web technology, the following

requirements are supported: multi-source EO and geospatial data; EO data visualization;

data download; pixel extraction; time-series analysis; OGC standardization; metadata for

geospatial data; user management; RESTful web services; and asynchronous web

services. The following data formats are supported: OGC web services for data access,

visualization, and data analysis; interactive charts for pixel time-series; and figures for

time-series analysis results.

6.1.1 SIB-ESS-C Middleware
The middleware service provided by the SIB-ESS-C integrates EO time-series data from

the NASA LPDAAC and the National Snow and Ice Data Center (NSIDC). In addition to

MODIS Land products, climate data from meteorological stations is available from

National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center

(NCDC), which provides various datasets, such as hourly synoptic measurements

(Integrated Surface Database, ISD; Lott et al., 2008), daily summaries from synoptic

measurements (Global Surface Summary of the Day, GSOD; Lott, 2006), and daily

measurements from different climate data networks (Global Historical Climatology

Network, GHCN; Menne et al., 2012). The data sources provided for operational land

monitoring in the SIB-ESS-C are listed in Table 6.1.

149

Table 6.1: Data sources integrated in the SIB-ESS-C middleware system.
Data Provider Available time ranges

MODIS Level–3 products from LPDAAC
and NSIDC

NASA
USGS

2000–2014

Global Surface Summary of the Day
(GSOD)

NOAA 1929–2014
(depending on station)

Integrated Surface Database (ISD) NOAA 1929–2014
(depending on station)

Global Historical Climatology Network
Daily (GHCN-Daily)

NOAA 1832–2014
(depending on station)

Several data exploration tools have been made available in the SIB-ESS-C middleware

and are provided as standard-compliant web services based on the OGC WPS

specification, which are sourced from the SIB-ESS-C web portal:

• Time-series data extraction for a point or area of interest summarized with the

mean, minimum, maximum, and standard deviation values.

• Automated calculation of time-series decomposition and BFAST for the time-series

extracted (mean value).

• Climate station data plots with temporal aggregations (e.g., days, months, years,

winter, spring, summer, fall, individual months).

• Kernel-density plots for the comparison of in-situ mean temperature station data

and MODIS Land Surface Temperature time-series (1 km) data (Figure 6.1).

Figure 6.1: Comparison of MODIS Terra (left) and Aqua (right) LST estimates and air temperature
records from an individual meteorological station (Aleiskaya). Each plot shows the complete
available time period (2000/2002–2013).

Chapter 6: Example Use Cases

150

The integrated datasets are made available via web services compliant with OGC

specifications. This includes the CSW for metadata cataloguing and dataset search, data

visualization and access for raster time-series data through WMS and WCS, and data

access for climate station time-series data through the SOS. The time-series plotting

service and the analysis tools are available as a WPS. In addition to providing visualization

and download tools in the developed middleware services, the middleware also controls

the data integration process, with each step logged in the system. This feature is

integrated for on-demand processing. With the logging functions implemented in the web

portal, the user is informed when the user-specific data integration is completed.

Open source tools were used to develop the middleware services. PostgreSQL with the

PostGIS extension provides the database with the ability to store raster and vector data

as well as other metadata. Data integration is achieved using Python scripting (e.g., to

execute command line tools for data downloading and for raster time-series data

processing). The scripting language R is used to plot the integrated time-series data. On

the service level, MapServer (data visualization and downloading), istSOS (climate data

provision), pycsw (metadata provision), and PyWPS (time-series plotting and analysis) are

used to publish OGC-compliant web services. Drupal CMS is used for administration

services to manage the areas of interest created and the datasets ingested by users. This

backend system also provides the tools to handle the execution of external web services,

the conversion from XML to JSON format, and to provide RESTful services for user

registration and authentication.

6.1.2 Web portal
The middleware services are used in the SIB-ESS-C web portal. This web portal (Figure

6.2) provides functions that allow users to administer and manage the middleware

services; it also allows easy access to the integrated datasets. Users are supposed to

interact closely with the data to extract further information. Users can explore the data

catalog, which contains data available within the middleware. The metadata catalog can

be searched and the resulting records investigated. The data can then be visualized and

downloaded. Open-source software was used to develop the web portal frontend using

the jQuery library.42 The interactive map viewer for visualizing the geospatial data is based

on the OpenLayers library.43

42 http://jquery.org
43 http://openlayers.org

http://jquery.org/
http://openlayers.org/

151

Figure 6.2: Screenshots of the Siberian Earth System Science Cluster Geoportal highlighting the
visualization of a MODIS NDVI dataset (top), a time-series extraction with interactive charting (top),
and a comparison plot between MODIS Land Surface Temperature and in-situ temperature
measurements (bottom).

Chapter 6: Example Use Cases

152

6.2 Earth Observation Monitor
The Earth Observation Monitor (EOM) is a successor project to the SIB-ESS-C that has

the aim of ensuring access to and analysis tools for global spatial time-series data used

for land monitoring on local scales. Scientists and stakeholders working in local areas

must be able to perform time-series analyses without having to process any data on their

own. The functions of the EOM are available using web services, allowing client

applications to make use of these services. Based on the EOM middleware system

(Subsection 6.2.1), three example clients were developed to show the possibilities of such

a service-based infrastructure: The webEOM web portal (Subsection 6.2.2), the

mobileEOM mobile application (Subsection 6.2.3) for time-series data access and

analysis, and the MySeasons mobile application (Subsection 6.2.4) dedicated to

vegetation phenology modeling. All these clients use the OGC WPS for data integration

and analysis provided by the EOM middleware.

In relation to the user requirements for platforms and web technology, the following

requirements are supported: multi-source EO and geospatial data; data downloads; pixel

extraction; time-series analysis; support for various programming languages and analysis

tools; visualization of geospatial time-series results; OGC standardization; user

management; RESTful web services; asynchronous web services; service chaining;

uniform specifications; and multiple output formats. The following data formats are

supported: OGC web services for data access, visualization, and data analysis; interactive

charts and figures for time-series data and analysis results; and summarized statistics for

data and analysis results.

6.2.1 EOM Middleware
The EOM middleware system allows the integrating of global satellite and in-situ time-

series data focusing on land monitoring. Table 6.2 lists the data available within the

middleware. Vegetation Index (VI) and Land Surface Temperature (LST) products from

the NASA MODIS sensor are available for integration into the middleware, based either

on NASA data archive (LPDAAC) or Google Earth Engine. Although there is a limitation

to the size for the area of interest that users can define, the coverage of the data is global.

Globally available in-situ meteorological data from climate stations have also been

connected to the middleware based on GSOD and GHCN data provided by the NOAA

National Climatic Data Center. As a further development from the SIB-ESS-C, the data is

downloaded and processed according to user demand. Thus, users can select their station

and parameters of interest from these globally available climate stations.

153

Table 6.2: Data sources within the EOM middleware, including EO and in-situ time-series data.

Dataset Type Spatial res. Temporal Time range

NASA LPDAAC and Google Earth Engine
MODIS VI Raster 250 m–1 km 16-Day 2000–now

MODIS LST Raster 1 km*–0.05 deg. Daily, 8-Day 2000–now

NOAA NCDC
GSOD Sensor – Daily 1929–now

GHCN Sensor – Daily 1832–now

* Only selected areas

Several geospatial tools have been integrated into the EOM middleware and are provided

as standard-compliant web services using the OGC WPS specification:

• Single and spatial time-series data extraction for user-defined areas of interest,

optional filtering and masking based on quality flags including the conversion of

data into a common data format, and the calculation of time-series plots and

decomposition analyses.

• Breakpoint analyses for EO vegetation time-series data using BFAST.

• Trend calculations for EO vegetation time-series data using Greenbrown.

• Phenological modeling for EO vegetation time-series data using TIMESAT.

• Random forest disturbance analyses for EO vegetation time-series data.

• Automated connection between EO time-series data and analysis tools based on

the common time-series data format.

• Automated conversion of the outputs of the results of analysis to user-aligned data

formats.

• Climate station data plots with temporal aggregations (e.g., days, months, years,

winter, spring, summer, fall, and individual months).

• Kernel-density plots for the comparison of in-situ mean temperature station data

and MODIS Land Surface Temperature time-series (1 km) data (see Figure 6.1).

The data integration and data analysis services are made available using the OGC WPS

specification. As data integration and data analysis differ based on the geometry type

(point extraction leading to single time-series data vs. polygon extraction leading to spatial

time-series data), for all the tools, two processing services for single and spatial time-

series data are provided. In addition to EO time-series data integration, a process is

available for the in-situ climate station data integration. The resulting outputs from the

analysis tools are available based on the OGC WMS for visualization and the OGC WFS

for the raster-to-vector converted outputs.

Chapter 6: Example Use Cases

154

Open source software has been used to build the EOM middleware and their web service

infrastructure. In the backend, Drupal CMS is used for user registration and authentication,

management of features created by registered users, as well as a proxy for external web

services, and the conversion of XML responses from OGC web services to JSON. At the

service level, MapServer is used for data visualization and access to provide OGC WMS

and WFS. PyWPS is used for the processing services according to the OGC WPS

specification. The analysis tools are provided through Python, R, and TIMESAT though all

of them are run from the PyWPS Python process. With the Python library rpy2, a direct

connection between Python and R sessions is used to undertake R-functions and

exchange data between the programming languages. In Python, further libraries, such as

GDAL, OGR, and Pandas, have been used to process data and generate plots.

6.2.2 webEOM
The focus of the web portal is to provide an easy-to-use client while making it possible to

extract time-series data and execute time-series analysis functions. The webEOM map

viewer (Figure 6.3) can be used to create the geometry of a study area. Based on this

geometry, the system requests a list of available datasets, which are registered in the

middleware. When conducting data integration, users can specify different parameters for

the selected dataset, such as start and end dates, as well as filtering options. A processing

directory for each integrated dataset is available to users, which contains any processed

data for both the dataset and the analysis tools used. Time-series and decomposition

plots, which are shown in the web portal, are generated automatically from the extracted

time-series data. In addition to the images, CSV files containing statistics are available for

download. Following data integration, users can select an analysis tool for execution, and

individual parameters can be set for the selected analysis. The resulting data can either

be visualized directly in the web portal or can be downloaded for further analysis. Spatial

outputs can be interactively explored in the map viewer, and CSV files are plotted in an

interactive chart window.

Several open-source libraries were used to develop the web portal: For the frontend user

interface, the JavaScript library OpenLayers is used as a mapping library; dygraphs44 is

used to generate interactive charts; and jQuery provides standard JavaScript functions.

44 http://dygraphs.com

http://dygraphs.com/

155

Figure 6.3: Screenshots of the webEOM portal.

6.2.3 mobileEOM
During fieldwork, users cannot easily use web-based applications optimized for desktop

computers. A mobile application can therefore foster the use of spatial time-series tools

on mobile devices, which can be used more easily during fieldwork. With the mobileEOM

application, users have access to a wide range of information, as the MODIS vegetation

time-series data provides information about the environment from 2000 to the present.

Chapter 6: Example Use Cases

156

The use of EO data with time-series analysis tools allows the identifying of breaks in the

past and overall trends relating to the vegetation.

The mobile application for EOM was developed to provide access to time-series data and

derived analyses on mobile devices. Using their current GPS location or a manually set

position, users can extract vegetation time-series data, as well as view plots for data,

trends, and breakpoint analysis directly on their mobile devices. An OGC WPS process

was developed for the mobile application to integrate the existing services from the EOM

middleware into a single web service call. Figure 6.4 shows screenshots of mobileEOM

linked with a workflow chart of the OGC WPS process and interactions between them.

This process uses the EOM WPS to extract the requested data from Google Earth Engine

and plots the time-series and decomposition figures. In a second step, the time-series

analysis services from EOM for breakpoint detection (BFAST) and trend calculations

(Greenbrown) are executed. The resulting output of the mobileEOM process contains the

values of the analysis tools and links to the figures.

The mobile application was developed as hybrid web application. Applications of this type

are developed using web development technologies (e.g., HyperText Markup Language

(HTML), Cascading Style Sheets, and JavaScript) and are then exported as native mobile

applications. To access the sensors and functions of the mobile device (e.g., GPS and file

storage), the software PhoneGap was used. A native application can then be published in

Google Play Store and Apple App Store. The user interface was developed using jQuery

Mobile and the interactive map was integrated using Google Maps API.

Figure 6.4: Interactions between the mobileEOM app and EOM middleware web services.

157

6.2.4 MySeasons App
The mobile application MySeasons was developed within the framework of the EU H2020

project, MyGEOSS. It combines EO time-series data with in-situ phenological data

contributed by citizens. Users are able to collect data about the phenological cycle (e.g.,

the beginning of blossoming of specific plants) and submit these to a centralized data

server. In addition, they are able to retrieve MODIS vegetation time-series data and a

resulting phenological plot for the position where the data collection occurred. Users can

use either the GPS position determined by the mobile device or a manually set position.

The app was developed as hybrid web application. The Ionic Framework based on Apache

Cordova (formerly known as PhoneGap) was used to export the web application to a

native application for Android and iOS systems.

The app makes use of the EOM middleware processing services to retrieve the EO time-

series data for the given point of interest (Figure 6.5). A web service was developed to

integrate the existing EOM WPS (Figure 6.5, right) that undertakes time-series data

integration and the TIMESAT analysis tool. The results from these are integrated into a

single JSON output file, which is retrieved and further processed by the MySeasons

application. This analysis works globally; the data is automatically requested on demand

from Google Earth Engine by the EOM middleware. The phenological modeling tool

TIMESAT is executed with a global parameter set. Figure 6.5 shows screenshots of the

MySeasons application (left). In the map, the analysis can be conducted using the existing

EOM services provided as an OGC WPS service (right). The resulting outputs are shown

in the application (left bottom).

Figure 6.5: EOM middleware services (right) are used in the MySeasons App (left) to extract MODIS
vegetation time-series data and phenological start and end dates derived on demand.

Chapter 6: Example Use Cases

158

6.3 GEO-Wetlands Community Portal
The GEO-Wetlands Community Portal was developed within the framework of the EU-

H2020 project Satellite based Wetland Observation Service, which led to the community

portal of the Group on Earth Observation’s (GEO) Wetlands Initiative. The objective of the

portal is to share geospatial products and EO data, focusing specifically on wetland areas.

A user requirement survey undertaken in 2016 showed main issues to be addressed by

the portal:

• Simple visualization tools for easily explore available datasets (EO data and

thematic maps).

• Map production assistance and use case demonstrators.

• User-friendly tools for multi-source EO data discovery and access.

• Coordination with other portals and software.

In addition to the web portal (Subsection 6.3.2), web-based processing platforms are

provided, which make use of the common EO time-series data structure: Open Data Cube

for Wetlands (Subsection 6.3.3) and the Sentinel–1 Surface Water Dynamics Toolkit

(Subsection 6.3.4).

In relation to the user requirements for platforms and web technology, the following

requirements are supported: multi-source EO and geospatial data; data visualization;

OGC standardization; user management (Open Date Cube only); RESTful web services;

asynchronous web services (Open Date Cube only). The following data formats are

supported: OGC services for data visualization (web portal only); interactive charts for data

discovery; and figures for time-series analysis results (Open Date Cube only).

6.3.1 Middleware
The GEO-Wetlands Community Portal middleware bridges the gap between wetland

users and geospatial data and includes EO data and thematic products available for

individual wetlands. Geospatial thematic products (e.g., land use land cover, surface water

dynamics, land surface temperature trend, and water quality) based on the outcomes of

research projects are shared and made available to users. In addition to these products,

available Landsat and Sentinel data are also shown to users based on the concept and

implementation of the multi-source data discovery and access broker (Chapter 5.2).

Although those datasets are not available immediately in the middleware, linked

applications can be used to explore the EO time-series data (e.g., see Subsections 6.3.3

and 6.3.4).

159

Several tools from the regional multi-source data middleware concept have been

integrated and linked to the geospatial products and wetlands available in the GEO-

Wetlands Community Portal:

• Extraction of point-based values from time-series products (e.g., water quality, land

surface temperature trend) based on a uniform time-series data structure and

format.

• Automated EO data discovery and provision of download links for Landsat and

Sentinel data for wetlands are integrated in the middleware.

• Automated data retrieval for USGS Landsat data, including the generation of full

color images with GRASS GIS and the generation of an animated natural color

visualization video.

• EO time-series data export to interactive exploration applications (e.g., Sentinel–1

Surface Water Dynamics Toolkit, Jupyter Notebooks, and Open Data Cube) to

automatically link EO time-series data with web-based processing applications.

