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Abstract 
The increasing amount of freely available Earth observation (EO) data requires a 

tremendous change, in order to property handle the number of observations and storage 

size thereof used for the environmental monitoring of land surfaces. In the near future, the 

processing of EO data will need to be undertaken close to EO data archives as the 

downloading of large amounts requires too much time and storage capacity. It is not only 

scientists and geospatial processing specialists who work with EO data; stakeholders, 

thematic experts, and software developers do too. Due to open data strategies and the 

increasing size of data archives, a new market has been developed to provide analysis 

and application-ready data, services, and platforms. There is thus a great demand for 

improving the discovery, access, and analysis of EO data in line with the new possibilities 

of web-based infrastructures. With the aim of bridging the gap between users and EO data 

archives, various topics have been researched: 1) user requirements and their relation to 

web services and output formats; 2) technical requirements for the discovery, access, and 

analysis of multi-source EO time-series data, and 3) management of EO time-series data 

focusing on analysis and application-ready data. 

State of the Art: Current web technologies enable the interactive exploration of EO data 

in distributed infrastructures based on web-service architectures. EO data has been made 

available through web services for search, download, exploration, and analysis. 

Standardized service specifications that support the interoperable use of the services exist 

(e.g., from the Open Geospatial Consortium and the World Wide Web Consortium). 

Although web services and cloud-based infrastructures are widely used in the EO domain 

for data discovery, access, and processing, data providers employ different service 

specifications, and response formats are mainly optimized for machine-to-machine 

communication, in contrast to formats suitable for non-technical end users (e.g., scientists 

and thematic experts). Although web technologies enable modern web services, there 

remains a gap between users and providers. 

Review: Existing web services for EO data discovery and access, time-series data 

processing, and web-based EO platforms are reviewed and related to the requirements of 

user personas. For multi-source discovery and access services, a key issue is having to 

learn different service specifications. The diversity of data providers and web services 

available means that specific knowledge of these systems and specifications is required. 

Although standards for service specifications and brokering systems for the discovery of 

EO data exist, improvements are still necessary to meet the requirements of different user 

personas. For the processing of EO time-series data, various data formats and 
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preprocessing steps need to be considered. A conversion of the data format and structure 

is often required to conduct analyses in programming languages and with analysis tools. 

Today, there remains a gap between EO time-series data access and analysis tools, which 

needs to be addressed to simplify work with such data. A variety of cloud infrastructures 

and platforms for EO data processing have been launched in recent years (e.g., Google 

Earth Engine, Copernicus Data and Information Access Services), and software exists to 

provide web-based interactive platforms (e.g., Open Data Cube and Jupyter Notebook). 

These enable users to access and process EO data using web browsers rather than 

geographic information systems installed on the user’s computer. However, each 

infrastructure or platform hosts different sets of EO data, analysis tools, algorithm 

development environments, and other functions. Thus, the decision regarding which of 

these to use depends on the specific knowledge of the user, the data, and the analysis to 

be conducted.  

Concepts, methods, and applications: To bridge the gap between users and data 

providers, concepts and methods have been defined, focusing on service-based 

exploration, multi-source EO time-series data discovery and access, and uniform EO time-

series data management and analysis. For each of these, the requirements of different 

user personas are considered, which leads to a uniform service specification, multiple and 

user-specific response formats, a harmonized data structure, and analysis tools directly 

linked to EO data. New concepts and methods for user-aligned platforms, services, and 

output formats are described. These are demonstrated in, for example, web and mobile 

applications with the aim of simplifying discovery, access, and analysis in order to focus 

on the exploration of EO time-series data.  

Results: Results are presented and discussed in relation to user-specific exploitation of 

EO time-series data: 1) the centralization of EO time-series data at regional scales enables 

the development of user-specific platforms; 2) the harmonization of service interfaces 

makes data discovery, access, and analysis uniform; and 3) the standardization of EO 

time-series data structure and formats simplifies analysis and usage in geospatial tools.  

Conclusions and outlook: The complete workflow of EO time-series data-handling, with 

a focus on user-aligned web services, is reviewed and new concepts are designed and 

developed. It can be concluded that there is a need for more user-driven design and 

development of services, which would lead to automated workflows, harmonized service 

interfaces, and user-aligned data formats. Research topics such as interoperable time-

series data discovery and access, data cubes, cloud-based infrastructures, and analysis-

ready data highlight the nature of the next generation of web-based EO data exploration. 
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Kurzfassung 
Die zunehmende Menge an frei verfügbaren Erdbeobachtungsdaten (EO-Daten) erfordert 

eine Veränderung im Umgang mit der Anzahl an Beobachtungen sowie der 

Speichergröße der Daten, die für Umweltüberwachungen von Landoberflächen 

verwenden werden. Schon in naher Zukunft muss die Datenverarbeitung zu den 

Datenarchiven geschoben werden, da das Herunterladen großer Zeitreihendaten zu viel 

Zeit und Speicherkapazitäten erfordert. Darüber hinaus arbeiten nicht mehr nur 

Wissenschaftler und GIS-Entwickler mit den Daten, sondern unter anderem auch 

thematische Experten und allgemeine Softwareentwickler. Daher besteht ein hoher Bedarf 

an einer Verbesserung der Suche, des Zugriffs und der Analyse von EO-Daten mit Bezug 

auf neue Möglichkeiten in web- und cloud-basierten Infrastrukturen. Mit dem Ziel, die 

Lücke zwischen Nutzern und Datenprovidern zu schließen, wurden in dieser Arbeit 

verschiedene Aspekte untersucht und erforscht: 1) Benutzeranforderungen und deren 

Auswirkungen auf die Bereitstellung von Webdiensten und Datenformate. 2) Technische 

Anforderungen für die Suche, den Zugriff und die Analyse von EO-Zeitreihendaten. 3) 

Verwaltung von EO-Zeitreihendaten in Verknüpfung mit anschließender Datenanalyse. 

Stand der Technik und Forschung: Aktuelle Webtechnologien ermöglichen die 

interaktive Erforschung von EO-Daten in verteilten Infrastrukturen auf Basis von 

Webdienst-Architekturen. Webdienste für die Suche, den Zugriff und die Analyse stehen 

zumeist über standardisierte Spezifikationen zur Verfügung, die eine interoperable 

Nutzung der Dienste ermöglichen. Obwohl Webdienste und Cloud-basierte Infrastrukturen 

für die Suche nach, den Zugriff auf und die Verarbeitung von EO-Daten weit verbreitet 

sind, nutzen Datenanbieter unterschiedliche Spezifikationen und Ausgabeformate. Bisher 

sind diese hauptsächlich für die Maschine-zu-Maschine-Kommunikation optimiert, die für 

nicht-technische Endanwender (z.B. Wissenschaftler, thematische Experten) allerdings 

nicht geeignet sind. Obwohl aktuelle Webtechnologien moderne Webdienste ermöglichen, 

gibt es immer noch eine Lücke zwischen Nutzern und Anbietern im Bereich der 

Erdbeobachtung. 

Analyse: Eine Analyse vorhandener Webdienste für die Suche nach, den Zugriff auf und 

die Verarbeitung von EO-Daten sowie web-basierten Verarbeitungs- und 

Datenplattformen wurde durchgeführt und auf die Anforderungen verschiedener 

Benutzergruppen untersucht. Die Vielfalt der Datenanbieter und deren Webdienste 

erfordern spezifische Kenntnisse in diesen Systemen und Spezifikationen. Obwohl es 

Standards für Webdienste und Brokeringsysteme im Geodatenbereich gibt, ist noch 

Verbesserungsbedarf vorhanden, um den Anforderungen der Benutzer gerecht zu 
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werden. Für die Verarbeitung von EO-Daten sind unterschiedliche Datenformate und 

Vorverarbeitungsschritte zu berücksichtigen. Eine Konvertierung von Datenformat und -

struktur ist oft notwendig, um Analysen in Anwendungen durchführen zu können. Noch 

heute besteht eine Lücke zwischen dem Zugriff auf EO-Zeitreihendaten und 

Analysewerkzeugen. Diese muss geschlossen werden, um die Arbeit mit EO-Daten für 

alle Benutzergruppen zu erleichtern. In den letzten Jahren wurde eine Vielzahl von Cloud-

Infrastrukturen und Plattformen für die Verarbeitung von EO-Daten eingeführt und 

Software für webbasierte interaktive Plattformen zur Verfügung gestellt. Beide 

ermöglichen es den Benutzern, über Webbrowser auf EO-Daten zuzugreifen und diese 

zu verarbeiten, anstatt diese auf dem Computer des Benutzers durchzuführen. Jede 

Infrastruktur und Plattform enthält jedoch verschiedene Daten und Analysetools. Somit 

hängt eine Entscheidung, welches System verwendet werden kann, von den Kenntnissen 

des Benutzers und den zu analysierenden Daten und Analysen ab.  

Konzepte, Methoden und Anwendungen: Um das Auffinden, den Zugriff und die 

Analyse von EO-Daten zu vereinfachen und damit die Lücke zwischen Nutzern und 

Datenanbietern zu schließen, wurden die Bereiche Webdienst-basierte Erforschung von 

EO-Daten, standardisierte Suche und Zugriff verschiedener EO-Daten sowie einheitliches 

Datenmanagement und -analyse erforscht. Auf Basis der Anforderungen verschiedener 

Benutzergruppen wurden einheitliche Webdienstspezifikationen, spezifische Daten-

formate sowie harmonisierte Datenstrukturen in Verbindung mit Analysewerkzeugen 

entwickelt. Diese wurden in Beispielanwendungen demonstriert.  

Ergebnisse: Der gesamte Ablauf zur Verarbeitung von EO-Daten wurde im Rahmen 

dieser Arbeit analysiert sowie mit Schwerpunkt auf benutzerorientierten Webdiensten neu 

entworfen und entwickelt. Ergebnisse in Bezug auf die benutzerspezifische Erforschung 

von EO-Zeitreihendaten können wie folgt aufgezeigt werden: 1) Die Zentralisierung der 

EO-Daten auf regionaler Ebene ermöglicht die Entwicklung benutzerspezifischer 

Plattformen. 2) Die Harmonisierung der Webdienste vereinheitlicht die Datensuche, den 

Zugriff und die Analyse. 3) Die Standardisierung der EO-Datenstruktur vereinfacht die 

Analyse und die Anbindung an geografische Werkzeuge.  

Schlussfolgerungen und Ausblick: Eindeutig erkennbar ist ein Bedarf an einer stärker 

benutzerorientierten Gestaltung und Entwicklung von Diensten und Plattformen, die zu 

automatisierten Arbeitsabläufen, benutzerorientierten Datenformaten und harmonisierten 

Webdiensten führen muss. Diese sind auch für zukünftige Forschungsarbeiten wie 

interoperable Zeitreihendatensuche und -datenzugriff, Datenwürfel, Cloud-basierte 

Infrastrukturen und die Bereitstellung von analysierbaren Daten relevant. 
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Chapter 1: Introduction 
Changes of the environment are ongoing and need to be observed on an ongoing basis 

to achieve environmental and sustainable development goals (Reid et al. 2010). Earth 

observation (EO) data can foster monitoring activities to analyze these environmental 

changes. The importance of EO data has been recognized by diverse research 

communities, funding agencies, and governments, with new satellites continuing to be 

launched (Berger et al. 2012). Archives of EO data enable the derivation of information 

about the changing planet. Many of these data archives have been made available to the 

public in recent years in terms of a free and open data policy (Woodcock et al. 2008; 

Aschbacher & Milagro-Pérez 2012). This addresses the increasing demands of users 

analyzing environmental changes and leads to research and the capability to establish 

monitoring services for environmental purposes using EO data (Wulder et al. 2012; Roy 

et al. 2014; Turner et al. 2015).  

A wide range of activities is based on the analysis of EO time-series data as these can be 

used on an ongoing basis to identify trends and changes of the environment (Gutman & 

Masek 2012; Lasaponara & Lanorte 2012; Kuenzer et al. 2015). Using EO time-series 

data allows the study of environmental changes around the world. EO data is accessible 

as near real-time data, though it also comprises archival material dating back more than 

40 years. This allows the derivation of ready-to-use information for several subjects (e.g., 

biodiversity, ecology, and agriculture) in support of science and policy-making (Atzberger 

2013; Kuenzer et al. 2014; Pettorelli et al. 2014; Turner et al. 2015). Research on the 

analysis of vegetation time-series data has been widely conducted, resulting in analysis 

tools that can be used in operational land-monitoring systems and connected to EO data 

archives (Verbesselt et al. 2010a; Forkel et al. 2013; De Jong et al. 2013). 

With new satellites being launched regularly and the increasing amount of EO data that is 

based on open data licenses, big data technologies have been introduced into the 

geospatial domain (Birkin 2013). As the use of EO data in research and industry has 

increased tremendously (Ma et al. 2015; Nativi et al. 2015), new technologies need to be 

considered for handling EO time-series data. With the increasing size and number of EO 

data archives, the processing of these data needs to be adjusted in order to lead to 

automated workflows, distributed processing, parallelization, and scalable cloud-based 

infrastructure (Yang et al. 2017a). Data cubes and web-based processing systems have 

recently been combined with large EO data archives, enabling users to conduct 

processing in close proximity to data archives (Pagani & Trani 2018; Yang et al. 2017b).  
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The geospatial web has evolved rapidly in recent years, allowing the development of 

interactive web-based tools, applications for mobile devices, and web services 

(Veenendaal et al. 2017). Brokering systems and data cubes have been introduced to 

reduce limiting factors in relation to data discovery, access, and processing. Web-based 

tools can be developed with commonly used scripting languages without the need to 

conduct web development (Swain et al. 2016; Yin et al. 2017).  

However, there are many challenges in terms of the discovery, access, and analysis of 

EO time-series data that need to be improved: Data discovery and access of EO time-

series data still involve complex data processing tasks. For further analysis, EO data 

needs to be prepared in order to be used in geographic information systems and analysis 

tools. Although geospatial standards are available to provide discovery of and access to 

EO time-series data (Nativi & Bigagli 2009), users need to learn many specifications to 

handle the data provided by distributed environments. To answer a question such as “Was 

my area of interest affected by floods in recent years?” the user has to find EO data for 

the relevant area and conduct downloading and processing steps for each date. Many of 

these technical challenges can be resolved and automated. Access to EO data and 

analysis tools must be simplified in order to make it more user-friendly. Thus, in this thesis, 

new approaches for providing user-aligned and standardized web services, which enable 

a simplified exploration of EO time-series data, are investigated.  

This thesis is structured as follows (also see Figure 1.1): An introduction is provided in this 

chapter, including the motivation for this study, the history of digital EO, the current state 

of research, and scientific questions. A scientific overview that includes definitions and 

requirements, the state of the art, and a review of EO web services, tools, and platforms 

is presented in Chapters 2–4. The case study, user personas, and user requirements are 

described in Chapter 2. The state of the art (Chapter 3) focuses on web technologies and 

EO time-series data services and formats. These are evaluated according to the user 

requirements. An overall review is conducted in Chapter 4, which describes how data 

providers offer web services and what kinds of cloud-based EO platforms are available. 

The own research, developments, and results are described in Chapters 5–7, including 

the concepts and methods, example use cases, and the results. Methodological concepts 

and methods are defined and grouped into three fields which are described in Chapter 5: 

1) service-based EO time-series data middleware, 2) service brokering for multi-source 

data discovery and access, and 3) unified EO time-series data structure and analysis. 

These methods have been implemented in several applications, which are described in 

Chapter 6. The results are summarized and discussed in Chapter 7. Finally, Chapter 8 

closes the thesis with responses to the research questions, conclusions, and outlook. 
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Figure 1.1: Overall structure of the thesis.  

1.1 Motivation 
For both the increasing amount of freely available EO data and the increasing demand for 

ready-for-use information, new technologies need to be researched to improve data 

discovery, access, and analysis. Although most of the data can already be accessed 

through the World Wide Web, there remain limiting factors to making such data 

discoverable and available with user-aligned and automated approaches. To benefit from 

increasing data availability, a lowering of barriers to discovering, accessing, and analyzing 

EO data is required. Scientists would then be able to focus on the use of analysis tools 

and the interpretation of the results of analysis. Thematic experts, students, and citizens, 

who mostly do not have a deep knowledge of geospatial data processing and web 

services, would be able to make use of modern web and mobile applications with a direct 

visualization of EO data and the results of analysis.  

In recent years, the World Wide Web has been transformed from presenting only static 

information to including dynamic applications and web services. Web technologies have 

been improved with the further development of geospatial web and mobile applications 

based on web services (Veenendaal et al. 2017). Combined with the processing 

capabilities of centralized server infrastructures, EO data archives can be made available 

using user-aligned services and applications. With the use of web services, the complex 
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processing of data in general can be hidden from users. There is an increasing demand 

for the development and provision of web-based applications and services to support 

scientists, thematic experts, stakeholders, decision-makers, and citizens with information 

about the changing environment. Applications for environmental subjects, such as 

deforestation, wetland observation, vegetation change, and disaster management, can be 

based on EO data and provide useful information about environmental changes. To 

ensure the easy use of EO data for all kind of users, applications need to be developed 

by means of user-aligned approaches.  

Providing geospatial data has been an important task in recent years. Several initiatives, 

such as the Infrastructure for Spatial Information in Europe (INSPIRE; European 

Commission 2018), have commenced to ensure that official geospatial data is being made 

available in a standardized manner. The Group on Earth Observation (GEO) published its 

Global Earth Observation System of Systems (GEOSS; Shibasaki & Pearlman 2008) to 

provide a centralized entry point for EO data. Thus far, it comprises a vast range of 

metadata for geospatial and EO data in a metadata catalogue. Within GEOSS, data 

access, especially for time-series data, remains behind the possibilities of current web 

technologies. As many data providers make their data publicly available, everyone is able 

to access this data, derive information, and distribute it to other users. However, in most 

cases, users need to have knowledge of data handling and processing in order to provide 

data and derived information. Although interoperability has been established with 

standardized specifications, the focus has primarily been on machine-to-machine 

interaction. Nevertheless, with many existing tools, the requirements of multiple user 

personas (e.g., scientists, thematic experts, stakeholders) have not yet been fully 

considered. Domain experts, decision-makers, and general users are not familiar with 

data-processing techniques and always need a considerable amount of time to 

understand how they can retrieve and process EO data. 

Today, many EO data archives are available on the World Wide Web and can be accessed 

free of charge. Metadata catalogues exist for searching and finding data, which, in many 

cases, is published as web services to be integrated in applications. Web portals are 

available to search, find, and download data. In addition, web-based tools are available 

for analyzing datasets. However, most of the tools are standalone software and cannot be 

used or integrated in other applications. Such integrations are necessary to fulfill the 

requirements of different users and to allow them to build their own applications. The tools 

available often focus only on specific user personas and are not flexible enough to support 

multiple personas. Integration in applications and the standardized provision of these tools 

in particular need therefore to be considered in current research.  
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1.2 History 
In the context of a digitizing Earth, former vice-president of the United Sates Al Gore made 

a clear statement in 1998 about how to proceed with handling spatial data on 

environmental change:  

A new wave of technological innovation is allowing us to capture, store, 

process and display an unprecedented amount of information about our 

planet and a wide variety of environmental and cultural phenomena. Much 

of this information will be geo-referenced […] I believe we need a Digital 

Earth. A multi-resolution, three-dimensional representation of the planet, 

into which we can embed vast quantities of geo-referenced data. (Gore 

1998, p. 89) 

Several international actions followed, such as measuring the Earth in the course of digital 

elevation model datasets, the launch of operational satellites to monitor the Earth (e.g., 

NASA’s Terra and Aqua satellites), the development of international and national spatial 

data infrastructures, and the establishment of sensor networks.  

A review of geospatial web mapping is provided by Veenendaal et al. (2017), starting with 

the beginning of the World Wide Web in 1989. Twenty-eight years of history is split into 

nine web-mapping eras: static, dynamic, services, interactive, collaborative, digital globe, 

mobile, cloud, and intelligent (Figure 1.2). Plewe (2007) and Tsou (2011) describe five 

generations of web mapping, from static through dynamic, interactive, virtual globes, to 

cloud computing. Both studies conclude that there needs to be a greater focus on the 

needs of users and greater engagement of users in designing web-based applications and 

services. Further directions for web mapping are towards the intelligent use of data for 

knowledge generation for diverse users and applications, in addition to the generation of 

better information and services focused and filtered to their needs (Veenendaal et al. 

2017).  

In the EO domain, the increasing availability of EO satellites fosters the analysis of 

environmental change on Earth. The recently launched Sentinel satellites of the European 

Copernicus program come with a free and open data policy and a wide range of new 

satellites and data products. In addition, the extensive archives of the National Aeronautics 

and Space Administration (NASA) and the United States Geological Survey (USGS) are 

open to the public and widely used in research, and the satellites of these organizations 

are still operational, with up-to-date datasets. With such free and open data policies, many 

datasets are available to be used in research and decision-making processes related to 

environmental and climate change. The demand of information about the changing 
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Earth—such as that pertaining to climate change, vegetation change, and disaster 

management—is increasing. EO data can be used to fulfill many of these demands. The 

recent era of EO-based web mapping comprises cloud-based processing (Evangelidis et 

al. 2014), cloud-optimized data formats (COG 2018), data cube paradigms (Baumann & 

Rossi 2016; Strobl et al. 2017), containerized data processing (Tao et al. 2018), raster 

processing in browsers (EOX IT Services GmbH 2018), and scalable web services and 

tools, which allow the generation of global thematically relevant products (Gorelick et al. 

2017).  

Several projects, such as the Future Earth initiative, require transferring EO-based 

information on environmental and climate change into action to deal with societal 

challenges. Future Earth, which was launched in 2012, was founded by international 

research funding organizations with the aim of supporting interdisciplinary collaboration in 

the area of global environmental change research and to address critical questions. In 

addition to questions regarding how the Earth is changing and how knowledge in this area 

can be used to move towards a sustainable future, an important “cross-cutting capability” 

is the focus on data and observing systems. This aims to make “the research more useful 

and accessible for decision makers” and to make it “accessible to all parties” (Future Earth 

2013, p. 12,21). This program seeks to determine the best practices for integrating user 

needs and for understanding research needs that are to be fostered by “developing and 

diffusing useful tools for applying knowledge” (Future Earth 2013, p. 21).  

 
Figure 1.2: Framework of web-mapping eras. The stars indicate the approximate commencement 
of the era (Veenendaal et al. 2017, p. 7). 
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1.3 Current State of Research 
Current research agendas and visions of a Digital Earth show trends in various topics, 

such as spatial data infrastructures (Adams & Gahegan 2014; Bernard et al. 2014; Granell 

et al. 2016), citizen science and crowd-sourced data (See et al. 2016; Higgins et al. 2016), 

big data and cloud computing (Schade 2015; Guo et al. 2017; Koubarakis et al. 2017; 

Boulton 2018), geospatial web services (Vinhas et al. 2016; Wagemann et al. 2018), the 

semantic web (C. B. Tan et al. 2017; Janowicz & Hitzler 2017), and event-driven 

infrastructures (Yue et al. 2015; Zhang et al. 2017; Rieke et al. 2018).  

Spatial data infrastructures (SDIs) serve as fundamental systems for publishing geospatial 

datasets and related meta-information. Research agendas have covered the needs and 

further development of SDIs: Díaz et al. (2012) provide a comprehensive overview of the 

state of SDIs with the conclusion that “SDIs have so far failed to achieve the desired level 

of impact and penetration in the geospatial community” (Díaz et al. 2012, p. 380). Adams 

and Gahegan (2014) see next-generation SDI becoming one that acts as mediator, 

harmonizing data generated from heterogeneous sources. Tsinaraki and Schade (2016) 

discuss the implications of big data on SDIs. They conclude that although existing 

technologies can still be used, the growing user base needs to be better served. In 

particular, more users lacking knowledge of geospatial fields are expected. They tend to 

require service interfaces that are ready to be used and, thus, new interface specifications 

need to simplify the use of the current services for application developers.  

Standard-compliant web technologies have been used and studied in Earth system 

science for many years now. Service-oriented architectures were provided in the early 

years of the Internet. Today, there are several discussions of the use of web technologies 

and web service methods (Vitolo et al. 2015; Baresi et al. 2016; Wagemann et al. 2018). 

The provision of interoperable web services (Nativi et al. 2012; Miura 2016) for data 

discovery, visualization, and access is an inherent component of an SDI. While there were 

early approaches that involved standard-compliant visualization and discovery of 

geospatial data, services for data access and data processing have improved in recent 

years (C. B. Tan et al. 2017; Hempelmann et al. 2018; Herle & Blankenbach 2018; 

Wagemann et al. 2018). Interoperability for the EO domain specifically has been 

investigated by Mazzetti and Nativi (2012), who state three principles: 1) build on existing 

capacities, 2) address different interoperability levels, and 3) lower the entry barriers for 

both users and providers. Recent activities in the EO domain investigate the provision of 

spatial data as time-series services. EO data can be provided either with the Web 

Coverage Processing Service query language (Baumann 2009b; Karantzalos et al. 2015) 

of the Open Geospatial Consortium (OGC) or using the OGC Sensor Observation Service, 
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which was originally designed for in-situ measurements, for raster data (Sorg & Kunkel 

2015). When geospatial processes are made available using the standard-compliant OGC 

Web Processing Service specification, several scientific aims can be investigated, such 

as process orchestration (De Jesus et al. 2012; Kiehle et al. 2007), process mediation 

(Giuliani et al. 2012), distributed processing (Bychkov et al. 2015; Tan et al. 2015), and 

shared geoprocessing logic (Müller et al. 2013).   

The challenges and opportunities associated with big data in the geospatial domain have 

been discussed regularly in recent years (Lee & Kang 2015; Li et al. 2016; Guo et al. 2017; 

Boulton 2018). In general, challenges related to the organization of data (Kiemle et al. 

2016), big data analytics (Kambatla et al. 2014), and the use thereof combined with web 

technologies (Vitolo et al. 2015) still need to be further investigated. Closely related to this 

is the introduction of paradigms, software, and standards relating to data cubes. Baumann 

and Rossi (2016) define “datacubes as a service paradigm,” concluding that they “are a 

convenient model for presenting users with a simple, consolidated view on the massive 

amount of data files gathered” (Baumann & Rossi 2016, p. 188). The “Datacube Manifesto” 

(Baumann 2017) defines a data cube as a “multi-dimensional array” and presents the 

requirements that lead to services that are “user-friendly, faster, and [more] scalable than 

typical classical services” (Baumann 2017, p. 2). Strobl et al. (2017) describe the “six faces 

of data cubes,” which are defined as the technical aspects that are required to allow data 

ingestion, storage, provision, and the analysis of structured geospatial data within a 

geospatial data cube (e.g., data organization, data processing levels defined as analysis-

ready data, infrastructure, user interfaces, and interoperability). Pagani and Trani (2018) 

compare traditional and data cube approaches for geospatial computation, concluding that 

“offering a ready-to-use data cube as-a-service might be a great value and save resources 

avoiding multiple storage of data, eliminate the creation of multiple ad hoc ways to access 

data, and make data easier to access” (Pagani & Trani 2018, p. 298). 

Although there are standards for geospatial data, data management issues need to be 

investigated especially for raster time-series data in order for them to be provided in a 

user-aligned architecture. Big EO data management has recently been researched by 

different organizations (Kiemle et al. 2016; Xie & Li 2016; Z. Tan et al. 2017). The term 

“analysis-ready data” is defined by the Committee of Earth Observation Satellites (CEOS) 

as “satellite data that have been processed to a minimum set of requirements and 

organized into a form that allows for immediate analysis with a minimum of additional user 

effort” (CEOS 2018a). Analysis-ready data have been applied and researched in the EO 

domain by several researchers (Davis et al. 2015; Wyborn & Evans 2015; Szuba et al. 

2016; Giuliani et al. 2017; Dwyer et al. 2018).  



 

9 

1.4 Scientific Questions 
Based on the motivation and current state of research described in the previous sections, 

three scientific questions with the overall objectives of investigating the use of web 

technologies for EO time-series data exploration and bridging the gap between user 

applications and EO data archives (Figure 1.3) are posed and answered in this thesis.  

 
Figure 1.3: Overall objective: Bridging the gap between user applications (left) and EO data 
archives (right) (Image on the right: Courtesy NASA/JPL-Caltech). 

1. How to design a user-aligned discovery, access, and analysis for EO time-series 

data based on standard-compliant web services? 

The amount of EO data that is available for environmental analyses increases daily. New 

satellites are continually being launched and various users are interested in using EO 

data. With the increasing size of EO data archives, today especially for Landsat and 

Sentinel satellites, data downloads in the near future to local computers will take too much 

time and storage capacity to be practicable. Solutions are required that provide a simple 

method to combine data discovery, access, and analysis. Although much EO data is 

available at no cost, the discovery, access, and processing thereof need to be simplified 

to meet the requirements of different users (e.g., scientists, thematic experts, and 

developers). Thus, increasing user demands and data availability need to be brought 

together, leading to the design of user-aligned web services for EO time-series data 

exploration. In this thesis, system architectures and service specifications are explored 

and investigated based on the use of standardized web technologies in order to foster this 

new behavior.  

2. What are the technical requirements for accessing and processing multi-source 

EO time-series data? 

Much of the EO data is available in a variety of data formats and data structures. Users 

always need to work with multiple data formats and need to prepare data for their analysis 

tools. Working with EO data from different satellite missions and data providers, in 

particular, requires knowledge of different data formats and of data processing in general. 
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The processing and analysis of EO time-series data requires further knowledge of 

automated data processing workflows to conform with large EO time-series data archives. 

Accessing EO time-series data involves a complex workflow because different processing 

steps need to be undertaken. Not only is the EO data provided in different data formats, 

but each data provider also uses different technologies and specifications to provide the 

data (e.g., protocols, such as HyperText Transfer Protocol and File Transfer Protocol or 

specifications, such as Open Data Protocol and OGC Web Coverage Service). Any one 

of these differences need to be considered when discovering and accessing EO time-

series data. To lower this barrier, a common, easy-to-use specification needs to be 

investigated to make EO time-series data more easily discoverable and accessible within 

a standardized approach. A uniform data format and the uniform handling of time-series 

data are necessary and need to be directly linked to use in analysis tools.  

3. What are the data requirements for analysis- and application-ready formats and 

how must EO time-series data hence be organized? 

In these times of large EO data archives, analysis tools need to be moved to the data, 

rather than EO data being downloaded to local computers. Although data and analysis 

tools can be used together, in most cases, further data processing steps need to be 

undertaken before data analysis can be conducted. In recent research, the new approach 

of taking algorithms or analysis tools to data has been defined as “moving code” (Müller 

et al. 2010, 2013); however, so far, this has focused on general tools within geographic 

information systems. The analysis of EO time-series data requires that tools be moved 

and deployed close to the data. This allows users to conduct analyses without the need 

to download data and install software. However, within the EO domain, EO time-series 

data need to be available in a data format and structure that can be handled by each 

analysis tool. Thus, the moving code approach needs to be connected to EO time-series 

data. In addition, the results of analysis need to be further processed to meet the needs 

of users (e.g., direct visualization of the results of analysis). As EO time-series data needs 

to be prepared for the use of analysis tools, a direct link between these and access to 

time-series data needs to be established to enable users to employ analysis tools without 

prior data download and preparation.    
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Chapter 2: Definitions and Requirements 
The overall framework of this thesis is defined and described by means of a thematic case 

study, specific user personas, and specific functional and technical requirements. The 

case study on satellite-based vegetation monitoring includes a description of EO data and 

time-series analysis tools. Three different scientific algorithms that have been linked to the 

EO time-series data are described. In order to focus on user-specific developments, three 

user personas are defined and the requirements for web platforms, web technology, and 

data formats are presented. 

In the sections that follow, the following definitions and requirements are presented: 

• Case Study: satellite-based vegetation monitoring (Section 2.1) 

• Definition of user personas (Section 2.2) 

• Description of functional and technical user requirements (Section 2.3) 
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2.1 Case Study: Satellite-based Vegetation Monitoring 
Climate-induced and anthropogenically induced changes in land cover and vegetation—

in particular, gradual changes in vegetation—can be identified based on EO time-series 

data in order to analyze numerous land change processes, such as pan-arctic climate and 

land cover trends (Urban et al. 2014), trends of light use and inherent water use efficiency 

in African vegetation sensitive to climate and atmospheric carbon dioxide concentrations 

(Traore et al. 2014), the detection of indicators of change processes in forest ecosystems 

(Hüttich et al. 2007), and the derivation of the phenological metrics of vegetation types 

(Jönsson & Eklundh 2004). Near real-time change detection—for example, to detect 

deforestation or other events—are also based on EO time-series data (Verbesselt et al. 

2012; Verbesselt et al. 2010a; DeVries et al. 2015; Dutrieux et al. 2015). 

Indices for vegetation monitoring that use optical EO data are based on radiometric 

measurements of photosynthetically active radiation in the leaves of the vegetation. The 

index is based on different reflectance in red and near-infrared bands in the optical 

spectrum. These act as a proxy for photosynthetic activity and the vitality of plants. Time-

series of vegetation indices, such as the Normalized Difference Vegetation Index (NDVI; 

Tucker, 1979) and the Enhanced Vegetation Index (EVI; Huete et al., 2002), have proven 

to be important data sources for vegetation change and dynamics analyses. Figure 2.1 

shows an example of a regularly observed EVI for the “Stadtbruch” in Anklam, Germany, 

from 2000 to 2016. A change of the vegetation index over time, which is linked to 

renaturation (flooding of former moor area), can be identified from 2010 onwards.  

 
Figure 2.1: Multi-annual time-series of MODIS EVI of Stadtbruch in Anklam (Germany). 
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2.1.1 Earth Observation data 
A number of EO satellites exist, which provide free global time-series data in different 

spatial and temporal resolutions. For vegetation analyses, satellites with optical sensors 

are widely used and further derived vegetation datasets are provided automatically. For 

example, NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) provides 

daily to bi-weekly global data with a spatial resolution of 250 m to 1 km (Huete et al. 2002). 

High-resolution USGS Landsat data (30 m spatial resolution) has also been used to study 

changes in the vegetation (Zhu 2017), though the temporal resolution of only 16 days 

repeating rate often leads to gaps in the time-series because of cloud cover. Sentinel-2 of 

the European Space Agency (ESA) data provides up to 20 m spatial resolution and up to 

6 days repeating rate from two satellites in orbit (Sentinel-2 A and B). It thus provides a 

better temporal resolution than Landsat though the data has only been available since 

2016. Vegetation index datasets are available from several other satellites, such as SPOT-

Vegetation, Proba-V, and the Advanced Very High Resolution Radiometer (Xie et al. 

2008). In what follows, MODIS, Landsat, and Sentinel data, which have been used in this 

thesis, are described. 

MODIS 

Data from MODIS is received from two satellites, Aqua and Terra. Both of these were 

launched through NASA’s Earth Observation System program. Continuous observations 

for Terra have been available since 2000 and for Aqua since 2002. The aim of the MODIS 

sensor is to monitor the land surface, oceans, and atmosphere. Data from MODIS is 

provided as land, atmospheric, and ocean products on a systematic basis (Justice et al. 

2002). These standard products contain information about atmospheric profiles, surface 

reflectance, clouds, land and sea surface temperature, thermal anomalies, vegetation 

indices, snow cover, sea-ice cover, and the like (Xiong et al. 2009). The land products are 

available in several spatial (0.05 deg, 1 km, 500 m, and 250 m) and temporal (monthly, 

16-day, eight-day, four-day, and daily) resolutions.  

Data is provided in the Hierarchical Data Format-Earth Observing System (HDF-EOS). 

Based on the spatial resolution, data is available as 5 minute swaths, as tiles with a width 

and height of 10 degrees (tile grid in Figure 2.2), and as a Climate Modeling Grid (CMG) 

(Wolfe et al. 1998). Tiles have a sinusoidal projection; the CMG is based on the World 

Geodetic System (WGS) 84 / Lat-Long projection. A detailed quality layer is available for 

each standard product from MODIS. In the vegetation index product (MOD13), a “pixel 

reliability” layer summarizes the information quality with ranked values describing the 

overall quality of each pixel.  
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Figure 2.2: MODIS sinusoidal tile grid (NASA LPDAAC 2014). 

The NASA Land Processes Distributed Active Archive Center (LPDAAC) is one of the 

official sources for obtaining MODIS data produced by the MODIS Land team (NASA 

2019b). The data is provided in the original HDF-EOS data format on the file servers1. 

Users need to know which specific MODIS tile they need for their area of interest. The 

HDF-EOS file includes several layers that need to be extracted for further processing. To 

reduce storage space, individual layers with floating-point values have been stored as 

integers and need to be scaled to the original data range in the processing chain. Others, 

like the detailed quality flag, are encoded as integers and need to be decoded bit-wise. 

Thus, the layer name, units, bit type, no data (fill) value, valid data range, and scale factor 

need to be known for further data processing. 

In addition to the data being provided by NASA LPAAC, MODIS data is also available from 

other data providers. The Distributed Active Archive Center at Oak Ridge National 

Laboratory (ORNL DAAC) provides a MODIS Web Service 2  based on various web 

technologies, which support several request methods, such as lists available products and 

the dates the products will be available, subset extraction, and subset order. Google Earth 

Engine3 provides access to several MODIS Level 3 products, such as a 16-day vegetation 

index. This data can be directly processed within Google Earth Engine (e.g., quality 

masking, clipping to the area of interest, and individual calculations) and either further 

analyzed or directly downloaded by users. 

                                                
1 https://e4ftl01.cr.usgs.gov  
2 https://daac.ornl.gov/modiswebservice/  
3 https://earthengine.google.com  

https://e4ftl01.cr.usgs.gov/
https://daac.ornl.gov/modiswebservice/
https://earthengine.google.com/
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Landsat 

The Landsat program of the United States of America (USA) was established in 1966, and 

the first satellite was launched in 1972. Landsat–8, launched in 2013, is the latest satellite 

from this program. A graphic overview of all Landsat satellites is shown in Figure 2.3. In 

contrast to MODIS, Landsat satellites provide data with up to 30 m spatial resolution but 

with a lower temporal resolution (16-day global coverage). Since 1972, Landsat satellites 

have used different sensors, starting with the Multi-Spectral Sensor (MSS) on Landsat 1–

3, followed by the Thematic Mapper (TM) on Landsat 4–5, the Enhanced Thematic Mapper 

Plus (ETM+) on Landsat–7, and the Operational Land Imager (OLI) with the Thermal 

InfraRed Sensor (TIRS) on Landsat–8 (USGS 2019c).  

Landsat data is stored as tiles within the Worldwide Reference System (WRS), a global 

notation system for Landsat data (Figure 2.4). Each tile of the WRS consists of a center 

coordinate as well as path and row numbers. Each Landsat scene can be identified using 

these numbers. Based on the Level–1 processing, different “Landsat Collection 1 Tiers” 

are available: Tier 1 has the highest available data quality, including Precision and Terrain 

corrected data; Tier 2, which does not meet the data quality criteria from Tier 1, includes 

Systematic Terrain and Systematic processed data and real time data with additional post-

processing (USGS 2019b). Beyond this standard processing to Level–1, the Level–2 

product, “Surface Reflectance,” is processed, which includes atmospheric corrections. 

Level–3 products (e.g., surface water extent, burned area) are currently under 

development. Landsat files are available as a zipped archive containing files for each 

band. All Landsat data is provided in GeoTIFF data format, with a Universal Transverse 

Mercator (UTM) map projection and a WGS-84 datum (USGS 2019b). The NDVI product 

needs to be calculated separately using the red and near-infrared bands once the Landsat 

data has been downloaded.  

The web-based Earth Explorer4 application from the USGS is the first site that can be used 

to search for and order Landsat images. In addition, other applications for EO data 

searching and visualization (e.g., NASA Earthdata and Landsat Look) link to the Earth 

Explorer when providing data download functions. In addition to data from the USGS, 

collections from the NASA LPDAAC and a range of further datasets are available in the 

Earth Explorer. With a user account, data can be downloaded directly or added to a cart, 

which can be downloaded later with the bulk downloader tool. The USGS Earth Resources 

Observation and Science Center provides a new service-based data access system5 

                                                
4 https://earthexplorer.usgs.gov  
5 https://espa.cr.usgs.gov  

https://earthexplorer.usgs.gov/
https://espa.cr.usgs.gov/
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(USGS ESPA). It provides both a simple web-based interface and a service interface to 

be used with programming languages. In addition to data access to the Landsat TM, 

ETM+, and OLI sensors, processing tools can be applied automatically before 

downloading the datasets. These processing tools include re-projection, spatial sub-

setting, and pixel resizing as well as various thematic products (e.g., top of atmosphere 

reflectance, brightness temperature, cloud mask, and surface reflectance) and output 

formats (e.g., GeoTIFF, ENVI binary, NetCDF, HDF-EOS2). Users of ESPA need to know 

the Landsat scene identities prior to using the tool. An order first needs to be placed, and 

the resulting data can be downloaded once the processing is done. Landsat 4 to 8 data 

have been made available on the Google Cloud infrastructure6 and on Google Earth 

Engine. When using Google Cloud, the individual scenes can be directly accessed on 

cloud-based virtual machines. Amazon Web Services7 provides access to Landsat 8 data, 

which are already unzipped and accessible by band.  

 
Figure 2.3: Timeline of the satellites of the Landsat program: Landsat MSS (blue), Landsat TM 
(orange), Landsat ETM+ (red), Landsat OLI (green). Visualization based on USGS (2019b). 

 
Figure 2.4: WRS–2 tiles (ascending and descending, green rectangles) for parts of Thuringia, 
Germany (own visualization, National Geographic World map as background). 

                                                
6 https://cloud.google.com/storage/docs/public-datasets/landsat  
7 https://aws.amazon.com/de/public-data-sets/landsat/  

https://cloud.google.com/storage/docs/public-datasets/landsat
https://aws.amazon.com/de/public-data-sets/landsat/
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Sentinel 

The Copernicus program of the European Union (EU) has launched Sentinel satellites 

since 2014. These provide EO data from a variety of sensors for numerous thematic 

purposes (Aschbacher & Milagro-Pérez 2012; Berger et al. 2012). Table 2.1 lists the first 

three Sentinel satellite missions, along with their sensor types, spatial and temporal 

resolution, and launch dates. The Copernicus program provides satellites with high (10 m) 

and medium (300 m) spatial resolution. The temporal resolution ranges from daily to 6-

day. As this is a long-term satellite mission, the European Commission has already been 

ordered two more identical satellites for Sentinel 1, 2, and 3 (ESA 2016; Magan 2016).  

The satellite data from the Copernicus program is made available through an open data 

license (Aschbacher & Milagro-Pérez 2012). The data is available from the official 

Copernicus Open Access Hub8 (SciHub) provided by ESA, national ground segments 

(e.g., the German Copernicus Data and Exploitation Platform), and cloud-based data 

providers (e.g., Amazon Web Services, Google Cloud, Google Earth Engine, and 

Copernicus Data and Information Access Services (DIAS)). The ESA SciHub can be used 

with a web portal or with standardized web service interfaces. Depending on the EO 

mission, the data is available in various formats, such as netCDF, GeoTIFF, and 

JPEG2000.  

