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Abstract

The interaction of electrically conducting fluid flows with magnetic fields appears in numerous
natural phenomena and technical applications. Since the relevant fluids – such as liquid metals
and plasmas – are generally very hot, the flows are often accompanied or even driven by thermal
convection. The study of this so-called magnetoconvection is thus of interest for a number of
physical systems. Two aspects are investigated in this thesis. The first concerns the case when
an imposed magnetic field does not alter the fluid flow. The second case explores the changes of
the flow structure and global transport properties in the presence of strong magnetic fields.
The first point is relevant for inductive measurement techniques, which are required to probe

the flow without disturbing it. Here, the size of the fluid volume affected by a localised magnetic
field is of major importance. This topic is investigated theoretically by deriving an algorithm to
calculate the penetration depth of the magnetic field into the medium. This allows the prediction
of a magnetic field strength, above which a flow is significantly disturbed. The theoretical results
are verified for the measurement method of local Lorentz force velocimetry which is applied to
a vertical convection flow.
The second point is investigated experimentally for a Rayleigh-Bénard convection system that

is subject to a homogeneous vertical magnetic field. The set-up consists of a cylindrical cell of
aspect ratio one. The large-scale flow structure is monitored using temperature measurements
and ultrasound Doppler velocimetry. The evolution of the flow with increasing magnetic field
strength is classified into different regimes and compared with theoretical predictions, and
numerical simulations. Global transport properties of the flow concerning its momentum, and
the heat passing through the fluid are analysed and their behaviour is interpreted in light of the
aforementioned flow regimes.
Additionally, a new theoretical model is developed to predict the turbulent heat andmomentum

transfer in the fluid by extending the Grossmann-Lohse theory for the classical Rayleigh-Bénard
convection setting by the effects of a vertical magnetic field. Experimental data of the present
study and from literature are used to verify and enhance the model, and to identify relevant
physical mechanisms responsible for the observed results.
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Zusammenfassung

Die Wechselwirkung zwischen elektrisch leitfähigen Fluiden und Magnetfeldern tritt in zahl-
reichen natürlichen Phänomenen und technischen Anwendungen auf. Weil die dabei relevanten
Medien – meist Flüssigmetalle oder Plasmen – im Allgemeinen sehr heiß sind, werden die Strö-
mungen meist von thermischer Konvektion begleitet oder werden sogar von dieser getrieben. Das
Phänomen der sogenannten Magnetokonvektion ist damit von Interesse für eine große Anzahl
physikalischer Systeme. Die vorliegende Arbeit untersucht hierbei zwei Aspekte. Zum einen wird
der Fall betrachtet, wenn ein aufgeprägtes Magnetfeld das Strömungsfeld nicht verändert. Zum
anderen werden die Modifizierungen von Strömungsstruktur und globalen Transporteigenschaf-
ten durch starke Magnetfelder untersucht.
Der erste Fall ist wichtig für induktive Messtechniken, welche die Bewegung eines Medi-

ums untersuchen müssen, ohne dieses dabei zu stören. Die Größe des Fluidvolumens, welches
von einem örtlich begrenzten Magnetfeld beeinflusst wird, ist hier ein äußerst wichtiger Faktor.
Dieses Thema wird untersucht, indem die Eindringtiefe des Magnetfeldes in das Medium theo-
retisch hergeleitet wird. Das erlaubt die Vorhersage einer Magnetfeldstärke, oberhalb derer eine
Strömung maßgeblich gestört wird. Die theoretischen Ergebnisse werden mittels experimenteller
Messungen überprüft. Dazu wird die Messmethode der lokalen Lorentzkraft-Anemometrie auf
eine vertikale Konvektionsströmung angewandt.
Für den zweiten Fall wird das System der Rayleigh-Bénard Konvektion unter einem homoge-

nen, vertikalen Magnetfeld experimentell untersucht. Der Aufbau besteht aus einer zylindrischen
Zelle mit einem Aspektverhältnis von eins. Die großskalige Struktur der Strömung wird mittels
Temperaturmessungen und Ultraschall Doppler Anemometrie überwacht. Die Entwicklung der
Strömung mit ansteigender Magnetfeldstärke kann in verschiedene Regime kategorisiert und mit
theoretischen Vorhersagen sowie numerischen Simulationen verglichen werden. Globale Trans-
porteigenschaften des Systems bezüglich Impuls und übertragener Wärme werden analysiert und
ihr Verhalten anhand der zuvor gefundenen Strömungsregime interpretiert.
Zusätzlich wird ein theoretisches Modell entwickelt um den turbulenten Wärme- und Im-

pulstransport vorherzusagen. Dazu wird die Großmann-Lohse Theorie für klassische Rayleigh-
Bénard Konvektion durch den Effekt eines vertikalen Magnetfeldes erweitert. Die experimentel-
len Daten aus der vorliegenden Arbeit und aus der Literatur werden genutzt, um dieses Modell
zu verifizieren und zu optimieren. Dabei werden physikalische Prozesse identifiziert, welche
maßgeblich zu den beobachteten Ergebnissen beitragen.
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Nomenclature

Latin characters

Symbol Unit Description

A m2 Horizontal cell cross-section
a − Blasius boundary layer parameter
B T Magnetic flux density
b T Induced magnetic flux density
c ms−1 Speed of sound
cp J kg−1K−1 Isobaric heat capacity
D m Cell diameter
d m Penetration depth of a local Lorentz force velocimeter
E Vm−1 Electric field
ex, ey, ez − Cartesian unit basis vectors
F N Force
f Nm−3 Force density
f s−1 Frequency
G − Green’s function
g ms−2 Gravitational acceleration
H m Cell height
Ha − Hartmann number
Hac − Onset of convection in an infinite fluid layer
HaCh − Chandrasekhar limit
HaH − Onset of convection in a cylindrical cell of aspect ratio 1
h m Vertical position of a permanent magnet above a fluid surface
j Am−2 Electric current density
k m−1 Wavenumber
L m Width of a fluid layer
l m Half side length of a cubic permanent magnet
lm m Characteristic scale of a magnetic field
M Am−1 Magnetisation
m kg Mass
N − Interaction parameter
Nu − Nusselt number
n − Unit normal vector on a surface
P̃ − Relative contribution of a velocity field to the total Lorentz force
Pm − Magnetic Prandtl number
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Nomenclature

Symbol Unit Description

Pr − Prandtl number
p Nm−2 Pressure
Q − Chandrasekhar number
Q̇ W Heat flux
R m Cell radius
Ra − Rayleigh number
Rac − Onset of convection in an infinite fluid layer
RaCh − Chandrasekhar limit
RaH − Onset of convection in a cylindrical cell of aspect ratio 1
Re − Reynolds number
Rm − Magnetic Reynolds number
r m Spatial vector
r m Radial coordinate
S m2 Surface
s m Spatial vector on a surface
T ◦C Temperature
T̄ ◦C Average fluid temperature
T̃ − Normalised temperature
T − Pseudo-temperature profile (normalised)
t s Time
U ms−1 Characteristic velocity
V m3 Volume
v ms−1 Velocity
w N sm−4 Sensitivity function
w̃ N sm−2 Integrated sensitivity function
x, y, z m Cartesian coordinates

Greek characters

Symbol Unit Description

α K−1 Volumetric thermal expansion coefficient
β − Reynolds number scaling factor
Γ − Aspect ratio
γ − Power law exponent
∆T K Cell temperature difference
∆t s Correlation time shift
δ − Dirac delta distribution
δmn − Kronecker delta for indicesm and n
δv, δT , δB m Viscous / thermal / Hartmann boundary layer thickness
εκ, εκ K2 s−1 Local / mean thermal dissipation rate
εν , εν m2 s−3 Local / mean kinetic dissipation rate
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Symbol Unit Description

εσ, εσ T2 s−1 Local / mean magnetic dissipation rate
εjkl − Levi-Civita symbol for indices j, k, and l
η m2 s−1 Magnetic diffusivity
θ ° Flow orientation
κ m2 s−1 Thermal diffusivity
λ Wm−1K−1 Thermal conductivity
µ NA−2 Magnetic permeability
ν m2 s−1 Kinematic viscosity
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π − Archimedes’ constant, π ≈ 3.14159
ρ kgm−3 Mass density
σ Sm−1 Electrical conductivity
τ s Time scale
φ ° Azimuthal coordinate
ϕ V Electric scalar potential

Abbreviations

Acronym Meaning

BL Boundary layer
CIFT Contactless inductive flow tomography
DC Direct current
DR Dissipation rate
GL Grossmann-Lohse (theory)
HZDR Helmholtz-Zentrum Dresden –Rossendorf
IOFS Interference optical force sensor
LDV Laser Doppler velocimetry
LFV Lorentz force velocimetry or velocimeter
LLFV Local Lorentz force velocimetry or velocimeter
MHD Magnetohydrodynamics
MULTIMAG MULTIpurpose MAGnetic system
ODR Orthogonal distance regression
PDF Probability density function
PID Proportional-integral-derivative (controller)
PIV Particle image velocimetry
PTV Particle tracking velocimetry
RBC Rayleigh-Bénard convection
rms root-mean-square (average)
TC Thermocouples
UDV Ultrasound Doppler velocimetry
UVP Ultrasound velocity profiling

ix



Nomenclature

Acronym Meaning

VC Vertical convection

x



1. Introduction

1.1. Motivation

Thermal convection is an important and ubiquitous mechanism of heat transport. Potentially
turbulent flows in liquids and gases driven by buoyancy forces due to temperature inhomogeneities
transfer heatmuchmore effectively than pure heat conduction. As such, it appears inmany natural
processes and is exploited by numerous technical applications.
In nature, it drives flows in the Earth’s atmosphere, generating local and global weather

phenomena. It contributes to the interconnected currents throughout the world’s oceans and is
part of the continental drift. In the hot cores of planets and stars it creates flows which are
responsible for the planetary and stellar magnetic fields. On smaller scales, it can be seen as air
rising from fire or hot surfaces, or as movement of water being heated on a stove.
Technical applications of thermal convection include cooling of equipment which can be

very cost effective since it is self-sustained and requires no additional devices such as fans.
Air conditioning of rooms and buildings also has to take warm rising air into account. An
equally important engineering task is the prevention of convective flows for heat insulation, e.g.
in double- or triple-paned windows. In metallurgy, convective flows significantly influence the
solidification process of metals and need to be monitored and controlled. Lately, liquid metals
are considered as a potential heat transport medium for fusion reactors, where the input of heat
by neutron radiation causes convective flows.
The examples of metallurgy, fusion reactors and the flow in planet cores or stars were given,

since they share an additional property: Their flows are influenced by magnetic fields. These
have their origin in electromagnetic brakes or stirrers for metallurgy, in superconducting coils
confining the plasma of fusion reactors and in the dynamo effect, which sustains a self-excited
magnetic field from themotion in a planet’s liquid metal core or a star’s plasma. All these systems
display complex dynamics and interactions which are challenging to understand. Progress in
uncovering the physics and mechanisms behind these phenomena can nonetheless be achieved
by studying simplified models. These generally cover a selected subset of aspects from the full
system, concentrating on certain influences only. The present thesis specifically considers the
problem of a horizontal fluid layer heated from below, cooled from above and subjected to a
vertical magnetic field. This system will be introduced in the following sections 1.2 and 1.3.
A major part of the work presented in this thesis is of experimental nature. For a magnetic

field to significantly influence a fluid, the selected medium has to be electrically conducting.
In the above examples, liquid metals and plasmas all have a very good electrical conductivity.
For laboratory experiments, only the use of liquid metals is feasible. They, however, provide a
different challenge. Many flow measurement techniques rely on an optical access to the interior
of the fluid, i.e. it needs to be transparent. This is not the case for liquid metals, which are
opaque for most forms of radiation. To acquire access to the flow field in the fluid interior,

1



1. Introduction

other measurement methods have to be employed, which are outlined in section 1.4. While
restricted by the opaqueness of liquid metals, a number of measurement techniques exploit a
different property: the high electrical conductivity. Among the so-called inductive measurement
methods, Lorentz force velocimetry is a recently developed technique, which has not been used
in thermal convection flows yet. A successful application of this method may provide another
option for the limited arsenal of measurement techniques in liquid metal thermal convection. The
method will be introduced in section 1.4.1 and the examination of its applicability in thermal
convection flows will be another central topic of this work.
The aspects investigated by the present study are thus twofold. Firstly, an extension of the

range of applicability of Lorentz force velocimetry is investigated. Secondly, the influence of
a vertical magnetic field on thermal convection in liquid metals is examined. The following
sections of this chapter will introduce the state of the art knowledge for both topics and outline
open problems that are still unsolved. The scientific objectives of this thesis are then outlined at
the end of this chapter in section 1.5.

1.2. Thermal convection

The general meaning of convection in fluid mechanics is the transport in a fluid. This covers a
wide variety of topics reaching from substances dispersed in liquids, intrinsic properties of the
fluid (e.g. temperature) to distortion of magnetic fields by plasma flows. For most cases, this
transport can be divided into two mechanisms: diffusion and advection.
The diffusive transport is caused by the random microscopic motion of fluid molecules. It

occurs whenever the considered quantity Φ varies spatially and reduces these inhomogeneities
until homogeneity is reached. Since the microscopic aspects of a fluid are not considered in
the continuum formulation of fluid mechanics, diffusion is characterised by a material constant:
According to Fick’s first law, the quantity flux F is proportional to the negative gradient of the
quantity F = −D∇Φ [1]. The corresponding proportionality constant is called the diffusion
constant D, which is specific to the transporting fluid and the transported quantity Φ. It always
carries a physical dimension of m2 s−1.
Advection describes the transport by the macroscopic, directed flow of the fluid. It is thus

highly dependent on the type of flow in consideration. A broad distinction can be made by the
cause of the flow. The first case is called forced convection. It is characterised by an externally
applied force, which drives the flow. This includes pumps or propellers, which induce movement
via surface forces. External volume forces, such as Lorentz forces in an electromagnetic pump,
also belong in this category. The opposing case is called natural or free convection. Here,
the cause of fluid movement are internal forces, which are generated by the properties of the
fluid itself. Examples are interface forces caused by varying surface tension, or buoyancy forces
generated by spatial inhomogeneities in the mass density. The latter, called buoyant convection,
requires the presence of a gravitational field. The density differences within the fluid can have
a variety of causes, most prominent of which are varying concentrations of diluted substances
(solutal convection) or temperature gradients (thermal convection). The latter is of interest in the
present work.One major difference between forced and natural convection is the flow speed. For
most technical applications, forced convection is one or two orders of magnitude faster than in

2



1.2. Thermal convection

H

Ttop

Tbot

g

Figure 1.1.: Illustration of a Rayleigh-Bénard convection system, consisting of a horizontal fluid
layer of height H with constant top and bottom temperatures, Ttop and Tbot, re-
spectively. The acceleration due to gravity g is parallel to the imposed temperature
gradient.

comparable natural convection systems. If only one type on convective system is considered, it
is common practice to simply name it “convection”. In the present study, the term “convection”
generally refers to thermal convection, if not specified otherwise.
An additional transport mechanism in thermal convection is heat radiation. Every object emits

heat in form of electromagnetic waves based on its temperature. Whether this effect is relevant
for thermal convection depends on the permeability of the fluid for thermal radiation. At low
temperatures around room temperature, the radiative heat transport can often be neglected when
compared to heat diffusion and advection. Additionally, liquid metals are notoriously hard to
penetrate by electromagnetic radiation. The effect of radiation will thus not be considered in the
present work.
The first thorough experimental investigation of thermal convection was published by Henri

Bénard in 1900 [2]. He described the behaviour of a thin fluid layer heated from below and with
a free upper surface. A movement of the fluid was only detectable, once a critical temperature
difference was exceeded, called the onset of convection. The resulting flow structures were
hexagonal cells with up-welling flow in their centre and down-welling flow at the boundaries
between cells. It has been shown, that the flow observed in Bénard’s experiments was caused
by forces due to inhomogeneous surface tension (called Marangoni convection), rather than
buoyancy forces [3]. This was caused by the free surface and the very small thickness of the
fluid layer in the order of millimetres. However, the publications of Bénard sparked a number of
investigations on the topic by different scientists. The first theoretical explanation was put forth
by Lord Rayleigh in 1916 [4]. He calculated the critical temperature difference and structure size
for the onset of convective flow in an infinite fluid layer bounded by two horizontal free surfaces,
with heating from below and cooling from above. This specific system, depicted in figure 1.1,
has been named Rayleigh-Bénard convection (RBC) in honour of these two scientists.
Rayleigh’s treatment of the system created the basis for all following theoretical investigations

of the topic and is still used today. His formulation of the equations describing thermal convection
utilizes the Boussinesq approximation. In general, all material properties of the fluid depend on
the temperature T . In the Boussinesq approximation these changes due to temperature variations
are neglected, except for the change of mass density ρ in the buoyancy force. Here, the density

3



1. Introduction

is approximated by a linear function of the temperature: ρ(T ) = ρ0 − ρ0α(T − T0), where
ρ0 = ρ(T0) is the density at a reference temperature T0 and α = −(1/ρ0)∂ρ/∂T |p is the
volumetric thermal expansion coefficient at constant pressure p. In all other aspects, the fluid is
considered to be incompressible and the density ρ = ρ0 is constant. These assumptions result in
the equations [5]

∇ · v = 0 , (1.1a)
∂v

∂t
+ (v ·∇)v = − 1

ρ0
∇p+ ν∇2v + gα(T − T0) , (1.1b)

∂T

∂t
+ (v ·∇)T = κ∇2T . (1.1c)

The velocity v ≡ v(r, t), temperature T ≡ T (r, t), and pressure p ≡ p(r, t) are fields, which
can be determined for a given geometry and boundary conditions (BC). Here, p specifically
refers to the pressure deviation from the hydrostatic equilibrium in the case v(r, t) = 0 in the
whole fluid. ν is the kinematic viscosity and κ the thermal diffusivity of the fluid. g denotes the
acceleration due to gravity, specifying its direction and magnitude g.

Boundary conditions have to be imposed on the temperature and velocity field. In Rayleigh-
Bénard convection, the lower and upper boundary are kept at constant temperatures Tbot and
Ttop, respectively. For an unstable density stratification to be possible it is required that Tbot >
Ttop. An alternative BC is a prescribed constant heat flux at the top and bottom boundaries
∂T/∂z = const. For the velocity field the type of boundary is important. A free surface requires
the conditions vz = 0 and ∂vx/∂x = ∂vy/∂y = 0 to hold, whereas a rigid wall implies a no-slip
condition with v = 0. The former BC was used by Rayleigh at both boundaries, which allowed
an analytical solution of the problem by expanding the quantities in a series of normal modes.

A dimensional analysis of the equations (1.1a) to (1.1c) reveals, that the problem is depends
two dimensionless parameters only: the Rayleigh number Ra and the Prandtl number Pr

Ra =
gα∆TH3

νκ
, (1.2)

Pr =
ν

κ
. (1.3)

The height H of the fluid layer is used as a characteristic length scale, and the temperature
difference ∆T = Tbot − Ttop as a characteristic temperature scale. The Rayleigh number
characterises the ratio of the driving buoyancy forces with respect to the damping effects of
viscosity and thermal diffusion. The Prandtl number is a material parameter of the fluid, i.e. the
ratio of viscous and thermal diffusivities. A characteristic velocity of thermal convection is the
free-fall velocity Uff =

√
gα∆TH . It represents the speed a fluid element with a temperature

difference ∆T relative to its surrounding reaches after a distance H , if viscosity and thermal
diffusion are neglected. The corresponding time scale is the free-fall time

τff =
H

Uff
=

√
H

gα∆T
. (1.4)

While Rayleigh did not use the parameters Ra and Pr himself, his calculations revealed that
the onset of thermal convection is independent of Pr and occurs at a critical Rayleigh number

4



1.2. Thermal convection

H

D(a) (b)

H

Ly
Lx

Figure 1.2.: Common RBC cell geometries. (a) Cylindrical cell with height H and diameter D.
(b) Rectangular cell with height H , width Lx and depth Ly.

Rac = 27π4/4 ≈ 657.5. This value only holds for two free surfaces of the fluid layer, which
is not a realistic condition. The more relevant cases of a lower rigid and upper free surface as
well as rigid boundaries at both top and bottom were investigated in 1926 by Jeffreys [6] and by
Pellew and Southwell [7] in 1940. In the rigid-free case the critical Rayleigh number becomes
Rac = 1100.65 and for the rigid-rigid case it is Rac = 1707.8 [7].

These values for the onset of static convection are independent of the Prandtl number, but
can be modified if the effect of lateral side walls is introduced. This is especially relevant for
experimental studies, since the idealised system of an infinite fluid layer is not feasible in reality.
The geometry of a convection system is generally described by the proportion of the lateral extent
to the height of the fluid layer, the so-called aspect ratio Γ. In cylindrical cells (figure 1.2(a)) it
is given by

Γ =
D

H
(1.5)

with the diameter D of the cell. Thus, the aspect ratio is a non-dimensionalised lateral size of
the considered system. Alternatively, the cell radiusR = D/2 or the inverse of (1.5) can be used
to define Γ instead. For rectangular box-geometries (figure 1.2(b)), two aspect ratios have to be
defined for the two independent lateral extends, often denoted by Γx and Γy (if z is the vertical
axis). Alternatively, the geometry is characterised as width : depth : height = Γx : Γy : 1.
Rigid side walls are known to generally stabilise a flow because they impose no-slip boundary

conditions which brake the flow. They have the same effect on the onset of RBC. For large aspect
ratios Γ� 1, most of the fluid is far away from the side walls and acts as if in a infinitely extended
layer (i.e. Γ → ∞). For small aspect ratios Γ . 10 to 15 the critical Rayleigh number starts
to increase due to the influence of the side walls on the whole fluid layer [8–10]. For a Γ = 1
cylindrical cell the critical Rayleigh number has increased to Rac ∼ 104 [10] and is diverging
towards infinity for Γ→ 0.
The flow at Rayleigh numbers slightly above the onset is generally dominated by convection

rolls (figure 1.3(a)). Their shape, orientation and size is also influenced by the geometry for
Γ . 30 [11]. Alternatively, deviations from the ideal case of the Boussinesq approximation
such as significant temperature dependencies of fluid properties can lead to hexagonal cells
near the onset (figure 1.3(b)). These initial patterns are quickly superseded by other patterns
and instabilities. The rich variety of instabilities in this weakly non-linear regime were studied
intensively in the 1960s and 1970s. A comprehensive diagram of the stability boundaries of

5



1. Introduction

(a) (b)

Figure 1.3.: Illustration of flow patterns near the onset of convection. (a) Counter-rotating rolls
between two solid plates. (b) Hexagonal cells with rising fluid in their centre. This
configuration has a free surface and is thus additionally influenced by surface tension.
A down-welling flow in the centre is possible as well.

convection rolls over the (Ra,Pr, k) phase space was created by Busse and Clever [12] and was
later termed the Busse-balloon [11]. Here, the variable k is the horizontal wavenumber of the
convection rolls, describing their lateral size.
These studies describe the transition from laminar convection close to the critical Rayleigh

number via time-dependent flows in the weakly non-linear regime to strongly turbulent convec-
tion. There, the bulk flow of the fluid is dominated by the inertia of the fluid and is subject
to large velocity fluctuations [13, 14]. While turbulence is generally associated with an erratic
flow, thermal convection still displays, on average, well ordered structures which are the topic of
recent investigations and are termed turbulent superstructures [15–17]. For a Γ = 1 cell, the flow
organises into a single convection roll [13, 14]. Contrary to this seemingly simplistic structure,
it displays a variety of dynamic effects which will be investigated in depth in this thesis (see
chapter 4).