All the information and data provided by the middleware are published using RESTful web

services from the Django Web Framework, which also handles multi-source data

discovery, the access broker, and the links to external interactive exploration applications.

For the extraction of point-based values from time-series products, OpenCPU is used to

provide a RESTful web service that extracts data from the uniform EO time-series data

structure.

Within the GEO-Wetlands Community Portal middleware available datasets, products,

and wetlands are managed and user registration and authentication are provided. Django

uses a PostgreSQL database backend with PostGIS extension that enables the storing

geometry features and enables geospatial operations. Several extensions of Django, such

as the Django REST framework, are used to publish RESTful web services. Other Python

libraries are used for geospatial data discovery, access, and processing, such as GDAL,

Shapely, OWSlib, NumPy, and Pandas. The pyroSAR framework has been used to

automatically process Sentinel–1 data with the ESA SNAP toolbox in the background. A

Jupyter Notebook was set up and linked with the middleware. This allows the middleware

to automatically generate Jupyter Notebooks at the request of the user to enable users to

work with EO data or products on their own without transferring data to the local computer.

Chapter 6: Example Use Cases

160

6.3.2 Web portal
The web portal of the GEO-Wetlands Community Portal is the main entry point for

discovering geospatial data and EO time-series data in the GEO-Wetlands Initiative.

Research projects share geospatial products and link them to wetlands in a pre-defined

data structure and format. An automated geospatial data publishing workflow was

developed to process wetland-related products downloaded from a file server and

published using OGC-compliant web services for data visualization and data download.

The open source software GeoServer is used to make geospatial data available using the

OGC Web Map (Tile) Service, OGC WFS for vector data, and OGC WCS for raster data.

Time-series data is published using the OGC WMS with TIME extension. The web portal

frontend was developed with HTML, Cascading Style Sheets, and JavaScript using open

source libraries, such as AngularJS and Bootstrap. The communication with the

middleware is based on RESTful web services.

For each of the wetlands, available EO data is presented in the Satellite data explorer

(Figure 6.6). This demonstrates the use of the multi-source data discovery and access

broker, which has been undertaken for all the wetlands integrated in the middleware.

Users can interactively discover available EO time-series data with user-aligned data

formats: interactive charts summarizing the available data per satellite mission and year,

common metadata elements for all satellite scenes, as well as interactive visualization

services, which can be added to the map.

Figure 6.6: Screenshot of the GEO-Wetlands Community Portal highlighting the results of the EO
data discovery broker for a wetland selected by the user.

161

6.3.3 Open Data Cube for Wetlands
An instance of the Open Data Cube software was setup within the GEO-Wetlands Initiative

as first prototype to link the EO time-series data discovered and downloaded through the

middleware system and ingested into the database. The Open Data Cube software makes

use of a PostgreSQL database with the spatial PostGIS extension. The user interface of

the Open Data Cube is based on the Django Web Framework, Celery and Redis for task

processing, and bootstrap for frontend styling. In addition, a Jupyter Notebook server was

set up with a direct connection to the Open Data Cube database. All these components

need to be set up in the same infrastructure.

The Open Data Cube core application already provides several time-series analysis

tools, 45 such as algorithms for water detection, fractional cover, spectral indices,

urbanization, cloud cover statistics, and custom mosaics, which can be used directly once

the data has been ingested into the database and registered with the user interface. Figure

6.7 shows an example screenshot from the user interface of the Open Data Cube for

Wetlands with results from the water detection algorithm based on optical Landsat data.

Currently only Landsat data has been ingested into the Open Data Cube for Wetlands.

The time-series analysis tools provide their outputs in different formats, such as GeoTIFF,

netCDF, and PNG. Python can be used with the Jupyter Notebook server connected to

the Open Data Cube instance.

Figure 6.7: User interface of the CEOS Open Data Cube showing results of the water detection
algorithm in the map from the Laguna de Fuente de Piedra wetland (Spain).

45 https://www.opendatacube.org/data-cube-applications

https://www.opendatacube.org/data-cube-applications

Chapter 6: Example Use Cases

162

6.3.4 Sentinel–1 Surface Water Dynamics Toolkit
The Sentinel–1 Surface Water Dynamics Toolkit allows interactive and web-based

analysis of Sentinel–1 time-series data. The application was developed within R-Shiny46,

which allows the development of web applications directly in R without in-depth knowledge

of web technologies. Figure 6.8 shows an example screenshot of the application.

Sentinel–1 time-series data was automatically downloaded and preprocessed for the

wetland of Laguna de Fuente de Piedra (Spain) for the year 2017. The original Sentinel

has been preprocessed using pyroSAR and stored within the common EO time-series

data structure, which is also optimized for analysis using R. The application can directly

make use of standard R functions without conducting specific data processing in advance.

Within the application, users are able to use the toolkit to explore Sentinel–1 time-series

data, calculate multi-temporal statistics, and create water dynamics products based on a

simple thresholding (water/no water) algorithm (Martinis et al. 2015; Truckenbrodt et al.

2018). The user can visualize the available Sentinel–1 scenes and filter the result list

according to various parameters. In the individual steps of the application, the user can

analyze the time-series data without own data processing. The final water dynamics map,

which is shown as a PNG figure within the application, can be downloaded as GeoTIFF.

Figure 6.8: Sentinel–1 Water Dynamics Toolkit, developed within R and published as an R-Shiny-
based web application.

46 https://shiny.rstudio.com/

https://shiny.rstudio.com/

163

Chapter 7: Results and Discussion
Based on the concepts, methods, and example use cases designed and developed in this

thesis, three overall results for a service-based exploration of EO time-series data can be

summarized:

1. Centralization of EO time-series data at regional scales: A regional data

middleware focuses on the centralization of multi-source EO data and tools and

enables a simplification of application development through web services (Section

7.1).

2. Harmonization of EO time-series service interfaces: The OGC WPS specification

enables the harmonization of the service interface for data discovery, access, and

analysis. In addition, a discovery and access broker harmonizes requests to multi-

source EO data providers (Section 7.2).

3. Standardization of EO time-series data structure and formats: A common EO time-

series data structure enables simple use in geospatial applications, user-aligned

output formats, and the simple use of time-series data in processing and analysis

tools (Section 7.3).

In this chapter, these results are described and discussed in relation to other methods and

implementations available in this field of research.

Chapter 7: Results and Discussion

164

7.1 Centralization of EO time-series data at regional scales
The concept of the regional data middleware defined in this thesis focuses on providing

EO time-series data for specific areas of interest selected either by individual users or the

middleware provider. This allows the provision of web-based infrastructures independent

of data providers, with the opportunity to link various geospatial data and analysis tools.

As results of the thesis, the regional middleware approach (Subsection 7.1.1), application

development based on centralized web services (Subsection 7.1.2), and regional use

cases (Subsection 7.1.3) are summarized and discussed.

7.1.1 Regional data middleware approach
The concept of the regional data middleware has been designed and implemented to

combine data discovery, access, and analysis. When hosted outside of cloud data

providers, EO data needs to be transferred to an own server. However, datasets from

several sources (e.g., Landsat, Sentinel, MODIS, and in-situ climate station data) can be

combined and used in the middleware for further analysis. In addition, usage costs need

to be calculated and compared carefully for both cloud-based and local server

infrastructures. Depending on the size of the area of interest, one or the other solution is

suitable. Regional analysis requires only the downloading of data for specific areas of

interest. Focusing on regional data access and analysis in a self-developed platform

provides the following advantages:

• Any analysis tool and additional data provision services can be made available.

• Users can follow the processing steps from data download to analysis results.

• Users can download EO data in the same format as used in the middleware and

continue processing on their own infrastructure.

Any of the web-based infrastructures available for EO data access and analysis only fits

for specific purposes. Google Earth Engine provides opportunities to easily develop

algorithms on a global scale; however, only tools from the platform can be used (i.e., no

external command-line tools). The ESA Thematic Exploitation Platforms focuses more on

single scene analysis; thus, the satellite scenes selected by the user are copied to the

analysis tool. Virtual environments, such as Amazon Web Services, Google Cloud, or

Copernicus DIAS platforms, provide EO data and processing environments; however,

users need to install and implement their data processing chains and analysis tools

themselves. Soille et al. (2018) show similar results as data and algorithms need to be

available in the same environment and that a shift from local workflows to the use of

interactive visualization and processing is to be expected. Further, they recommended the

use of a self-developed platform to be most flexible to the user requirements.

165

7.1.2 Application development
Multiple web and mobile applications that have been developed have demonstrated how

users can work with EO time-series data without undertaking data processing on their

own, and how the centralized services can be re-used in applications (Chapter 6). The

focus on regional scales in these applications allows the hosting of EO time-series data,

which can be directly used in analysis tools. In contrast with global or continental scales,

the data storage and processing performance at regional and local scales is manageable.

Three applications have been developed to demonstrate the concepts and methods

described in this thesis:

• The Siberian Earth System Science Cluster (SIB-ESS-C),

• Earth Observation Monitor (EOM), including web and mobile applications, and

• GEO-Wetlands Community Portal, including a satellite scene explorer in the web

portal, Open Data Cube for Wetlands, and the R-Shiny Sentinel–1 Surface Water

Dynamics Toolkit.

All applications are based on web services of the self-developed middleware for time-

series data discovery, access, plotting, and analysis. Application developers do not need

to perform their own data downloads, processing, and analysis tasks. In addition, external

applications are connected to the middleware, such as the Open Data Cube, Rasdaman,

R-Shiny applications, and Jupyter Notebooks. Table 7.1 shows the criteria compiled on

the basis of the user requirements for the evaluation of the applications developed. By

combining all applications developed in this thesis, all requirements could be fulfilled. As

each specific application has its focus, not all the requirements are relevant for each

application (e.g., there is no EO data discovery in the EOM as the extraction of all available

data is undertaken without specific filtering of data).

Table 7.1: Platforms developed in relation to user requirements compared to the review of existing
platforms (Table 4.6).

Chapter 7: Results and Discussion

166

Using regional data middleware with web services for EO data discovery, access,

extraction, and analysis allows the following advantages:

• The automated access and processing of EO time-series data provided by web

services allow simple integrations in web and mobile applications without the need

for domain-specific processing knowledge.

• External applications (e.g., R-Shiny and Jupyter Notebooks) can directly make use

of the common time-series data structure of the middleware.

• Data can be exported from the common time-series data structure and be

automatically fed to external applications (e.g., Open Data Cube and Rasdaman).

Existing web-based platforms (e.g., Google Earth Engine and NASA Giovanni), focus

primarily on pre-defined EO data and analysis tools. While Google Earth Engine can be

integrated in applications using the Python library, others, such as NASA Giovanni, can

only be used manually on the web portal and cannot be connected to linked external

applications. Thus, the system architecture of web platforms needs to be clearly defined

to enable the integration in several applications. The middleware approach allows a focus

on individual scales and connections to any kind of external application.

7.1.3 Regional use cases
All the example applications developed have been used widely in research and education,

focusing on regional aspects of environmental monitoring using EO time-series data. In

the following paragraphs, statistics for the applications developed and two regional use

cases for thematic experts and scientific research are described.

Usage statistics for EOM web and mobile applications

In total, for both web and mobile applications, 16,184 users from 150 countries worldwide

were reached between January 2014 and July 2018, based on statistics from Google

Analytics. In the EOM web portal, 14,456 analyses were conducted. Eighty percent of

these were used for individual pixel time-series, and 20% for area time-series. The

breakpoint detection algorithm had the most analysis conducted (45%), followed by

phenological analyses (31%), and trend calculations (22%). The distribution of users per

country is shown in Figure 7.1. Most users of the portal came from the USA, followed by

Germany, Russia, the United Kingdom, and Brazil, while the most active users came from

Germany, Iran, China, the USA, the United Kingdom, and Israel. Statistics for the mobile

application show 2,373 users and 2,714 analyses conducted (70% of these for pixel time-

series). Most users came from India, followed by Saudi Arabia, Germany, the United

Kingdom, the USA, and the United Arab Emirates. The most active users came from India

and Saudi Arabia, followed by the USA, Germany, Iran, and Italy.

167

Figure 7.1: Top five countries with the most users and most active users of webEOM and
mobileEOM as a percentage of the total numbers from January 2014 to July 2018.

EO time-series data visualization for thematic experts

Based on the visualization services of the SIB-ESS-C web portal, EO time-series data has

been used by thematic experts to explain loss of vegetation in Siberia. The MODIS Level–

3 products Vegetation Index (MOD13Q1, 16-day) and Burned Area (MCD45A1, monthly),

both available for Siberia in the SIB-ESS-C middleware, have been investigated for an

area near Yakutsk, Russia. A loss of vegetation could be identified in the MODIS

Vegetation Index dataset between beginning of June and end of July 2012 (Figure 7.2,

left and middle). Based on the MODIS Burned Area dataset, from July 2012, the loss of

vegetation can be explained by fires which occurred in that month (Figure 7.2, right). As

both EO time-series products have been made available in the SIB-ESS-C middleware

with visualization services, thematic experts have been able to combine different types of

thematic products in a single web-based system and without conducting data discovery,

downloads, and visualizations on their own.

Figure 7.2: Combination of MODIS NDVI and MODIS Burned Area datasets (left: before the fire
NDVI; middle: after the fire NDVI; right: burned areas) near Yakutsk, Russia (Eberle et al. 2013).

Chapter 7: Results and Discussion

168

Deforestation monitoring for scientific research

Forest monitoring was conducted in several research projects with support of MODIS data

discovery, access, and analysis by means of the EOM middleware. Breakpoint analyses

were used to identify deforestation changes by location and time.

Change detection information was conducted in the Afromontane ecosystem of the

Mambilla Plateau (Nigeria) using Landsat time-series and the EOM portal. EOM provided

the 16-day MODIS Vegetation Index dataset for identifying changes based on breakpoint

analysis. The Landsat image from 1988 was used as the reference and was compared

with the images from 2001 and 2014 (Figure 7.3, left). Deforestation clearly occurred

between 2001 and 2014, but cloud-free Landsat was unavailable to determine the dates

of deforestation between these two dates. Time-series data from the NASA MODIS sensor

from 2000 to 2014 were analyzed using the BFAST algorithm. The results from the web-

based EOM analysis (Figure 7.3, right) show that deforestation began in 2002 (denoted

by the blue area) and peaked in 2012 (denoted by the red area).

All the work associated with breakpoint analyses, including data access, has been

undertaken by researchers using the EOM web portal, and without the need to download

and process the required time-series data.

Figure 7.3: Twenty-six year Landsat time-series images showing a forest site near the village of
Yelwa on Mambilla Plateau, Nigeria, before and after deforestation (left). Results of MODIS
analysis overlaid on a Landsat image from 2014 show the pattern and years of deforestation near
the village of Yelwa and neighboring forests (right).

169

7.2 Harmonization of EO Time-series Service Interfaces
As shown in the state-of-the-art and review chapters, diverse specifications for service

interfaces are currently available that allowing for data discovery, access, and analysis.

To simplify the use of web services for the exploration of EO time-series data, the service

interfaces have been harmonized: Services for time-series data discovery, access, and

analysis have been designed, developed, and implemented using the OGC WPS

specification (Section 7.2.1). In addition, a brokering framework for multi-source EO data

discovery and access was designed and developed based on services from multiple data

providers (Section 7.2.2).

7.2.1 WPS-based EO web services
The services defined and developed for data discovery, access, extraction, and analysis

aim to be re-used by application developers and by scientists who develop analysis

algorithms. Although the individual service specifications for data discovery, access, and

analysis have proved useful for machine-to-machine interaction, their utility for human–

machine interaction lags. In order to provide a harmonized and uniform service interface

and to allow multiple output formats for data discovery, access, and analysis, the OGC

WPS specification was investigated and used as a generic processing service. The WPS

specification allows the provision of standard-compliant web services and considers the

most relevant properties—according to user requirements—for service execution, such as

synchronous and asynchronous, as well as single and multiple output data formats. Using

a single specification for all the tasks is considered to have standardized the service

requests and responses, in contrast to various service specifications for each individual

task (i.e., data discovery, access, and analysis). In this thesis, it has been shown that the

WPS specification provides the necessary properties for all the tasks. The following

advantages by the use of the WPS specification can be summarized:

• Uniform requests and responses for data discovery, access, and analysis.

• Multiple output formats to meet the different needs of user personas; all of the

output formats can be changed depending on the user’s request.

• The WPS specification allows a standardized provision of services, including

synchronous and asynchronous execution and support for multiple outputs.