From Sentinel–2, the vegetation index can be calculated using red and near-infrared 

bands. Specific vegetation data is provided by Sentinel–39. The Ocean and Land Colour 

Instrument provides a Level–2 Land Full Resolution (300 m) product, which includes the 

Fraction of Absorbed Photosynthetically Active Radiation as Global Vegetation Index. The 

NDVI can be calculated individually using the red and near-infrared bands. The Sea and 

Land Surface Temperature Radiometer provides a land surface temperature product, 

which includes a pre-processed NDVI on 1 km spatial resolution.  

Table 2.1: First three Sentinel missions of the EU Copernicus program (ESA 2019). 
Satellite  Sensor Resolution Launch dates 

Sentinel–1 Radar imaging mission for land 

and ocean services 

5 m–40 m 

2–6 days 

3 April 2014 

25 April 2016 

Sentinel–2 Multispectral high-resolution 

imaging for land monitoring 

10 m–60 m 

2–5 days 

23 June 2015 

7 March 2017 

Sentinel–3 Multi-instrument for surface 

temperature, land color, etc. 

300 m 

1–4 days 

16 February 2016 

25 April 2018 

                                                
8 https://scihub.copernicus.eu/  
9 https://sentinel.esa.int/web/sentinel/missions/sentinel-3/data-products  

https://scihub.copernicus.eu/
https://sentinel.esa.int/web/sentinel/missions/sentinel-3/data-products
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EO data formats and data structures 

Much of the data from different satellites is provided with an individual data structure and 

data formats. Table 2.2 shows original data formats for MODIS, Landsat, and Sentinel. 

While data from Landsat satellites has been in the same data format since the beginning, 

many of the Sentinel satellites provide different data formats according to their specific 

user community. Thus, users need to know how to work with those data formats or at least 

need to convert data into other more commonly used formats. Although software exists 

that can handle all of these data formats (e.g., GDAL, SNAP), users need to know exactly 

how to handle the data with the software to be used within their individual processing 

workflows (e.g., within Python or R).  

Table 2.2: Data formats for each of the satellite missions. 
Dataset Format 

Sentinel-1 SAFE / GeoTIFF 

Sentinel-2 SAFE / JPEG2000 

Sentinel-3 netCDF 

Landsat 1-8 GeoTIFF 

MODIS (Level-3 products) HDF-EOS 

 

Figure 2.5 shows the data structures for Sentinel, Landsat, and MODIS Level-3 data: 

MODIS Level-3 data is provided within a single file including the measurements as bands 

accompanied with additional files for metadata and quick-look image. Sentinel and 

Landsat data is originally provided as zipped archive file. Measurements from Sentinel 

and Landsat data is provided in individual files within the archive file. Additionally, files for 

metadata, quick-look images, etc. are available. 

 
Figure 2.5: EO data structures for individual Sentinel, Landsat, and MODIS satellite scenes. 
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2.1.2 Analysis tools 
Evolving methods of vegetation change characterization include breakpoint detection 

techniques that allow users to detect the point in time when a change event occurred. 

Studies observing the increasing or declining net primary productivity of vegetation 

(Verbesselt et al. 2010a; Verbesselt et al. 2010b) have fostered the development of 

statistical tools for detecting trends such as greening or browning. Three analysis tools 

based on vegetation time-series data are used in this thesis: Greenbrown for trend 

calculations, BFAST for breakpoint detection, and TIMESAT for phenological analyses.  

Greenbrown 

The ‘Greenbrown’ software (Forkel et al. 2013) is a collection of functions designed to 

analyze trends and trend changes in a gridded time-series, as with those from satellite 

observations or climate model simulations. In the EO community, vegetation greenness 

can be divided into positive (greening) and negative (browning) trends. The Greenbrown 

methods are provided as software packages in the R statistical language. The methods 

can be used within R, based on time-series objects. In addition to trend calculations for 

individual pixels (Figure 2.6, left), it is possible to derive greening and browning 

classifications for raster time-series data (Figure 2.6, right). Analyzing the increasing and 

decreasing trends of the vegetation can help to identify regions of long-term vegetation 

change. This can be demonstrated in the area of Anklam, where a former moor area was 

recultivated following controlled water logging (Figure 2.6). This results in a decreasing 

vegetation index, which can be analyzed using ‘Greenbrown.’ In addition, the significance 

of the trends is available as result and can be used to classify trends into greening and 

browning.  

BFAST 

The ‘Breaks For Additive Seasonal and Trend’ (BFAST) method (Verbesselt et al. 2010a) 

allows the identification of changes in land cover by detecting phenological changes in the 

inter-annual time-series. The BFAST software integrates the decomposition of time-series 

into trend, seasonal, and remainder components and provides the times and number of 

changes in the time-series (Figure 2.7, left). This method has been widely used to detect 

deforestation and other disturbances (e.g., fire and floods) based on MODIS Vegetation 

and Landsat data. BFAST is available as a method in the R statistical language. As with 

Greenbrown, the methods are based on R time-series objects. In contrast to Greenbrown 

though, only methods for single pixels are available; however, they can be iterated over a 

spatial time-series object using standard functions in R. Other tools, such as ‘bfastSpatial’ 

(Dutrieux & DeVries 2014) based on BFAST, have been published to overcome this issue, 

but have not been used in this thesis.  
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Figure 2.7 shows an example output of BFAST, which demonstrates the advantages of 

using BFAST in vegetation time-series analyses. In addition to the different breaks in a 

trend, which have also been shown with the Greenbrown analysis, a break in the 

seasonality of the vegetation was identified in 2008 followed by a visual change in the 

vegetation index. With such breakpoint detection, the point at which changes in the time-

series occur can be identified automatically. The example shows the previously flooded 

moor area that has been recultivated in the recent years (Stadtbruch Anklam).  

TIMESAT 

In addition to trend and breakpoint analyses, the derivation of phenological metrics 

(phenometrics) for vegetation characterization and classification is another method used 

to monitor changes in vegetation based on EO time-series data. TIMESAT software is 

used for satellite-based phenological characterizations that analyze the seasonality of EO 

time-series data and their relationship with the phenological cycles of vegetation (Jönsson 

& Eklundh 2004). It furthermore enables the extraction of time-related phenological 

metrics (e.g., start of season and length of season) and biomass-related metrics. The 

extraction of phenometrics allows the analysis of short- and long-term changes in land 

cover and the structural and species composition of vegetation types. TIMESAT is 

provided as executable on Linux and Windows operating systems. It provides several 

time-series fitting functions (e.g., a Savitzky-Golay filter, least-squares fitted asymmetric 

Gaussian, and double logistic smoothing) that are undertaken automatically before the 

phenological analysis is done. Time-series data need to be pre-processed to match the 

TIMESAT input file format. The file format is based on flat binary files for spatial analyses 

and text files for single pixel analyses.  

The example in Figure 2.8 shows the seasonal parameters for the start, length, and end 

of the vegetation season calculated based on the vegetation index time-series data. Using 

the yearly chart (Figure 2.8, right), the change in the vegetation season can also be 

identified easily by non-expert users.  
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Figure 2.6: Greenbrown analyses for Stadtbruch Anklam: on the left, an analysis of a single pixel 
showing the vegetation observations and multiple trend calculations based on breakpoints; on the 
right, a spatial analysis showing the greening and browning trend classification (own visualization).   

 

 

 
Figure 2.7: BFAST analyses for Stadtbruch Anklam: on the left, an analysis of a single pixel showing 
the vegetation observations (first line), the seasonality with breaks (second line), the trend with 
breaks (third line), and the remainder signal (last line). The four graphics on the right show a spatial 
analysis with number and year of the breakpoints in seasonality and trend (own visualization).   

 

 

 
Figure 2.8: TIMESAT analyses for Stadtbruch Anklam: on the left, an analysis of a single pixel 
showing the vegetation observations (blue line), the fitted data (green line), and the calculated start 
and end of seasons (green and black points); on the right, the chart shows the different start, length, 
and end of the vegetation season year by year (own visualization). 
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2.1.3 Conclusions 
For users who focus on vegetation time-series data, freely available EO data can be used 

in combination with scientific analysis tools to study changes in vegetation. A specific 

vegetation product with a coarse spatial resolution is available only from the MODIS 

sensor. Vegetation indices from higher resolution data (e.g., Landsat, Sentinel–2) need to 

be processed prior to analysis. From the point of view of an end-user (e.g., decision-

maker, stakeholder, or scientist), access to ready-to-use analysis tools to derive 

information from EO time-series data is a relevant issue. Some of the tools that are 

currently available can provide information about breakpoints in trends and seasonality, 

which can be used as indicators of changes in vegetation. A great amount of information 

can also be retrieved from phenological derivations, such as the start and end of a season, 

the seasonal amplitude, and seasonal integral. However, to date, none of this information 

is available as an on-demand processing service in web-based environments.  

In summary, service-based access to time-series vegetation data is available only within 

specific limits. Several key points can be stated after reviewing the available EO data and 

analysis tools for EO-based vegetation time-series data analyses: 

• The analysis of vegetation time-series based on EO data is relevant to studying 

changes of the environment. 

• Much data is freely available, but data processing is still too complex and too 

diverse. 

• Often, analysis tools require a specific data format and data structure, which is 

challenging for users who are not familiar with time-series data processing. 
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2.2 User Personas 
Various aspects need to be considered in order to provide tools for diverse kinds of users, 

such as scientists, thematic experts, and software developers. Specific user types can be 

represented as personas. User personas define “hypothetical archetypes of actual users” 

in order to develop a precise description of users and their goals (Cooper 2004, pp. 123–

124). To conform with the different types of users in this thesis, three user personas and 

their objectives have been defined in the following subsections. 

2.2.1 Scientists 
Scientists work with EO data to develop new algorithms to derive further information. They 

require control over all processed data and need to be able to use analysis tools with 

different parameters. Scientists need to download the datasets relevant to their study area 

and conduct the analysis on their own computing infrastructure. Although scientists are 

able to download data from the data provider, various processing steps are always 

necessary to extract the relevant data and convert it to a data format that fits as an input 

to the algorithms used by the scientists (e.g., GeoTIFF format instead of HDF format). 

These steps can be automated and annotated by means of processing commands, which 

have been undertaken on the data downloaded. Using such annotations, for example, 

within log files, scientists are able to reproduce the processing done by an automated 

processing service. Thus, scientists can be supported with data retrieval, clipping to the 

area of interest, checking quality flags, and converting data formats. In addition, the 

preparation of data for specific algorithms supports scientists by allowing them to focus on 

algorithm parameters and the interpretation of the results of analysis.  

The following key aspects for scientists have been identified: 

• Easy-to-use EO time-series data discovery and access services, 

• Reproducible and automated data access and extraction for a given pixel or area 

of interest, and 

• Executable algorithms linked with automated data extraction. 

2.2.2 Thematic experts 
Thematic experts have knowledge of specific environmental issues and understand the 

general concepts of geographic information systems (GIS) and EO data. However, in most 

cases, they are not familiar with complex data processing and the different EO data 

formats. Data needs to be in common data formats (e.g., GeoTIFF or ESRI Shapefile) and 

prepared for direct visualization and use in common GIS software. Web and mobile 

applications can support thematic experts in obtaining access to EO data and derived 

information, as well as to the results of analysis, either in the field using mobile applications 
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or in the office using web applications. The post-processing of the results of analysis in 

order to match the needs of the thematic experts is welcomed, for example, by making 

data visualization and understanding easier due to familiar data formats and other tools 

(e.g., interactive charts and pregenerated figures).  

The following key aspects for thematic experts have been identified: 

• On-the-fly visualization of the results of analysis,  

• Web-based visualization of thematic products, 

• Interactive exploration tools for EO data and data analysis, 

• Mobile devices with on-the-fly extraction of EO time-series data, and  

• Post-processing of the results of analysis to match common data formats. 

2.2.3 Software developers 
Software developers need ready-to-use services to build web and mobile applications. In 

general, software developers for web and mobile applications do not have knowledge of 

geospatial data processing. As such, ready-to-use services need to provide all the 

processing steps needed by the application. In a best case scenario, these service-based 

infrastructures make use of standard-compliant specifications so that existing software 

tools can be reused by the software developer.  

The following key aspects for developers have been identified: 

• Service-based infrastructure for data discovery, access, extraction, and processing 

based on state-of-the-art web technologies, 

• Process chaining capabilities to combine different services (e.g., data extraction 

and analysis tools), and 

• Ready-to-use web services with data processing already included. 

2.2.4 Summary 
The following key aspects can be summarized and need to be investigated to simplify work 

with EO time-series data for scientists, thematic experts, and software developers: 

• Discovery, access, extraction, and processing tools provided by web services, 

• Interactive exploration of EO time-series data and analysis tools, 

• Service-based visualization of time-series data and the results of analysis, and 

• Data and algorithms need to be linked directly and used together. 
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2.3 Requirements 
Based on the various aspects of the user personas described in the previous section, 

several requirements have been defined to ensure the user-aligned exploration of EO 

time-series data. These functional and technical requirements have been grouped into the 

following subsections:  

1) Web platforms (Subsection 2.3.1) 

2) Web technologies (Subsection 2.3.2) 

3) Data formats relating to user aspects (Subsection 2.3.3) 

2.3.1 Web platforms 
As regards to future users of web platforms, various aspects, such as the availability of 

data, functionality, services, and user management, need to be considered, investigated, 

and defined when designing a web-based EO platform. These are described in the 

following paragraphs. 

Data availability 

The availability of geospatial data is the fundamental basis of each platform. Thus, various 

EO time-series and additional geospatial data need to be available in easy-to-use data 

formats. The platform provider should be able to integrate further data, such as time-series 

data from climate stations, which can be analyzed together with EO time-series data.  

Functions 

In terms of functionality, various tools for geospatial data are required, such as for data 

visualization, data download, and pixel extraction. Visualization tools allow users to easily 

work with data and analysis tools. Data download tools are important for allowing users to 

work with the data on their own computers. Users need to be able to define an area of 

interest or individual pixel for further exploration of the available geospatial data. Tools for 

the analysis of time-series data are useful for exploring the data available on the platform. 

As such, besides the provision of specific analysis tools, external applications and 

interactive development environments for different programming languages (e.g., Python 

and R) can be linked to the platform and made available to users.  

Web services 

All the functions of a platform can be presented as web services for use by external 

applications (e.g., web and mobile applications and desktop software). Standardized web 

services can be provided for data discovery, visualization, download, and analysis. These 

can be used by external applications, such as desktop GIS tools or other web-based 

applications, without any adjustments. Geospatial web services are necessary for 
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geospatial data in order to allow the interactive exploration of data, the provision of 

metadata catalogues, and for geoprocessing and analysis tools. In order to provide 

standardized and geospatial web services, a few requirements need to be considered 

when comparing software solutions:  

1) Geospatial data needs to be published automatically as visualization and 

download services with a pre-defined style for visualization, 

2) Metadata needs to be published automatically for new datasets as output from 

data integration and data analysis, and 

3) Users working on their own areas of interest need their own metadata catalogue 

and geospatial data-service instance separated from services for other users. 

User management 

The platform stores and manages various items of information about connected data 

providers, available datasets, and users of the system. All this data must be made 

available via web services, as various applications require access to this data. In addition, 

user-specific data, such as areas of interest, data integration that has been undertaken, 

and analytic tasks, can be stored and managed.  

2.3.2 Web technologies 
Different aspects of technologies can be considered and evaluated when providing web 

services, such as their architecture, long-running processes, service chaining, standard-

compliant services, and uniform web service specifications. These are described in the 

following paragraphs.  

Web service architecture 

Web services are available with various architectural styles and protocols for distributed 

service architectures. As such, the evaluation of web service architectures is an important 

component of the setup of web-based platforms. 

Long-running processes 

Both synchronous and asynchronous execution of web services can be considered for 

user-aligned web services. The difference in both of these—whether or not to wait for the 

result—depends on the application that makes use of the web service. When executing 

web services asynchronously, the client needs to regularly check the status of the process. 

In most cases, both execution types are relevant to the application and depend on each 

individual process that is being provided. Thus, client and server applications need to 

support both execution types. Asynchronous execution is especially important for long-
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running processes, such as data analysis and large data-integration tasks. It allows users 

to close the application and check the status later. In addition, the failure of an Internet 

connection does not stop the web service executed by the user. A further issue in terms 

of service execution involves allowing the web service to provide access to outputs 

immediately, when it is ready, without waiting until all the outputs have been generated. 

This allows the client application to show the results as soon as they are available. For 

example, a time-series plot of the input data can be shown to the user although a further 

analysis task is still running as part of the same process request.  

Service chaining 

Service chaining often includes only the direct use of a web service as input from another 

web service. Thus, the output of the first web service is directly an input for the second. 

As this is useful for many purposes, with the use of a large time-series data output it is 

more complex to send this to the next web service. Therefore, a concept is necessary that 

allows subsequent web services to know where to find the data of a previously executed 

web service for further processing on the same server. For example, a data access 

request is followed by a time-series analysis request that is conducted on the data of the 

previously conducted access web service. In most cases, users are not only interested in 

obtaining access to data but also in conducting analyses. If both web services are 

available on the same infrastructure, discovery, access, and analysis services can be 

linked. Thus, the output data of the first process needs to be available for the second 

process. In addition, algorithms provided as web services (e.g., the breakpoint analysis 

service) need to know where the data has been stored and how it has been managed. If 

data location and structure are considered within these processes, the execution of 

processing workflows—from data discovery through data access to data analysis—can be 

realized.  

Standard-compliant services 

Standard-compliant web service specifications are available from the OGC. These can be 

used by most GIS software and geospatial web applications. In comparison to a self-

developed web service specification, standardized specifications allow the use of web 

services from standardized programming libraries and a wide range of geospatial tools. 

Standards are available for various geospatial tasks, such as data visualization, discovery, 

download, and processing.  

Uniform web service specification 

Web service specifications can be diverse as different tasks are provided (e.g., data 

discovery, access, and analysis), and different data providers share their services with 
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various service specifications (e.g., self-developed vs. standard-compliant interfaces). 

Although standardization organizations, such as the OGC, provide different service 

specifications for data discovery, access, and analysis, they share common methods and 

data formats that are optimized for machine-to-machine communication with single output 

results. A uniform web service specification is envisaged with the objective of providing 

multiple output formats at the same time for all of the web service tasks (discovery, access, 

and analysis).  

2.3.3 Data formats 
In contrast to current web service specifications for data discovery and data access, 

multiple output formats are required to fulfill the needs of different user personas. This 

allows the optimizing of the outputs individually for each service in respect of the user 

personas and their requirements. Examples of output formats for data discovery, access, 

and analysis are provided in the following paragraphs and summarized in Table 2.3.  

Data discovery 

Increasing amounts of EO data and the different requirements of users are challenges 

when providing EO data archives. A complex task is to find suitable EO data for specific 

areas of interest, time, and specific parameters (e.g., cloud coverage and sensor type). 

Considering the user personas described in the previous section, different aspects need 

to be evaluated. A thematic expert may be more interested in how many satellite scenes 

are available in the area of interest (e.g., as provided in a figure or a summarized table), 

while a researcher is interested in an output file, which can be processed by any other 

software (e.g., by providing CSV or Shapefile formats). A developer is interested in a web 

service feed, which can directly act as input to further processing workflows. It is not only 

standardized web formats that are suitable for data discovery. In particular, additional 

commonly used data formats, such as those of spreadsheets or geospatial data formats 

increase the ability to use discovery results. Enabling discovery services to comply with 

the different needs of users leads to the need for multiple data formats for the resulting 

outputs. Table 2.3a shows the individual requirements of output formats for fostering their 

re-use by different user personas.  

Data access and extraction 

Although the principle of “algorithm to data” is advanced today, many users still download 

and process data on their own infrastructure. Therefore, EO data access is still an 

important issue for discussion and evaluation. To comply with the needs of different user 

personas, besides the requested EO data, it is necessary to provide different outputs 

(Table 2.3b), such as statistical summaries (e.g., the mean minimum and maximum 
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standard deviation) for each date or chart of time-series data of individual pixels. In 

addition, the data access service needs to provide processing capabilities to ensure the 

delivery of pre-processed data that is ready for analysis, including the consideration of 

quality masks and scaling factors applied to data. Furthermore, the resulting data can be 

directly converted into formats that can be read by other software, such as the Rasdaman 

database or Open Data Cube software. In addition, specific data formats for data 

extraction services requested directly by applications are necessary (Table 2.3c). 

Data analysis 

The ability to provide analysis services enables users to convert data into information. 

However, in many cases, the algorithms for analyzing time-series data need to have input 

data in a specific data format and structure. In addition, in most cases, there are several 

dependencies when setting up the algorithm on local computers. Thus, web processing 

services, which allow the conducting of analyses in addition to accessing data, are an 

important step forward in traditional EO data analysis. Furthermore, as the resulting output 

formats of the algorithms are not always considered to be user-friendly, additional post-

processing steps are necessary to provide specific data formats, services, and tools 

(Table 2.3d). This allows users direct visualization and interpretation of the results of 

analysis without the use of additional software.  

 

Table 2.3: Potential output and response requirements for data discovery (a), data access (b), data 
extraction (c), and data analysis (d) service outputs. 

 

a) Data 
discovery 

b) Data 
access 

c) Data 
extraction 

d) Data 
analysis 

Data formats 
Vector (e.g., Shapefile)     
Raster (e.g., GeoTIFF)     
Figures (e.g., PNG, JPEG)     
CSV     
JSON      
Services 
Web service feed     
OGC download service     
OGC visualization service     
Tools 
Application-Ready-Data*     
Downloads     
Summaries     

* Output is directly transferred into an application or database 
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2.3.4 Summary and conclusions 
Several functional and technical requirements for user-aligned exploration of EO time-

series data have been explored and categorized into web platforms, web technology, and 

data formats. These need to be considered when designing user-aligned services for the 

exploration of EO data. The foundational basis of user-aligned exploration of EO data is 

the availability of various, individual EO data sources as well as individual analysis tools 

linked to the data. From a technical point of view, web services based on current web 

technologies, user-specific output formats, and uniform and standardized specifications 

are important requirements.  

In this thesis, the following requirements are further considered and investigated:  

Web platforms 

• Multi-source EO and geospatial data 

• Data visualization 

• Data download 

• Analysis tools 

• Visualization of the results of analysis 

• Support for various programming languages and tools 

• Metadata for geospatial data 

• User management 

• Self-hosting 

• Service interfaces 

 

Web technology 

• Service architectures 

• Asynchronous execution 

• Process chaining 

• OGC standardization 

• Uniform specifications 

• Multiple output formats 

 

Data formats 

• Commonly used data formats 

• Analysis and application-ready data 

• Summarized results 

• OGC web services 
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Chapter 3: State of the Art 
Based on the user requirements presented in the previous chapter, the state of the art of 

the principal web technologies, specifications, and formats for EO time-series data is 

described in this chapter. The following main topics are explored and evaluated for their 

use with EO time-series data:   

1) Web technologies, including web service architectures, standardization, web data 

formats, software for web services and web processing applications, cloud-based 

infrastructures, and web platforms (Section 3.1). 

2) Service and format specifications for EO time-series data, including data 

discovery, access, visualization, brokering, and processing (Section 3.2). 

Finally, an evaluation regarding the state of the art in relation to user requirements is 

presented.  
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3.1 Web Technologies  
The Internet enables the retrieval of distributed web resources and the execution of tasks 

on distributed computers. Modern web-based systems make use of web services and 

interactive applications. The enhancements of browser applications and mobile devices 

allow easy exploration of geospatial data in general. Advanced web development methods 

can be used within the geographic domain to increase the availability and handling of EO 

data archives. In recent years, more EO and geospatial data have been made available 

through web services for data discovery, access, and analysis in combination with web- 

and cloud-based applications (Vitolo et al. 2015; Wagemann et al. 2018). In the following 

sections, basic information how to design and provide web services based on state-of-the-

art web technologies is presented and current solutions for web technologies are 

evaluated in relation to user requirements. 

3.1.1 Web service architectures 
The provision of web services for client applications, such as web- or mobile-based 

applications, is based on web service architectures that are compliant with the client-

server model (Svobodova 1985). Based on this model, a server can provide different 

services requested by client applications. After requesting a service, the server delivers a 

response according to the request parameters. Figure 3.1 shows the different components 

and their interactions: The services provided by the server can be based on different 

standards, such as the File Transfer Protocol for data exchange or the HyperText Transfer 

Protocol (HTTP) for the World Wide Web. The response format may be diverse, depending 

on the protocol and the service (e.g., text, images, or binary).   

A uniform resource locator (URL) is used to identify the server, the service, and the 

requested resource on the server (e.g., http://artemis.geogr.uni-jena.de:80/myfeed). In 

this example, the URL is composed of the protocol identifier (“http” for HTTP-based 

resources), followed by the hostname of the server (“artemis.geogr.uni-jena.de”), the port 

number pointing to a specific service (this can be omitted for standard port 80), and the 

resource requested (“myfeed”).  

 
Figure 3.1: Client-server model involving different services provided by the server and the 
interactions between client and server/service (request and response). 
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Web-based services and resources 

Web services provide machine-to-machine communication by transferring machine-

readable file formats. The World Wide Web Consortium (W3C) defines a web service as 

follows: “A Web service is a software system designed to support interoperable  

machine-to-machine interaction over a network” (Booth et al. 2004). 

Although in general web services have been based on the Simple Object Access Protocol 

(SOAP), in recent years, the focus for providing service-based solutions has changed—

the principles of the World Wide Web have been adapted using resources based on the 

Representational State Transfer (REST) specification. The W3C has identified two major 

approaches to how web services can be built (Booth et al. 2004):  

1) REST-compliant web services for manipulating representations of web resources 

using a uniform set of stateless operations, and 

2) Arbitrary web services providing a set of operations (e.g., using SOAP). 

While SOAP provides an object-oriented approach with clearly defined web service 

interfaces, REST is a simple approach with no interface specifications and is based on the 

basic technologies of the Web. That is, two service architectures are available to publish 

services, service-oriented architecture (MacKenzie et al., 2006) and resource-oriented 

architecture (Overdick, 2007). Both of them can also be used for geospatial services. 

Mazzetti et al. (2009) state that “it is not possible to say that one architecture is better than 

the other. The selection of the most effective system architecture depends on application 

requirements” (Mazzetti et al. 2009, p. 46). These authors selected the REST approach 

for their Earth System Science applications. Figure 3.2 shows the increasing trend for 

REST compared to the decreasing trend for SOAP within Google Search (Google 2018b). 

 
Figure 3.2: Google search trend (October 2018): SOAP (blue) vs. REST (red) (Google 2018b). 

In addition, the “Programmable Web” as a directory of web service applications shows the 

importance of REST-based web services relative to other architectural styles, such as 

Remote Procedure Calls (RPC), which is used by SOAP: “As expected, REST is by far 
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the most commonly used architectural style given its prominence in API design over the 

last decade plus. RPC is the next most commonly used, owing to the many SOAP and 

XML-RPC-styled APIs that appeared, especially in the early days of our directory.”  

(Santos 2017). 

Synchronous and asynchronous service execution 

Web services can be executed either synchronously or asynchronously. The latter means 

that a response is given immediately, while the service is still processing the request. A 

comparison of the synchronous and asynchronous execution of web services is listed in 

Table 3.1. Whereas synchronous execution is less complex and produces no 

communication overhead in server and client implementation, asynchronous execution 

provides useful features, such as the independent provision of outputs, independence 

from network failures, and “do not wait until execution is finished” behavior. Thus, 

asynchronous execution is an important property for many processing tasks—especially 

long-running tasks.  

Table 3.1: Comparison of the synchronous and asynchronous execution of web services. 

 Advantages Disadvantages 
Synchronous 
execution 

• Immediate response includes 
the requested output 

• All output results at once 
• Less complex in terms of 

server and client 
implementation 

• Low overhead 

• Connection to service required 
until completion 

• Server timeouts need to be 
properly configured  

Asynchronous 
execution 

• Provides outputs when ready 
• Possible to close application 

and check status later 
• Network independent (in case 

of failures) 

• More complex in server and 
client implementation 

• Large overhead 
• Client needs to regularly check 

the status of the execution 
 

Evaluation: A major advantage of RESTful web services is their ease of use in web 

browsers, various applications, and programming languages. Thus, the provision and use 

of RESTful web services has been increased in recent years relative to SOAP-based 

services. Although the decision about which architecture to use depends on the 

application, RESTful web services need to be considered. In addition, both synchronous 

and asynchronous execution are relevant depending on the use case of the individual web 

service. Long-running data integration or analysis tools should be supported by 

asynchronous executions.  
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3.1.2 Standardization 
Standardization of data and services is relevant to enable the exchange of data and the 

use of services. Figure 3.3 shows the relationship between various standardization 

organizations. Standards and specifications for basic web technologies are mainly 

provided by the W3C, the Internet Engineering Task Force (IETF), and the Organization 

for the Advancement of Structured Information Standards (OASIS). These provide 

regulations for infrastructure and languages that are generally used for web-based 

communication and data exchange (e.g., the Extensible Markup Language). For 

geospatial purposes, the OGC specifies software interfaces and encodings with a domain- 

and infrastructure-specific emphasis. Legal and domain-specific standardizations are 

provided by the International Organization of Standardization (ISO) and the European 

Committee for Standardization (CEN).  

 
Figure 3.3: Tasks of the individual standardization organizations in relation to “De Jure—De Facto” 
and “Domain—Infrastructure” standards (after Trakas 2010). 

Within ISO,  “Technical Committee 211— Geographic Information/Geomatics” develops 

standards in the field of digital geographic information. These geographic information 

standards are published in the ISO 19100 series. The specifications describe the 

standards for basic geographic concepts, metadata, data content and definitions, core 

data model, data exchange formats, data interchange and services, data quality, spatial 

referencing, and imagery data. ISO specifies abstract models as well as their structures 

and content. The technical implementation of geo-related models and services is mostly 

specified by the OGC. Some of the specifications of the OGC have also been adopted by 

ISO (e.g., ISO 19128 Geographic information—Web map server interface).  
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The OGC comprises organizations and individuals from companies, governmental 

agencies, and research institutions. The aim of the OGC is the development of standards 

and technical specifications in the geospatial domain. The standards support interoperable 

solutions to geo-enable the Web, wireless and location based services, and “mainstream” 

IT (OGC 2018a). In contrast with standards published by ISO, OGC provides technical 

implementation specifications for interfaces and encodings. Developers of software can 

use these specifications to build and use services, which are compliant with the standards 

of ISO and the OGC. Some of these specifications are described in Section 3.2. 

Furthermore, specifications for data formats, such as the Geography Markup Language 

(GML) are defined by the OGC.  

Evaluation: Several international organizations exist to standardize web technologies, 

geospatial data, and geospatial web services. The implementation specifications of the 

OGC especially are important, as software exists that supports data and web services that 

are provided with OGC specifications. Thus, the support of standardized specifications 

can only be recommended. 

3.1.3 Structured data formats 
Structured data formats provide the possibility of transferring structured data over web 

services based on text. Structured data are mostly provided in formats such as Extensible 

Markup Language (XML) and the JavaScript Object Notation (JSON). Both XML and 

JSON representations are shown in Figure 3.4, which describes structured data of a 

specific person.  

Extensible Markup Language 

XML is a markup language developed by W3C and defined by W3C’s XML 1.0 

specification (Bray et al. 2008). The specification consists of a set of rules for encoding 

documents in a format that is human- and machine-readable (Figure 3.4, left). XML was 

designed to work across the Internet. An XML document consists of elements (e.g., person 

and address) and attributes (e.g., firstName). The content of an XML document is not 

determined but can be defined in schemas. Schema systems, such as the XML Schema 

(Fallside & Walsmley 2014), provide information about what kind of XML elements and 

attributes are allowed in an XML document. This allows the standardizing of XML 

documents for individual purposes and standard-compliant web services.  

JavaScript Object Notation 

JSON is a text format for structured data interchange between programming languages 

defined by the JSON Data Interchange Standard of ECMA International (ECMA 
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International 2017). It was inspired by objects from the web programming language 

JavaScript and has been adopted by other programming languages (e.g., Python). JSON 

consists of name-value pairs in a structured format (Figure 3.4, right) and supports multiple 

data types (e.g., String, Number, Boolean, Array, and Null value). Today, the JSON format 

is preferred for modern web technologies as the data structure can be directly used as an 

object in various programming languages. 

 
Figure 3.4: Structured data in XML (left) and JSON (right) formats. 

Evaluation: Both XML and JSON formats provide machine-readable structured data. The 

structure of XML documents can be exactly defined (e.g., by the XML Schema). Although 

XML is widely used, XML parsing, especially in web browsers, is always a complex task. 

Thus, a major advantage of JSON is its ease of use in programming languages, as it can 

be directly converted into regular objects. With JSON, individual document parsing is not 

necessary.  
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3.1.4 Web service software 
Many types of software can be used to provide web services. Depending on the task of 

the web service, different software may be of relevance. In light of this, web service 

software for data processing and content management are distinguished in this section.  

Processing web services 

Processing web services can be provided with already-existing software or the 

implementation of a self-developed web service. The OGC provides the Web Processing 

Service (WPS) standard to specify the provision, description, and execution of processing 

tools as interoperable web services. Based on the requirements described in Section 2.3, 

several criteria for the evaluation of software are considered:  

• Support for asynchronous execution 

• Multiple output formats 

• Support for technology (REST/SOAP) 

• Output provision as inline and reference 

• Standardization 

• Reproducibility 

• Support for JSON output format 

Three software packages are compared: PyWPS as representative of standard-compliant 

WPS software, OpenCPU as nonstandard-compliant software, and Python Flask as a self-

developed web service solution.  

Standard-compliant web service software 

PyWPS is a standard-compliant implementation of the OGC WPS specification (Schut 

2007) written in Python and released with an open-source license (Čepický & Becchi 2007; 

Čepický & De Sousa 2016). As the software uses the WPS specification, the provision of 

web services is exactly defined.  

Any Python library can be used in a process. In addition, command-line executable tools 

can be used. Analysis tools from R or GRASS GIS can be used directly within Python 

using the rpy2 or GRASS GIS Python libraries. For each of the processes, a description 

is necessary for the process itself and for their input and output parameters that are 

provided to client applications. The interaction with the service is based on the methods 

defined in the WPS specification (GetCapabilities, DescribeProcess, and Execute). Listing 

3.1 shows an example process implemented using PyWPS.  
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Based on the OGC WPS specification, PyWPS supports the following aspects (Čepický & 

Becchi 2007):  

• Encode requests for process execution and responses from process execution 

• Embed data and metadata in process execution inputs/outputs 

• Reference web-accessible data inputs/outputs 

• Support long-running processes 

• Return process status information 

• Return processing errors 

• Request storage of process outputs 

Furthermore, multiple output formats and the provision of outputs as URL references are 

features supported by PyWPS. Support of SOAP is available in PyWPS 3, but not in the 

newly written PyWPS 4 due to a lack of interest from the user community. Any of the 

executions of PyWPS are conducted with simple HTTP requests and REST-based 

technology. XML is the execution response format compulsory in the WPS specification. 

Unless the source code of the processes is not shared, reproducibility is not given. 

Although links to external websites and documents can be integrated in the process 

description (e.g., a link to the source code of the process), this is not mandatory for 

processes. Furthermore, in many cases, reproducibility relies on specific versions of tools 

installed on the server on which the process is running. These are not shown to the user.  

The OGC WPS specification is also provided by other software, such as ZOO WPS and 

52°North WPS. The main differences are the programming languages supported. 

Overviews are provided by Zhao et al. (2012) and Lopez-Pellicer et al. (2012).  

01 class SayHello(Process): 
02     def __init__(self): 
03         inputs = [LiteralInput('name', 'Input name', data_type='string')] 
04         outputs = [LiteralOutput('response','Output, data_type='string')] 
05  
06         super(SayHello, self).__init__( 
07             self._handler, 
08             identifier='say_hello', 
09             title='Process Say Hello', 
10             abstract='Returns a string with Hello plus the inputted name', 
11             version='1.3.3.7', 
12             inputs=inputs, 
13             outputs=outputs, 
14             store_supported=True, 
15             status_supported=True 
16         ) 
17  
18     def _handler(self, request, response): 
19         response.outputs['response'].data = 'Hello ' +   
     request.inputs['name'][0].data 
20         return response 
Listing 3.1: Implementation of a process using PyWPS.  
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Nonstandard-compliant web service software 

OpenCPU focuses on making scientific computing reproducible based on an interoperable 

HTTP web service interface for data analysis within R (Ooms 2014). Any standard R 

function as well as specifically developed functions can be handled within a unique web 

service interface. The parameters of the functions are the input parameters of the process. 

The return values of the functions are the output data of the process. In addition, figures 

plotted in the function are stored automatically and can be retrieved as further output data. 

Although a list of processes can be retrieved, no further descriptions of the process, input 

parameters, and output datasets are provided. Listing 3.2 shows an individually developed 

function in R with input parameters ‘x’ and ‘y’, which can be requested using the web 

service interface provided by OpenCPU.  

1 extractWQ <- function(x,y) { 
2   library(raster) 
3   r <- brick("SWOS_WQ_CDOM_FUB_Monthly_France_Berre.vrt") 
4   data <- extract(r,SpatialPoints(cbind(x,y))) 
5   plt <- plot(c(data), type="l") 
6   result <- list("values" = data) 
7   return(result) 
8 } 
Listing 3.2: Implementation of a process using OpenCPU.  

Multiple outputs as well as different execution response formats (e.g., text/plain, JSON, 

CSV, graphics, and R-workspace) are supported but no description of each of the inputs 

and outputs is provided. As the source code of the function can be retrieved, the names 

of the input parameters are available. To keep the interface and server implementation 

simple, only synchronous execution has been made currently available. This is not 

suitable for long-running processes although the timeouts of the server can be configured. 

OpenCPU follows its own standardization and thus client applications need to adapt the 

building of execution requests and parsing of responses. The technology is based on 

HTTP requests with a RESTful architecture; support for SOAP is not available.  

Individual web service solutions 

Processing tools can be published using various other forms of software, such as Flask 

for Python and servr for R. In contrast to the previously services described, the methods 

of web services need to be implemented by each application. A service example using the 

Python Flask framework is shown in Listing 3.3 with a REST-based service providing 

access to the resource /entries/<post_id> using methods of HTTP (e.g., GET, PUT, 

and DELETE). Within this source code, any Python library and command-line tool can be 

used. The same can be implemented using the servr library for R.  
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1 @app.route('/entries/<int:post_id>', methods=['GET','PUT','DELETE']) 
2 def handle_post(post_id): 
3     if request.method == 'PUT': 
4         return change_post(post_id, request.data) 
5     elif request.method == 'DELETE': 
6         return delete_post(post_id) 
7     else: 
8         return get_post(post_id) 
Listing 3.3: Provision of a web service using Python Flask.  

Content management 

Content management is important for providing functions for user authentication, available 

datasets and analysis tools, or areas of interest specified by individual users. Several open 

source software packages exist to provide functionalities for content management, such 

as popular web content management software like Drupal CMS and Django Web 

Framework. Both allow data management structured in individual “content types” with 

“content fields,” which can be set up individually for each content type. While Drupal CMS 

is based on Hypertext Preprocessor (PHP) scripting language, Django Web Framework is 

based on Python scripting language. Both kinds of software support the management of 

different data types, allow for user registration and authentication, and provide RESTful 

web services. 

Evaluation: In general, each of the software packages available has advantages and 

disadvantages, which are more or less relevant for specific purposes. In most cases, the 

programming language of software is the most important factor for selecting it, in addition 

to the functions that the software provides.  

While web services for content management are in most cases too application-specific, 

services for geospatial processing tasks can easily be provided with standardized service 

specifications (e.g., the OGC WPS). This processing service specification already 

supports many of the features required to enable user-aligned web services. Others, such 

as OpenCPU, are only suitable for specific purposes as it depends on the functions they 

offer. For example, OpenCPU is better suited for prompt responses through the lack of 

asynchronous support, for example, the extraction of a time-series from a raster time-

series stack. As OpenCPU as an application written in R, it is simple to provide R-functions 

as web services. Therefore, R-functions can be provided and used as web service using 

a simple approach. 

Although anything can be provided with a self-developed web service, each of the 

functions (e.g., asynchronous processing) needs to be implemented by the developer him- 

or herself. As such, the use of already existing web service solutions (e.g., PyWPS or 

OpenCPU) is preferred for the provision of processing services.  
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3.1.5 Cloud-based infrastructures 
Web services provide existing tools and applications to users. However, scientists and 

developers especially are interested in applying algorithms to the data, in addition to data 

discovery and data access. As the amount of available EO data increases daily, solutions 

are needed to move algorithms to data. Cloud providers offer different kinds of 

technologies to make use of their infrastructure. In addition to virtual machines that can 

be launched and accessed via remote virtual environments, new technologies enable the 

use of cloud infrastructures with serverless applications. Both are described and evaluated 

in what follows.  

Remote virtual environments 

Virtual environments focus on providing a virtual operating system to users. Users are 

able to use and install software tools, such as GIS and remote sensing-specific tools. EO 

data archives can be directly accessed and used in the software packages. Two different 

approaches can be distinguished, those that use either a virtual desktop or merely a virtual 

command-line environment. With both, users connect using a remote accessing tool and 

have the same experience as working on their local computer. Remote virtual 

environments can either be used with local virtual servers or cloud-based infrastructures. 

The connection to remote environments is either based on secure shells or remote 

desktop tools, which provide access to command line and desktop applications. With 

support of specific applications (e.g., Apache Guacamole), virtual desktops are available 

through web browsers. Besides large cloud infrastructure platforms, such as Amazon Web 

Services or Google Cloud, ESA and the European Union have also launched platforms, 

such as ESA RSS Toolbox, EU RUS Copernicus, and the recently launched EU 

Copernicus DIAS platforms. All of these provide on-demand virtual environments close to 

EO data archives.  

Serverless web services 

Serverless infrastructure describes a technology for undertaking tasks for which the 

underlying server infrastructure is set up and used only when the tasks are running. 

Computational tasks can be triggered by an event, such as a request conducted by a web 

service application. This allows the saving of resources and costs as the server 

infrastructure is set up automatically only on demand. Due to the infrastructural concept 

underlying Amazon Web Services (AWS) and Google Cloud, both support serverless 

computing with their products, AWS Lambda and Google Cloud Functions. Limits 

pertaining disk space, execution duration, request body size, memory allocation, and 

software package size need to be considered when designing such web services (Table 

3.2). Examples can be found on the remotepixel.ca website, which provides a Landsat 
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scene viewer (landsat-tiler10) and Landsat NDVI extraction (remotepixel-api11). Both web 

applications make use of AWS Lambda web services to search for Landsat data, return 

visualization images in different band combinations, and calculate NDVI data for the area 

of interest.  