1.2.1. Predicting heat & momentum transfer

Two of the central questions in thermal convection research are those on the amount of heat
transported across the fluid layer and the flow speed, i.e. the momentum transport in the fluid.
For a given system finding these quantities would normally involve time-consuming experiments
or numerical simulations. Consequently, the development of simplified models which quickly
predict the expected properties of a thermal convection system has been of major interest for
researchers. Such models can be used for example by engineers in the technical design of
machines. A successful model also sheds light on the relevant mechanisms within the fluid which
contribute to the transport of heat and momentum, and can further the scientific understanding
of thermal convection.
In Rayleigh-Bénard convection, a certain amount of heat per unit time enters the fluid from the

bottom, is transported upwards and leaves the system at the top. The heat flux density can vary
spatially, but if integrated over any horizontal cross-section at a vertical position z, the resulting
total heat flux Q̇(z) is constant for all z. The heat flux Q̇ can be divided into two parts. The first
is caused by heat diffusion and the second by advection of heat in the flow. The purely diffusive
heat flux Q̇diff in absence of any fluid motion can be calculated by

Q̇diff = λA
∆T

H
. (1.6)
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1.2. Thermal convection

λ is the thermal conductivity of the fluid and A is the area of the horizontal cross-section. To
characterize the heat transport in thermal convection, the Nusselt number Nu is defined as the
total heat flux Q̇, normalized by the purely diffusive heat flux Q̇diff

Nu =
Q̇

Q̇diff

. (1.7)

In absence of fluid motion the total heat flux is equal to the diffusive heat flux Q̇ = Q̇diff and
thus Nu = 1. Once convective motion starts, the heat transport is enhanced and the Nusselt
number increases. Two additional equations to calculate Nu can be derived from the Boussinesq
equations (1.1) [14, 18]

Nu =
〈vzT 〉A,t − κ

∂〈T 〉A,t
∂z

κ∆T/H
(1.8)

= 1 +
〈vzT 〉V,t
κ∆T/H

. (1.9)

These definitions are used in theoretical calculations and numerical simulations. The expressions
〈·〉A,t and 〈·〉V,t are averages over the horizontal cross-section and time, and the whole fluid
volume and time, respectively. The three definitions (1.7), (1.8) and (1.9) are equivalent.
The transport of momentum is characterized by the Reynolds number Re. It gives the ratio of

inertial and viscous forces within the fluid and is defined by

Re =
UH

ν
. (1.10)

U is a characteristic velocity of the flow in question. In the absence of a prescribed flow, i.e. no
forced convection, this most often is an average or root-mean-square (rms) average of the velocity
field v(r, t). Simulations commonly calculate the rms-average of the velocity magnitude |v|
over the whole fluid volume V and time t

U =
〈
|v(r, t)|

〉
rms,V,t

≡
√〈
|v(r, t)|2

〉
V,t

(1.11)

The Reynolds number is meant to capture the general intensity of the flow, but neglects specifics
about the flow structure.
For RBC these dimensionless quantities, Nu and Re, depend on the control parameters

Rayleigh number Ra, Prandtl number Pr and aspect ratio Γ of the system. The goal is to
find general expressions Nu = Nu(Ra,Pr,Γ) and Re = Re(Ra,Pr,Γ). Until numerical
simulations became viable in the last quarter of the 20th century, experimental data were used
to verify theoretical results for these dependencies. Since a change of the parameters Pr and
Γ is accompanied by significant experimental difficulties, because they require replacement of
working fluids or the convection cell, the historically most studied dependency of Nu and Re is
their change with Ra.
Early results suggested, that the relation Nu(Ra) follows a power law Nu ∝ Raγ for wide

ranges of Ra [19]. However, the exact reported values for the exponent γ vary considerably,
mostly within the range 1/4 < γ < 1/3. The first theoretical model for the scaling exponent
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Figure 1.4.: Illustration of the average vertical temperature profile (red line) in turbulent Rayleigh-
Bénard convection. The profile is well approximated by a piecewise linear function
(black line)with a temperature drop of∆T/2 across each of the two thermal boundary
layers with a thickness δT and a perfectly mixed fluid bulk with constant tempera-
ture T̄ .

is based on the bottleneck of the heat transport: the thermal boundary layer (BL). All heat
has to pass through the diffusion dominated layer close to the top and bottom walls. Here,
advection does not enhance the heat transport due to rigid BC and pure heat conduction imposes
an upper limit on the heat flux. Malkus published a theory in 1954 [20], which assumed that
the edge of the thermal BL is always marginally stable and found an exponent of γ = 1/3. This
means, a Rayleigh number based on the thermal BL RaT is always of the order of the critical
Rayleigh number Rac. The temperature profile is approximated by a piecewise linear function
(see figure 1.4). Half of the temperature difference ∆T occurs across the thickness δT of the BL.
Outside the BL, the fluid is well mixed by the bulk flow and the temperature is constant. This
model gives an approximation of δT as [14]

δT '
H

2Nu
. (1.12)

RaT = (δT /H)3Ra/2 is then calculated with δT as its length scale and with ∆T/2 for the
temperature drop in the BL. With RaT ∼ Rac, a scaling of Nu ∝ Ra1/3 follows. This
result approximately matches some of the experimental results of the time, but does not explain
exponents closer to 1/4, or variations of γ with different working fluids, i.e. with changing Prandtl
number [19].
Other theoretical approaches use specific assumptions about the flow. Shraiman and Siggia

[21] found scaling laws for Nu and Re when a large-scale wind at the plates is strong enough to
create a turbulent boundary layer. They obtain γ = 2/7 ≈ 0.286. Kraichnan [22] derived scaling
laws with logarithmic corrections that apply for very large Rayleigh numbers, the ultimate regime
of thermal convection. The resulting effective values of γ exceed 1/3. For very low Prandtl
numbers when convective turbulence is dominated by inertia, Busse and Clever [23] predicted
an exponent of γ = 1/4 within an asymptotic model.
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1.2. Thermal convection

Instead of finding pure scaling laws for specific regimes, Grossmann and Lohse [24] developed
a theory covering a large range of Ra and Pr with different scaling characteristics. Since this
theory will be used as a basis for the theoretical considerations of the present thesis, it is discussed
in detail in the following section.

1.2.2. The Grossmann-Lohse theory

Grossmann and Lohse developed a new scaling theory in the early 2000s. Their first publication
in 2000 [24] considered the viscous and thermal dissipation rates (DR) in a convective flow.
By dividing those into the contributions of characteristic sections of the fluid, namely the bulk
and the boundary layers, they were able to give approximative scaling relations. This resulted
in pure scaling laws for four different regimes that differ by which of the DR contributions is
dominant. In [25], the separate scaling laws were merged into one unified model. This so-called
Grossmann-Lohse theory (GL theory) predicts Nusselt and Reynolds numbers over a large range
of Rayleigh and Prandtl numbers. Rather than resulting in pure power laws, the GL theory gives a
continuous transition between regimes with different scaling behaviours. A central point is, that
the model contains five free parameters, which have to be fitted to experimental data. The latest
update of the theory in 2013 [26] only used the minimum number of 5 data points to determine
the free model parameters and achieved good agreement with most known sets of experimental
data, even when extrapolating far from the fitting data. In the following, the basic derivation and
arguments of the GL theory are summarised, as given in [24–27].
In a convective flow, energy is dissipated by the viscosity of the fluid and by heat diffusion.

The viscous and thermal energy dissipation rates (DR) εν and εκ, respectively, are defined as

εν(r, t) =
ν

2

(
∂iuj + ∂jui

)2
, (1.13a)

εκ(r, t) = κ (∂iT )2 . (1.13b)

The Einstein summation convention applies with i, j = x, y, z and ∂i ≡ ∂/∂xi is the spatial
derivative for the i-th coordinate. For the mean dissipation rates – averaged over the whole fluid
volume and over time – the following exact relations can be derived in the case of statistically
stationary turbulence [28]

εν ≡ 〈εν〉V,t =
ν3

H3

(Nu− 1)Ra

Pr2 , (1.14)

εκ ≡ 〈εκ〉V,t = κ
(∆T )2

H2
Nu . (1.15)

The first step of the GL theory is to separate the mean DR into their contributions from the
boundary layer (BL) at the top and bottom surface, and the fluid bulk

εν = εν,BL + εν,Bulk , (1.16)

εκ = κ
(∆T )2

H2
+ εκ,BL + εκ,Bulk . (1.17)

The additional term of κ(∆T )2/H2 in (1.17) represents the effect of pure thermal diffusion [29].
The contributions εκ,BL and εκ,Bulk exclusively represent the contribution of fluid motion to the
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1. Introduction

mean thermal dissipation rate. εκ,BL originates from the thermal BL, given by (1.12). On the
other hand, εν,BL is the contribution of the viscous BL, which, for a laminar BL, is assumed to
have a Blasius type flow profile [30]. This implies a BL thickness of

δv = a
H√
Re

. (1.18)

The factor a is the first free parameter of the model. It is a priori unknown and has to be inferred
from measurements of the flow in question.
The separation into two characteristic regions of the flow, enables the approximation of the

DR contributions. In the BL, the diffusive transport is assumed to dominate while in the bulk
advection is more important. From the DR definitions (1.13) and the Boussinesq equations (1.1)
the GL theory estimates the DR contributions to be [25]

εν,BL ∼ ν
U2

δ2
v

δv
H
∼ ν3

H4
Re5/2 , (1.19)

εν,Bulk ∼
U3

L
∼ ν3

H4
Re3 , (1.20)

εκ,BL ∼ κ
(∆T )2

H2
(PrRe)1/2 , (1.21)

εκ,Bulk ∼
U(∆T )2

L
∼ κ(∆T )2

H2
PrRe . (1.22)

Here, U is the characteristic velocity of the convective wind in the bulk flow. These estimates
are also multiplied by the volume fraction of the respective region. For the BL this amounts to
a factor of 2δv,T /H , with the constant factor of 2 being omitted. The bulk volume fraction is
(H − 2δv,T )/H , which is approximated as ∼ 1 for thin BL.

For the estimates of the thermal DR the viscous BL was assumed to be nested within the
thermal BL, i.e. δT > δv. This implies, that U is the dominant velocity scale for εκ,Bulk

and εκ,BL. However, this changes once the thermal BL becomes smaller than the viscous BL.
Assuming a linear velocity profile in the viscous BL, the characteristic velocity scale is then
UδT /δv. To model the crossover between these two regimes, U is replaced by Uf(xT ) in (1.21)
and (1.22). Here, the transition function f(xT ) = (1 + xnT )−1/n is introduced with n = 4 and
xT = δv/δT = 2aNu/

√
Re.

A further aspect is that for high Pr the bulk flow becomes laminar due to the strong viscous
effects in the fluid. In this case, the viscous BL thickness has a constant value of δv = H/2,
which is reached in equation (1.18) for a Reynolds number ReH = 4a2. This change in scaling
is modelled by replacing δv → g(xH)H/2, using the transition function g(xH) = xHf(xH)
with xH = δv(Re)/δv(ReH) = 2a/

√
Re. This replacement also applies to the argument xT of

the transition above: xT → Nu g(xH).
These additional regime crossovers give the new estimates

εν,BL ∼
ν3

H4

Re2

g
(

2aRe−1/2
) , (1.23)
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1.3. Magnetoconvection

εκ,BL ∼ κ
(∆T )2

H2

√
PrRe f

(
Nu g

(
2aRe−1/2

))
, (1.24)

εκ,Bulk ∼ κ
(∆T )2

H2
PrRe f

(
Nu g

(
2aRe−1/2

))
. (1.25)

The approximation of εν,Bulk in (1.20) remains unchanged.
In the original article by Grossmann and Lohse [24] pure scaling laws for Nu and Re with

Ra and Pr were derived for different regimes. These were distinguished by which of the DR
contributions was dominating, and which of the BL thicknesses was larger (the high Pr crossover
had not been implemented at the time). This resulted in eight scaling laws for Nu and Re
each. However, to calculate the functions Nu(Ra,Pr) and Re(Ra,Pr) over the whole (Ra,Pr)
space, each estimate was multiplied by a constant prefactor ci (i = 1, 2, 3, 4) and combined with
equations (1.14), (1.15), (1.16), and (1.17). This results in a set of two implicit equations for Nu
and Re [26]

(Nu− 1)
Ra

Pr2 = c1
Re2

g
(

2aRe−1/2
) + c2Re3 , (1.26)

Nu− 1 = c3

√
PrRe f

(
Nu g

(
2aRe−1/2

))
+ c4PrRe f

(
Nu g

(
2aRe−1/2

))
.

(1.27)

These equations display the five free parameters of the model, mentioned above: a, and c1 to
c4. They are determined by a non-linear fit to measurements of Nu for different values of Ra
and Pr. However, the equations are invariant under the transformation Re→ βRe, a→ β1/2a,
c1 → β−2c1, c2 → β−3c2, c3 → β−1/2c3, and c4 → β−1c4 for any β ∈ R. In order to predict
Re correctly as well, at least one measurement Reβ of the Reynolds number has to be known.
To calculate the correct model parameters, the procedure is as follows:

1. A set of Nu measurements is used to determine a first set of parameter values by fitting
the model equations to the data.

2. These first parameters are used to predict the Reynolds number Re for the values of Ra
and Pr, at which the measurement Reβ was taken.

3. The correction factor is calculated as β = Reβ/Rep.
4. The first set of parameter values is now scaled by β using the transformation given above.

This results in the correct values of the model parameters.
The rescaling does not affect Nu; it only fixes the correct value of Re. The latest values of the
parameters from experiments at Γ = 1 are [26]: a = 0.922, c1 = 8.05, c2 = 1.38, c3 = 0.487,
and c4 = 0.0252. The resulting predictions for Nu are in good agreement with experimental
data.

1.3. Magnetoconvection

The classical Rayleigh-Bénard convection is often modified by additional effects. Double dif-
fusive convection studies two scalar quantities, that cause buoyancy (e.g. the concentration of a
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1. Introduction

dispersed material and temperature). Rotating convection places the liquid in a rotating frame
of reference. The boundary temperatures can be adjusted so that the fluid experiences a phase
transition in the convection cell (e.g. by condensing at the cold plate and evaporating at the hot
plate).
An especially interesting case for electrically conducting fluids is the effect of a magnetic

field on the flow. The movement of such a fluid through a magnetic field creates Lorentz forces,
which may alter the flow structure significantly. In nature, examples of this kind of system
are found in geo- and astrophysics. The dynamo effect in planets or stars generates global
magnetic fields through a complex interplay of rotating convection flows in the liquid metal
core or the plasma, respectively, and said magnetic fields. Future technical applications include
the cooling of fusion reactors by liquid metals, which are subjected to the strong magnetic
fields used to contain the plasma. The physics of these systems are investigated in the field of
magnetohydrodynamics (MHD).
An electrically conducting fluid contains charge carriers that are transported by the flow field v.

In a static magnetic fieldB these charges experience a Lorentz force [31]. InMHD, it is generally
assumed that the charge relaxation time is much smaller than the timescales of the flow, so that
the reaction of the charge distribution on the magnetic field can be considered to be instant. The
resulting current density in the fluid is given by Ohm’s law for moving conductors

j(r) = σ
(
E(r) + v(r)×B(r)

)
. (1.28)

The crucial material property for the magnitude of the current is the electrical conductivity σ.
The electric field E in the fluid is determined by the conservation of charge, which states that

∇ · j = 0 (1.29)

inside the fluid volume V . This implies the boundary condition

n · j = 0 (1.30)

on the volume surface S with the surface normal n.
The induced currents in the fluid are called eddy currents. They, once again, interact with

the magnetic field. The Lorentz force density fL acting on a fluid element containing a current
density j is

fL = j ×B , (1.31)

and has to be included in the Boussinesq equation (1.1b)

∂v

∂t
+ (v ·∇)v = − 1

ρ0
∇p+ ν∇2v − gα(T − T0) +

1

ρ0
fL . (1.32)

Whether the Lorentz force has a significant impact on the flow structure depends on its
magnitude compared to the viscous and inertial forces in the fluid. In bulk turbulence, as is the
case for most liquid metal flows, inertial and magnetic forces are most relevant. Their ratio is
expressed by the interaction parameter

N =
σB2lm
ρU

. (1.33)

12



1.3. Magnetoconvection

The length scale lm characterises the penetration depth of the magnetic field into the fluid. If the
magnetic field is present within the whole fluid volume, then lm ≡ H . For values N � 1, the
flow is not influenced by the magnetic field. For N & 1 the flow can be altered by the induced
Lorentz forces and is dominated by them for N � 1. If the magnetic field is not covering the
whole fluid volume, the magnetic length scale lm is not well defined. This topic will be addressed
later in section 2.3.
The reverse effect is possible as well: Fast flows can change the magnetic field. In general, the

magnetic field B can consist of an applied field B0 and an induced magnetic field b generated
by the eddy currents j: B = B0 + b. The induced field is seen as a distortion of the full field
and can be calculated using the law of Biot-Savart [31]

b(r) =
µ

4π

∫
j(r′)× (r − r′)

|r − r′|3 dV ′ . (1.34)

µ is the magnetic permeability of the fluid. Since j depends on B and thus on b, (1.34) is
an integral equation. However, if the magnitude of b is much smaller compared to B0, it can
be neglected in the calculation of j, i.e. B ≈ B0 in (1.28). This is called the quasistatic
approximation. Under these circumstances, the strength of the induced magnetic field b can be
estimated to be

b ∼ µσUlmB0 = RmB0 . (1.35)

Here, Rm is the magnetic Reynolds number

Rm =
Ulm
η

= µσUlm , (1.36)

with the magnetic diffusivity η = 1/(µσ) of the fluid. Rm relates the effect of advection of
B by the flow to the magnetic diffusion. The above estimates are valid if b � B0 and thus
Rm � 1. As a result, if Rm & 1, the magnetic field could be altered by the flow and the
quasistatic approximation is not valid.
Technically, B can also be significantly distorted for the Rm � 1 case by so-called Alfven

waves. For liquid metal experiments on laboratory scale these waves are, however, quickly
attenuated [32] and have no impact on the flow.
The hydrodynamic Reynolds number Rem, based on the length lm, and the magnetic Reynolds

number Rm are related by Rm = PmRem. The magnetic Prandtl number

Pm =
ν

η
= µσν (1.37)

compares the viscous and magnetic diffusion of the fluid and is, like the thermodynamic Prandtl
number Pr, solely dependent on material properties. Given the small magnetic Prandtl numbers
of liquid metals of Pm ∼ 10−6 [32], very fast flows with Rem & 106 are necessary to invalidate
the quasistatic approximation. In the present experiments, the magnetic Reynolds number is
always Rm . 0.02, so the externally imposed magnetic field is considered to be unperturbed by
the flow throughout the whole work.
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Another consequence of the quasistatic approximation is that the electric field can be expressed
as E = −∇ϕ with the electric scalar potential ϕ. Thus, (1.28) becomes

j(r) = σ
(
−∇ϕ(r) + v(r)×B(r)

)
. (1.38)

Using (1.38), the conservation of charge (1.29) and its boundary condition (1.30) translate into
a Poisson equation for ϕ with Dirichlet boundary conditions:

∇2ϕ = ∇ · (v ×B) in V , (1.39)
n ·∇ϕ = n · (v ×B) on S. (1.40)

Some of the first theoretical calculations on magnetoconvection were done in the 1950s by
Thompson [33] and Chandrasekhar [34, 35]. They considered the classical RBC system in an
horizontally infinitely extended layer. The fluid has an electrical conductivity σ and the whole
layer is subjected to a homogeneous, vertical magnetic fieldB. This means, thatB is parallel to
the buoyancy forces: B = Bez and g = gez withB, g = const. From general considerations of
flows in an electrically conducting fluid it is known that magnetic fields suppress vortices whose
axes of rotation do not coincide with the direction of the magnetic field [31]. Since buoyancy
forces excite vertical flows, a vertical magnetic field is opposing the convective motion. As a
result it is found that the critical Rayleigh number Rac for the onset of convection increases with
the magnetic field. The relevant parameter for the strength of the magnetic field is in this case
the Hartmann number Ha

Ha = BH

√
σ

ρν
(1.41)

or, alternatively, the Chandrasekhar number Q = Ha2. Here, the length scale is H , since the
magnetic field spans the whole fluid. The value of Rac for small Ha depends on the boundary
conditions at the horizontal surfaces (rigid walls or free surfaces, figure (1.5)). For Ha & 100,
all types of boundary conditions approach the same solution [5]

Rac ≈ RaCh ≡ π2Ha2 for Ha & 100 . (1.42)

This value RaCh is called the Chandrasekhar limit. Equivalently, the critical Hartmann number
for a constant value of Ra is

Hac ≈ HaCh ≡
√

Ra

π
for Ra & 2× 105 . (1.43)

In this thesis,Rac andHac always refers to the exact numerical solution for the onset of convection
(solid lines in figure 1.5), while RaCh and HaCh refers to the Chandrasekhar limit (1.42) and
(1.43), respectively (dashed line). The procedure of calculating Rac and Hac for two rigid walls
is described in appendix A.

1.4. Flow measurement techniques in liquid metals

A large number of experiments in fluid mechanics are conducted in transparent working fluids
such as water, oils, or air. Optical measurement techniques are the standard in visualising the
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Figure 1.5.: Onset of Rayleigh-Bénard magnetoconvection for a horizontally infinitely extended
fluid layer subject to a vertical magnetic field. Shown are the solutions Hac(Ra)
for three different types of boundary conditions (solid lines) and the asymptotic
Chandrasekhar limit HaCh (dashed line).

velocity field of a flow. Some of the most common methods are particle image velocimetry
(PIV, [36]), laser Doppler velocimetry (LDV, [37]), or particle tracking velocimetry (PTV, [38]).
Because of the opaque nature of liquid metals, such optical measurement techniques are not
applicable and other ways have to be employed, to map the velocity field in these liquids. This
section gives an short overview of methods used to measure velocities in liquid metals and will
discuss the ones used in this thesis in more depth. For a more extensive review, the reader is
referred to [39].
A broad categorisation of measurement techniques can be done by their invasiveness and

whether they are in physical contact with the fluid. Invasive methods alter the flow in some
way and it has to be evaluated, if the measured results are still representative of the unperturbed
flow. If the flow is not changed by the measurement or the changes are negligible, the technique
is called non-invasive. The second aspect covers, whether the measurement device is in direct
contact with the fluid. If this is the case, the device has to resist the potentially hot or chemically
aggressive liquid. Additionally, if the sensor is protruding into the flow, instead of e.g. being
flush with the container walls, it always has to be treated as an invasive technique. Contactless
measurement methods in turn have the advantage of being more readily applicable to aggressive
fluids and often require less modification of the fluid container.
The most simplistic techniques belong to the invasive, contact-based category and work by

mechanical principles. Refractory paddles can be inserted in the melt and are deflected by the
flow or experience a torque based on the flow velocity [40]. In steel casting, the flow below a
layer of slag is measured by submerging an array of steel rods into the liquid. The liquid steel
solidifies around the rods and from the shape of this shell, the flow direction and speed can be
deduced [40].
While visible, infrared, or ultraviolet light does not penetrate metals, it is possible to generate

transmission images using X-ray radioscopy [41]. The absorption of X-rays along the beam path
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is indicative of the local melt density. This method has the advantage of being contactless and
non-invasive. The penetration depth is dependent on the attenuation by the liquid metal and the
strength of the X-ray source, and can range from as little as 1mm to 50mm. A similar technique
uses a neutron beam to visualise the flow [42]. This allows a sample thickness of the order of
∼ 5 cm, but it can lead to an activation of the experimental set-up, which is then radioactive.
A well established way to determine velocities in opaque fluids is ultrasound Doppler ve-

locimetry (UDV). This technique will be used extensively in this work and is thus introduced in
detail in section 1.4.2.
A special property of liquid metals is their high electrical conductivity, which can be exploited

for electromagnetic flow measurements. The first application of electromagnetic velocimetry is
the attempt by Michael Faraday in 1832 to measure an electrical voltage across the river Thames
induced in the flow by the Earth’s magnetic field [31]. Though the experiment ultimately failed,
the principle is used in modern electromagnetic flow meters [43]. A magnetic field imposed
on a pipe or channel induces an potential difference in the flow, which can be measured by
electrodes embedded in the side walls. This voltage is proportional to the volume flux through
the pipe. For local measurements, this method can be scaled down into a so called potential
or Vivès probe [39, 44]. By inserting the electrodes inside the flow, only a small distance
apart, the velocity in between the electrodes can be deduced. An extension of this concept to
arrays and grids of electrodes at container walls allows the measurement of two-dimensional,
two-component velocity field near the wall [45].
The big advantage of inductive techniques is, however, the possibility of contactless measure-

ments. The magnetic field induces eddy currents in the fluid. These in turn generate a secondary
magnetic field, which is also present outside the fluid and can be measured there. Eddy current
flow meters [46] induce eddy currents via an alternating magnetic field. These currents are
then advected by the flow and their secondary magnetic field can be detected by induction coils.
Contactless inductive flow tomography (CIFT) measures the secondary magnetic field of the
flow-induced eddy currents at many positions around the fluid container and reconstructs the
velocity field by solving an inverse problem [47]. One potential drawback of the presence of
eddy currents in magnetic fields is the generation of Lorentz forces. Their influence on the flow
has to be considered carefully, since they can alter the flow structure significantly.
However, this apparent downside is exploited by another flowmeasurement method. The same

forces in the fluid also act on the external magnet system. This is exploited by Lorentz force
velocimetry (LFV). The application of LFV to thermal convection in liquid metals is a central
topic of this thesis and is discussed in the next section.

1.4.1. Lorentz force velocimetry

LFV has been developed in the first decade of the 21st century at the Technische Universität
Ilmenau [48, 49], though the basic principle was well known beforehand [50]. It utilises the
interaction of a magnet system with the flow of an electrically conducting fluid to probe the
velocity field.
The fluid flow v is subjected to an external magnetic fieldB0. Due to Ohm’s law (1.38), eddy

currents j are induced and generate a secondary magnetic field b (see figure 1.6). This magnetic
field is not only present inside, but also outside of the fluid and can thus interact with the external
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Figure 1.6.: Illustration of themeasurement principle of Lorentz force velocimetry. Themagnetic
field B (solid green line) of a permanent magnet induces eddy currents j (dashed
red lines) into the fluid due to the flow field v (black arrow). The interaction of j
withB gives rise to Lorentz forces F L (light blue arrows) on the fluid which in total
have the same magnitude as the force Fm (dark blue arrow) on the magnet. Adapted
from [Z2].

magnet system. If B0 is generated by a current density j0 in a coil, the induced field exerts a
force

Fm =

∫
j0 × b dV (1.44)

on the coil [49]. If the magnet system is a permanent magnet with an magnetisation M , the
fictitious current density j0 = ∇×M can be used instead.
At the same time, the eddy currents in the fluid are interacting with B0, generating Lorentz

forces fL in the flow (1.31). By virtue of Newtons’ third law, the sum of all Lorentz forces in
the fluid

F L =

∫
fL dV =

∫
j ×B dV (1.45)

is of the same magnitude and opposite sign as the force on the magnet system [49]

Fm = −F L . (1.46)

For low magnetic Reynolds numbers Rm� 1, the magnitude of F L can be estimated to be

|F L| ≡ FL ∼ µσUB2
0 l

3
m . (1.47)

Here, lm is a typical length scale of the magnetic field in the fluid (see section 1.3) and U is a
characteristic flow velocity in the area of the magnetic field.
The scaling (1.47) shows, that FL and consequently the force on the external magnet system

is proportional to the flow velocity U . This is the central relationship of LFV: By measuring the
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UDV
v t1 t2

d2 − d1

Figure 1.7.: Operating principle of UDV. A particle in a flow v towards a side-wall is at time ti
at a distance di from the UDV sensor (i = 1, 2). The particle velocity along the
measurement line is then (d2 − d1)/(t2 − t1).

force on the magnet system, the flow velocity in the area penetrated by the external magnet field
can be deduced. The linear dependency of the Lorentz force on the velocity field v can also be
shown more rigorously by calculating a general analytical solution of F L (see section 2.3 and
appendix B).