Although the WPS specification is not specifically designed to provide data discovery and

data access, both of these tasks can also be considered to be processing tasks, which

then suit the WPS specification. Especially the focus on a human-machine interaction is

not yet defined on the tasks for EO data discovery and access in comparison to machine-

to-machine communication. While research mostly focuses on technical details, such as

Chapter 7: Results and Discussion

170

semantic processing (Sudmanns et al. 2018), process orchestration (Hofer et al. 2017),

cloud-based processing (Veenendaal et al. 2016), and geospatial web technologies in

general (Wagemann et al. 2018), the user-alignment of web services lags behind

(Bordogna et al. 2016; Smith et al. 2016). This has been addressed in this thesis by

introducing the harmonized WPS-based EO web services for data discovery, access, and

analysis. For data analysis services, it has been shown that a direct connection between

data access and data analysis is needed to enable users not only to get data or run

analyses, but also to connect both services.

7.2.2 EO data discovery broker
A discovery broker connected to major EO data providers has been designed and

implemented to achieve a uniform and standardized discovery of EO time-series data

distributed across different data providers (Chapter 5.2). The brokering approach

accesses web services based on a variety of service specifications and transfers metadata

elements to a harmonized metadata structure. Using the brokering software, users do not

need to connect to each of the data providers and their individual web services. In

summary, the EO data discovery broker, as a result within this thesis, has the following

advantages:

• Harmonized request method for all data providers connected to the broker.

• Harmonized metadata elements of resulting satellite scenes.

• Multiple output formats optimized for different user personas (e.g., GeoJSON,

JSON, Shapefile, SQLite, CSV, Summary-Figure, and Summary-CSV).

• The discovery response has been automatically enhanced with the discovery

results from multiple data providers for specific EO datasets.

In contrast with existing brokering services (e.g., GEOSS and ESA FedEO), multiple

response output formats, which enable different user personas to work with the resulting

output, and a full set of metadata elements are available. In comparison to other brokering

research (Nativi Craglia et al. 2013; Previtali & Latre 2018), further enhancements have

been integrated based on individual brokered resources, such as the retrieval of the best

quick-look images and the insertion of web-based visualization services. Although the

proposed data discovery broker requires more processing time than usual discovery

services, users benefit from outputs that can be immediately interpreted and used in

further work and a harmonized service interface.

The EO data discovery broker was implemented in the middleware and web portal of the

GEO-Wetlands Community Portal, as described in the use case (Chapter 6.3).

171

7.3 Standardization of EO Time-series Data Structure and Formats
Specifications have been developed to standardize the EO time-series data structure and

formats across multiple EO missions and data providers. Unification and interoperability

are relevant components of a standardization process. Both of these matters need to be

considered to make the exploration of EO time-series data simpler. Interoperability is

important for enabling especially machine-to-machine communication; however,

unification enables a harmonized set of data structure and formats to allow a uniform

handling of EO time-series data using various processing and analysis tools (Subsection

7.3.1). In addition, user-aligned output formats were designed to meet the requirements

of users (Subsection 7.3.2).

7.3.1 EO time-series data structure and format
A common time-series data structure and data format was designed to ensure uniform

and standardized data provision and analysis (Chapter 5.3). Based on a review of analysis

tools (e.g., Python, R, and GRASS GIS), a data structure and format that best fits all the

tools have been implemented. Furthermore, automated workflows for exporting the data

to additional data structures required by external geospatial tools (e.g., Rasdaman and

Open Data Cube) have been provided to ensure simple use of the common data structure.

Advantages of this data format can be summarized as follows:

• Direct usage of time-series data in Python and R.

• Direct provision of standard-compliant OGC services.

• Simple integrations for external geospatial tools (e.g., GRASS GIS, Rasdaman,

and Open Data Cube).

• Standardized metadata records for time-series data.

• Extraction services to enable on-the-fly exploration of specific areas of interest.

In most cases, analysis and processing tools require input data with a specific structure

for time-series data. Although there is no data structure that fits for all tools, commonalities

can be found and further tools can easily be supported by creating additional files (e.g., a

text file for the GRASS GIS space-time dataset and a recipe configuration file for the

Rasdaman database). Data structures often depend on the type of analysis, whether it is

a single-band or multi-band calculation. Thereafter, additional processing may be

required. Several studies researched to overcome the current behavior of data search,

order, download, and transformation into a web service-based exploration and analysis of

time-series data in an efficient and optimized way (Colditz et al. 2008; Gallaher & Grant

2012; Van den Bergh et al. 2012). However, the transfer from research into production of

Chapter 7: Results and Discussion

172

data providers is still not put into practice. The introduction of data cubes is currently the

way forward in this direction, which is also discussed by data providers (ESA 2018).

7.3.2 User-aligned output formats
Multiple output formats have been defined and implemented in data discovery, access,

and analysis that enable users to better interact with the resulting data (Sections 5.1.3,

5.2.3, and 5.3.3.3). Output formats defined for different user personas allow user-specific

responses. In addition, statistics summarized as text and figures provide a simple

overview of EO time-series data and the results of the analysis. Standardized and service-

based output formats for geospatial data allow users to interactively explore the resulting

data in web maps and GIS software without having to downloading complete datasets.

Providing multiple user-aligned output formats has the following advantages:

• Overview of available data and time-series can be used for immediate analysis.

• Users can work with results in different data formats (e.g., CSV, JSON).

• Web services allow the interactive visualization of and access to geospatial data.

• Additional output formats allow users to easily explore the resulting data (e.g.,

providing summarized statistics and figures).

In most cases, traditional data formats (e.g., XML or JSON for data discovery) only focus

on machine-to-machine interaction and users need to process these data formats on their

own to analyze the results of the request. Although familiarizing users with these data

formats can be seen as useful, users should focus on their real interests, for example,

obtaining simple overviews of the data, directly visualizing the data, or directly using the

resulting data in their software of choice. Thus, multiple and user-aligned output formats

are required—as opposed to providing only a single format, which is the case with most

of the standard-compliant OGC web services. This has also been researched and

concluded by Bordogna et al. (2016) especially focusing on time-series data in a study

case of a spatial data infrastructure. Although the demand on improving data access and

data analysis especially for user personas other than developers has already been

investigated (Budhathoki et al. 2008; Hennig & Belgiu 2011; Brown et al. 2014; La Torre

et al. 2017), it has not yet been fully considered by data providers in terms of providing

user-aligned output formats.

173

Chapter 8: Conclusions and Outlook
This final chapter provides responses to the research questions posed in the introduction,

conclusions, and an outlook.

8.1 Responses to the research questions
Research questions were posed in the introduction of this thesis. They can be answered

as follows:

1. How to design a user-aligned discovery, access, and analysis for EO time-series

data based on standard-compliant web services?

Requirements for multiple user personas have been defined for data discovery, access,

and analysis, which conclude that multiple data and output formats are often necessary

for different user personas. The usual standardized web service specifications for data

discovery and access have been designed for machine-to-machine communication. Thus,

a uniform service specification has been defined and used in the applications developed

to enable a human–machine interface. This specification is based on the standard-

compliant OGC WPS, which was designed to provide processing services. Processing

services have the ability to provide multiple output formats in the web service response

and thus fulfill the requirements of the user personas. Within this thesis, this service

specification has also been used for data discovery and access in addition to data

analysis. Besides a uniform specification, user-aligned output formats are necessary to

fulfill the requirements of user-aligned services, which have been defined for time-series

data and analysis results.

2. What are the technical requirements for accessing and processing multi-source

EO time-series data?

Multi-source EO data are often provided by several data providers that offer different data

access services, data structures, and data formats. Therefore, data access still needs to

be adjusted for each data provider. As structure and formats are diverse for multi-source

EO time-series data, much information is necessary to process them, such as a no data

value, a scaling factor, and quality flags. In addition, for the visualization of EO time-series

data, styling information is required for each dataset based on valid data ranges and color

definitions that depend on the thematic product (e.g., vegetation index, or temperature).

Both access to and processing of multi-source EO time-series data have been

standardized using a brokering approach linked to several data providers and adjusted for

different EO dataset structures. All technical requirements for data access and processing

have been centralized within the multi-source EO data broker.

Chapter 8: Conclusions and Outlook

174

3. What are the data requirements for analysis- and application-ready formats and

how must EO time-series data hence be organized?

Based on a review of requirements for raster time-series data in programming languages

and existing analysis tools, a uniform data specification for the organization of raster time-

series data has been defined. Focusing on raster time-series data, each individual date of

the time-series is stored in a separate geospatial raster file, which is linked with the date

in both the filename and a text file. In addition to the storage of geospatial data, further

information about the time-series, such as the start time, end time, and annual frequency

are needed to ensure straightforward use in several geospatial tools (“analysis-ready

data”). Although some tools can directly work with the uniform data structure, further data

structures and configuration files are required for other tools and services. To overcome

this issue, export tools have been integrated to automatically provide correct data

structures and formats for individual geospatial tools (e.g., Rasdaman, Open Data Cube,

and GRASS GIS), which have been defined as application-ready data. This enables the

straightforward use of EO time-series data in geospatial tools to simplify data analysis.

8.2 Conclusions
Existing gaps between users and data providers as well as EO time-series data and

geospatial analysis tools have been investigated in this thesis. In summary, the following

conclusions can be drawn.

Brokering approaches facilitate the provision of user-aligned web services, specific

multiple output formats, and uniform EO data discovery and access. This allows users to

focus on their primary work rather than having to deal with different service specifications

and data formats. Current web services for EO data discovery and access focus mainly

on machine-to-machine communication and thus often do not consider the needs of users.

Specifically, as concerns data access, services offering access to analysis-ready data are

necessary. Web services for data discovery and access need to be simplified and focused

to a greater extent on the requirements of users, for example, by providing various service

response formats. Solutions can be provided either by each data provider (e.g., providing

user-aligned web services) or in middleware systems based on the brokering approach to

enhance the services of multiple data providers.

The focus on regional scales rather than on a global scale enables the development of

processing platforms, which connect various multi-source EO data and analysis tools. Due

to the limited size of the data required for specific regions, such a processing platform can

be either set up on local server infrastructure or within cloud providers. Any specific

geospatial data and analysis tool necessary for users of the platform can be integrated

175

and made available to them. The focus on individual regions has also been considered by

other initiatives, such as Open Data Cube, which has been set up for individual countries.

Extraction services foster the immediate access of EO data for an area of interest. Linked

with analysis services, information can be generated immediately (e.g., vegetation trends

and changes). Especially for mobile applications, users need to obtain access to time-

series data as soon possible as they wait for the resulting data in the field. As the statistics

from the use of the EOM applications show a key interest in point-based time-series

extractions, EO data archives need to be available in a pre-processed and cloud-optimized

data format rather than as zipped archive files, which is often the case currently.

Cloud-optimized data formats are also necessary to increase access and processing

performance. The straightforward use of EO data often depends on the data format that

is provided by the data provider. In addition, cloud-optimized data formats need to be

directly available with links to the various files. As data formats have often been adjusted

to different user communities, such as netCDF data for climate scientists, various data

formats and structures have been introduced with new EO missions. Thus, geospatial

tools should be enabled to easily convert the original data format in other formats. Even

more, analysis tools should support EO time-series data formats and structures.

A centralized platform for the exploration of EO time-series data is useful for focusing on

the specific requirements of users. EO data directly linked to geospatial tools in web and

mobile application allows users to focus on their primary interest, the monitoring of

environmental changes. Each of the user personas discussed in this thesis focuses on

different aspects. However, they have in common that they are not EO data-processing

specialists. It is necessary that they are able to use user-aligned applications and web

services that can handle all obstacles to the effective use of multi-source EO time-series

data and their links to geospatial processing and analysis tools.

Web services for data access connected with data analysis tools enable on-the-fly

interpretation of EO time-series data without the need for users to undertake data

processing. Applications are ready to provide analysis tools and services for time-series

data in web-based and local environments. However, EO data currently often does not

have the correct data structure and is not in the correct format to be easily used in these

applications. To link EO time-series data with geospatial applications, either the data

needs to be converted into a suitable data structure or the applications need to be adjusted

to meet the original data structure, which has been the focus with the development of a

uniform EO time-series data format and structure. The workflow for publishing algorithms

close to the data needs to be further simplified and standardized.

Chapter 8: Conclusions and Outlook

176

8.3 Outlook
Further research work within this field focuses still on bridging the gap between users and

providers of EO data and services as well as on new approaches for geospatial data

formats, interoperability, data cubes, and cloud-based architectures.

Although data formats have already been discussed in this thesis, new cloud-optimized

data formats are currently investigated (COG 2018), which provides new ways of working

with geospatial raster data. With such a new way to organize and access geospatial data

based on simple web service requests, both users and developers of algorithms need to

learn how to handle this kind of data, which is different from working with local files. A

growing trend among satellite imagery providers is the provision of preprocessed

“analysis-ready data” to simplify the use of EO time-series data (CEOS 2018a; Dwyer et

al. 2018; Holmes 2018a; Siqueira et al. 2019). Several organizations (e.g., USGS and

CEOS) have recently begun to define analysis-ready data for specific EO missions to

establish a common understanding of EO data preprocessing.

In addition, the interoperability of searches for satellite imagery needs to be further

researched, as there is currently no standardized specification, which focuses on raster

time-series data as shown in this thesis. This is currently been addressed by the STAC

initiative (Holmes 2017b), which commenced in November 2017. The lack of a clear

standard for massive amounts of imagery data for use with current web technologies, such

as the JSON format and RESTful architecture, has been identified as a core problem by

14 organizations (e.g., Amazon, DigitalGlobe, Google, Planet, Radiant Earth, Element84,

and Development Seed). A native cloud geospatial architecture is foreseen that will make

it easy to crawl and search cloud-optimized GeoTIFF datasets (Holmes 2017a). The STAC

aims to standardize how geospatial data is made available in the Web. Analysis-ready

data and STAC are closely connected. A first “Satellite Data Interoperability” workshop

was hosted by the USGS in August 2018 to discuss these topics. Over 100 participants

from international space agencies, governments, research, non-profit, and commercial

organizations discussed workflows, standards, upcoming developments, and how to

benefit from analysis-ready data and STAC (Holmes 2018b).

Further research is necessary to standardize data cubes for EO time-series data. CEOS

aims to launch several national data cubes in the near future (CEOS 2018b). As there is

not only a single data cube software, interoperability between and a standardized

specification for them are discussed. This can also enable a federation of data cubes,

which allows linking of data cubes hosted with different data providers (Baumann 2019).

177

The use of cloud-based architectures in an efficient and optimized manner for all kind of

user personas is discussed as a research topic in combination with distributed processing

of geospatial data. New technologies and the further development of specifications have

been realized by the OGC in “testbeds,” which are “collaborative efforts to define, design,

develop, and test candidate interface and encoding specifications” (OGC 2018b). In recent

OGC testbeds, a major focus has been EO and cloud computing (Testbed 1347 in 2017),

as well as exploitation platforms and big data cloud processing (Testbed 1448 in 2018).

The objective of the EO-related components in both testbeds has been to encourage the

standardized deployment and execution of big data-processing applications in cloud

environments (Simonis 2018). In addition, the standardization of web services to provide

reproducible algorithms as executable web services need to be further researched, which

is currently based on a containerization approach (Hu et al. 2018).

Cloud-based architectures are further researched by many organizations allowing to host

geospatial and EO data as well as algorithms in the cloud. With the Copernicus satellites

and new satellites that will be launched in the future, the provision of this data and the

processing capabilities needs to be adjusted according to the increasing amount of data,

which, for large areas, will not be able to be downloaded to local infrastructure in the

foreseeable future. As such, big data projects, cloud evolution strategies, and cloud-based

processing platforms have been defined and established by major international and

national organizations (e.g., NASA and ESA). With the EU project openEO, a multi-cloud

service specification and interface is being investigated, which aims to harmonize data

access and data analysis between cloud environments (Schramm et al. 2019). In 2014,

the US Government established a “National Plan for Civil Earth Observations” (U.S.

Government 2014), which led to a “Big Earth Data Initiative.” NASA’s Earth Observing

System Data and Information System contributes to this initiative by bringing its data into

the cloud (Blumenfeld 2018). The European Commission launched the Copernicus DIAS

initiative leading to multiple cloud data providers in Europe facilitating access to

Copernicus data (Copernicus Observer 2017).

In summary, an important part of future research and innovation is based on analysis-

ready data, increased interoperability with modern web-based technologies, the increased

availability of geospatial data in clouds, and cloud-based processing architectures and

platforms, all of them related to user-aligned exploration of EO time-series data.