Evaluation: Any application hosted on local servers can be transferred and hosted on 

cloud-based infrastructure close to EO data archives. Various aspects need to be 

considered when using virtual remote environments:  

 
Serverless web services provide simple tools based on data that already is hosted by the 

service provider. As such, data can be made available, but long-running data processing 

or analysis tools are not supported due to the limitations of the serverless architecture. 

Although it is not necessary to rent a server for the 24/7 time range, the cost is calculated 

based on the number of requests and the computation resources used.   

Table 3.2: Limits of the serverless tools from Amazon and Google (Status: Nov. 2018). 

Limit AWS Lambda12 Google Cloud Functions13 

Package size 50 MB 100 MB 

Disk space 512 MB See memory allocation 

Execution duration 300 seconds 540 seconds 

Request body size 6 MB 10 MB 

Response size 6 MB 10 MB 

Memory allocation 128–3,008 MB 128–2,048 MB 

 

  

                                                
10 https://viewer.remotepixel.ca  
11 https://remotepixel.ca/projects/landsat8ndvi.html  
12 https://docs.aws.amazon.com/lambda/latest/dg/limits.html  
13 https://cloud.google.com/functions/quotas  

• No data download is needed if the data is already available on the same 

cloud. 

• Costs for download bandwidth and storage when data required by the user is 

not available on the server infrastructure. 

• Costs for the 24/7 runtime of the processing infrastructure depends on 

performance. 

 

https://viewer.remotepixel.ca/
https://remotepixel.ca/projects/landsat8ndvi.html
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
https://cloud.google.com/functions/quotas
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3.1.6 Web platforms 
Individual processing platforms automatically combine data access and data processing 

tools. In contrast to virtual environments (see Subsection 3.1.5), only tools that are 

published by the platform provider can be used. The general objectives of web-based 

processing platforms are the provision of ready-to-use data in combination with convenient 

tools and useable interfaces.  

Different architectures and tools can be considered when designing infrastructures for 

web-based EO data exploration. Soille et al. (2018) have compared several multi-petabyte 

platforms for geospatial data processing and analysis, including NASA’s Earth Exchange, 

the Australian Geoscience Data Cube, Google Earth Engine, and JRC Earth Observation 

Data and Processing Platform (JEODPP). Different properties have been assessed: 1) the 

capability to address users with remote desktop access, analysis software, and interactive 

visualization and analysis tools; 2) access to its different services through a web browser 

client; and 3) the possibility of running existing scientific workflows in a virtualized or 

containerized environment. These criteria lead to the conclusion that a self-developed 

infrastructure, such as the JEODPP, is best for use in terms of flexibility for users. Similar 

web-based applications and infrastructures have been set up by the ESA Thematic 

Exploitation Platforms (e.g., Esch et al., 2016) and the CEOS Open Data Cube initiative 

(Ariza-Porras et al. 2017; Giuliani et al. 2017). Both of these can be hosted either on own 

infrastructure or within commercial cloud providers close to EO Data archives, e.g., using 

AWS, Google, Copernicus DIAS, or Terradue Cloud (Caumont et al. 2014). In contrast, 

Google Earth Engine (Gorelick et al. 2017) provides highly scalable infrastructure that is 

free to use after registration and has petabytes of EO and geospatial data. However, own 

algorithms, for example, those available as an R package or command-line tool, need to 

be rewritten with functions provided by Google. Although own datasets can be uploaded, 

these are limited to raster and vector data. 

Evaluation: Various web-based processing platforms exist that have different EO data, 

analysis tools, service interfaces, and infrastructures. Although the development and use 

of a self-developed platform is flexible for most of the requirements, it needs either to be 

hosted on a cloud platform close to the data (e.g., Amazon, Google, and Copernicus DIAS) 

or EO data needs to be downloaded. However, the use of existing platforms (e.g., Google 

Earth Engine) can be limited in terms of the available EO data and analysis tools. A final 

decision often depends on several aspects: the functionality of the web platform, the EO 

data that is needed, or the own processing capabilities, and the like. 
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3.2 EO Time-series Data Services and Formats 
Services for EO time-series data discovery, access, brokering, visualization, and 

processing allow data exploration in various user-driven applications. In the following 

subsections, state-of-the-art specifications and research on each of these services are 

described and evaluated in relation to user requirements.  

3.2.1 Discovery 
Requests for geospatial data discovery include location and optional query parameters to 

filter down the search result; the responses include the resulting metadata in the data 

format requested (e.g., XML or JSON). In general, metadata cataloguing focuses on 

individual geospatial data—not only that related to time-series data. A hierarchical 

composition of satellite missions containing millions of satellite scenes has been 

demonstrated by discovery brokers, such as the ESA Federated Earth Observation 

Gateway (FedEO) and GEOSS metadata broker (Nativi et al. 2014; Craglia et al. 2017).  

To allow interoperability between distributed metadata catalogues, standard-compliant 

service specifications are available. The OGC has published the Catalogue Service for 

Web (CSW) specification, which contains rules for querying metadata catalogues and 

accessing metadata records. Other catalogue specifications, such as OpenSearch, which 

was initially developed by Amazon, are available for general data discovery. The OGC 

developed an extension for OpenSearch that specifies features relevant to geospatial 

data, such as spatial and temporal properties and spatial filter methods. Metadata (e.g., 

title, abstract, and contact information) enables the discovery of geospatial datasets in 

catalogues. Given this, ISO published the ISO 19115  specification (ISO 2003) to 

determine what kind of information can be included. The structure of the metadata files is 

defined in ISO 19139 as a standardized XML encoding schema. EO-specific metadata 

can be made available using additional extensions of the existing metadata catalogue 

standards, such as the OGC OpenSearch Extension for Earth Observation (Gonçalves & 

Voges 2016) or the OGC EO Application Profile for CSW 2.0 (Gilles 2006). 

Research has been conducted on semantic annotation of satellite data to automatically 

enhance metadata, either by automated feature extraction (e.g., Cui et al. 2014) or 

information linked to the footprint of each satellite scene extracted from additional data, 

such as land cover, population, and the digital elevation model (Gasperi 2014). Semantic 

information can be integrated using common discovery standards, such as OpenSearch 

and OGC CSW, or based on a linked data approach using the Resource Description 

Framework (RDF). As a result, a standardized query language can be used to search 

within EO data archives for additional annotations and linked data (Koubarakis et al. 2012; 
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Arenas et al. 2017). A combination of raster time-series discovery and access has been 

researched within the EarthServer project (Baumann et al. 2016a). Based on the OGC 

Web Coverage Processing Service (WCPS) specification, the XPath-enabled WCPS 

extension has been developed to semantically search within the metadata of each raster 

in the time-series (Liakos et al. 2015). To increase interoperability when searching for 

spatial time-series data, the SpatioTemporal Asset Catalog (STAC, Holmes 2017b) 

specification has been initiated by various international organizations. It aims to 

standardize how geospatial data is made available online and can be queried using up-

to-date and modern web technologies. Currently, only an early version of the specification 

is available and, hence, there is potential for some major changes (Radiant Earth 2018). 

OGC Catalogue Service for Web 

The CSW (Nebert et al. 2007) is a standard specification of the OGC for data discovery. 

It uses a simple HTTP interface to make metadata discoverable and accessible. Within 

the specification, requests, responses, and filtering parameters of the web service are 

defined. Table 3.3 lists the core methods, which can be described as follows: The 

“GetCapabilities” response lists methods with their parameters as well as filter capabilities, 

such as geometry operands, spatial operators, comparison operations, and arithmetic 

operators. The “DescribeRecord” method provides information about the metadata fields 

that can be retrieved. The “GetRecords” method can be used to search the metadata 

catalogue using keywords and other filters. Various parameters can be set to define the 

resulting list of metadata (e.g., short or detailed). The “GetRecordById” method provides 

the complete metadata record according to the identifier of the metadata record set in the 

request.  

Table 3.3: Core methods of the OGC CSW specification (Nebert et al. 2007). 

Request method Description Output format 

GetCapabilities Lists all available methods, parameters, and filter 
capabilities  

XML 

DescribeRecord Describes the metadata elements available XML 

GetRecords Discovers metadata catalogue XML 

GetRecordById Retrieves metadata entry by unique metadata file 
identifier 

XML 

 

Example of a CSW request (GetCapabilities): 

http://artemis.geogr.uni-jena.de/pycsw/csw-
projects.py?service=CSW&request=GetCapabilities 
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Example of a CSW request (GetRecords): 

http://artemis.geogr.uni-jena.de/pycsw/csw-
projects.py?service=CSW&request=GetRecords 

 

OpenSearch 

A non-domain-specific catalogue service specification is OpenSearch (Clinton 2018), 

which uses standardized web output formats based on XML technologies. The JSON 

format is additionally available. Depending on the configuration of OpenSearch, either only 

a limited set of metadata or all metadata can be integrated in the output of the data 

discovery request. However, another URL within the OpenSearch result can retrieve the 

full metadata. OGC published a spatial and temporal extension to meet the needs of the 

geospatial community (Gonçalves 2014).  

Example of an OpenSearch description request: 

http://artemis.geogr.uni-jena.de/ec/pycsw/swos/products.py? 
service=CSW&request=GetCapabilities&mode=opensearch 

 

Example of an OpenSearch search request: 

http://artemis.geogr.uni-jena.de/ec/pycsw/swos/products.py? 
service=CSW&version=2.0.2&request=GetRecords&mode=opensearch
&elementsetname=full&typenames=csw:Record&resulttype=results
&q=Azraq 

 

Evaluation: Although the OGC CSW and OpenSearch specifications are used as 

standards for data discovery, they can be improved for specific cases. More user-aligned 

output formats for data discovery, which can be understood by a wide range of users, 

need to be provided. Examples include summarized figures and charts as well as 

commonly used data formats (e.g., Shapefile and CSV). To meet the needs of different 

users, more than a single output needs to be available. 
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3.2.2 Access 
Geospatial raster data can be provided as direct file download or by using a web service 

interface. The provision of data downloads through web services allows on-demand 

requests of different projections, file formats, and subsettings. In addition to file download 

and web services, new technologies allow the reading, writing, and visualizing of GeoTIFF 

raster data in the browser (EOX IT Services GmbH 2018). An initiative to provide cloud-

optimized GeoTIFF data, which can be accessed by means of subsets when requesting 

the data, has been initiated recently (COG 2018). This allows downloading of only parts 

of a raster file without using a web service interface, rather than the user having to 

download the complete raster file. In the following paragraphs current research and 

standard-compliant specifications for raster time-series access are described. 

Although single observations can be provided using the OGC Web Coverage Service 

(WCS) specification, it is not optimized for large time-series data management and access. 

The provision of time-series data is in general provided by the OGC Sensor Observation 

Service (SOS) specification. Users can access data for a sensor of interest and further 

user-specific parameters, such as the selection of a measurement or a temporal range. 

This approach is mainly used for in-situ measurements when observing physical 

phenomena (e.g., temperature or precipitation), which are always related to a 

measurement station—a geographic point. In contrast, satellite-based EO delivers data 

related to a certain geographic area. This has been addressed by Sorg and Kunkel (2015), 

who published raster time-series data with the use of the OGC SOS specification. To allow 

for efficient storage and search, which have been major challenges, the raster data is 

made available with different grid solutions. The authors conclude that the “SOS approach 

is predominant compared with the common WCS-EO) approach due especially to its 

temporal and thematic filtering capabilities, but in particular due to the possibility of 

describing measurement equipment, measurement processes, and observations in detail 

by metadata standards, which are exactly defined for this purpose” (Sorg & Kunkel 2015, 

pp. 1093–1094). Other access possibilities include the research of databases, such as 

Rasdaman and SciDB (Baumann et al. 1998; Planthaber et al. 2012; Appel et al. 2018).  

OGC Web Coverage Service  

The WCS specification (Baumann 2012) allows the publishing of geospatial raster data 

using an HTTP interface. Multiple output formats for raster data can be retrieved, such as 

GeoTIFF or geo-referenced JPEG and PNG images. Using request parameters, users can 

request specific projections and subsets of the original data. Table 3.4 lists the core 

methods of the OGC WCS specification and the WCS-EO extension. A WCS-compliant 

service can contain several geospatial data listed in the “GetCapabilities” response. In 
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addition, available projections and interpolation methods are listed. A dataset can be 

further described with the “DescribeCoverage” request, which lists information about data 

properties (e.g., pixel size, columns, rows, or no data value) and dimensions (e.g., bands 

and time). The TIME extension of the WCS allows multi-temporal filtering before the 

resulting data is returned as a response to the user. Based on WCS, it is possible to 

integrate raster data into client applications, such as the GIS desktop system or web 

applications using state-of-the-art browser technologies. Furthermore, it is possible to 

download either the full dataset or only selected parts thereof by using subsetting and filter 

functions. 

An EO application profile meets the needs of the EO community. This profile adds the 

methods “DescribeEOCoverage” and “GetEOCoverage,” with specific focus on multi-

bands and multi-temporal satellite data (Baumann et al. 2014). As such, temporal and 

spatial information about various EO missions are included in the response formats.  

OGC Web Coverage Processing Service  

Another extension is the OGC WCPS, which allows the processing of raster data while 

requesting it(Baumann 2009a). Baumann (2009a) developed a raster database combined 

with the OGC WCPS specification to serve multi-dimensional raster data, which allows the 

extracting and processing of data when conducting a service request. Although the WCPS 

specification allows subsetting and processing of data while requesting it, the output of the 

multi-temporal dataset consists of a multi-dimensional raster dataset. In most cases, 

further metadata is necessary to relate each band to a date in the EO time-series data. 

WCPS is reasonable for the retrieval of a single dimension; accessing a time-series of 

raster data is more challenging because data management issues still need to be solved 

by the user even if some of the steps (e.g., merging and clipping) have been undertaken 

automatically by the web service. In the following examples, it is demonstrated how the 

WCPS query language can be used to retrieve a vegetation index from satellite data 

without the need to compute the index beforehand.  

Evaluation: Existing data access services only partially meet the needs of users. They 

mainly focus on machine-to-machine interaction and raw data access. Several 

requirements, such as clipping and merging data to the area of interest, using quality 

masks and scaling factors, and converting data to user-defined output formats have not 

yet been fully addressed. Therefore, individual data integration and processing services 

are necessary. While it is possible to provide the raster data for each date individually with 

the OGC WCS and WCPS specifications, the handling of the requesting and further 

processing of all datasets according to the needs of a user is left to the client application.  
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Table 3.4: Core methods of the OGC WCS specification and the WCS-EO extension (Baumann 
2012; Baumann et al. 2014). 
Request method Description Output format 

GetCapabilities Lists information about operations and 
coverages available 

XML 

DescribeCoverage Retrieves information about a single 
coverage 

XML 

DescribeEOCoverage Retrieves information about single EO 
dataset collection 

XML 

DescribeEOCoverageSet Retrieves information about zero or 
more EO datasets that meet the 
request parameters (e.g., dataset IDs 
and spatial/temporal dimensions) 

XML 

GetCoverage Downloads geospatial coverage based 
on specific parameters 

GeoTIFF/others 

GetEOCoverage Downloads EO coverage based on 
specific parameters 

GeoTIFF/others 

 

Example of a WCS request (GetCapabilities): 

http://artemis.geogr.uni-jena.de/sibessc/modis?service=WCS& 
version=2.0.0&request=GetCapabilities 

 

Example of a WCS request (GetCoverage): 

http://webgis.essi-services.org:8080/geoserver/ows? 
service=WCS&version=2.0.1&request=GetCoverage&coverageid=web
gis__tuebingen-landcover_300m_band1 

 

Example of a WCS request (GetCoverage with subsetting): 

http://webgis.essi-services.org:8080/geoserver/ows? 
service=WCS&version=2.0.1&request=GetCoverage&coverageid=tue
b_srtm_30m&subset=Long(9.05,9.15)&subset=Lat(48.50,48.55)& 
subsettingcrs=http://www.opengis.net/def/crs/EPSG/0/4326 

 

Example of a WCPS (ProcessCoverage) request calculating the NDVI for a subset of a 

single image within a multi-temporal dataset (LT5): 

http://yourserver/rasdaman/ows?service=WCPS&version=2.0.1 

  &request=ProcessCoverage 
  &query=for c in (LT5) return encode( (((float)c.b4-
(float)c.b3)/((float)c.b4+(float)c.b3))[E(700000:784815),N(5
104285:5158115),ansi("1984-10-18")],"tiff")  
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3.2.3 Brokering 
Brokering systems for geospatial data have been introduced by Nativi et al. (2012) to 

achieve interoperable web services across multi-disciplinary systems and standards. 

Nativi et al. (2012, p.6) defines a broker as follows: “A solution to reduce the 

interoperability burden on data providers and applications is to introduce a third party to 

interconnect the different service buses, mediating their existing (and future) models and 

interface specifications.” 

Figure 3.5 shows both approaches: The traditional approach with requests to each 

individual data provider (right) and the service-brokering approach with a centralized 

request to the broker instead of to each individual service of the data provider (left). The 

service broker takes over the communication with each connected web service and adapts 

requests from users to the service specifications of the data provider.  

While the service-brokering approach has been implemented for data discovery by various 

international organizations (e.g., GEOSS), the brokering of data access is more complex. 

Although Nativi et al. (2013) propose service brokering for data access, it has been 

introduced for individual geospatial data and does not focus on time-series data. Based 

on the same approach, a brokered virtual hub layer for historical maps has been 

developed (Previtali & Latre 2018). The study investigates how to remove the barrier 

introduced by data and services by different user communities to ensure the effective 

reuse and integration of geospatial data by software developers. It concludes that “the 

capability to integrate different informative layers, both historical and modern, can be an 

important opportunity of development with application areas still largely unexplored” 

(Previtali & Latre 2018, p. 19). In addition, architectures with only a single point of access 

ensure easy interoperability between different sources. 

Evaluation: A brokering approach enables the use of a unified and harmonized interface 

for the different services that are connected. Users only need to use a single service.   

 
Figure 3.5: Requests to EO data using individual services (right) and service brokering (left). 
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3.2.4 Visualization 
Geospatial raster and vector data are visualized in the web browser by converting them 

to RGB or greyscale images. Raw values from raster data and features from vector data 

hence need to be converted into color schemes (Figure 3.6). The OGC allows visualization 

using the Styled Layer Descriptor specification. For raster data, individual pixel values are 

converted either into discrete colors or into a continuous range of colors. For vector data, 

the color assignment is based on a column in the attribute table (e.g., different colors for 

land-cover types specified in the attribute table).  

OGC Web Map Service 

The OGC Web Map Service (WMS, Beaujardiere 2006) specification provides a simple 

HTTP interface to convert geospatial data to images in order to make them available on 

the Web. Several parameters can be added when retrieving an image, such as a bounding 

box or a specific styling. If data is provided using the OGC WMS specification, it can be 

easily integrated in existing GIS desktop and web-mapping software. Within a web-based 

system, geospatial data created on demand (e.g., outputs of the results of analysis) can 

be directly visualized in an interactive map viewer when a WMS is provided. No data 

download or additional software is required by the user. Table 3.5 lists the core methods 

of the WMS specification. A WMS can contain several geospatial data, which are listed as 

layers in the “GetCapabilities” request. In addition to the visualization of geospatial data, 

a WMS provides on-demand projection in order to transfer geospatial data into other 

projections within the “GetMap” request. It also supports the request for raw values of the 

geospatial dataset for individual pixels in raster or features in vector datasets 

(GetFeatureInfo). A legend graphic containing explanations of what the colors represent 

can be requested using the “GetLegendGraphic” request.  

 
Figure 3.6: Workflow of a web-based visualization of geospatial data: Either raster data (top left) 
or vector data (bottom left) can be transferred into images (own visualization). 
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Table 3.5: Core methods of an OGC Web Map Service (Beaujardiere 2006). 
Request method Description Output format 

GetCapabilities Lists all available datasets XML 

GetMap Retrieves images from given datasets in a 
geographic area 

Image 

GetLegendGraphic Retrieves a legend graphic from given dataset Image 

GetFeatureInfo Retrieves raw values from a specific dataset and 
location 

HTML/others 

 

Example of a WMS request (GetCapabilities): 

http://artemis.geogr.uni-jena.de/sibessc/modis?service=WMS& 
version=1.3.0&request=GetCapabilities 

 

Example of a WMS request (GetMap): 

http://artemis.geogr.uni-jena.de/sibessc/modis?service=WMS& 
request=GetMap&layers=myd10c2_snowcover&format=image/png& 
srs=EPSG:900913&bbox=10018754,5009377,15028131,10018754& 
width=256&height=256 

 

WMS TIME Extension 

The WMS TIME extension allows for the filtering of a multi-temporal dataset before the 

visualization is undertaken. This is based on a catalogue (e.g., through a database or 

vector file), which contains temporal information for each item in the multi-temporal 

dataset. For each “GetMap” request, the TIME parameter comprises either a single time 

period (e.g., year, month, or day) or a start and end date:  

TIME=<start date>/<end date>    Example: TIME=2018-01-01/2018-01-07 

TIME=<date>          Example: TIME=2018 (all scenes from 2018) 

As the output is a single map, depending on the software, several strategies for the 

resulting multi-temporal images can be defined, such as mosaicking all resulting images 

or showing only the latest image within the given time range.  

WMS Earth Observation Application Profile 

The Earth Observation Application Profile of the WMS specification defines “conventions 

for the Earth Observation (EO) community to use OGC Web Services” (Lankester 2009), 

with the objective of providing an interoperable way to visualize EO data. That is, it defines 

how EO data, which contains dataset collections as well as temporal and band 

dimensions, can be provided using the OGC WMS specification. The temporal dimension 

is provided by the WMS TIME parameter. If multiple bands are available in the EO data, 
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they need to be provided by using an additional dimension (e.g., wavelength for optical 

data or polarization for radar data). An example request that includes the TIME parameter 

and the additional dimension for radar intensity (dim_sar) is shown below: 

http://eoltd.co.uk/mapserver.cgi?version=1.3.0 
&request=GetMap&crs=CRS:84 
&bbox=78.105,24.913,94.794,36.358 
&width=560&HEIGHT=350 
&layers=ASA_IMP_1P_BANDS 
&format=image/png 
&time=2005-10-05T07:25:00 
&dim_sar=INTENSITY 

Evaluation: Visualization of EO time-series data can be realized using the TIME parameter 

of the OGC WMS specification. In addition, the WMS EO application profile lists 

specifications regarding how to provide raster time-series layers. Although this is suitable 

for data provision, client applications need to support this extension.  

3.2.5 Processing and analysis 
The publishing of processing tasks as web service—close to the data or on dedicated 

processing hardware—plays a major role in dealing with the emerging opportunities, 

challenges, and needs for globally distributed data and increasing amounts of data. To 

better support data exploration, algorithms need to be provided as web services to 

transform data into information. Algorithms need to be directly linked with input data, which 

needs to be prepared for direct analysis (“analysis-ready data”). Therefore, EO data 

archives and analysis tools have to be linked. Web-based processing services enable the 

further processing of output data of algorithms, for example, converting geospatial output 

data to standardized web services for visualization and access. Furthermore, raster to 

vector conversion and ready-to-use maps can be added to allow easy exploration of the 

results of analysis without the need for further processing by the user. To ensure the 

deployment of algorithms without the need to consider the dependencies of the software 

and allow reproducible workflows, containerized solutions can be considered (Celesti et 

al. 2016; Beaulieu-Jones & Greene 2017). This allows the execution of an algorithm 

independently of server infrastructure. 

Geoprocessing technologies are widely discussed in the research community. Hofer 

(2014) undertook a systematic literature analysis of the use of online geoprocessing and 

concluded that the field is still evolving and that further actions need to be focused on 

increasing the use of this technology (e.g., provide best practices and resources, reduce 

entry and access barriers, sharing of services, and the like). In 2009, a research agenda 

for geoprocessing services was published by Brauner et al. that identified three main 
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topics: 1) semantic descriptions of geoprocessing services, 2) orchestration of 

geoprocessing services, and 3) approaches for performance enhancements. A new 

paradigm has already been introduced and was later further developed to bring algorithms 

to the data (Friis-Christensen et al. 2007; Müller et al. 2010, 2013) to handle performance 

issues and increasing data volumes. This paradigm leads to a reduction in the amount of 

data transfer between different systems; however, it still needs to be further investigated. 

In addition, algorithms can be provided with interoperable standards. This can be achieved 

with geoprocessing services and is referred to as the “geo-enabled model web” (Geller & 

Turner 2007; Nativi et al. 2013; Dubois et al. 2013). Current research projects aim to 

standardize the connections to and between EO service providers by providing a 

standardized service interface to query and process EO data (Schramm et al. 2019) and 

“analysis-ready services” (Baumann 2019).  

Further research has been conducted in several fields:  

• Distributed processing (Friis-Christensen et al. 2007; Meng et al. 2010; Foerster et 

al. 2011; Schaeffer et al. 2012)  

• Semantic processing (Farnaghi & Mansourian 2013; Wosniok et al. 2014; Vitolo et 

al. 2015; Sudmanns et al. 2018)  

• Process orchestration (Nash et al. 2007; Meng et al. 2009; Eberle & Strobl 2012; 

De Jesus et al. 2012; Wu et al. 2014; Xiao et al. 2016; Hofer et al. 2017) 

• Cloud-based processing (Sun 2013; Evangelidis et al. 2014; Veenendaal et al. 

2016; Shelestov et al. 2017; Gorelick et al. 2017)  

• Sharing geoprocessing logic (Müller et al. 2013) 

OGC Web Processing Service 

Service providers for web-based processing services need to describe their processes 

with input and output parameters, which can be individually set by the users. Process 

descriptions and execution methods can be standardized with the use of the OGC WPS 

specification (Schut 2007), which allows the publishing of processing tasks on the Web 

using an HTTP interface. A WPS-compliant service can contain several processes, which 

are connected to executable scripts on the server. Standardized methods (Table 3.6) allow 

a unique execution of processes and the handling of status updates. Available processes 

are listed in the “GetCapabilities” response. The process descriptions with information 

about available inputs and outputs and descriptions of the process itself can be retrieved 

using the “DescribeProcess” request. A process can be started using the “Execute” 

request, which includes the input values and properties for running the process, such as 

synchronous or asynchronous execution or whether the output values are stored on the 
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server. With version 2.0 of the WPS specification, there are further request methods to 

pause and cancel running processes. Using the WPS specification, processes can be 

started directly using data available on the local machine, the server infrastructure, or on 

the Web.  

Table 3.6: Core methods of an OGC WPS (Schut 2007). 
Request method Description Output format 

GetCapabilities Lists processes available in the requested 
WPS instance 

XML 

DescribeProcess Describes process with inputs and outputs XML 

Execute Executes a process XML / Output file 
 

Example of a WPS request (GetCapabilities): 

http://artemis.geogr.uni-jena.de/cgi-bin/testbox.cgi? 
service=WPS&request=GetCapabilities 

 

Example of a WPS request (DescribeProcess): 

http://artemis.geogr.uni-jena.de/cgi-bin/testbox.cgi? 
service=WPS& version=1.0.0&request=DescribeProcess& 
identifier=1013_single_ts_plot_point 

 

Example of a WPS request (Execute): 

http://artemis.geogr.uni-jena.de/cgi-bin/testbox.cgi? 
service=WPS&version=1.0.0&request=Execute&identifier=1013_si
ngle_ts_plot_point&datainputs=datasetName=mod13q1_evi;pointX
=13.54;pointY=52.31 

 

Evaluation: The OGC WPS specification allows a meeting of the needs of users though 

further standards related to input and output data formats, service execution properties, 

and the deployment of algorithms need to be defined (e.g., through WPS application 

profiles).  
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3.2.6 Data formats 
As already described in Subsection 2.1.1 and shown in Table 2.2, multi-source EO data 

is available in different data formats (e.g., GeoTIFF, netCDF, HDF-EOS). The selection of 

user-friendly data formats needs to be observed from different perspectives: the 

technological perspective in order to provide efficient data access and visualization, and 

the user perspective, with commonly used data formats. Bordogna et al. (2016) 

recognized that there is still a gap to fill in order to enable the efficient access, retrieval, 

integration, visualization, analysis, and interpretation of geospatial time-series data, 

especially that with different data formats and from multiple sources. Furthermore, they 

identified a lack of complex functionalities that would allow stakeholders to easily perform 

queries on geospatial time-series data within current geoportals without the need to think 

about data formats and data structures. In addition, graphic diagrams showing time-series 

are mostly not available as query responses. Smith et al. (2016) describe similar needs, 

as data platforms “often do not demonstrate that data are readily available and easy to 

access and analyze [and] data insights are not realized without expertise in programming 

or other technical skills” (Smith et al. 2016, p. 98). Thus, user-friendly tools to explore 

aggregated time-series data and model outputs are necessary. In both of the above-

referenced studies, data are structured as files with a predefined data format (e.g., 

GeoTIFF for raster time-series and text files for single time-series). In contrast to the 

GeoTIFF-based single layer data format and data structure (Astsatryan et al. 2015; 

Bordogna et al. 2016), the Hierarchical Data Format (HDF) is preferred by other 

researchers to allow a time-sequential representation of individual pixels for efficient raster 

time-series data access (Colditz et al. 2008; Van den Bergh et al. 2012). Gallaher and 

Grant (2012) propose the “data rods” time-series format for data management and data 

analysis. This allows raster time-series data to be converted into single time-series pixel 

objects that can be stored in object-based databases, which provide more efficient data 

access than accessing data from the file system. For all of the studies presented above, 

the main objective is overcome the current activities of data search, order, download, and 

transformation into a web service-based exploration and analysis of time-series data in an 

efficient and optimized way. 

Evaluation: The choice of the “correct” data format is often not simple to answer as it 

depends on various subjects (e.g., user communities and diverse data structures). While 

the GeoTIFF format can only handle bands with the same raster dimensions in the same 

file, the HDF format can include different raster dimensions. However, depending on the 

user community, users may have more experience with one or the other data format. 
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3.3 Summary and Evaluation 
The state of the art for web technologies and EO time-series data services and formats is 

summarized and evaluated in relation to user requirements in the following paragraphs. 

Web technologies 

Current web technologies are based on RESTful web services and make use of JSON for 

the exchange of structured data. Although SOAP-based web services can be useful in 

different domains and software architectures (e.g., orchestration engines), the RESTful 

approach needs to be supported for web services. The JSON data format is to be preferred 

in most cases as the data structure can be directly used as an object in various 

programming languages. The selection of software to provide web services depends on 

several aspects, such as the programming language and supported features (e.g., 

asynchronous processing) of the software. It often also depends on the use and the 

content: Processing services need to be distinguished from the provision of content 

management services. Cloud-based infrastructures and tools allow the hosting and 

provision of both data platforms and single services but usage costs need to be taken into 

account. EO-related web platforms can be based on several architectures, with different 

EO data, analysis tools, service interfaces, and infrastructures available to users. 

However, in most cases, they have been built for specific purposes and are therefore 

limited in terms of the available EO data, analysis tools, and web services.  

EO time-series data services and formats 

Although commonly used web service specifications for data discovery, access, 

visualization, and analysis exist, the focus has been mainly on machine-to-machine 

communication. In particular, the response formats of those web services either focus on 

web-specific formats (e.g., discovery results in XML or JSON) or are just not suitable for 

EO time-series data (e.g., OGC WCS for time-series data access), which in most cases is 

only usable by software developers. Other user personas, such as scientists and thematic 

experts, need additional output formats. Access to raster time-series data especially 

cannot be provided in a simple request using the existing services as they only provide 

access to individual files (multiple files are needed for time-series data). In addition, 

software developers who are not particularly familiar with the geospatial domain need to 

learn many specifications to handle data discovery, access, and analysis services. Thus, 

a uniform service specification and multiple output formats would foster the exploration of 

EO time-series data with support of multiple user personas. 
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Evaluation according to user requirements 

Web technologies and EO time-series data services and formats have been evaluated in 

relation to the user requirements presented in Chapter 2.  

The following conclusions can be drawn:  

 Web services can be provided with support of different architectures (e.g., SOAP 

or REST), OGC-compliant specifications, asynchronous execution, and service 

chaining. However, no software supports all of these features. 

 Multi-source EO data discovery and access and the harmonization of multiple 

service specifications from different data providers can be realized by means of a 

service-brokering approach. 

 Several cloud-based infrastructures and processing platforms exist; however, pre-

defined platforms always have limitations. As such, as proposed from Soille et al. 

(2018), the hosting of a self-developed platform offers the most flexible approach. 

The following conclusions need to be further explored: 

 Specifications for data discovery and data access provide only different output 

schemata (e.g., JSON or XML) and do not support multiple output formats. Only 

the OGC WPS specification supports the provision of multiple outputs.  

 No uniform service specification for data discovery, access, and processing 

(analysis) is available. Although the OGC specifications follow same rules, many 

of the core methods and formats for requests and responses are different.   

 Formats for EO time-series data need to be harmonized for further exploration 

through the user in relation to existing geospatial applications and analysis tools.   
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Chapter 4: Review of EO Web Services, Tools, and 
Platforms 
In this chapter, web services from existing EO data providers, geospatial tools to process 

EO time-series data, and cloud-based EO infrastructure platforms are described and 

evaluated focusing on their current state-of-the-art technologies and in relation to user 

requirements.  

The following questions are reviewed: 

• Where and how to search for data and what kind of web services for data discovery 

are provided? (Section 4.1) 

• How to access EO data and what kind of web services are provided? (Section 4.2) 

• How to process raster time-series data with geospatial tools? (Section 4.3) 

• What kinds of EO data platforms exist and what do they offer? (Section 4.4) 

In each of the sections, a conclusion is drawn. The review chapter concludes with a 

summary and recommendations for multi-source EO data discovery and access, time-

series data processing, and cloud-based processing platforms. 
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4.1 Discovery of EO Time-series Data 
Services for the discovery of EO time-series data for Sentinel, Landsat, and MODIS have 

been made available from space agencies (e.g., ESA and NASA), private companies (e.g., 

Google and Sinergise), and other organizations (e.g., USGS). As data discovery tools can 

be provided using different kinds of technologies and specifications, there is no common 

specification to fit all purposes of data discovery. The main specification for data 

cataloguing from the OGC, the CSW, has been made available for many satellite data 

providers through the brokering services offered by CEOS and GEOSS. Although this can 

be seen as a common approach for data discovery, many data providers either use 

additional standardized specifications (e.g., OpenSearch and OGC Web Feature Service) 

or self-developed web service specifications.  

The most common services for the discovery of Sentinel, Landsat, and MODIS data 

archives today are listed in Table 4.1, including the specifications they provide and what 

kind of EO data is available. Most EO satellite data is not only discoverable by the operator 

of the satellite. Other data providers hosts copies of the EO data in different kind of formats 

and provide different kind of services for data discovery. Although standardized 

specifications for data discovery exist, many data providers, such as USGS, NASA, and 

Google, offer web services with other specifications that are optimized for their own data 

archives. In the following subsections, the services listed in Table 4.1 are described and 

evaluated. 

Table 4.1: List of services for satellite data discovery for Landsat, Sentinel, and MODIS. 
Data provider Specifications provided Data 

ESA/Copernicus Open Access Hub 
https://scihub.copernicus.eu 

OpenSearch Sentinel 

USGS Earth Explorer 
https://earthexplorer.usgs.gov/inventory 

Self-developed service 
specification 

Landsat, 
MODIS, 
Sentinel–2 

NASA CMR 
https://cmr.earthdata.nasa.gov  

Self-developed service 
specification 

Landsat, MODIS 

Google Earth Engine 
https://earthengine.google.com  

Python library Landsat, 
MODIS, Sentinel 

Sinergise Sentinel-Hub 
http://www.sentinel-hub.com  

OGC Web Feature Service Landsat, 
Sentinel 

GEOSS broker 
http://www.geodab.net   

OGC Catalogue Service for Web  
OpenSearch, Others (e.g., REST) 

Landsat–8, 
Sentinel 

CEOS WGISS Integrated Catalogue 
http://ceos.org/cwic  

OGC Catalogue Service for Web 
OpenSearch 

Landsat–8, 
MODIS 

ESA FedEO 
http://ceos.org/fedeo   

OGC Catalogue Service for Web 
OpenSearch 

Landsat, 
MODIS, Sentinel  

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/inventory
https://cmr.earthdata.nasa.gov/
https://earthengine.google.com/
http://www.sentinel-hub.com/
http://www.geodab.net/
http://ceos.org/cwic
http://ceos.org/fedeo
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4.1.1 Data provider solutions 
Each of the EO data providers offers specific web services for data discovery. In the 

following paragraphs, services from major public data providers, such as ESA, USGS, and 

NASA, as well as commercial services from Google and Sinergise are described. 

ESA/Copernicus Open Access Hub (Sentinel)—OpenSearch 

ESA provides the REST-based OpenSearch specification for the discovery of EO data 

from Sentinel satellites.14 Search parameters, such as dates, orbits, sensor modes, cloud 

cover, and a full-text search, can be used in addition to mission-specific parameters to 

filter the discovery request (Table A.1). An individual polygon can be used to intersect 

spatially with the scene of the EO data. Either XML or JSON can be requested as a data 

format for the response using the additional parameter “format.” The response includes all 

available properties for each satellite scene, including the identifier, sensor mode, 

footprint, product type, size, dates, as well as mission-specific properties (e.g., polarization 

mode for radar data and cloud cover percentage for optical data). However, the quality 

and format of quick look images can be improved for some satellite missions (e.g., 

Sentinel–1). Furthermore, a user account is necessary and only two parallel service 

requests are allowed. 

USGS Earth Explorer (Landsat, MODIS, Sentinel–2)—self-developed REST API 

The inventory service of the USGS Earth Explorer allows searching for dataset collections 

and satellite scenes.15 Spatial and temporal filters can be used for both search requests 

(Table A.2 and Table A.3). Cloud coverage and individual months can be set for satellite-

scene searches. Furthermore, additional criteria can be used to filter the satellite-scene 

search using dataset-related parameters. As the USGS Earth Explorer consists of a wide 

range of EO data (e.g., Landsat, MODIS, and Sentinel–2), multi-source EO data can be 

searched. The search parameters are encoded as JSON and sent to an individual web 

service endpoint for login, collection search, or satellite-scene search. The response is 

encoded as JSON. Each of the resulting scenes includes the following information: start 

time, end time, polygon footprint, a bounding box, quick look image link, data ordering link, 

data download page link, scene identifier, and metadata URL. However, only a non-

standardized web service interface is available and an interface key is required to conduct 

requests to the service. This key can be obtained using the login web service with a 

username and password. The full metadata information is only available when requesting 

an additional external metadata URL. 

 

                                                
14 https://scihub.copernicus.eu/dhus/search  
15 https://earthexplorer.usgs.gov/inventory  

https://scihub.copernicus.eu/dhus/search
https://earthexplorer.usgs.gov/inventory
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NASA CMR (Landsat, MODIS)—self-developed REST API 

The Common Metadata Repository (CMR) of NASA contains metadata records for EO 

data.16 Landsat and MODIS data are included in addition to others. A list of dataset 

collections can be searched using multiple filter parameters (Table A.4). Based on a 

collection identifier, the individual satellite scenes (granules) can be searched using further 

parameters (Table A.5). Different kinds of output formats can be requested for the 

responses (e.g., CSV, JSON, Keyhole Markup Language, and XML). With two web service 

endpoints, dataset collections and satellite scenes can be searched. Each of the resulting 

scenes includes the following information: start time, end time, polygon footprint, scene 

identifier as title, quick look image link, and data download link. Although filtering through 

cloud coverage can be effected within the request, this information is only available after 

requesting the full metadata record. The services can be used without a user login. 

However, only a fixed set of standardized filter parameters is available and no collection-

specific parameters can be used to query the catalogue. The responses include only a 

limited set of parameters; a further request needs to be sent to retrieve the full metadata 

record. 

Sinergise Sentinel-Hub (Sentinel, Landsat)—OGC WFS 

The Sentinel-Hub infrastructure from Sinergise provides web services that are compliant 

with the OGC for data discovery.17 Although the common standard for providing data 

discovery is the OGC CSW, Sinergise publishes the OGC Web Feature Service (WFS), 

which is used for vector data access, to provide satellite-scene discovery. The WFS 

includes a list of dataset collections, which is available with a “GetCapabilities” request. 

To retrieve the scenes available for a specific dataset collection, the parameters from 

Table A.6 can be used to filter them with a spatial bounding box within the “GetFeature” 

request. The response is available as XML or in GeoJSON formats, which are both 

standard formats for the OGC WFS specification. Each of the resulting scenes include 

only a few metadata: date, time, coordinate reference system (crs), a bounding box, cloud 

cover percentage, scene identifier (format dependent from satellite mission), polygon 

footprint, and path to local data. However, only a limited set of parameters can be used to 

discover scenes and only a limited set of metadata is provided in the results. Additional 

metadata need to be requested from external services. A commercial interface key is 

required to use the services. 

 

                                                
16 https://cmr.earthdata.nasa.gov  
17 https://www.sentinel-hub.com/develop/documentation/api/ogc_api/wfs-request  

https://cmr.earthdata.nasa.gov/
https://www.sentinel-hub.com/develop/documentation/api/ogc_api/wfs-request
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Google Earth Engine (Sentinel, Landsat, MODIS)—Python API 

Google provides discovery, access, and analysis tools for a broad range of geospatial 

datasets, including EO data archives from USGS Landsat, ESA Sentinel, and several 

MODIS products (Gorelick et al. 2017). All tools are available using the web-based 

JavaScript editor (Playground) and the Python library ‘earthengine-api’,18 which is based 

on web services. A whitelisted service account is needed to run the Python Earth Engine 

API in automated workflows (e.g., within a web processing service). Within Google Earth 

Engine, satellite scenes can be filtered from dataset collections using several metadata 

properties (e.g., cloud cover, temporal and spatial boundaries, or any metadata item). In 

addition, individual properties can be calculated and used to filter the collection. No links 

to external quick look images or data download links are included in the metadata as both 

of these can be directly computed within and provided by Google Earth Engine. Listing 

A.1 shows the request of a Sentinel–1 collection filtered by point geometry and additional 

properties of the dataset (VV polarization and descending orbit direction). The response 

within the Python API is a list of objects, which can directly be further processed in Python. 

However, so far, only the Python library is available for use in self-developed applications. 

Therefore, these applications need to be developed in Python or a Python script needs to 

be available, which is executed through the command line.  

4.1.2 Brokered web service solutions 
Web service brokering describes the ability to search external services, which have been 

connected seamlessly to the broker. Brokering solutions offer the possibility of providing 

harmonized interfaces to connected data providers. In the following paragraphs, brokering 

services for data discovery from international organizations are described and evaluated. 