This measurement principle has been adapted to multiple devices and applications. Lorentz
force flow-meters can be implemented as linear LFVs (measuring the force in one or multiple
directions [48]) rotary LFVs (measuring the torque on the magnet system [48, 51]) or a combina-
tion of both [52]. Such measurement devices were used to detect the volume flux in liquid metal
channel flows [53, 54]. An extension of the measurement technique towards low-conducting
electrolytes was made possible by highly sensitive force measurement systems to compensate
for the decrease in electrical conductivity by about six orders of magnitude [55, 56]. A different
application was explored in the field of Lorentz force sigmometry [57], where the electrical
conductivity of a fluid is determined from a known flow. Alternatively, the effect of the electrical
conductivity can also be completely negated by applying a time-of-flight principle [58, 59].
These techniques all utilise magnet systems that subject the whole cross-section of a channel or
pipe to a magnetic field. Local Lorentz force velocimetry (LLFV) instead uses small magnets
compared to the fluid volume, to only probe certain parts of the flow [60]. This decrease of
the measurement volume (i.e. lm) also decreases the measured forces on the magnet system and
requires more sophisticated force measurement equipment. However, it allows the detection
of complex flow structures in e.g. channel flow [60], forced convection [61] and continuous
casting moulds [62]. The above estimation of the Lorentz force magnitude (1.47) assumed the
quasistatic approximation. In case of high velocities (i.e. Rm & 1) this does not apply and the
linear dependency of the force on the flow speed is invalidated. However, it was shown that LFV
can still be applied to such flows if the induced magnetic field is considered accordingly [63].
The opposite case of very low velocities was so far not investigated. Here, a potentially high
interaction parameter N & 1 implies that the flow might be altered by the magnetic field. Ther-
mal convection flows are especially susceptible to such disturbances, since their flow structures
are very sensitive to external influences. This thesis will attend to this matter by developing
and verifying theoretical models to predict whether the flow is significantly affected by the LFV
measurement device.
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1.4.2. Ultrasound Doppler velocimetry

The origin of ultrasound Doppler velocimetry (UDV) or ultrasound velocity profiling (UVP)
lies in the medical application of blood flow measurement. The technique was first adapted for
experimental fluid mechanics by Takeda [64] in 1986. The initial water experiments were soon
followed by first measurements in liquid mercury the following year [65].
A transducer emits an ultrasonic wave with a well-defined f0 frequency into the fluid using a

piezoelectric actuator (see figure 1.7). The signal propagates with the speed of sound c in the
fluid and is concentrated along a straight line in front of the sensor, the so called beam-line.
Small particles scatter the wave and create echoes which can be recorded by either a second UDV
sensor or by the first sensor itself. In so-called pulsed UDV, the transducer emits short ultrasonic
pulses and measures the returning echoes during the idle period in between consecutive pulses.
To obtain the flow velocity from the particle echoes, two evaluation methods are available.

First, the Doppler shift of the measured echoes can be evaluated. Depending on the particle
velocity towards or away from the measuring sensor, frequency f of the reflected signal is shifted
from the original emission frequency f0. The particle velocity v parallel to the measurement line
of the UDV sensor is then [64]

v =
cf

2f0
. (1.48)

The name UDV is derived from this evaluation method. The position d of the particle along the
measurement line can be calculated from the time difference ∆t between the signal emission and
the return of the echo

d =
c∆t

2
. (1.49)

The result is a one-dimensional and one-component velocity profile parallel to the measurement
line. The disadvantage of this method is, that it relies on a single measurement and is thus very
susceptible to noise.
The secondmethod relies on themovement of particles overmultiple successivemeasurements.

If a particle stays within the ultrasonic beam for multiple measurements, the change of its
distance d from the sensor gives the particle velocity along the beam-line. This operating
principle is illustrated in figure 1.7. In practice this method is implemented by cross-correlation
of multiple successive echo profiles. Like the previous evaluation, it results in a velocity profile
parallel to the measurement line. The drawback of this method is a decreased time resolution.
However, it gives the advantage of a more stable evaluation result. This is especially important
for low velocity flows (. 10mm s−1), as is the case for thermal convection. In the present study
this second evaluation method is used exclusively.

1.5. Scientific objectives of the thesis

The goal of this thesis is to investigate the effect of magnetic fields on thermal convection in
liquid metal flows. This topic can be divided into two aspects:

1. An influence of themagnetic field on the velocity field is not desired and should be avoided.
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2. An alteration of the flow by the magnetic field is intended and the resulting effects are
investigated and explained.

Both cases will be covered in the present thesis.
Avoiding a change of the flow field by applying a magnetic field is relevant for inductive

measurement techniques. Ideally, a measurement device investigates a system without altering
its properties. Here, the example system of a local Lorentz force velocimeter measuring the
flow speed in a convection experiment will be considered in chapter 2. A major focus will be
on the effect of localised magnetic fields, where the size of the affected fluid volume is not
clearly defined and requires special consideration. The goal of the investigation is to find the
threshold between the affected and unaffected flow regimes theoretically and confirm the findings
experimentally. The theoretical calculations should be broadly applicable for numerous other
types of set-ups, not just for the present experiment.
The opposite case of a convective system which is altered significantly by a magnetic field

is investigated for the case of Rayleigh-Bénard magnetoconvection with an imposed vertical
magnetic field. Measuring of the velocity field in liquid metals is notoriously difficult, due to
their opaqueness. The present experiments aim to conduct a thorough analysis of the large-scale
flow using ultrasound Doppler velocimetry and temperature sensors. The properties of the flow
structure without the application of a magnetic field are to be compared with results from water
experiments and their differences, and similarities are highlighted (chapter 4). Additionally,
the global properties of heat and momentum transport are investigated. These measurements
build the basis of the following chapter 5, where a magnetic field is applied to the system.
The alterations of the flow structure are recorded and analysed. Here, it is of interest how the
turbulence of the flow is suppressed and how the flow patterns adapt to the reduced flow speed.
The heat transfer is expected to decrease with the flow intensity, but the exact relation is to be
determined. The same dependency should be assessed for the momentum transport.
In addition to the experimental work, a theoretical investigation of the heat and momentum

transfer is conducted in chapter 3. Predicting these properties in convective flows is a major
research aspect and should be extended to the present case of magnetoconvection. A theoretical
model is developed and tested with available experimental and numerical data. After the present
experiments have been introduced, the theory will also be validated against these new results
(section 5.4). This theory should also be useful to identify the relevant physical mechanisms
responsible for the transport of heat and momentum in the fluid.
Finally a summary and a brief outlook are given.
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2. Local Lorentz force velocimetry in vertical
convection experiments

This chapter investigates the applicability of local Lorentz force velocimetry (LLFV) on thermal
convection flows. The challenge of this topic primarily stems from the small characteristic
velocities U . 10−2ms−1 in such systems. The result of slower flow speeds is also a decrease
of the force acting on the magnet system of the LLFV (1.47). Additionally, the interaction
parameter N ∝ U−1 increases for small velocities (see (1.33)). This makes it imperative to
ensure that the flow is not significantly altered by the induced Lorentz forces, which can be the
case for N & 1. Thermal convection systems are especially sensitive to external forces, because
the dynamics and structure formation in such flows are often based on symmetries of the system,
which can be easily broken. To counteract the increase ofN , the magnet system can be adjusted.
Using a smaller permanent magnet decreases the magnitude B of the magnetic field in the fluid
and the volume it is influencing (represented in (1.33) by the length scale lm). The disadvantage
of such changes is an additional decrease of the forces measured by the LLFV.
This predicament of decreasing forces is intrinsic to LFV. As discussed before, the measured

forces Fm on the LFV magnet system have the same magnitude as the Lorentz forces F L acting
on the fluid (see (1.46)). To not influence the flow, the induced forces have to be smaller than
the driving forces of the flow, namely buoyancy forces. This, in extension, means that also
the measured forces cannot be stronger than the driving of the flow. For LLFV to be useful in
convection flows this upper limit of the forces acting upon the magnet system poses a requirement
on the resolution of the force measurement system.
For the experimental test of LLFV on thermal convection, a vertical convection system (VC) is

used. As will be discussed in the following section 2.1, this configuration generates a canonical
flow structure of one large-scale convection roll. Afterwards, the experimental set-up is pre-
sented in section 2.2. The influence of the magnet system on the flow and the resulting LLFV
measurements are then discussed in sections 2.5 and 2.4, respectively. Most of the content of
this chapter was published in [Z2]. The publication also contains additional information on
VC outside of the scope of this thesis, including heat and momentum transfer, details on the
large-scale flow structure and velocity fluctuations.

2.1. Vertical convection

Vertical convection (VC) refers to a fluid confined between two opposing vertical walls which are
heated or cooled, respectively (figure 2.1). This horizontal temperature gradient results in well
defined regions of up- and down-welling flows: At the hot wall the fluid is rising while at the
cold wall it is sinking down. In a closed cell, these streams are impinging on the top and bottom
plates and are horizontally redirected to the other side of the cell, closing the flow structure into a
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Th Tcg

L

Figure 2.1.: Configuration of a vertical convection system. Opposing vertical side walls at a
distance L are heated and cooled to constant temperatures Th and Tc, respectively.
The imposed temperature gradient is thus perpendicular to the acceleration g due to
gravity.

single large-scale circulation across the whole cell. The direction of this convection roll is fixed
and gives a predictable, canonical flow, which are ideal properties to test LLFV on.
As opposed to Rayleigh-Bénard convection, VC displays convective motion at any temperature

difference∆T between the sidewalls. TheRayleigh numberRa, here defined using the distanceL
between the heated/cooled side walls, does not have to exceed a critical value for a flow to set in.

2.2. Experimental set-up

The experiment is conducted in a rectangular cell (figure 2.2). The heated and cooled side
walls are at a distance of L = 150mm and are build as copper heat exchangers, each supplied
with water by a thermostat. The other cell walls are made of PMMA. The height of the cell is
H = 148mm and its thickness is 30mm. The coordinate system is oriented with z as the vertical
axis and x as the wall normal of the copper plates. The whole cell is thermally insulated using
insulation wool and Styrofoam.
The working fluid in the cell is gallium-indium-tin (GaInSn). At its eutectic composition of

67wt% gallium, 20.5wt% indium, and 12.5wt% tin, this alloy has a melting temperature of
10.6 ◦C [66]. Its material properties are listed in table 2.1. Of importance is the low Prandtl
number. Its value ranges from Pr = 0.033 at 20 ◦C to Pr = 0.026 at 50 ◦C.
The plate temperatures are measured using thermocouples of type K. They are positioned at

the centre of the copper plates and their tips are in direct contact with the liquid metal. The
temperature of the cold and hot plate are denoted by Tc and Th, respectively. The temperature
difference is then ∆T = Th − Tc and the mean temperature of the fluid is T̄ = (Tc + Th)/2.
The LLFV measurement system is positioned at the top centre of the cell. A cubic permanent

magnet of side length 5mm is positioned so that its magnetisation is in vertical direction and
its centre is at a distance of h = 7.5mm from the upper fluid surface. Thus, the magnetic
field is localised at the PMMA lid with electrically insulating boundary condition. The force
on this magnet is measured using an interference optical force sensor (IOFS) with a resolution
of 15 nN [60]. Only the force componentFx in x-direction is measured, since the flow is expected
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Figure 2.2.: Set-up of the vertical convection experiment. (a) Image of the cell with coordinate
system and inner dimensions in mm. (b) Placement of the measurement sensors:
The ultrasonic transducer (UDV, blue), thermocouples (Th and Tc, red) and the
5mm-magnet (LLFV, green). The beam-line of the UDV-sensor is indicated as a
light blue stripe. The convective flow is sketched for heating on the left and cooling
on the right side of the cell.

to predominantly move in that direction (see section 2.1). The set-up was mounted on a heavy
granite stone to damp vibrations coming from the surrounding.
For comparison, an 8MHz UDV sensor is used to measure the horizontal velocity near the cell

top using a DOP3010 system. The sensor has a piezo-actuator of 5mm diameter. It is embedded
into the copper plate and in direct contact with the liquid. The beam-line centre is 5.5mm below
the upper fluid surface.

2.3. The measurement volume of LLFV

For the measurement of local velocities using LFV, it is important to know the size of the fluid
volume, which contributes to the final signal. This quantity is rather ambiguous: (i) There is
no natural, well-defined cut-off distance at which the magnetic field is too weak to generate a
significant signal. (ii) The correct area of influence requires knowledge of the velocity field,
which is often not the case and defeats the purpose of a flow measurement system. Point (i)
is a question of convention about how to define a cut-off point. Point (ii) on the other hand is
more inconvenient, since any single LLFV system would have to be considered with a number
of different flows, to characterise its measurement volume.
Such a characterisation has been done by Heinicke [68] for pipe flow. There, a Poiseuille-

type flow profile was assumed and the Lorentz force density was calculated numerically. The
measurement volume had been defined as a sphere around the magnet system, that included 95%
of the induced Lorentz forces. The extent of this sphere into the fluid is the penetration depth d
of the LLFV. Such an approach gives accurate results for any single application. However, its
results are not easily transferable to other flow types.
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Mass density ρ = 6.34× 103 kgm−3

Kinematic viscosity ν = 3.15× 10−7m2 s−1

Dynamic viscosity νρ = 2.00× 10−3 Pa s
Thermal conductivity λ = 24.9Wm−1K−1

Isobaric heat capacity cp = 364 J kg−1K−1

Thermal diffusivity κ = 1.08× 10−5m2 s−1

Volumetric expansion coefficient α = 1.24× 10−4K−1

Electrical conductivity σ = 3.20× 106 Sm−1

Magnetic diffusivity η = 2.49× 10−1m2 s−1

Prandtl number Pr = 0.029
Magnetic Prandtl number Pm = 1.3× 10−6

Table 2.1.: Material properties of eutectic GaInSn at 35 ◦C [66, 67].

In this section a velocity-independent solution to point (ii) is developed. The penetration
depth of a LLFV system into a flow is calculated for a simplified set-up that is suitable to a wide
variety of applications. The influence of the velocity field is decoupled from all other parameters
and can thus be excluded from the definition of the penetration depth d. The somewhat lengthy
calculations are deferred to appendix B. Here, a short summary is given.
The present set-up is reduced to a cubic permanent magnet over an infinite half-space z ≤ 0

filled with an electrically conducting fluid. The velocity field in the fluid is assumed to have one
horizontal component and to be dependent on the vertical depth only: v(r) = vx(z)ex. These
simplifications are justified, if the LLFV system is small in comparison to the size of the cell
dimensions and the size of the flow structures. In the quasistatic approximatio, it can be shown
that the accumulative Lorentz force F L (see (1.45)) only has one component in direction of the
velocity field

FL,x =

∫ 0

−∞
vx(z)w̃(z) dz . (2.1)

The sensitivity function w̃(z) (see (B.30b)) characterises the contribution of the flow field in a
certain depth towards the total induced Lorentz force. It is independent of the velocity field and
can be calculated from the spatial distribution of the magnetic field and the shape of the fluid
volume. For the present set-up, using a 5mm magnet at a distance of h = 7.5mm, w̃x(z) is
plotted in figure 2.3(a). The sensitivity function is used to calculate the relative contribution P̃ (z)
of the flow up to a certain depth z towards the total force

P̃ (z) =

∫ 0
z w̃(z′) dz′∫ 0
−∞ w̃(z′) dz′

, z ≤ 0 . (2.2)

The penetration depth d95 is now defined as the position, at which the relative contribution
reaches P̃ = 95% (following the convention by Heinicke [68]). For the present set-up a value
of d95 = 10.6mm is calculated using linear interpolation (see figure 2.3(b)). This value can be
applied to any kind of flow, where the flow structures and overall fluid volume are larger than the
magnet system and where the quasistatic approximation applies.
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Figure 2.3.: Characteristic quantities of a LLFVwith a 5mmmagnet at a distance of 7.5mm from
the fluid. (a) Sensitivity function w̃x(z), normalised by the electrical conductivity σ
of the fluid and the remanence µ0M of the magnet. (b) Relative contribution P̃ (z)
of the flow up to a given depth z towards the total Lorentz force. The dashed lines
indicate the penetration depth of the LLFV at P̃ = 95%.

The above definition of the penetration depth is equivalent to the one used by Heinicke [68],
if a solid body translation would be considered, i.e. vx(z) = vx = const. This is generally
not the case in experiments. Often, no-slip conditions apply to the fluid boundaries and the
velocities are smallest near the surface. Additionally, the low sensitivity at higher depths might
be compensated by faster velocities in these depths. As a consequence, realistic velocity profiles
generally result in higher penetration depths. In the case mentioned before, Heinicke [68] found
a penetration depth of 38mm for the present set-up when applied to a Poiseuille flow profile. If
a velocity profile should be included in the calculation of the penetration depth, the definition of
P̃ can be easily adjusted by replacing w̃x(z)→ vx(z)w̃x(z) in (2.2).

2.4. The influence of a magnet on the convective flow

To investigate the interaction of a magnet with the convective flow, a cubic NdFeBmagnet with an
edge length of 10mm is placed at different heights h above the centre of the cell. The heating and
cooling thermostats are set to constant temperatures of 40 and 15 ◦C, respectively, to drive a flow.
The horizontal velocity profile below the cell lid is measured by the UDV sensor. Figure 2.4(a)
shows the time-averaged profiles vx(x) for different magnet distances h. For large h & 20mm,
the velocity profile does not change from the unperturbed state: The fluid flows from left to right
and the horizontal velocity slowly decreases over the cell width. Once the magnet gets closer to
the fluid, the velocity profile is strongly altered: The magnitude of the profile decreases and for
the closest position h = 10mm, the velocity starts to rapidly drop at the position of the magnet.
This suggests, that the magnet acts as a magnetic obstacle and the horizontal flow along the top
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Figure 2.4.: Influence of a 10mm magnet on the convective flow. (a) Time-averaged horizontal
velocity profiles vx(x) below the cell lid for different magnet distances h. The light
grey area indicates the position and size of the magnet. h = ∞ means that the
magnet had been removed completely. (b) Average velocity vx(0) directly below the
magnet vs. the magnet position. The dotted line gives the value of vx(0) for h =∞.
The error bars give the standard deviation of the measurements. (c) Interaction
parameter N vs. the magnet position.

of the cell is redirected downwards.
Figure 2.4(b) shows the average velocity at x = 0 in the centre of the cell for different magnet

positions h. The diagram shows that the flow is influenced, if the magnet is closer than a critical
distance h ∼ 20mm. Above this value, the velocities do not deviate from the unperturbed state,
indicated by the dotted line.
As discussed in the introduction, whether a flow is altered by an applied magnetic field can be

estimated by the interaction parameter. Its definition was

N =
σB2lm
ρU

. (1.33)

The material parameters σ and ρ of the fluid are calculated at the mean fluid temperature T̄ [66].
The maximum magnetic flux density B in the fluid is measured at the top surface of the cell
directly below the magnet. For the velocity scale, the unperturbed horizontal velocity U = vx(0)
is used, i.e. for h = ∞ (figure 2.4(b)). Lastly, the magnetic length scale lm is defined as the
penetration depth d95 of the magnet. It is calculated as described in the previous section 2.3
for the present magnet size of 10mm and the respective magnet position h (the exact values are
listed in table B.1 of appendix B.2). The resulting values of N are plotted as a function of h in
figure 2.4(c). The interaction parameter decreases continually, as the magnet moves away from
the cell. Between h = 17.5mm and 20mm, it crosses the N = 1 threshold. When compared to
the central velocity in figure 2.4(b), this distance is the same value at which the velocity profiles
start to deviate from the unperturbed state. Thus, the choices of the characteristic quantities to
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Figure 2.5.: Exemplary time series of multiple quantities in a vertical convection experiment.
(a) The Rayleigh number reaches a plateau at Ra = 1.1× 107. (b) The force Fx on
the LLFV, corrected by its initial offset. (c) The horizontal velocity measured by the
UDV sensor at the point x = 0mm. The light grey area marks the time range used
for averaging the quantities.

calculate N – especially lm = d95 – give a good prediction of the threshold beyond which the
flow is altered by the magnetic field.

2.5. Force scaling

Experiments are conducted for constant Rayleigh numbers 3.7 × 105 ≤ Ra ≤ 3.2 × 107. The
cooling and heating temperatures Tcold and Thot, respectively, are set to a constant value of
15 ◦C. Then Thot is increased to a fixed target temperature in the range 15 ◦C < Thot < 60 ◦C.
Figure 2.5 shows the time-lines of the Rayleigh number, measured force and horizontal velocity
for a typical experiment. The measurement starts at ∆T = 0 to record the zero signal of the
LLFV force Fx. At t = 0, the heating temperature is increased and reaches a constant value of
24.5 ◦C (Ra = 1.1× 107) 10min later. The convective flow develops and settles at t ∼ 20min,
after which both the force and velocity remain constant. Now, data is collected for 10min and
at t = 30min the heating temperature is decreased again until it reaches its initial value. At the
end a second zero signal of the force is recorded and the experiment is finished. For other Ra,
the time to reach the constant plateau is different, but the plateau length is kept constant for all
measurements.
The force offset at the beginning and end of the experiment is important, because the force

measurement is very sensitive to outside perturbations. The force signal often drifted over time.
For experiment durations of ∼ 1 h these drifts were mostly linear and could be corrected. A
linear function is fitted to the zero signals at the beginning and the end of the measurement and
subtracted from the whole signal. However, for longer durations the drifts could change over
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Figure 2.6.: Scaling of the force Fx on the LLFV magnet with the flow velocity Ux measured by
the UDV sensor. The errors are the standard deviations of the averaged values.

time and it was not possible to accurately correct the force signal afterwards. These drifts may be
caused by various effects, but no definitive culprit could be found. Candidates are the changing
surrounding temperature due to the heating plate, electromagnetic signals from the surrounding
electrical devices or vibrations from the building. The last part was not fully eliminated by the
granite plate the experiment was mounted on, since the force measurement could detect a person
walking around in the laboratory. Consequently, the experiments had to be fully automated and
were run overnight to avoid disturbances during working days.
For comparison of the measured force, the velocity profile vx(x, t) measured by the UDV

sensor is averaged over time and the interval −10mm ≤ x ≤ 10mm below the magnet. This
gives a characteristic horizontal flow velocity

Ux =
〈
vx(x, t)

〉
t,−10mm≤x≤10mm . (2.3)

The interval size is chosen to be of the order ∼ d95 = 10.6mm as calculated in section 2.3.
Figure 2.6 shows the time averaged force Fx measured by the LLFV plotted against the

velocity Ux. A linear fit to the data using orthogonal distance regression shows, that the general
relation Fx ∝ Ux holds in this convective system. The deviations from the linear fit at low
velocities stem from the small force amplitudes ∼ 0.1 µN, which approach the sensor resolution
of 0.015 µN. For larger velocities of∼ 10mm s−1 the increased turbulence generates a spreading
of the measurement points.
The interaction parameter N of the system is calculated as shown in the previous section 2.4,

with Ux as the velocity scale. Values of N over Ra are displayed in figure 2.7(a). It shows
that for Ra . 107 the interaction parameter is larger than 1. This means, that for most of the
measurements the flow may be altered by the magnetic field of the LLFV. To verify this, the
experiments are repeated without the presence of the LLFV magnet system. The velocities Ux
with andwithout the influence of the permanentmagnet are plotted in figure 2.7(b). The velocities
do not show a significant deviation from one another. Consequently, the influence of the magnet
is not strong enough to significantly alter the flow in the present case.
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Figure 2.7.: (a) Interaction parameter N over Rayleigh number Ra. (b) Characteristic horizontal
velocity Ux over Rayleigh number Ra with and without the influence of the LLFV.

2.6. Concluding remarks

It has been shown, that the linear dependence of the force measured by a LLFV on the fluid
velocity applies also to slow convective flows. In these systems, additional care has to be taken
to not alter the investigated flow in the high-N regime. In contrast to the high-Rm regime at high
velocities [69], these changes cannot be incorporated into the calibration of the measurement
system. If it is possible to conduct direct comparison of the flow with and without the LLFV
it can be verified, whether the measurement system is altering the flow. However, if this is not
feasible the threshold N = 1 can be taken as an boundary for the design of measurement systems.
The calculation strategy of N given in section 2.4 and appendix B.2 gives a clear threshold,
which is applicable to not only LFV systems, but all inductive measurement methods employing
localised magnetic fields. In addition, it provides a rigorous theoretical definition of the fluid
volume affected by induced Lorentz forces, independently of the specific velocity field. Though
if desired, the calculation is easily expandable to arbitrary one-dimensional velocity profiles.
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3. Theory of heat and momentum transport in
magnetoconvection

As described in section 1.2, the transport of heat and momentum are important global properties
of thermal convection systems. Since the presence of a magnetic field can significantly alter
the flow structure of an electrically conducting fluid, it also has an effect on Nu and Re. The
Grossmann-Lohse theory does not incorporate these effects and has to be adjusted to be relevant
in magnetoconvection.
In this chapter the addition of a vertical homogeneous magnetic field to the RBC system is

considered. Most of the results of sections 3.1 and 3.2 have been published in [Z1].