47 http://www.opengeospatial.org/pressroom/pressreleases/2751
48 http://www.opengeospatial.org/projects/initiatives/testbed14

http://www.opengeospatial.org/pressroom/pressreleases/2751
http://www.opengeospatial.org/projects/initiatives/testbed14

Chapter 8: Conclusions and Outlook

178

179

References
Acker, J. G. & Leptoukh, G. (2007) ‘Online Analysis Enhances Use of NASA Earth

Science Data’, Eos, Transactions American Geophysical Union, 88(2), p. 14. doi:
10.1029/2007EO020003.

Adams, B. & Gahegan, M. (2014) ‘Emerging data challenges for next-generation spatial
data infrastructure’, in Winter, S. and Rizos, C. (eds) Proceedings of Research at
Locate’14. Canberra, Australia, pp. 118–129.

Appel, M., Lahn, F., Buytaert, W. & Pebesma, E. (2018) ‘Open and scalable analytics of
large Earth observation datasets: From scenes to multidimensional arrays using
SciDB and GDAL’, ISPRS Journal of Photogrammetry and Remote Sensing. The
Authors, 138, pp. 47–56. doi: 10.1016/j.isprsjprs.2018.01.014.

Arenas, H., Aussenac-Gilles, N., Comparot, C. & Trojahn, C. (2017) ‘Semantic
Integration of Geospatial Data from Earth Observations’, in Ciancarini, P., Poggi, F.,
Horridge, M., Zhao, J., Groza, T., Suarez-Figueroa, M. C., D’Aquin, M., and
Presutti, V. (eds) Knowledge Engineering and Knowledge Management. Cham:
Springer International Publishing (Lecture Notes in Computer Science), pp. 97–100.
doi: 10.1007/978-3-319-58694-6.

Ariza-Porras, C., Bravo, G., Villamizar, M., Moreno, A., Castro, H., Galindo, G., Cabera,
E., Valbuena, S., et al. (2017) ‘CDCol: A Geoscience Data Cube that Meets
Colombian Needs’, in Solano, A. and Ordoñez, H. (eds) Advances in Computing.
Cham: Springer International Publishing, pp. 87–99. doi: 10.1007/978-3-319-66562-
7_7.

Aschbacher, J. & Milagro-Pérez, M. P. (2012) ‘The European Earth monitoring (GMES)
programme: Status and perspectives’, Remote Sensing of Environment. Elsevier
Inc., 120(2012), pp. 3–8. doi: 10.1016/j.rse.2011.08.028.

Astsatryan, H., Hayrapetyan, A., Narsisian, W., Asmaryan, S., Saghatelyan, A.,
Muradyan, V., Giuliani, G., Guigoz, Y., et al. (2015) ‘An interoperable cloud-based
scientific GATEWAY for NDVI time series analysis’, Computer Standards &
Interfaces. Elsevier B.V., 41, pp. 79–84. doi: 10.1016/j.csi.2015.02.001.

Atzberger, C. (2013) ‘Advances in remote sensing of agriculture: Context description,
existing operational monitoring systems and major information needs’, Remote
Sensing, 5(2), pp. 949–981. doi: 10.3390/rs5020949.

Bai, Y. & Di, L. (2011) ‘Providing access to satellite imagery through OGC catalog
service interfaces in support of the Global Earth Observation System of Systems’,
Computers & Geosciences. Elsevier, 37(4), pp. 435–443. doi:
10.1016/j.cageo.2010.09.010.

Baresi, L., Miraz, M. & Plebani, P. (2016) ‘A distributed architecture for efficient Web
service discovery’, Service Oriented Computing and Applications. Springer London,
10(1), pp. 1–17. doi: 10.1007/s11761-015-0184-z.

Baumann, P. (2009a) ‘The OGC web coverage processing service (WCPS) standard’,
GeoInformatica, 14(4), pp. 447–479. doi: 10.1007/s10707-009-0087-2.

Baumann, P. (2009b) ‘Web Coverage Processing Service (WCPS) Language Interface
Standard. OGC 08-068r2’. Open Geospatial Consortium Inc.

Baumann, P. (2012) ‘OGC WCS 2.0 Interface Standard - OGC 09-110r4’. Open
Geospatial Consortium Inc.

Baumann, P. (2017) The Datacube Manifesto. Available at:
http://earthserver.eu/tech/datacube-manifesto (Accessed: 7 October 2018).

Baumann, P. (2019) ‘From analysis-ready data to analysis-ready services: Challenges
and helpers for EO service providers’, in Soille, P., Loekken, S., and Albani, S.

References

180

(eds) Proceedings of the 2019 conference on Big Data from Space. Munich,
Germany: Publications Office of the European Union, pp. 69–72.

Baumann, P., Dehmel, A., Furtado, P., Ritsch, R. & Widmann, N. (1998) ‘The
multidimensional database system RasDaMan’, in Proceedings of the 1998 ACM
SIGMOD international conference on Management of data. Seattle, Washington,
USA, pp. 575–577. doi: 10.1145/276305.276386.

Baumann, P., Mazzetti, P., Ungar, J., Barbera, R., Barboni, D., Beccati, A., Bigagli, L.,
Boldrini, E., et al. (2016a) ‘Big Data Analytics for Earth Sciences: the EarthServer
approach’, International Journal of Digital Earth. Taylor & Francis, 9(1), pp. 3–29.
doi: 10.1080/17538947.2014.1003106.

Baumann, P., Meissl, S. & Yu, J. (2014) ‘OGC Web Coverage Service 2.0 Interface
Standard - Earth Observation Application Profile’. Open Geospatial Consortium Inc.

Baumann, P., Merticariu, V., Dumitru, A. & Misev, D. (2016b) ‘Standards-based services
for big spatio-temporal data’, International Archives of the Photogrammetry, Remote
Sensing and Spatial Information Sciences - ISPRS Archives, 41(July), pp. 691–699.
doi: 10.5194/isprsarchives-XLI-B4-691-2016.

Baumann, P. & Rossi, A. P. (2016) ‘Datacubes as a service paradigm’, in Proceedings of
the 2016 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS). IEEE, pp. 186–188. doi: 10.1109/IGARSS.2016.7729039.

Beaujardiere, J. De (2006) ‘OpenGIS Web Map Server Implementation Specification -
OGC 06-042’. Open Geospatial Consortium Inc.

Beaulieu-Jones, B. K. & Greene, C. S. (2017) ‘Reproducibility of computational
workflows is automated using continuous analysis’, Nature Biotechnology. Nature
Publishing Group, 35(4), pp. 342–346. doi: 10.1038/nbt.3780.

Berger, M., Moreno, J., Johannessen, J. a., Levelt, P. F. & Hanssen, R. F. (2012) ‘ESA’s
sentinel missions in support of Earth system science’, Remote Sensing of
Environment. Elsevier Inc., 120, pp. 84–90. doi: 10.1016/j.rse.2011.07.023.

Van den Bergh, F., Wessels, K. J., Miteff, S., Van Zyl, T. L., Gazendam, A. D. & Bachoo,
A. K. (2012) ‘HiTempo: a platform for time-series analysis of remote-sensing
satellite data in a high-performance computing environment’, International Journal
of Remote Sensing, 33(15), pp. 4720–4740. doi: 10.1080/01431161.2011.638339.

Bernard, L., Mäs, S., Müller, M., Henzen, C. & Brauner, J. (2014) ‘Scientific geodata
infrastructures: challenges, approaches and directions’, International Journal of
Digital Earth, 7(7), pp. 613–633. doi: 10.1080/17538947.2013.781244.

Birkin, M. (2013) ‘Big Data Challenges for Geoinformatics’, Geoinformatics &
Geostatistics: An Overview, 01(01), pp. 2012–2013. doi: 10.4172/2327-
4581.1000e101.

Blumenfeld, J. (2018) NASA EOSDIS Role in the Big Earth Data Initiative. Available at:
https://earthdata.nasa.gov/eosdis-role-in-bedi (Accessed: 14 October 2018).

Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C. & Orchard, D.
(2004) ‘Web Services Architecture’. W3C. Available at:
https://www.w3.org/TR/2004/NOTE-ws-arch-20040211/ (Accessed: 8 October
2018).

Bordogna, G., Kliment, T., Frigerio, L., Brivio, P., Crema, A., Stroppiana, D., Boschetti,
M. & Sterlacchini, S. (2016) ‘A Spatial Data Infrastructure Integrating Multisource
Heterogeneous Geospatial Data and Time Series: A Study Case in Agriculture’,
ISPRS International Journal of Geo-Information, 5(5), p. 73. doi:
10.3390/ijgi5050073.

Boulton, G. (2018) ‘The challenges of a Big Data Earth’, Big Earth Data. Taylor &
Francis, 2(1), pp. 1–7. doi: 10.1080/20964471.2017.1397411.

181

Brauner, J., Foerster, T., Schaeffer, B. & Baranski, B. (2009) ‘Towards a Research
Agenda for Geoprocessing Services’, in Proceedings of the 12th AGILE
International Conference on Geographic Information Science. Hannover, Germany,
pp. 1–12.

Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E. & Yergeau, F. (2008) ‘Extensible
Markup Language (XML) 1.0 (Fifth Edition)’. W3C. Available at:
https://www.w3.org/TR/2008/REC-xml-20081126/ (Accessed: 8 October 2018).

Brown, M. E., Carroll, M. L. & Escobar, V. M. (2014) ‘User needs and assessing the
impact of low latency NASA Earth observation data availability on societal benefit’,
Space Policy. Elsevier Ltd, 30(3, Part A), pp. 135–137. doi:
10.1016/j.spacepol.2014.05.002.

Budhathoki, N. R., Bruce, B. & Nedovic-Budic, Z. (2008) ‘Reconceptualizing the role of
the user of spatial data infrastructure’, GeoJournal, 72(3–4), pp. 149–160. doi:
10.1007/s10708-008-9189-x.

Bychkov, I., Ruzhnikov, G., Fedorov, R. & Shumilov, A. (2015) ‘Building the distributed
WPS-services execution environment’, arXiv, pp. 1–17. Available at:
https://arxiv.org/abs/1503.07626.

Calaway, R. (2017) foreach package - R documentation. Available at:
https://www.rdocumentation.org/packages/foreach/versions/1.4.4 (Accessed: 4
March 2019).

Caumont, H., Brito, F. & Boissier, E. (2014) ‘Big Earth Sciences & the new Platform
Economy’, in Proceedings of the 2014 conference on Big Data from Space
(BiDS’14). Frascati, Italy: JRC conference e-proceedings series, pp. 407–410.

Celesti, A., Mulfari, D., Fazio, M., Villari, M. & Puliafito, A. (2016) ‘Exploring Container
Virtualization in IoT Clouds’, in Proceedings of the 2016 IEEE International
Conference on Smart Computing, SMARTCOMP. IEEE, pp. 1–6. doi:
10.1109/SMARTCOMP.2016.7501691.

CEOS (2018a) CEOS Analysis Ready Data. Available at: http://ceos.org/ard/ (Accessed:
7 October 2018).

CEOS (2018b) The ‘Road to 20’ International Data Cube Deployments. Available at:
https://docs.wixstatic.com/ugd/8959d6_cfcba3751fe642bc9faec776ab98cb20.pdf
(Accessed: 4 March 2019).

Čepický, J. & Becchi, L. (2007) ‘Geospatial Processing via Internet on Remote Servers -
PyWPS’, OSGeo Journal, 1(May), pp. 1–4. doi: 10.1007/978-0-387-74674-6_2.

Čepický, J. & De Sousa, L. M. (2016) ‘New implementation of OGC Web Processing
Service in Python programming language. PyWPS-4 and issues we are facing with
processing of large raster data using OGC WPS’, International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS
Archives, 41(June), pp. 927–930. doi: 10.5194/isprsarchives-XLI-B7-927-2016.

Clauss, K. (2018) Earth Engine Apps: Sentinel-1 2017 time series. Available at:
https://kersten.users.earthengine.app/view/sentinel-1-2017time-series (Accessed: 2
March 2019).

Clinton, D. (2018) OpenSearch 1.1 Draft 6, OpenSearch. Available at:
https://github.com/dewitt/opensearch/blob/master/opensearch-1-1-draft-6.md
(Accessed: 1 March 2019).

COG (2018) Cloud optimized GeoTIFF. Available at: http://www.cogeo.org (Accessed: 7
October 2018).

Colditz, R. R., Conrad, C., Wehrmann, T., Schmidt, M. & Dech, S. (2008) ‘TiSeG: A
Flexible Software Tool for Time-Series Generation of MODIS Data Utilizing the
Quality Assessment Science Data Set’, IEEE Transactions on Geoscience and

References

182

Remote Sensing, 46(10), pp. 3296–3308. doi: 10.1109/TGRS.2008.921412.
Cooper, A. (2004) The Inmates Are Running the Asylum: Why High Tech Products Drive

Us Crazy and How to Restore the Sanity. 2nd edn. Pearson Higher Education.
Copernicus Observer (2017) The upcoming Copernicus Data and Information Access

Services. Available at: http://copernicus.eu/news/upcoming-copernicus-data-and-
information-access-services-dias (Accessed: 14 October 2018).

Craglia, M., Hradec, J., Nativi, S. & Santoro, M. (2017) ‘Exploring the depths of the
global earth observation system of systems’, Big Earth Data. Taylor & Francis, 1(1–
2), pp. 1–26. doi: 10.1080/20964471.2017.1401284.

Cui, S., Dumitru, C. O. & Datcu, M. (2014) ‘Semantic annotation in earth observation
based on active learning’, International Journal of Image and Data Fusion, 5(2), pp.
152–174. doi: 10.1080/19479832.2013.858778.

Davis, B. N., Werpy, J., Friesz, A., Impecoven, K., Quenzer, R. L., Maiersperger, T. &
Meyer, D. J. (2015) ‘Interactive Access to LP DAAC Satellite Data Archives
Through a Combination of Open-Source and Custom Middleware Web Services’,
IEEE Geoscience and Remote Sensing Magazine, 3(4), pp. 8–20. doi:
10.1109/MGRS.2015.2505999.

DeVries, B., Verbesselt, J., Kooistra, L. & Herold, M. (2015) ‘Robust monitoring of small-
scale forest disturbances in a tropical montane forest using Landsat time series’,
Remote Sensing of Environment. Elsevier Inc., 161, pp. 107–121. doi:
10.1016/j.rse.2015.02.012.

Díaz, L., Remke, A., Kauppinen, T., Degbelo, A., Foerster, T., Stasch, C., Rieke, M.,
Schaeffer, B., et al. (2012) ‘Future SDI - Impulses from Geoinformatics Research
and IT Trends’, International Journal of Spatial Data Infrastructures Research, 7,
pp. 378–410. doi: 10.2902/1725-0463.2012.07.art18.

Dubois, G., Schulz, M., Skøien, J., Bastin, L. & Peedell, S. (2013) ‘eHabitat, a multi-
purpose Web Processing Service for ecological modeling’, Environmental Modelling
& Software. Elsevier Ltd, 41, pp. 123–133. doi: 10.1016/j.envsoft.2012.11.005.

Dutrieux, L. & DeVries, B. (2014) ‘bfastSpatial: Set of utilities and wrappers to perform
change detection on satellite image time-series’. Available at:
https://github.com/loicdtx/bfastSpatial (Accessed: 16 April 2019).

Dutrieux, L. P., Verbesselt, J., Kooistra, L. & Herold, M. (2015) ‘Monitoring forest cover
loss using multiple data streams, a case study of a tropical dry forest in Bolivia’,
ISPRS Journal of Photogrammetry and Remote Sensing, 107, pp. 112–125. doi:
10.1016/j.isprsjprs.2015.03.015.

Dwyer, J., Roy, D., Sauer, B., Jenkerson, C., Zhang, H. & Lymburner, L. (2018) ‘Analysis
Ready Data: Enabling Analysis of the Landsat Archive’, Remote Sensing, 10(9), pp.
1–24.

Eberle, J., Clausnitzer, S., Hüttich, C. & Schmullius, C. (2013) ‘Multi-source data
processing middleware for land monitoring within a web-based spatial data
infrastructure for Siberia’, ISPRS International Journal of Geo-Information, 2(3). doi:
10.3390/ijgi2030553.

Eberle, J. & Strobl, C. (2012) ‘Web-based Geoprocessing and Workflow Creation for
generating and providing Remote Sensing products’, Geomatica, 66(1), pp. 13–26.

ECMA International (2017) ‘ECMA-404 - The JSON Data Interchange Syntax.’ ECMA
International. Available at: https://www.ecma-
international.org/publications/standards/Ecma-404.htm (Accessed: 8 October
2018).