CEOS WGISS Integrated Catalog (CWIC)—OGC CSW, OpenSearch 

The CEOS Working Group on Information Systems and Services (WGISS) provides with 

CWIC 19  an integrated data catalogue for EO data providers based on a brokering 

approach (Shao et al. 2013). The broker includes metadata catalogues from various 

organizations, such as NASA (USA), USGS (USA), the Group for High Resolution Sea 

Surface Temperature, the European Organisation for the Exploitation of Meteorological 

Satellites, and further international space agencies from India, Brazil, China, and Canada. 

This includes data from Terra, Aqua (both carrying a MODIS sensor) and Landsat–8 

satellites. Standardized interfaces, such as OGC CSW and OpenSearch, are provided 

through CWIC. The OpenSearch interface has been tested for Landsat–8 data. Filters, 

                                                
18 https://pypi.org/project/earthengine-api/  
19 http://ceos.org/ourwork/workinggroups/wgiss/access/cwic/  

https://pypi.org/project/earthengine-api/
http://ceos.org/ourwork/workinggroups/wgiss/access/cwic/
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such as a bounding box, geometry, start time, and end time, can be applied to the 

discovery request. Each of the resulting Landsat–8 scenes is described with the following 

information: title (this relates to the unique identifier of each Landsat scene), CWIC 

identifier, date, collection identifier, data center, and polygon footprint. Additional external 

links are provided to access the data download page, quick look image, and full metadata 

record. Although there are a good number of brokered resources from international space 

agencies, there is currently no support for Sentinel satellites. Furthermore, it is not obvious 

that historical Landsat missions are available through CWIC as they do not appear on the 

list of dataset collections. However, Landsat data is registered in NASA’s CMR, which is 

brokered by CWIC. The search functionalities are limited (e.g., no filtering for cloud cover). 

The use of this broker depends on the satellites users are interested in and whether they 

have been integrated in CWIC. 

GEODAB (Sentinel, Landsat, MODIS)—OGC CSW, OpenSearch 

The GEO Discovery and Access Broker (GEODAB; Nativi et al., 2014) acts as a brokering 

service to mediate between and harmonize metadata and catalogue standards. Currently, 

more than 150 data catalogues are registered with the broker. In addition to geospatial 

data catalogues, data catalogues from EO data providers have been made available 

through GEOSS, such as the Copernicus Open Access Hub from the ESA, the FedEO 

from CEOS, USGS Landsat–8, and CWIC. Several REST-based resource interfaces are 

available20, such as the OGC CSW and OpenSearch. Several search filters can be applied 

to the discovery request, such as relative orbit, product type, product level, sensor 

operation mode, sensor swath, processing level, cloud cover percentage, and polarization 

mode. Additional parameters can be set, but the description shows only abbreviations, 

such as “illazan,” “illzean,” “sarPolCh,” without any further description. The resulting 

metadata for a Sentinel–2 scene includes the following data: a bounding box, start/end 

date, platform name, instrument, instrument operation mode, product type, cloud cover 

percentage, relative orbit, polygon footprint, processing baseline and level, orbit direction, 

start orbit number, download link, and several OGC WMS layers added by GEOSS and 

linked to the Sinergise Sentinel-Hub services. Additional metadata for other satellites (e.g., 

Sentinel–1) can be included in the request to the service. The scene identifier from the 

original data provider is not provider, thus the subsequent retrieval of metadata from the 

original data provider is not possible. Although the GEODAB can be used to search for 

satellite data in different data catalogues, the resulting metadata per scene is limited. In 

most cases, further metadata needs to be requested using other services.  

                                                
20 http://production.geodab.eu/gi-cat-StP/ and https://www.geodab.net/apis 

http://production.geodab.eu/gi-cat-StP/
https://www.geodab.net/apis
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ESA FedEO (Landsat, Sentinel, MODIS)—OGC CSW, OpenSearch 

The FedEO established by ESA provides a unique entry point for multi-source satellite 

missions. 21 FedEO was initially developed as a prototype for GEOSS and has been 

provided since 2012 by CEOS. It includes ESA EO data archives (e.g., Copernicus 

satellites, Landsat data at ESA, and historical ESA SAR missions) as well as EO missions 

from Canada, which is an associated ESA member state. In addition, NASA CMR has 

been integrated into FedEO, which provides access to further EO data, such as Landsat 

and MODIS data. OpenSearch and OGC CSW interfaces are provided through the FedEO 

web service infrastructure. Multiple response formats are available, such as Atom, RDF, 

JSON-LD (JSON for Linked Data), and GeoJSON, all of which are suitable formats for 

developers. A ‘description document’ lists some available dataset collections as 

“parentIdentifier,” which needs to be used in the search for satellite scenes. Although the 

dataset collections from NASA CMR and from ESA/Copernicus Open Access Hub can be 

searched, the collections are not shown in this list. Thus, users need to know in advance 

how to search for collections from NASA CMR. Filters, such as cloud cover, orbit direction, 

swath identifier, orbit number, start date, end date, and geometry, can be applied when 

requesting the service. Each of the resulting Sentinel–2 scenes is described with the 

following information: start time, end time, instrument, sensor type, operational mode, orbit 

number, orbit direction, polygon footprint, quick-look image link, data download link, cloud 

cover percentage, scene identifier, product type, relative orbit number, and tile identifier. 

The resulting metadata includes a suitable amount of information, although this is 

dependent on the brokered service provider. In general, no user login is necessary to use 

this service. However, this may be necessary for some brokered services (e.g., 

Copernicus Open Access Hub). 

4.1.3 Conclusions 
The use of the FedEO brokering service from ESA seems to be the best brokering solution 

in terms of EO data availability and available metadata in request filtering and output 

responses. The ESA FedEO broker provides access to Landsat, Sentinel, and MODIS 

and thus provides a harmonized web service interface for multi-source EO data. However, 

a user login is necessary for some services and output formats are only suitable for users 

who are familiar with XML or JSON formats. Although the ESA FedEO broker seems to 

be quite unknown in science, its major focus is on providing a web service interface, which 

can be used by software developers. 

                                                
21 http://fedeo.esa.int/opensearch/readme.html  

http://fedeo.esa.int/opensearch/readme.html
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The use of the Google Earth Engine Python API allows the integration of on-demand 

processing steps while conducting the data discovery request (e.g., cloud cover 

percentage of a specific area of interest). Although Sentinel, Landsat, and many MODIS 

products are available, some specific drawbacks can be found:  

• The service interface is currently only available in Python scripting language. 

• The provision of quick-look images needs to be processed for each image when 

conducting the data discovery request. 

Table 4.5a lists a comparison between user requirements and the discovery services 

described in this section. For most of the discovery services—except for the brokering 

services and NASA CMR—user logins are necessary, which require multiple user 

accounts to query multi-source datasets. The output format of the discovery services is 

mainly based on XML and JSON structures, which are optimized for developers but not 

for other users. Although asynchronous execution of these services is not available, all of 

them deliver the response immediately so that no asynchronous execution is necessary. 

Only a few provide OGC-compliant specifications. From the point of view of specific EO 

dataset collections, the following services can be recommended:  

• MODIS data in the NASA CMR 

• Landsat data (USGS archive) in the USGS Earth Explorer 

• Landsat data (ESA archive) in ESA FedEO or Sentinel-Hub OGC service 

• Sentinel data in the ESA/Copernicus Open Access Hub 

Advantages as well as limitations for most of the services need to be considered:  

• The USGS Earth Explorer does not deliver all the metadata in the initial discovery 

request. Thus, the full metadata records need to be requested afterwards. 

• Quick-look images for Sentinel data can be retrieved from NASA Alaska Satellite 

Facility (Sentinel–1) and USGS Earth Explorer (Sentinel–2) without user login, in 

contrast to the ESA/Copernicus Open Access Hub. 

• Sentinel–1 quick-look images from NASA Alaska Satellite Facility provide better 

quality and geo-referenced images than ESA/Copernicus.  

• Sentinel-Hub OGC services provide only a too-small set of metadata; most 

metadata needs to be retrieved from other data providers.  
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4.2 Access to EO Time-series Data 
Most EO data can be accessed through different data providers with various services and 

tools. In addition to simple scene downloads, further services exist to download 

preprocessed satellite scenes. As none of the data providers holds the archives for all EO 

data, several services need to be requested when providing access to multi-source EO 

datasets.  

Table 4.2 lists selected data providers for Landsat, MODIS, and Sentinel data with their 

service specification provided for data access. While cloud infrastructure providers, such 

as Amazon Web Services and Google Cloud Storage, offer only scene downloads, this 

data can be accessed directly within the virtual environments without the need to download 

the data. Sinergise Sentinel-Hub OGC services provide standard-compliant access and 

visualization. When requesting data, further processing tasks can be undertaken on 

demand. Similarly, Google Earth Engine provides server-processing possibilities before 

data is downloaded. The resulting data can be accessed through the Google Earth Engine 

Python API. The USGS ESPA service provides an automated service for ordering Landsat 

and MODIS time-series data preprocessed on demand depending on the parameters 

selected by the user. As the request only submits an order to the service, data cannot be 

accessed directly, but only when the order has been processed and scenes ordered are 

ready for download.  

Table 4.2: List of web services for Landsat, Sentinel, and MODIS satellite data access. 

Data provider Specifications provided Data 

ESA/Copernicus Open Access Hub 
https://scihub.copernicus.eu 

Scene download via Open 
Data Protocol 

Sentinel 

USGS Earth Explorer 
https://earthexplorer.usgs.gov/inventory 

Scene download via 
HTTP URL 

MODIS 

USGS ESPA 
https://espa.cr.usgs.gov  

On order via REST-based 
API 

Landsat, MODIS 

NASA CMR 
https://cmr.earthdata.nasa.gov  

Scene download via 
HTTP URL 

MODIS 

Google Earth Engine 
https://earthengine.google.com  

Python API Landsat, MODIS, 
Sentinel 

Sinergise Sentinel-Hub 
http://www.sentinel-hub.com  

OGC Web Coverage 
Service, Feature 
Information Service 

Landsat, MODIS, 
Sentinel 

Amazon Web Services 
https://registry.opendata.aws/landsat-8/  

Scene download via 
HTTP URL 

Landsat–8 

Google Cloud Storage 
https://cloud.google.com/public-datasets/  

Scene download via 
HTTP URL 

Landsat, Sentinel–
2 

https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/inventory
https://espa.cr.usgs.gov/
https://cmr.earthdata.nasa.gov/
https://earthengine.google.com/
http://www.sentinel-hub.com/
https://registry.opendata.aws/landsat-8/
https://cloud.google.com/public-datasets/
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4.2.1 Data access services 
In the following paragraphs, specific services from data providers are described and 

evaluated. The focus in this section is on web services—hence, data providers that only 

provide scene downloads via HTTP URLs are omitted.  

ESA/Copernicus Open Access Hub (Sentinel)—Open Data Protocol 

The Sentinel data from the EU Copernicus program are provided with the Open Data 

Protocol from the Copernicus Open Access Hub managed by ESA. The interface builds 

on HTTP and REST-based methods. In addition to data access, the Open Data Protocol 

allows for the querying of the data catalogue and the filtering of search results. Various 

response formats are supported, such as XML, JSON, and CSV. Datasets are described 

with metadata and provided as download files. In addition, quick look images can be 

retrieved using this service. The metadata of a specific product identifier can be queried 

with a defined URL. Additional links for data download and quick-look images are included 

in the response. User credentials are needed for each data download. Only two 

simultaneous data downloads are currently allowed. Since September 2018, not all of the 

data is kept online, but can be ordered from the Copernicus Long Term Archive.22  

USGS ESPA (Landsat, MODIS)—self-developed REST API 

Preprocessed Landsat and MODIS data can be ordered using the Science Processing 

Architecture (ESPA) interface of the USGS Earth Resources Observation and Science 

Center. In the course of the ordering process, functions to reproject, subset, resize, and 

convert to specific data formats can be optionally added (Table A.7). As an example, this 

allows to the clipping of the EO data to the area of interest. Prior to the request to USGS 

ESPA, the identifiers of satellite scenes to be ordered need to be sought elsewhere (e.g., 

through the USGS Earth Explorer, as described in the previous section). For each request, 

the username and password from USGS need to be sent. After the order has been placed, 

a web service request can be used to monitor its status and to download scenes once the 

processing has been completed. With USGS ESPA, the complete process, from ordering 

until download when data is ready, can be automated. However, users need to wait until 

the processing has been completed in the USGS ESPA processing queue. 

Google Earth Engine (Sentinel, Landsat, MODIS)—Python API 

In addition to the data discovery functions described in the discovery review (Subsection 

4.1.1), data access is also available using the Google Earth Engine Python API. A list of 

scenes filtered by user-defined options can be exported, downloaded, or further processed 

using Python. Prior to export and download, data can be processed, for example, by 

                                                
22 https://scihub.copernicus.eu/userguide/LongTermArchive  

https://scihub.copernicus.eu/userguide/LongTermArchive
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extracting values for points or statistical summaries for polygons, calculating indices, or 

conducting further computations, such as clipping, masking, and mathematical operations. 

The data can either be exported to Google Drive (the preferred approach) or downloaded 

by generating a HTTP link (though there are size limitations). The individual values of both 

pixel and raster time-series can be exported as objects using the Python library. Using the 

Python API in an automated workflow or in web services requires a service account, which 

needs to be whitelisted by Google.  

Sinergise Sentinel-Hub (Sentinel, Landsat)—OGC WCS, FIS 

The Sentinel-Hub infrastructure from Sinergise provides services compliant with the OGC 

for data access. The OGC WCS is provided for raster data download for a given temporal 

period and spatial subset. Table A.8 lists the parameters for the WCS request for the 

Sentinel-Hub services. The resulting data is a raster dataset containing a mosaic of the 

selected dataset collection within the time ranges selected by the user (the TIME 

parameter of the WCS request). In the course of the request, further processing, such as 

classifications and indices calculation, can be integrated (see the EVALSCRIPT 

parameter in Table A.8). For access to raster time-series data, individual requests need 

to be conducted for each date. The Sentinel-Hub Feature Information Service performs 

statistical computations on the area of interest requested. For each image in the filtered 

data collection, statistical values are calculated, such as the mean, minimum, maximum, 

and standard deviation. Table A.9 lists the request parameters available for defining a 

dataset collection (e.g., layer and style), computation parameters (e.g., resolution and 

geometry), as well as filtering parameters (e.g., time, geometry, and maximum cloud 

cover). 

4.2.2 Data download links 
Today, many satellite scenes are no longer only available on the data archive of the 

satellite’s operator (e.g., Sentinel data on the ESA/Copernicus Open Access Hub). 

Additional third-party data providers, such as Google, Amazon, as well as national EO 

data archiving centers, provide access to data using different technologies. For example, 

Google Cloud hosts the complete Landsat archive in a web-based folder structure, which 

allows direct access to individual scenes and bands in an automated manner without the 

need for users to login. As such, the use of third-party data providers can be useful for 

specific applications. In the following paragraphs, download links for complete satellite 

scenes for the German Copernicus Data and Exploitation Platform, Google Cloud Storage, 

and USGS Earth Explorer are described. 
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German Copernicus Data and Exploitation Platform 

The German Copernicus Data and Exploitation Platform (CODE-DE)23 provides discovery 

and access tools for worldwide Sentinel data. A user login is required for data download. 

As CODE-DE provides a rolling archive, not all the scenes are available (Reck et al. 2019). 

The length of the rolling archive period depends on the geographic region and the EO 

mission. The files are stored in the same format as on the ESA/Copernicus Open Access 

Hub, providing a zipped archive file. The scenes can be accessed with the URLs below 

and include variables for the year, month, and day of the scene acquisition date and the 

scene identifier (Reck et al. 2019):   

https://code-de.org/Sentinel1/{year}/{month}/{day}/{id}.zip 

https://code-de.org/Sentinel2/{year}/{month}/{day}/{id}.zip 

Google Cloud Storage 

The complete Landsat archive24 as well as Sentinel–2 data,25 with access to individual 

bands, are available on Google Cloud. Instead of a zipped archive file, all individual files 

can be accessed directly. This may be useful depending on the application. For example, 

if an NDVI needs to be calculated, only the red and near-infrared bands need to be 

downloaded. The URLs below can be used to access the data with the following variables: 

“path” as WRS path, “row” as WRS row, “utm” as UTM code, “lat” as latitude band, “grid” 

as grid square, and “id” as the scene identifier. Various EO data and specific products are 

available. No login is required to access the direct download links for EO data on the 

Google Cloud Storage.  

https://storage.googleapis.com/gcp-public-data-landsat 

/LC08/01/{path}/{row}/{id}/*   Landsat-8  
/LE07/01/{path}/{row}/{id}/*   Landsat-7 ETM+ 

/LT05/01/{path}/{row}/{id}/*   Landsat 5 TM 
/LT04/01/{path}/{row}/{id}/*   Landsat 4 TM 
/LM01/PRE/{path}/{row}/{id}/*   Landsat 1 MSS 
/LM02/PRE/{path}/{row}/{id}/*  Landsat 2 MSS 
/LM03/PRE/{path}/{row}/{id}/*  Landsat 3 MSS 
/LM04/PRE/{path}/{row}/{id}/*  Landsat 4 MSS 
/LM05/PRE/{path}/{row}/{id}/*  Landsat 5 MSS 

 
https://storage.googleapis.com/gcp-public-data-sentinel-2 

/L2/tiles/{utm}/{lat}/{grid}/{id}/*  Sentinel-2 Level 2 

/tiles/{utm}/{lat}/{grid}/{id}/*  Sentinel-2 Level 1 

                                                
23 https://code-de.org  
24 https://cloud.google.com/storage/docs/public-datasets/landsat  
25 https://cloud.google.com/storage/docs/public-datasets/sentinel-2  

https://code-de.org/
https://cloud.google.com/storage/docs/public-datasets/landsat
https://cloud.google.com/storage/docs/public-datasets/sentinel-2
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USGS Earth Explorer 

Landsat (LM0*, LT0*, LE07, LC08) and Sentinel–2 (S2) scenes are available on the USGS 

Earth Explorer. While the URLs below can be accessed without a user login, for the actual 

download, a user does need to be logged in to the USGS Earth Explorer. Based on the 

collection identifier (marked bold in the URLs) and the scene identifier (variable “id”), the 

download pages for individual scenes can be accessed. For Sentinel, the internal scene 

identifier used within Earth Explorer is needed (variable “usgs_id”).  

LC08: https://earthexplorer.usgs.gov/download/12864/{id}/STANDARD/INVSVC 
LE07: https://earthexplorer.usgs.gov/download/12267/{id}/STANDARD/INVSVC 
LT0*: https://earthexplorer.usgs.gov/download/12266/{id}/STANDARD/INVSVC 
LM0*: https://earthexplorer.usgs.gov/download/3120/{id}/STANDARD/INVSVC 
S2  : https://earthexplorer.usgs.gov/download/10880/{usgs_id}/STANDARD/INVSVC 

4.2.3 Data extraction services 
Some applications require a direct extraction of time-series data from global EO data 

archives to be retrieved in a few seconds for direct visualization and further processing in 

mobile or web applications. Software developers can make use of data extraction services 

to build applications based on EO time-series data and processing tools. Only two of the 

previously mentioned data providers can directly extract values of EO time-series data in 

their catalogue without setting up own services or downloading full satellite scenes (Table 

4.3): Sinergise Sentinel-Hub, with the Feature Information Service, and Google Earth 

Engine with the Python API, which can be integrated within a web service. Examples of 

the data extraction services for the Sentinel-Hub services and Google Earth Engine are 

provided in Section A.2 in the appendix.  

Table 4.3: Data providers with services for the direct extraction of time-series data. 
Data provider Datasets Features 

Sinergise Sentinel-Hub 
Feature Information Service 

Sentinel–1, Sentinel–2, 
Sentinel–3, Landsat–8, 
Landsat 5–7 (ESA 
archive) 

Point extraction, area statistics 
(mean, max, min, standard 
deviation), area raster extraction 

Google Earth Engine Python 
API 

Sentinel–1, Sentinel–2, 
Landsat 4–8 (USGS 
archive), MODIS, etc. 

Point extraction, area statistics 
(mean, max, min, standard 
deviation, percentiles), area 
raster extraction, individual 
calculations 
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4.2.4 Conclusions 
EO data access is available in various ways, such as direct HTTP links, standardized web 

services, and ordering web services. Most of the scenes are available by means of scene 

downloads or by using cloud processing environments (Amazon and Google). Only 

services from the commercial provider Sinergise or with the use of the Rasdaman software 

allow direct EO data access based on standardized web services. Google Earth Engine 

provides a Python API to access and process data. Although the order and download 

approach of USGS ESPA does not provide immediate access to EO data, preprocessed 

datasets are available based on users inputs (e.g., clipping or reprojection). Direct 

extraction services are useful for many applications but are offered by only two data 

providers (Sinergise and Google Earth Engine). As there is no simple standard for those 

extraction services, the request and response formats are diverse. Table 4.5b lists a 

comparison between user requirements and the access services described in this section. 

Only a few services make use of standardized specifications, in particular there is only the 

data provider Sinergise, which offers OGC-compliant services for data access. 

Asynchronous access to EO data is only available from USGS ESPA and Google Earth 

Engine. No alternative data formats, such as summarized results, are available by default, 

but can be generated through Google Earth Engine. In addition, only a few services (e.g., 

Sentinel-Hub, USGS ESPA) provide the data within additional formats for geospatial data 

(e.g., GeoTIFF instead of JPEG2000). 

MODIS data can be accessed using download links to direct HTTP URLs from its original 

data providers. Only the original data are provided—this needs to be processed further to 

meet the requirements of users. For Landsat data, the best option to download data to a 

local computer is either the use of the USGS ESPA web service, which allows the 

conducting of preprocessing steps before downloading the data, or access through cloud 

providers, such as Amazon, Google, and Copernicus DIAS. For Sentinel data, availability 

also depends on the data provider (e.g., USGS Earth Explorer provides access to 

Sentinel–2 data). While ESA provides a protocol with only scene download, the 

commercial Sinergise Sentinel-Hub Services provides access with the OGC WCS 

specification, which allows the subsetting of the data. In addition, further processing steps 

can be integrated into the request.  

All the data relevant to this thesis can also be accessed using the Google Earth Engine 

Python API. This interface is extremely suitable for immediate time-series extraction of 

single pixels or small areas. However, limitations occur when downloading large amounts 

of time-series data (e.g., enough storage space on Google Drive or file-size limits for direct 

HTTP downloads).  
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4.3 Processing of EO Time-series Data 
The processing of raster time-series data is an essential step in producing derived 

geospatial results from EO data. Work with spatial time-series data in particular needs to 

be explored, as users need knowledge of the processing of multi-dimensional data when 

dealing with large datasets with temporal and spatial extents. In the subsequent 

subsections, popular programming languages and geospatial tools that can analyze raster 

time-series data are reviewed with focus on their handling of raster time-series data. 

4.3.1 Programming languages 
Two commonly used programming languages, Python and R, are reviewed for their 

handling of EO (raster) time-series data. For both languages, the relevant libraries to read 

and analyze time-series data are described. A summary shows the requirements for time-

series data structures for each of the languages. 

Python 

Several Python libraries exist for working with spatial and time-series data, such as 

Pandas (Python Data Analysis Library) and GeoPandas for single time-series, NumPy for 

raster matrix operations, and xarray for multi-dimensional raster time-series operations. 

The Pandas  library provides high-performance data structures and data analysis tools for 

the Python programming language (McKinney 2011). Relevant data formats can be read 

and written, such as CSV, Microsoft Excel, and databases. With DataFrames in Pandas, 

matrix data can be analyzed and manipulated. Using the GeoPandas extension, 

geospatial data is supported and spatial operations on geometric types can be conducted 

within the data structures. Listing 4.1 shows an example script for visualizing single time-

series data extracted for a pixel of a raster time-series stack. 

The Python library xarray provides access and analysis tools for multi-dimensional data 

(Hoyer & Hamman 2017). The project aims to provide a “pandas-like” toolkit for the 

analysis of multi-dimensional arrays, rather than tabular data, which is the focus for 

Pandas. Although the initial focus was on netCDF data structures, extensions have been 

integrated for working with GDAL-compatible data formats (e.g., GeoTIFF) with the 

introduction of the open_rasterio function. xarray makes internal use of the NumPy library 

for multi-dimensional data manipulation. Listing 4.2 shows an example Python code for 

loading a raster time-series dataset. For working with external data formats, such as 

GeoTIFF, a list of files (each file for a date, see Line 5) and a list of dates related to the 

files (Line 7) is required to combine the individual two-dimensional raster arrays to a three-

dimensional time-series data frame (Line 8). In this example, the list of dates is extracted 

from the filenames.  
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The following requirements for raster time-series data structures within Python can be 

derived:  

 

 
01 # extract pixel time-series from NumPy array 
02 item = arr[:, 301:302, 301:302].reshape((arr.shape[0])).tolist() 
03  
04 # read dates from csv 
05 df_dates = pandas.read_csv('/MOD13Q1.EVI.csv', sep=";") 
06  
07 # create Pandas dataframe using pixel time-series and dates column 
08 df = pandas.DataFrame(item, index=list(df_dates['date']), columns=['evi']) 
09 df.index = pandas.to_datetime(df.index, format='%Y-%m-%d') 
10  
11 # plot data 
12 df.plot() 
Listing 4.1: Python source code for working with Pandas after extracting a single time-series pixel 
(item) from a raster time-series stack (arr). With Pandas, CSV files or list of objects can be easily 
read, plotted, and further analyzed. 

 
01 import glob 
02 import pandas as pd 
03 import xarray as xr 
04  
05 filenames = sorted(glob.glob('*.EVI.*.tif')) 
06  
07 time = xr.Variable('time', pd.DatetimeIndex([ 
   pd.Timestamp.strptime(f[9:16], '%Y%j') for f in filenames])) 
08 da = xr.concat([xr.open_rasterio(f) for f in filenames], dim=time) 
09 da 
10  
11 <xarray.DataArray (time: 389, band: 1, y: 694, x: 855)> 
12 Coordinates: 
13 * band     (band) int64 1 
14 * y        (y) float64 5.743e+06 5.743e+06 5.743e+06 5.742e+06 ... 
15 * x        (x) float64 6.89e+05 6.892e+05 6.895e+05 6.897e+05 6.899e+05 ... 
16 * time     (time) datetime64[ns] 2000-02-18 2000-03-05 2000-03-21 ... 
17 Attributes: 
18  transform:   (688899.88262, 231.656086344, 0.0, 5743120.7846271 ... 
19  crs:         +a=6371007.181 +b=6371007.181 +lon_0=0 +no_defs +proj=sinu 
20  res:         (231.65608634466076, 231.49636861726358) 
21  is_tiled:    0 
22  nodatavals:  (-3000.0,) 
Listing 4.2: Example work with the xarray library using raster time-series data. Dates are extracted 
from the filenames (Line 7).  

 

  

• Multi-band geospatial file (each band relating to a date) or multiple geospatial 

files (each file relating to a date) converted to a list of files. 

• Variables with a list of dates in the same order as the bands in the geospatial 

file or the order in the multiple geospatial file list.  
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R Project for Statistical Computing 

Within the statistical language R, three packages can be considered when working with 

spatial time-series data: 1) the “raster” package, with the RasterStack object for dealing 

with multi-band geospatial raster data, and 2) the “stats” package, with the ts function for 

dealing with temporal information. Both are used with scientific time-series analysis tools, 

such as BFAST and Greenbrown. 3) The “rts” package, with the Raster*TS object for 

dealing with spatial raster time-series data. 

A RasterStack combines raster objects with the same spatial extent and resolution. It can 

be automatically created using either a multi-band raster file (each band results in an 

individual raster object within the stack) or individual raster files. For multi-band files, a 

RasterBrick can be used instead. This leads to performance increases when doing 

calculations but limits the object to just a multi-band file instead of using multiple raster 

files at once. Within R, the calc function can be used to conduct an operation for each 

pixel time-series within a collection of raster objects (RasterStack or RasterBrick) and 

results in a single raster output (e.g., the temporal mean of each pixel time-series). Listing 

4.3 shows the source code of an example that loads a multi-band raster file into a 

RasterBrick object. 

R software comes with a large set of time-series tools. As such, the class ts from the “stats” 

package can be used for regularly spaced single time-series. The parameters start and 

frequency define the start and end of the time-series; start is the time of the first item of 

the time-series, and frequency is the number of items per year (e.g., 1 = annual time-

series, 12 = monthly time-series, 365 = daily time-series). For irregular spaced time-series, 

the class irts in the “stats” package can be used with the vector objects ‘time’ and ‘value’ 

as parameters. An example of the ts class is shown in Listing 4.4.  

A Raster*TS object from the “rts” package automatically combines a multi-layer raster 

object (RasterStack or RasterBrick) with temporal information. Both the multi-layer raster 

object and a vector with temporal information need to be passed to the rts function to 

create a Raster*TS object (Listing 4.5).  

 

 

 

 



Chapter 4: Review of EO Web Services, Tools, and Platforms 

78 

For both the RasterStack with the ts object and the Raster*TS object, the following 

requirements for data structures can be derived:  

 

 
1 data <- stack("SWOS_WQ_CDOM_FUB_Monthly_France_Berre.vrt") 
2 data 
3  
4 class       : RasterStack  
5 dimensions  : 125, 135, 16875, 118  (nrow, ncol, ncell, nlayers) 
6 resolution  : 0.003593245, 0.003593245  (x, y) 
7 extent      : 4.807761, 5.292849, 43.30219, 43.75135  
8 coord. ref. : +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84  
      +towgs84=0,0,0  
9 names  : SWOS_WQ_C//ce_Berre.1, SWOS_WQ_C//ce_Berre.2, … 

Listing 4.3: Example of working with multi-band raster data using RasterBrick. 

 
1 data <- brick("SWOS_WQ_CDOM_FUB_Monthly_France_Berre.vrt") 
2 data <- as.vector(extract(data, SpatialPoints(cbind(5.1, 43.5)))) 
3 data_ts <- ts(data, start=c(2002, 6), frequency = 12) 
Listing 4.4: Example of working with single time-series data using the TS function. 

 
01 data <- stack('SWOS_LSTT_AL_Oued-Sebaou_2000-2016.vrt') 
02 data 
03  
04 class       : RasterStack  
05 dimensions  : 59, 73, 4307, 781  (nrow, ncol, ncell, nlayers) 
06 resolution  : 1000, 1000  (x, y) 
07 extent      : -1050090, -977090.1, 4166999, 4225999 
08 coord. ref. : +proj=utm +zone=34 +datum=WGS84 +units=m +no_defs  
            +ellps=WGS84 +towgs84=0,0,0  
09  
10 dates 
11 [1] "2000-03-05" "2000-03-13" "2000-03-21" "2000-03-29" "2000-04-06"  
... 
 
21 library(rts) 
22 rasterTS <- rts(data, dates) 
23 rasterTS 
24  
25 Raster Time Series with monthly periodicity from 2000-03-05 to 2017-02-26  
26 class              : RasterStackTS  
27 raster dimensions  : 59, 73, 4307, 781  (nrow, ncol, ncell, nlayers) 
28 raster resolution  : 1000, 1000  (x, y) 
29 raster extent      : -1050090, -977090.1, 4166999, 4225999   
30 coord. ref. : +proj=utm +zone=34 +datum=WGS84 +units=m +no_defs  
            +ellps=WGS84 +towgs84=0,0,0  
Listing 4.5: Example of working with spatial time-series data using Raster*TS object 

• A multi-band geospatial file, in which each band relates to a date, is converted 

to a RasterStack or RasterBrick object. 

• A vector with dates, where the order of the dates needs to be the same as the 

bands or layers of the raster object, is needed for Raster*TS and the irregular 

irts function. 

• For regular time-series, the ts object with the parameters start and frequency is 

needed.   
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4.3.2 Geospatial tools 
Geospatial tools allow the processing and analysis of EO time-series data. In the following 

paragraphs, a few geospatial tools and their handling of raster time-series data are 

described and the requirements for time-series data structures are summarized.  

TIMESAT 

Time-series data can be used within TIMESAT (Eklundh & Jönsson 2017) in different kinds 

of data formats. Whereas individual time-series data can be provided in a text data file 

(Figure 4.1, right), processing steps are required for raster time-series data. Raster time-

series data needs to be processed to a headerless binary format (e.g., ENVI HDR). Each 

individual date needs to be represented by a raster file. An image file list in the form of a 

text file contains the number of images (first line) and the relative path to the files for each 

individual image in chronological order (Figure 4.1, left). As there is no provision of dates 

within TIMESAT, the resulting outputs refer only to the index as date. This needs to be 

converted to individual dates afterwards (Eklundh & Jönsson 2017). 

 
Figure 4.1: Text file for spatial raster time-series data structure (left); text file for single time-series 
data structure (right). 

The following requirements for data structures for TIMESAT to analyze raster time-series 

data can be derived:  

 

GRASS GIS 

With open source GRASS GIS software, several processing tools for raster time-series 

data are available (Neteler et al. 2012). To enable users to use these tools, a space-time 

dataset needs to be created (Gebbert & Pebesma 2014). Listing 4.6 shows example 

processing steps: 1) Import each raster per date into GRASS GIS as a map, 2) create a 

new space-time dataset, and 3) register previously imported maps with dates in the new 

space-time dataset. For the last step, temporal information for each of the maps is 

needed—either in a separate text file or as increment value for continuous time-series. In 

Listing 4.6, a separate text file (.csv) has been used, which contains the name of the map 

and the date in CSV format.   

• A single geospatial data file for each date and a text file containing the number 

of files and each filename on a separate line (Figure 4.1, left). 
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01 # 1) import data 
02 for file in SWOS_LSTT_ES_Fuente-de-Piedra_20*.tif; do 
03  r.in.gdal input=$file output=$file;  
04 done 
05  
06 # 2) create new space-time dataset 
07 t.create output=modis title="MODIS LST" description="MODIS LST" 
08  
09 # 3) register maps into space-time dataset 
10 t.register input=modis file=SWOS_LSTT_ES_Fuente-de-Piedra_2000-2016.csv 

Listing 4.6: Example of working in GRASS GIS with spatial time-series data 

The following requirements for data structures to create a space-time dataset in GRASS 

GIS can be derived:  

 

Open Data Cube 

CEOS Open Data Cube software26 allows the managing and analyzing of raster time-

series data based on preprocessed raster data in netCDF format using the Python xarray 

library. To ingest data into the Open Data Cube software, individual datasets need to be 

registered and ingested. For each date, individual geospatial files (one per band and date) 

need to be registered. Additionally, a metadata file in text format (.yaml), which includes 

references to the files of each band, is needed for the data ingestion for each date. Listing 

4.7 shows an example workflow using the datacube command-line executable: 1) A 

product type is added, 2) configuration YAML files are created for each satellite scene, 3) 

these are registered with the database, and 4) the data can finally be ingested into file 

structure of the Open Data Cube.  

 

01 # 1) add product type to data cube 
02 datacube product add "ls8_collections_sr_scene.yaml" 
03  
04 # 2) create YAML files for each dataset 
05 python "usgs_ls_ard_prepare.py" "MODIS_*.tif" 
06  
07 # 3) add YAML files to data cube 
08 datacube dataset add MODIS_*.yaml --auto-match 
09  
10 # 4) ingest data into data cube format based on YAML description file 
11 datacube -v ingest -c "ls8_collections_sr_fuente_de_piedra_example.yaml" 

Listing 4.7: Example workflow for ingesting raster time-series data into Open Data Cube. 

 

                                                
26 https://www.opendatacube.org  

• A single geospatial data file for each date. 

• A text file with relation between the GRASS GIS map name and date. 

 

https://www.opendatacube.org/
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The following requirements for data structures to ingest raster time-series data into the 

Open Data Cube software can be derived:  

 

Rasdaman 

Rasdaman software (Baumann et al. 1998) allows the publishing of geospatial multi-

dimensional data using the OGC WCPS. For integrating geospatial data, an import script 

is available that makes use of a “recipe” configuration file in JSON text format (Listing 4.8). 

A common way to ingest data is the use of the import script “WCSTImport,” for which each 

geospatial file represents a date. In the recipe JSON text file, the relation between files 

and dates is given either by metadata tags (Lines 17-19) or by regular expressions based 

on the filenames. In addition, further processing information (e.g., about tiling and 

projection) can be configured within the recipe. 

01 { 
02    "config": { 
03      "service_url": "http://localhost:8080/rasdaman/ows", 
04      "tmp_directory": "/tmp/", 
05      "default_crs": "http://localhost:8080/def/def/crs/OGC/0/Index2D", 
06      "automated": false 
07    }, 
08    "input": { 
09      "coverage_id": "MyCoverage", 
10      "paths": [ 
11        "/var/data/*.tif" 
12      ] 
13    }, 
14    "recipe": { 
15      "name": "my_custom_recipe", 
16      "options": { 
17        "time_format": "auto", 
18        "time_crs": "http://localhost:8080/def/crs/OGC/0/AnsiDate", 
19        "time_tag": "MY_SPECIAL_TIME_TAG", 
20      } 
21    } 
22 } 
Listing 4.8: Example configuration file for ingestion into Rasdaman. 

The following requirements for data structures for ingesting raster time-series data into 

Rasdaman software can be derived:  

 

• A YAML description file for each dataset collection. 

• A single geospatial data file for each date (one per band), accompanied by a 

YAML text file (one per dataset including all bands) used for data ingestion. 

• A YAML description file for the collection ingestion 

 

• A single geospatial data file for each date. 

• A recipe JSON file, which is used for data ingestion. 
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4.3.3 Conclusions 
The programming languages and geospatial tools investigated here mostly work with 

single-band rather than multi-band geospatial files for spatial time-series data. The use of 

separate information regarding the date of each geospatial file applies to all of them—this 

is either provided as a regular expression extracted from the filename or as list of dates in 

the same order as the list of files. For some of the tools, either further processing or 

ingestion steps are necessary for time-series data. This can either be provided to the users 

as tutorial or directly adjusted in the analysis tools. Thus, a common data structure and 

format for all EO time-series data, to which the user is accustomed, needs to be 

considered when designing and setting up data platforms. Automated conversion tools for 

converting from EO data formats into this common data format are necessary to simplify 

the work with that data.  

 

 

  



 

83 

4.4 Cloud-based EO Time-series Data Platforms 
In these times of large EO data archives, it seems obvious to bring geoprocessing and 

analysis tools to the data instead of downloading the original EO data. Many cloud-based 

infrastructures and platforms provide different kinds of EO data and are available with 

different types of services (Table 4.4). In general, one can distinguish between cloud 

infrastructures (e.g., Amazon, Google, and Copernicus DIAS) and processing and service 

platforms (e.g., Google Earth Engine, Sentinel-Hub, and Open Data Cube). Cloud 

infrastructures mainly provide virtual environments (Subsection 4.4.1), which were initially 

focused on providing virtual operating systems, but today have improved to incorporate 

serverless infrastructures and the execution of containerized application without the need 

to setup and install virtual machines (see Subsection 3.1.5). On top of cloud-based 

infrastructures or local server environments, processing platforms have been developed 

to simplify work with EO data and the execution of algorithms provided on web-based 

platforms (Subsection 4.4.2). Some web-based platforms also include an option to upload 

or develop algorithms on the platform. In addition, service platforms exist that provide only 

web services for data discovery, visualization, access, and analysis (Subsection 4.4.3), 

which can be integrated in self-developed applications. 

Table 4.4: EO time-series data infrastructure and web platforms (* Usage costs). 
Provider EO data Type 
Cloud infrastructures 
Amazon Web Services* Sentinel–2, Landsat–8 

https://aws.amazon.com/de/publ
ic-datasets/  

Virtual Machines—any software 
that can run on Linux/Windows. 
Serverless. 

Google Cloud (Compute 
Engine)* 

Sentinel–2, Landsat 1–8 
(USGS archive) 
https://cloud.google.com/storag
e/docs/public-datasets/  

Virtual Machines—any software 
that can run on Linux/Windows. 
Serverless. 

Copernicus DIAS* Sentinel, Landsat, others 
(dependent on platform) 

Virtual Machines, Web portal, 
Services 

Processing and service platforms 
Google Earth Engine Sentinel–1, Sentinel–2, 

Landsat 4–8 (USGS 
archive), MODIS, etc. 

JavaScript-Playground/Python API 
(functions can be used individually) 

Sinergise Sentinel-Hub 
services* 

Sentinel, MODIS, Landsat–
8, Landsat 5–7 (ESA) 

OGC-compliant web services 
(WMS, WFS, WCS) 

Open Data Cube Landsat, Sentinel, MODIS, 
others (dependent on platform) 

Web portal, Services 

NASA Giovanni MODIS Web portal 
ORNL DAAC MODIS Web portal, Services 
Rasdaman Dependent on platform OGC WCS, WCPS, WMS 

https://aws.amazon.com/de/public-datasets/
https://aws.amazon.com/de/public-datasets/
https://cloud.google.com/storage/docs/public-datasets/
https://cloud.google.com/storage/docs/public-datasets/
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4.4.1 Virtual environments 
Virtual environments offer infrastructure with the option to develop and use algorithms and 

processing tools. Three currently available virtual environments are described and 

evaluated in the following paragraphs: Amazon Web Services, Google Cloud Platform, 

and Copernicus DIAS. 

Amazon Web Services and Google Cloud Platform 

Both Amazon Web Services and Google Cloud Platform provide solutions for scalable 

infrastructure combined with access to large amounts of EO data. Fees are generally 

calculated depending on the usage, hardware, operating system, and networking features 

chosen by the user. Access to virtual machines is provided by command line, 

programming libraries, or service interfaces. As described in Subsection 3.1.5, modern 

technologies are provided by Amazon and Google (e.g., serverless web services). As all 

data is provided unzipped, it can be used directly within self-developed applications. In 

contrast to the various access services from data providers, the data can be directly 

processed or analyzed. 

Amazon Web Services provides on-demand computing platforms based on the 

infrastructure of Amazon. USGS Landsat–8 data can be accessed via HTTP requests from 

external applications. Other EO data is only available within the infrastructure or by using 

libraries to access data externally. Several open datasets are publicly available,27 which 

can be used without storage costs, such as:  

- USGS Landsat–8 

- ESA Sentinel–1 Ground Range Detected (one-year rolling archive) 

- ESA Sentinel–2 

- NASA MODIS (some products) 

The Google Cloud Platform provides a suite of cloud computing services that runs on the 

Google infrastructure. All data is available via HTTP requests from external applications 

and can further be accessed using libraries. Several open datasets are publicly 

available,28 and can be used without storage costs, such as:  

- USGS Landsat 1–8 (complete USGS archive) 

- ESA Sentinel–2 

  

                                                
27 https://aws.amazon.com/de/public-datasets/  
28 https://cloud.google.com/storage/docs/public-datasets/  

https://aws.amazon.com/de/public-datasets/
https://cloud.google.com/storage/docs/public-datasets/
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Copernicus Data and Information Access Services 

The Copernicus DIAS program aims to provide discovery, access, and processing 

capabilities for all Copernicus data and information. To this end, the European 

Commission set up five platforms from different European consortiums in 2018 (European 

Commission 2018b): Mundi Web Services, Sobloo, CREODIAS, ONDA-DIAS, and 

WekEO. The European Association of Remote Sensing Companies has published a first 

comparison of the DIAS platforms.29 Differences between the platforms are based on data 

availability and the availability of processing tools (e.g., Jupyter Notebooks or virtual 

desktops). All the platforms provide free discovery and access services, which allow for 

searching and downloading of Copernicus data. In addition, virtual machines and other 

services are provided on a pay-per-use basis, with direct access to EO data archives. The 

data available on the different platforms differs: At least Sentinel data is available either 

directly or on demand. Many DIAS platforms also provide access to Landsat data and data 

from Copernicus Services. As these platforms are still new (all of them published in 2018), 

additional features can be expected in the future.  