3.1. Extension of the Grossmann-Lohse theory by magnetic
dissipation

The eddy currents j induced in a flow by an external magnetic field B0 generate heat via Joule
dissipation. The power density associated with this process is [31]

∂P

∂V
=

1

σ
j2 . (3.1)

Since the strength of the eddy currents is proportional to the electrical conductivity σ of the fluid
(see (1.38)), the Joule dissipation is also expected to increase linearly with σ. The local magnetic
dissipation rate (DR) is given by εσ = µ∂P/∂V . With µj = ∇× b this results in

εσ = η (∇× b)2 = η
[
(∂ibk)

2 − (∂ibk)(∂kbi)
]
. (3.2)

Here, b = biei is the induced magnetic field, generated by the eddy currents j. The relevant
fluid property is the magnetic diffusivity η = 1/(µσ) with the magnetic permeability µ. For
liquid metals, the latter is generally assumed to be equal to the permeability of free space µ0.
The mean magnetic DR in the fluid is then given by

εσ ≡ 〈εσ〉V,t = η
〈

(∂ibk)
2
〉
V,t

, i 6= k . (3.3)

The mixed terms 〈(∂ibk)(∂kbi)〉V,t vanish for i 6= k, since the induced magnetic field b is
generated by the isotropic turbulence of the flow and thus different elements of its Jacobian
matrix are considered to be uncorrelated. It should be mentioned that the present definitions
of εσ and εσ are slightly different from other publications [Z1, 70], which include an additional
factor of 1/(µρ). The definition used here ismotivated by consistent dimensions of the dissipation
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3. Theory of heat and momentum transport in magnetoconvection

rates εν , εκ and εσ. The viscous DR εν is measured in (m/s)2s−1 and the thermal DR εκ has the
unit K2 s−1. With the present definition the magnetic DR εσ has the physical dimension T2 s−1.

IntroducingB0 into the GL theory does not affect equation (1.15) containing the thermal DR.
In equation (1.14), however, the magnetic DR is introduced [70]

εν +
εσ
µρ

=
ν3

H4

(Nu− 1)Ra

Pr2 . (3.4)

This shows that, in addition to viscous damping, the dissipation of kinetic energy is enhanced by
Joule damping. Estimating the magnitude of these two effects in the quasistatic approximation
(using (1.35)) gives

|εν | ∼ ν
U2

H2
, (3.5)∣∣∣∣ εσµρ

∣∣∣∣ ∼ σB2H2

ρ

U2

H2
= νσ

U2

H2
. (3.6)

Thus, the damping due to Joule dissipation can be considered as an additional “magnetic vis-
cosity” νσ = σB2H2/ρ [71]. The ratio νσ/ν = Ha2 relates the relative size of these effects
directly to the Hartmann number. While this estimation is helpful for the physical understanding
of the system at hand, it needs to be remembered that Joule damping is anisotropic and acts on
all scales of the flow [71]. In this, it differs significantly from the kinematic viscosity.
In 2008, Chakraborty [70] used equation (3.4) and (1.15) to derive pure scaling laws for Nu

and Re analogously to the first publication by Grossmann and Lohse [24]. To achieve this, he
assumed that εν ∼ εσ/(µρ) and split (3.4) into two equations. The drawback of this approach is,
that it employs three equations (for εν , εσ and εκ) to calculate two quantities (Nu and Re), which
is an overdetermined system of equations. In the present derivation, instead of pure scaling
laws for different regimes, a unified theory will be developed similarly to the GL theory (see
section 1.2.2).
For the first step, the three dissipation rates are, again, split into their respective bulk and

boundary layer (BL) contributions. In addition to (1.16) and (1.17) this gives

εσ = εσ,BL + εσ,Bulk . (3.7)

Secondly, approximations of the scalings for the BL and bulk contributions to all three dissi-
pation rates have to be derived. For this, a number of assumptions have to be made.
The Prandtl number is restricted to very small values Pr � 1. This eliminates the need for

an additional free model parameter, which was introduced into the GL theory for the regime of
high Pr � 1 [25]. Fluids in the low-Prandtl number regime include liquid metals and plasmas.

The quasistatic approximation is used, i.e. the induced eddy currents j are not affected by their
own secondary magnetic field b and the time evolution of the magnetic field can be neglected.
This requires that Rm � 1, which excludes a number of geo- and astrophysical phenomena,
e.g. planetary and stellar dynamos.

At high Hartmann numbers Ha � 1, alterations to the system have to be considered for the
onset of convection and boundary layers (BL). As noted in section 3.1, the onset of convection
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3.1. Extension of the Grossmann-Lohse theory by magnetic dissipation

reaches the Chandrasekhar limit (1.42) for strong magnetic fields. This scaling of the critical
Rayleigh number will be included in the theory.

The viscous BL thickness δv is changed by the magnetic field and the Blasius-type BL is no
longer applicable. A vertical magnetic fieldB ‖ g is perpendicular to the horizontal boundaries
of the fluid layer. When assuming a flow parallel to the top and bottom plate the BL can be
interpreted as a Hartmann layer. In this case, the Lorentz forces decrease the viscous BL thickness
which becomes [31]

δB =
H

Ha
. (3.8)

In contrast to the Blasius BL δv, the Hartmann layer δB does not contain a free parameter. The
thermal BL thickness δT is still given by (1.12). It is affected by the magnetic field only indirectly,
since the Nusselt number is now a function of the Hartmann number, as well as the Rayleigh and
Prandtl numbers.
Under these assumptions and approximations, the dissipation rate contributions can be esti-

mated as follows: The scaling arguments for the viscous and thermal dissipation rates are the
same as for the standard GL theory (1.19) – (1.22). The only difference appears for εν,BL, where
the estimate employs the Hartmann layer thickness δB instead of the Blasius layer thickness δv
The resulting equations are

εν,BL ∼ ν
U2

δ2
B

δB
H

=
ν3

H4
Re2Ha , (3.9)

εν,Bulk ∼
U3

H
=

ν3

H4
Re3 , (3.10)

εκ,BL ∼ κ
(∆T )2

H2
(PrRe)1/2 , (3.11)

εκ,Bulk ∼
U(∆T )2

H
= κ

(∆T )2

H2
PrRe . (3.12)

Estimates for the magnetic dissipation rate contributions are based on the definition (3.3). Using
(1.35) to estimate the induced field strength and H as the characteristic length scale in the bulk,
εσ,Bulk scales as

εσ,Bulk ∼ η
Rm2B2

0

H2
= µρ

ν3

H4
Re2Ha2 . (3.13)

Similarly, taking δB as typical length scale for the viscous BL and considering the volume fraction
δB/H gives

εσ,BL ∼ η
Rm2B2

0

δ2
B

δB
H

= µρ
ν3

H4
Re2Ha3 . (3.14)

3.1.1. Regime transitions

Similar to the GL theory, the above estimates need to be altered, if the system transitions
into a different flow regime. The first transition considered in the GL theory was the nesting
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3. Theory of heat and momentum transport in magnetoconvection

of viscous and thermal BL (see section 1.2.2). Similarly to the GL theory, the transition is
modelled by replacing U → Uf(xnT ) in the thermal DR contributions (3.11) and (3.12). Here,
f(xT ) = (1 + xnT )−1/n with n = 4 and xT = δB/δT . The only difference with respect to the
original GL theory is, that by using the Hartmann layer δB instead of a Blasius BL, the crossover
variable becomes xT = 2Nu/Ha.
While a laminarisation due to high Prandtl numbers is not considered here, a similar effect

has to be taken into account for convection close to the onset. The scaling of εν,Bulk ∝ Re3

in (3.10) assumes a fully turbulent bulk flow. However, if the flow is laminar, the scaling becomes
εν,Bulk ∼ νU2/H2 = (ν3/H4)Re2. This transition between laminar and turbulent convection
takes place over a wide range of Re, including non-linear flow in between laminar and turbulent
states. Adapting the approach of the large Prandtl number regime (see section 1.2.2), the transition
is characterised with a Reynolds number Re∗, which is a new unknown model parameter. The
transition is then modelled by multiplying εν,Bulk with the function g(x∗) = 1/f(1/x∗), where
x∗ = Re/Re∗.
Now, each of the contribution estimates (3.9)–(3.14) including the above regime transitions

are each multiplied by a constant pre-factor ci, i = 1, . . . , 6, and combined to the full mean
dissipation rates (1.16), (1.17) and (3.7). Inserting these into the exact scaling relations (3.4) and
(1.15) results in

(Nu− 1)Ra

Pr2Re2 = c1Re g

(
Re

Re∗

)
+ c2Ha + c3Ha2 + c4Ha3 , (3.15)

Nu− 1 = c5RePr f

(
2Nu

Ha

)
+ c6

√
RePr f

(
2Nu

Ha

)
. (3.16)

These model equations cannot be solved analytically for Nu(Ra,Ha,Pr) and Re(Ra,Ha,Pr).
However, (3.16) can be solved for a function Re(Nu,Ra,Ha,Pr)

Re =

(√
c2

6 + 4c5(Nu− 1)− c6

)2

4c2
5Pr f

(
2Nu

Ha

) . (3.17)

Using (3.17), Re can now be eliminated from (3.15). The resulting equation is numerically
solvable for Nu(Ra,Ha,Pr)

However, one last regime transition has to be considered beforehand. The above equations do
not inherently reproduce the onset of convection, i.e. Nu = 1 and Re = 0 for Ra < Rac. For
simplicity of the model, the Chandrasekhar limit RaCh (1.42) is used for the critical Rayleigh
number. To implement this transition it is first assumed that a solution Nu−1 = N (Ra,Ha,Pr)
of equations (3.15) and (3.16) has been found. The onset can then be imposed by multiplying
N with the crossover function h(xc) = 1 − f(xc), where xc = Ra/RaCh = Ra/(π2Ha2).
From this new solution Nu − 1 = h(xc)N it follows that (Nu − 1) → 0 for Ra < RaCh

and (Nu − 1) → N for Ra > RaCh. Since N is actually unknown, the above solution can be
rearranged to (Nu−1)/h(xc) = N . This means, that if Nu−1 is replaced by (Nu−1)/h(xc), it
has the same effect as multiplyingN with h(xc). Applying this replacement to (3.15) and (3.16),
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3.1. Extension of the Grossmann-Lohse theory by magnetic dissipation

and eliminating Re from both equations gives

(Nu− 1)Ra

Pr2R2 h
(

Ra/(π2Ha2)
) = c1R g

( R
Re∗

)
+ c2Ha + c3Ha2 + c4Ha3 ,

R =


√√√√c2

6 + 4c5
Nu− 1

h
(

Ra/(π2Ha2)
) − c6


2

4c2
5Pr f

(
2Nu

Ha

) .


(3.18)

Nu in the argument of f has not been modified. Near onset, Ha is generally large and Nu is
small. Thus, f is in the limit of small arguments and does not change much from the value
f(0) = 1.

The final model equations are now given by (3.17) and (3.18). If the model parameters Re∗,
and c1, . . . , c6 are known, (3.18) can be used to numerically calculate Nu for given values of Ra,
Ha andPr. Subsequently, Re is calculated from (3.17) using this value ofNu. The model is valid
for Rayleigh numbers Ra & 2× 105 and high Hartmann numbers Ha� 1 for the assumption of
the Chandrasekhar limit and Hartmann layers to hold. Also, once values of Re & 1/Pm ∼ 106

are reached, the model is no longer applicable: The magnetic Reynolds numbers would be
Rm & 1, which violates the quasistatic approximation.

The crossover function h is not introduced in (3.17), because Re = 0 is the intrinsic result of
that equation for Nu = 1. This means, that once the onset of convection is incorporated into the
calculation of Nu, it is applied to Re automatically.

3.1.2. Fitting of the model parameters

The model parameters are a priori unknown and have to be determined by fitting the model to
experimental or numerical data. Given a set of values (Nu,Ra,Ha,Pr), the model parameters
c1 to c6, and Re∗ can be determined by fitting (3.18) to the dataset. Using these parameter values,
(3.18) is now numerically solvable to determine Nu(Ra,Ha,Pr). The Reynolds number could
also be evaluated from (3.17) using the fit values of c5, c6 and the result for Nu. However, it is
important to realise that the fit equation (3.18) is invariant under the following transformations

Re∗ → βRe∗ , c1 → β−3c1 , c2 → β−2c2 , c3 → β−2c3 ,

c4 → β−2c4 , c5 → β−1c5 , c6 → β−1/2c6 ,
(3.19)

for any β ∈ R. This means, that when (3.18) is fitted to a set of data, the resulting parameters are
not uniquely defined. While the Nusselt number is completely unaffected by this, the Reynolds
number in (3.17) is rescaled by Re→ βRe.
To resolve this ambiguity of the model, at least one data point (Reβ,Nuβ,Raβ,Haβ,Prβ)

including the Reynolds number has to be known. The parameter values resulting from the first fit
are then used to calculate Re(Raβ,Haβ,Prβ,Nuβ) from (3.17). The factor β is then determined
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3. Theory of heat and momentum transport in magnetoconvection

Reference Ramin Ramax Hamin Hamax Pr Γ

E Cioni et al. [71] 2× 107 3× 109 850 1980 0.025 1 : 1
E Aurnou and Olson [72] 4× 102 7× 104 26 35 0.025 8.3 : 8.3 : 1
E Burr and Müller [73] 3× 103 1× 105 10 120 0.020 10 : 20 : 1
E King and Aurnou [74] 2× 106 2× 108 0 1110 0.024 1 : 1
S Liu et al. [75] 107 107 0 2000 0.025 4 : 4 : 1
S Yan et al. [76] 2× 107 1.7× 108 1414 1414 0.025 various

1× 104 8× 1010 0 10 000 1 various
S Lim et al. [77] 5× 105 1× 1010 0 800 8 1 : 1 : 1

Table 3.1.: Experiments (E) and simulations (S) on Rayleigh-Bénard convection in a vertical
magnetic field. Listed are theminima andmaxima ofRa andHa, as well as the Prandtl
number Pr of the working fluid. The cell aspect ratio Γ is given as diameter : height
for cylindrical cells and aswidth : depth : height for rectangular cells. The simulations
by Lim et al. [77] were conducted in rectangular cells of various aspect ratios ranging
from 0.76 : 0.76 : 1 to 28.3 : 28.3 : 1.

as the ratio of the real vs. the calculated Reynolds number

β =
Reβ

Re(Raβ,Haβ,Prβ,Nuβ)
(3.20)

Using this value of β, the model parameters are rescaled according to (3.19). The resulting
values for c1 to c6, and Re∗ are the final model parameters and can be used to correctly calculate
Nu(Ra,Ha,Pr) and Re(Ra,Ha,Pr) from equations (3.18) and (3.17).

3.2. Initial theoretical results

This section aims to illustrate the first results of the model, which were published in 2016 [Z1].
Since then, a number of new publications have been released, reporting data on magnetoconvec-
tion. These will be considered later on in section 5.4, together with the experimental data of the
present thesis.
Only very few experiments have been conducted for Rayleigh-Bénard convection in a vertical

magnetic field. Four relevant publications are listed in table 3.1. Two of these experiments,
namely by Cioni et al. [71] and by King and Aurnou [74], were conducted at high Ha > 100
within the convective regime. In this section, the data by Cioni et al. [71] will be used to evaluate
the free parameters of the theoretical model.
None of the experimental publications report Reynolds numbers of the flow, which are essential

to fix the ambiguity of the theoretical model. In absence of experimental data, the results of
simulations have to be used instead. Most numerical studies focus on the onset of convection
at low Rayleigh and Hartmann number. Until recently, the only available direct numerical
simulations at high Ra, low Pr and Ha > 100 were by Liu et al. [75] (see table 3.1). Two other
simulations at higher Prandtl number have since been published. Lim et al. [77] used a Prandtl
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Figure 3.1.: Results of the theoretical model for parameters (3.21) and Pr = 0.025. (a) Nusselt
number. (b) Reynolds number. Both diagrams show the Chandrasekhar limit HaCh

(solid line) used in the model and for comparison the real solution for the onset of
convection Hac (dashed line). The dotted lines mark the regime transitions of the
BL nesting (δB = δT ) and the transition to full turbulence (Re = Re∗), dividing
the parameter space into four regimes I to IV (see text for details). The data used
for fitting the model are marked by crosses (experiments by Cioni et al. [71]) and
plusses (simulations by Liu et al. [75]).

number of Pr = 8. Yan et al. [76] mainly simulated at Pr = 1, but also show some data at
Pr = 0.025which would be of interest for this theory. The Reynolds number in these simulations
is defined with the rms-average of the velocity magnitude over the whole fluid volume. Here, the
numerical data by Liu et al. [75] for Ha = 200 and 500 (equivalent to the range 0 < Ha < Hac)
is used to evaluate (3.20).
Using the experimental data by Cioni et al. [71] and numerical data by Liu et al. [75], the

model parameters are determined to be

Re∗ = 3.8× 104 , c1 = 0.17 , c2 = −5.3 , c3 = 0.030 ,

c4 = −5.9× 10−7 , c5 = 5.6× 10−3 , c6 = 0.58 .
(3.21)

These parameters can now be used to numerically calculate the Nusselt number from (3.18) for
given values (Ra,Ha,Pr). Afterwards, the corresponding Reynolds number results from (3.17).

A colour plot of Nu and Re over the (Ra,Ha) phase space at Pr = 0.025 is shown in
figure 3.1. The model correctly reproduces the conducive regime Nu = 1 and Re = 0 above
the Chandrasekhar limit RaCh = π2Ha2 (solid line). Since this critical Rayleigh number
is an approximation, the proper numerical solution of the onset of convection is plotted for
comparison (dashed line). It shows, that the Chandrasekhar limit HaCh is a good approximation
for Ra > 2× 105, but deviates from the real solution Hac for lower Rayleigh numbers. The
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Figure 3.2.: Comparison of the Ha-dependent terms in (3.15). The parameter values ci are taken
from (3.21). The light grey area marks the range of Ha in the experiments by Cioni
et al. [71] used for fitting the parameters.

convective regime is divided into four sub-regimes I to IV by the crossover functions introduced
in the model. The dotted line δB = δT divides the plot in a regime δB < δT (I and II) and
δB > δT (III and IV). The dotted lineRe∗ marks the transition range from a laminar or non-linear
flow (I and IV) to fully turbulent convection (II and III).
The main issue of this initial result is the limited phase space that is covered by the data used to

fit the model parameter (crosses and pluses in figure 3.1). They are mainly situated in regime I at
high Ha and only a couple of measurements cross the Re = Re∗ line into regime II. Ideally, the
data would cover all regimes. As such, these initial regime boundaries should not be considered
as accurate predictions since they are extrapolated from a rather small area in the (Ra,Ha,Pr)
phase space.
This uncertainty also translates towards the fit parameters (3.21). The values of the ci factors

vary widely in their magnitude. c2 and c4 even have a negative value, which is not physically
sensible, since they describe positive dissipation rates. The relative fit errors are large for all
parameters (close to or even exceeding 100 %). The reason can be illustrated best by considering
parameters c2, c3, and c4. Equation 3.15 shows, that the terms containing these parameters scale
with different powers of Ha: c2Ha, c3Ha2, and c4Ha3. Figure 3.2 shows the magnitude of these
three terms. In the range of Ha covered in the experiments by Cioni et al. [71] (light grey area),
the quadratic term of c3 is dominant. This means, that the parameters c2 and c4 do not influence
the fit result substantially. To get reliable fit values, data in the ranges of Ha, where each of
the parameters is dominant, are required. According to the results in figure 3.2, data for Nu at
Ha . 102 and Ha & 5× 104 is needed to properly fix c2 and c4, respectively. That the model is
more insensitive to changes in c2 and c4 for the present fitting-data might also be a reason, why
both parameters are negative. If large changes in a parameter only result in small variations of
the model in the range of the fitting-data, its uncertainty is accordingly high. Thus, more data in
a wider range of Ra and Ha would likely improve the fitting procedure and reduce the resulting
uncertainty.

This discussion is supposed to present a first look at the results produced by the model. It
underlines the importance of the availability of experimental data over a wide range of Ra and
Ha for the model to give reasonable results. A more thorough discussion of the results is done
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in section 5.4. There, they are compared with the experimental data which is presented in the
following chapter.

3.3. Concluding remarks

In this chapter, a model for the heat and momentum transfer in RBC subjected to a vertical
magnetic field has been introduced. It is applicable for small Prandtl numbers Pr � 1 and,
for the quasistatic approximation to be satisfied, requires small magnetic Reynolds numbers
Rm � 1. Over the (Ra,Ha) phase space it is valid for Ra & 2× 105 and for Ha � 1 to
ensure that the Chandrasekhar limit RaCh can be applied and that the viscous BL is a Hartmann
layer, respectively. The model parameters were successfully determined from experimental and
numerical data. The initial results of the model are shown to illustrate the fitting procedure and
to demonstrate that the model reproduces the general features of heat and momentum transfer in
magnetoconvection.
The following two chapters chapter 4 and chapter 5will present newexperiments on liquidmetal

RBCwithout andwith a verticalmagnetic field. Using the insights gained from these experiments,
the model is revisited in section 5.4. The new data are used in section 5.4.1 to conduct a
thorough comparison of the theoretical and experimental results. The conclusions drawn from
this comparison will be used to revise the above model equations and fitting procedure. The
revised model is then refitted to all currently available experimental data (section 5.4.2), covering
a much larger parameter range than the data used in the initial fit. A final review of the model will
be given in section 5.4.3, along with an outlook on possible further improvements and extensions
of the model.
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4. Classical Rayleigh-Bénard convection
experiments

This chapter investigates the flow properties of Rayleigh-Bénard convection in liquid metals
without the influence of a magnetic field. This is supposed to lay the foundation for the modifi-
cation of the flow by magnetic fields later in chapter 5. More fundamentally, these experiments
are also supposed to find differences and similarities of low and moderate to high Prandtl number
convection. Many publications have used water as a working fluid (Pr ∼ 5.4) to investigate the
large-scale flow in Γ = 1 convection cells utilising optical flow measurement techniques such as
PIV. Liquid metals have much more inertia and a higher thermal conductivity than water, which
can lead to very different flow structures. Such a case has been recently demonstrated by Vogt
et al. [78], who found a deformed large-scale flow in a Γ = 2 convection cell, which was termed
a jump rope vortex.
In the following, the first focus will be on the large-scale flow of the convective turbulence

and its dynamical behaviour (section 4.2). Afterwards, global quantities of heat and momentum
transport arising from this flow will be characterised in section 4.3. These results are published
in [Z3] with some additional considerations on the small scale properties of turbulence in the
flow .

4.1. Experimental set-up

The experiments are conducted in a cylindrical convection cell (figure 4.1(a)). Its inner heightH
and diameterD are 180mm, giving an aspect ratio of Γ = 1. The coordinate system is placed at
the centre of the cell with z as the vertical axis. Consequently, the upper plate is at z = +H/2
and the lower plate at z = −H/2. The y- and x-axes span the horizontal plane. In cylindrical
coordinates (r, φ, z) the side walls are at a radial position of r = R ≡ D/2 = 90mm. The
azimuthal coordinate φ starts at the x-axis and runs anti-clockwise, when viewed from above
(−z-direction).

The bottom plate is a solid copper block. It is heated from below by an electrical heating pad
made from non-ferromagnetic ceramic. The electrical circuit within the heating pad is arranged
in such a way that the magnetic field generated by the current is minimised . The pad is supplied
with a DC current by a power supply.
The top plate consists of two parts: The upper part is a copper heat exchanger cooled with

water by a thermostat. Two intertwined spiral channels are run through by the cooling water
in opposite directions to ensure a homogeneous supply of cooling power and to avoid breaking
of the axis symmetry of the system. The lower part is a solid copper plate with holes and
cable-channels for two vertical UDV-sensors. Between the two plates a heat conduction paste is
applied to ensure a good thermal connection.
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Figure 4.1.: Set-up of the RBC convection cell. (a) Photo of the cell. (b) Positions and labels of
the UDV sensors. The label indices refer to the azimuthal position in degree (except
for the central sensor Vc). (c) Positions of thermocouples in the cell.

The side walls are made of polyether-ether ketone (PEEK). It is electrically insulating and
has a low thermal conductivity of λPEEK = 0.25Wm−1K−1. The cell sits on a base made
of polyamide with a thermal conductivity of 0.23Wm−1K−1. The whole set-up is thermally
insulated using insulation wool.
Ten UDV probes are used to investigate the convective flow (figure 4.1(b)). All sensors use

an emitting frequency of 8MHz and are in direct contact with the melt. They have an outer
diameter of 8mm and their piezo-crystal, which generates and measures the ultrasonic signals,
has a diameter of 5mm. The radial velocity component is measured at three heights of the cell:
10mm below the top plate, at mid-height and 10mm above the bottom plate. At each layer near
the plates, three transducers are placed at the azimuthal positions φ = 0°, 45° and 90°. At mid
height, two sensors are positioned at φ = 0° and 90°. The sensors at 0° and 90° measure the
x- and y-components of the velocity, respectively, across the diameter of the cell. In addition to
these eight radial sensors, potential measurement positions at φ = 45° for the mid-height layer
and at φ = 135° for all three layers are prepared, but not used in the present study. The vertical
velocity component is measured at two positions in the cell. The first sensor is placed at the
centre of the top plate (r = 0) measuring along the symmetry axis of the cell. The second sensor
is positioned closer to the side-wall at r = 0.8R = 72mm and φ = 0°. At the crossing points of
the sensor beam-lines two-dimensional and, in case of the centre line, three-dimensional velocity
vectors of the flow can be reconstructed.
All UDV sensors are successively scanned through by a multiplexer. The measurement

parameters vary depending on the signal quality and the speed of the flow. The sampling time
per sensor can vary from 0.2 s to 9 s in extreme cases, but generally stays below 2 s. The velocity
is measured at points along each sensor beam-line about 0.25mm apart. Spatial filters used in the
measurement software decrease the effective spatial resolution, ranging from 0.6mm to 5.5mm
depending on the UDV signal quality.
Temperature measurements are conducted using thermocouples (TC) of type K. 31 TC are

multiplexed with a total time resolution of 1.5 s. All TC that are in electrical contact with the
liquid metal or the copper plates have their measurement junction electrically insulated from
their outer casing to avoid interactions between eddy currents and the thermoelectricity. The TC
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positions at the cell are shown in figure 4.1(c). To measure the heating and cooling temperatures,
four TC are embedded in each copper plate at 90° intervals. Their tips are placed at a radial
position of 75mm and at a distance of 4mm from the fluid. The temperature of the top and
bottom plate (Ttop and Tbot, respectively) are calculated as the average of the four TC. The
temperature difference across the cell is then ∆T = Tbot − Ttop. The mean temperature of the
fluid T̄ = (Ttop +Tbot)/2 was kept at constant 35 ◦C for all measurements. Only for the highest
Ra ∼ 6× 107 did T̄ rise to 40 ◦C due to limited cooling power. This changes the Prandtl number
slightly to Pr = 0.028.