Eklundh, L. & Jönsson, P. (2017) TIMESAT 3.3 with seasonal trend decomposition and
parallel processing - Software Manual, Lund and Malmo University, Sweden.

183

Available at: http://web.nateko.lu.se/timesat/docs/TIMESAT33_SoftwareManual.pdf.
EOX IT Services GmbH (2018) geotiff.js. Available at: https://geotiffjs.github.io/

(Accessed: 7 October 2018).
ESA (2016) Sentinel-3 family grows. Available at:

http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-
3/Sentinel-3_family_grows (Accessed: 6 March 2019).

ESA (2018) ‘Procurement of EO Data Cube Facility Service: 2018-2022’. ESA.
ESA (2019) Satellite missions, eoPortal Directory. Available at:

https://directory.eoportal.org/web/eoportal/satellite-missions/c-missions (Accessed:
6 March 2019).

Esch, T., Asamer, H., Boettcher, M., Brito, F., Hirner, A., Marconcini, M., Mathot, E.,
Metz, A., et al. (2016) ‘Earth Observation-supported Service Platform for the
Development and Provision of Thematic Information on the Built Environment–the
TEP-Urban Project’, ISPRS - International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, XLI-B8, pp. 1379–1384. doi:
10.5194/isprs-archives-XLI-B8-1379-2016.

European Commission (2018a) Infrastructure for Spatial Information in the European
Community. Available at: https://inspire.ec.europa.eu/ (Accessed: 7 October 2018).

European Commission (2018b) The DIAS: User-friendly Access to Copernicus Data and
Information. Brussels. Available at:
https://www.copernicus.eu/sites/default/files/Copernicus_DIAS_Factsheet_June201
8.pdf (Accessed: 2 March 2019).

European Commission (2019) Copernicus Open Access Hub - Full Text Search.
Available at:
https://scihub.copernicus.eu/twiki/do/view/SciHubUserGuide/FullTextSearch#Searc
h_Keywords (Accessed: 1 April 2019).

Evangelidis, K., Ntouros, K., Makridis, S. & Papatheodorou, C. (2014) ‘Geospatial
services in the Cloud’, Computers & Geosciences. Elsevier, 63, pp. 116–122. doi:
10.1016/j.cageo.2013.10.007.

Fallside, D. C. & Walsmley, P. (2014) XML Schema Part 0: Primer Second Edition. W3C.
Available at: https://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
(Accessed: 8 October 2018).

Farnaghi, M. & Mansourian, A. (2013) ‘Disaster planning using automated composition
of semantic OGC web services: A case study in sheltering’, Computers,
Environment and Urban Systems. Elsevier Ltd, 41, pp. 204–218. doi:
10.1016/j.compenvurbsys.2013.06.003.

Foerster, T., Brühl, A. & Schäffer, B. (2011) ‘RESTful Web Processing Service’, in
Proceedings of the 14th AGILE International Conference on Geographic
Information Science. Utrecht, The Netherlands, p. no pagination.

Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M., Neigh, C. & Reichstein, M.
(2013) ‘Trend Change Detection in NDVI Time Series: Effects of Inter-Annual
Variability and Methodology’, Remote Sensing, 5(5), pp. 2113–2144. doi:
10.3390/rs5052113.

Friis-Christensen, A., Ostländer, N., Lutz, M. & Bernard, L. (2007) ‘Designing Service
Architectures for Distributed Geoprocessing: Challenges and Future Directions’,
Transactions in GIS, 11(6), pp. 799–818. doi: 10.1111/j.1467-9671.2007.01075.x.

Future Earth (2013) Future Earth Initial Design: Report of the Transition Team. Paris,
France. Available at: http://www.futureearth.info/sites/default/files/Future-Earth-
Design-Report_web.pdf.

References

184

Gallaher, D. & Grant, G. (2012) ‘Data Rods: High speed, time-series analysis of massive
cryospheric data sets using pure object databases’, in Proceedings of the 2012
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), pp.
5297–5300.

Gasperi, J. (2014) ‘Semantic Search Within Earth Observation Products Database
Based on Automatic Tagging of Image Content’, Proceedings of the 2014
Conference on Big Data from Space, pp. 4–6.

Gebbert, S. & Pebesma, E. (2014) ‘TGRASS: A temporal GIS for field based
environmental modeling’, Environmental Modelling and Software. Elsevier Ltd, 53,
pp. 1–12. doi: 10.1016/j.envsoft.2013.11.001.

Geller, G. N. & Turner, W. (2007) ‘The model Web: A concept for ecological forecasting’,
Proceedings of the 2007 International Geoscience and Remote Sensing
Symposium (IGARSS), pp. 2469–2472. doi: 10.1109/IGARSS.2007.4423343.

Gilles, M. (2006) EO Application Profile for CSW 2.0. Open Geospatial Consortium Inc.
Giuliani, G., Chatenoux, B., De Bono, A., Rodila, D., Richard, J.-P., Allenbach, K., Dao,

H. & Peduzzi, P. (2017) ‘Building an Earth Observations Data Cube: lessons
learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data
(ARD)’, Big Earth Data. Taylor & Francis, 1(1–2), pp. 100–117. doi:
10.1080/20964471.2017.1398903.

Giuliani, G., Nativi, S., Lehmann, A. & Ray, N. (2012) ‘WPS mediation: An approach to
process geospatial data on different computing backends’, Computers &
Geosciences. Elsevier, 47, pp. 20–33. doi: 10.1016/j.cageo.2011.10.009.

Gonçalves, P. (2014) ‘OGC OpenSearch Geo and Time Extensions’. Open Geospatial
Consortium Inc.

Gonçalves, P. & Voges, U. (2016) ‘OGC OpenSearch Extension for Earth Observation’.
Open Geospatial Consortium Inc., pp. 1–85.

Google (2017) Google Earth Engine API - Landsat algorithms. Available at:
https://developers.google.com/earth-engine/landsat (Accessed: 8 October 2018).

Google (2018a) Google Earth Engine API - Reference. Available at:
https://developers.google.com/earth-
engine/api_docs#eealgorithmslandsatsimplecloudscore (Accessed: 8 October
2018).

Google (2018b) SOAP, Representational state transfer - Google Trends, Google Trends.
Available at:
https://trends.google.com/trends/explore?date=all&q=%2Fm%2F077dn,%2Fm%2F
03nsxd (Accessed: 15 October 2018).

Gore, A. (1998) ‘The Digital Earth’, Australian Surveyor, 43(2), pp. 89–91. doi:
10.1080/00050348.1998.10558728.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. & Moore, R. (2017)
‘Google Earth Engine: Planetary-scale geospatial analysis for everyone’, Remote
Sensing of Environment, 202, pp. 18–27. doi: 10.1016/j.rse.2017.06.031.

Granell, C., Havlik, D., Schade, S., Sabeur, Z., Delaney, C., Pielorz, J., Usländer, T.,
Mazzetti, P., et al. (2016) ‘Future Internet technologies for environmental
applications’, Environmental Modelling and Software, 78, pp. 1–15. doi:
10.1016/j.envsoft.2015.12.015.

Guo, H., Liu, Z., Jiang, H., Wang, C., Liu, J. & Liang, D. (2017) ‘Big Earth Data: a new
challenge and opportunity for Digital Earth’s development’, International Journal of
Digital Earth. Taylor & Francis, 10(1), pp. 1–12. doi:
10.1080/17538947.2016.1264490.

185

Gutman, G. & Masek, J. G. (2012) ‘Long-term time series of the Earth’s land-surface
observations from space’, International Journal of Remote Sensing, 33(15), pp.
4700–4719. doi: 10.1080/01431161.2011.638341.

Hempelmann, N., Ehbrecht, C., Alvarez-Castro, C., Brockmann, P., Falk, W., Hoffmann,
J., Kindermann, S., Koziol, B., et al. (2018) ‘Web processing service for climate
impact and extreme weather event analyses. Flyingpigeon (Version 1.0)’,
Computers & Geosciences, 110, pp. 65–72. doi: 10.1016/j.cageo.2017.10.004.

Hennig, S. & Belgiu, M. (2011) ‘User-centric SDI: Addressing Users Requirements in
Third- Generation SDI . The Example of Nature-SDIplus’, Geoforum Perspektiv,
10(20), pp. 30–42. Available at:
http://ojs.statsbiblioteket.dk/index.php/gfp/article/view/5820.

Herle, S. & Blankenbach, J. (2018) ‘Enhancing the OGC WPS interface with GeoPipes
support for real-time geoprocessing’, International Journal of Digital Earth, 11(1),
pp. 48–63. doi: 10.1080/17538947.2017.1319976.

Higgins, C. I., Williams, J., Leibovici, D. G., Simonis, I., Davis, M. J., Muldoon, C., Van
Genuchten, P. & O ’hare, G. (2016) ‘Citizen OBservatory WEB (COBWEB): A
generic infrastructure platform to facilitate the collection of citizen science data for
environmental monitoring’, International Journal of Spatial Data Infrastructures
Research, 11(January), pp. 20–48. doi: 10.2902/1725-0463.2016.11.art3.

Hofer, B. (2015) ‘Uses of online geoprocessing technology in analyses and case studies:
a systematic analysis of literature’, International Journal of Digital Earth, 8(11), pp.
901–917. doi: 10.1080/17538947.2014.962632.

Hofer, B., Mäs, S., Brauner, J. & Bernard, L. (2017) ‘Towards a knowledge base to
support geoprocessing workflow development’, International Journal of
Geographical Information Science. Taylor & Francis, 31(4), pp. 694–716. doi:
10.1080/13658816.2016.1227441.

Holmes, C. (2017a) A Cloud Native Geospatial Interoperability Sprint, Radiant Earth
Insights. Available at: https://medium.com/radiant-earth-insights/a-cloud-native-
geospatial-interoperability-sprint-483d9c299595 (Accessed: 14 October 2018).

Holmes, C. (2017b) Announcing the SpatioTemporal Asset Catalog (STAC)
specification, Radiant Earth Insights. Available at: https://medium.com/radiant-
earth-insights/announcing-the-spatiotemporal-asset-catalog-stac-specification-
1db58820b9cf (Accessed: 14 October 2018).

Holmes, C. (2018a) Analysis Ready Data Defined, Planet Stories. Available at:
https://medium.com/planet-stories/analysis-ready-data-defined-5694f6f48815
(Accessed: 14 October 2018).

Holmes, C. (2018b) The first Satellite Data Interoperability Workshop is happening next
week!, Radiant Earth Insights. Available at: https://medium.com/radiant-earth-
insights/the-first-satellite-data-interoperability-workshop-is-happening-next-week-
fae9539f81f9 (Accessed: 14 October 2018).

Hoyer, S. & Hamman, J. J. (2017) ‘xarray: N-D labeled Arrays and Datasets in Python’,
Journal of Open Research Software, 5, pp. 1–6. doi: 10.5334/jors.148.

Hu, F., Xu, M., Yang, J., Liang, Y., Cui, K., Little, M. M., Lynnes, C. S., Duffy, D. Q., et al.
(2018) ‘Evaluating the Open Source Data Containers for Handling Big Geospatial
Raster Data’, ISPRS International Journal of Geo-Information, 7(4), p. 144. doi:
10.3390/ijgi7040144.

Huete, a, Didan, K., Miura, T., Rodriguez, E. ., Gao, X. & Ferreira, L. . (2002) ‘Overview
of the radiometric and biophysical performance of the MODIS vegetation indices’,
Remote Sensing of Environment, 83(1–2), pp. 195–213. doi: 10.1016/S0034-
4257(02)00096-2.

References

186

Hüttich, C., Herold, M., Schmullius, C., Egorov, V. & Bartalev, S. A. (2007) ‘Indicators of
Northern Eurasia’s land cover change trends from SPOT-VEGETATION time-series
analysis 1998-2005’, International Journal of Remote Sensing, 28(18), pp. 4199–
4206. doi: 10.1080/01431160701442054.

International Organization for Standardization (2003) ISO 19115:2003 Geographic
information -- Metadata. Geneva, Switzerland.

Janowicz, K. & Hitzler, P. (2017) ‘Geospatial Semantic Web’, in International
Encyclopedia of Geography: People, the Earth, Environment and Technology.
Oxford, UK: John Wiley & Sons, Ltd, pp. 1–6. doi:
10.1002/9781118786352.wbieg1158.

de Jesus, J., Walker, P., Grant, M. & Groom, S. (2012) ‘WPS orchestration using the
Taverna workbench: The eScience approach’, Computers & Geosciences. Elsevier,
47, pp. 75–86. doi: 10.1016/j.cageo.2011.11.011.

De Jong, R., Verbesselt, J., Zeileis, A. & Schaepman, M. E. (2013) ‘Shifts in global
vegetation activity trends’, Remote Sensing, 5(3), pp. 1117–1133. doi:
10.3390/rs5031117.

Jönsson, P. & Eklundh, L. (2004) ‘TIMESAT—a program for analyzing time-series of
satellite sensor data’, Computers & Geosciences, 30(8), pp. 833–845. doi:
10.1016/j.cageo.2004.05.006.

Justice, C. ., Townshend, J. R. ., Vermote, E. ., Masuoka, E., Wolfe, R. ., Saleous, N.,
Roy, D. . & Morisette, J. . (2002) ‘An overview of MODIS Land data processing and
product status’, Remote Sensing of Environment, 83(1–2), pp. 3–15. doi:
10.1016/S0034-4257(02)00084-6.

Kambatla, K., Kollias, G., Kumar, V. & Grama, A. (2014) ‘Trends in big data analytics’,
Journal of Parallel and Distributed Computing, 74(7), pp. 2561–2573. doi:
10.1016/j.jpdc.2014.01.003.

Karantzalos, K., Bliziotis, D. & Karmas, A. (2015) ‘A Scalable Geospatial Web Service
for Near Real-Time, High-Resolution Land Cover Mapping’, IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, 8(10), pp.
4665–4674. doi: 10.1109/JSTARS.2015.2461556.

Kiehle, C., Greve, K. & Heier, C. (2007) ‘Requirements for Next Generation Spatial Data
Infrastructures-Standardized Web Based Geoprocessing and Web Service
Orchestration’, Transactions in GIS, 11(6), pp. 819–834. doi: 10.1111/j.1467-
9671.2007.01076.x.

Kiemle, S., Molch, K., Schropp, S., Weiland, N. & Mikusch, E. (2016) ‘Big Data
Management in Earth Observation: The German satellite data archive at the
German Aerospace Center’, IEEE Geoscience and Remote Sensing Magazine,
4(3), pp. 51–58. doi: 10.1109/MGRS.2016.2541306.

Koswatte, S., McDougall, K. & Liu, X. (2015) ‘SDI and crowdsourced spatial information
management automation for disaster management’, Survey Review, 47(344), pp.
307–315. doi: 10.1179/1752270615Y.0000000008.

Koubarakis, M., Bereta, K., Papadakis, G., Savva, D. & Stamoulis, G. (2017) ‘Big, Linked
Geospatial Data and Its Applications in Earth Observation’, IEEE Internet
Computing, 21(4), pp. 87–91. doi: 10.1109/MIC.2017.2911438.

Koubarakis, M., Sioutis, M., Garbis, G., Karpathiotakis, M., Kyzirakos, K., Nikolaou, C.,
Bereta, K., Vassos, S., et al. (2012) ‘Building Virtual Earth Observatories Using
Ontologies, Linked Geospatial Data and Knowledge Discovery Algorithms’, in
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), pp. 932–949. doi: 10.1007/978-3-
642-33615-7_34.

187

Kuenzer, C., Dech, S. & Wagner, W. (2015) ‘Remote Sensing Time Series Revealing
Land Surface Dynamics: Status Quo and the Pathway Ahead’, in Kuenzer, C.,
Dech, S., and Wagner, W. (eds) Remote Sensing Time Series. Remote Sen. Cham:
Springer, pp. 1–24. doi: 10.1007/978-3-319-15967-6_1.

Kuenzer, C., Ottinger, M., Wegmann, M., Guo, H., Wang, C., Zhang, J., Dech, S. &
Wikelski, M. (2014) ‘Earth observation satellite sensors for biodiversity monitoring:
potentials and bottlenecks’, International Journal of Remote Sensing, 35(18), pp.
6599–6647. doi: 10.1080/01431161.2014.964349.

Lankester, T. H. G. (2009) ‘OpenGIS Web Map Services - Profile for EO Products’. Open
Geospatial Consortium Inc.

Lasaponara, R. & Lanorte, A. (2012) ‘Satellite time-series analysis’, International Journal
of Remote Sensing, 33(15), pp. 4649–4652. doi: 10.1080/01431161.2011.638342.