4.4.2 Processing platforms 
Processing platforms offer web-based applications with the option to develop and launch 

algorithms and processing tools. Selected processing platforms for vegetation monitoring 

are described and evaluated in the following paragraphs: NASA Giovanni, Oak Ridge 

National Laboratory Distributed Active Archive Center (ORNL DAAC) MODIS Tools, 

Google Earth Engine, and the Open Data Cube interfaces. 

NASA Giovanni 

The NASA Giovanni—Interactive Visualization and Analysis system offers a wide range 

of MODIS Level–3 products as well as various time-series extraction and analysis tools 

(Acker & Leptoukh 2007). Although it provides access to all input data for a given bounding 

box and time range, these functions are not available as web services, which would enable 

their integration into self-developed applications. As such, only the web-based system 

provided by NASA Giovanni can be interactively used by users. After data integration and 

data analysis has been conducted, input data and intermediate processing data can be 

accessed. Results are shown in interactive charts and can be downloaded in various data 

formats. In addition, all inputs and outputs from the processing steps can be downloaded 

and reproduced. Interactive charts, netCDF, and CSV formats are available as output 

formats (Figure 4.2).  

                                                
29 http://earsc.org/news/dias-comparison  

http://earsc.org/news/dias-comparison
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Figure 4.2: Results of the web-based NASA Giovanni tool analysis of MODIS time-series data. 

ORNL DAAC MODIS Land Subsets 

The MODIS Land Subsets30 tool from the ORNL DAAC in the United States provides time-

series extraction for a bounding box around a pixel location. In addition to time-series data 

access, land-cover types and a phenology time-series plot for vegetation data are also 

available. Both, SOAP and REST-based web services are available for querying the data 

catalogue, extracting time-series, and submitting an order for data access and analysis 

graphs. Although the tool can be accessed as a web service, further analysis can only be 

conducted after an email with the resulting data has been received by the user. Results 

are available on the web portal (Figure 4.3). As status responses from the ordered process 

are not available, a solution to monitor the status of processing needs to be developed. 

 
Figure 4.3: Results of the web-based MODIS Global Subsets tool from ORNL DAAC. 

                                                
30 https://modis.ornl.gov/data/modis_webservice.html  

https://modis.ornl.gov/data/modis_webservice.html
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Google Earth Engine 

Google provides a web-based Google Earth Engine Playground for interactively 

discovering and analyzing EO data in a browser (Gorelick et al. 2017). The user interface 

(Figure 4.4) consists of a code editor component, an interactive map showing the resulting 

data and features, a console output, a script explorer, documentation, and an assets 

window. Any code used in the editor can also be used by the Python API and integrated 

in self-developed applications. Several geospatial tools have been provided by Google, 

such as (un)supervised classifications, masking, mathematical operations, edge 

detection, spectral transformations, operators to reduce dimensions, object-based 

methods, array operations, and the like. Users can upload their own geospatial data and 

use it in conjunction with the other datasets available. Any resulting data can be 

downloaded either using HTTP requests or exported to Google Drive. Earth Engine allows 

the sharing of applications with the public. Commercial use of Earth Engine needs to be 

approved by Google.  

Web-based applications can be published based on JavaScript source code integrated 

into the Playground editor. With layouts, panels, and widgets, user interface components 

can be integrated into applications. Without web development technologies, such as 

HTML and Cascading Style Sheets, applications can be developed and provided based 

on the Google Cloud Platform. The application can make use of the data, tools, and 

processing capabilities available in Earth Engine. Figure 4.5 shows an application in which 

users can select a point for the extraction of Sentinel–1 time-series data.  

Open Data Cube interfaces 

The user interface of the CEOS Open Data Cube visualizes the available EO data and 

provides access to the analysis tools registered in the backend and their resulting data 

after execution (Figure 4.6). The backend stores areas of interest and analysis tools linked 

to these areas. Individual raster data and raster time-series data can be ingested into the 

Open Data Cube. A fixed set of analysis tools is provided with the default installation. 

Various output formats, such as GeoTIFF, netCDF, and PNG, for the results of the 

analysis are available in the user interface. The interface makes use of a variety of 

technologies, such as Celery for task scheduling and parallel executions. Extensions are 

available to provide OGC-compliant visualization (WMS), download (WCS), and 

processing (WPS) services. A Jupyter Notebook server can be connected to the Open 

Data Cube on the same infrastructure. This allows the running of own analyses using 

Python in the browser. Own analysis tools need to be implemented as Django applications 

in consideration of the technologies used in the Open Data Cube user interface (e.g., 

Python Celery). The user interface provides RESTful web services. 
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Figure 4.4: Google Earth Engine Playground web application: JavaScript and Earth Engine 
functions are used to develop analysis algorithms, with the results presented in the map. 

 
Figure 4.5: Screenshot of a Google Earth Engine App (Clauss 2018).  

 
Figure 4.6: User interface of the CEOS Open Data Cube showing results of the water-detection 
algorithm in the map and as time-series plots on the right. 
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4.4.3 Service platforms 
Service platforms only provide web services, which can be used in other applications. 

Focusing on standard-compliant web services (e.g., according to the OGC specifications), 

the services can be used directly in many geospatial applications. The commercial web 

services from Sentinel-Hub31 provided by Sinergise are an example of service platforms. 

With OGC WMS, WFS, and WCS, they provide interoperable web services for EO data. 

In addition, nonstandard-compliant web services are also provided to the user, such as 

the Sentinel-Hub Feature Information Service,32 which provides statistical summaries for 

a given area of interest over time for EO time-series data. Besides data discovery and 

data access, data can be processed with pixel-based scripting possibilities 33  when 

requesting the data.  

A self-developed service can be created using Rasdaman software34. Rasdaman provides 

web services compliant with the OGC WCS, WCPS, and WMS. EO data ingested into 

Rasdaman can be analyzed using the WCPS specification for individual service requests. 

Output formats of the WCPS includes GeoTIFF, PNG, and CSV.  

4.4.4 Conclusions 
While the potential of cloud data providers and their EO data archives in combination with 

the execution of geoprocessing tools are immense, various limitations exist, such as 

usage costs, limited functions, or data availability dependent on specific providers. Popular 

cloud providers, such as Amazon or Google, offer a variety of tools to simplify the setup 

of processing in the cloud (e.g., serverless infrastructure). Copernicus DIAS platforms 

provide OGC-compliant data discovery, visualization, and access services in addition to 

virtual processing environments, which are similar to those of Amazon and Google. The 

use of cloud providers within self-developed platforms can have a major impact but must 

be considered meaningful. Due to the distributed behavior of service-based 

infrastructures, cloud providers can be used in various ways, for example, only for the 

provision of web services for specific tasks or specific EO data. 

Processing platforms are diverse in their technological implementation. While with Google 

Earth Engine, only specific operations and functions can be used (e.g., own analysis tools 

cannot be uploaded), other platforms can be extended by own tools or used directly within 

programming languages (e.g., Jupyter Notebooks). The Open Data Cube provides simple 

access to analysis tools, but for the implementation of own algorithms in the user interface, 

                                                
31 https://www.sentinel-hub.com/develop/documentation/api/ogc_api  
32 https://www.sentinel-hub.com/develop/documentation/api/fis-request  
33 https://sentinel-hub.com/develop/documentation/api/custom-evaluation-script  
34 http://rasdaman.org/  

https://www.sentinel-hub.com/develop/documentation/api/ogc_api
https://www.sentinel-hub.com/develop/documentation/api/fis-request
https://sentinel-hub.com/develop/documentation/api/custom-evaluation-script
http://rasdaman.org/
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several technologies (e.g., Django, Celery) need to be known. Although there are 

platforms that provide many of the platform-specific user requirements, there are often 

important requirements that are still missing (e.g., the provision of own analysis tools, own 

user management, and specific visualization outputs for the results of analysis). Service 

platforms are still new but offer enormous opportunities for the direct processing and 

visualization of EO data while conducting the service request. Although the analysis of EO 

data can be integrated upon request, time-series analyses are not possible; only single 

pixels of a single scene or a temporal mosaicked scene can be classified.  

Table 4.6 presents a comparison of the user requirements and the various processing and 

service platforms for EO data access and analysis described in this section. While EO 

data access and visualization tools are available on most of the platforms, there are 

differences pertaining data analysis, user management, and service interfaces. Especially 

information about data lineage in relation to reproducible research (e.g., how the data has 

been processed), is only provided in detail by the NASA Giovanni system. In addition, 

most of the systems cannot be hosted on own platforms with specific EO data and analysis 

tools. Thus, a self-developed standardized and flexible middleware system operating 

between users and data providers fosters the exploration of EO time-series data.  
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4.5 Recommendations 
A key issue in discovering and accessing EO time-series data is the need to learn how to 

use the different tools and services offered by each data provider. Focusing on the needs 

of a user, a unique standardized and easy-to-use interface will foster the use of EO time-

series data. Solutions, such as brokering services, have been established to bring EO 

data from different data providers together and to provide a standardized and harmonized 

interface. However, often the results of a discovery request are still too complex. Data 

providers often provide different web services for the discovery and accessing of EO time-

series data. In addition, data from the same EO mission is often available from several 

data providers. As such, data discovery and access tools from multiple services can be 

used.  

The further processing and analysis of EO time-series data requires specific data 

structures and data formats, which are often different for individual geospatial tools. 

However, some common specifications can be derived from the review: Individual 

geospatial files, which can be combined into a multi-band time-series dataset for each 

observation, are necessary for each date and observation (e.g., bands and indices). Dates 

need to be either extracted from the file name or included in a separate text file.  

Various cloud-based virtual environments, processing platforms, and service platforms 

exist, with different infrastructures, EO data, and analysis tools available. Which 

infrastructure or platform is to be used is often a difficult decision but this depends on the 

EO data and functions that need to be provided. In addition, open source software exists 

that can be installed and hosted on own platforms with own EO data and analysis tools.  

The following recommendations based on the previous review can be made: 

• Provide multiple data formats to meet the requirements of different users. 

• Establish service brokering to harmonize data discovery and access. 

• Standardize data structures and formats for multi-source EO data. 

• Provide a combined implementation of a self-developed data platform integrating 

web services hosted by cloud-based infrastructures (e.g., services from virtual 

environments or serverless web services and service platforms). 

• Offer either the uploading of own analysis tools or a direct linking of data access 

services with analysis services within a processing platform.  
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Chapter 5: Concepts and Methods 
Based on the previous chapters, concepts and methods have been defined and grouped 

into three components to bridge the gap between EO data archives and user applications 

(Figure 5.1):  

1) Service-based EO time-series data middleware as an overall concept for an EO 

data platform focusing on general methods for user-aligned web services and user-

aligned output formats, 

2) Service brokering for multi-source EO time-series data discovery and access, 

specifically focusing on user-aligned approaches for discovery and access, and  

3) Uniform EO time-series data structure, processing, and analysis, specifically 

focusing on the further provision, analysis, and processing of time-series data after 

the data has been downloaded. 

 
Figure 5.1: Main components of this thesis for bridging the gap between EO data archives and user 
applications (Image on the right: Courtesy NASA/JPL-Caltech). 
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5.1 Service-based EO Time-series Data Middleware 
The current state of web technologies offers tremendous potential to increase the 

accessibility of EO time-series data and analysis tools. Today, global EO data archives 

can be analyzed in virtual environments and processing platforms without data downloads 

in scalable infrastructures on Amazon Web Services, Google Cloud, or Google Earth 

Engine. However, not all EO data is available on clouds and, thus, traditional methods for 

data discovery and download still need to be undertaken manually. As these methods 

have in most cases been made available through web services, a centralized server 

infrastructure can provide automated access to multi-source EO time-series data, which 

enables users to access and analyze them.  

In this thesis, a service-based infrastructure and data platform have been developed with 

a focus on a user-driven design. As most of freely available EO data is available through 

web services, platforms with user-aligned web services can easily be developed to simplify 

the discovery, access, and analysis of EO time-series data. Desktop and mobile 

applications can benefit from these user-aligned web services as the complexity of 

geospatial time-series data processing is hidden. 

In general, such a data platform needs to fulfill the following criteria to enable the provision 

of user-aligned web services and user-aligned output formats: 

• Automated access to user-requested data linked to scientific analysis tools: 

Both data access and analysis need to be reproducible and to focus on user-

specific requirements. 

• Uniform data processing: This includes data formats, processing interfaces, and 

metadata descriptions for EO-based time-series data as key components to 

provide automated and on-demand tools for data access and analysis. Various 

output formats for each geospatial tool need to be considered. 

• Interoperable web services for spatial time-series data, which can be used 

within different applications: This includes web services for the visualization of 

data and the results of analysis, discovery of available datasets, time-series data 

access and extraction, and the execution of time-series analysis tools.  

The overall concept of the regional data middleware system is described in the next 

subsection (5.1.1), including the system and software architecture of the middleware. The 

research towards user-aligned web services (Subsection 5.1.2) and user-aligned output 

formats (Subsection 5.1.3) are explained thereafter. Finally, the software and services 

implemented are presented (Subsection 5.1.4).  
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5.1.1 Concept of a regional data middleware system 
The overall concept of the regional data middleware system focuses on providing easy 

and standardized access to EO time-series data and analysis tools. It combines the 

advantages of web service-based geoprocessing tools and user-aligned interfaces. Many 

users spend a tremendous amount of time on data discovery, download, and 

harmonization (Zhao et al. 2012). The middleware approach bridges existing limitations 

between users and data providers with automated workflows for EO time-series data.  

The data middleware system allows users to focus on their main interests: 

• Software developers focus on the development of applications based on the web 

services of the middleware. 

• Scientific users focus on the development and use of algorithms without the need 

to handle data preprocessing issues. 

• Thematic experts focus on the execution of analysis tools and the interpretation of 

the results of analysis in their area of interest. 

The middleware approach supports the exploration of EO time-series data for regional 

areas of interest. Although access to global EO data is available, the system is not aimed 

at conducting global analyses, as data downloads of global datasets are not feasible. The 

middleware aims to connect to major EO data providers, such as NASA, USGS, ESA, 

Google, and Amazon. The main functions include time-series data discovery and access 

for user-specific areas of interest, data analysis, and the provision of standard-compliant 

web services. The results of analysis are automatically prepared for online visualization. 

Different user personas can interact with the middleware: Scientists to retrieve data and 

execute algorithms; software developers to use the services in their applications; and 

thematic experts to explore the algorithms and their results. 

5.1.1.1 Middleware components 
The methodological concept is shown in Figure 5.2. A fundamental requirement for the 

components of the middleware is direct access to global EO data. Thus, data discovery 

and data integration need to be connected to external data providers. A centralized 

management of time-series data (“analysis-ready data”) is necessary to combine data 

access with additional processing and analysis steps (“data processing and analysis”). 

Time-series data can be made available for external applications, such as Open Data 

Cube or Rasdaman (“application-ready data”). The provision of the middleware with 

standardized web services and metadata descriptions fosters the development of client 

applications. All these components (Figure 5.2) are described in the following paragraphs. 
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Figure 5.2: Concept of the methodological development, including the middleware approach and 
user-friendly client applications (e.g., web portals, mobile apps, scripts). 

Data discovery 

Questions regarding the availability of specific EO data (e.g., Landsat, Sentinel, and 

MODIS) can be answered by the data discovery component within the middleware. Users 

need to be able to search for datasets in their own area of interest by filtering through 

sensors, cloud coverage, and other relevant parameters. A multi-source data discovery 

approach involves different data providers. Thus, a brokering system harmonizes requests 

to and responses from metadata catalogues and is connected to the web services of the 

individual data providers. Specific user-aligned output formats need to be considered to 

ensure use by different user personas. In many cases, data discovery is necessary to 

conduct data access and data integration.  

Data integration (data access)  

Access to EO time-series data can be established by connections to external data 

providers. As many of the data providers offer different types of web services for data 

access, requests to the individual data providers need to be harmonized for each of the 

services. Both data extraction and data integration need to be investigated: 

1) Data extraction involves time-series data for a single pixel or statistical summary 

of an area in order to provide a quick overview of the time-series values.  

2) Data integration into the middleware includes data preprocessing steps and data 

format conversions in order to enable further analysis. 
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Analysis- and application-ready data 

The term “analysis-ready data” in this thesis describes the ability of handling time-series 

data with a uniform data structure and format, which allows it to be easily used in 

programming languages and by geoprocessing and analysis tools. Therefore, a uniform 

data structure is necessary, and the data downloaded needs to be converted into this 

structure and format. To foster the use of time-series data by external analysis tools, it is 

also relevant to support data structures and formats used in other software, such as 

GRASS GIS, Open Data Cube, Rasdaman, and OGC web services. In this thesis, 

methods have been defined to automatically convert EO time-series data into the data 

format required by other applications (“application-ready data”). With this accomplished, 

users can directly use EO time-series data from the middleware in applications that are 

supported by the middleware. 

Data processing and analysis 

The combination of data access and data processing allows users to analyze time-series 

data using specific time-series analysis tools. A flexible approach has been considered in 

order to enable user-specific data processing and analysis, which allows users to conduct 

their own processing of the data. This includes the use of interactive data exploration and 

analysis tools, such as the web-based Jupyter Notebooks, the algorithms in the Open Data 

Cube, or others registered as applications in the middleware.  

Standard-compliant web services 

The methodological concept includes the provision of standard-compliant web services to 

allow users and applications to interact with the middleware. Web services allow the 

integration of the middleware into different types of applications, such as web and mobile 

applications and programming scripts. In addition, these web services can be compiled 

into processing chains, for example, to combine data access and data analysis tools. In 

order to provide uniform and user-aligned web services, the use of standard-compliant 

web services has been investigated.  

Metadata descriptions 

Descriptions of geospatial data are important to provide information about the kind of data 

that is available in the middleware. Client applications can use a metadata catalogue, 

which contains the metadata descriptions, provided by the middleware to search for 

available data. In addition, further information about the geospatial data can be explored, 

such as information about the data processing conducted.  
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5.1.1.2 System architecture 
The architecture of the middleware system comprises three main components 

accompanied with their respective web services (Figure 5.3):  

1. Administration with RESTful services, 

2. Geoprocessing tools with geospatial web services, and 

3. Exploration tools with application services. 

Based on a service-oriented infrastructure, the individual services can be provided by 

different servers. Only those services that need to access the EO data within the 

geospatial database need to be managed centrally. Figure 5.3 shows the architecture of 

the system based on the administration services, geospatial web services for data 

discovery, integration and analysis, geospatial database, and application services for the 

external exploration tools. The three components and the geospatial database are 

described in the following paragraphs. 

 
Figure 5.3: System architecture of the regional data middleware system divided into administration, 
geoprocessing tools, and external exploration tools. 

Administration 
The administration component manages the registration and authentication of user 

accounts, the areas of interest registered in the middleware, the data integrated, and 

analysis tools used. The provision of these functions by means of RESTful services allows 

access to these data using different client applications. The web services are part of a web 

content management system (CMS), which can be accessed through an additional 

administration web interface. The CMS provides user management tools, such as user 

registration, user removal, password resetting, login, and logout. In addition to content 

management, the execution of processes can be controlled with process scheduling to 

limit overloading of the server (e.g., only a single data integration process at the same 

time). As the main interaction of client applications with the middleware is based on 

RESTful services, the software behind the CMS can be changed.  
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Geospatial database 
The geospatial database consists of EO time-series data and the results of analysis that 

have been generated through the geoprocessing tools. A fixed folder structure and 

filename scheme allows centralized data management and links to external exploration 

tools. Standardized OGC-compliant web services allow simple use and integration into 

GIS software (e.g., QGIS and ArcGIS) and web-mapping libraries (e.g., OpenLayers). 

Geoprocessing tools 
The geoprocessing tools manage the processing for data discovery, access, integration, 

and analysis. Scripting languages, such as Python and R, are widely used for geospatial 

data processing. For both languages, many packages exist to handle and process all kinds 

of EO time-series data, including tools for data discovery, access, processing, and 

analysis. Although both languages can be considered for the geospatial data discovery 

and processing component, there are some external libraries, such as the Google Earth 

Engine API or the Open Data Cube API, which only exist for Python. In addition, support 

for command-line tools is necessary for some processing and analysis tools. 

Communication with client applications is based on standard-compliant geospatial web 

services, such as OGC WMS (visualization), WCS and WFS (access), WPS (processing), 

and CSW (discovery).  

Exploration tools 
Web-based exploration tools allow users to work with data without having to download 

and preprocess it and install software. As it is connected to the middleware system, data 

in the geospatial database can be directly accessed by these applications. As a 

prerequisite, the exploration tools need to have access to the geospatial database. 

Depending on the specific tool, EO time-series data needs to be converted into the format 

that the application requires (e.g., the specific data format for the Open Data Cube 

software). For example, Jupyter Notebooks can be used to further process EO time-series 

data by providing a web-based interactive development environment. Thus, after data 

integration, users are able to open the dataset within a Jupyter Notebook application. 

Other applications (e.g., Open Data Cube) can be linked to data ingested in the 

middleware to allow users to work with algorithms that are available in the application. As 

a centralized CMS, the middleware can manage links between the data ingested and 

exploration tools available. 

5.1.1.3 Spatial data infrastructure 
The middleware concept is based on methods of SDIs. A relevant part of an SDI is the 

provision of interoperable services. As such, standard-compliant web services for data 

visualization, access, processing, and metadata cataloguing following the specifications 
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of the OGC are available. Figure 5.4 shows services from the SDI, which can be used by 

several client applications connected through the Internet. In this thesis, the emphasis is 

on the automated processing of EO time-series data. Processing tasks, such as data 

downloading, processing, and analysis are provided using the OGC WPS specification. 

Within the process algorithm (shown in Figure 5.4), external software can be made 

available, for example, by executing software on the command line or through libraries 

used in programming languages. This allows any kind of software to be integrated into a 

service environment and provided as a web service. 

 
Figure 5.4: Connections of client applications to the geospatial service infrastructure, including 
processing based on OGC WPS in Python. 

5.1.2 User-aligned web services 
The use of web services facilitates the exploration of data based on web technologies. 

Data and processing tools can be made available through web services to allow the 

decentralized use of these tools in multiple applications, such as mobile applications, 

scripting programs, and web portals. Hosted on a web server, services can be managed 

in a central environment and used in various applications. In general, the use of web 

services can be adjusted by means of the different input parameters defined by each web 

service. A service-based infrastructure ensures the integration of EO time-series data and 

processing tools in any kind of application. Linking EO data with web services provides a 

range of opportunities for user-specific exploration tools. Thus, the approach of providing 

EO time-series data with standard-compliant web services needs to align with the specific 

needs of users. Web services allow the concealing of complex data processing behind 

web-based resources. Simple requests to a web-based resource can initiate complex 
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processing on a server—the user retrieves only the resulting data. However, the resulting 

data must be adapted to the respective user personas. Scientific users need to understand 

the processing within a web service, while thematic experts are interested mainly in the 

results. Therefore, multiple output formats, logging, documentation, and reproducible 

services are key issues when providing an infrastructure based on web services. In 

addition, several services can be linked by service chaining opportunities.  

Research has been conducted to standardize web services for the provision of geospatial 

data discovery and access (Bai & Di 2011; Baumann et al. 2016b). However, more focus 

needs to be placed on user-aligned web-based interfaces for the exploration of big data 

(Tsinaraki & Schade 2016). Although standardized specifications of web services for data 

discovery, access, and analysis exist, the focus has been mainly on “machine-to-machine” 

communication. With regard to the specific needs of users, this “machine-to-machine” 

communication needs to be transferred to a more “human–machine” communication 

interface.  

5.1.2.1 The human–machine interface 
As concluded in the state-of-the-art chapter, existing web services for EO time-series data 

discovery, access, and analysis need to be enhanced to meet the requirements of different 

user personas. Although response formats from commonly used web service 

specifications (e.g., XML and JSON) can be used for individual user personas (e.g., 

developers), others prefer additionally processed output formats. Within the concept of a 

“human–machine interface” specification, data discovery, access, and analysis need to be 

available with uniform and standardized web service specifications. Output formats for the 

resulting data and technical and functional aspects of web services—both suitable for the 

user personas relevant to this thesis—must be reconsidered to enable user-aligned 

services and applications. Thus, two main criteria are investigated:  

1) The provision of multiple output formats to foster the use of services by different 

user personas. 

2) A uniform web service specification for data discovery, access, and analysis to 

simplify the learning curve when using these services.  

Figure 5.5 shows the concept of both the standard solution, with individual requests and 

arbitrary output formats (left), and the uniform web service with multiple user-aligned 

output formats (right). To fulfill both these criteria, the service specification for data 

discovery, access, and analysis needs to be harmonized and the output formats need to 

be adapted to the requirements of users.  
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Therefore, traditional service specifications, which only provide a fixed set of output 

formats, such as OGC CSW, OpenSearch, and OGC WCS, need to be replaced by a more 

generic specification. In this thesis, the OGC WPS specification has been evaluated for 

the uniform web service specification as it allows for multiple input and output parameters, 

diverse processing within the execution, and further requirements set by the user (e.g., 

support for long-running processes). The WPS specification allows a differentiation 

between services (e.g., individual processes for data discovery and access), but the 

execution and handling of the services remains the same. For each of the processes, a 

flexible set of input parameters and output formats can be defined to meet the individual 

requirements of the different user personas. In addition, WPS-compliant web services can 

be used by existing geospatial software that is compliant with OGC standards. 

 
Figure 5.5: Traditional discovery, access, and analysis request/response (left) compared to a 
uniform web service request that provides multiple user-aligned output formats and a uniform web 
service interface (right). 

5.1.2.2 Service chaining 
The chaining of services allows the consecutive execution of various steps in the course 

of the exploration of geospatial data, such as data discovery, integration, and analysis. An 

example of service chaining is presented in Figure 5.6, based on two services: 1) time-

series data access, and 2) time-series data analysis. To enable service chaining in the 

centralized data middleware without transferring large amounts of data, specific rules for 

the services are necessary.  

The approach considered in this thesis and shown in Figure 5.6 is based on a centralized 

output directory for each of the services in the middleware, which can also be retrieved by 

other services on the same server (“local processing directory”). The results of a data 

access service are stored in this processing directory on the server, which is accessible 

by a unique identifier. Based on this unique identifier, the analysis service can access the 

input data on the server (“Input dataset”). The analysis service needs to understand the 
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data structure and data management produced by the access services to allow direct use 

of the previously integrated dataset. The local processing directory described by the 

unique identifier allows for several subdirectories: The “data” directory stores the outputs 

of the data access service. Further directories are specific to the analysis tools used (e.g., 

“greenbrown_*”, “bfast_*”, and “timesat_*”). A timestamp for each of the analysis 

directories allows multiple executions of the same analysis, for example, when using 

different parameters of the algorithm.  

 
Figure 5.6: Automated geoprocessing service chaining using data access and data analysis 
services: The results of the data access service are stored in a local processing directory, which is 
accessed using a unique identifier from the subsequent data analysis service to retrieve the “Input 
dataset.” The directory listing of the webserver for the folder belonging to the unique identifier 
includes output results from different services (data access and data analysis). 

5.1.3 User-aligned output formats 
With focus on the user requirements, one of the aims is to simplify working with and 

analyzing EO time-series data. Data output formats that are specifically provided to 

individual user personas can facilitate and support further analysis of time-series data. For 

example, users do not need to use other software to view the results of the analysis with 

web-based on-the-fly visualization. In the following subsections, three user-aligned output 

formats that have been explored in this thesis are described. 

5.1.3.1 OGC web services 
OGC web services allow the standardized integration of data into GIS and web-mapping 

libraries. In light of this, it is important to publish geospatial data with OGC-compliant web 

services. Raster data of spatial time-series data can be made available for visualization 

using the OGC WMS and for data download using the OGC WCS. In general, software for 

the provision of raster data often offers services that comply with both specifications. The 
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temporal dimension based on WMS-TIME and WCS-TIME needs to be considered for 

raster time-series data. Although the visualization of raster data can be achieved 

automatically using a black-white color profile, this is not suitable for most use cases. 

Thus, individual stylings using the OGC Styled Layer Descriptor specification need to be 

provided and used in the software for each data type (e.g., specific color styles for 

vegetation index, snow cover, and natural color images). Both the EO data and the results 

from the analysis tools need to be prepared for visualization, which is relevant when 

providing analysis tools as web services. 

5.1.3.2 Figures and charts 
The extraction of EO time-series for single pixels allows the immediate analysis of the 

pixels over time. While data access in general only provides time-series values, users 

need to use further tools to visualize the time-series. Providing ready-to-use time-series 

plots helps users to understand the data without further data processing having to be 

conducted. Besides a general plot of the data (Figure 5.7, left), further analyses, such as 

a decomposition analysis plot of a time-series (Figure 5.7, right), can be conducted 

automatically and provided to the user.  

 
Figure 5.7: Time-series plots provided as outputs while accessing the data (left: general time-series 
plot; right: decomposition plot). 

5.1.3.3 Statistical summaries 
Statistical summaries of an area of interest are often used to make first assumptions 

regarding the indications of the data within this area (e.g., to analyze trends or changes). 

Without having to analyze each individual pixel within the area of interest, a CSV 

spreadsheet file can foster this analysis. Figure 5.8 shows an example from an NDVI 

extraction for an area of interest selected by the user: Statistical summaries are provided 

as the mean, minimum, maximum, and standard deviation (stdev) values. Using 

spreadsheet software, users can plot the data (e.g., maximum values versus mean values 

for each date). In this example, a clear change in the maximum NDVI values is visible in 

the time-series. This statistical summary is automatically calculated in addition to providing 

access to raster time-series data. 
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Figure 5.8: Spreadsheet file output showing statistical summaries (min, max, mean, and standard 
deviation) for an area of interest (polygon). 

5.1.4 Implementation: Middleware software architecture and web services 
The implementation of the software architecture and web services, which frames the 

overall middleware, are described in the following subsections. In addition to a description 

of the administration (Subsection 5.1.4.1) and the geospatial web services (Subsection 

5.1.4.2), a definition of processing web services for data discovery, integration, and 

analysis is provided (Subsection 5.1.4.3).  

5.1.4.1 Content Management System 
The CMS provides the overall software to manage user authentication, areas of interest, 

registered data, and the analyses conducted. RESTful web services are provided by the 

CMS for the registration of areas of interest, data ingestion, analysis execution, and user 

registration and authentication. In addition, a list of available EO data collections and 

analysis tools linked to the data collections are managed through the CMS. Although in 

the latest middleware application the Django Web Framework is used as a CMS, older 

instances of the middleware system are based on Drupal CMS (see Chapter 6, “Example 

use cases”). As the client applications make use of the RESTful services, the CMS 

software is exchangeable. The data in the CMS is stored in a PostgreSQL database with 

geospatial support provided by the PostGIS extension. This enables the storage of 

geometries from the areas of interest and provides support for geospatial operations. 

5.1.4.2 Geospatial web services 
Visualization and access services are provided using services compliant with OGC 

specifications for geospatial data, which is available as the output of the data integration 

and data analysis processes. Each of the processes contains its own service instance 

using an individual configuration file for the open source software MapServer. This allows 

for the simple management of the OGC services as a removal of the directory with the 

analysis or integration results automatically removes the OGC service for the process 

undertaken. For the data visualization, a set of visualization styles have been prepared for 

each data type (e.g., vegetation index product, snow cover product, and land surface 
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temperature product) to convert geospatial raster data into RGB images. The provision of 

raster time-series data is based on the TIME extension of OGC WMS and WCS.  

The open source software pycsw is used to publish metadata catalogues with the OGC 

CSW specification. Hence, each user registered in the middleware can have his or her 

own instance of the metadata catalogue. The open source software PyWPS provides 

services for data discovery, access, processing, and analysis based on the OGC WPS 

specification. The CMS backend software acts as a proxy for long-running processing 

services that are executed asynchronously.  

5.1.4.3 Processing web services 
Data discovery, integration, and analysis are made available using web services compliant 

with the OGC WPS specification. Each process managed by the middleware is registered 

in the CMS to retain the references to the inputs and outputs of the process. The 

monitoring of asynchronous process executions allows for notifying users with an email 

when the process is complete. In the following paragraphs, the processing services for 

data discovery, data integration, and data analysis are specified, described, and example 

service requests are presented.  

Data discovery service 

In general, geospatial data discovery is provided by the specifications of OpenSearch or 

OGC CSW. As neither of these meet the requirements of the user personas described in 

this thesis, the OGC WPS specification has been used for the specific use case of EO 

time-series data discovery. As a processing service, several user-aligned processing 

tasks can be integrated into the discovery service, such as the provision of multiple output 

formats, summary statistics, and additional calculations for the area of interest. In contrast 

to the general discovery specifications mentioned above, the WPS interface allows for 

flexible inputs and outputs for each process, which are described in detail in Table 5.1 for 

a data discovery process. 

The processing service for EO data discovery designed in this thesis consists of an 

interface for searching for EO data based on a location defined as an input parameter. 

Both point and polygon geometries can be used as location input described using the well-

known-text (WKT) format. A list of EO data collections supported by the discovery process 

needs to be defined by the processing service, as connections to external databases need 

to be made for the purpose of data discovery. Further queries of the metadata can be set 

up as a single input string of the WPS process. The additional input parameter 

“MinOverlap” (minimum overlap percentage) can be used to filter the resulting scenes 

based on the spatial overlap between the scene geometry and the given area of interest 
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(location input). Several outputs are provided to the user: The resulting scenes discovered 

based on the input parameters in several formats (e.g., CSV, JSON, or Shapefile) as well 

as a figure (“SummaryChart” output), which can be directly used for further interpretation 

of the results (see Subsection 5.2.3).  

The discovery process can be executed with a single WPS execute request (Figure 5.9). 

Depending on the request, either all of the outputs or a single output can be returned to 

the user. Figure 5.9 shows an example WPS request and the CSV output file for a given 

polygon and Sentinel–1 GRD data. 

Table 5.1: Inputs and outputs for a user-specific EO time-series data discovery service. 
 Name Type Description 

Input Location* WKT geometry Geometry in well-known-text format 
(e.g., Point or Polygon) 

Input Datasets* String Multiple selection of EO data 
collections connected within this 
service 

Input MinOverlap Integer Minimum overlap percentage between 
scene geometry and location input 

Input Query String Filter query for discovery 

Output CSV File URL Results in CSV format 

Output JSON File URL Results in JSON format 

Output Shapefile File URL Results in Shapefile format 

Output SummaryChart File URL Summarized results in PNG chart 

Output SummaryCSV File URL Summarized results in CSV format 

* Mandatory 

 
Figure 5.9: WPS discovery request (top) and an example of CSV output (bottom). 

Data integration service 

User-aligned services for EO time-series data access need to consider many geospatial 

processing steps, such as clipping and merging to the area of interest, implementing 

quality masks, and scaling factors, as well as handling missing values. None of these can 
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be easily provided in the existing access specifications for raster data, such as OGC WCS 

or OGC WCPS. Although OGC WCPS can conduct data processing while accessing, only 

processed data is returned—no additional output formats can be provided to support the 

output formats for different user personas. Thus, a processing service for data access has 

been investigated in this thesis (Table 5.2). Specifically, data integration into the 

middleware has been considered in addition to general data access. Therefore, data 

access not only passes the data to the user but also stores and manages the data 

requested by the user in the middleware.  

For any data access request, the location and the name of the EO data collection are 

mandatory to start the data access process. The location input supports the WKT format 

using points or polygons. The dataset input provides a predefined list of datasets, such as 

Landsat–8, Sentinel–2, Sentinel–1, and so forth. Only data from EO data collections that 

are connected to the middleware are supported by the process and can thus be accessed 

and integrated. Quality masks and scaling factors are not available for all the collections 

and depend on the collection selected. This is reflected in and implemented by the data 

access process. Further queries used to filter the resulting scenes (e.g., maximum cloud 

coverage, time ranges) can be added optionally to the data access request.  

Different outputs are considered for single pixel and polygon-based raster extraction 

(Table 5.2). As mentioned above, all the data accessed is stored in the middleware—in 

contrast to the OGC WCS/WCPS specification. While the extraction of a single pixel 

extraction is less complex and only a few additional files are required (e.g., time-series 

plot, decomposition plot, and data CSV file), data access for areas of interest results in 

individual geospatial data files for each date. For the latter, statistical summaries, such as 

time-series values for the mean, minimum, maximum, and standard deviation, are 

calculated and provided as output. Both single pixel extractions and area-based 

extractions are provided in addition with OGC-compliant services, using either the OGC 

SOS for pixel extractions or the OGC WMS for visualization and the OGC WCS for data 

downloads for area-based extractions.  

The concept of the unique identifier output (UUID output) allows users to reference the 

accessed and integrated data in other services, such as the analysis service or the 

download service (see Subsection 5.1.2.2 for service chaining). Users do not need to use 

the OGC WCS to download the data to their local computer; instead, the complete 

processing directory can be downloaded as a zipped archive file using an additional 

download service in the middleware. This zipped archive file contains the complete folder 
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of the unique identifier, which also includes results from analysis services conducted after 

the data integration.  

Figure 5.10 shows an example WPS request as well as resulting outputs (excerpt). The 

data integration request is conducted for the Enhanced Vegetation Index layer of the 

MODIS Vegetation Index dataset (MOD13Q1) and a given point of interest. The directory 

listing of the UUID (Figure 5.10, bottom-left) can also be accessed using a web browser. 

Table 5.2: Inputs and outputs for a user-specific EO time-series data access service. 
 Name Type Description 

Input Location* WKT geometry Geometry in well-known-text format 
(e.g., Point or Polygon) 

Input DatasetName* String Single selection of an EO data collection 

Input Query String Filter query for discovery used for data 
access (e.g., only specific type) 

Output Properties File URL Text file with dataset properties (e.g., no 
data value, begin, end, scale factor) 

Output TimeseriesCSV File URL Result in CSV for point geometry 

Output TimeseriesChart File URL Time-series chart for point geometry  

Output TimeseriesFiles File URL CSV file that connects date and 
geospatial raster file 

Output SummaryChart File URL Statistically summarized results in PNG 
chart for polygon geometry 

Output SummaryCSV File URL Statistically summarized results in CSV 
format for polygon geometry 

Output UUID String UUID to re-use the dataset as input for 
analysis processes 

* Mandatory 

 
Figure 5.10: WPS access/integration request (top), file directory output (bottom left), and CSV 
output (bottom right). The UUID output is a unique identifier for re-using the data integrated into the 
system in analysis processes. 
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Data analysis service 

EO time-series analysis processes can only be conducted based on existing input data. 

Thus, either data needs to be uploaded to the server in the correct data format and data 

structure, or it first needs to be integrated with the middleware service for data access and 

integration (see the previous paragraphs). Using a UUID for the previously integrated 

dataset as specified by the data integration service allows referencing of the input data 

within the analysis process.  

Table 5.3 describes the inputs and outputs of an analysis process in general. Each 

analysis process needs to have different input parameters as they provide specific 

parameters on their own. A mandatory input is the reference to the input data, for example, 

using the UUID described above. Outputs of an analysis process need to be carefully 

thought for each of the algorithms provided as a web service and included in the 

middleware:  

• What is relevant for users to understand the analysis result?  

• What kind of figure simplifies the resulting output of the analysis?  

Both questions need to be answered separately for any algorithm and a good compromise 

needs to be found to serve different user personas. In addition, any geospatial data should 

be made available with an OGC-compliant web service for interactive visualization (OGC 

WMS) and access (OGC WCS for raster data, OGC WFS for vector data). Styling 

information is required for each of the geospatial data outputs that are available as a 

visualization service. For each of the analysis processes conducted, an independent 

OGC-compliant service containing all geospatial data of the process is provided by the 

middleware using MapServer software. 

Figure 5.11 shows two example WPS requests for breakpoint detection and trend 

calculations, both with the resulting output figure. The UUID for the data access and 

integration service allows the chaining of access and analysis services. Therefore, both 

need to be available: the data access process needs to provide the UUID and the analysis 

process needs to integrate the data structure based on the UUID. In addition, the 

algorithms need to be designed to fulfill the requirements of users by providing 

documentation steps, such as log files, as well as suitable output formats (e.g., PNG 

figures). 
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Table 5.3: Inputs and outputs for a user-specific EO time-series data analysis service. 
 Name Type Description 

Input UUID* String Relation to the previously 
accessed/integrated dataset (UUID output 
of data access process) 

Input Multiple input 
parameters 

String, Number, 
Complex 

Dependent on algorithm/tool 

Output Multiple output 
parameters 

String, Number, 
Complex 

Dependent on algorithm/tool 

Output Figure File URL Main figure of the output as graphic file 

Output ResultsOGC URL OGC-compliant service to serve OGC 
WMS, WCS, WFS for geospatial outputs 

* Mandatory 

 
Figure 5.11: WPS analysis requests for breakpoint (top) and trend calculations (bottom), with a 
figure output on the right. 
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5.2 Service Brokering for Multi-source Data Discovery and Access 
Discovery of and access to EO data has improved continuously in recent years. 

Standardized web service interfaces exist that are used by various data providers, such 

as ESA, NASA, and USGS. However, data providers often offer additional interfaces to 

provide functions and data formats that are more suitable—in contrast to the standardized 

interfaces. This leads to various web service specifications, which need to be known by 

users who want to discover and access multi-source EO data. Thus, a key issue is to find 

and obtain access to EO time-series data without the need to learn how to use the various 

tools and services that are provided by each data provider. A unique standardized and 

easy-to-use interface needs to be developed that covers not only data discovery and 

access, but also focuses on the needs of the user. Although international organizations, 

such as GEO and CEOS, have established centralized brokering approaches that include 

all kind of EO data, the resulting data is still too complex for responses to simple questions, 

such as “What kind of data is available for specific years and months in my area of 

interest?” 

Finding suitable scenes of EO time-series data for a user-defined area of interest is an 

essential task. Searching for useable data can be a difficult task as data needs to be of 

good quality and may have to meet several conditions. For example, when working with 

optical data, cloud coverage of satellite scenes is an important factor when searching for 

data. However, if the area of interest is smaller than the satellite scene and clouds do not 

cover this area even if the whole scene is mostly covered, then the cloud coverage 

information of the satellite scene is useless for the real area of interest. Thus, on-the-fly 

data processing for the specific area of interest while searching for data can be considered 

to solve such issues and enhance the discovery of freely available EO data. In addition, 

automated approaches for multi-source EO data access need to be established to simplify 

the downloading of EO data. In most cases, only links to satellite scenes are provided in 

data discovery; further processing needs to be undertaken by the user. For some 

applications, on-the-fly extraction of EO time-series data for a user-defined area is 

necessary. The downloading and processing of whole satellite scenes is not an option—

a web service can solve this.  