Eleven TC are measuring the temperature of the liquid metal near the side wall. They are
placed at half-height of the cell and are equally spaced over half the circumference, giving an
azimuthal distance of 18° between the sensors. In cylinder coordinates, the first sensor is placed
at φ = 157.5° and the last at φ = 337.5° ≡ −22.5°. Their tips protrude less than 1mm into the
melt.
The cooling water takes in the heat which is transported through the liquid metal and warms

up. The cooling power Q̇cool is thus determined by measuring the in- and outgoing temperatures
(Tin and Tout, respectively) of the cooling water at each of the two in- and outlets of the top
copper plate. The heat flux is then

Q̇cool = c̃pρ̃V̇ (Tout − Tin) . (4.1)

Here, c̃p and ρ̃ are the heat capacity and the mass density of water [79]. The volume flux V̇ of
the cooling water is measured by a turbine flux-meter. Since the heat flux becomes very small
for low Ra or high Ha, the temperature difference Tout − Tin may fall below the measurement
accuracy of the TC, which is . 0.1K. Thus, only measurements where the water temperature
difference is larger than 0.2K are considered in the calculation of Q̇cool.

To estimate the heat loss through the side walls, the radial temperature gradient ∂rT is
measured at mid-height and three azimuthal positions φ = 67.5°, 187.5° and 307.5°. The
vertical position is chosen as representative for the whole side wall and the three positions around
the circumference are to negate biases due temperature variations induced by the large scale
flow. At each position, two TC record the temperature in the side-wall at a distance of 5mm and
15mm from the fluid. The radial temperature gradient is the difference between the outer and
inner temperature, divided by their radial separation of 10mm. The average of all three values
gives ∂rT . The resulting heat flux is then

Q̇loss = −λPEEKπDH∂rT , (4.2)

with πDH being the surface area of the inner side-wall. Ideally, this heat loss would be the
difference between the heating power Q̇heat input at the bottom and the cooling power at the top
of the cell Q̇loss = Q̇heat − Q̇cool. The average heat flux Q̇ = (Q̇heat + Q̇cool)/2 through the
fluid, can then be calculated using

Q̇ = Q̇cool +
Q̇loss

2
. (4.3)

During an experiment, the heating and cooling power are set using PID-controller algorithms
to keep the given temperatures Ttop and Tbot at the respective plates constant. At the beginning of
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an experiment both temperatures are set to an average temperature of 35 ◦C, giving a temperature
difference of ∆T ∼ 0K. After the flow has settled, the top and bottom temperatures are set
to their respective target values. Once the temperatures are reached and the temperature and
velocity measurement have settled, the measurement is started. Every measurement is run for at
least one hour with the longest measurements being up to ten hours. Once the measurement is
finished, the process is repeated to target a different temperature difference.

The results of these measurements are discussed in the following sections.

4.2. Large-scale flow

Water experiments have consistently shown, that turbulent convection in a Γ = 1 cell organises
in a single convection roll, spanning the whole fluid volume [80–85]. This so called large-scale
circulation (LSC) is characterised by one up- and one downwelling flow localised near the side
walls. These vertical flows transport hot (cold) fluid from the bottom (top) to the top (bottom)
of the cell. To close the convection roll, they are connected by horizontal flows near the plate.
It is expected that the flows at the plates are, on average, antiparallel to each other. This can be
validated using the UDV flow measurements.
Below the top plate (z = 80mm), the UDV sensors T0 and T90 measure radial velocity

profiles vx(x, t) at y = 0 and vy(y, t) at x = 0, respectively (see figure 4.2). At the crossing
point (x, y) = (0, 0) of these profiles a two-dimensional horizontal velocity vector vtop can
be reconstructed. The components of this vector are calculated by averaging the UDV velocity
profiles over a central interval of length D/4. This gives vtop(t) = (v̄x(t), v̄y(t)) with

v̄x(t) =
〈
vx(x, t)

〉
−R/4<x<R/4 , (4.4)

v̄y(t) =
〈
vy(y, t)

〉
−R/4<y<R/4 . (4.5)

Here, 〈·〉x denotes the average over the coordinate x and the specified interval. The LSC
orientation in the centre of the top plate can now be given as

θtop(t) = arctan

(
v̄y(t)

v̄x(t)

)
. (4.6)

The equivalent flow vector vbot and the LSC orientation θbot near the bottom plate are calculated
in the same manner using the measurement data from UDV sensors B0 and B90.
Figure 4.3(a) shows the time series of θtop +180° and θbot for an experiment at Ra = 6×107.

The time is shown in free-fall time units τff (see (1.4)). Both lines follow each other during the
whole experiment, which confirms the expected anti-parallel flow directions of a single coherent
convection roll in the cell. A closer look at the time series (figure 4.3(f) and 4.3(h)) reveals that
the flow orientations are oscillating around a common mean. The top and bottom orientation
angles have the same oscillation period of the order τosc ∼ 10τff , but are out of phase to one
another. This behaviour is characteristic for the so called torsion mode of the LSC, which was
first reported by Funfschilling and Ahlers [86]. Beforehand, the LSC was regarded as a mostly
two-dimensional roll in one vertical plane of the convection cell. Oscillations were though to
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Figure 4.2.: Calculation of the horizontal velocity vector vtop and its orientation θtop near the
centre of the top plate using the velocity profiles of UDV sensors T0 (red) and
T90 (blue). The velocity components v̄x and v̄y are averaged over the light red and
light blue shaded intervals, respectively.

stem from varying intensities of thermal plume emissions from the plates [80, 81, 87]. It has since
been established [84, 86, 88, 89], that the LSC deforms itself periodically by a counter rotation of
the top and bottom flow directions termed the twisting or torsion mode (see figure 4.4(a)). This
behaviour is confirmed for low-Pr fluids by our results. The frequency of this periodic motion
and its dependency on Ra will be investigated in section 4.2.1.
The temperature measurement by the thermocouple array at mid-height of the cell is presented

as a colour plot in figure 4.3(b). The time series of each sensor is colour-coded with temperatures
above and below the mean fluid temperature T̄ in orange and blue, respectively, and arranged
by their azimuthal position φ. Even with only half of the cell circumference covered, one
warm and one cool area can be seen in the plot. These are the imprints of the warm up-
and cool down-welling flows of the LSC near the side-walls. To compare their azimuthal
position with the previous results near the top and bottom plate, the average LSC orientation
θLSC = (θtop+180°+θbot)/2 is plotted as black dashed line in figure 4.3. The line is additionally
smoothed using a running average filter over five consecutive measurements to remove excessive
fluctuations due to turbulence. θLSC perfectly follows the warm imprint (figure 4.3(b)). This
confirms the presence of one coherent convection roll covering the whole cell.
Looking, again, at a smaller time scale in figure 4.3(c) and 4.3(e) show periodic oscillations

of the warm and cool temperatures. The up- and down-welling flows move along the side wall
towards one another, meet at an azimuthal position, and get repelled in opposite directions.
The same process then occurs on the other side of the cell and is continually repeated (see
figure 4.4(b)). This behaviour at the middle of the cell was first described by Xi et al. [85]
and has been termed the sloshing mode of the LSC [84, 88, 90, 91]. This name eludes to the
concept, that this temperature pattern could be explained by the transverse displacement of a
two-dimensional LSC from a central vertical plane. However, the torsion mode does not fit this
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Figure 4.3.: Time series of a RBC experiment atRa = 6×107 (τff = 2.3 s). (a) Flow orientations
at the top and bottom plate measured by the UDV sensors (velo). The dashed black
line is a smoothed average of both orientations. (b) Colour plot of the temperature
array at mid height (temp). The dashed black line is replotted from (a). (c)–(e) and
(f)–(h) are detailed views of (b) and (a), respectively, and cover a time range of 40τff ,
each. The red dash-dotted lines in (d) and (g) indicate the approximate start and end
of a potential cessation event.

(a) (b)

Figure 4.4.: Illustrations of the (a) torsion and (b) sloshing mode of the LSC. Both modes are
depicted as three images showing their base state (centre) and the two opposing
deflection states (left and right). The black arrows between the states indicate their
chronological succession.
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Figure 4.5.: Probability density function of the LSC orientation θLSC calculated from all RBC
measurements 106 ≤ Ra ≤ 6× 107.

idea and implies a three-dimensional structure of the LSC. The exact relation of the sloshing and
torsion modes will be investigated later in section 4.2.2.
Superimposed on these short-term oscillations of the order∼ 10τff is the drift of the mean LSC

orientation θLSC (black dotted line in figure 4.3). The LSC changes its orientation intermittently,
sometimes staying at a similar position over multiple hundreds of free fall times and then again
rotating continually into one or the other direction for some time. This long-term rotation of
the LSC has been shown to be statistically equivalent to a one-dimensional diffusion process of
θLSC [82]. The time scale of this movement can be estimated to scale with the thermal diffusion
time τdrift ∼ τκ = H2/κ. This estimate can be expressed in free-fall time units via τκ =√

RaPrτff . For the present experiments with the values Pr = 0.029 and 106 < Ra < 6 × 107,
this gives τdrift ∼ 170 to 1300 τff .
Due to the axis-symmetry of the system, every value of θLSC should be equally probable.

Figure 4.5 shows the probability density function (PDF) of the LSC orientation calculated from
all measurements in the range 106 < Ra < 6× 107. A singular peak can be seen at θLSC ∼ 25°
and a minimum at θLSC ∼ 225° that is about one order of magnitude smaller than the maximum.
This deviation from a flat PDF indicates, that the set-up is not perfectly levelled. A slight tilt of
the cell can break the axis-symmetry and induce a preferred orientation of the LSC [82]. For
strong tilting, this can lock the LSC in one orientation, which can be used for easier study of
flow properties, since measurement sensors can be aligned with the LSC plane [81, 85]. In the
present experiment, θLSC is not locked, since all orientations are reached at some point during
the measurements. This prohibits the exact quantitative statistical investigation of the rotational
drift of the LSC in this experiment and only rough qualitative estimates are permissible in that
regard. The short-time oscillation and global properties of the convective flow, however, are not
significantly affected by this small tilt as has been shown in various experiments [80, 81, 85, 86].
On even longer time scales than τosc and τdrift, the LSC can experience cessations. An example

of such an event is shown in figures 4.3(d) and 4.3(g), indicated by red dash-dotted lines. The
distinct temperature imprints by the up- and down-flows in figure 4.3(d) suddenly vanish and
only the average fluid temperature T̄ is detected. Within less than 10τff the signature of the LSC

47
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reappears at a new orientation with an offset of about 90° to its initial orientation. This suggests
a breakdown of the coherent large-scale structure into an incoherent flow state and a subsequent
re-establishment of the one-roll structure. This kind of event was studied in detail for long-term
water experiments by Brown and Ahlers [82] and Xie et al. [91]. They found that cessations
appear at rates of the order of one per day. While the cessation rates for low-Prandtl-number
convection will likely be different quantitatively, these results show that measurements have to
be run for much longer durations than in the present experiment to collect a statistically sufficient
number of cessation events. Consequently, a quantitative analysis is currently not possible.
The properties of the large scale flow presented in figure 4.3 for Ra = 6 × 107 are present

for the whole range of Ra investigated in this experiment. This is illustrated in figure 4.6, which
shows two additional experimental runs for Ra = 106 and 107. The top and bottom orientation
angles, as well as the temperature profiles confirm the existence of a coherent LSC. The sloshing
and torsion mode can be identified in the detailed plots (figure 4.6(c)–(f)). Major differences
between the low- and high-Ra cases are changes in the oscillation frequency, which will be
covered in detail in the next section, and in the width and strength of the temperature imprint.
The temperature maximum and minimum of the vertical flows at the side wall are closer to the
values applied to the top and bottom plates for lower Ra. The temperature imprints are also
broader than for high Ra, where much of the fluid in between the up- and down-welling flows is
close to the average temperature of the cell.

4.2.1. The flow oscillation frequency

This section considers the oscillation frequency fosc = 1/τosc of the torsion mode and its
dependency on the Rayleigh number in detail. Figure 4.7(a) shows the frequency spectra of θtop

from the three measurements presented in figures 4.3 and 4.6. Each spectrum shows a peak
indicating the oscillation frequency. To extract the values of fosc, the following function is fitted
to the spectra

A(f) = a exp

(
−(f − fosc)

2

2∆f2

)
+ bf c . (4.7)

This function models the spectrum as an power law background (bf c) with a Gaussian peak of
mean fosc and standard deviation ∆f . The fit parameters are a, b, c, fosc and ∆f . Examples of
this fit are plotted in figure 4.7(a) as dashed lines.
The resulting oscillation frequencies are normalised by the thermal diffusion frequency

fκ =
1

τκ
=

κ

H2
(4.8)

and plotted in figure 4.7(b). The error bars correspond to the standard deviation ∆f of the
Gaussian peak in (4.7). Fitting a power law to the data results in a scaling of

fosc/fκ ' (0.10± 0.04)Ra0.40±0.02 . (4.9)

The fit is done via orthogonal distance regression (ODR) and the error estimation of the fit
parameters are outlined in appendix C. All following power laws are determined using this
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Figure 4.6.: Time series of RBC experiments at Ra = 106 (τff = 17 s, (a)–(d)) and Ra = 107

(τff = 5.4 s, (e)–(h)). Quantities and the colour scale are the same as in figure 4.3.
(c) and (d) are detailed views of (a) and (b), respectively. (e) and (f) are detailed
views of (g) and (h), respectively. The timespan of the detailed views is 40τff .
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procedure if not stated otherwise. If the LSC oscillations were to scale with the free-fall time τff ,
a scaling of fosc ∝ Ra0.5 would be expected for constant fluid properties, because the free-fall
frequency fff is given by

fff =
1

τff
=

√
νκRa

H2
. (4.10)

When normalised by fff , the oscillations scale as fosc/fff ' (0.9 ± 0.2)Ra−0.12±0.02 (fig-
ure 4.7(c)). This weak dependence on fff suggests, that the free-fall time is indeed the dominant
time scale for the torsion mode of the LSC. The deviation from a pure fosc ∝ Ra0.5 scaling
is likely due to the inertial character of the low-Prandtl-number fluid turbulence affecting the
momentum transport. The data in figure 4.7(c) are all within the range of 0.1 < fosc/fff < 0.2
which validates the earlier rough estimate of τosc ∼ 10τff .

These results are in agreement with DNS by Schumacher et al. [92] (Pr = 0.021, circles in
figure 4.7(b)), who found a scaling of fosc/fκ ' (0.08± 0.05)Ra0.42±0.02, after correcting their
data from radian to units of cycles per diffusive time. Experiments in mercury (Pr = 0.024) by
Tsuji et al. [87] also agree very well with our data (crosses in figure 4.7(b)). At a higher aspect
ratio of Γ = 2, Vogt et al. [78] got the same scaling exponent in their liquid gallium experiment
(Pr = 0.027) with an overall reduced magnitude: fosc/fκ ' 0.027Ra0.419±0.006.
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Experiments in water (Pr ∼ 5.4) generally give a higher scaling exponent and magnitude
for fosc/fκ. Examples for Γ = 1 cylindrical cells are fosc/fκ ' 0.2Ra0.46 [93], fosc/fκ '
0.167Ra0.47 [80] and fosc/fκ ' 0.12Ra0.49 [88]. Methanol experiments (Pr = 6.0) give
similar results as in water: fosc/fκ ' 0.126Ra0.460±0.012 [86]. The thermal diffusivity of water
is κ = 1.5× 10−7m2 s−1 at 35 ◦C [79] compared to κ = 1.1× 10−5m2 s−1 for GaInSn [66]. The
absolute oscillation frequencies in GaInSn convection at Ra = 107 are thus about 14 times larger
than in water, which is a result of the higher inertia of low-Prandtl-number fluids [94–96].
It is known that oscillations in thermal convection correspond to the turnover time of the

LSC [84, 87]. In the present experiment, a characteristic speed vLSC of the LSC is calculated as
the mean magnitude of the horizontal velocity vectors vtop and vbot near the plates (see (4.4)
and (4.5)), averaged over time

vLSC =

〈
|vtop|+ |vbot|

2

〉
t

. (4.11)

The turnover time τto is then defined as the time a fluid particle with the velocity vLSC takes to
travel along a circle of diameter H , and the turnover frequency fto is defined as its inverse

τto =
πH

vLSC
=

1

fto
. (4.12)

Figure 4.7(d) shows the ratio fosc/fto over Ra. For all measurements, the ratio is close to unity,
which confirms the scaling of the oscillation period with the LSC turnover time. An alternative
definition of fto uses the path along the side-walls and the plates of length 2H + 2D instead of
an circle inscribed into the cell. This would reduce fto by a constant factor of π/4 ≈ 0.79 but
does not affect the fosc ∝ fto scaling.

4.2.2. Interplay of the torsion and sloshing mode

This section investigates, how the torsion and sloshingmodes can be combined into one consistent
flow field.
The time-averaged flow orientations 〈θtop/bot〉t have an offset of 180°, as shown before in

figures 4.3 and 4.6: 〈θbot〉t−〈θtop〉t ≈ 180°. The torsion mode then deflects the flow orientation
from these average values by an torsion angle ∆θ: θtop/bot = 〈θtop/bot〉t±∆θ. The horizontally
flowing fluid near the plates eventually reach the side wall of the cell and are deflected up- or
downwards. The azimuthal positions of these vertical flows consequently are the same as the
flow orientation at the respective plate, with a time delay accounting for the travel time of the
fluid. The azimuthal distance of the up- and down-flow is then

θbot − θtop ≈ 180°− 2∆θ . (4.13)

If the torsion angle reaches its maximum, this distance tends to a minimal value, i.e. the up- and
down-welling flows approach one another. This is exactly the behaviour seen in the sloshing
mode of the temperature imprints at the side-wall. The torsion and sloshing modes are thus a
logical continuation of one another, which explains why both modes share the same oscillation
frequency.
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(b) The corresponding real temperature profile T̃ (φ, t). The measurement is taken
at Ra = 107 (τff = 5.6 s).

To investigate the time delay between the torsion and sloshingmodes, the successive correlation
of the flow orientations at the top and bottom plate, and temperature imprints of the up- and
down-welling flow at the side walls are considered. To separate the signatures of the vertical flows
in the temperature field T (φ, t) at half-height, it is first shifted by the mean fluid temperature T̄
and normalised by the temperature difference ∆T across the cell

T̃ (φ, t) =
T (φ, t)− T̄

∆T
. (4.14)

As was displayed in figures 4.3 and 4.6, the cold down-flow is indicated in T̃ by negative values
and the hot up-flow by positive values

T̃hot(φ, t) =

T̃ (φ, t) for T̃ (φ, t) ≥ 0

0 else
, (4.15)

T̃cold(φ, t) =

T̃ (φ, t) for T̃ (φ, t) ≤ 0

0 else
. (4.16)

To correlate T̃hot,cold with the torsion signature at the “Top” and “Bottom” plate, a pseudo-
temperature profile is generated

T (φ, θ) =

cos2
(
φ− θ(t)

)
for θ − 90° < φ < θ + 90°

0 else
. (4.17)

This function emulates the temperature profile at half-height if an upwards flow is at the azimuthal
position θ. For a downwards flow,−T (φ, θ) is used instead. Figure 4.8 shows an exemplary real
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Figure 4.9.: Progression of the flow along the LSC path. (a) Illustration of the correlation
combinations. (b) Correlations for the measurement in figure 4.3 at Ra = 6× 107.
(c) Time shifts between the torsion and sloshing signatures over Ra.

temperature profile compared with the pseudo-temperature profile recreated from the top and
bottom flow orientations.
The flow progression is from the “Top” plate over the “Cold” down-flow at the side wall to

the “Bottom” plate and then via the “Hot” up-flow at the side wall back to the “Top” plate (see
figure 4.9(a)). The travel time between these four points can be extracted from the correlations

Top → Cold: corrt

[
−T
(
φ, θtop(t)

)
, T̃cold

(
φ, t
)]
, (4.18)

Cold → Bottom: corrt

[
T̃cold

(
φ, t
)
,−T

(
φ, θbot(t) + 180°

)]
, (4.19)

Bottom → Hot: corrt

[
T
(
φ, θbot(t)

)
, T̃hot

(
φ,
)]
, (4.20)

Hot → Top: corrt

[
T̃hot

(
φ, t
)
, T
(
φ, θtop(t) + 180°

)]
. (4.21)

corrt refers to a correlation of two functions over the time t and subsequent integration over φ.
The correlation results for the measurement from figure 4.3 at Ra = 6 × 107 are normalised
by their maximum and plotted in figure 4.9(b) over the correlation time shift ∆t, normalised by
the oscillation period τosc. All four cases have their maximum correlation at a time shift ∆tmax

near the expected value of ∼ τosc/4. However, the cases Top→ Cold and Bottom→ Hot have a
slightly higher value, while for Cold→ Bottom and Hot→ Top the time shifts are slightly lower
than a quarter oscillation period. This means, that the flow progression from the plates to the side
wall at mid-height takes longer than the subsequent progression from the side wall to the opposite
plate. In figure 4.9(c), the values of ∆tmax/τosc are plotted over Ra. The normalised shifts are
approximately constant over all measurements, giving average values of (0.33 ± 0.01)τosc for
Top → Cold, (0.19 ± 0.01)τosc for Cold → Bottom, (0.30 ± 0.01)τosc for Bottom → Hot,
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(0.16 ± 0.01)τosc for Hot→ Top. Adding all time shifts together results in an average value of
(0.98 ± 0.03)τosc, i.e. the flow takes exactly one oscillation period to progress once around the
LSC path. This is the same result as fosc ≈ fto which was presented in figure 4.7(d).

While not discussed explicitly, Qiu et al. [80] conducted a similar analysis for their measure-
ments in water. They correlated velocity fluctuations near the centre of the bottom plate with
temperature signals at the up-welling flow of the LSC, which corresponds to the case Bottom
→ Hot. Their resulting time shift between the signals is close to τosc/4 though an exact value
is not discernible from the plots. Other publications concerning themselves with the time shifts
between the sloshing and torsion modes can be sorted into three types of analysis:

1. Correlation between the flow orientation at the top and bottom plates, resulting into
the characteristic torsion shift of τosc/2. This type of analysis has been conducted for
experiments in methanol at Pr = 6.0 [86], fluorinert FC-77 electronic liquid at Pr =
19.4 [91], and liquid sodium at Pr = 0.0094 [89].

2. Correlation between the hot and cold temperature imprint of the vertical flows, giving the
characteristic sloshing shift of τosc/2. Such data from water experiments at Pr ∼ 5.3 can
be found in [85, 93].

3. Correlation of the top or bottom flow orientation with the mean LSC orientation at half-
height. This results in a phase shift of τosc/4 shown, for example, in water atPr = 5.3 [88].

These three cases are consistent with our results. 1. and 2. is the same as adding two consecutive
time shifts from figure 4.9. 3. is equivalent to averaging two consecutive time shifts. Both of
these analysis steps cancel out the shift deviations from the ideal value of τosc/4 and recover the
reported time shifts of τosc/2 for 1. and 2., and τosc/4 for 3.
As stated before, the different time shifts suggest longer travel times of the fluid from the

plates to the mid-height side walls than the subsequent progression to the opposite plate. One
explanation for this behaviour could be an asymmetric shape of the LSC, causing the fluid to take
paths of different length between the four measurement points. Such an asymmetry can be caused
by recirculation zones in the corners of the cell, where the vertical flows impinge on the plates
(figure 4.10(a)). These so-called corner vortices can be seen in time-averaged velocity fields of
the LSC in water experiments [81]. To examine this conjecture, the horizontal velocity profiles
along the LSC orientation near the top and bottom plates will be calculated. To accomplish this,
a new horizontal axis ξ is introduced, which is aligned with the LSC orientation. The velocity
profile vξ(ξ) at the top (bottom) plate is calculated as the average of velocity profiles recorded
by the UDV sensors T0, T45 and T90 (B0, B45 and B90) whenever the flow orientation θtop (θbot)
is aligned within ±5° of a sensor positions. These average profiles are displayed in figure 4.10
for the measurements shown in figures 4.3 and 4.6 at Ra = 106, 107 and 6 × 107. Near the
top plate (figure 4.10(b)), the velocity is predominantly positive, i.e. it flows to the left, and at
the bottom plate (figure 4.10(c)) the profile is mainly negative, thus flowing to the right. An
inversion of the flow direction is only visible near the left (right) side of the top (bottom) flow
profiles, where the flow impinges on the plate. This is the result of the corner vortices, rotating
in the opposite direction of the LSC. It should be noted, that missing or noisy data in the profiles
near ξ ∼ 90mm is a result of a small zone near the UDV sensors, which is inaccessible due to
the ringing of the piezo-crystals in the sensors. The size of the corner vortices can be seen to
decrease with increasing Rayleigh number. This suggest, that the LSC becomes more symmetric
as the thermal driving increases. In turn, the time shifts should systematically approach the value
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Figure 4.10.: (a) Illustration of the asymmetric LSC shape caused by corner vortices. The
red, dashed lines indicate the position of the axes ξ at the top and bottom plate.
(b), (c) Average horizontal velocity profiles parallel to the LSC near (b) the top and
(c) the bottom plate for differentRa. The profiles are normalised by their maximum
value.

of τosc/4. Since this is not the case, the shape of the LSC path does not seem to play a significant
role in causing the shift deviations.
Another possible reason for the different time shifts are varying velocities along the LSC path.