Lee, J.-G. & Kang, M. (2015) ‘Geospatial Big Data: Challenges and Opportunities’, Big
Data Research. Elsevier Inc., 2(2), pp. 74–81. doi: 10.1016/j.bdr.2015.01.003.

Li, S., Dragicevic, S., Castro, F. A., Sester, M., Winter, S., Coltekin, A., Pettit, C., Jiang,
B., et al. (2016) ‘Geospatial big data handling theory and methods: A review and
research challenges’, ISPRS Journal of Photogrammetry and Remote Sensing.
International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS), 115,
pp. 119–133. doi: 10.1016/j.isprsjprs.2015.10.012.

Liakos, P., Koltsida, P., Kakaletris, G., Baumann, P., Ioannidis, Y. & Delis, A. (2015) ‘A
Distributed Infrastructure for Earth-Science Big Data Retrieval’, International
Journal of Cooperative Information Systems, 24(02). doi:
10.1142/S0218843015500021.

Lopez-Pellicer, F. J., Rentería-Agualimpia, W., Béjar, R., Muro-Medrano, P. R. &
Zarazaga-Soria, F. J. (2012) ‘Availability of the OGC geoprocessing standard:
March 2011 reality check’, Computers & Geosciences, 47, pp. 13–19. doi:
10.1016/j.cageo.2011.10.023.

Lott, N. (2006) Global Surface Summary of Day, National Climatic Data Center,
Asheville, NC. Available at: http://www.ncdc.noaa.gov/cgi-
bin/res40.pl?page=gsod.html (Accessed: 1 March 2013).

Lott, N., Vose, R., Greco, S. A. Del, Ross, T. F., Worley, S. & Comeaux, J. (2008) ‘The
Integrated Surface Database: Partnerships and Progress’, in Proceedings of the
24th Conference in Institutional Information Processing System (IIPS). New
Orleans, USA: American Meteorological Society.

Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A. & Jie, W. (2015) ‘Remote
sensing big data computing: Challenges and opportunities’, Future Generation
Computer Systems. Elsevier B.V., 51, pp. 47–60. doi: 10.1016/j.future.2014.10.029.

MacKenzie, C. M., Laskey, K., McCabe, F., Brown, P. F., Metz, R. & Hamilton, B. A.
(2006) ‘Reference Model for Service Oriented Architecture 1.0’, pp. 1–31. Available
at: https://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html.

Magan, V. (2016) Two New Sentinel 2 Satellites Coming Up from Airbus Defence and
Space, Satellite Today - Via Satellite. Available at:
https://www.satellitetoday.com/government-military/2016/01/26/two-new-sentinel-2-
satellites-coming-up-from-airbus-defence-and-space/ (Accessed: 6 March 2019).

Martinis, S., Kersten, J. & Twele, A. (2015) ‘A fully automated TerraSAR-X based flood
service’, ISPRS Journal of Photogrammetry and Remote Sensing, 104, pp. 203–
212. doi: 10.1016/j.isprsjprs.2014.07.014.

Mazzetti, P. & Nativi, S. (2012) ‘Multidisciplinary Interoperability for Earth Observations:
Some Architectural Issues’, IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 5(3), pp. 1054–1059..

References

188

Mazzetti, P., Nativi, S. & Caron, J. (2009) ‘RESTful implementation of geospatial
services for Earth and Space Science applications’, International Journal of Digital
Earth, 2, pp. 40–61. doi: 10.1080/17538940902866153.

McKinney, W. (2011) ‘pandas: a Foundational Python Library for Data Analysis and
Statistics’, Python for High Performance and Scientific Computing, (December), pp.
1–9.

Meng, X., Bian, F. & Xie, Y. (2009) ‘Research and Realization of Geospatial Information
Service Orchestration Based on BPEL’, in International Conference on
Environmental Science and Information Application Technology. Wuhan: IEEE, pp.
642–645. doi: 10.1109/ESIAT.2009.287.

Meng, X., Xie, Y. & Bian, F. (2010) ‘Distributed Geospatial Analysis through Web
Processing Service: A Case Study of Earthquake Disaster Assessment’, Journal of
Software, 5(6), pp. 671–679. doi: 10.4304/jsw.5.6.671-679.

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E. & Houston, T. G. (2012) ‘An
Overview of the Global Historical Climatology Network-Daily Database’, Journal of
Atmospheric and Oceanic Technology, 29(7), pp. 897–910. doi: 10.1175/JTECH-D-
11-00103.1.

Miura, S. H. (2016) ‘Earth Observation data access interoperability implementation
among space agencies’, in Proceedings of the 2016 IEEE International Geoscience
and Remote Sensing Symposium (IGARSS). IEEE, pp. 3621–3623. doi:
10.1109/IGARSS.2016.7729938.

Müller, M., Bernard, L. & Brauner, J. (2010) ‘Moving Code in Spatial Data Infrastructures
- Web Service Based Deployment of Geoprocessing Algorithms’, Transactions in
GIS, 14, pp. 101–118. doi: 10.1111/j.1467-9671.2010.01205.x.

Müller, M., Bernard, L. & Kadner, D. (2013) ‘Moving code – Sharing geoprocessing logic
on the Web’, ISPRS Journal of Photogrammetry and Remote Sensing, 83, pp. 193–
203. doi: 10.1016/j.isprsjprs.2013.02.011.

NASA (2019a) Earthdata - CMR Search - API Documentation. Available at:
https://cmr.earthdata.nasa.gov/search/site/docs/search/api.html (Accessed: 1 April
2019).

NASA (2019b) MODIS Web. Available at: https://modis.gsfc.nasa.gov/data/ (Accessed:
6 March 2019).

NASA LPDAAC (2014) NASA LPDAAC - MODIS Overview. Available at:
https://lpdaac.usgs.gov/modis/overview.asp (Accessed: 8 October 2018).

Nash, E., Bobert, J., Wenkel, K., Mirschel, W. & Wieland, R. (2007) ‘Geocomputing
Made Simple: Service-Chain Based Automated Geoprocessing for Precision
Agriculture’, in Proceedings of the GeoComputation 2007. Maynooth, Ireland.

Nativi, S. & Bigagli, L. (2009) ‘Discovery , Mediation , and Access Services for Earth
Observation Data’, IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 2(4), pp. 233–240. doi: 10.1109/JSTARS.2009.2028584.

Nativi, S., Craglia, M. & Pearlman, J. (2012) ‘The Brokering Approach for
Multidisciplinary Interoperability: A Position Paper’, International Journal of Spatial
Data Infrastructures Research, 7, pp. 1–15. doi: 10.2902/1725-0463.2012.07.art1.

Nativi, S., Craglia, M. & Pearlman, J. (2013) ‘Earth science infrastructures
interoperability: The brokering approach’, IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing, 6(3), pp. 1118–1129. doi:
10.1109/JSTARS.2013.2243113.

Nativi, S., Mazzetti, P., Craglia, M. & Pirrone, N. (2014) ‘The GEOSS solution for
enabling data interoperability and integrative research’, Environmental Science and
Pollution Research, 21(6), pp. 4177–4192. doi: 10.1007/s11356-013-2264-y.

189

Nativi, S., Mazzetti, P. & Geller, G. N. (2013) ‘Environmental model access and
interoperability: The GEO Model Web initiative’, Environmental Modelling &
Software. Elsevier Ltd, 39, pp. 214–228. doi: 10.1016/j.envsoft.2012.03.007.

Nativi, S., Mazzetti, P., Santoro, M., Papeschi, F., Craglia, M. & Ochiai, O. (2015) ‘Big
Data challenges in building the Global Earth Observation System of Systems’,
Environmental Modelling & Software. Elsevier Ltd, 68, pp. 1–26. doi:
10.1016/j.envsoft.2015.01.017.

Nebert, D., Whiteside, A. & Vretanos, P. P. (2007) OpenGIS Catalogue Services
Specification. Open Geospatial Consortium Inc.

Neteler, M., Bowman, M. H., Landa, M. & Metz, M. (2012) ‘GRASS GIS: A multi-purpose
open source GIS’, Environmental Modelling and Software. Elsevier Ltd, 31, pp.
124–130. doi: 10.1016/j.envsoft.2011.11.014.

OGC (2018a) About OGC. Available at: http://www.opengeospatial.org/about (Accessed:
7 October 2018).

OGC (2018b) OGC Innovation Program. Available at:
http://www.opengeospatial.org/ogc/programs/ip (Accessed: 14 October 2018).

Ooms, J. (2014) ‘The OpenCPU System: Towards a Universal Interface for Scientific
Computing through Separation of Concerns’, eprint arXiv, (2000), pp. 1–23.

Overdick, H. (2007) ‘The Resource-Oriented Architecture’, in Proceedings of the 2007
IEEE Congress on Services (Services 2007). IEEE, pp. 340–347. doi:
10.1109/SERVICES.2007.66.

Pagani, G. A. & Trani, L. (2018) ‘Data cube and cloud resources as platform for
seamless geospatial computation’, in Proceedings of the 15th ACM International
Conference on Computing Frontiers - CF ’18. New York, New York, USA: ACM
Press, pp. 293–298. doi: 10.1145/3203217.3205861.

Pettorelli, N., Laurance, W. F., O’Brien, T. G., Wegmann, M., Nagendra, H. & Turner, W.
(2014) ‘Satellite remote sensing for applied ecologists: Opportunities and
challenges’, Journal of Applied Ecology, 51(4), pp. 839–848. doi: 10.1111/1365-
2664.12261.

Planthaber, G., Stonebraker, M. & Frew, J. (2012) ‘EarthDB: scalable analysis of MODIS
data using SciDB’, Proceedings of the 1st ACM SIGSPATIAL International
Workshop on Analytics for Big Geospatial Data - BigSpatial ’12, pp. 11–19. doi:
10.1145/2447481.2447483.

Plewe, B. (2007) ‘Web Cartography in the United States’, Cartography and Geographic
Information Science, 34(2), pp. 133–136. doi: 10.1559/152304007781002235.

Previtali, M. & Latre, M. Á. (2018) ‘A brokered Virtual Hub approach for the generation of
web applications based on historical maps’, Applied Geomatics. Applied
Geomatics, 10(4), pp. 453–472. doi: 10.1007/s12518-018-0235-1.

Radiant Earth (2018) SpatioTemporal Asset Catalog specification. Available at:
https://github.com/radiantearth/stac-spec (Accessed: 14 October 2018).

Reck, C., Storch, T., Holzwarth, S. & Schmidt, M. (2019) ‘Online Data Access and Big
Data Processing in the German Copernicus Data and Exploitation Environment
(CODE-DE)’, in Soille, P., Loekken, S., and Albani, S. (eds) Proceedings of the
2019 conference on Big Data from Space. Munich, Germany: Publications Office of
the European Union, pp. 153–156.

Reid, W. V, Chen, D., Goldfarb, L., Hackmann, H., Lee, Y. T., Mokhele, K., Ostrom, E.,
Raivio, K., et al. (2010) ‘Earth System Science for Global Sustainability: Grand
Challenges’, Science, 330(6006), pp. 916–917. doi: 10.1126/science.1196263.

Rieke, M., Bigagli, L., Herle, S., Jirka, S., Kotsev, A., Liebig, T., Malewski, C., Paschke,
T., et al. (2018) ‘Geospatial IoT—The Need for Event-Driven Architectures in

References

190

Contemporary Spatial Data Infrastructures’, ISPRS International Journal of Geo-
Information, 7(10), p. 385. doi: 10.3390/ijgi7100385.

Roy, D. P., Wulder, M. A., Loveland, T. R., C.E., W., Allen, R. G., Anderson, M. C.,
Helder, D., Irons, J. R., et al. (2014) ‘Landsat-8: Science and product vision for
terrestrial global change research’, Remote Sensing of Environment. Elsevier B.V.,
145, pp. 154–172. doi: 10.1016/j.rse.2014.02.001.

Santos, W. (2017) Which API Types and Architectural Styles are Most Used?,
ProgrammableWeb.com. Available at:
https://www.programmableweb.com/news/which-api-types-and-architectural-styles-
are-most-used/research/2017/11/26 (Accessed: 28 February 2019).

Schade, S. (2015) ‘Big Data breaking barriers - first steps on a long trail’, ISPRS -
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, XL-7/W3(MAY), pp. 691–697. doi: 10.5194/isprsarchives-XL-
7-W3-691-2015.

Schaeffer, B., Baranski, B., Foerster, T. & Brauner, J. (2012) ‘A Service-Oriented
Framework for Real-time and Distributed Geoprocessing’, in Bocher, E. and
Neteler, M. (eds) Geospatial Free and Open Source Software in the 21st Century.
Berlin, Germany: Springer Berlin Heidelberg, pp. 3–20.

Schramm, M., Pebesma, E., Wagner, W., Verbesselt, J., Dries, J., Briese, C., Jacob, A.,
Mohr, M., et al. (2019) ‘OpenEO - A standardised connection to an between Earth
Observation service providers’, in Soille, P., Loekken, S., and Albani, S. (eds)
Proceedings of the 2019 conference on Big Data from Space. Munich, Germany:
Publications Office of the European Union, pp. 229–232.

Schut, P. (2007) OpenGIS Web Processing Service, Open Geospatial Consortium.
Open Geospatial Consortium Inc.

See, L., Mooney, P., Foody, G., Bastin, L., Comber, A., Estima, J., Fritz, S., Kerle, N., et
al. (2016) ‘Crowdsourcing, Citizen Science or Volunteered Geographic Information?
The Current State of Crowdsourced Geographic Information’, ISPRS International
Journal of Geo-Information, 5(5), p. 55. doi: 10.3390/ijgi5050055.

Shao, Y., Di, L., Bai, Y., Wang, H. & Yang, C. (2013) ‘Federated Catalogue for
Discovering Earth Observation Data Konzept für einen Zentralkatalog für
Fernerkundungsdaten’, Photogrammetrie - Fernerkundung - Geoinformation,
2013(1), pp. 43–52. doi: 10.1127/1432-8364/2013/0157.

Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A. & Skakun, S. (2017) ‘Exploring
Google Earth Engine Platform for Big Data Processing: Classification of Multi-
Temporal Satellite Imagery for Crop Mapping’, Frontiers in Earth Science, 5. doi:
10.3389/feart.2017.00017.

Shibasaki, R. & Pearlman, J. (2008) ‘Guest Editorial’, IEEE Systems Journal, 2(3), pp.
302–303. doi: 10.1109/JSYST.2008.928859.

Simonis, I. (2018) Testbed 14: The Most Complex OGC Testbed Ever? Available at:
http://www.opengeospatial.org/blog/2773 (Accessed: 14 October 2018).

Sinergise (2019a) Sentinel Hub - OGC API. Available at: https://www.sentinel-
hub.com/develop/documentation/api/ogc_api (Accessed: 1 April 2019).

Sinergise (2019b) Sentinel Hub - Statistical info API documentation. Available at:
https://www.sentinel-hub.com/develop/documentation/api/fis-request (Accessed: 1
April 2019).

Siqueira, A. D. A., Lewis, A., Thankappan, M., Szantoi, Z., Goryl, P., Tadono, T.,
Rosenqvist, A., Ross, J., et al. (2019) ‘CEOS Analysis Ready Data for Land -
Supporting the Earth Observation community to get the best value from the big data
wave from Space’, in Soille, P., Loekken, S., and Albani, S. (eds) Proceedings of

191

the 2019 conference on Big Data from Space. Munich, Germany: Publications
Office of the European Union, pp. 185–188.

Smith, J. P., Hunter, T. S., Clites, A. H., Stow, C. A., Slawecki, T., Muhr, G. C. &
Gronewold, A. D. (2016) ‘An expandable web-based platform for visually analyzing
basin-scale hydro-climate time series data’, Environmental Modelling & Software.
Elsevier Ltd, 78, pp. 97–105. doi: 10.1016/j.envsoft.2015.12.005.

Soille, P., Burger, A., De Marchi, D., Kempeneers, P., Rodriguez, D., Syrris, V. &
Vasilev, V. (2018) ‘A versatile data-intensive computing platform for information
retrieval from big geospatial data’, Future Generation Computer Systems. Elsevier
B.V., 81, pp. 30–40. doi: 10.1016/j.future.2017.11.007.

Sorg, J. & Kunkel, R. (2015) ‘Conception and Implementation of an OGC-Compliant
Sensor Observation Service for a Standardized Access to Raster Data’, ISPRS
International Journal of Geo-Information, 4(3), pp. 1076–1096. doi:
10.3390/ijgi4031076.