In this section, a brokering approach to centralize EO data discovery and access based 

on multiple data providers is described. In addition to the service-brokering concept 

(Subsection 5.2.1), the metadata model and additional extensions are described 

(Subsection 5.2.2). User-aligned output formats are further investigated to provide easy-

to-understand overviews and summaries (Subsection 5.2.3). Finally, the implementation 

of the service brokering as a Python package is described (Subsection 5.2.4).  
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5.2.1 The concept of web service brokering 
Brokering services forward requests to connected external web services. Therefore, a 

translation of the initial request needs to be adapted for each of the connected data 

providers. As each data provider offers different kinds of web services, a separate 

translation of the user’s request to the specifications used by the data provider is 

necessary. As shown in the review chapter, existing data catalogues provide different web 

service interfaces, filter capabilities, and metadata for individual EO data. The following 

main limitations of currently available data discovery services need to be addressed when 

designing the brokering service: 

• Different web service specifications need to be known by the user. 

• Different data providers need to be requested individually by the user. 

• The quality of metadata needs to be enhanced (e.g., quick-look images and sun 

angles). 

• Additional filter capabilities based on the area of interest are required. 

• Simple overview charts are missing (e.g., what kind of data is available when). 

Although brokering services already exist, such as FedEO, which supports many of the 

EO missions used in this thesis, a new brokering concept is necessary to meet the 

requirements of multiple user personas. Therefore, this concept focuses on “human–

machine” communication that provides multiple output formats to meet the requirements 

of the different user personas. To ensure good quality of the metadata, the most relevant 

metadata items are extracted from multiple data providers. The metadata from the 

connected data providers is translated into a common abstract metadata model along with 

the full metadata records. Extensions of the metadata model allow the integration of on-

the-fly computed properties and interactive visualization services (see Subsection 5.2.2).  

The following subsections describe the methods for service brokering and the quality 

enhancements of metadata in the brokering concept.  

5.2.1.1 Brokering methods 
The brokering approach provides a single entry point to search the external metadata 

catalogues registered in the broker. Brokering for data discovery and access can be 

separated into four main methods: 

1. List of available collections (various EO missions) 

2. Search for available satellite scenes  

3. Downloading of satellite scenes 

4. Direct extraction of time-series data (if applicable) 
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The brokering framework needs to know how to retrieve the list of available collections, 

search for satellite scenes, obtain access to data from each data source, and extract data 

for a given location. Depending on the available functionalities of each data provider, all 

these functions need to be implemented within the brokering software. Figure 5.12 shows 

the general concept of the brokering software for multi-source EO data that provides 

access to different data providers based on uniform methods (get_datasets, 

search_granules, get_data, and extract_data). These methods are described in the 

following paragraphs.  

 
Figure 5.12: Concept of the multi-source EO data discovery and access broker. 

List available collections (get_datasets) 

Metadata catalogues provide access to one or multiple collections (EO missions or several 

products). With this method, a list of collections available within the catalogue is provided, 

which can then be used to search for individual scenes. This method is not always 

available within the specification used by the data provider (e.g., OpenSearch). In general, 

OGC CSW does not support such queries either. However, extensions provided within the 

ESA FedEO broker support this. Within the brokering framework developed in this thesis, 

a list of collections available is generated for metadata catalogues that do not provide this 

functionality.  

Search for satellite scenes (granules) in a selected collection (search_granules) 

Individual scenes for a given location and time range can be searched for within the 

selected collection. In hierarchical metadata catalogues, the collection acts as a parent 

metadata record. A list of satellite scenes available for the query with the given filter 

parameters is provided, with multiple properties for each scene (e.g., UUID, cloud cover, 

footprint, and begin and end date) depending on the results from each metadata catalogue 

(see Section 4.1). For some metadata catalogues, it is necessary to request an additional 

web service (e.g., NASA CMR) to obtain the full metadata record.  

Data download (get_data) 

Each of the satellite scene’s metadata responses provides a download link to access the 

data. Depending on the data provider, either direct links to the complete scene (e.g., 

ESA/Copernicus Open Access Hub) or links to web pages (e.g., USGS Earth Explorer) 
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are available. In many cases, login credentials for each individual data provider are 

necessary to download the data. A download can also be handled by a third-party data 

provider using the search results from another metadata catalogue (e.g., using Amazon 

Web Services for a data download with search results from USGS Earth Explorer).  

Data extraction (extract_data) 

A few data providers (e.g., Google Earth Engine and Sinergise Sentinel-Hub) support the 

direct extraction of EO time-series data. In comparison to the data download method, this 

allows the accessing of data without downloading complete scenes. In this thesis, only 

statistical summaries of the area of interest over time for areas or time-series values for 

single pixels are provided with this method.  

5.2.1.2 Metadata quality enhancement 
Collections available from different metadata catalogues or data providers may contain 

different sets of metadata. Although most of the metadata relevant to users can be 

extracted from the original metadata resource, data providers may provide different 

thumbnails and quick look images as well as links for the downloading of data. To be able 

to extract the best metadata and the files referenced to it, it may be necessary for individual 

satellite scenes to obtain metadata from different data providers. For example, quick-look 

images from Sentinel–1 demonstrate that the NASA Alaska Satellite Facility provides 

better images as the original ESA/Copernicus Open Access Hub (see Figure 5.13). Thus, 

providing Sentinel–1 quick-look images from NASA is preferable to using the original ones 

from ESA. Another example shows that quick-look images from ESA/Copernicus Open 

Access Hub can only be accessed with a user login; the same quick-look images from the 

USGS Earth Explorer for Sentinel–2 can be accessed without login credentials, which 

makes it easier to  integrate them in own applications.  

 
Figure 5.13: Comparison of quick-look images of a Sentinel–1 scene.35 On the left, the image from 
the ESA/Copernicus Open Access Hub; on the right, the image provided by NASA. The latter 
includes enhanced colors and is spatially oriented within the bounding box. 

                                                
35 Granule-ID: S1A_IW_GRDH_1SDV_20180810T171655_20180810T171720_023187_0284ED_959E 
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5.2.2 Metadata model 
A unique metadata model for the discovery of satellite scenes brings together the results 

of each external discovery service. As each data catalogue provides different fields of 

attributes, a set of three mandatory items has been drafted: 

• Unique identifier (id) 

• Geometry of the scene 

• Start date and time of the scene (date of acquisition).  

Depending on the data provider, these can be extended with additional data. Table 5.4 

shows the metadata items supported by each data provider. A set of common metadata 

items is defined to ensure the good quality of the data discovery: 

Unique identifier (id) Title Geometry 
Time start Time end Updated date time 
Download URL Browse/Thumb URL Metadata URL 
Filename Size Cloud cover percentage 

 

Further information about collection-specific metadata can be added depending on the 

type of data (e.g., optical or radar), if this information is provided by the discovery service. 

As each of the data providers may name the attributes differently, a mapping of the 

metadata to the common metadata model needs to be integrated into the brokering 

framework, as shown in Figure 5.14. Items from the individual query responses for each 

metadata catalogue are mapped to the common metadata model. 

 
Figure 5.14: Metadata mapping between multiple data providers to establish a common metadata 
model. 
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Table 5.4: Metadata items from the common metadata model and their appearance in external 
metadata catalogues registered in the broker (* can be generated on request). 

Metadata item 

GEOSS 
broker 

ESA 
FedEO 

CEOS 
CWIC 

ESA 
Sentinel 

USGS 
EE 

NASA 
CMR 

Google 
Earth 

Engine 

Sentinel-
Hub 

Identifier         
Geometry         
Start date         
End date         
Filename         
File size         
Download URL       *  
Browse URL       *  
Metadata URL         
Cloud cover         

 

5.2.2.1 Metadata extensions 
An extended metadata model enhances the discovery of satellite scenes with filter 

capabilities and additional metadata elements to better meet the requirements of the user 

personas. Figure 5.15 shows the connections between these methods in a flowchart, 

starting with the user’s discovery request and extending to the resulting list of scenes. 

Three different methods are described in the following subsections: on-the-fly computed 

properties, additional download links, and interactive satellite scene browsing.  

 
Figure 5.15: The data discovery broker integrates post-processing steps after the external data 
search has been conducted and before the results are sent back to the user as a WPS response. 
This includes optional on-the-fly computed properties (e.g., overlap calculation, cloud cover based 
on the area of interest), added visualization layers (e.g., from Sentinel-Hub), and added external 
download links (e.g., Google and USGS). 
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5.2.2.2 On-the-fly computed properties 
Metadata properties of satellite scenes always relate to the full geospatial extent of the 

scene. However, in many cases, users search for data for a specific area of interest that 

either covers several scenes or is smaller than the satellite scene. In both cases, it is 

relevant to calculate properties, such as cloud cover percentage or the size of the 

overlapping geometry, on-the-fly based on the area of interest provided as input by the 

user. This allows users to filter satellite scenes based on the real area of interest, in 

contrast to the geometry of the satellite scene. Two on-the-fly computed properties are 

described in the following paragraphs.  

Calculation of overlap between scene geometry and the area of interest 

In some cases, the satellite scene only covers a minimal percentage of the area in which 

the user is interested. Therefore, filtering by overlapping area is introduced to minimize 

the satellite scenes not relevant to the area of interest. For each of the resulting scenes, 

a spatial intersection is effected and the size of the intersected area is set in relation to the 

geometric size of the scene. This parameter is added to each metadata item as an 

additional on-the-fly computed metadata property. 

Calculation of cloud cover for the area of interest 

Specific scene properties need to be calculated based on the area of interest in order to 

be suitable for use as filter parameters (e.g., cloud coverage). To this end, data analysis 

needs to be undertaken—either after the data download or using an online processing tool 

available in a web service. Google Earth Engine was used to compute the cloud coverage 

of Landsat scenes in the area of interest defined by users in their requests. Figure 5.16 

shows the Google Earth Engine Playground, including the script editor, scene 

visualization, and the area of interest (red area). In the script, the selected satellite scene 

is loaded and clipped to the area of interest; afterwards the “simpleCloudScore” algorithm 

from Earth Engine is executed (Google 2017, 2018a). This algorithm calculates “simple” 

cloud coverage for the area of interest of the Landsat scene using a combination of 

brightness, temperature, and the Normalized Difference Snow Index. Although Google 

states that “it is not a robust cloud detector” (Google 2018a), it is used here only as an 

example. Any other algorithm can be used for this kind of on-the-fly computed data 

property. The result of this algorithm is a raster image with cloud scores of between 0 and 

100 percent for each pixel, which can be summarized as mean value. Using the Google 

Earth Engine API, this analysis can be conducted and retrieved as a JSON object (Landsat 

scene identifier with cloud cover percentage for the area of interest), which can be further 

processed in the brokering framework. The example used in Figure 5.16 shows that the 

cloud cover of the scene (20%) is much larger than in the area of interest (4%). As such, 
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filtering satellite scenes according to the cloud cover for the complete scene at a level of 

less than 20% would have removed this scene from the resulting list even though the cloud 

cover over the area of interest is much less. 

 
Figure 5.16: Cloud cover calculation for a Landsat-8 scene in an area of interest (red area) in 
Google Earth Engine. While the cloud cover of the scene is 20 percent, it is only 4 percent in the 
area of interest. 

5.2.2.3 Additional download links 
Today, EO data is available from a variety of data providers. When searching for data in 

multiple metadata catalogues, download links from multiple data providers are available 

(e.g., USGS Earth Explorer or ESA/Copernicus Open Access Hub). In addition, links can 

be generated from various data providers based on their metadata, such as direct 

download links for Amazon Web Services or CODE-DE (see Subsection 4.2.2). The 

advantages of showing additional download links are diverse. For example, for download 

links from Google Cloud, users need not have a user login and can access individual 

bands of scenes—in contrast to the original services from USGS Earth Explorer. In 

addition, the download speed or service performance may be different for each of the 

external platforms (e.g., an increased data download speed from the CODE-DE platform 

within German research networks).  

5.2.2.4 Interactive satellite scene browsing 
The visualization of individual satellite scenes is useful to obtain a first impression of the 

data. Using the Sentinel-Hub web service provided by Sinergise, the OGC WMS-TIME 

services can be used to visualize Landsat and Sentinel scenes based on data archives 

from ESA and Amazon Web Services. If access to the Sentinel-Hub WMS is available (a 

commercial interface key is required), a WMS link with multiple layers (e.g., used for 

natural color, false color, and NDVI) can be added to the metadata of each of the satellite 



Chapter 5: Concepts and Methods 

122 

scenes. This WMS can then be used in own applications. For example, Figure 5.17 shows 

the integration of the visualization services in the “Satellite data explorer” on the GEO-

Wetlands Community Portal. Although it is not possible to filter the WMS down to an 

individual scene, scenes from a selected day are automatically mosaicked and provided 

by the Sentinel-Hub services.  

 
Figure 5.17: On-the-fly visualization of a satellite scene using the NDVI layer. 

5.2.3 Discovery output formats 
Various output formats of data discovery results are needed to fulfill different needs of 

applications and meet the requirements of user personas. To ensure ease of use of the 

data discovery results, summarized outputs can be provided in simple formats (e.g., PNG 

or CSV). To enable developers to build applications based on the discovery results, 

geospatial output files need to be available in additional formats, such as GeoJSON or 

SQLite database. Other output formats, such as CSV spreadsheet files and summarized 

outputs, are described in this subsection.  

5.2.3.1 CSV spreadsheet files 
In order to enhance the analysis of results from EO data discovery, the data resulting from 

a discovery request is converted to a CSV spreadsheet file so that it can used by any 

spreadsheet software or programming language. In contrast to the usual formats, XML 

and JSON, most users are familiar with the CSV file format. Both of these formats are 

especially suitable for developers but can often not be handled by other user personas. 

As an example of the CSV output, Figure 5.18 shows Landsat–8 scenes for a given area 

of interest (only parts of the columns available are shown). Using the CSV file, users can 
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directly work within spreadsheet software to analyze the results (e.g., plotting the amount 

of cloud cover of each scene over time, as shown in Figure 5.18). 

 
Figure 5.18: Spreadsheet file output showing scenes from a data discovery request, including 
scene metadata and download links. 

5.2.3.2 Summary output by year and by satellite 
An additional summary output format has been designed and is made available to provide 

information about what kind of EO data is available from which sensor when. Therefore, 

two additional outputs are calculated within the data discovery:  

1) Graphic output shows the number of scenes per satellite sensor per year in a PNG file 

(Figure 5.19, left). Especially for historical years, it is easy to identify when data is 

available from which kind of satellite sensor.  

2) Tabulated output shows the number of scenes per sensor in total, in addition to the 

temporal range that includes the year of first and last scene from the sensor requested 

(Figure 5.19, right). This output format is stored as a JSON file and as a spreadsheet 

CSV file. It allows quick insight into how many scenes are available from each sensor 

in the complete temporal dimension. 

 
Figure 5.19: Summary output generated from the discovery result list: graphical output per year 
and per satellite sensor (left); tabulated output per satellite sensor with the total number of 
scenes, including the year of first and last scene (right).  
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5.2.4 Implementation: EO time-series data discovery and access brokering 
An EO time-series data discovery and access broker has been developed to harmonize 

discovery and access between multiple data providers. Different data providers, such 

as USGS Earth Explorer, ESA/Copernicus Open Access Hub, NASA CMR, and Sentinel-

Hub from Sinergise, have been integrated and are available through the brokering 

software, provided as a pyEOM Python library, which is developed within this thesis. 

Access to Landsat and Sentinel satellite data as well as the MODIS sensor has also been 

integrated in the broker.  

Figure 5.20 shows the system architecture of the broker and integrated services: The 

USGS archive of Landsat is requested from the USGS Earth Explorer; Sentinel–2 is 

requested from both the USGS Earth Explorer and the ESA/Copernicus Open Access 

Hub; Sentinel-Hub OGC services from Sinergise are used to query the ESA archive of 

Landsat and to add WMS visualization services to the satellite scenes discovered. The 

harmonized data discovery broker connects to the different specifications of the data 

providers and provides a uniform metadata response. In addition to the data discovery, 

automated data access has been integrated into the Python library.  

 
Figure 5.20: System architecture of the satellite time-series data discovery and access broker 
linked with three external data providers (Sinergise, USGS, and ESA), providing data discovery 
and data access methods. 

The discovery component of the brokering software described in Subsection 5.2.4.1 

provides a unique interface for the user to discover data; the access component described 

in Subsection 5.2.4.2 provides a unique interface for data access. Discovery and access 

to the data providers mentioned above have been integrated based on the descriptions in 

the previous sections. Users of this pyEOM Python library need to have user credentials 

from each data provider to be able to discover and access EO data.  
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5.2.4.1 Discovery brokering software 
Within the discovery brokering software, USGS and ESA archives for both Landsat and 

Sentinel data can be searched for a given area of interest with a few lines of Python code 

(Listing 5.1). Based on the common and extended metadata models, uniform records of 

metadata are extracted and provided in different output formats. The main functions of the 

discovery brokering (discovery search, post-processing, and metadata export) are 

described in the following paragraphs. The pyEOM Python library makes use of external 

libraries, such as Shapely, Fiona, Pandas, OWSlib, and GDAL.  

01 from pyEOM import SatelliteBroker 
02  
03 # Register brokering services (ESA Science Hub, USGS Earth Explorer, 
Sinergise Sentinel-Hub) 
04 broker_all = SatelliteBroker( 
05     esa_scihub=('*username*', '*password*', ['S1*_IW_GRD*']), 
06     usgs=('*username*', '*password*', ['LANDSAT_MSS', 'LANDSAT_TM_C1',  
    'LANDSAT_ETM_C1', 'LANDSAT_8_C1', 'SENTINEL_2A']), 
07     sentinelhub=('http://example.org/v1/wfs/*apikey*', ['L5.TILE']) 
08 ) 
09  
10 # Search for all scenes based on given geometry (geom_wkt) 
11 scenes = broker_all.search(geom_wkt) 
12  
13 # Optional post processing of initial search results 
14 scenes_meta = broker_all.post_process_results(scenes, min_overlap=0.1)  
15 scenes_meta = broker_all.retrieve_metadata(scenes_meta)  
16 scenes_meta = broker_all.get_external_quicklooks(scenes_meta)  
17 scenes_meta = broker_all.add_sentinelhub_wms_url(scenes_meta)  
18  
19 # Export data to GeoJSON file 
20 broker_all.export_results(scenes_meta, 'results.json') 

Listing 5.1: Python-based source code for undertaking data discovery. 

Discovery search 

With the initialization of the SatelliteBroker class, each individual data provider needs to 

be registered. Lines 4–8 in Listing 5.1 show the registration of the ESA/Copernicus Access 

Hub (esa_scihub), the USGS Earth Explorer interface (usgs), and the Sinergise Sentinel-

Hub services (sentinelhub). For any of these services, login credentials or an interface key 

are necessary. As described in the concept of the web service brokering, any of the data 

providers’ methods for login, scene search, and metadata mapping are implemented. 

Supported by this brokering software, data providers have been integrated with these 

methods in individual Python files. The discovery search of all data providers registered 

with their respective EO data collections is conducted using the “search” method of the 

SatelliteBroker class. This method needs to have an area of interest in the WKT format as 

the first argument (Line 11 in Listing 5.1). In this step, the different methods of login, scene 

search, and metadata mapping for each registered data provider are executed. Finally, a 

list of resulting scenes is returned after duplicate scenes from multiple data providers are 

automatically removed.  
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Postprocessing of discovery results 

Postprocessing steps can be conducted optionally to enhance the discovery result. An 

additional filter for the initially scene results can be applied to remove scenes with a 

minimal overlap with the area of interest (see Subsection 5.2.2.2). A minimum overlap 

percentage can be defined between zero and one in order to reduce the number of scenes. 

For example, if the overlap between scene geometry and area of interest geometry is less 

than 10 percent, scenes are removed from the resulting list when the parameter is set to 

0.1. This is effected with the “post_process_results” method with the parameter 

“min_overlap” (Line 14 in Listing 5.1).  

Additional metadata can be retrieved for each satellite scene that provides a metadata 

URL and the method “read_metadata” is implemented for the data provider. As some of 

the catalogues do not provide all the metadata for the scenes in the discovery search, 

further metadata needs to be extracted from external URLs. This has been implemented 

for the USGS Earth Explorer interface and the Sinergise Sentinel-Hub services, as neither 

provide the full metadata record in the discovery results. This can be effected using the 

“retrieve_metadata” method of the SatelliteBroker class (Line 15 in Listing 5.1).  

When satellite scenes are discovered in data catalogues from several data providers, 

some of the metadata information can be enhanced. For example, the quick-look images 

for Sentinel–1 scenes at the NASA Alaska Satellite Facility are geo-referenced with an 

enhanced color stretching (see Subsection 5.2.1.2). Although the data discovery search 

was conducted in the ESA/Copernicus Open Access Hub, the link to the quick-look images 

can be replaced using the “get_external_quicklooks” method for the Sentinel–1 results 

(Line 16 in Listing 5.1).  

For the visualization of satellite scenes, additional WMS links, layer names, and temporal 

ranges (the acquisition date of the scene) can be added to the resulting metadata of each 

scene. The OGC WMS service published by Sinergise provides visualizations for Landsat 

and Sentinel time-series data. Using the “add_sentinelhub_wms_url” method, three 

metadata items (“senhub_wms_url,” “senhub_wms_layers,” “senhub_wms_time”) are 

added to each scene in the returned list (Line 17 in Listing 5.1).  

Metadata export 

The Pandas Python library is used to calculate a summary of the resulting scenes. 

Depending on the data format given as an argument (“format”) for the “export_results” 

method (Line 20 in Listing 5.1), different steps are conducted: Using the CSV format alone, 

the built-in Pandas export to CSV is accomplished. When using either the default format 

GeoJSON or other geospatial data formats additional files are stored:  
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• Lists of tiles that have appeared, collections, start and end year, as well as the total 

number of scenes per collection are calculated and exported in JSON format. 

• The full list of scenes and their metadata is exported to either GeoJSON or 

Shapefile format depending on the “format” argument.  

• An SQLite database can be exported based on the previously generated 

GeoJSON file. The ogr2ogr command-line tool is used to convert GeoJSON to 

SQLite. 

Both graphic and tabular output, which summarize the resulting scenes, can be generated 

with the “generate_table_chart” method of the SatelliteBroker class. The Pandas library is 

used to generate summaries for each collection (e.g., Landsat MSS, Landsat TM, Landsat 

ETM, Landsat 8, Sentinel–1, Sentinel–2). Two output formats are provided, as previously 

shown in Figure 5.19 (Subsection 5.2.3.2):  

1) A list of datasets with the total number of scenes, year of first scene, and year of 

last scene stored into a JSON and a CSV file.  

2) A graphic summary of available satellite scenes grouped by collection and year 

stored in a PNG file.  

5.2.4.2 Access brokering software 
In this part of the brokering software, access to multi-source EO time-series data is 

provided. Two different methods are implemented:  

1) A scene-based data download to the computer based on a previously conducted 

data discovery search.  

2) Statistical extraction of EO time-series based on an area of interest (point or 

polygon) for a selected collection.  

For each of the data providers registered to support data access, login credentials or 

specific user rights need to be available, such as access to NASA LPDAAC for 

downloading MODIS data, credentials for USGS or ESA for their data access interfaces, 

or a whitelisted service account to properly use the Google Earth Engine Python library.  

Scene data download 

Scene data downloads can only be conducted following the execution of a discovery 

search. In general, the links in the “Download URL” metadata item for each satellite scene 

are used to access each scene within the “download” method of the broker instance (Line 

14 in Listing 5.2). For some of the data providers (e.g., USGS ESPA), data access is not 

provided with a direct file download but rather using an ordering process. In this case, the 
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order is submitted and the process waits until data is available for download. In addition 

to data discovery, access to download URLs has also been integrated for each of the data 

providers. Thus, the “get_data” method has been integrated in the implementation of the 

data provider’s configuration file. 

01 from pyEOM import SatelliteBroker 
02  
03 # Register brokering services (ESA Science Hub, USGS Earth Explorer, 
Sinergise Sentinel-Hub) 
04 broker_all = SatelliteBroker( 
05     esa_scihub=('*username*', '*password*', ['S1*_IW_GRD*']), 
06     usgs=('*username*', '*password*', ['LANDSAT_MSS', 'LANDSAT_TM_C1',  
    'LANDSAT_ETM_C1', 'LANDSAT_8_C1', 'SENTINEL_2A']), 
07     sentinelhub=('http://example.org/v1/wfs/*apikey*', ['L5.TILE']) 
08 ) 
09  
10 # Search for all scenes based on given geometry (geom_wkt) 
11 scenes = broker_all.search(geom_wkt) 
12  
13 # Download all scenes from data discovery 
14 broker_all.download(scenes) 
Listing 5.2: Python code to download all scenes found during the discovery search. 

Data extraction 

Google Earth Engine and Sinergise Sentinel-Hub services allow for on-the-fly time-series 

data extraction. The “extract” method of the brokering instance is integrated to standardize 

extraction for the registered data providers. For each of the data providers, the 

“extract_data” method is implemented in the provider’s configuration file, otherwise no 

data extraction is possible. To use the extraction method from the broker, several inputs 

are required: A geometry in WKT format containing the area of interest for statistical 

computations, a temporal range, the data provider selected, and the name of the collection 

supported by the selected data provider (Line 9 in Listing 5.3). The resulting object 

contains a time-series “DataFrame” object from the Pandas library, which can be used for 

further processing. 

1 from pyEOM import SatelliteBroker 
2  
3 # Register brokering services (e.g., Sinergise Sentinel-Hub) 
4 broker = SatelliteBroker( 
5     esa_scihub=('http://services.eocloud.sentinel-hub.com/v1/fis/*apikey*') 
6 ) 
7  
8 # Extract statistical information based on given geometry (geom_wkt), temporal 
range, data provider and dataset 
9 data = broker.extract(geom_wkt, time='2015-08-01/2017-10-01',  
     provider='sentinelhub', dataset='EVI') 
Listing 5.3: Python-based source code for conducting data extraction for Sentinel. 
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5.3 Unified EO Time-series Data Structure and Analysis 
The exploration of geospatial time-series data is the basis for generating information and 

knowledge. Geospatial software and analysis tools can be used to extract information from 

time-series data. As such, users need to be able to work with time-series data in a 

programming language and geospatial tool of their choice. As much EO data is provided 

in different data formats (e.g., HDF, GeoTIFF, netCDF, and JPEG2000) and structures 

(see Figure 2.5), a conversion of these is often necessary to enable users to analyze this 

data. In addition, geospatial software and analysis tools handle raster time-series data 

differently. Thus, time-series data needs to be standardized and harmonized in format and 

structure as well as adjusted for the use in different processing and analysis tools.  

Several questions are discussed in this section in order to standardize and harmonize the 

spatial and temporal handling of spatial time-series data:  

1. How to simplify working with spatial time-series data for different users? 

2. How to standardize the analysis of time-series data in automated workflows? 

3. What kinds of time-series data output formats are useful? 

Based on the review of raster time-series processing tools (Section 4.3), a specification 

has been drafted to standardize the management and handling of EO time-series data 

(Subsection 5.3.1). This uniform data structure is linked to the commonly used data 

processing tools described in Subsection 5.3.2. Further aspects of standardizing analysis 

tools are investigated (Subsection 5.3.3). Finally, the standardized and automated data 

processing and data analysis software are described (Subsection 5.3.4). 

5.3.1 Common EO time-series data structure 
Common data structure and data formats are necessary to provide data that can be 

directly used for analysis (“analysis-ready data”). Various file formats exist for use as a 

common data format however, in most cases, these are different in many user 

communities. In addition, new file formats, such as GeoPackage (Yutzler 2017), which 

focuses on providing a single format for both raster and vector data, should first further be 

explored in order to be used as a common format. In general, what is more important is 

the kinds of file formats users are familiar with, for example, using GeoTIFF for raster data 

and Shapefile for vector data. Although the definition of a common file format is important, 

in general most of available file formats can be read by the GDAL library, which is 

integrated in much geospatial software. More relevant—especially for time-series data—

is the structure of the data due to the addition of the temporal dimension. In addition to file 

storage, database storages (e.g., PostGIS or SciDB) can be useful, though all users need 

to have knowledge of the specific database, which is often not the case. The structure of 
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time-series data needs to fulfill requirements from both point of views—the users’ (easy to 

handle) and the services’ (optimized for both publishing and analysis).  

Although many applications, such as Open Data Cube and Rasdaman, have other internal 

data structures and formats, it is relevant to bridge the gap between accessing data from 

the data archives and being able to analyze data within software applications and 

programming languages. As such, it is important to define a uniform data structure, which 

can easily be used or exported to other data structures with minimal effort.  

5.3.1.1 Spatial time-series data management 
Observations extracted for an area of interest consist of multiple observations per date 

and can either be statistically reduced to values, such as the mean, minimum, maximum, 

and standard deviation, or retained as geo-referenced raster objects. For data 

management, both raster files and raster databases can be used. As explored in Section 

4.3, the common approach with geospatial tools is to use raster files in combination with 

date extraction from their filenames or from a separate text file. Although the use of raster 

databases, such as SciDB, Rasdaman, or PostGIS Raster, can be considered useful, as 

different processing steps can be conducted while the data is being accessed, access to 

this database needs to be implemented for each geospatial tool. Rather than using raster 

databases, individual files, consisting of an individual raster file for each acquisition date, 

are proposed for storing data. The filename itself consists of a unique identifier for the 

dataset combined with the date.  

Figure 5.21 shows an example listing for a vegetation index dataset with final GeoTIFF 

files. Rather than using one file per date, processing and analysis tools often work with a 

single raster file that includes one band per date. This can be achieved by using the virtual 

raster table (VRT) format from GDAL: VRT 36  is a lightweight XML-based format for 

composing geospatial data, which can be read by the GDAL library and allows integrating 

geospatial calculations to be applied on data access. A VRT file acts in the same way as 

a geospatial data file, such as GeoTIFF, HDF, ENVI, and the like. The VRT format can be 

used to restructure existing geospatial data without the need to process and store these 

additional files. For the common raster time-series data format, a VRT-based text file 

refers to each GeoTIFF file as individual band in the new geospatial dataset (see the 

example file “timeseries.vrt” in Listing 5.4). This file, which is based on raster time-series 

data, can be loaded into R as RasterBrick or RasterStack (Listing 5.5). Many analysis 

algorithms, such as Greenbrown and BFAST for vegetation analyses, that have been 

developed in R make use of this file format. Although there is no temporal information 

                                                
36 https://www.gdal.org/gdal_vrttut.html  

https://www.gdal.org/gdal_vrttut.html
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stored in the VRT time-series data file, the link between the band number and the date 

needs to be managed externally. Therefore, a CSV file is provided as part of the common 

data structure, linking date, filename, and band number. This can be used in conjunction 

with the VRT file. 

 
Figure 5.21: Time-series observations extracted for an area of interest in the final GeoTIFF raster 
file format (.tif from the output folder). Dates can be extracted either from the filenames, as shown 
in this figure, or from the text CSV file (files.csv). 

01 <VRTDataset rasterXSize="29" rasterYSize="22"> 
02    <SRS>...</SRS> 
03    <GeoTransform>...</GeoTransform> 
04    <VRTRasterBand dataType="Int32" band="1"> 
05      <NoDataValue>-3000</NoDataValue> 
06      <ComplexSource> 
07        <SourceFilename>MOD13Q1.EVI.20000218.tif</SourceFilename> 
08        <SourceBand>1</SourceBand> 
09        <SourceProperties RasterXSize="29" RasterYSize="22" DataType="Int32"  
   BlockXSize="29" BlockYSize="22" /> 
10        <SrcRect xOff="0" yOff="0" xSize="29" ySize="22" /> 
11        <DstRect xOff="0" yOff="0" xSize="29" ySize="22" /> 
12        <NODATA>-3000</NODATA> 
13      </ComplexSource> 
14    </VRTRasterBand> 
15    <VRTRasterBand dataType="Int32" band="2"> 
16      <NoDataValue>-3000</NoDataValue> 
17      <ComplexSource> 
18        <SourceFilename>MOD13Q1.EVI.20000305.tif</SourceFilename> 
19        <SourceBand>1</SourceBand> 
20        <SourceProperties RasterXSize="29" RasterYSize="22" DataType="Int32"  
   BlockXSize="29" BlockYSize="22" /> 
21        <SrcRect xOff="0" yOff="0" xSize="29" ySize="22" /> 
22        <DstRect xOff="0" yOff="0" xSize="29" ySize="22" /> 
23        <NODATA>-3000</NODATA> 
24      </ComplexSource> 
25    </VRTRasterBand> 
26 </VRTDataset> 
Listing 5.4: Example VRT files for two bands referencing external GeoTIFF files. 

1 class       : RasterBrick  
2 dimensions  : 22, 29, 638, 393  (nrow, ncol, ncell, nlayers) 
3 resolution  : 231.6564, 231.6564  (x, y) 
4 extent      : 905776.4, 912494.4, 5982062, 5987159  (xmin, xmax, ymin, ymax) 
5 coord. ref. : +proj=sinu +lon_0=0 +x_0=0 +y_0=0 +a=6371007.181  
    +b=6371007.181 +units=m +no_defs  
6 data source : /data3/pywps/5bc4e83e2f95e/data/output/timeseries.vrt  
Listing 5.5: RasterBrick output in R using the VRT dataset containing each date as a band. 
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5.3.1.2 Data processing information 
Additional information about the raster dataset is often necessary for further data 

processing. This includes information about temporal coverage and internal data settings 

(e.g., no data value and scale factor). The common data structure stores this information 

in a separate text file. This allows immediate data processing and analysis of the data 

without having to calculate this information again. For example, with the ts function within 

R, several parameters, such as start year, start offset, and temporal frequency, are needed 

to conduct analysis (e.g., as used within Greenbrown and BFAST). The following 

information has been extracted automatically from the data ingestion process and is stored 

within a text file as part of the common data structure (example values from a 16-day 

MODIS NDVI dataset are given in brackets):  

• Temporal information 

o Start year and start offset as number of items [2000, 4] 

o Frequency—the number of items per year for regular time-series [23] 

o Number of years [14] 

o Number of dates [319] 

 

• Data information 

o Projection [SR-ORG:6842] 

o No data value [-3000] 

o Scale factor [0.0001] 

o Number of pixels in X dimension [13] 

o Number of pixels in Y dimension [17] 

 

5.3.2 Specifications for data processing tools 
In addition to the common EO time-series data structure, data processing tools often use 

other data structures and formats. To simplify work with EO time-series data in various 

programming languages (Subsection 5.3.2.1) and geospatial tools (Subsection 5.3.2.2), 

additional data formats are provided as part of the common EO data structure. These can 

be used to simplify the ingestion of EO data into GIS software, databases, or data cubes. 

This subsection aims at bridging the gap between the data provided within this data 

structure and linked processing applications (“application-ready data”).  

5.3.2.1 Programming languages 
To ease the handling of the common data structure and format in programming languages, 

specific data formats can be stored for R and Python. In addition, web-based development 
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environments (e.g., Jupyter Notebooks) can be provided automatically. These are 

described in the following paragraphs.  

R workspace 

Users working with the statistical language R can be provided with a ready-to-use 

workspace that already includes data as time-series objects (for a single pixel) or raster 

objects based on a single multi-band file or on multiple files (for multiple pixels). Both can 

be created during an active session in R and saved as a workspace file. This file can then 

be loaded in a new session and the data directly used in the analysis. Using the rpy237 

Python library, it is possible to open an R session in Python. This library is used to load 

the data, as described in Subsection 5.3.1, and save the content of the session to an R 

workspace. 

Python xarray 

The recommended way to store xarray data structures is by using the netCDF format.38 

Although xarray data structures based on the common data structure can be created with 

few lines of Python code (see Subsection 4.3.1), the raster time-series data can 

additionally be exported to the netCDF format. This automatically integrates the temporal 

dimension into the netCDF format and stores all data previously managed in multiple 

GeoTIFF files in one netCDF file. Without any further processing steps, this file format can 

be loaded with the xarray Python library. 

Jupyter Notebooks (Python, R) 

Interactive Jupyter Notebooks provides a web-based development environment for 

several programming languages. For Python and R, exporting the common data structure 

allows users to work directly with the data automatically preloaded in the Jupyter Notebook 

provided to the user. Using the Jupyter Notebook Format (nbformat)39 Python library, 

preconfigured notebooks, in which access to raster time-series data has already been 

implemented, can be created automatically and provided as a Jupyter Notebook file. An 

example screenshot of such a Jupyter Notebook is shown in Figure 5.22. 

                                                
37 https://rpy2.readthedocs.io/  
38 http://xarray.pydata.org/en/stable/io.html#netcdf  
39 https://github.com/jupyter/nbformat  

https://rpy2.readthedocs.io/
http://xarray.pydata.org/en/stable/io.html#netcdf
https://github.com/jupyter/nbformat
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Figure 5.22: Screenshot of a Jupyter Notebook with preloaded time-series data in Python. 

5.3.2.2 Geospatial tools 
In addition to programming languages, geospatial tools can be used to further process 

and analyze EO time-series data. A connection to such applications allows a direct transfer 

of data to other tools and subsequent processing by the users. Geospatial processing 

tools for time-series data processing used and investigated in this thesis are described in 

the following paragraphs.  

GRASS GIS location and mapset 

A new GRASS GIS location and mapset can be created automatically on the server 

already containing the individual geospatial files from the raster time-series dataset and 

already registered in a space-time dataset. Using the GRASS Python API, the location 

and mapset can be created and datasets can be inserted without starting GRASS as 

application. As GRASS GIS stores its locations and mapsets to a file-based structure in 

the path of the location, this can be also provided as a download on a web server. As an 

alternative, users can use Jupyter Notebooks to access this mapset and work with the 

GRASS GIS Python API on the server.  

Open Data Cube 

Registration and ingestion of raster time-series data into the Open Data Cube software 

are based upon a set of supported dataset types (e.g., MODIS EVI, MODIS NDVI, and 

Landsat). Specific configuration files describing the dataset type and their content and 

preprocessing scripts for creating metadata files need to be available. To publish datasets 

into an instance of the Open Data Cube, access to the PostgreSQL database and the data 

folder is required. If those requirements are met, the following steps can be conducted 

automatically (see also Listing 4.8): 
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1. Registration of dataset type (if not already done). 

2. Creation of metadata files for each of the geospatial data files (one per date). 

3. Registration of metadata files. 

4. Creation of a metadata file for the specific collection to be ingested. 

5. Ingestion of the dataset based on the previously created collection metadata file. 

Following successful ingestion into the data cube instance, the dataset can be loaded 

using the Python API from the datacube library (Listing 5.6).  

01 # load library and create datacube connection 
02 import datacube 
03 dc = datacube.Datacube(app = 'my_app', config = '/datacube/.datacube.conf') 
04  
05 # load dataset from datacube 
06 landsat_dataset = dc.load(latitude = (37.04, 37.20), 
07                           longitude = (-4.89, -4.63), 
08                           platform = "LANDSAT_8", 
09                           time = ('2017-01-01', '2017-03-01'), 
10                           product = "ls8_lasrc_fuente_de_piedra_example", 
11                           measurements = ['red', 'green', 'blue', 'nir',   
             'swir1', 'swir2', 'pixel_qa']) 
12  
13 # run water detection algorithm for the first scene in the time-series 
14 first_scene = landsat_dataset.isel(time=0) 
15 water_classification = wofs_classify(first_scene, mosaic = True) 
16  
17 # plot water detection result 
18 water_classification.wofs.plot() 
Listing 5.6: The ingested data can be directly loaded using the datacube Python library. 

Rasdaman 

Inserting data into Rasdaman software can be achieved using the recipe JSON 

configuration file and the wcts_import Python script. To include the temporal information 

of the time-series, a regular expression needs to be provided to extract the date and time 

from the filename of each geospatial data file. As an export, the JSON configuration file 

can be written automatically when the URL for the web service endpoint of the Rasdaman 

instance is provided. Users can download the dataset directory and the Rasdaman recipe 

JSON file and ingest data into their local Rasdaman server.  

5.3.3 Specifications for data analysis 
Analysis tools can be used to derive further information, such as breakpoints, trends, and 

phenological information, from vegetation time-series data. In general, all analysis tools 

follow the same principles: They are based on data inputs, process data, and provide 

resulting outputs. To link analysis tools to EO time-series data, each of these steps need 

to be investigated for each analysis tool. In the following subsections, the input data 

formats (Subsection 5.3.3.1) and the output postprocessing (Subsection 5.3.3.3) are 

described for the time-series analysis tools BFAST, Greenbrown, and TIMESAT, which 

are used for vegetation time-series analysis (see Subsection 2.1.2). Subsection 5.3.3.2 
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describes additional aspects of the execution of algorithms, such as parallel computing, 

logging, and documentation.  

5.3.3.1 Preprocessing and inputs data formats 
The input data of a process often needs to be adjusted because the data retrieval 

component stores data in a different format. Especially for time-series data, it is often 

necessary to preprocess the original data to match the format and structure specified by 

the analysis tool. A raster time-series object is provided in R, which uses a multi-band file. 

Therefore, algorithms developed in R should make use of this internal raster time-series 

format, as occurs with BFAST and Greenbrown. Other tools, such as the TIMESAT 

command-line executable, need preprocessed data in specific file formats. In such cases, 

a connector is necessary to establish the link between the common EO time-series data 

structure and the input data. In the best case scenario, the algorithm can directly use the 

resulting outputs from the common data structure or a derived format, as described in the 

previous sections.  

Table 5.5 lists data inputs for the algorithms BFAST, Greenbrown, and TIMESAT. 

Whereas BFAST and Greenbrown, both developed in R, use the standardized time-series 

methods of R, a special file format is necessary for TIMESAT. Therefore, preprocessing 

of the data input needs to occur only for TIMESAT. A Python class is written as a wrapper 

for TIMESAT to overcome this issue.  