If the fluid is accelerated during its ascend or descend, it would take longer to cover the distance
from a plate to the middle plane of the cell, than from the middle plane to the opposite plate.
This point, however, has to be left for future studies. It should also be noted, that the above
interpretation of the time shifts are based on the assumption that a fluid parcel, that passes by the
plates at a certain flow orientation, retains this orientation while crossing the cell. If the flow was
to ascend or descend not straight up- or down-wards, but had, on average, an azimuthal velocity
component, the above considerations would have to be reviewed.
The above observations allow a deeper understanding of the convective flow in a Γ = 1

convection cell. The synchronisation of the flow oscillations with the LSC turnover time suggest
a large-scale flow composed of independent fluid parcels, each circulating on average in an
individual vertical plane. The oscillation modes observed in the experiments could then be the
result of phase shifts between the parcels in time and in azimuthal position, giving the impression
of the torsion and sloshing motions. This explanation does predict that there are no significant
azimuthal velocity components in the flow, which could be used in future experiments to validate
the above interpretation.

4.3. Global transport properties

The previous sections considered the structure of the large-scale flow in liquid metal RBC. In
this section, the effect of this flow on the global properties of heat and momentum transfer will
be investigated.
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Figure 4.11.: Heat transfer Nu of turbulent liquid metal convection over the thermal driving Ra.
The present experimental data is compared to DNS (circles), four experimental
results and the GL theory for Pr = 0.029.

4.3.1. Heat transfer

The heat flux transported by the fluid through the cell is characterised by the Nusselt number Nu.
In the present experiment it is determined from the cooling power at the top plate (see (1.7),
(1.1c) and (4.3)). Figure 4.11 shows the resulting values of Nu over the Rayleigh number Ra. A
power law fit to the data gives a scaling of Nu ' (0.12± 0.04)Ra0.27±0.02.
For comparison, a number of other experimental and numerical results for cylindrical cells with

Γ = 1 are shown in figure 4.11. Experiments by Cioni et al. [97] in mercury (Pr = 0.025) agree
excellently with the present data. Numerical simulations by Scheel and Schumacher [98] give the
scaling Nu ' (0.13± 0.04)Ra0.27±0.01, which also is in very good agreement with the present
data, deviating only by a small shift in its magnitude. Similar results are also found by King and
Aurnou [74, 99] for experiments in liquid gallium at Pr ∼ 0.025, though their scaling exponent
is somewhat smaller Nu ' (0.19 ± 0.01)Ra0.249±0.004. Results of experiments in mercury
(Pr = 0.024) by Takeshita et al. [100] give the same scaling exponent, but deviate more strongly
in their magnitude towards higher values Nu ' 0.155 Ra0.27±0.02. Experiments by Glazier et al.
[101] in mercury at Pr ∼ 0.025 at Γ = 1 agree more closely with those by Takeshita et al. [100],
but a least-squares power law fit reveals a smaller exponent Nu ∝ Ra0.242±0.002. Glazier et al.
[101] also conducted experiments at other aspect ratios Γ = 0.5 and 2. All their data give a
joint scaling of Nu ∝ Ra0.29±0.01 over a large range of 105 < Ra < 1011. They attribute the
deviation of the values at Γ = 1 to a strong bulk circulation in the cell.
The Nusselt number predicted by the GL theory [26] is plotted in figure 4.11 as well. It agrees

very well with the data of the present experiment and from Cioni et al. [97]. It, however, does
not displays a pure power law behaviour. Rather, the scaling exponent is predicted to increase for
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Figure 4.12.: Vertical velocity field vz(z, t) near the side wall measured by the UDV sensor V0.
The data is taken from the measurement in figure 4.3 (Ra = 6× 107, τff = 2.3 s).
The left illustration shows the position of the UDV sensor and the approximate
mean orientation of the LSC at the beginning of the time series.

higher Ra. At Rayleigh numbers below 5 × 105, smaller scaling exponents are found: Rossby
[19] reported Nu ' 0.147 Ra0.257±0.004 from experiments in Γ ≈ 22 and 7.4 cells, filled with
mercury (Pr = 0.025). Liquid sodium experiments at Pr = 0.006 and Γ ≈ 11 by Kek and
Müller [102] give a scaling of Nu ' 0.20 Ra0.20.

4.3.2. Momentum transfer

Themomentum transport is quantified by the Reynolds number, which is based on a characteristic
velocity of the flow. This velocity, however, is not uniquely defined and can be based on different
distinct regions or characteristics of the flow. From the velocity profiles recorded by the ten UDV
sensors, three distinct velocities are chosen.

1. The horizontal velocity of the LSC at the plates,
2. the vertical velocity of the LSC at the side walls, and
3. the turbulent velocity fluctuations in the cell centre.

This multitude of different Reynolds number definitions allows an investigation of how sensitive
the momentum transfer scaling is to different measurement positions.
The average horizontal velocity vLSC of the LSC near the plates has already been defined

in (4.11). The resulting Reynolds number is

ReLSC =
vLSCH

ν
. (4.22)

The vertical velocity near the side wall is measured by the UDV sensor V0 at its radial position
of r/R = 0.8. A typical velocity field vz(z, t) measured by the sensor is shown as a colour-plot
in figure 4.12. A distinct feature of the flow are regular oscillations of the velocity magnitude
over time. These are caused by the sloshing mode of the LSC which regularly wanders in and out
of the measurement volume of the sensor. On top of these fluctuations, the slow azimuthal drift
of the LSC orientation is visible from the change of the flow direction: First, the down-flow of the
LSC (blue) is present at the sensor position. Then, the LSC slowly turns until the upwards-flow
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(red) enters the measurement line of the sensor. For the calculation of the vertical LSC velocity,
only the strong down- and up-flows are of interest. Here, this characteristic velocity is determined
by first calculating the average of the velocity field over time and the central interval of length
H/4, similarly to how the horizontal velocity vectors at the plates were calculated (see (4.4)
and (4.5)). To account for the fluctuations of the velocity due to the sloshing mode, the standard
deviation std of the velocity magnitude over time and the same interval are added to the average.
The resulting vertical LSC velocity is

vvert = 〈|vz(z, t)|〉z,t + stdz,t(|vz(z, t)|) over −H/8 < z < H/8 . (4.23)

The accompanying Reynolds number is given by

Revert =
vvertH

ν
. (4.24)

In the centre of the cell, the measurement lines of three UDV sensors are crossing one another:
M0, M90 and Vc measure the velocity profiles vx(x, t), vy(y, t) and vz(z, t), respectively. This
allows the calculation of a three-dimensional velocity vector vcentre. The vector components are
determined by, again, averaging the velocity profiles over the central interval of length D/4 or
H/4, respectively

vcentre,x(t) =
〈
vx(x, t)

〉
−R/4<x<R/4 , (4.25)

vcentre,y(t) =
〈
vy(y, t)

〉
−R/4<x<R/4 , (4.26)

vcentre,z(t) =
〈
vz(z, t)

〉
−H/8<x<H/8 . (4.27)

To determine a characteristic magnitude of the velocity fluctuations, the rms-average of the vector
magnitude is calculated

vcentre =
√〈
|vcentre(t)|2

〉
t
. (4.28)

This gives a fluctuation Reynolds number

Recentre =
vcentreH

ν
. (4.29)

The resulting values for ReLSC, Revert and Recentre are displayed in figure 4.13. The two
Reynolds numbers based on the LSC velocity give similar results. Power law fits result in scalings
of ReLSC ' (9.7± 4.4)Ra0.41±0.03 and Revert ' (9.3± 9.5)Ra0.42±0.04. The velocities in the
cell centre are somewhat smaller, giving a scaling of Recentre ' (2.9 ± 3.1)Ra0.46±0.04. This
shows, that the turbulent fluctuations grow faster, than the overall speed of the large-scale flow.
In DNS by Scheel and Schumacher [98], the Reynolds number of the flow was calculated as a
rms-average of the velocity magnitude over the whole fluid volume (circles in figure 4.13), giving
a scaling of Re ' (6.5± 0.6)Ra0.45±0.01. These results match ReLSC and Revert in magnitude,
since the volume average includes the high-speed regions of the LSC. The scaling exponent,
however, is more similar to Recentre.
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Figure 4.13.: Turbulent momentum transport Re in liquid metal convection over the thermal
driving Ra. Uncertainties of the present experimental data are not shown for
better visibility. They are about 20 to 30% due to the turbulent fluctuations. The
data is compared to numerical (circles), experimental (squares) and theoretical
results (grey line).

Experiments reporting Reynolds numbers in liquid metal convection are rather scarce due to
the difficulty of measuring the flow field in an opaque liquid. Takeshita et al. [100] measured the
vertical velocity near the side wall using the correlation of two temperature probes at r/R = 0.8.
The resulting Reynolds number (squares in figure 4.13) is close toRevert in magnitude but with a
stronger scaling exponent Re ' 6.24Ra0.46±0.02. In another experiment in liquid gallium and a
Γ = 2 cell, Vogt et al. [78] calculated the Reynolds number from the horizontal velocity at the cell
centre. This gave an increased scaling exponent Re ' 5.662Ra0.483. All these different results
underline, that the momentum transport is strongly dependent on the measurement technique,
position and calculation procedure used to determine the characteristic velocity from the complex
three-dimensional flow structure. This can also be considered to be the reason for ReLSC and
Revert having smaller scaling exponents than other comparable results from experiments or DNS.
Interestingly, the scaling exponent of the global Re from the DNS by Scheel and Schumacher
[98] is most closely matched by the velocity fluctuations Recentre in the cell centre.
Additionally, the results of the GL theory for Pr = 0.029 are shown in figure 4.13. It under-

predicts the Reynolds number compared to the LSC-based experimental and numerical values
by up to a factor of 2. The scaling exponent of the GL data, however, is within the uncertainty
of the present experiments results: A least-squares power law fit to the grey line in figure 4.13
gives Re ∝ Ra0.44.

4.4. Concluding remarks

This chapter investigated the properties of turbulent liquid metal Rayleigh-Bénard convection
in a Γ = 1 cylindrical cell. It confirmed the presence of a large-scale circulation, well known
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from other experiments. The dynamics of the LSC were investigated in depth by identifying
the torsion and sloshing modes of the flow at the plates and at half-height, respectively. The
frequency of these oscillations and their interplay to form a single coherent flow structure were
studied. The amplitude and frequency of the oscillation modes was found to be more intense
for liquid metals than in water experiments. The phase shifts between the modes revealed an
asymmetry in the flow propagation, not reported in previous studies.
Heat transport measurements gave good agreement with other experiments, numerical sim-

ulations and theoretical predictions. A full consensus of all data could not be reached, which
suggests a dependence of the Nusselt number on the exact execution of the experiments and the
specific nature of the flow state.
The global momentum transport was found to be highly dependent on the chosen characteristic

velocity. Depending on the area of the flow which is considered, significant differences in
magnitude and scaling can be achieved. Especially for experiments, which generally only probe
a limited area of the flow, it is thus important to take this into consideration.
In the following chapter 5, the effect of a vertical magnetic field on the experiment is investi-

gated. The above results are used as the base state of the convective system which is then altered
by an increasingly stronger magnetic field.
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5. Rayleigh-Bénard magnetoconvection
experiments

After the previous chapter characterised the classical Rayleigh-Bénard system, this chapter
investigates the modification of the convective flow by a vertical magnetic field. Figure 5.1 gives
an overview of the region of the (Ra,Ha) phase space covered by the experiment. The parameter
space of 106 ≤ Ra ≤ 6× 107 from the previous chapter is extended by Hartmann numbers up to
Ha ∼ 1000. It is known that a vertical magnetic field can suppress three-dimensional turbulent
fluctuations and lower the overall flow strength [5, 31]. The present experiments are meant to
catalogue the flow regimes occurring with increasingly stronger magnetic fields and how they
influence the heat and momentum transport. For Rayleigh numbers of Ra ≤ 107 the critical
Hartmann number Hac can be reached. Recent numerical simulations [75] have shown that due
to side wall effects a convective flow can prevail even for Ha > Hac. This is to be verified by
the measurements at low Ra and high Ha.
The first section 5.2 of this chapter will give details on the magnet system used to generate

the magnetic field. Afterwards, the large-scale flow will be characterised in section 5.2 using
temperature and velocity measurements. The behaviour of momentum and heat transfer is
considered in section 5.3. Using that knowledge, the GL theory for magnetoconvection is
revisited and revised in section 5.4.

106 107 108

Ra

101

102

103

H
a

Figure 5.1.: Parameters of the series of the conductedmagnetoconvection experiments atHa > 0.
The dashed line indicates the onset of convection for an infinite fluid layer Hac(Ra).
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(a) (b)

DC-Solenoid

Figure 5.2.: The MULTIMAG facility at the HZDR. (a) Coil arrangement. The outer black
solenoid is used to produce the vertical magnetic field in the central bore. (b) The
convection cell inside the MULTIMAG, without heat insulation or cooling water
supply.

5.1. Experimental set-up

The cell for the magnetoconvection experiments is the same as for the classical Rayleigh-Bénard
experiments of the previous chapter. For more details on the set-up, see section 4.1. The cell
is now placed in a vertical magnetic field which is generated by the MULTIMAG facility [103]
at the Helmholtz-Zentrum Dresden –Rossendorf (HZDR). The outer DC solenoid, shown in
figure 5.2(a), is supplied with a constant current by an external power supply. The magnetic field
strength is measured in the centre of the bore hole and calibrated with respect to the applied
electric current. At a current of 800A, a maximal magnetic field of 140mT can be reached. The
cell is then placed in the centre of the bore hole (figure 5.2(b)).
In a measurement, the Rayleigh number is first set like in the Ha = 0 case (section 4.1). Once

the flow has stabilised, the desired magnetic field is switched on. Depending on the field strength,
the heating and cooling power has to be adjusted by the PID-controllers of the heating pad and
the thermostat, respectively. Once the temperatures are constant again and the convective flow
has settled, the measurement data are recorded for at least one hour. The longest measurement
takes ten hours.

5.2. Evolution of the large-scale flow

In the following, the effect of the vertical magnetic field on the large-scale flow structure is
investigated. This section first gives an overview of the general evolution of the flow for
increasing field strength using the side wall temperature profile to identify distinct flow regimes.
These are then studied in detail within their own sub-section.
The large scale flow is monitored by UDV velocity measurements and the thermocouple array

at half height of the cell (see figure 4.1). Figure 5.3 displays the evolution of the side wall
temperature profile for increasing Ha at Ra = 2.1 × 106. The initial temperature profile at
Ha = 0 shows the characteristic sloshing motion of the LSC as discussed in the previous chapter
(section 4.2). When a weak vertical magnetic field is applied, the temperature profile does not
change much. At Ha = 66, the imprint of the vertical flow is broader and more washed out ,
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Figure 5.3.: Colour-plots of the side wall temperature profiles at mid-height for different Ha at
Ra = 2.1× 106 (τff = 12.1 s). The Hartmann number is given above the respective
plot. The onset of convection is Hac = 443.

but the sloshing motion of the up- and down flow is still visible. This changes for Ha = 131.
While the LSC structure is still present with one up- and one down-flow, the oscillations of the
sloshing mode are completely suppressed by the magnetic field. In addition, fluctuations in the
temperature magnitude are reduced as well, indicating a decrease in the flow turbulence. The
one-roll flow structure of the LSC is a characteristic feature of turbulent convection in cells with
aspect ratio close to unity. The suppression of the turbulent character by the vertical magnetic
field finally leads to the breakdown of the LSC. The temperature profile at Ha = 329 shows one
cold down- and one warm up-flow over half the cell circumference. If the temperature profile
was continued over the whole circumference, two up- and two down-flows can be expected to
be present near the cell side walls. Such a result is not compatible with the picture of a single
convection roll, but suggests the existence of amore complex flow structure consisting of multiple
convection rolls or cells, akin to weakly non-linear or laminar convection [11, 104]. This state
of the flow continues to exist for increasing magnetic fields. While at Ha = 460 the number
of vertical flows does not change, at Ha = 657 one and a half up- and down-flows are visible
over half the circumference, suggesting three up- and down-flows along the whole side wall. The
clear presence of a convective flow at Ha = 460 and 657 is significant, because the onset of
convection for an infinite fluid layer at this Rayleigh number is Hac = 443. This shows, that the
ideal case of magnetoconvection without side walls is not immediately applicable for a cell with
non-conducting side walls. This point will be explored in detail in section 5.2.3. Finally, at one
of the highest magnetic fields Ha = 855, no distinct structure is discernible from the temperature
measurements. The variations of the colour in figure 5.3 at these Ha is within the measurement
accuracy of 0.1K. This vanishing flow regime is not yet a clear indication of the full suppression
of any convective motion in the cell. It is still possible that a flow exists which is simply too
weak to produce a detectable temperature imprint at the side walls.
This sequence of temperature profiles gives a clear progression of the flow structure for

increasing magnetic field strengths:
1. Turbulent fluctuations and regular oscillations of the torsion and sloshing modes are
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Figure 5.4.: Top and bottom flow orientation θtop and θbot for low Ha at Ra = 2.1 × 106

(τff = 1.2 s). All three plots have the same scale. The measurements correspond to
the ones shown in figure 5.3 with the same Ha.

suppressed. The specifics of this process are investigated in section 5.2.1
2. Breakdown of the LSC into a complex flow structure consisting of multiple rolls or cells.

This type of flow structure is discussed in section 5.2.2.
3. Existence of a flow beyond the classic onset of magnetoconvection in an infinite fluid layer.

A deeper analysis is presented in section 5.2.3.
After the different flow regimes are discussed in detail, a regime map is presented in section 5.2.4
along with the investigation of the transition boundaries between the regimes. The flow intensity
is expected to continuously decrease with increasing magnetic field strength [5]. This topic is
considered briefly in section 5.2.3 and more extensively in section 5.3, which investigates the
momentum and heat transport in the flow.

5.2.1. Weak magnetic fields: Modification of the LSC

For smallHartmann numbers, the flow still has an intensity high enough to retain theLSC structure
of the Ha = 0 case. This was shown for Ra = 2.1× 106 by the side wall temperature profiles in
figure 5.3 for Ha ≤ 131 and is also confirmed by the top and bottom flow orientation θtop/bot.
Figure 5.4 shows θtop + 180° and θbot for the measurements in figure 5.3 at Ra = 2.1× 106
and Hartmann numbers Ha = 0, 66, and 131. In all three cases, the average offset of 180° is
retained, i.e. the flows at top and bottom are anti-parallel. The oscillations of the torsion mode,
however, are changing significantly. While at Ha = 66 the anti-phase oscillations of θtop and
θbot are still visible, they are completely suppressed at Ha = 131. There, the flow orientations
drift in unison with an average offset of 〈θtop− θbot〉t = 176.7°± 0.7°. Together with the stable
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Figure 5.5.: Oscillation patterns of the temperature profile at the side wall. (a) Coherent sloshing
(Ra = 106, Ha = 13). (b) Incoherent sloshing (Ra = 4 × 106, Ha = 66).
(c) No oscillation (Ra = 106, Ha = 131). (d) Plume entrainment (Ra = 6 × 107,
Ha = 263). The symbols in the top left corner of each diagram correspond to the
markers in figure 5.6 and 5.7.

up- and down-flow from the temperature in figure 5.3 this indicates that the LSC has become
quasi-two-dimensional.
The examples shown so far were all recorded at one Rayleigh number. Over the whole range

106 ≤ Ra ≤ 6×106, four different flow patterns can be identified in the LSC regime (figure 5.5).
Three patterns have already been introduced above and are repeated only briefly. The first is
known from the Ha = 0 case and displays a mostly coherent and regular sloshing of the up-
and down-welling flows (figure 5.5(a)). The second pattern features an incoherent sloshing and
torsion motion at slightly increased magnetic fields (figure 5.5(b)): The back-and-forth motion of
the hot and cold temperature imprints become less regular and are more washed out. This regime
is not well defined, as there is a continuous transition and the incoherent pattern can appear
intermittently within an otherwise coherent sloshing motion. The third pattern is the complete
suppression of the regular oscillations of the LSC (figure 5.5(c)). Only small and irregular
fluctuations of the temperature are visible, which do not indicate any significant deviation of the
flow from the shape of a single convection roll. This regime was only found in experiments for
small Rayleigh numbers Ra . 3× 106. For higher Ra a fourth flow pattern was found instead,
which can be seen in figure 5.5(d). While the hot and cold imprints of the LSC are still visible
at φ ∼ 315° and φ ∼ 135°, respectively, they do not display the typical sloshing motion any
more. In the space between the extrema, the temperature is close to the mean value T̄ . However,
ever so often isolated hot or cold spots appear at φ ∼ 225° in between the up- and down-welling
flows of the LSC. These temperature imprints indicate thermal plumes which detached from the
plates and try to cross the cell at a different position than the ones prescribed by the LSC. Over
time the localised hot or cold signals wander towards the up- or down-welling part of the LSC,
respectively. This is a first indication of the breakdown of the LSC: Plumes start to detach from
the LSC and try to establish new areas of vertical flows, independent of the one-roll structure.
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Figure 5.6.: Map of the flow patterns in the LSC regime over the (Ra,Ha) phase space.

The LSC is, however, still strong enough to persist and after a short time the plumes are again
entrained into the main flow. This entrainment regime was not found for Ra < 3× 106, which
can be a sign that the detachment of plumes from the LSC requires a certain strength of the
thermal driving. In that case, the LSC pattern without oscillations would essentially be the
same as the entrainment pattern, with the difference being that for Ra < 3× 106 the thermal
driving is not strong enough to generate the localised plumes seen in the entrainment pattern.
Alternatively, the sampling of the (Ra,Ha) phase space may have not been dense enough to
find both patterns at the respective Rayleigh numbers. Just like for the coherence of the sloshing
motion, the transition to the entrainment pattern is not well defined. Similar patterns of the plume
entrainment can occasionally be seen in the incoherent oscillation pattern (e.g. at t/τff ∼ 30 in
figure 5.5(b)).
Figure 5.6 shows all measurements which displayed a dominant LSC structure over the

(Ra,Ha) phase space. The four different patterns are indicated for each measurement by
the marker shapes shown in figure 5.5. The coherent and incoherent oscillation patterns are
very similar and can coexist for the same parameters. A clearer division appears between the
oscillation, entrainment and no oscillation patterns. The sloshing and torsion modes disappear at
around Ha ∼ 100. Only for the highest Ra = 6×107 do the oscillations persist up to Ha = 131.
The aforementioned division of the no oscillation and the entrainment patterns is also visible at
Ra ∼ 3× 106.
The frequency spectra of θtop at Ha = 0 displayed a peak at the torsion frequency fosc

(figure 4.7(a)). When such peaks are present for the Ha > 0 measurements they can be
extracted using the same procedure as in section 4.2.1. The results are normalised using the
oscillation frequency without magnetic field fosc,0(Ra) ≡ fosc(Ra,Ha = 0), which is calculated
from the scaling (4.9), derived in the previous chapter. Figure 5.7 shows fosc/fosc,0 over the
Hartmann number Ha normalised by the critical Hartmann number Hac for the respective
Rayleigh numbers Ra. The frequencies of nearly all measurements collapse onto one curve.
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Figure 5.7.: Oscillation frequency fosc of θtop normalised by its value fosc,0 atHa = 0. It is plot-
ted over the Hartmann number Ha normalised by the critical Hartmann number Hac

at the respective Rayleigh number. Points on the bottom abscissa indicate measure-
ments without identifiable frequency peak in their θtop spectrum (i.e. fosc = 0).
The markers indicate the oscillation pattern of the side wall temperature profile (see
figure 5.5).

Up to a Hartmann number of Ha/Hac ∼ 0.04 the oscillations are not affected by the magnetic
field. After this point, the frequency continually decreases until the oscillations are completely
suppressed. Some of the frequencies in the incoherent oscillations and entrainment regime
are deviating strongly from this general curve. This shows that the magnetic field disturbs the
oscillation patterns of the turbulent flow. Still, it is remarkable that many of the measurements
in the entrainment regime continue the trend set by the LSC regime. While the oscillations of
the sloshing mode are not visible in the temperature profile, the frequency of the θtop spectra
seems to be a remnant of the torsion mode, which might even be related to the appearance of the
entrained plumes at mid height. This may be a topic for future investigations.
For the oscillation patterns where the torsion and sloshing modes are still present, the time

shifts ∆tmax between the mode signatures at the plates and the side wall can be calculated
analogously to the Ha = 0 case in section 4.2.2. This is not sensible for the entrainment and
no oscillation patterns of the LSC, since this analysis assumes the presence of the characteristic
motion of the torsion and sloshing modes. Figure 5.8 shows the time shifts ∆tmax extracted
from measurements displaying the coherent and incoherent oscillation patterns. The horizontal
lines indicate the average time shift at Ha = 0 from section 4.2.2. It is clearly visible, that the
time shifts do not change significantly with respect to the oscillation period τosc = 1/fosc for
increasing magnetic fields. While the magnetic field decreases fosc as shown in figure 5.7, the
flow structure stays the same. The deviation of the shifts from a value τosc/4 is still present and
does not show any clear trend with increasing Ha.
In summary, the LSC regime at weak magnetic fields can be subdivided in two main sub-

regimes:
1. Sloshing and torsion modes are present. Starting from Ha = 0, the coherent oscillations
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Figure 5.8.: Correlation shifts ∆tmax between the top and bottom plates and the Hot up- and
cold down-welling signatures (analogous to figure 4.9) normalised by the oscillation
period τosc = 1/fosc with increasing magnetic field strength Ha/Hac. The horizon-
tal lines indicate the respective average shifts at Ha = 0 (see section 4.2.2). Only
measurements displaying coherent or incoherent oscillations are shown.

caused by the turbulence in the flow are counteracted by the increasingly stabilising effect
of the magnetic field. Due to these two opposing mechanisms, incoherent oscillation
patterns emerge.