Strobl, P., Baumann, P., Lewis, A., Szantoi, Z., Killough, B., Purss, M., Craglia, M.,
Nativi, S., et al. (2017) ‘The Six Face of Data Cube’, in Soille, P. and Marchetti, P.
G. (eds) Proceedings of the 2017 conference on Big Data from Space. Toulouse,
France: Publications Office of the European Union, pp. 32–35.

Sudmanns, M., Tiede, D., Lang, S. & Baraldi, A. (2018) ‘Semantic and syntactic
interoperability in online processing of big Earth observation data’, International
Journal of Digital Earth. Taylor & Francis, 11(1), pp. 95–112. doi:
10.1080/17538947.2017.1332112.

Sun, A. (2013) ‘Enabling collaborative decision-making in watershed management using
cloud-computing services’, Environmental Modelling & Software. Elsevier Ltd, 41,
pp. 93–97. doi: 10.1016/j.envsoft.2012.11.008.

Svobodova, L. (1985) ‘Client/Server Model of Distributed Processing’, in Heger, D.,
Krüger, G., Spaniol, O., and Zorn, W. (eds). Berlin, Heidelberg: Springer Berlin
Heidelberg, pp. 485–498.

Swain, N. R., Christensen, S. D., Snow, A. D., Dolder, H., Espinoza-Dávalos, G.,
Goharian, E., Jones, N. L., Nelson, E. J., et al. (2016) ‘A new open source platform
for lowering the barrier for environmental web app development’, Environmental
Modelling and Software, 85, pp. 11–26. doi: 10.1016/j.envsoft.2016.08.003.

Szuba, M., Ameri, P., Grabowski, U., Meyer, J. & Streit, A. (2016) ‘A Distributed System
for Storing and Processing Data from Earth-Observing Satellites: System Design
and Performance Evaluation of the Visualisation Tool’, Proceedings - 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing,
CCGrid 2016, pp. 169–174. doi: 10.1109/CCGrid.2016.19.

Tan, C. B., McMeekin, D. A., West, G. & Moncrieff, S. (2017) ‘CIAO-WPS - Utilizing
semantic web (web 3.0) techniques to assist in the automatic orchestration of
geospatial processes and datasets’, Communications in Computer and Information
Science, 741(Gistam), pp. 32–48. doi: 10.1007/978-3-319-62618-5_3.

Tan, X., Di, L., Deng, M., Fu, J., Shao, G., Gao, M., Sun, Z., Ye, X., et al. (2015)
‘Building an Elastic Parallel OGC Web Processing Service on a Cloud-Based
Cluster: A Case Study of Remote Sensing Data Processing Service’, Sustainability,
7(10), pp. 14245–14258. doi: 10.3390/su71014245.

Tan, Z., Yue, P. & Gong, J. (2017) ‘An Array Database Approach for Earth Observation
Data Management and Processing’, ISPRS International Journal of Geo-
Information, 6(12), p. 220. doi: 10.3390/ijgi6070220.

Tao, Y., Wang, X., Xu, X. & Liu, G. (2018) ‘Container-as-a-service architecture for
business workflow’, International Journal of Simulation and Process Modelling,
13(2), p. 102. doi: 10.1504/IJSPM.2018.091692.

References

192

La Torre, G., Cavallo, M., D’Amico, V., Monteleone, S. & Catania, V. (2017) ‘A Context-
Aware Solution to Improve Web Service Discovery and User-Service Interaction’,
Proceedings - 13th IEEE International Conference on Ubiquitous Intelligence and
Computing, pp. 180–187. doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-
SmartWorld.2016.0047.

Trakas, A. (2010) ‘The importance of standards bodies in EU funded projects’, CEN/TC
287 Workshop. Malta: Open Geospatial Consortium Inc.

Traore, A., Ciais, P., Vuichard, N., McBean, N., Dardel, C., Poulter, B., Piao, S., Fisher,
J., et al. (2014) ‘1982–2010 Trends of Light Use Efficiency and Inherent Water Use
Efficiency in African vegetation: Sensitivity to Climate and Atmospheric CO2
Concentrations’, Remote Sensing, 6(9), pp. 8923–8944. doi: 10.3390/rs6098923.

Truckenbrodt, J., Bongard, J., Schmullius, C. & Weise, K. (2018) ‘Hyper-temporal Water
Body Dynamics Mapping using Sentinel-1 Time Series Clustering’, in Proceedings
of the 2018 ESA Mapping Water Bodies from Space. Frascati, Italy.

Tsinaraki, C. & Schade, S. (2016) ‘Big Data – a step change for SDI?’, International
Journal of Spatial Data Infrastructures Research, 11(2010), pp. 9–19. doi:
10.2902/1725-0463.2016.11.art2.

Tsou, M.-H. (2011) ‘Revisiting Web Cartography in the United States: the Rise of User-
Centered Design’, Cartography and Geographic Information Science, 38(3), pp.
250–257. doi: 10.1559/15230406382250.

Tucker, C. J. (1979) ‘Red and Photographic Infrared Linear Combinations for Monitoring
Vegetation’, Remote Sensing of Environment, 8, pp. 127–150.

Turner, W., Rondinini, C., Pettorelli, N., Mora, B., Leidner, A. K., Szantoi, Z., Buchanan,
G., Dech, S., et al. (2015) ‘Free and open-access satellite data are key to
biodiversity conservation’, Biological Conservation. Elsevier Ltd, 182, pp. 173–176.
doi: 10.1016/j.biocon.2014.11.048.

U. S. Government (2014) ‘National plan for civil Earth Observations’. Washington, D.C.
Available at:
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/NSTC/201
4_national_plan_for_civil_earth_observations.pdf (Accessed: 14 October 2018).

Urban, M., Forkel, M., Eberle, J., Hüttich, C., Schmullius, C. & Herold, M. (2014) ‘Pan-
Arctic Climate and Land Cover Trends Derived from Multi-Variate and Multi-Scale
Analyses (1981–2012)’, Remote Sensing, 6(3), pp. 2296–2316. doi:
10.3390/rs6032296.

USGS (2018) USGS ESPA On Demand Product Guide. Available at:
https://www.usgs.gov/media/files/eros-science-processing-architecture-demand-
interface-user-guide.

USGS (2019a) EarthExplorer Service Documentation - JSON API 1.4.0. Available at:
https://earthexplorer.usgs.gov/inventory/documentation/json-api?version=1.4.0
(Accessed: 1 April 2019).

USGS (2019b) Landsat Missions: Landsat Collection 1. Available at:
https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-1 (Accessed: 6
March 2019).

USGS (2019c) Landsat Satellite Missions. Available at: https://www.usgs.gov/land-
resources/nli/landsat/landsat-satellite-missions (Accessed: 6 March 2019).

Veenendaal, B., Brovelli, M. A. & Li, S. (2017) ‘Review of Web Mapping: Eras, Trends
and Directions’, ISPRS International Journal of Geo-Information, 6(10), p. 317. doi:
10.3390/ijgi6100317.

Veenendaal, B., Brovelli, M. A. & Wu, L. (2016) ‘Cloud/web mapping and geoprocessing
services - Intelligently linking geoinformation’, ISPRS Journal of Photogrammetry

193

and Remote Sensing. International Society for Photogrammetry and Remote
Sensing, Inc. (ISPRS), 114, pp. 243–244. doi: 10.1016/j.isprsjprs.2016.03.005.

Verbesselt, J., Hyndman, R., Newnham, G. & Culvenor, D. (2010a) ‘Detecting trend and
seasonal changes in satellite image time series’, Remote Sensing of Environment.
Elsevier B.V., 114(1), pp. 106–115. doi: 10.1016/j.rse.2009.08.014.

Verbesselt, J., Hyndman, R., Zeileis, A. & Culvenor, D. (2010b) ‘Phenological change
detection while accounting for abrupt and gradual trends in satellite image time
series’, Remote Sensing of Environment. Elsevier B.V., 114(12), pp. 2970–2980.
doi: 10.1016/j.rse.2010.08.003.

Verbesselt, J., Zeileis, A. & Herold, M. (2012) ‘Near real-time disturbance detection using
satellite image time series’, Remote Sensing of Environment. Elsevier Inc., 123, pp.
98–108. doi: 10.1016/j.rse.2012.02.022.

Vinhas, L., Ribeiro De Queiroz, G., Ferreira, K. R. & Camara, G. (2016) ‘Web Services
for Big Earth Observation Data’, in Proceedings of Geoinfo 2016. Campos do
Jordao, Brazil, pp. 166–177.

Vitolo, C., Elkhatib, Y., Reusser, D., Macleod, C. J. a. & Buytaert, W. (2015) ‘Web
technologies for environmental Big Data’, Environmental Modelling & Software.
Elsevier Ltd, 63, pp. 185–198. doi: 10.1016/j.envsoft.2014.10.007.

Wagemann, J., Clements, O., Marco Figuera, R., Rossi, A. P. & Mantovani, S. (2018)
‘Geospatial web services pave new ways for server-based on-demand access and
processing of Big Earth Data’, International Journal of Digital Earth, 11(1), pp. 7–25.
doi: 10.1080/17538947.2017.1351583.

Wolfe, R. E., Roy, D. P. & Vermote, E. (1998) ‘MODIS land data storage, gridding, and
compositing methodology: Level 2 grid’, IEEE Transactions on Geoscience and
Remote Sensing, 36(4), pp. 1324–1338. doi: 10.1109/36.701082.

Woodcock, C. E., Allen, R. G., Anderson, M., Belward, A., Bindschadler, R., Cohen, W.
B., ... & Wynne, R. (2008) ‘Free Access to Landsat Imagery’, Science, 320(May),
pp. 1011–1012. doi: 10.1126/science.320.5879.1011a.

Wosniok, C., Bensmann, F., Wössner, R., Kohlus, J. & Roosmann, R. (2014) ‘Enriching
the Web Processing Service’, in Proceedings of EGU Gerneral Assemlby 2014.
Vienna, Austria.

Wu, H., You, L., Gui, Z., Gao, S., Li, Z. & Yu, J. (2014) ‘FAST: A fully asynchronous and
status-tracking pattern for geoprocessing services orchestration’, Computers &
Geosciences. Elsevier, 70, pp. 213–228. doi: 10.1016/j.cageo.2014.06.005.

Wulder, M. A., Masek, J. G., Cohen, W. B., Loveland, T. R. & Woodcock, C. E. (2012)
‘Opening the archive: How free data has enabled the science and monitoring
promise of Landsat’, Remote Sensing of Environment. Elsevier B.V., 122, pp. 2–10.
doi: 10.1016/j.rse.2012.01.010.

Wyborn, L. & Evans, B. J. K. (2015) ‘Integrating “Big” geoscience data into the petascale
national environmental research interoperability platform (NERDIP): Successes and
unforeseen challenges’, in Proceedings of the 2015 IEEE International Conference
on Big Data (Big Data). IEEE, pp. 2005–2009. doi: 10.1109/BigData.2015.7363981.

Xiao, F., Shea, G. Y. K., Cao, J. & Web, S. (2016) ‘Decentralized Orchestration of
Composite Ogc Web Processing’, in ISPRS Annals of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, pp. 7–9. doi: 10.5194/isprs-
annals-IV-4-W1-125-2016.

Xie, J. & Li, G. (2016) ‘Implementing next-generation national Earth Observation data
infrastructure to integrate distributed big Earth Observation data’, in Proceedings of
the 2016 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS). IEEE, pp. 194–197. doi: 10.1109/IGARSS.2016.7729042.

References

194

Xie, Y., Sha, Z. & Yu, M. (2008) ‘Remote sensing imagery in vegetation mapping: a
review’, Journal of Plant Ecology, 1(1), pp. 9–23. doi: 10.1093/jpe/rtm005.

Xiong, X., Chiang, K., Sun, J., Barnes, W. L., Guenther, B. & Salomonson, V. V. (2009)
‘NASA EOS Terra and Aqua MODIS on-orbit performance’, Advances in Space
Research. COSPAR, 43(3), pp. 413–422. doi: 10.1016/j.asr.2008.04.008.

Yang, C., Huang, Q., Li, Z., Liu, K. & Hu, F. (2017a) ‘Big Data and cloud computing:
innovation opportunities and challenges’, International Journal of Digital Earth,
10(1), pp. 13–53. doi: 10.1080/17538947.2016.1239771.

Yang, C., Yu, M., Hu, F., Jiang, Y. & Li, Y. (2017b) ‘Utilizing Cloud Computing to address
big geospatial data challenges’, Computers, Environment and Urban Systems, 61,
pp. 120–128. doi: 10.1016/j.compenvurbsys.2016.10.010.

Yin, D., Liu, Y., Padmanabhan, A., Terstriep, J., Rush, J. & Wang, S. (2017) ‘A
CyberGIS-Jupyter Framework for Geospatial Analytics at Scale’, in Proceedings of
the Practice and Experience in Advanced Research Computing 2017 on
Sustainability, Success and Impact - PEARC17. New York, New York, USA: ACM
Press, pp. 1–8. doi: 10.1145/3093338.3093378.

Yue, P., Zhang, C., Zhang, M., Zhai, X. & Jiang, L. (2015) ‘An SDI Approach for Big Data
Analytics: The Case on Sensor Web Event Detection and Geoprocessing
Workflow’, IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 8(10), pp. 4720–4728. doi: 10.1109/JSTARS.2015.2494610.

Yutzler, J. (2017) ‘OGC GeoPackage Encoding Standard’. Open Geospatial Consortium
Inc .

Zhang, Y., Wu, W., Wang, Q. & Su, F. (2017) ‘A Geo-Event-Based Geospatial
Information Service: A Case Study of Typhoon Hazard’, Sustainability, 9(4), p. 534.
doi: 10.3390/su9040534.

Zhao, P., Foerster, T. & Yue, P. (2012) ‘The Geoprocessing Web’, Computers &
Geosciences, 47, pp. 3–12. doi: 10.1016/j.cageo.2012.04.021.

Zhu, Z. (2017) ‘Change detection using landsat time series: A review of frequencies,
preprocessing, algorithms, and applications’, ISPRS Journal of Photogrammetry
and Remote Sensing, 130, pp. 370–384. doi: 10.1016/j.isprsjprs.2017.06.013.

195

Appendix A

A.1 Discovery of EO time-series data
Within this section, the service endpoints (URLs) and parameters available to discover EO

collections and EO scenes are given for the data providers that have been reviewed in

Section 4.1. The references of the tables contain information about parameters presented

here and further properties of the services.