Table 5.5: Data inputs for the algorithms BFAST, Greenbrown, and TIMESAT divided into execution 
for single and spatial time-series data. 
Analysis tool Description of data input 

BFAST Single: univariate time-series (vector time-series, start, frequency) 
Spatial: calc-function with multi-layer raster object using ts function 

Greenbrown Single: univariate time-series (vector time-series, start, frequency) 
Spatial: multi-layer raster object of class brick, start, frequency 

TIMESAT Single: text data file 
Spatial: headerless binary format and text reference file 

5.3.3.2 Algorithm execution 
The execution of an algorithm can be accompanied by parallel computing, process 

logging, and documentation. This allows optimization of the execution of the analysis tool 

and provides advantages to users, such as performance increase and reproducible 

analysis. Users need to know what has been done with the input data, which enables the 

reproducing of the results of the analysis. Thus, all processing steps need to be 

documented, including information about the software used for processing, the individual 

commands with parameters, the scripts executed for data access or data analysis, and 

the parameters used for the analysis tools. 
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Parallel computing 

Some algorithms, such as BFAST and TIMESAT, support high-performance and parallel 

computing. With the BFAST algorithm, the high-performance option can be set to “foreach” 

for the breakpoint detection method. The foreach package in R provides a looping 

construct for executing code that repeatedly supports parallel computing (Calaway 2017). 

This allows the running of operations on multiple processors and cores or on multiple 

nodes of a cluster. As the BFAST algorithm is a pixel-based approach, another option is 

the parallel execution of individual pixels. This approach is used by the TIMESAT software. 

If multiple processors are activated, the software splits the spatial input data into the 

number of multiple processors defined by the user. Each of the parts will be executed in 

parallel; thereafter the results are merged in the final output.  

Process logging 

Returning responses to the user while the processing task runs is an important feature of 

an algorithm that enable users to follow up on the progress of the execution of the process. 

Although responses from the algorithm itself depends to a great extent on the structural 

workflow of the algorithm, a few recommendations can be considered:  

1) Process the fragmentation into steps, which can include the current step number 

and the full number of steps within the response. 

2) Loops within the process can be integrated into the response by including the 

current index of the loop (e.g., for pixel-based analysis within a raster). 

3) Responses of command-line tools should be directed to the standard output. This 

enables access to response messages, which can be redirected to the user.  

Logging packages exist in many programming languages, including Python and R. Such 

packages allow the printing of log messages of different levels (e.g., warning, info, and 

debug) into single or multiple output channels (e.g., files and standard output). 

Process documentation 

In contrast to process logging, from a technical point of view process documentation 

contains the individual processing steps that have been conducted. The documentation 

enables users to reproduce the steps undertaken in the processing workflow. When 

command-line tools are used (e.g., to pre- or postprocess geospatial data), the exact 

command, including the parameters can be saved in a documentation text file. Within 

programming languages, the major functions should be included or otherwise exported as 

script file (e.g., bfast.R or timesat.py) and stored alongside the documentation file. This 

allows reproduction and debugging of the processing workflow.  
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Listing 5.7 shows an example (some parts have been truncated) for the processing of a 

single date containing several MODIS tiles and the extraction of the NDVI dataset for a 

user-defined area of interest. After the data download (Lines 4–10), the NDVI band is 

extracted (Lines 14–15), and thereafter the individual tiles are merged (Line 18), projected 

(Line 18), clipped to the area of interest (Line 24), and finally compressed (Line 27). Any 

of these steps can be performed locally to reproduce or debug the processing workflow.  

01 #processing MOD13A3 for study area: Forest Dragon 
02  
03 #download files 
04 wget -c ftp://…/MODIS_Composites/MOLT/MOD13A3.005/2005.01.01/*.h28v04*.hdf* 
05 wget -c ftp://…/MODIS_Composites/MOLT/MOD13A3.005/2005.01.01/*.h25v03*.hdf* 
[... truncated ...] 
11  
12 #dataset extraction 
13 #processing MOD_Grid_monthly_1km_VI:1 km monthly NDVI 
14 gdal_translate -a_nodata -3000 -of GTiff -a_srs "+proj=sinu +lon_0=0 +x_0=0  
  +y_0=0 +a=6371007.181 +b=6371007.181 +units=m +no_defs"  
  HDF4_EOS:EOS_GRID:"MOD13A3.A2005001.h26v04.005.2007355120626.hdf":   
  "MOD_Grid_monthly_1km_VI:1 km monthly NDVI"   
  MOD13A3.A2005001.h26v04.005.2007355120626.NDVI.tif 
15 [... gdal_translate is being executed for each tile ...] 
16  
17 #merge for selected study area 
18 gdal_merge.py -o merge.tif *.h28v04.*.NDVI.tif *.h25v03.*.NDVI.tif 
19  
20 #set projection 
21 gdalwarp -t_srs EPSG:4326 merge.tif MOD13A3.A2005001.NDVI.6.tif 
22  
23 #clip data to selected study area 
24 gdalwarp -of GTiff -cutline PG:"dbname=sibessc" -csql "select  
  ST_SetSRID(geom, 4326) from userdata.study_areas WHERE uid='6'" -cblend  
  0 -crop_to_cutline MOD13A3.A2005001.NDVI.6.tif  
  MOD13A3.A2005001.NDVI.6.clipped.tif 
25  
26 #compress data 
27 gdal_translate -co COMPRESS=PACKBITS MOD13A3.A2005001.NDVI.6.clipped.tif  
  MOD13A3.A2005001.NDVI.6.clipped.compressed.tif 
Listing 5.7: Processing log file with download and processing steps. 

5.3.3.3 Postprocessing and output data formats 
The eventual datasets can be in a variety of data formats, as defined by the algorithm. 

They can contain figures, charts, text files, or geospatial data. In most cases, it is 

necessary to process the outputs to achieve better readability and easier evaluation of the 

results. The BFAST and Greenbrown libraries do not provide any output files—these need 

to be exported from the programming language R. Thus, exports of figures and geospatial 

raster data as well as an optimized vector dataset need to be integrated and provided to 

users. Other algorithms, such as TIMESAT, deliver functions or command-line tools to 

export the results to geospatial data. Both of these need to be integrated in the 

postprocessing to generate user-aligned output formats (e.g., GeoTIFF files or prepared 

figures). In addition, the postprocessing of the results—including the generation of a vector 

pixel Shapefile and the provision of OGC WMS and WFS web services—allows direct 
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exploration of the results by the user. For each analysis tool used within this thesis, Table 

5.6 compares the resulting regular output files with the postprocessed output files 

generated by the middleware and provided to the user. These additional output formats 

are described in the following paragraphs.  

Results CSV 

The most important numbers of the results of the analysis (e.g., fitted time-series, trend 

lines) are provided in a dedicated CSV spreadsheet file, which can be used directly either 

in any spreadsheet software or with web-based interactive charting tools.  

OGC web services 

To allow direct visualization of the results in an interactive map, geospatial output data 

needs to be made available using the OGC WMS specification for raster data and the 

OGC WFS specification for vector data. Therefore, visualization styles need to be 

prepared during the postprocessing of the execution of the algorithm for any geospatial 

output of either algorithm. To provide these OGC web services, an OGC-compliant web 

server needs to provide a service instance for each execution of the analysis. 

Figures and charts 

The provision of figures and charts allows immediate visualization of the results of the 

analysis. Depending on the algorithm and the input time-series data (e.g., pixel or raster 

based), different figures can be generated. Spatial map outputs can be shown for raster-

based analyses (Figure 5.23) and individual charts for single pixel analyses, which can be 

used to provide a quick look at the results of the analysis. In addition to the figure 

generated, the values for the results of an individual time-series analysis can be stored in 

a CSV spreadsheet file (e.g., the “Results CSV” file for BFAST and Greenbrown or the 

“Data CSV” file for Greenbrown).  

Vector Shapefile 

Raster output data from time-series analysis contains per-pixel information. The 

exploration of individual raster pixels in web-based systems is best accomplished using 

vector outputs, as individual pixels—transformed to rectangle vector features—can be 

interactively selected in web-mapping libraries. Thus, geospatial raster outputs can be 

converted to a vectorized data format, which can be made available with standard-

compliant web services (e.g., OGC Web Feature Service). In this vector file, each of the 

pixels is represented by an individual polygon. A column with the value for each band is 

integrated in the geospatial output data (Figure 5.24). 
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Table 5.6: Scientific time-series analysis tools (BFAST, Greenbrown, and TIMESAT) and the 
resulting regular output files, as defined by the algorithm, and the postprocessed output files, as 
specified within this thesis. 

Analysis tool Resulting (regular) output files Postprocessed output files 
BFAST—Single  
(R) 

• “BFAST” object—List with 
various components (e.g., fitted 
trend and seasonal, 
deseasonalized, noise or 
remainder, breakpoints), 
including prepared plot figures 

• PNG figure 
• Results CSV (time-series with 

original data, fitted season, 
and trend) 

• Dates of trend and 
seasonality breaks as text 
output 

BFAST—Spatial  
(R) 

• “BFAST” object (see above) for 
each pixel; converted to raster 
objects in the postprocessing 
steps 

• PNG figure 
• GeoTIFF file (multi-band) 
• Vector Shapefile 
• OGC WMS/WFS 

Greenbrown—
TrendRaster  
(R) 

• RasterBrick with different trend 
and breakpoint statistics (e.g., 
date of trend breakpoints; 
slope, p-value, length of trend 
per segment) 

• Prepared plot figures based on 
RasterBrick 

• PNG figure 
• GeoTIFF file (multi-band) 
• Vector Shapefile 
• OGC WMS/WFS 

Greenbrown—
Trend  
(R) 

• Trend class, including prepared 
plot figures 

• PNG figure 
• Results CSV (date, slope, p-

value per segment) 
• Data CSV (trend-line per 

segment) 

TIMESAT—Spatial   
(Command line) 

• Fitted time-series data in binary 
headerless format (ENVI HDR) 

• Phenological values per season 
and parameter in a geospatial 
headerless format 

• PNG figure 
• GeoTIFF file (multi-band as 

season) for each parameter 
• Vector Shapefile 
• OGC WMS/WFS 

TIMESAT—Single  
(Command line) 

• Fitted time-series text file 
• Phenological values per season 

within binary file 

• PNG figure 
• Seasonality CSV (Phenolo-

gical values per season) 
• Data CSV (time-series with 

original, fitted, start of season, 
and end of season data) 



 

141 

 

 
Figure 5.23: Graphic plots from geospatial data layers showing the outputs resulting from the 
breakpoint detection algorithm BFAST. 

 
Figure 5.24: Visualization of the postprocessed vector Shapefile based on BFAST results. 

 

5.3.4 Implementation: EO time-series data processing and analysis 
The pyEOM Python library is extended with tools for EO time-series data processing and 

time-series data analysis. Tools for data access (Subsection 5.3.4.1) include data 

transformation from downloaded satellite scenes to the uniform time-series data structure 

for Landsat, Sentinel, and MODIS data based on different data providers. Predefined 

information for each dataset stored within the library is used to generate the metadata 

(Subsection 5.3.4.2). Time-series data analysis tools, which can be used with the 

integrated datasets, are registered and managed using the pyEOM library (Subsection 

5.3.4.3).  
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5.3.4.1 Data access software 
The data access component of the pyEOM library includes EO time-series data integration 

and management, as described in the following paragraphs. 

EO time-series data integration 

The DataIntegration class of the pyEOM library handles the processing and integration of 

EO time-series data into the uniform EO time-series data structure. For each individual 

satellite product (e.g., MODIS Level–3, Landsat, and Sentinel), various data structures 

and formats are considered when converting to the uniform data structure. Whereas 

MODIS Level–3 products contain individual bands in a single HDF file, Landsat and 

Sentinel data provide each band in an individual file. As such, for each of the satellite 

products, different processing steps are implemented. As an alternative, Google Earth 

Engine can be used to extract data. Listings 5.8 and 5.9 show example integration tasks 

for both the original data provider and Google Earth Engine using the pyEOM library. 

MODIS Level–3 products on board the Terra and Aqua satellites are provided in the HDF-

EOS data format, which can be processed using the GDAL library. Depending on the 

spatial resolution of the product, the data is either provided as a global HDF file in a 

WGS84 projection or in a fixed tiling schema in a sinusoidal projection. In the latter case, 

different tiles need to be merged if the area of interest contains multiple tiles. Thereafter, 

the relevant bands need to be extracted (e.g., NDVI, EVI, and quality bands have been 

considered for MODIS Vegetation Index data), clipped to the area of interest, have offset 

and scaling factors applied, and converted to the final output format (e.g., GeoTIFF).  

Landsat data can either be downloaded as original satellite scenes or ordered using the 

USGS ESPA service, which already includes preprocessing steps, such as selection of 

bands, calculation of indices, clipping to the area of interest, and reprojection of data. The 

advantage in using the USGS ESPA ordering tool arises from the data itself as this can 

be automatically clipped to the area of interest. As such, all the scenes offer the same 

geospatial extent. For data downloads from both systems, each band is included in its own 

GeoTIFF file prepending the unique scene identifier in the filename.  

Sentinel data can be downloaded as zipped archive files from different data providers 

(e.g., ESA/Copernicus Open Access Hub or national hubs). GDAL or SNAP40 can be used 

to process the Sentinel data format and to convert it to the final output format (e.g., 

GeoTIFF). For Sentinel–1, the pyroSAR41 Python library is used.   

                                                
40 http://step.esa.int/main/toolboxes/snap/  
41 https://github.com/johntruckenbrodt/pyroSAR  

http://step.esa.int/main/toolboxes/snap/
https://github.com/johntruckenbrodt/pyroSAR
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Google Earth Engine can be used in addition to the previously mentioned original data 

providers, as Landsat, Sentinel, as well as several MODIS Level–3 products are available. 

Especially for pixel-based extractions, the usage of Google Earth Engine reduces the 

amount of network transfer as only the resulting time-series data are transferred to the 

requesting application (Listing 5.9). Although the intention of Google Earth Engine is to 

conduct analyses within its system, it is possible to export data clipped to the area of 

interest, with offset and scaling factors applied, reprojected and converted to the final 

output format either to a Google Drive folder (the preferred location) or provided as 

download link (deprecated). Data exported to Google Drive can be further downloaded to 

the external application using Google Drive API requests. 

01 from pyEOM import tasks 
02 ingest = tasks.Ingestion({ 
03     'dataset': 'MODIS/MOD13Q1', 
04     'geom': 'POLYGON((7.8 26.2, 7.4 25.6,8.5 25.0,9.0 25.8,7.8 26.2))', 
05     'start': '2001-01-01', 
06     'end': '2001-02-01', 
07     'qualityValue': '0;1', 
08     'qualityBand': 'PR', 
09     'publishPath': '/tmp/pyEOM', 
10     'format': 'HDF4Image', 
11     'EPSG': None, 
12     'resample': None, 
13     'source': 'LPDAAC', 
14     'userPwd': 'username:password' 
15 }) 
16 output = ingest.start() 

Listing 5.8: Integration of MODIS Vegetation Index data for an area of interest with further 
processing parameters applied.  

1 from pyEOM.datasets import Landsat 
2 source = Landsat.GEE({'dataset': 'LANDSAT/LC8_L1T', 'geom': 'POINT(11 51)'}) 
3 output = source.ingest() 
4 
5 from pyEOM.datasets import MODIS 
6 source = MODIS.GEE({'dataset': 'MODIS/MOD13Q1', 'geom': 'POINT(11 51)'}) 
7 output = source.ingest() 

Listing 5.9: Accessing pixel-based Landsat-8 and MODIS Vegetation index data for a given point 
of interest from Google Earth Engine. 

EO time-series data management 

The DataManagement class of the pyEOM library handles the uniform EO time-series data 

structure and provides export functions to the user- and application-driven output formats 

described in Subsection 5.3.2. This class understands the unique data structure defined 

in Subsection 5.3.1 and provides access to all the relevant metadata and data. The class 

is separated into single and spatial time-series data, as the handling and management of 

these are different. An instance of this class can be created using the path to the data 

directory, which contains the unique data structure. Further methods (e.g., the calculation 

of statistics) can be used thereafter (Listing 5.10).  
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01 from pyEOM import DataManagement 
02  
03 # Instance DataManagement class for a specific directory 
04 data = DataManagement('/data3/pywps/23454234234') 
09  
10 # Retrieve statistics from dataset 
11 stats = data.stats() 
12  
13 # Plot data 
14 data.plot() 
Listing 5.10: Using the DataManagement class of pyEOM based on the common data structure.  

 

5.3.4.2 Raster time-series metadata 
Metadata records list information about the data, visualization and access services, as 

well as the available time positions and time intervals (Table 5.7). In addition to general 

metadata, such as the title, abstract, keywords, and lineage, further metadata is used to 

describe the time-series data in detail. This includes information that is necessary for 

processing the data, such as scale factors, resolution, or no data value. To link to OGC-

compliant services for visualization and downloading, the service endpoints (e.g., WCS 

URL), service type (e.g., WCS Protocol), and name of the layer (e.g., WCS Name) are 

provided in the metadata record. Based on this, a client can build requests for accessing 

the data using the standard-compliant OGC web services. Metadata records are described 

following the ISO 19115 specification (ISO 2003). A client can retrieve metadata records 

based on a specific identifier or a search result, parse the information, and visualize or 

download the data using the services provided. With the metadata, the client knows which 

time positions are available and which services (e.g., WMS, WCS, or any other HTTP link) 

can be used, in accordance with needs of the user. Client applications can further 

distinguish between time-series raster data as physical measurements or as 

classifications using the “Content Type” property. This distinction is important for aspects, 

such as providing the correct analysis processes, which differ for classification results 

(e.g., burned area), as opposed to continuous data, such as land surface temperature, 

vegetation indices, and snow cover. Table 5.7 shows a detailed metadata record as an 

example of a raster time-series dataset from the monthly MODIS Land Surface 

Temperature product. 
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Table 5.7: Metadata schema for a raster time-series dataset with example values from the monthly 
MODIS Land Surface Temperature product. 

General metadata 
File Identifier MODIS_MOD11_C3_LST_Day_Series 

Title Monthly Land Surface Temperature from MODIS Terra 

Abstract 

Time-series of monthly Terra MODIS daytime land surface 
temperature in Kelvin at 0.05 degrees spatial resolution. To retrieve 
actual values in Kelvin, a scale factor of 0.02 has to be applied. The 
no-data value is encoded as 0. Original MODIS data retrieved from 
NASA LPDAAC. 

Keywords MODIS, Terra, Temperature, Monthly, Series, Daytime 

Lineage 
MODIS HDF Level–2 product was converted to GeoTIFF using 
gdal_translate (Version 1.9) 

Data information 

Description Land Surface Temperature 

Data Type Raster 

Content Type Physical Measurement 

SRS EPSG:4326 

BBOX 57.1301270 81.2734985 179.8292847 42.2901001 

Columns 2,454 

Rows 780 

Resolution 0.05 

Scale Factor 0.02 

No Data Value 0 

Time Begin 2000-03-01 

Time End 2012-09-01 

Time Interval P1M 

Dates 2000-03-01, 2000-04-01, …, 2012-08-01, 2012-09-01 

Visualization and access services 

WMS URL http://artemis.geogr.uni-jena.de/sibessc/modis 

WMS Protocol WebMapService:1.3.0:HTTP 

WMS Description MODIS Terra LST Day Monthly 

WMS Name mod11c3_lst_day 

WCS URL http://artemis.geogr.uni-jena.de/sibessc/modis 

WCS Protocol WebCoverageService:1.1.0:HTTP 

WCS Description MODIS Terra LST Day Monthly 

WCS Name mod11c3_lst_day 
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5.3.4.3 Time-series analysis software 
The DataAnalysis class of the pyEOM library is an abstract class containing general 

methods for registering, managing, and executing analysis tools. This abstract class 

needs to be extended for each analysis tool. Examples are developed for the analysis 

tools BFAST, Greenbrown, and TIMESAT in the pyEOM library.  

Management of analysis tools 

The management of analysis tools involves the main relevant metadata and methods, 

which are relevant to conducting the analysis and to postprocessing the resulting outputs. 

Prior to executing an analysis, input and output data needs to be defined in the extended 

class of each analysis tool. In addition, the “run” method needs to be overwritten either 

using an own method that includes some processing steps (e.g., TIMESAT) or by linking 

to external scripts (e.g., R scripts for BFAST and Greenbrown). Output data can be 

automatically postprocessed: GeoTIFF files can be converted to vector data. Geospatial 

data in general can be provided as web services using the OGC WMS and WFS 

specifications, as described in Subsection 5.3.3.3.  

Execution of analysis tools 

The execution of the analysis tools BFAST, Greenbrown, and TIMESAT is integrated and 

connected to the data integration and management functions in the pyEOM library. As 

defined in Table 5.6, several post-processed output formats are created to provide user-

aligned data formats (e.g., summarized statistics, a Pixel Shapefile, OGC web services, 

and plots). Listing 5.11 shows an example execution of the TIMESAT phenology tool 

(Lines 8–9) based on a previously integrated dataset (Line 5). Each of the analysis classes 

imported in Line 2 (i.e., TIMESAT, Greenbrown, and BFAST) provides a bridge between 

the analysis tool and pyEOM as a common time-series data handling and analysis 

execution framework.  

01 from pyEOM import DataManagement 
02 from pyEOM.analyses import TIMESAT, Greenbrown, BFAST 
03  
04 # DataManagement instance for a specific directory (unique identifier) 
05 data = DataManagement('/data3/pywps/23454234234') 
06  
07 # Execute TIMESAT with default parameters 
08 timesat_inst = TIMESAT(data=data, parameters={}) 
09 timesat_inst.run() 
10  
11 # Export results (e.g., MapServer config, GeoTIFF, Shapefile, PNG plots) 
10 timesat_inst.export() 
11  
12 # Show result as plot 
13 timesat_inst.plot() 
Listing 5.11: Using TIMESAT analysis tool from the pyEOM library.  
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Chapter 6: Example Use Cases 
Various web and mobile applications have been developed to demonstrate how the 

concepts and methods described in Chapter 5 can be used in applications and provided 

to users. Three projects are described, which share the main objective of providing user-

aligned applications using a service-based middleware approach. However, each of the 

applications focuses on different aspects:  

1. The Siberian Earth System Science Cluster (Section 6.1) focuses on EO data 

integration, standardized data distribution (downloading and visualization), time-

series extraction, simple time-series analyses, and user management.   

2. The Earth Observation Monitor (Section 6.2) focuses on EO data integration, 

common EO time-series data structure and formats, time-series extraction, 

enhanced time-series analyses, and user management.  

3. The GEO-Wetlands Community Portal (Section 6.3) focuses on multi-source EO 

data discovery and access based on service brokering and additional web-based 

processing applications, such as Open Data Cube and R-Shiny.   

All the use cases are based on the service-oriented middleware approach (Chapter 5.1). 

In addition, all make use of several findings from the unified EO time-series data structure 

and analysis (Chapter 5.3). The service brokering approach described in Chapter 5.2 is 

used in the GEO-Wetlands Community Portal. 
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6.1 The Siberian Earth System Science Cluster 
The Siberian Earth System Science Cluster (SIB-ESS-C) was developed with the aim of 

providing operational tools for multi-source data access, analysis, and time-series 

monitoring in Siberia (Eberle et al. 2013). Data from remote sensing satellites, climate data 

from meteorological stations, and outcomes of research projects are stored in the SIB-

ESS-C. All the geospatial data is described with standard-compliant metadata and 

provided within a standard-compliant metadata catalogue. The system comprises a 

metadata catalog that allows for data searching, as well as interoperable interfaces for 

data visualization, downloading, and processing. The advantage of representing different 

products within a single system is the integration of users’ needs into web-based 

processing services. Concerning climate change and land monitoring, the SIB-ESS-C 

focuses on land-based information products. The objective of the middleware within the 

SIB-ESS-C is to build an operational web-based system in which data from different 

sources is provided and regularly updated. The middleware automatically collects data 

from external EO data archives to provide standard-compliant web services for data 

access and visualization. Datasets are then available for further visualization and analysis. 

In relation to the user requirements for platforms and web technology, the following 

requirements are supported: multi-source EO and geospatial data; EO data visualization; 

data download; pixel extraction; time-series analysis; OGC standardization; metadata for 

geospatial data; user management; RESTful web services; and asynchronous web 

services. The following data formats are supported: OGC web services for data access, 

visualization, and data analysis; interactive charts for pixel time-series; and figures for 

time-series analysis results.  

6.1.1 SIB-ESS-C Middleware 
The middleware service provided by the SIB-ESS-C integrates EO time-series data from 

the NASA LPDAAC and the National Snow and Ice Data Center (NSIDC). In addition to 

MODIS Land products, climate data from meteorological stations is available from 

National Oceanic and Atmospheric Administration (NOAA) National Climatic Data Center 

(NCDC), which provides various datasets, such as hourly synoptic measurements 

(Integrated Surface Database, ISD; Lott et al., 2008), daily summaries from synoptic 

measurements (Global Surface Summary of the Day, GSOD; Lott, 2006), and daily 

measurements from different climate data networks (Global Historical Climatology 

Network, GHCN; Menne et al., 2012). The data sources provided for operational land 

monitoring in the SIB-ESS-C are listed in Table 6.1. 
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Table 6.1: Data sources integrated in the SIB-ESS-C middleware system. 
Data Provider Available time ranges 

MODIS Level–3 products from LPDAAC 
and NSIDC 

NASA 
USGS 

2000–2014 

Global Surface Summary of the Day 
(GSOD) 

NOAA 1929–2014  
(depending on station) 

Integrated Surface Database (ISD) NOAA 1929–2014  
(depending on station) 

Global Historical Climatology Network 
Daily (GHCN-Daily) 

NOAA 1832–2014  
(depending on station)  

 

Several data exploration tools have been made available in the SIB-ESS-C middleware 

and are provided as standard-compliant web services based on the OGC WPS 

specification, which are sourced from the SIB-ESS-C web portal:  

• Time-series data extraction for a point or area of interest summarized with the 

mean, minimum, maximum, and standard deviation values. 

• Automated calculation of time-series decomposition and BFAST for the time-series 

extracted (mean value). 

• Climate station data plots with temporal aggregations (e.g., days, months, years, 

winter, spring, summer, fall, individual months). 

• Kernel-density plots for the comparison of in-situ mean temperature station data 

and MODIS Land Surface Temperature time-series (1 km) data (Figure 6.1). 

 
Figure 6.1: Comparison of MODIS Terra (left) and Aqua (right) LST estimates and air temperature 
records from an individual meteorological station (Aleiskaya). Each plot shows the complete 
available time period (2000/2002–2013). 

 



Chapter 6: Example Use Cases 

150 

The integrated datasets are made available via web services compliant with OGC 

specifications. This includes the CSW for metadata cataloguing and dataset search, data 

visualization and access for raster time-series data through WMS and WCS, and data 

access for climate station time-series data through the SOS. The time-series plotting 

service and the analysis tools are available as a WPS. In addition to providing visualization 

and download tools in the developed middleware services, the middleware also controls 

the data integration process, with each step logged in the system. This feature is 

integrated for on-demand processing. With the logging functions implemented in the web 

portal, the user is informed when the user-specific data integration is completed. 

Open source tools were used to develop the middleware services. PostgreSQL with the 

PostGIS extension provides the database with the ability to store raster and vector data 

as well as other metadata. Data integration is achieved using Python scripting (e.g., to 

execute command line tools for data downloading and for raster time-series data 

processing). The scripting language R is used to plot the integrated time-series data. On 

the service level, MapServer (data visualization and downloading), istSOS (climate data 

provision), pycsw (metadata provision), and PyWPS (time-series plotting and analysis) are 

used to publish OGC-compliant web services. Drupal CMS is used for administration 

services to manage the areas of interest created and the datasets ingested by users. This 

backend system also provides the tools to handle the execution of external web services, 

the conversion from XML to JSON format, and to provide RESTful services for user 

registration and authentication. 

6.1.2 Web portal 
The middleware services are used in the SIB-ESS-C web portal. This web portal (Figure 

6.2) provides functions that allow users to administer and manage the middleware 

services; it also allows easy access to the integrated datasets. Users are supposed to 

interact closely with the data to extract further information. Users can explore the data 

catalog, which contains data available within the middleware. The metadata catalog can 

be searched and the resulting records investigated. The data can then be visualized and 

downloaded. Open-source software was used to develop the web portal frontend using 

the jQuery library.42 The interactive map viewer for visualizing the geospatial data is based 

on the OpenLayers library.43  

                                                
42 http://jquery.org  
43 http://openlayers.org  

http://jquery.org/
http://openlayers.org/
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Figure 6.2: Screenshots of the Siberian Earth System Science Cluster Geoportal highlighting the 
visualization of a MODIS NDVI dataset (top), a time-series extraction with interactive charting (top), 
and a comparison plot between MODIS Land Surface Temperature and in-situ temperature 
measurements (bottom). 
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6.2 Earth Observation Monitor 
The Earth Observation Monitor (EOM) is a successor project to the SIB-ESS-C that has 

the aim of ensuring access to and analysis tools for global spatial time-series data used 

for land monitoring on local scales. Scientists and stakeholders working in local areas 

must be able to perform time-series analyses without having to process any data on their 

own. The functions of the EOM are available using web services, allowing client 

applications to make use of these services. Based on the EOM middleware system 

(Subsection 6.2.1), three example clients were developed to show the possibilities of such 

a service-based infrastructure: The webEOM web portal (Subsection 6.2.2), the 

mobileEOM mobile application (Subsection 6.2.3) for time-series data access and 

analysis, and the MySeasons mobile application (Subsection 6.2.4) dedicated to 

vegetation phenology modeling. All these clients use the OGC WPS for data integration 

and analysis provided by the EOM middleware. 

In relation to the user requirements for platforms and web technology, the following 

requirements are supported: multi-source EO and geospatial data; data downloads; pixel 

extraction; time-series analysis; support for various programming languages and analysis 

tools; visualization of geospatial time-series results; OGC standardization; user 

management; RESTful web services; asynchronous web services; service chaining; 

uniform specifications; and multiple output formats. The following data formats are 

supported: OGC web services for data access, visualization, and data analysis; interactive 

charts and figures for time-series data and analysis results; and summarized statistics for 

data and analysis results.  

6.2.1 EOM Middleware 
The EOM middleware system allows the integrating of global satellite and in-situ time-

series data focusing on land monitoring. Table 6.2 lists the data available within the 

middleware. Vegetation Index (VI) and Land Surface Temperature (LST) products from 

the NASA MODIS sensor are available for integration into the middleware, based either 

on NASA data archive (LPDAAC) or Google Earth Engine. Although there is a limitation 

to the size for the area of interest that users can define, the coverage of the data is global. 

Globally available in-situ meteorological data from climate stations have also been 

connected to the middleware based on GSOD and GHCN data provided by the NOAA 

National Climatic Data Center. As a further development from the SIB-ESS-C, the data is 

downloaded and processed according to user demand. Thus, users can select their station 

and parameters of interest from these globally available climate stations.  
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Table 6.2: Data sources within the EOM middleware, including EO and in-situ time-series data. 

Dataset Type Spatial res. Temporal Time range 

NASA LPDAAC and Google Earth Engine 
MODIS VI Raster 250 m–1 km 16-Day 2000–now  

MODIS LST Raster 1 km*–0.05 deg. Daily, 8-Day 2000–now  

NOAA NCDC 
GSOD Sensor – Daily 1929–now 

GHCN Sensor – Daily 1832–now 

* Only selected areas 

Several geospatial tools have been integrated into the EOM middleware and are provided 

as standard-compliant web services using the OGC WPS specification: 

• Single and spatial time-series data extraction for user-defined areas of interest, 

optional filtering and masking based on quality flags including the conversion of 

data into a common data format, and the calculation of time-series plots and 

decomposition analyses. 

• Breakpoint analyses for EO vegetation time-series data using BFAST. 

• Trend calculations for EO vegetation time-series data using Greenbrown. 

• Phenological modeling for EO vegetation time-series data using TIMESAT. 

• Random forest disturbance analyses for EO vegetation time-series data. 

• Automated connection between EO time-series data and analysis tools based on 

the common time-series data format. 

• Automated conversion of the outputs of the results of analysis to user-aligned data 

formats. 

• Climate station data plots with temporal aggregations (e.g., days, months, years, 

winter, spring, summer, fall, and individual months). 

• Kernel-density plots for the comparison of in-situ mean temperature station data 

and MODIS Land Surface Temperature time-series (1 km) data (see Figure 6.1). 

The data integration and data analysis services are made available using the OGC WPS 

specification. As data integration and data analysis differ based on the geometry type 

(point extraction leading to single time-series data vs. polygon extraction leading to spatial 

time-series data), for all the tools, two processing services for single and spatial time-

series data are provided. In addition to EO time-series data integration, a process is 

available for the in-situ climate station data integration. The resulting outputs from the 

analysis tools are available based on the OGC WMS for visualization and the OGC WFS 

for the raster-to-vector converted outputs.  
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Open source software has been used to build the EOM middleware and their web service 

infrastructure. In the backend, Drupal CMS is used for user registration and authentication, 

management of features created by registered users, as well as a proxy for external web 

services, and the conversion of XML responses from OGC web services to JSON. At the 

service level, MapServer is used for data visualization and access to provide OGC WMS 

and WFS. PyWPS is used for the processing services according to the OGC WPS 

specification. The analysis tools are provided through Python, R, and TIMESAT though all 

of them are run from the PyWPS Python process. With the Python library rpy2, a direct 

connection between Python and R sessions is used to undertake R-functions and 

exchange data between the programming languages. In Python, further libraries, such as 

GDAL, OGR, and Pandas, have been used to process data and generate plots. 

6.2.2 webEOM 
The focus of the web portal is to provide an easy-to-use client while making it possible to 

extract time-series data and execute time-series analysis functions. The webEOM map 

viewer (Figure 6.3) can be used to create the geometry of a study area. Based on this 

geometry, the system requests a list of available datasets, which are registered in the 

middleware. When conducting data integration, users can specify different parameters for 

the selected dataset, such as start and end dates, as well as filtering options. A processing 

directory for each integrated dataset is available to users, which contains any processed 

data for both the dataset and the analysis tools used. Time-series and decomposition 

plots, which are shown in the web portal, are generated automatically from the extracted 

time-series data. In addition to the images, CSV files containing statistics are available for 

download. Following data integration, users can select an analysis tool for execution, and 

individual parameters can be set for the selected analysis. The resulting data can either 

be visualized directly in the web portal or can be downloaded for further analysis. Spatial 

outputs can be interactively explored in the map viewer, and CSV files are plotted in an 

interactive chart window.  

Several open-source libraries were used to develop the web portal: For the frontend user 

interface, the JavaScript library OpenLayers is used as a mapping library; dygraphs44 is 

used to generate interactive charts; and jQuery provides standard JavaScript functions. 

                                                
44 http://dygraphs.com  

http://dygraphs.com/
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Figure 6.3: Screenshots of the webEOM portal. 

6.2.3 mobileEOM 
During fieldwork, users cannot easily use web-based applications optimized for desktop 

computers. A mobile application can therefore foster the use of spatial time-series tools 

on mobile devices, which can be used more easily during fieldwork. With the mobileEOM 

application, users have access to a wide range of information, as the MODIS vegetation 

time-series data provides information about the environment from 2000 to the present. 
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The use of EO data with time-series analysis tools allows the identifying of breaks in the 

past and overall trends relating to the vegetation.  

The mobile application for EOM was developed to provide access to time-series data and 

derived analyses on mobile devices. Using their current GPS location or a manually set 

position, users can extract vegetation time-series data, as well as view plots for data, 

trends, and breakpoint analysis directly on their mobile devices. An OGC WPS process 

was developed for the mobile application to integrate the existing services from the EOM 

middleware into a single web service call. Figure 6.4 shows screenshots of mobileEOM 

linked with a workflow chart of the OGC WPS process and interactions between them. 

This process uses the EOM WPS to extract the requested data from Google Earth Engine 

and plots the time-series and decomposition figures. In a second step, the time-series 

analysis services from EOM for breakpoint detection (BFAST) and trend calculations 

(Greenbrown) are executed. The resulting output of the mobileEOM process contains the 

values of the analysis tools and links to the figures.  

The mobile application was developed as hybrid web application. Applications of this type 

are developed using web development technologies (e.g., HyperText Markup Language 

(HTML), Cascading Style Sheets, and JavaScript) and are then exported as native mobile 

applications. To access the sensors and functions of the mobile device (e.g., GPS and file 

storage), the software PhoneGap was used. A native application can then be published in 

Google Play Store and Apple App Store. The user interface was developed using jQuery 

Mobile and the interactive map was integrated using Google Maps API. 

 
Figure 6.4: Interactions between the mobileEOM app and EOM middleware web services. 
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6.2.4 MySeasons App 
The mobile application MySeasons was developed within the framework of the EU H2020 

project, MyGEOSS. It combines EO time-series data with in-situ phenological data 

contributed by citizens. Users are able to collect data about the phenological cycle (e.g., 

the beginning of blossoming of specific plants) and submit these to a centralized data 

server. In addition, they are able to retrieve MODIS vegetation time-series data and a 

resulting phenological plot for the position where the data collection occurred. Users can 

use either the GPS position determined by the mobile device or a manually set position. 

The app was developed as hybrid web application. The Ionic Framework based on Apache 

Cordova (formerly known as PhoneGap) was used to export the web application to a 

native application for Android and iOS systems. 

The app makes use of the EOM middleware processing services to retrieve the EO time-

series data for the given point of interest (Figure 6.5). A web service was developed to 

integrate the existing EOM WPS (Figure 6.5, right) that undertakes time-series data 

integration and the TIMESAT analysis tool. The results from these are integrated into a 

single JSON output file, which is retrieved and further processed by the MySeasons 

application. This analysis works globally; the data is automatically requested on demand 

from Google Earth Engine by the EOM middleware. The phenological modeling tool 

TIMESAT is executed with a global parameter set. Figure 6.5 shows screenshots of the 

MySeasons application (left). In the map, the analysis can be conducted using the existing 

EOM services provided as an OGC WPS service (right). The resulting outputs are shown 

in the application (left bottom). 

 
Figure 6.5: EOM middleware services (right) are used in the MySeasons App (left) to extract MODIS 
vegetation time-series data and phenological start and end dates derived on demand. 
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6.3 GEO-Wetlands Community Portal 
The GEO-Wetlands Community Portal was developed within the framework of the EU-

H2020 project Satellite based Wetland Observation Service, which led to the community 

portal of the Group on Earth Observation’s (GEO) Wetlands Initiative. The objective of the 

portal is to share geospatial products and EO data, focusing specifically on wetland areas.  

A user requirement survey undertaken in 2016 showed main issues to be addressed by 

the portal: 

• Simple visualization tools for easily explore available datasets (EO data and 

thematic maps). 

• Map production assistance and use case demonstrators. 

• User-friendly tools for multi-source EO data discovery and access. 

• Coordination with other portals and software. 

In addition to the web portal (Subsection 6.3.2), web-based processing platforms are 

provided, which make use of the common EO time-series data structure: Open Data Cube 

for Wetlands (Subsection 6.3.3) and the Sentinel–1 Surface Water Dynamics Toolkit 

(Subsection 6.3.4).  

In relation to the user requirements for platforms and web technology, the following 

requirements are supported: multi-source EO and geospatial data; data visualization; 

OGC standardization; user management (Open Date Cube only); RESTful web services; 

asynchronous web services (Open Date Cube only). The following data formats are 

supported: OGC services for data visualization (web portal only); interactive charts for data 

discovery; and figures for time-series analysis results (Open Date Cube only).  

6.3.1 Middleware 
The GEO-Wetlands Community Portal middleware bridges the gap between wetland 

users and geospatial data and includes EO data and thematic products available for 

individual wetlands. Geospatial thematic products (e.g., land use land cover, surface water 

dynamics, land surface temperature trend, and water quality) based on the outcomes of 

research projects are shared and made available to users. In addition to these products, 

available Landsat and Sentinel data are also shown to users based on the concept and 

implementation of the multi-source data discovery and access broker (Chapter 5.2). 

Although those datasets are not available immediately in the middleware, linked 

applications can be used to explore the EO time-series data (e.g., see Subsections 6.3.3 

and 6.3.4). 
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Several tools from the regional multi-source data middleware concept have been 

integrated and linked to the geospatial products and wetlands available in the GEO-

Wetlands Community Portal: 

• Extraction of point-based values from time-series products (e.g., water quality, land 

surface temperature trend) based on a uniform time-series data structure and 

format. 

• Automated EO data discovery and provision of download links for Landsat and 

Sentinel data for wetlands are integrated in the middleware. 

• Automated data retrieval for USGS Landsat data, including the generation of full 

color images with GRASS GIS and the generation of an animated natural color 

visualization video. 

• EO time-series data export to interactive exploration applications (e.g., Sentinel–1 

Surface Water Dynamics Toolkit, Jupyter Notebooks, and Open Data Cube) to 

automatically link EO time-series data with web-based processing applications. 

All the information and data provided by the middleware are published using RESTful web 

services from the Django Web Framework, which also handles multi-source data 

discovery, the access broker, and the links to external interactive exploration applications. 

For the extraction of point-based values from time-series products, OpenCPU is used to 

provide a RESTful web service that extracts data from the uniform EO time-series data 

structure.  

Within the GEO-Wetlands Community Portal middleware available datasets, products, 

and wetlands are managed and user registration and authentication are provided. Django 

uses a PostgreSQL database backend with PostGIS extension that enables the storing 

geometry features and enables geospatial operations. Several extensions of Django, such 

as the Django REST framework, are used to publish RESTful web services. Other Python 

libraries are used for geospatial data discovery, access, and processing, such as GDAL, 

Shapely, OWSlib, NumPy, and Pandas. The pyroSAR framework has been used to 

automatically process Sentinel–1 data with the ESA SNAP toolbox in the background. A 

Jupyter Notebook was set up and linked with the middleware. This allows the middleware 

to automatically generate Jupyter Notebooks at the request of the user to enable users to 

work with EO data or products on their own without transferring data to the local computer.  
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6.3.2 Web portal 
The web portal of the GEO-Wetlands Community Portal is the main entry point for 

discovering geospatial data and EO time-series data in the GEO-Wetlands Initiative. 

Research projects share geospatial products and link them to wetlands in a pre-defined 

data structure and format. An automated geospatial data publishing workflow was 

developed to process wetland-related products downloaded from a file server and 

published using OGC-compliant web services for data visualization and data download. 

The open source software GeoServer is used to make geospatial data available using the 

OGC Web Map (Tile) Service, OGC WFS for vector data, and OGC WCS for raster data. 

Time-series data is published using the OGC WMS with TIME extension. The web portal 

frontend was developed with HTML, Cascading Style Sheets, and JavaScript using open 

source libraries, such as AngularJS and Bootstrap. The communication with the 

middleware is based on RESTful web services.  

For each of the wetlands, available EO data is presented in the Satellite data explorer 

(Figure 6.6). This demonstrates the use of the multi-source data discovery and access 

broker, which has been undertaken for all the wetlands integrated in the middleware. 

Users can interactively discover available EO time-series data with user-aligned data 

formats: interactive charts summarizing the available data per satellite mission and year, 

common metadata elements for all satellite scenes, as well as interactive visualization 

services, which can be added to the map. 