2. Sloshing and torsion modes are absent. Once the magnetic field has completely suppressed
the torsion and sloshing modes, no oscillations are visible in the temperature and flow
orientation measurements of the LSC at low thermal driving Ra < 3× 106. For Ra >
3× 106 the oscillation modes are suppressed as well, but thermal plumes are appearing
outside the general LSC path and are entrained into the LSC after some time. These
plumes are the first sign of the breakdown of the LSC.

5.2.2. Intermediate magnetic fields: Cellular flow structure

As the magnetic field suppresses the intensity and turbulence of the convective flow, the single
roll of the LSC can not be sustained. Like in laminar convection, the flow structure becomes
dominated by multiple up- and down-flows. These organise into convection cells and rolls [11,
104]. The information on the flow in the experiment is rather limited, but applying some
simplifying assumptions, the measurements of the ten UDV sensors and the thermocouple array
are sufficient to derive the large scale flow structure. In this section it is assumed, that azimuthal
flows are negligible over the turnover time scales due to the symmetry of the set-up, similar
to how the drift time scale τdrift of the LSC was much larger than the torsion period τosc for
Ha = 0. Additionally, the flow is assumed to be mostly homogeneous along the z-axis and
horizontal flows are concentrated near the heating and cooling plate. This is motivated by the
known magnetohydrodynamic effect, that a magnetic field tends to homogenise the flow field
along its direction [5, 31].
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Figure 5.9.: Identification steps of the cellular flow structure at the top plate for a measurement
at Ra = 3.3× 107 and Ha = 1050. Shown is the top view of the cell near the top
plate. (a) Measurement data averaged over 100τff . The temperature data at half-
height is shown around the circumference of the cell. The velocity data of sensors
T0, T45 and T90 are shown along their respective measurement line. The velocity
directions are indicated by arrows. (b) Identification of the position of up- and down
flows (� and ⊗, respectively) from diverging or converging flows (black symbols)
and from the temperature extrema (orange and blue symbols). (b) Connection of
the down-flow positions (dotted line) to a coherent cellular flow structure of four
up-flowing areas, separated by a triangular down-flowing boundary.

Figure 5.9 shows an example of how the flow structure is identified from the temperature data
at mid-height, and the velocity data measured the sensors by T0, T45, and T90 near the top plate.
The measurements were taken at Ra = 3.3× 107 and Ha = 1050 and their time averages over
100τff are displayed in figure 5.9(a). It shows a top view of the horizontal cross section near the
top plate with a black circle indicating the side walls. The temperature at mid-height is plotted
around the circumference of the cell and the velocity data is plotted along the beam-lines of the
respective UDV sensor across the diameter of the cell. The direction of the flow is indicated by
arrows on top of the velocity data. These show multiple points along the measurement lines,
where the flow is converging or diverging. Especially in the centre of the cell a diverging flow
is shown by all UDV sensors, implying uprising fluid that impinges on the top plate and spreads
radially outwards. At the side walls, the temperature extrema give the positions of warm up- and
cold down-flows. For example, the hot imprint at φ ∼ 225° indicates up-welling fluid, which hits
the top plate and flows radially inward as measured by T45. This flow is then converging with the
outward flow from the centre and suggests the presence of a vertical down-flow. Similarly, the
low temperature imprint at φ ∼ 270° gives an down-welling flow, which is fed by the outwards
streaming fluid measured by T90. Close to the wall, T90 records a small interval with inward
flowing fluid. This seems to be a small recirculation vortex in the corner of the cell, since
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Figure 5.10.: Cellular flow structure for a measurement at Ra = 3.3× 107 and Ha = 1050. See
figure 5.9 for details on the quantities shown. (a) Top view of cell near the top plate.
(b) Side view of cell in the x-z plane. The velocities measured by Vc are scaled by
a factor of 0.1. (c) Top view of cell near the bottom plate. The positions of the up-
and down-flows are replotted from (a).

the outward and downward flowing fluid at that azimuthal position coincide very well with one
another. In figure 5.9(b), all positions of up- and down-flows identified in the measurement
data are marked with � and ⊗, respectively. The markers derived from the temperature data
are coloured in orange and light blue, respectively. Along the side wall of the cell, down- and
up-welling flows alternate three times, giving an three-fold azimuthal symmetry. Additionally,
all three up-welling flows at the side wall are separated from the central up-flowing region by
down-flows. Connecting the positions of the down-welling flows in figure 5.9(c) gives the final
picture of the large-scale structure: Four disjoint regions of up-flowing fluid are separated by
a contiguous boundary of down-welling fluid in a triangular shape. Due to the four individual
up-flows, this structure is termed the 4 cells pattern.
Of course, this identification of the flow regime at the top plate has to be consistent with the data

of the remaining UDV sensors. The same analysis as depicted in figure 5.9 can also be applied
to the UDV sensors B0, B45 and B90 near the bottom plate. This is shown in figure 5.10(c),
with the identification steps from figure 5.9 joint into one diagram. The up- and down-flow
positions are replotted from figure 5.9. For comparison, the results from the top plate are also
shown in figure 5.10(a) in the same manner. At the bottom plate, converging and diverging flows
suggest rising and sinking fluid, respectively. The velocity data confirms the position of the
vertical flows from the top plate, with a converging flow in the centre and a threefold azimuthal
symmetry around the circumference. This supports the previous assumption that the flow is
mostly homogeneous along the z-axis except near the plates. The only major inconsistency can
be found at φ = 0, where a radial outward flow would be expected at the wall, but a very weak
inward flow is measured by B0. At this azimuthal position, V0 determines the vertical velocity
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Figure 5.11.: Flow patterns of the cellular convection regime. (a) to (e): Schematic top view of
the experiment with 2 to 6 convection cells. Blue areas indicate cold down-flow
and orange areas indicate warm up-flow (marked in (a) by ⊗ and �, respectively).
Each pattern may also appear with inverted flow directions.
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Figure 5.12.: Map of the cellular flow regime over the (Ra,Ha) phase space. If multiple flow
structures are identified at the same (Ra,Ha), the markers are clustered around a
black dot, which marks the measurement point.

at r/R = 0.8 (figure 5.10(b)). It shows a vertical up-flow around mid-height of the cell which
confirms the result from the measurement at the top. The vertical velocity data by Vc along
the central axis is also plotted in figure 5.10(b). Like the converging and diverging flows at the
bottom and top plate, respectively, it confirms the existence of up-welling fluid in the cell centre.
The flow pattern can be reconstructed as shown in figure 5.10 for most measurements in the

cellular regime. Figure 5.11 illustrates the five different patterns that could be identified. Each
pattern is named after the number of cells it contains. The n cells pattern consists of one up-flow
in the centre, and n − 1 up-flows along the side wall. These are separated by a continuous
boundary of down flowing fluid. The pattern thus has an n − 1 azimuthal symmetry. Only the
2 cells pattern (figure 5.11(a)) does not have a central up-welling cell and displays a twofold
symmetry like the 3 cells pattern. Each pattern can also appear with inverted velocities, i.e. with
a central down-flow and up-flows as the cell boundaries.
Figure 5.12 shows the distribution of the flow patterns in the cellular regime over the (Ra,Ha)
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Figure 5.13.: Radial velocity intensity profiles 〈vr〉rms(r) for different Ha at Ra = 2.1× 106
(Hac = 443). The rms-average is taken over time and all horizontalUDVsensors. A
median filter was applied to the velocity data to eliminate noise. The measurements
correspond to the ones shown in figure 5.3. The light grey areas mark the radial
ranges of the profile used to calculate vinner (left) and vouter (right).

phase space. In addition to the cell patterns from figure 5.11, two more types of flows appear
at the lower Ha-boundary of the regime. The first marks a transitional pattern from the LSC
regime to a cellular structure. This either means, that the measurement shows an LSC pattern,
which intermittently switches to a cellular pattern and back, or the flow starts with a cellular
pattern and switches back to a LSC structure. The second new pattern indicates a highly transient
flow, which is clearly cellular, but cannot be assigned to any of the n cells patterns. Multiple
measurements at the same point (Ra,Ha) can also result in different patterns or they may switch
during the measurement. However, the number of cells generally increases with the Rayleigh
number.

5.2.3. Strong magnetic fields: Magnetic wall modes

As shown before in figure 5.3, the Hartmann number can be increased above the onset of
convection Hac and a flow is still detectable by the thermocouple array at mid-height. This flow
can also be measured by the UDV sensors. Figure 5.13 displays the radial velocity profile 〈vr〉rms

from measurements at Ra = 2.1× 106 previously shown in figure 5.3. To calculate 〈vr〉rms,
the velocity profiles of the UDV sensors are filtered using a median filter with a kernel size of
5 measurements in time and 5mm along the measurement line of the sensors. This removes
artefacts and noise from the measurements which are present especially for slow flows below
1mms−1. The rms-average is then taken over time and over the data of all horizontal UDV sensors
(T0, T45, T90, M0, M90, B0, B45, and B90). 〈vr〉rms represents the average flow intensity at a
given radius of the cell. First, it can be seen in figure 5.13 that the maximum velocity magnitude
continually decreases with increasing Ha from ∼ 5mm s−1 at Ha = 0 to ∼ 0.07mm s−1 at
Ha = 657. Secondly, the shape of the profiles change in accordance to the large-scale flow
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normalised by the critical Hartmann number Hac. Flow regimes are indicated by
the marker shape and colour. The light grey area marks a gap in the data between
the cellular and wall mode regime.

regime. For the lowest Ha = 0 and 131, the flow is in the LSC regime (see figure 5.6). The
profile is dominated by the strong horizontal flow near the plates, which gives a maximum at
the centre of the cell (r/R = 0). For the profile at Ha = 329, the flow is in the cellular regime
(this specific measurement shows a pattern of 3 cells, see figure 5.12). The velocity magnitude is
uniformly distributed over a large portion of the radius. Only in the centre it shows a pronounced
minimum due to the strong vertical flow at that position (see figure 5.11(b)). For the Rayleigh
number of these measurements Ra = 2.1× 106, the onset of convection for Γ → ∞ is at
Hac = 443. The profiles at Ha > Hac still show velocities of a magnitude ∼ 1mm s−1. Their
maximum is shifted closer to the side wall and the velocity rapidly decreases towards the cell
centre by one order of magnitude. This is in stark contrast to the cellular regime, which had
convection cells and rolls distributed within the whole volume of the fluid. Since the flow is
predominantly located at the side walls, this flow regime is denoted as the wall mode regime.
In order to distinguish the wall mode and cellular regime, the flow strength in the centre of

the cell and near the side walls are compared. They are defined as the average velocity over the
inner and outer 25%, respectively, of the radial flow profiles 〈vr〉rms. These ranges are marked
in figure 5.13 by a light grey background. The characteristic inner and outer flow intensity are
denoted by

vinner =
〈
〈vr〉rms(r)

〉
0≤r≤0.25R

and vouter =
〈
〈vr〉rms(r)

〉
0.75R≤r≤R

, (5.1)

respectively. These quantities are only calculated for measurements with Ha/Hac < 2. For
higherHa/Hac the overall radial velocities become too small to be reliably measured by the UDV
sensors. The ratio vouter/vinner is displayed in figure 5.14 over Ha/Hac. The measurements
in the LSC regime show ratios of ∼ 0.5, since the flow profiles are strongest in the cell centre.
In the cellular regime the ratio increases up to ∼ 2 due to the more uniform distribution of the
flow intensity over the radius. When approaching the critical Hartmann number Ha/Hac = 1,
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Figure 5.15.: Map of the wall mode regime over the (Ra,Ha) phase-space. The number of
wall modes are determined from the number of up-and down flows in the temper-
ature profile at half height. The vanishing regime indicates measurements without
measurable flow.

the data record shows a gap between 2 < vouter/vinner < 4 (marked by a light grey area). All
measurements above this gap are considered to be part of the wall mode regime, displaying
significantly higher velocities at the side wall than in the centre of the cell. The transition to
wall modes perfectly coincides with the critical Hartmann number Hac. Only one measurement
is below this threshold at Ra = 2.1× 106 and Ha = 427, giving Ha/Hac = 0.97. The
〈vr〉rms profile of this measurement is shown in figure 5.13. It has the same trend as the
profiles at higher Ha with a strong decrease towards the cell centre. The transition to the wall
mode regime might thus not lie exactly on the Ha = Hac curve, but at slightly lower Ha. The
measurement with the highest Ha/Hac ratio in the cellular regime has a value of Ha/Hac = 0.94
(at Ra = 4.2× 106).

Figure 5.15 shows the (Ra,Ha) phase space of the wall mode regime. The transition to
wall modes at Ha ∼ Hac was also found in numerical simulations by Liu et al. [75] within
a rectangular geometry of width-to-height aspect ratio 4. In the central region of the cell the
influence of the side walls is negligible and the fluid acts like in an horizontally infinitely extended
layer. This means that forHa > Hac, the convection in the centre of the cell should be completely
suppressed. The velocities measured in the centre (see figure 5.13) are due to the remaining
influence of the side walls. The importance of cell walls on the onset of magnetoconvection has
been investigated by Houchens et al. [105] theoretically. The electrical boundary conditions are
of major relevance. Electrically conducting side walls do not change the onset of convection
significantly. However, electrically insulating side walls require the induced eddy currents to
close within the fluid in a layer near the wall called the Shercliff layer [105, 106]. This decreases
the magnitude of the eddy currents in comparison to the case of conducting side walls and in
turn weakens the Lorentz forces acting on the fluid. The suppression of the convective flow is
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thus smaller in the vicinity of the non-conducting side walls than in the centre of the cell. The
resulting new onset of convection in a Γ = 1 cylindrical cell is, according to Houchens et al.
[105], given by

HaH =

(
Ra

23.48183

)2/3

for Ra & 9.3× 104 , (5.2)

RaH = 23.48183×Ha3/2 for Ha & 250 . (5.3)

The value of HaH is larger and increases faster than the Chandrasekhar limit HaCh ∝ Ra1/2.
This onset of convection for Γ = 1 is plotted in figure 5.15 as a dotted line. The present
experiments do not reach past this boundary. However, even before reaching HaH the velocity
and temperature measurements cannot detect a distinct flow any more. These data points are
denoted as the vanishing regime (crosses in figure 5.15). It is unclear, whether this contradicts
the theoretical value of HaH. A very slow flow close to the side wall may not be detectable by the
UDV sensors and the temperature imprint of this flow may be below the thermocouple accuracy.
The wall modes exhibit an azimuthal periodicity, which can be seen in the mid-height tempera-

ture profile (see Ha = 460 and 657 in figure 5.3). Similar to the evaluation of the cellular regime,
the number of wall modes along the whole circumference can be estimated by counting the up-
and down-flows visible in the temperature profile over half the circumference, assuming an even
distribution along the whole side wall. One wall mode comprises one up- and one down-flow. In
figure 5.15, the number of wall modes is indicated by the shape and colour of the markers. The
measurements show that the mode number tends to increase with the Rayleigh number. A more
rigorous investigation on this observation would benefit from temperature measurements around
the whole cell circumference and a more densely sampled phase space.
The existence of wall modes in magnetoconvection can be compared to the behaviour of

rotating convection. These two convection systems havemathematical similarities [5] and display
a number of equivalent properties. For example, the rotation of a convection cell stabilises the
flow and pushes the onset of convection to higher Ra, just like the vertical magnetic field does
in magnetoconvection. It is a long known feature of rotating convection, that the side walls of a
cell induce an instability, which lets a flow set in at temperature difference which are lower than
the critical temperature difference for an horizontally infinite fluid layer without side walls [107].
These sub-critical flow modes are concentrated close to the side walls and exhibit an azimuthal
periodicity of different numbers of up and down moving flows, just like in the present case. The
mode number was also seen to depend on the execution of the experiment, e.g. approaching the
target temperatures with different speeds can lead to different mode numbers. This challenges the
above observation, that the number of wall modes in magnetoconvection shows a trend to higher
values for increasing Ra and repeated measurements with different experimental executions
should be considered in future investigations on this topic.

5.2.4. Flow regime map and transitions

The distribution of the main flow regimes over the (Ra,Ha) phase space are displayed in
figure 5.16. As mentioned before, the most distinct transition is between the cellular and the
wall mode regime, which lies along Ha = Hac. The transition between the LSC and the cellular
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Figure 5.16.: Flow regimemap over the (Ra,Ha) phase-space for measurements withHa > 100.
Experiments for Ha < 100 are in the LSC regime and still display the torsion and
sloshing modes (see figure 5.6). The dash-dotted line is a least-squares power law
fit to the measurements in the transition to cellular regime.

regime is more ambiguous. At multiple points a clear association of the flow structure with
either regime was not possible. Here, a more dense sampling of the phase space could give a
more clear picture of the transition. Nonetheless, in order to estimate a position of the transition,
a power law is fitted to the points of the transition to cellular regime. The resulting function is
Ha ' (9.4 ± 4.0) ± Ra0.22±0.03 and is indicated by the dash-dotted line in figure 5.16. This is
only a rough local estimate of the transition position, since an extension of this power law would
lead to an intersection with the Chandrasekhar limit at Ra ∼ 2× 105.
Recent numerical simulations of RBC in a vertical magnetic field at Pr = 1 by Yan et

al. [76] also detected a cellular and turbulent regime. In between, an additional regime of
columnar convection was discovered, which was also present for simulations at Pr = 0.025 and
Ha = 1414. This regime is characterised by thin up-and down-welling flow columns distributed
over the whole cell. Such a flow was not detected in the present experiment. This may have
a number of reasons. First, the low-Pr simulations use stress-free boundary conditions and a
box geometry with a width-over-height aspect ratio Γ ∼ 1.5 and 3. Geometry effects might be
more dominant with the no-slip boundary conditions of the present experiment. Secondly, their
data suggests that the size of the columnar regime in the (Ra,Ha) phase space shrinks with
decreasing Pr and Ha, though it is unclear, whether it might vanish completely at some point.
In conclusion, the regime map in figure 5.16 and the preceding sections give a broad overview

of the flow structures in magnetoconvection and their transitions. These findings show the
successive suppression of turbulence by the magnetic field, which causes the flow to transition
into a laminar state and ultimately suppresses convection in the cell centre, leaving only a very
weak flow in the vicinity of the side walls. These findings can serve as a guide to plan future
experiments and localise regions of interest which merit further investigation.
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Figure 5.17.: Global Reynolds number Reglobal over Ra at Ha = 0 (relative uncertainties are
∼ 11%). For comparison, the Reynolds numbers ReLSC, Revert, and Recentre have
been replotted from figure 4.13.

5.3. Global transport properties

As the large-scale flow structure of the magnetoconvection system changes, the transported heat
and momentum are influenced as well. This section deals with the changes of the Nusselt and
Reynolds number with increasing magnetic fields. Their values at Ha = 0 from section 4.3
will in the following be identified with a subscript “0”: Nu0(Ra) ≡ Nu(Ra,Ha = 0) and
Re0(Ra) ≡ Re(Ra,Ha = 0). The Nusselt number in magnetoconvection is determined the
same way as previously in section 4.3.1.
The Reynolds number has to be treated somewhat differently. The definitions ofReLSC, Revert

and Recentre calculated in section 4.3.2 are motivated by the LSC structure of the flow and cannot
be readily adopted in the cellular or wall mode regime. Since the highly complex and diverse
flow patterns at large Ha are only sparsely sampled by the UDV sensors, any similar definition
of a Reynolds number in these regimes would have to be adjusted for nearly each individual
measurement. This could potentially inject a subjective factor into the calculation. Instead,
a singular Reynolds number definition is used for all regimes. The characteristic velocity is
determined by taking all measured UDV velocity profiles and calculating the rms-average over
all sensors, along their beam-lines, and time. This mimics the approach taken by many numerical
simulations which determine the characteristic velocity of the flow from the rms-average of the
velocity magnitude over the whole cell volume, and time [75, 98]. With this in mind, the resulting
velocity is denoted as vglobal and the corresponding global Reynolds number is

Reglobal =
vglobalH

ν
. (5.4)

The values of Reglobal for Ha = 0 are plotted in figure 5.17. It has a very small magnitude,
even lower than Recentre calculated from the fluctuations in the cell centre. Its power law scaling
of Reglobal,0 ' (4.8 ± 1.6)Ra0.42±0.02 displays the same exponent as ReLSC and Revert (see
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figure 4.13). This shows, that Reglobal is still dominated by the fastest velocities of the flow but
its overall magnitude is decreased due to the many low speed regions probed by the UDV sensors.
It should be noted, that this definition of Reglobal displays some biases. The radial velocities

at top and bottom plate are over-represented with six sensors compared to two radial sensors at
mid-height and two vertical sensors. Also, the wall modes are strongest close to the wall, which
is an area not covered well by the sensors. Still, this definition of the Reynolds number is not
based on any specific flow structure and can thus be applied to all flow regimes equally.
The data of Nu(Ra,Ha) and Reglobal(Ra,Ha) can be described well by

Nu− 1

Nu0 − 1
' 1

1 + C1

(
Ha

Raβ1

)γ1 , (5.5)

Reglobal

Reglobal,0
' 1

1 + C2

(
Ha

Raβ2

)γ2 (5.6)

This empirical representation is similar to a model used by Cioni et al. [71]. Nu and Reglobal are
normalised by their values without magnetic field (an average over all measurements at Ha = 0
and the same Ra). For the Nusselt number its convective part Nu− 1 is considered. An ODR fit
of (5.5) and (5.6) to the data gives the parameter values

C1 = 20± 11 , β1 = 0.46± 0.02 , γ1 = 2.12± 0.07 , (5.7)
C2 = 0.10± 0.05 , β2 = 0.24± 0.02 , γ2 = 1.74± 0.05 . (5.8)

The exponents β1 and β2 ofRa are very close to 1/2 and 1/4, respectively. This is a motivation
to relate the Ra dependency with the Chandrasekhar limit: Ra0.46 ∼

√
Ra = πHaCh ≈

πHac and Ra0.24 ∼ 4
√

Ra =
√
πHaCh ≈

√
πHac. Plotting the normalised Nusselt number

over Ha/Hac in figure 5.18 and the normalised global Reynolds number against Ha/
√

Hac in
figure 5.19 shows that all data over the whole Rayleigh number range collapse onto one curve. At
low Ha, the Nusselt and Reynolds number stay at their respective value without magnetic field.
With increasing Ha, the values start to drop and continually decrease towards higher magnetic
fields. The scaling of the heat transport as a function ofHa/Hac is already widely known [71–73,
75]. The Reynolds number is less well studied and a collapse over Ha/

√
Hac has, to the author’s

knowledge, not been reported yet.
Figure 5.18 and 5.19 also display the flow regimes of each measurement. The normalised

Nusselt number stays at its initial value for nearly the whole LSC regime and drops to values of
∼ 80% only shortly before the transition to the cellular regime. In contrast, Reglobal/Reglobal,0

starts to drop much earlier over the whole LSC regime, reaching values of ∼ 30% before the
transition towards the cellular regime sets in. The heat transport is thus not directly related to the
overall intensity of the flow. While the magnetic field decreases the flow speed, it also suppresses
the turbulent fluctuations and oscillations. This can improve the heat advection by increasing
the coherence of the flow, which is a well known effect in a number of different convection
systems [77, 108]. A recent numerical study by Lim et al. [77] on RBC in a vertical magnetic
field at Pr = 8 even found an increase of the Nusselt number at an optimal Ha. For Ra = 107

they found an increase of Nu/Nu0 ∼ 1.02 at Ha ∼ 20. Such an effect is not observed in the
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present data because (i) such a low Ha range was sampled very sparsely, (ii) the measurement
accuracy cannot resolve such low variations in Nu, or (iii) this effect might not be present in
low-Pr magnetoconvection. Still, Nu remaining at its initial value Nu0, while Reglobal shrinks,
shows that the heat transport is improved by the decrease of turbulent fluctuations.
Once the cellular regime is reached, the Nusselt number continually decreases until it cannot

be detected any more by the present experiment, i.e. when the temperature difference of the in-
and out-flowing cooling water falls below 0.2K. The Reynolds number displays a less coherent
behaviour. As mentioned before, the flow in the cellular regime is more diverse than in the LSC
regime and as a result, the values of Reglobal scatter more than at lower Ha. They also have a
tendency towards higher values than in the LSC regime, since more UDV sensors are subjected
to high velocities for cellular structures. The downwards trend of the flow intensity, however,
continues consistently and finally transitions into the wall mode regime. Here, the Reynolds
numbers are also scattered over a large range. Nonetheless, Reglobal displays a consistent
behaviour over all regimes, verifying its suitability to describe the momentum transport over the
whole phase space.
Replacing Raβ1 → Hac and Raβ2 → √Hac in (5.5) and (5.6) leads to new representation the

Nu and Reglobal measurements

Nu− 1

Nu0 − 1
' 1

1 + C̃1

(
Ha
Hac

)γ̃1 , (5.9)

Reglobal

Reglobal,0
' 1

1 + C̃2

(
Ha√
Hac

)γ̃2 . (5.10)

A new ODR fit to the experimental data results in the parameters

C̃1 = 5.9± 0.3 , γ̃1 = 2.03± 0.06 , (5.11)
C̃2 = 0.053± 0.007 , γ̃2 = 1.73± 0.05 . (5.12)

The functions are plotted in figures 5.18 and 5.19 and match the data very well. At large
Ha, (5.9) and (5.10) approach the power laws C̃−1

1 (Ha/Hac)
−γ̃1 and C̃−1

2 (Ha/
√

Hac)
−γ̃2 ,

respectively (shown as dotted lines). Since these power laws apply to the normalised Nusselt
and Reynolds numbers, the Ra dependences of Nu0 and Reglobal,0 have to be taken into account.
Using the scaling Reglobal,0 ' 4.8 Ra0.42 presented in figure 5.17 and Hac ≈ HaCh, the global
Reynolds number is given by

Reglobal ' 34 Ra0.85Ha−1.73 for large Ha. (5.13)

The exponents of Ra and Ha are close to 7/8 = 0.875 and 7/4 = 1.75, respectively. The
Reynolds number scaling is thus close to

Reglobal ∝
(

Ra

Ha2

)7/8

for large Ha. (5.14)
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Figure 5.20.: Comparison of the present results for the Nusselt number with other experiments
and simulations at low Pr (see also table 3.1). The lines represent fits of (5.9) to
the respective data with parameters (5.11) (solid line) and (5.16) (dotted line).