ESA/Copernicus Open Access Hub (Sentinel) – OpenSearch

The following service endpoint can be used to query the catalogue:

• Open Access Hub: https://scihub.copernicus.eu/dhus/search

Table A.1: List of search parameters for Sentinel data (European Commission 2019).
Search Keyword Syntax and Examples

q Full text search

platformname Sentinel-1, Sentinel-2, Sentinel-3

beginposition

endposition

<keyword>:[<timestamp> TO <timestamp>]

footprint footprint:"intersects(<geographic type>)"

orbitnumber

lastorbitnumber

orbitnumber:<orbitnumber>
orbitnumber:[<orbitnumber> TO <orbitnumber>]

orbitdirection Ascending, Descending

polarisationmode HH, VV, HV, VH, HH HV, VV VH

producttype SLC, GRD, OCN, S2MSI1C

relativeorbitnumber relativeorbitnumber:<relativeorbitnumber>

sensoroperationalmode SM, IW, EW

cloudcoverpercentage Possible values from 0 TO 100

USGS Earth Explorer (Landsat, MODIS, Sentinel-2)–self-developed REST API

Dependent on the function, three service endpoints are available for user login, discovery

of EO collections, and discovery of EO scenes:

• Login: https://earthexplorer.usgs.gov/inventory/json/v/1.4.0/login

• Collections: https://earthexplorer.usgs.gov/inventory/json/v/1.4.0/datasets

• Satellite scenes: https://earthexplorer.usgs.gov/inventory/json/v/1.4.0/search

Table A.2: List of search parameters for collections within USGS Earth Explorer (USGS 2019a).
Search Keyword Syntax and Examples

datasetName Filter on dataset name (with wildcards)

spatialFilter Spatial filter using bounding box values

temporalFilter Temporal filter using start/end date

https://scihub.copernicus.eu/dhus/search
https://earthexplorer.usgs.gov/inventory/json/v/1.4.0/login
https://earthexplorer.usgs.gov/inventory/json/v/1.4.0/datasets
https://earthexplorer.usgs.gov/inventory/json/v/1.4.0/search

196

Table A.3: List of search parameters for scenes within USGS Earth Explorer (USGS 2019a).
Search Keyword Syntax and Examples

datasetName* Identifies the dataset

spatialFilter Spatial filter using bounding box values

temporalFilter Temporal filter using start/end date

months Used to limit results to specific months

minCloudCover
maxCloudCover

Used to limit results by minimum / maximum cloud cover

additionalCriteria Used to filter results based on dataset specific metadata fields

* Mandatory

NASA CMR (Landsat, MODIS) – self-developed REST API

The following service endpoints can be requested:

• List dataset collections: https://cmr.earthdata.nasa.gov/search/collections.json

• List scenes: https://cmr.earthdata.nasa.gov/search/granules.json

Table A.4: List of search parameters for collections within NASA CMR (NASA 2019a).
Search Keyword Syntax and Examples

entry_title Filter on dataset collection name (with wildcards)

keyword Filter dataset collections according to keywords

bounding_box Spatial filter using bounding box values

temporal Temporal filter using start/end date

Table A.5: List of search parameters for satellite scenes within NASA CMR (NASA 2019a).
Search Keyword Syntax and Examples

concept_id* Identifies the dataset

bounding_box Spatial filter using bounding box values

temporal Temporal filter using start/end date

cloud_cover Limit results by minimum, maximum cloud cover

attribute Filter results based on dataset specific metadata fields

* Mandatory

Google Earth Engine (Sentinel, Landsat, MODIS) – Python API
01 # filter collection by point geometry
02 geom_azraq = ee.Geometry.Point(36.83075, 31.79115)
03 sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD')
04 sentinel1 = sentinel1.filterBounds(geom)
05
06 # filter collection by polarization
07 sentinel1 = sentinel1.filter(
 ee.Filter.listContains('transmitterReceiverPolarisation', 'VV'))
08
09 # filter collection by orbit pass (ASCENDING, DESCENDING)
10 vvAscending = sentinel1.filter(
 ee.Filter.eq('orbitProperties_pass', 'ASCENDING'))
11 response = vvAscending.getInfo()
Listing A.1: Filtering Sentinel-1 Collection by point geometry, VV polarization and descending orbit
direction using the Python-based Earth Engine library.

https://cmr.earthdata.nasa.gov/search/collections.json
https://cmr.earthdata.nasa.gov/search/granules.json

197

Sinergise Sentinel-Hub (Sentinel, Landsat) – OGC WFS

The following service endpoint can be requested for the OGC Web Feature Service

(INSTANCE_ID need to be replaced by a commercial service key):

• Satellite scenes: http://services.sentinel-hub.com/ogc/wfs/{INSTANCE_ID}

Table A.6: List of parameters to use the Sentinel-Hub WFS service for scene search (Sinergise
2019a).
Keyword Value(s)

service WFS

version 2.0.0

request GetFeature

typenames Name of dataset collection
(e.g., S1.TILE, S2.TILE, L8.TILE, L7.TILE, L5.TILE)

bbox Filter by bounding box

outputFormat XML (text/xml; default) or GeoJSON (application/json)

maxcc Optional: Maximum cloud coverage for scenes

time Optional: Filter through time (STARTTIME/ENDTIME/P1D)

CEOS WGISS Integrated Catalog (CWIC) – OGC CSW, OpenSearch

The following service endpoint has been requested in this thesis:

• OGC CSW: https://cwic.wgiss.ceos.org/cwicv1/discovery

GEODAB (Sentinel, Landsat, MODIS) – OGC CSW, OpenSearch

OGC CSW and OpenSearch have been used with the following URLs:

• OGC CSW: http://production.geodab.eu/gi-cat-StP/services/cswiso

• OpenSearch: http://production.geodab.eu/gi-cat-StP/services/opensearch

ESA FedEO (Landsat, Sentinel, MODIS) – OGC CSW, OpenSearch

The web service based on the OpenSearch specification is available at the following URL

(description document):

• OpenSearch: http://fedeo.esa.int/opensearch/request

http://services.sentinel-hub.com/ogc/wfs/%7bINSTANCE_ID%7d
https://cwic.wgiss.ceos.org/cwicv1/discovery

198

A.2 Access to EO time-series data
Within this section, the service endpoints (URLs) and parameters available to access EO

scenes are given for the data providers that have been reviewed in Section 4.2. The

references of the tables contain information about parameters presented here and further

properties of the services.

USGS ESPA (Landsat, MODIS) – self-developed REST API

The following services can be requested (excerpt):

- Send order: POST https://espa.cr.usgs.gov/api/v0/order (Table A.7)

- List orders: GET https://espa.cr.usgs.gov/api/v0/list-orders

- Get order status: GET https://espa.cr.usgs.gov/api/v0/order-status/<ordernum>

- Get order details: GET https://espa.cr.usgs.gov/api/v0/order/<ordernum>

- Get item status: GET https://espa.cr.usgs.gov/api/v0/item-status/<ordernum>

Table A.7: List of parameters to order pre-processed satellite data using USGS ESPA (USGS
2018).

Search Keyword Syntax and Examples

inputs* List of satellite scenes separated by satellite sensor

products* Products to generate (e.g., "bt", "sr", "sr_ndvi", "sr_evi", "sr_savi",
"sr_msavi", "sr_ndmi", "sr_nbr", "pixel_qa")

format* GeoTIFF, HDF-EOS2, ENVI, NetCDF

projection Projection

image_extents Bounding box values (output projection need to be specified)

resize Value in meters

resampling_method “nn”, “bil”, “cc”

* Mandatory

ESA/Copernicus Open Access Hub (Sentinel) – Open Data Protocol

The following services are available:

- Querying products: https://scihub.copernicus.eu/apihub/odata/v1/Products

- Querying collections: https://scihub.copernicus.eu/apihub/odata/v1/Collections

The metadata of a specific product identifier can be queried as follows, whereas the last

part is the internal scene identifier. Within the response additional links for data download

and quick-look images are included:

https://scihub.copernicus.eu/dhus/odata/v1/Products('2b17b57d-fff4-4645-b539-

91f305c27c69')

https://espa.cr.usgs.gov/api/v0/order
https://espa.cr.usgs.gov/api/v0/list-orders
https://espa.cr.usgs.gov/api/v0/order-status/%3cordernum
https://espa.cr.usgs.gov/api/v0/order/%3cordernum
https://espa.cr.usgs.gov/api/v0/item-status/%3cordernum
https://scihub.copernicus.eu/apihub/odata/v1/Products
https://scihub.copernicus.eu/apihub/odata/v1/Collections
https://scihub.copernicus.eu/dhus/odata/v1/Products('2b17b57d-fff4-4645-b539-91f305c27c69')
https://scihub.copernicus.eu/dhus/odata/v1/Products('2b17b57d-fff4-4645-b539-91f305c27c69')

199

Sinergise Sentinel-Hub (Sentinel, Landsat) – OGC WCS, FIS

The following service endpoint can be requested for the OGC Web Coverage Service

(INSTANCE_ID need to be replaced by a commercial service key):

• OGC WCS: http://services.sentinel-hub.com/ogc/wcs/{INSTANCE_ID}

• FIS: http://services.sentinel-hub.com/v1/fis/{INSTANCE_ID}

Table A.8: List of parameters to use the Sentinel-Hub WCS service for download (Sinergise 2019a).
Keyword Value(s)

service WCS

version 1.0.0

request GetCoverage

coverage Name of product to download (e.g., NDVI, TRUE_COLOR)

bbox Filter by bounding box

time Mosaic images in time range (STARTTIME/ENDTIME/P1D)

format Download file format (e.g., image/tiff for GeoTIFF)

evalscript
optional

This parameter allows for a custom script or formula specifying how

the output will be generated from the input bands.

Table A.9: List of parameters to use the Sentinel-Hub FIS for data extraction (Sinergise 2019b).
Keyword Value(s)

layer Preconfigured layer based on which the statistics are computed

crs Coordinate reference system

time Filter through time (STARTTIME/ENDTIME/P1D)

resolution Spatial resolution in meters per pixel

geometry Geometry in WKT format describing the region of interest

bbox Bounding box describing the region of interest

style Style overrides the one specified in the layer configuration

maxcc Maximum cloud coverage for scenes

Example Google Earth Engine Python API request
1 # define geometry and image collection
2 geom = ee.Geometry.Point(36.83075, 31.79115);
3 collection = ee.ImageCollection('MOD13Q1')
4
5 # filter image collection by point geometry
6 collection = collection.filterBounds(geom)
7
8 # extraction time-series information from collection for geometry
9 data = collection.getRegion(geom, None, 'SR-ORG:6974', crs).getInfo()

Listing A.2: Data access for point-based extraction of time-series for MODIS MOD13Q1 Vegetation
Index dataset using the Google Earth Engine Python API.

http://services.sentinel-hub.com/ogc/wcs/%7bINSTANCE_ID%7d
http://services.sentinel-hub.com/v1/fis/%7bINSTANCE_ID%7d

200

Selbstständigkeitserklärung
Ich erkläre, dass ich die vorliegende Arbeit selbstständig und unter Verwendung der

angegebenen Hilfsmittel, persönlichen Mitteilungen und Quellen angefertigt habe.

Ort, Datum Unterschrift des Verfassers

201

Acknowledgements
I would like to express my sincere gratitude to my supervisor Prof. Christiane Schmullius,

who gave me the opportunity to come to Jena to study, work, and do research. During the

past years I have had great opportunities to further my education, to make national and

international contacts, to visit various national and international conferences, and to

extensively explore my research field of interest. I am also very grateful to her for her

support, long patience, as well as good advices and hints when writing my doctoral thesis.

I would also like to thank my second supervisor, Prof. Lars Bernard, who gave very good

comments and hints for the polish of the thesis.

A big thank you also to Dr. Christian Hüttich, with whom I discussed major ideas of my

work and who supported all concepts of my work. The exchange with him was and still is

very important and helpful. I would also like to thank my long-time companions and friends

at the department, Dr. Marcel Urban, Robert Eckardt, Dr. Christian Berger and Dr.

Christian Thiel, with whom I enjoyed working and discussing. Many thanks also to all other

employees of the Remote Sensing Department. I would also like to thank Dr. Christian

Strobl from the German Aerospace Center for the scientific, technical, and social

exchange over the past years.

I would like to thank Franziska Zander for her many critical comments, good suggestions,

and repeated proofreading. My thanks also to Dr. Rene Höfer for the proofreading and the

always interesting exchange within the recent projects.

For their cooperation and support in the implementation of the sample applications, many

thanks also to John Truckenbrodt (R-Shiny Toolkit, pyroSAR), Felix Glaser (GEO-

Wetlands Community Portal, Open Data Cube for Wetlands), Franziska Zander (GEO-

Wetlands Community Portal), Marc Becker (R-Shiny Toolkit), Siegfried Clausnitzer (SIB-

ESS-C, EOM), and Anna Homolka (SIB-ESS-C), which could only be implemented so

numerously with their support. An additional thank you goes to my graphic designer and

friend Tobias Burger for the design for all of the web portals and mobile applications.

Finally I would like to thank my friends and my family for their constant support, the many

conversations, and wisdom. Special thanks to my parents, Elisabeth and Dieter, for their

great guidance, motivation, and care.

	Abstract
	Kurzfassung
	Publications
	Table of contents
	List of figures
	List of tables
	List of code listings
	Abbreviations

	Outline
	Chapter 1: Introduction
	1.1 Motivation
	1.2 History
	1.3 Current State of Research
	1.4 Scientific Questions

	Chapter 2: Definitions and Requirements
	2.1 Case Study: Satellite-based Vegetation Monitoring
	2.1.1 Earth Observation data
	2.1.2 Analysis tools
	2.1.3 Conclusions

	2.2 User Personas
	2.2.1 Scientists
	2.2.2 Thematic experts
	2.2.3 Software developers
	2.2.4 Summary

	2.3 Requirements
	2.3.1 Web platforms
	2.3.2 Web technologies
	2.3.3 Data formats
	2.3.4 Summary and conclusions

	Chapter 3: State of the Art
	3.1 Web Technologies
	3.1.1 Web service architectures
	3.1.2 Standardization
	3.1.3 Structured data formats
	3.1.4 Web service software
	3.1.5 Cloud-based infrastructures
	3.1.6 Web platforms

	3.2 EO Time-series Data Services and Formats
	3.2.1 Discovery
	3.2.2 Access
	3.2.3 Brokering
	3.2.4 Visualization
	3.2.5 Processing and analysis
	3.2.6 Data formats

	3.3 Summary and Evaluation

	Chapter 4: Review of EO Web Services, Tools, and Platforms
	4.1 Discovery of EO Time-series Data
	4.1.1 Data provider solutions
	4.1.2 Brokered web service solutions
	4.1.3 Conclusions

	4.2 Access to EO Time-series Data
	4.2.1 Data access services
	4.2.2 Data download links
	4.2.3 Data extraction services
	4.2.4 Conclusions

	4.3 Processing of EO Time-series Data
	4.3.1 Programming languages
	4.3.2 Geospatial tools
	4.3.3 Conclusions

	4.4 Cloud-based EO Time-series Data Platforms
	4.4.1 Virtual environments
	4.4.2 Processing platforms
	4.4.3 Service platforms
	4.4.4 Conclusions

	4.5 Recommendations

	Chapter 5: Concepts and Methods
	5.1 Service-based EO Time-series Data Middleware
	5.1.1 Concept of a regional data middleware system
	5.1.1.1 Middleware components
	5.1.1.2 System architecture
	5.1.1.3 Spatial data infrastructure

	5.1.2 User-aligned web services
	5.1.2.1 The human–machine interface
	5.1.2.2 Service chaining

	5.1.3 User-aligned output formats
	5.1.3.1 OGC web services
	5.1.3.2 Figures and charts
	5.1.3.3 Statistical summaries

	5.1.4 Implementation: Middleware software architecture and web services
	5.1.4.1 Content Management System
	5.1.4.2 Geospatial web services
	5.1.4.3 Processing web services

	5.2 Service Brokering for Multi-source Data Discovery and Access
	5.2.1 The concept of web service brokering
	5.2.1.1 Brokering methods
	5.2.1.2 Metadata quality enhancement

	5.2.2 Metadata model
	5.2.2.1 Metadata extensions
	5.2.2.2 On-the-fly computed properties
	5.2.2.3 Additional download links
	5.2.2.4 Interactive satellite scene browsing

	5.2.3 Discovery output formats
	5.2.3.1 CSV spreadsheet files
	5.2.3.2 Summary output by year and by satellite

	5.2.4 Implementation: EO time-series data discovery and access brokering
	5.2.4.1 Discovery brokering software
	5.2.4.2 Access brokering software

	5.3 Unified EO Time-series Data Structure and Analysis
	5.3.1 Common EO time-series data structure
	5.3.1.1 Spatial time-series data management
	5.3.1.2 Data processing information

	5.3.2 Specifications for data processing tools
	5.3.2.1 Programming languages
	5.3.2.2 Geospatial tools

	5.3.3 Specifications for data analysis
	5.3.3.1 Preprocessing and inputs data formats
	5.3.3.2 Algorithm execution
	5.3.3.3 Postprocessing and output data formats

	5.3.4 Implementation: EO time-series data processing and analysis
	5.3.4.1 Data access software
	5.3.4.2 Raster time-series metadata
	5.3.4.3 Time-series analysis software

	Chapter 6: Example Use Cases
	6.1 The Siberian Earth System Science Cluster
	6.1.1 SIB-ESS-C Middleware
	6.1.2 Web portal

	6.2 Earth Observation Monitor
	6.2.1 EOM Middleware
	6.2.2 webEOM
	6.2.3 mobileEOM
	6.2.4 MySeasons App

	6.3 GEO-Wetlands Community Portal
	6.3.1 Middleware
	6.3.2 Web portal
	6.3.3 Open Data Cube for Wetlands
	6.3.4 Sentinel–1 Surface Water Dynamics Toolkit

	Chapter 7: Results and Discussion
	7.1 Centralization of EO time-series data at regional scales
	7.1.1 Regional data middleware approach
	7.1.2 Application development
	7.1.3 Regional use cases

	7.2 Harmonization of EO Time-series Service Interfaces
	7.2.1 WPS-based EO web services
	7.2.2 EO data discovery broker

	7.3 Standardization of EO Time-series Data Structure and Formats
	7.3.1 EO time-series data structure and format
	7.3.2 User-aligned output formats

	Chapter 8: Conclusions and Outlook
	8.1 Responses to the research questions
	8.2 Conclusions
	8.3 Outlook

	References
	Appendix A
	A.1 Discovery of EO time-series data
	A.2 Access to EO time-series data

	Selbstständigkeitserklärung
	Acknowledgements