 
Figure 6.6: Screenshot of the GEO-Wetlands Community Portal highlighting the results of the EO 
data discovery broker for a wetland selected by the user. 
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6.3.3 Open Data Cube for Wetlands 
An instance of the Open Data Cube software was setup within the GEO-Wetlands Initiative 

as first prototype to link the EO time-series data discovered and downloaded through the 

middleware system and ingested into the database. The Open Data Cube software makes 

use of a PostgreSQL database with the spatial PostGIS extension. The user interface of 

the Open Data Cube is based on the Django Web Framework, Celery and Redis for task 

processing, and bootstrap for frontend styling. In addition, a Jupyter Notebook server was 

set up with a direct connection to the Open Data Cube database. All these components 

need to be set up in the same infrastructure.  

The Open Data Cube core application already provides several time-series analysis 

tools, 45  such as algorithms for water detection, fractional cover, spectral indices, 

urbanization, cloud cover statistics, and custom mosaics, which can be used directly once 

the data has been ingested into the database and registered with the user interface. Figure 

6.7 shows an example screenshot from the user interface of the Open Data Cube for 

Wetlands with results from the water detection algorithm based on optical Landsat data. 

Currently only Landsat data has been ingested into the Open Data Cube for Wetlands. 

The time-series analysis tools provide their outputs in different formats, such as GeoTIFF, 

netCDF, and PNG. Python can be used with the Jupyter Notebook server connected to 

the Open Data Cube instance. 

 
Figure 6.7: User interface of the CEOS Open Data Cube showing results of the water detection 
algorithm in the map from the Laguna de Fuente de Piedra wetland (Spain).  

                                                
45 https://www.opendatacube.org/data-cube-applications  

https://www.opendatacube.org/data-cube-applications
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6.3.4 Sentinel–1 Surface Water Dynamics Toolkit 
The Sentinel–1 Surface Water Dynamics Toolkit allows interactive and web-based 

analysis of Sentinel–1 time-series data. The application was developed within R-Shiny46, 

which allows the development of web applications directly in R without in-depth knowledge 

of web technologies. Figure 6.8 shows an example screenshot of the application. 

Sentinel–1 time-series data was automatically downloaded and preprocessed for the 

wetland of Laguna de Fuente de Piedra (Spain) for the year 2017. The original Sentinel 

has been preprocessed using pyroSAR and stored within the common EO time-series 

data structure, which is also optimized for analysis using R. The application can directly 

make use of standard R functions without conducting specific data processing in advance. 

Within the application, users are able to use the toolkit to explore Sentinel–1 time-series 

data, calculate multi-temporal statistics, and create water dynamics products based on a 

simple thresholding (water/no water) algorithm (Martinis et al. 2015; Truckenbrodt et al. 

2018). The user can visualize the available Sentinel–1 scenes and filter the result list 

according to various parameters. In the individual steps of the application, the user can 

analyze the time-series data without own data processing. The final water dynamics map, 

which is shown as a PNG figure within the application, can be downloaded as GeoTIFF.  

 
Figure 6.8: Sentinel–1 Water Dynamics Toolkit, developed within R and published as an R-Shiny-
based web application.  

                                                
46 https://shiny.rstudio.com/  

https://shiny.rstudio.com/
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Chapter 7: Results and Discussion 
Based on the concepts, methods, and example use cases designed and developed in this 

thesis, three overall results for a service-based exploration of EO time-series data can be 

summarized: 

1. Centralization of EO time-series data at regional scales: A regional data 

middleware focuses on the centralization of multi-source EO data and tools and 

enables a simplification of application development through web services (Section 

7.1). 

2. Harmonization of EO time-series service interfaces: The OGC WPS specification 

enables the harmonization of the service interface for data discovery, access, and 

analysis. In addition, a discovery and access broker harmonizes requests to multi-

source EO data providers (Section 7.2). 

3. Standardization of EO time-series data structure and formats: A common EO time-

series data structure enables simple use in geospatial applications, user-aligned 

output formats, and the simple use of time-series data in processing and analysis 

tools (Section 7.3). 

In this chapter, these results are described and discussed in relation to other methods and 

implementations available in this field of research. 
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7.1 Centralization of EO time-series data at regional scales 
The concept of the regional data middleware defined in this thesis focuses on providing 

EO time-series data for specific areas of interest selected either by individual users or the 

middleware provider. This allows the provision of web-based infrastructures independent 

of data providers, with the opportunity to link various geospatial data and analysis tools. 

As results of the thesis, the regional middleware approach (Subsection 7.1.1), application 

development based on centralized web services (Subsection 7.1.2), and regional use 

cases (Subsection 7.1.3) are summarized and discussed. 

7.1.1 Regional data middleware approach 
The concept of the regional data middleware has been designed and implemented to 

combine data discovery, access, and analysis. When hosted outside of cloud data 

providers, EO data needs to be transferred to an own server. However, datasets from 

several sources (e.g., Landsat, Sentinel, MODIS, and in-situ climate station data) can be 

combined and used in the middleware for further analysis. In addition, usage costs need 

to be calculated and compared carefully for both cloud-based and local server 

infrastructures. Depending on the size of the area of interest, one or the other solution is 

suitable. Regional analysis requires only the downloading of data for specific areas of 

interest. Focusing on regional data access and analysis in a self-developed platform 

provides the following advantages: 

• Any analysis tool and additional data provision services can be made available. 

• Users can follow the processing steps from data download to analysis results. 

• Users can download EO data in the same format as used in the middleware and 

continue processing on their own infrastructure. 

Any of the web-based infrastructures available for EO data access and analysis only fits 

for specific purposes. Google Earth Engine provides opportunities to easily develop 

algorithms on a global scale; however, only tools from the platform can be used (i.e., no 

external command-line tools). The ESA Thematic Exploitation Platforms focuses more on 

single scene analysis; thus, the satellite scenes selected by the user are copied to the 

analysis tool. Virtual environments, such as Amazon Web Services, Google Cloud, or 

Copernicus DIAS platforms, provide EO data and processing environments; however, 

users need to install and implement their data processing chains and analysis tools 

themselves. Soille et al. (2018) show similar results as data and algorithms need to be 

available in the same environment and that a shift from local workflows to the use of 

interactive visualization and processing is to be expected. Further, they recommended the 

use of a self-developed platform to be most flexible to the user requirements.  
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7.1.2 Application development  
Multiple web and mobile applications that have been developed have demonstrated how 

users can work with EO time-series data without undertaking data processing on their 

own, and how the centralized services can be re-used in applications (Chapter 6). The 

focus on regional scales in these applications allows the hosting of EO time-series data, 

which can be directly used in analysis tools. In contrast with global or continental scales, 

the data storage and processing performance at regional and local scales is manageable. 

Three applications have been developed to demonstrate the concepts and methods 

described in this thesis:  

• The Siberian Earth System Science Cluster (SIB-ESS-C),  

• Earth Observation Monitor (EOM), including web and mobile applications, and  

• GEO-Wetlands Community Portal, including a satellite scene explorer in the web 

portal, Open Data Cube for Wetlands, and the R-Shiny Sentinel–1 Surface Water 

Dynamics Toolkit. 

All applications are based on web services of the self-developed middleware for time-

series data discovery, access, plotting, and analysis. Application developers do not need 

to perform their own data downloads, processing, and analysis tasks. In addition, external 

applications are connected to the middleware, such as the Open Data Cube, Rasdaman, 

R-Shiny applications, and Jupyter Notebooks. Table 7.1 shows the criteria compiled on 

the basis of the user requirements for the evaluation of the applications developed. By 

combining all applications developed in this thesis, all requirements could be fulfilled. As 

each specific application has its focus, not all the requirements are relevant for each 

application (e.g., there is no EO data discovery in the EOM as the extraction of all available 

data is undertaken without specific filtering of data).  

Table 7.1: Platforms developed in relation to user requirements compared to the review of existing 
platforms (Table 4.6). 
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Using regional data middleware with web services for EO data discovery, access, 

extraction, and analysis allows the following advantages:  

• The automated access and processing of EO time-series data provided by web 

services allow simple integrations in web and mobile applications without the need 

for domain-specific processing knowledge. 

• External applications (e.g., R-Shiny and Jupyter Notebooks) can directly make use 

of the common time-series data structure of the middleware. 

• Data can be exported from the common time-series data structure and be 

automatically fed to external applications (e.g., Open Data Cube and Rasdaman). 

Existing web-based platforms (e.g., Google Earth Engine and NASA Giovanni), focus 

primarily on pre-defined EO data and analysis tools. While Google Earth Engine can be 

integrated in applications using the Python library, others, such as NASA Giovanni, can 

only be used manually on the web portal and cannot be connected to linked external 

applications. Thus, the system architecture of web platforms needs to be clearly defined 

to enable the integration in several applications. The middleware approach allows a focus 

on individual scales and connections to any kind of external application. 

7.1.3 Regional use cases 
All the example applications developed have been used widely in research and education, 

focusing on regional aspects of environmental monitoring using EO time-series data. In 

the following paragraphs, statistics for the applications developed and two regional use 

cases for thematic experts and scientific research are described.   

Usage statistics for EOM web and mobile applications 

In total, for both web and mobile applications, 16,184 users from 150 countries worldwide 

were reached between January 2014 and July 2018, based on statistics from Google 

Analytics. In the EOM web portal, 14,456 analyses were conducted. Eighty percent of 

these were used for individual pixel time-series, and 20% for area time-series. The 

breakpoint detection algorithm had the most analysis conducted (45%), followed by 

phenological analyses (31%), and trend calculations (22%). The distribution of users per 

country is shown in Figure 7.1. Most users of the portal came from the USA, followed by 

Germany, Russia, the United Kingdom, and Brazil, while the most active users came from 

Germany, Iran, China, the USA, the United Kingdom, and Israel. Statistics for the mobile 

application show 2,373 users and 2,714 analyses conducted (70% of these for pixel time-

series). Most users came from India, followed by Saudi Arabia, Germany, the United 

Kingdom, the USA, and the United Arab Emirates. The most active users came from India 

and Saudi Arabia, followed by the USA, Germany, Iran, and Italy. 
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Figure 7.1: Top five countries with the most users and most active users of webEOM and 
mobileEOM as a percentage of the total numbers from January 2014 to July 2018. 

EO time-series data visualization for thematic experts 

Based on the visualization services of the SIB-ESS-C web portal, EO time-series data has 

been used by thematic experts to explain loss of vegetation in Siberia. The MODIS Level–

3 products Vegetation Index (MOD13Q1, 16-day) and Burned Area (MCD45A1, monthly), 

both available for Siberia in the SIB-ESS-C middleware, have been investigated for an 

area near Yakutsk, Russia. A loss of vegetation could be identified in the MODIS 

Vegetation Index dataset between beginning of June and end of July 2012 (Figure 7.2, 

left and middle). Based on the MODIS Burned Area dataset, from July 2012, the loss of 

vegetation can be explained by fires which occurred in that month (Figure 7.2, right). As 

both EO time-series products have been made available in the SIB-ESS-C middleware 

with visualization services, thematic experts have been able to combine different types of 

thematic products in a single web-based system and without conducting data discovery, 

downloads, and visualizations on their own.  

 
Figure 7.2: Combination of MODIS NDVI and MODIS Burned Area datasets (left: before the fire 
NDVI; middle: after the fire NDVI; right: burned areas) near Yakutsk, Russia (Eberle et al. 2013). 
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Deforestation monitoring for scientific research 

Forest monitoring was conducted in several research projects with support of MODIS data 

discovery, access, and analysis by means of the EOM middleware. Breakpoint analyses 

were used to identify deforestation changes by location and time. 

Change detection information was conducted in the Afromontane ecosystem of the 

Mambilla Plateau (Nigeria) using Landsat time-series and the EOM portal. EOM provided 

the 16-day MODIS Vegetation Index dataset for identifying changes based on breakpoint 

analysis. The Landsat image from 1988 was used as the reference and was compared 

with the images from 2001 and 2014 (Figure 7.3, left). Deforestation clearly occurred 

between 2001 and 2014, but cloud-free Landsat was unavailable to determine the dates 

of deforestation between these two dates. Time-series data from the NASA MODIS sensor 

from 2000 to 2014 were analyzed using the BFAST algorithm. The results from the web-

based EOM analysis (Figure 7.3, right) show that deforestation began in 2002 (denoted 

by the blue area) and peaked in 2012 (denoted by the red area). 

All the work associated with breakpoint analyses, including data access, has been 

undertaken by researchers using the EOM web portal, and without the need to download 

and process the required time-series data. 

 
Figure 7.3: Twenty-six year Landsat time-series images showing a forest site near the village of 
Yelwa on Mambilla Plateau, Nigeria, before and after deforestation (left). Results of MODIS 
analysis overlaid on a Landsat image from 2014 show the pattern and years of deforestation near 
the village of Yelwa and neighboring forests (right). 



 

169 

7.2 Harmonization of EO Time-series Service Interfaces 
As shown in the state-of-the-art and review chapters, diverse specifications for service 

interfaces are currently available that allowing for data discovery, access, and analysis. 

To simplify the use of web services for the exploration of EO time-series data, the service 

interfaces have been harmonized: Services for time-series data discovery, access, and 

analysis have been designed, developed, and implemented using the OGC WPS 

specification (Section 7.2.1). In addition, a brokering framework for multi-source EO data 

discovery and access was designed and developed based on services from multiple data 

providers (Section 7.2.2). 

7.2.1 WPS-based EO web services 
The services defined and developed for data discovery, access, extraction, and analysis 

aim to be re-used by application developers and by scientists who develop analysis 

algorithms. Although the individual service specifications for data discovery, access, and 

analysis have proved useful for machine-to-machine interaction, their utility for human–

machine interaction lags. In order to provide a harmonized and uniform service interface 

and to allow multiple output formats for data discovery, access, and analysis, the OGC 

WPS specification was investigated and used as a generic processing service. The WPS 

specification allows the provision of standard-compliant web services and considers the 

most relevant properties—according to user requirements—for service execution, such as 

synchronous and asynchronous, as well as single and multiple output data formats. Using 

a single specification for all the tasks is considered to have standardized the service 

requests and responses, in contrast to various service specifications for each individual 

task (i.e., data discovery, access, and analysis). In this thesis, it has been shown that the 

WPS specification provides the necessary properties for all the tasks. The following 

advantages by the use of the WPS specification can be summarized: 

• Uniform requests and responses for data discovery, access, and analysis. 

• Multiple output formats to meet the different needs of user personas; all of the 

output formats can be changed depending on the user’s request. 

• The WPS specification allows a standardized provision of services, including 

synchronous and asynchronous execution and support for multiple outputs. 

Although the WPS specification is not specifically designed to provide data discovery and 

data access, both of these tasks can also be considered to be processing tasks, which 

then suit the WPS specification. Especially the focus on a human-machine interaction is 

not yet defined on the tasks for EO data discovery and access in comparison to machine-

to-machine communication. While research mostly focuses on technical details, such as 
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semantic processing (Sudmanns et al. 2018), process orchestration (Hofer et al. 2017), 

cloud-based processing (Veenendaal et al. 2016), and geospatial web technologies in 

general (Wagemann et al. 2018), the user-alignment of web services lags behind 

(Bordogna et al. 2016; Smith et al. 2016). This has been addressed in this thesis by 

introducing the harmonized WPS-based EO web services for data discovery, access, and 

analysis. For data analysis services, it has been shown that a direct connection between 

data access and data analysis is needed to enable users not only to get data or run 

analyses, but also to connect both services.   

7.2.2 EO data discovery broker 
A discovery broker connected to major EO data providers has been designed and 

implemented to achieve a uniform and standardized discovery of EO time-series data 

distributed across different data providers (Chapter 5.2). The brokering approach 

accesses web services based on a variety of service specifications and transfers metadata 

elements to a harmonized metadata structure. Using the brokering software, users do not 

need to connect to each of the data providers and their individual web services. In 

summary, the EO data discovery broker, as a result within this thesis, has the following 

advantages:  

• Harmonized request method for all data providers connected to the broker. 

• Harmonized metadata elements of resulting satellite scenes. 

• Multiple output formats optimized for different user personas (e.g., GeoJSON, 

JSON, Shapefile, SQLite, CSV, Summary-Figure, and Summary-CSV). 

• The discovery response has been automatically enhanced with the discovery 

results from multiple data providers for specific EO datasets. 

In contrast with existing brokering services (e.g., GEOSS and ESA FedEO), multiple 

response output formats, which enable different user personas to work with the resulting 

output, and a full set of metadata elements are available. In comparison to other brokering 

research (Nativi Craglia et al. 2013; Previtali & Latre 2018), further enhancements have 

been integrated based on individual brokered resources, such as the retrieval of the best 

quick-look images and the insertion of web-based visualization services. Although the 

proposed data discovery broker requires more processing time than usual discovery 

services, users benefit from outputs that can be immediately interpreted and used in 

further work and a harmonized service interface.  

The EO data discovery broker was implemented in the middleware and web portal of the 

GEO-Wetlands Community Portal, as described in the use case (Chapter 6.3).  



 

171 

7.3 Standardization of EO Time-series Data Structure and Formats 
Specifications have been developed to standardize the EO time-series data structure and 

formats across multiple EO missions and data providers. Unification and interoperability 

are relevant components of a standardization process. Both of these matters need to be 

considered to make the exploration of EO time-series data simpler. Interoperability is 

important for enabling especially machine-to-machine communication; however, 

unification enables a harmonized set of data structure and formats to allow a uniform 

handling of EO time-series data using various processing and analysis tools (Subsection 

7.3.1). In addition, user-aligned output formats were designed to meet the requirements 

of users (Subsection 7.3.2).  

7.3.1 EO time-series data structure and format 
A common time-series data structure and data format was designed to ensure uniform 

and standardized data provision and analysis (Chapter 5.3). Based on a review of analysis 

tools (e.g., Python, R, and GRASS GIS), a data structure and format that best fits all the 

tools have been implemented. Furthermore, automated workflows for exporting the data 

to additional data structures required by external geospatial tools (e.g., Rasdaman and 

Open Data Cube) have been provided to ensure simple use of the common data structure. 

Advantages of this data format can be summarized as follows:  

• Direct usage of time-series data in Python and R. 

• Direct provision of standard-compliant OGC services. 

• Simple integrations for external geospatial tools (e.g., GRASS GIS, Rasdaman, 

and Open Data Cube). 

• Standardized metadata records for time-series data. 

• Extraction services to enable on-the-fly exploration of specific areas of interest. 

In most cases, analysis and processing tools require input data with a specific structure 

for time-series data. Although there is no data structure that fits for all tools, commonalities 

can be found and further tools can easily be supported by creating additional files (e.g., a 

text file for the GRASS GIS space-time dataset and a recipe configuration file for the 

Rasdaman database). Data structures often depend on the type of analysis, whether it is 

a single-band or multi-band calculation. Thereafter, additional processing may be 

required. Several studies researched to overcome the current behavior of data search, 

order, download, and transformation into a web service-based exploration and analysis of 

time-series data in an efficient and optimized way (Colditz et al. 2008; Gallaher & Grant 

2012; Van den Bergh et al. 2012). However, the transfer from research into production of 
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data providers is still not put into practice. The introduction of data cubes is currently the 

way forward in this direction, which is also discussed by data providers (ESA 2018). 

7.3.2 User-aligned output formats 
Multiple output formats have been defined and implemented in data discovery, access, 

and analysis that enable users to better interact with the resulting data (Sections 5.1.3, 

5.2.3, and 5.3.3.3). Output formats defined for different user personas allow user-specific 

responses. In addition, statistics summarized as text and figures provide a simple 

overview of EO time-series data and the results of the analysis. Standardized and service-

based output formats for geospatial data allow users to interactively explore the resulting 

data in web maps and GIS software without having to downloading complete datasets. 

Providing multiple user-aligned output formats has the following advantages:  

• Overview of available data and time-series can be used for immediate analysis. 

• Users can work with results in different data formats (e.g., CSV, JSON). 

• Web services allow the interactive visualization of and access to geospatial data. 

• Additional output formats allow users to easily explore the resulting data (e.g., 

providing summarized statistics and figures). 

In most cases, traditional data formats (e.g., XML or JSON for data discovery) only focus 

on machine-to-machine interaction and users need to process these data formats on their 

own to analyze the results of the request. Although familiarizing users with these data 

formats can be seen as useful, users should focus on their real interests, for example, 

obtaining simple overviews of the data, directly visualizing the data, or directly using the 

resulting data in their software of choice. Thus, multiple and user-aligned output formats 

are required—as opposed to providing only a single format, which is the case with most 

of the standard-compliant OGC web services. This has also been researched and 

concluded by Bordogna et al. (2016) especially focusing on time-series data in a study 

case of a spatial data infrastructure. Although the demand on improving data access and 

data analysis especially for user personas other than developers has already been 

investigated (Budhathoki et al. 2008; Hennig & Belgiu 2011; Brown et al. 2014; La Torre 

et al. 2017), it has not yet been fully considered by data providers in terms of providing 

user-aligned output formats. 
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Chapter 8: Conclusions and Outlook 
This final chapter provides responses to the research questions posed in the introduction, 

conclusions, and an outlook. 

8.1 Responses to the research questions 
Research questions were posed in the introduction of this thesis. They can be answered 

as follows: 

1. How to design a user-aligned discovery, access, and analysis for EO time-series 

data based on standard-compliant web services? 

Requirements for multiple user personas have been defined for data discovery, access, 

and analysis, which conclude that multiple data and output formats are often necessary 

for different user personas. The usual standardized web service specifications for data 

discovery and access have been designed for machine-to-machine communication. Thus, 

a uniform service specification has been defined and used in the applications developed 

to enable a human–machine interface. This specification is based on the standard-

compliant OGC WPS, which was designed to provide processing services. Processing 

services have the ability to provide multiple output formats in the web service response 

and thus fulfill the requirements of the user personas. Within this thesis, this service 

specification has also been used for data discovery and access in addition to data 

analysis. Besides a uniform specification, user-aligned output formats are necessary to 

fulfill the requirements of user-aligned services, which have been defined for time-series 

data and analysis results.  

2. What are the technical requirements for accessing and processing multi-source 

EO time-series data? 

Multi-source EO data are often provided by several data providers that offer different data 

access services, data structures, and data formats. Therefore, data access still needs to 

be adjusted for each data provider. As structure and formats are diverse for multi-source 

EO time-series data, much information is necessary to process them, such as a no data 

value, a scaling factor, and quality flags. In addition, for the visualization of EO time-series 

data, styling information is required for each dataset based on valid data ranges and color 

definitions that depend on the thematic product (e.g., vegetation index, or temperature). 

Both access to and processing of multi-source EO time-series data have been 

standardized using a brokering approach linked to several data providers and adjusted for 

different EO dataset structures. All technical requirements for data access and processing 

have been centralized within the multi-source EO data broker. 
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3. What are the data requirements for analysis- and application-ready formats and 

how must EO time-series data hence be organized? 

Based on a review of requirements for raster time-series data in programming languages 

and existing analysis tools, a uniform data specification for the organization of raster time-

series data has been defined. Focusing on raster time-series data, each individual date of 

the time-series is stored in a separate geospatial raster file, which is linked with the date 

in both the filename and a text file. In addition to the storage of geospatial data, further 

information about the time-series, such as the start time, end time, and annual frequency 

are needed to ensure straightforward use in several geospatial tools (“analysis-ready 

data”). Although some tools can directly work with the uniform data structure, further data 

structures and configuration files are required for other tools and services. To overcome 

this issue, export tools have been integrated to automatically provide correct data 

structures and formats for individual geospatial tools (e.g., Rasdaman, Open Data Cube, 

and GRASS GIS), which have been defined as application-ready data. This enables the 

straightforward use of EO time-series data in geospatial tools to simplify data analysis.  

8.2 Conclusions 
Existing gaps between users and data providers as well as EO time-series data and 

geospatial analysis tools have been investigated in this thesis. In summary, the following 

conclusions can be drawn.  

Brokering approaches facilitate the provision of user-aligned web services, specific 

multiple output formats, and uniform EO data discovery and access. This allows users to 

focus on their primary work rather than having to deal with different service specifications 

and data formats. Current web services for EO data discovery and access focus mainly 

on machine-to-machine communication and thus often do not consider the needs of users. 

Specifically, as concerns data access, services offering access to analysis-ready data are 

necessary. Web services for data discovery and access need to be simplified and focused 

to a greater extent on the requirements of users, for example, by providing various service 

response formats. Solutions can be provided either by each data provider (e.g., providing 

user-aligned web services) or in middleware systems based on the brokering approach to 

enhance the services of multiple data providers.  

The focus on regional scales rather than on a global scale enables the development of 

processing platforms, which connect various multi-source EO data and analysis tools. Due 

to the limited size of the data required for specific regions, such a processing platform can 

be either set up on local server infrastructure or within cloud providers. Any specific 

geospatial data and analysis tool necessary for users of the platform can be integrated 
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and made available to them. The focus on individual regions has also been considered by 

other initiatives, such as Open Data Cube, which has been set up for individual countries. 

Extraction services foster the immediate access of EO data for an area of interest. Linked 

with analysis services, information can be generated immediately (e.g., vegetation trends 

and changes). Especially for mobile applications, users need to obtain access to time-

series data as soon possible as they wait for the resulting data in the field. As the statistics 

from the use of the EOM applications show a key interest in point-based time-series 

extractions, EO data archives need to be available in a pre-processed and cloud-optimized 

data format rather than as zipped archive files, which is often the case currently.   

Cloud-optimized data formats are also necessary to increase access and processing 

performance. The straightforward use of EO data often depends on the data format that 

is provided by the data provider. In addition, cloud-optimized data formats need to be 

directly available with links to the various files. As data formats have often been adjusted 

to different user communities, such as netCDF data for climate scientists, various data 

formats and structures have been introduced with new EO missions. Thus, geospatial 

tools should be enabled to easily convert the original data format in other formats. Even 

more, analysis tools should support EO time-series data formats and structures. 

A centralized platform for the exploration of EO time-series data is useful for focusing on 

the specific requirements of users. EO data directly linked to geospatial tools in web and 

mobile application allows users to focus on their primary interest, the monitoring of 

environmental changes. Each of the user personas discussed in this thesis focuses on 

different aspects. However, they have in common that they are not EO data-processing 

specialists. It is necessary that they are able to use user-aligned applications and web 

services that can handle all obstacles to the effective use of multi-source EO time-series 

data and their links to geospatial processing and analysis tools. 

Web services for data access connected with data analysis tools enable on-the-fly 

interpretation of EO time-series data without the need for users to undertake data 

processing. Applications are ready to provide analysis tools and services for time-series 

data in web-based and local environments. However, EO data currently often does not 

have the correct data structure and is not in the correct format to be easily used in these 

applications. To link EO time-series data with geospatial applications, either the data 

needs to be converted into a suitable data structure or the applications need to be adjusted 

to meet the original data structure, which has been the focus with the development of a 

uniform EO time-series data format and structure. The workflow for publishing algorithms 

close to the data needs to be further simplified and standardized.   
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8.3 Outlook 
Further research work within this field focuses still on bridging the gap between users and 

providers of EO data and services as well as on new approaches for geospatial data 

formats, interoperability, data cubes, and cloud-based architectures.  

Although data formats have already been discussed in this thesis, new cloud-optimized 

data formats are currently investigated (COG 2018), which provides new ways of working 

with geospatial raster data. With such a new way to organize and access geospatial data 

based on simple web service requests, both users and developers of algorithms need to 

learn how to handle this kind of data, which is different from working with local files. A 

growing trend among satellite imagery providers is the provision of preprocessed 

“analysis-ready data” to simplify the use of EO time-series data (CEOS 2018a; Dwyer et 

al. 2018; Holmes 2018a; Siqueira et al. 2019). Several organizations (e.g., USGS and 

CEOS) have recently begun to define analysis-ready data for specific EO missions to 

establish a common understanding of EO data preprocessing.  

In addition, the interoperability of searches for satellite imagery needs to be further 

researched, as there is currently no standardized specification, which focuses on raster 

time-series data as shown in this thesis. This is currently been addressed by the STAC 

initiative (Holmes 2017b), which commenced in November 2017. The lack of a clear 

standard for massive amounts of imagery data for use with current web technologies, such 

as the JSON format and RESTful architecture, has been identified as a core problem by 

14 organizations (e.g., Amazon, DigitalGlobe, Google, Planet, Radiant Earth, Element84, 

and Development Seed). A native cloud geospatial architecture is foreseen that will make 

it easy to crawl and search cloud-optimized GeoTIFF datasets (Holmes 2017a). The STAC 

aims to standardize how geospatial data is made available in the Web. Analysis-ready 

data and STAC are closely connected. A first “Satellite Data Interoperability” workshop 

was hosted by the USGS in August 2018 to discuss these topics. Over 100 participants 

from international space agencies, governments, research, non-profit, and commercial 

organizations discussed workflows, standards, upcoming developments, and how to 

benefit from analysis-ready data and STAC (Holmes 2018b).  

Further research is necessary to standardize data cubes for EO time-series data. CEOS 

aims to launch several national data cubes in the near future (CEOS 2018b). As there is 

not only a single data cube software, interoperability between and a standardized 

specification for them are discussed. This can also enable a federation of data cubes, 

which allows linking of data cubes hosted with different data providers (Baumann 2019).  
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The use of cloud-based architectures in an efficient and optimized manner for all kind of 

user personas is discussed as a research topic in combination with distributed processing 

of geospatial data. New technologies and the further development of specifications have 

been realized by the OGC in “testbeds,” which are “collaborative efforts to define, design, 

develop, and test candidate interface and encoding specifications” (OGC 2018b). In recent 

OGC testbeds, a major focus has been EO and cloud computing (Testbed 1347 in 2017), 

as well as exploitation platforms and big data cloud processing (Testbed 1448 in 2018). 

The objective of the EO-related components in both testbeds has been to encourage the 

standardized deployment and execution of big data-processing applications in cloud 

environments (Simonis 2018). In addition, the standardization of web services to provide 

reproducible algorithms as executable web services need to be further researched, which 

is currently based on a containerization approach (Hu et al. 2018). 

Cloud-based architectures are further researched by many organizations allowing to host 

geospatial and EO data as well as algorithms in the cloud. With the Copernicus satellites 

and new satellites that will be launched in the future, the provision of this data and the 

processing capabilities needs to be adjusted according to the increasing amount of data, 

which, for large areas, will not be able to be downloaded to local infrastructure in the 

foreseeable future. As such, big data projects, cloud evolution strategies, and cloud-based 

processing platforms have been defined and established by major international and 

national organizations (e.g., NASA and ESA). With the EU project openEO, a multi-cloud 

service specification and interface is being investigated, which aims to harmonize data 

access and data analysis between cloud environments (Schramm et al. 2019). In 2014, 

the US Government established a “National Plan for Civil Earth Observations” (U.S. 

Government 2014), which led to a “Big Earth Data Initiative.” NASA’s Earth Observing 

System Data and Information System contributes to this initiative by bringing its data into 

the cloud (Blumenfeld 2018). The European Commission launched the Copernicus DIAS 

initiative leading to multiple cloud data providers in Europe facilitating access to 

Copernicus data (Copernicus Observer 2017).  

In summary, an important part of future research and innovation is based on analysis-

ready data, increased interoperability with modern web-based technologies, the increased 

availability of geospatial data in clouds, and cloud-based processing architectures and 

platforms, all of them related to user-aligned exploration of EO time-series data.  

                                                
47 http://www.opengeospatial.org/pressroom/pressreleases/2751  
48 http://www.opengeospatial.org/projects/initiatives/testbed14  

http://www.opengeospatial.org/pressroom/pressreleases/2751
http://www.opengeospatial.org/projects/initiatives/testbed14
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Appendix A  

A.1 Discovery of EO time-series data 
Within this section, the service endpoints (URLs) and parameters available to discover EO 

collections and EO scenes are given for the data providers that have been reviewed in 

Section 4.1. The references of the tables contain information about parameters presented 

here and further properties of the services. 

ESA/Copernicus Open Access Hub (Sentinel) – OpenSearch 

The following service endpoint can be used to query the catalogue: 

• Open Access Hub: https://scihub.copernicus.eu/dhus/search  

Table A.1: List of search parameters for Sentinel data (European Commission 2019). 
Search Keyword Syntax and Examples 

q Full text search 

platformname Sentinel-1, Sentinel-2, Sentinel-3 

beginposition 

endposition 

<keyword>:[<timestamp> TO <timestamp>] 

footprint footprint:"intersects(<geographic type>)" 

orbitnumber 

lastorbitnumber 

orbitnumber:<orbitnumber> 
orbitnumber:[<orbitnumber> TO <orbitnumber>] 

orbitdirection Ascending, Descending 

polarisationmode HH, VV, HV, VH, HH HV, VV VH 

producttype SLC, GRD, OCN, S2MSI1C 

relativeorbitnumber relativeorbitnumber:<relativeorbitnumber> 

sensoroperationalmode SM, IW, EW 

cloudcoverpercentage Possible values from 0 TO 100 

 

USGS Earth Explorer (Landsat, MODIS, Sentinel-2)–self-developed REST API 

Dependent on the function, three service endpoints are available for user login, discovery 

of EO collections, and discovery of EO scenes:  

• Login: https://earthexplorer.usgs.gov/inventory/json/v/1.4.0/login 

• Collections: https://earthexplorer.usgs.gov/inventory/json/v/1.4.0/datasets  

• Satellite scenes: https://earthexplorer.usgs.gov/inventory/json/v/1.4.0/search  

Table A.2: List of search parameters for collections within USGS Earth Explorer (USGS 2019a). 
Search Keyword Syntax and Examples 

datasetName Filter on dataset name (with wildcards) 

spatialFilter Spatial filter using bounding box values 

temporalFilter Temporal filter using start/end date 

https://scihub.copernicus.eu/dhus/search
https://earthexplorer.usgs.gov/inventory/json/v/1.4.0/login
https://earthexplorer.usgs.gov/inventory/json/v/1.4.0/datasets
https://earthexplorer.usgs.gov/inventory/json/v/1.4.0/search
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Table A.3: List of search parameters for scenes within USGS Earth Explorer  (USGS 2019a). 
Search Keyword Syntax and Examples 

datasetName* Identifies the dataset 

spatialFilter Spatial filter using bounding box values 

temporalFilter Temporal filter using start/end date 

months Used to limit results to specific months 

minCloudCover 
maxCloudCover 

Used to limit results by minimum / maximum cloud cover 

additionalCriteria Used to filter results based on dataset specific metadata fields 

* Mandatory 
 

NASA CMR (Landsat, MODIS) – self-developed REST API 

The following service endpoints can be requested:  

• List dataset collections: https://cmr.earthdata.nasa.gov/search/collections.json  

• List scenes: https://cmr.earthdata.nasa.gov/search/granules.json  

Table A.4: List of search parameters for collections within NASA CMR (NASA 2019a). 
Search Keyword Syntax and Examples 

entry_title Filter on dataset collection name (with wildcards) 

keyword Filter dataset collections according to keywords 

bounding_box Spatial filter using bounding box values 

temporal Temporal filter using start/end date 

Table A.5: List of search parameters for satellite scenes within NASA CMR (NASA 2019a). 
Search Keyword Syntax and Examples 

concept_id* Identifies the dataset 

bounding_box Spatial filter using bounding box values 

temporal Temporal filter using start/end date 

cloud_cover Limit results by minimum, maximum cloud cover 

attribute Filter results based on dataset specific metadata fields 

* Mandatory 
 

Google Earth Engine (Sentinel, Landsat, MODIS) – Python API 
01 # filter collection by point geometry  
02 geom_azraq = ee.Geometry.Point(36.83075, 31.79115) 
03 sentinel1 = ee.ImageCollection('COPERNICUS/S1_GRD') 
04 sentinel1 = sentinel1.filterBounds(geom) 
05  
06 # filter collection by polarization 
07 sentinel1 = sentinel1.filter( 
  ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')) 
08  
09 # filter collection by orbit pass (ASCENDING, DESCENDING) 
10 vvAscending = sentinel1.filter( 
  ee.Filter.eq('orbitProperties_pass', 'ASCENDING')) 
11 response = vvAscending.getInfo() 
Listing A.1: Filtering Sentinel-1 Collection by point geometry, VV polarization and descending orbit 
direction using the Python-based Earth Engine library.  

https://cmr.earthdata.nasa.gov/search/collections.json
https://cmr.earthdata.nasa.gov/search/granules.json
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Sinergise Sentinel-Hub (Sentinel, Landsat) – OGC WFS 

The following service endpoint can be requested for the OGC Web Feature Service 

(INSTANCE_ID need to be replaced by a commercial service key):  

• Satellite scenes: http://services.sentinel-hub.com/ogc/wfs/{INSTANCE_ID}  

Table A.6: List of parameters to use the Sentinel-Hub WFS service for scene search (Sinergise 
2019a). 
Keyword Value(s) 

service WFS 

version 2.0.0 

request  GetFeature 

typenames Name of dataset collection  
(e.g., S1.TILE, S2.TILE, L8.TILE, L7.TILE, L5.TILE) 

bbox Filter by bounding box 

outputFormat XML (text/xml; default) or GeoJSON (application/json) 

maxcc Optional: Maximum cloud coverage for scenes 

time Optional: Filter through time (STARTTIME/ENDTIME/P1D) 

 

CEOS WGISS Integrated Catalog (CWIC) – OGC CSW, OpenSearch 

The following service endpoint has been requested in this thesis:   

• OGC CSW: https://cwic.wgiss.ceos.org/cwicv1/discovery  

GEODAB (Sentinel, Landsat, MODIS) – OGC CSW, OpenSearch 

OGC CSW and OpenSearch have been used with the following URLs: 

• OGC CSW: http://production.geodab.eu/gi-cat-StP/services/cswiso 

• OpenSearch: http://production.geodab.eu/gi-cat-StP/services/opensearch  

ESA FedEO (Landsat, Sentinel, MODIS) – OGC CSW, OpenSearch 

The web service based on the OpenSearch specification is available at the following URL 

(description document):    

• OpenSearch: http://fedeo.esa.int/opensearch/request 

 

  

http://services.sentinel-hub.com/ogc/wfs/%7bINSTANCE_ID%7d
https://cwic.wgiss.ceos.org/cwicv1/discovery
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A.2 Access to EO time-series data 
Within this section, the service endpoints (URLs) and parameters available to access EO 

scenes are given for the data providers that have been reviewed in Section 4.2. The 

references of the tables contain information about parameters presented here and further 

properties of the services. 

USGS ESPA (Landsat, MODIS) – self-developed REST API 

The following services can be requested (excerpt):  

- Send order:  POST https://espa.cr.usgs.gov/api/v0/order (Table A.7)  

- List orders:  GET https://espa.cr.usgs.gov/api/v0/list-orders 

- Get order status: GET https://espa.cr.usgs.gov/api/v0/order-status/<ordernum>  

- Get order details: GET https://espa.cr.usgs.gov/api/v0/order/<ordernum>  

- Get item status:  GET https://espa.cr.usgs.gov/api/v0/item-status/<ordernum>  

 

Table A.7: List of parameters to order pre-processed satellite data using USGS ESPA (USGS 
2018). 

Search Keyword Syntax and Examples 

inputs* List of satellite scenes separated by satellite sensor 

products* Products to generate (e.g., "bt", "sr", "sr_ndvi", "sr_evi", "sr_savi", 
"sr_msavi", "sr_ndmi", "sr_nbr", "pixel_qa") 

format* GeoTIFF, HDF-EOS2, ENVI, NetCDF 

projection Projection 

image_extents Bounding box values (output projection need to be specified) 

resize Value in meters 

resampling_method “nn”, “bil”, “cc” 

* Mandatory 

 

ESA/Copernicus Open Access Hub (Sentinel) – Open Data Protocol 

The following services are available:  

- Querying products:  https://scihub.copernicus.eu/apihub/odata/v1/Products  

- Querying collections:  https://scihub.copernicus.eu/apihub/odata/v1/Collections  

The metadata of a specific product identifier can be queried as follows, whereas the last 

part is the internal scene identifier. Within the response additional links for data download 

and quick-look images are included:  

https://scihub.copernicus.eu/dhus/odata/v1/Products('2b17b57d-fff4-4645-b539-

91f305c27c69') 

 

 

https://espa.cr.usgs.gov/api/v0/order
https://espa.cr.usgs.gov/api/v0/list-orders
https://espa.cr.usgs.gov/api/v0/order-status/%3cordernum
https://espa.cr.usgs.gov/api/v0/order/%3cordernum
https://espa.cr.usgs.gov/api/v0/item-status/%3cordernum
https://scihub.copernicus.eu/apihub/odata/v1/Products
https://scihub.copernicus.eu/apihub/odata/v1/Collections
https://scihub.copernicus.eu/dhus/odata/v1/Products('2b17b57d-fff4-4645-b539-91f305c27c69')
https://scihub.copernicus.eu/dhus/odata/v1/Products('2b17b57d-fff4-4645-b539-91f305c27c69')
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Sinergise Sentinel-Hub (Sentinel, Landsat) – OGC WCS, FIS 

The following service endpoint can be requested for the OGC Web Coverage Service 

(INSTANCE_ID need to be replaced by a commercial service key):  

• OGC WCS: http://services.sentinel-hub.com/ogc/wcs/{INSTANCE_ID}  

• FIS: http://services.sentinel-hub.com/v1/fis/{INSTANCE_ID} 

 

Table A.8: List of parameters to use the Sentinel-Hub WCS service for download (Sinergise 2019a). 
Keyword Value(s) 

service WCS 

version 1.0.0 

request GetCoverage 

coverage Name of product to download (e.g., NDVI, TRUE_COLOR) 

bbox Filter by bounding box 

time Mosaic images in time range (STARTTIME/ENDTIME/P1D) 

format Download file format (e.g., image/tiff for GeoTIFF) 

evalscript 
optional 

This parameter allows for a custom script or formula specifying how 

the output will be generated from the input bands. 

 

Table A.9: List of parameters to use the Sentinel-Hub FIS for data extraction (Sinergise 2019b). 
Keyword Value(s) 

layer Preconfigured layer based on which the statistics are computed 

crs Coordinate reference system 

time Filter through time (STARTTIME/ENDTIME/P1D) 

resolution Spatial resolution in meters per pixel 

geometry Geometry in WKT format describing the region of interest 

bbox Bounding box describing the region of interest 

style Style overrides the one specified in the layer configuration 

maxcc Maximum cloud coverage for scenes 

 

Example Google Earth Engine Python API request 
1 # define geometry and image collection 
2 geom = ee.Geometry.Point(36.83075, 31.79115);  
3 collection = ee.ImageCollection('MOD13Q1')  
4  
5 # filter image collection by point geometry 
6 collection = collection.filterBounds(geom)  
7  
8 # extraction time-series information from collection for geometry 
9 data = collection.getRegion(geom, None, 'SR-ORG:6974', crs).getInfo() 

Listing A.2: Data access for point-based extraction of time-series for MODIS MOD13Q1 Vegetation 
Index dataset using the Google Earth Engine Python API. 

http://services.sentinel-hub.com/ogc/wcs/%7bINSTANCE_ID%7d
http://services.sentinel-hub.com/v1/fis/%7bINSTANCE_ID%7d
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