The ratio Ra/Ha2 can be interpreted as a magnetic Rayleigh number for which the viscosity ν
is replaced with the magnetic viscosity νσ = σB2H2/ρ which quantifies the Joule dissipation
(see (3.6)). This result suggests that for high Ha the momentum transport is dominated by the
damping of the magnetic field and the kinematic viscosity can be neglected.
The normalised Nusselt number (5.9) is already a function of the magnetic Rayleigh number

Ra/Ha2 ≈ (Ha/Hac)
−2/π2. The scaling of Nu0 was shown in figure 4.11 to be Nu0 '

0.12 Ra0.27. Since the Nusselt number in the present experiment reaches at maximum values of
15, the convective part of the Nusselt number Nu0 − 1 cannot be readily approximated by the
full Nusselt number Nu0. Considering, that exponent γ̃1 ≈ 2 in (5.11), combining the power
laws gives

Nu− 1 ' 0.12 Ra0.27 − 1

58

Ra

Ha2 for large Ha. (5.15)

Even if this result is not a pure scaling law, it illustrates that the heat transport is not exclusively
dominated by magnetic effects as was the case for the momentum transport. Both the regular
Rayleigh number Ra and the magnetic Rayleigh number Ra/Ha2 contribute to the scaling.

The data for Nu and Reglobal can be compared with experiments by Cioni et al. [71] and
King and Aurnou [74], as well as simulations by Liu et al. [75]. Nusselt numbers are reported
in all these publications. Their normalised data is plotted, together with the present results, in
figure 5.20. Overall, all data show a good agreement by following a common trend. The values
by Cioni et al. [71] are generally smaller than the other data and decrease more quickly when
approaching Hac. The fit of (5.9) to the present experiment is replotted from figure 5.18 as a
solid line. For Ha > Hac, the data by Liu et al. [75] are about half as big as the fit. A new fit
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Figure 5.21.: Comparison of the present results for the global and LSC Reynolds numbers with
numerical simulations by Liu et al. [75] (see also table 3.1). (a) Re/Re0 over
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Hac for all available Ra. (b) Absolute Reynolds numbers Re over Hartmann
number Ha for Ra = 107 with Hac = 981.

of (5.9) to the data by Liu et al. [75] result in parameter values of

C̃1 = 10± 2 , γ̃1 = 2.2± 0.2 . (5.16)

The resulting curve is plotted in figure 5.20 as dotted line. It shows a steeper decline for high Ha
than the first fit but the uncertainty of the fitted exponent γ̃1 in (5.16) is compatible with the initial
results (5.11). This suggests that either not sufficient experimental data is available to properly
extrapolate the model towards Ha > Hac or that the model does not apply for Ha > Hac because
of a change in scaling due to the transition into the wall mode regime.
To the author’s knowledge, so far no experimental Reynolds numbers were reported for RBC

in a vertical magnetic field. Numerical data at small Pr have been published [75, 76]. Yan et al.
[76] have conducted their simulations at Ha = 1414, which is outside the range of the present
experiment. Since they also do not report corresponding values of Re at Ha = 0 their data
can, unfortunately, not be compared with the present experiment. Liu et al. [75] calculated Re
from the rms-average of the velocity magnitude over the whole fluid volume at Ra = 107 and
0 ≤ Ha ≤ 2000. Their results are compared with the present experimental results in figure 5.21.
The normalised Reynolds numbers in figure 5.21(a) show very good agreement. In addition to
the global Reynolds number, ReLSC has been plotted for measurements in the LSC regime. This
confirms that not only Reglobal exhibits the discussed behaviour. It was shown previously that
the absolute values of Reglobal are much smaller than ReLSC (see figure 5.17). This difference is
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Figure 5.22.: Comparison of (a) Nu and (b) Reglobal (markers) with the initial results (3.21) of
the GL theory for magnetoconvection at Pr = 0.029 (lines). The data is plotted
over Ha for selected Ra. The boundary layer crossover δT = δB in the model is
marked by crosses on the lines.

cancelled out by the normalisation with their values atHa = 0. Figure 5.21(b) shows the absolute
Re-values over Ha for Ra = 107. As expected, Reglobal is smaller than the Reynolds numbers
from the simulations, but has a similar progression. Only one value in the wall mode regime at
Ha > Hac = 981 shows a much smaller value than expected. This is caused by the very small
velocities in the centre of the cell once wall modes are established. ReLSC only reaches up to
Ha ∼ 250, but for this short range it matches the simulations much better than Reglobal.
In conclusion, the dependence of Nu and Re on Ra and Ha could be described well by

the model functions (5.9) and (5.10). A clear explanation for the exponents of the asymptotic
scalings (5.15) and (5.14) for large Ha has not yet been found. To test the robustness of these
scaling exponents, more experimental and numerical data are necessary.

5.4. Grossmann-Lohse theory for magnetoconvection

Using the new results for the heat and momentum transfer of the previous section, the theoretical
model from chapter 3 can be validate and revised. This will be done in the following section.
Afterwards, the revised model will be re-fitted and re-evaluated using all currently available
experimental data (section 5.4.2).

5.4.1. Revision of the theoretical model

The Nusselt number Nu and global Reynolds number Reglobal from the present experiment are
compared with the results of the theoretical model with the initial parameters (3.21). Figure 5.22
shows the data over Ha for selected Ra. For the Nusselt number (figure 5.22(a)), a good
agreement can be seen for Ha > 200. For smaller Ha, the model under-predicts the experimental
data and towards Ha = 0 it drops off again. This is in stark contrast to the real data, which
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saturates for Ha → 0 at the value Nu0. The drop-off at low Ha is caused by the boundary
layer (BL) crossover δT = δB of the model introduced in section 3.1.1 using the transition
function f(2Nu/Ha). The position of δT = δB (i.e. 2Nu/Ha = 1) along the model lines are
marked by crosses. The Reynolds number in figure 5.22(b) shows a similar decrease towards
Ha = 0, albeit being less pronounced. The model reproduces the Reynolds number less well
than the Nusselt number. The initial slow decrease of Reglobal during the LSC regime seen
in figure 5.19 is not reproduced and the following drop for Ha → Hac is much steeper than
in the experimental data, since the existence of wall modes is not incorporated into the model.
The magnitude of Re is over-predicted for high Ra ∼ 6 × 107 and under-predicted for small
Ra ∼ 106.
The effect of the BL transition requires a more detailed discussion. As was seen in the results

of the initial model fit to the data by Cioni et al. [71] and Liu et al. [75], the crossover line
δT = δB is situated below Ha = 100 for most of the Ra range shown. Only at Ra ∼ 6 × 109

does it cross to values Ha > 100. The model was said to be valid for Ha � 1, so that the
viscous boundary layer is a Hartmann layer δB . The physically wrong effect of the BL transition
suggests that in reality no crossover is taking place at these values of Ra and Ha. This is also
reflected by the results of the classical GL theory for Ha = 0 [26]. There, the BL transition is
predicted to occur at Ra ∼ 1012 for the Prandtl number of the initial model fit (Pr = 0.025).
Below this Rayleigh number, the thermal BL is larger than the viscous BL, i.e. δT > δv, which
is also confirmed by numerical simulations [18, 98]. Turning again to magnetoconvection, the
magnetic field decreases the viscous BL thickness, eventually turning it into a Hartmann layer
(δB ∝ 1/Ha). In contrast, the thermal BL with δT ∝ 1/Nu is increasing since the convective
heat transfer is inhibited by the magnetic field, i.e. Nu decreases. It is thus justified to assume
that at low Prandtl numbers δT > δB for the entire (Ra,Ha) phase space currently accessible by
experiments and simulations. In the model, this is accomplished by setting f(2Nu/Ha)→ 1 in
the model equations (3.17) and (3.18).
The BL crossover should only become relevant for very high Ra or for larger Pr. Indeed,

in numerical simulations by Lim et al. [77] at Pr = 8 it is seen that the thermal BL is smaller
than the momentum BL δp for low Ha and that a BL crossover happens for increasing Ha. δp
is defined as the wall-near peak of (∂xvx)2 + (∂yvy)

2 + (∂zvz)
2, which measures the overall

magnitude of the normal stress. A viscous BL thickness δv is also reported and gives similar
results. The transition point δT = δp is associated with an increase of the Nusselt number for
a short range of Ha, which is similar to the behaviour created by the BL transition in the initial
model. Such an increase in the Nusselt number is not visible in the present experimental data for
Pr = 0.029 which may be traced back to the lack of a BL crossover.
Another issue of the initial model fit (3.21) were the negative values of c2 and c4. These

pre-factors describe average dissipation rates, which are always positive. This was explained in
section 3.2 and figure 3.2 by the limited range of Hartmann numbers in the experimental data
used for fitting the model. To prevent this non-physical behaviour, the model parameters are
restricted to the interval (0,+∞) in the fitting routine.

In conclusion, the following changes are applied to the model of heat and momentum transfer
in magnetoconvection at low Pr:

1. The BL transition is removed, i.e. f(2Nu/Ha)→ 1.
2. All model parameters c1 to c6, and Re∗ are restricted to the interval (0,+∞).

84



5.4. Grossmann-Lohse theory for magnetoconvection

101

102

103

H
a

(a)

R
e∗

103 104 105 106 107 108 109 1010 1011

Ra

101

102

103

H
a

(b)

R
e∗

100

101

102

N
u

100

102

104

106

R
e

Figure 5.23.: Results of the theoretical model for parameters (5.17) and Pr = 0.025. (a) Nusselt
number. (b) Reynolds number. Both diagrams show the Chandrasekhar limit HaCh

(solid line) used in the model and for comparison the real solution for the onset of
convection Hac (dashed line). The dotted lines shows Re = Re∗. The positions of
the fitting data from the present experiment, Cioni et al. [71], and King and Aurnou
[74] are marked by circles, crosses, and pluses, respectively.

5.4.2. Revised theoretical results

The present experiment together with experimental data by Cioni et al. [71] and King and Aurnou
[74] provide measurements of Nu over a much larger range of Ra and Ha than were used in the
initial fit of the model. Additionally, experimental values of Reglobal can now be used to fit the
model, instead of numerical data. Together with the adjustments of the model discussed in the
previous section, a new fit using these data results in the optimal model parameters

Re∗ = 1.3× 104 , c1 = 1.0 , c2 = 6.0 , c3 = 0.034 ,

c4 = 1.2× 10−5 , c5 = 0.018 , c6 = 0.68 .
(5.17)

In comparison to the initial model parameters (3.21), the revised ci vary less in their order of
magnitude and are overall closer to 1. The previously negative c2 is now of the order∼ 1, which
can be attributed to the additional data for low Ha, as discussed in section 3.2. Only c4 is much
smaller than the other parameters, though even then it can become relevant at high Ha, since it
appears in the term c4Ha3 of (3.18). Like for c2, it is expected that the value of c4 can be better
determined once data for very high Ha & 5 × 104 are available for the fitting procedure (see
figure 3.2). The relative uncertainties of the parameters remain high, exceeding 100% except for
c6 and Re∗.

The values for Nu and Re resulting from the revised parameters (5.17) for Pr = 0.025
are plotted over the (Ra,Ha) phase space in figure 5.23. The general shape of the functions
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Figure 5.24.: Comparison of (a) Nu and (b) Reglobal (markers) with the revised model (5.17)
(lines). The values are plotted over Ha for selected Ra.

Nu(Ra,Ha) and Re(Ra,Ha) are similar to the initial results in figure 3.1. The largest difference
is caused by the omission of the BL crossover. The Nusselt and Reynolds numbers do not show
the increase at low Ha that was present in the initial results, but monotonically decrease for
increasing Ha. This can be seen more clearly in figure 5.24(a), where the calculated Nusselt
number is comparedwith the present experimental values. Similar to the initial fit (figure 5.22(a)),
the model closely matches the Nusselt number for Ha > 200. With the revised model, the range
Ha < 200 is better represented than previously. The model now approaches constant values for
Ha→ 0 which are close to their corresponding experimental results. The Reynolds numbers of
the model (figure 5.24(b)) now match the experimental results better in magnitude for Ra & 107

but show a trend to increasingly underestimate the real values for decreasingRa. The shape of the
curves Re(Ha) still do not sufficiently reproduce the experimental trend. The model generates
a much slower descend of Re for small Ha and a much steeper decline once Ha approaches the
Chandrasekhar limit.
The experimental data of the other two experimental publications used in the model fit are

compared to the theoretical results in figure 5.25. Plotted are Nusselt numbers over the Ra for
selected Ha. The model agrees very well the experiments by King and Aurnou [74] except for
the lowest and highest Ha (figure 5.25(a)). At Ha = 98 the experimental data decay more slowly
with respect to Ra than the model and coincide only at the highest Ra ∼ 5× 107. For Ha = 994,
the model fits the experiment well for Ra > 2× 107. At the onset of convection Rac = 107, the
experimental values of Nu ∼ 2. Since the transition towards Nu = 1 in the model is fixed at
Rac this kind of result cannot be reproduced.
The data of Cioni et al. [71] are well fitted by the model for Ra & 2× 108 (figure 5.25(b)).

The data at Ha = 850 are slightly overestimated. However, the results by King and Aurnou [74]
at nearly the same Ha = 994 are matched very well for these Ra. Consequently this deviation
can be attributed to experimental uncertainties. While the data at Ha = 994 by King and Aurnou
[74] suggests that the convection onset should shift to smaller Ra, the results for Ha = 1414
and 1982 by Cioni et al. [71] imply that the transition in the model should happen at higher Ra.

86



5.4. Grossmann-Lohse theory for magnetoconvection

106 107 108

Ra

100

101

N
u

(a)

Ha = 98

Ha = 308

Ha = 532

Ha = 994

107 108 109

Ra

(b)

Ha = 850

Ha = 1414

Ha = 1982

Figure 5.25.: Comparison of the revisedmodel (5.17) (lines) with the data by (a)King andAurnou
[74] and (b) Cioni et al. [71] (markers). Shown are Nu over Ra for selected Ha.

Again, such inconsistencies in the data indicate that these deviations of the model are within the
experimental accuracy.
Overall, themodel reproduces the relation of theNusselt numberwithRa andHa. The shape of

the Re(Ra,Ha) function matches the experiments less accurately. The following section reviews
possible adjustments which could improve the performance of the model in future revisions.

5.4.3. Outlook

The above revisions of the model have improved the theoretical results and the addition of further
experimental data allowed for more accurate determination of the model parameters. A number
of improvements are still possible.
The assumptions and estimates made in the model can be validated using numerical simula-

tions [75–77]. Similar to how the BL crossover was removed for small Pr due to the comparison
with experimental and numerical results, other parts of the model could be revised and adjusted
to better represent the actual physical mechanisms in magnetoconvection. For example, the onset
of convection is so far enforced by a static transition function whose shape is not physically
motivated. As such, the scaling of the model close to the critical Hartmann or Rayleigh number
will always lack physical meaning.
The currently largest issue of the model is the inadequate reproduction of the Reynolds number

scaling. On the one hand, this could indicate that some mechanisms of RBC magnetoconvection
are not yet accurately represented in themodel. One suchmechanism could be theNusselt number
staying at a nearly constant level for the whole LSC regime while the flow slows down overall due
to the suppression of turbulent fluctuations (see section 5.3). On the other hand, it might point
towards a bias within the fitting procedure. In the current approach, data sets of (Nu,Ra,Ha,Pr)
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alone determine the shape of the resulting functions and the Reynolds number data is only used to
adjusts a correction factor (see section 3.1.2). This has its basis in the more abundant availability
of experimental data of the Nusselt number. The current experiment, however, provides data for
both Nu and Re. This opens the possibility to fit both model equations (3.18) and (3.17) to a
full data set (Nu,Re,Ra,Ha,Pr) simultaneously. Instead of being reduced to a single factor,
the Reynolds number data could then fully contribute to finding model parameters that fit both
Nu and Re best.

Besides reviewing and improving the current model, extensions to other parameter spaces can
be considered as well. Lim et al. [77] proposed a model for the viscous boundary layer that
interpolates between the case of Ha = 0 (a Prandtl–Blasius type BL in the GL theory) and the
case of Ha � 1 (a Hartmann layer in the present model). Including such an approach could
extend the applicability of the present model towards smaller Ha or even fully bridge the gap to
the GL theory at Ha = 0. Another possible extension of the model concerns the Prandtl number.
With recently published simulations at Pr = 1 [76] and Pr = 8 [77] the differences of low- and
intermediate Pr could be investigated and potentially included in the model. A first example of
such an extension was discussed in section 5.4.1, where the BL crossover was excluded from the
low-Pr model. Its effect of increasing the Nusselt number at low Ha could become relevant for
higher-Pr cases.
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6. Summary and outlook

In this study, the interaction of thermal convection flows in liquid metals with magnetic fields
was investigated. Two opposing aspects – unaffected flows for inductive measurement techniques
and strongly altered flows in magnetoconvection – were considered.
It was shown that local Lorentz force velocimetry can be applied to convective flows for

the example of a vertical convection system. The small force magnitudes of the order of µN
could be measured using a high precision interference optical force sensor. These small forces
are the result of slow velocities . 10mm s−1 and the small fluid volume penetrated by the
magnetic field. The latter is not well defined and depends on the distribution of the magnetic
field, the container geometry, and the (generally unknown) velocity field of the flow. To rectify
this issue, an analytical solution for the total Lorentz force induced in the flow was derived.
Based on this solution, a model for the penetration depth of the local Lorentz force velocimeter
was developed which is independent of the flow field under consideration. The simplifying
assumptions made in these calculation allow the model to be applied to a wide variety of set-ups.
An extension to specific flow fields is easily possible. These theoretical results were used to
calculate the interaction parameter N of the system. The well known threshold of N = 1 predicts
the transition from the regime of an unaffected flow towards the regime of an altered flow. This
result is of importance for the design of not just Lorentz force velocimetry, but all inductive
measurement systems that use localised magnetic fields.
The case of strong magnetic fields, which changes the flow structure of thermal convection

significantly, was investigated for the system of Rayleigh-Bénard magnetoconvection in a vertical
magnetic field. An experimental set-up was constructed which allowed the observation and
reconstruction of the large-scale flow by employing a combination of temperature measurements
and ultrasoundDoppler velocimetry. The reference case of turbulent Rayleigh-Bénard convection
without an applied magnetic field revealed the presence of a large-scale circulation, which is well
known from experiments in water. The short-term dynamics of the sloshing and torsion mode
were found to be much more intense for liquid metals in terms of their frequency and amplitude.
An in depth investigation of the flow progression in the convection cell revealed a consistent
asymmetry of the flow structure over the whole accessible parameter range. The measured
heat transport was found to be consistent with previous experimental, numerical and theoretical
results. The calculations of multiple Reynolds numbers illustrated the crucial dependence of
the momentum transport on the specific flow area probed by measurements, as well as the
measurement method itself.
By addition of a vertical magnetic field, the above system was extended by another dimension

in its parameter space which introduced a rich variety of different flow regimes. At low mag-
netic field strengths, the initial large-scale circulation persisted, but the turbulent fluctuations
and oscillations were continually suppressed until the one-roll structure had become nearly two-
dimensional. The decrease in velocity magnitude finally leads to the breakdown of the turbulent
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flow structure and the transition into a cellular flow state that displays various numbers of con-
vection cells. The destabilising effect of the electrically insulating side walls was demonstrated
when the magnetic field strength was increased beyond the theoretical onset of convection for a
horizontally infinite fluid layer. While the flow in the centre of the cell was nearly completely
inhibited, fluid motion could be detected near the side walls, confirming the results of previous
numerical simulations and theoretical predictions. Heat and momentum transfer were found
to follow a distinct scaling law with increasing magnetic field. The Reynolds number slowly
decreased over the one-roll regime and transition into a quicker descent once the cellular regime
was reached. There, the flow strength was found to be dominated by the damping effect of
Joule dissipation while the kinematic viscosity could be neglected. Contrary to the Reynolds
number, the Nusselt number stayed at a nearly constant value while the one-roll structure of the
flow persisted. This was attributed to the increased coherence of the flow by the suppression
of turbulent fluctuations. Only once the onset of the cellular regime was reached did the heat
transport start to decrease rapidly.
To predict the above behaviour of heat and momentum transport in magnetoconvection, a

theoretical model based on concepts of Grossmann-Lohse theory was developed for the low-
Prandtl-number regime. Comparisons between theory and experiments allowed the identification
of relevant physical mechanisms. Specifically, it was found that a crossing of the thermal and
viscous boundary layers is of no importance in liquid metals, but may become significant for
fluids of intermediate or high Prandtl numbers. These revisions to the model displayed significant
improvements which were further enhanced by the extended range of experimental data used to
fit the free model parameters. Still, a number of propositions were made that could advance the
accuracy of the theory. The joint measurement of heat and momentum transport in the present
experiments may allow a revision of the fitting process to better capitalise on the full range of
data available. Recent numerical simulations [75–77] opened the possibility to directly verify
the assumptions and approximations made in the theory. These simulations also provide data for
magnetoconvection at higher Prandtl numbers, granting the possibility of extending the model
towards other fluids than liquid metals. Another promising extension concerns the low-Hartmann
number regime. Bridging the gap between the current model for magnetoconvection and the
classic Grossmann-Lohse theory would increase the range of applicability considerably.
The present experiments gave a broad overview of the richness of flow structures caused by

a vertical magnetic field applied to Rayleigh-Bénard convection. These measurements can be
seen as a starting point for future investigations into specific details of the flow regimes. Due to
its large extend, the sampling of the parameter space had to be relatively coarse. The transitions
between different flow states could be located much more accurately in future experiments and
critical parameters determining their position may be derived accordingly. Another aspect not
explored in the present experiments is the influence of pattern selection due to the history of the
flow. The way the experiment is conducted may have a profound influence on the resulting flow
structure at the same parameters this implying the existence of hysteresis effects. Examples are
the approach of a measurement point from low or high Rayleigh or Hartmann numbers, or the
speed at which control parameters are changed.
Overall, the present study provided a large number of insightful results on the topic of magne-

toconvection. Still, many questions remain to be answered and several new ones have been raised
during the course of this thesis, prompting the possibility of interesting future investigations.
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A. The onset of magnetoconvection

The onset of magnetoconvection is considered for an Rayleigh-Bénard system with infinite
horizontal extent (Γ→∞) and a uniform vertical magnetic field. The top and bottom boundaries
are assumed to be rigid and electrically insulating. The linear stability analysis for stationary
convection was solved by Chandrasekhar [5]. The result is presented here.
The thermal driving is characterised by the Rayleigh number Ra (1.2) and the strength of the

magnetic field is represented by the Chandrasekhar number

Q = B2H2 σ

ρν
= Ha2 . (A.1)

The Prandtl number Pr of the fluid does not play into the calculation. The horizontal wavenum-
berk of the first unstable velocitymode is normalised by the layer height k̃ = kH . A characteristic
equation Ra(k̃,Q) is calculated from the vanishing determinant

det (Amn) = det

(
1

2

[
c2m+1

k̃2Ra
− γ2m+1

]
δmn − (m|n)

)
= 0 , m, n ∈ N0 . (A.2)

The matrix elements Amn are determined from the following quantities:

ci = i2π2 + k̃2 , (A.3)

γi =
[
c2
i + i2π2Q

]−1
, (A.4)

(m|n) = −2π2λmλn

√
Q(Q + 4k̃2)

q+ tanh(q+/2)− q− tanh(q−/2)
, (A.5)

λm = (−1)m(2m+ 1)γ2m+1 , (A.6)

q± =
1

2

(√
Q + 4k̃2 ±

√
Q

)
. (A.7)

δmn is the Kronecker-delta. To calculate Ra(k̃,Q), (A.2) has to be solved numerically for Ra
with a limited number of rows and columns, i.e. m,n = 0, . . . , p. The higher p ∈ N, the more
precise the result will be. For a given Q the characteristic equation has to be minimized in
terms of k̃. The resulting minimal value is the critical Rayleigh number Rac(Q) at a critical
wavenumber k̃c.
If a fixed value of Ra is given, the corresponding critical Chandrasekhar number Qc is

calculated by numerically solving

Rac(Q)− Ra = 0 . (A.8)

The value of Q satisfying this equation is Qc(Ra).
The solutions Rac(Q) and Qc(Ra) approach the Chandrasekhar limit (1.42) and (1.43) for

large Q & 104 and Ra & 2× 105, respectively.
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B. Calculation of the Lorentz force

Lorentz force velocimetry (LFV) heavily relies on the linear scaling of the induced forces with the
fluid velocity. This dependence is easily derived from dimensional arguments (see section 1.4.1).
An exact calculation of the Lorentz force is much more complicated and has to take into account
the vessel geometry, the magnetic field distribution and the shape of the velocity field. Most
often, this is achieved by numerical simulations, which solve the induction equations for a given
velocity field. In the following section B.1, a closed analytical solution for the Lorentz force will
be derived. Afterwards, in section B.2, the result is applied to a simplified problem and used to
estimate the penetration depth of local LFV (LLFV).
The following calculations assume that the quasistatic approximation applies, i.e. the magnetic

field and the flow field do not influence each other. This is the limit of low interaction parameters
N � 1 and magnetic Reynolds numbers Rm� 1.

B.1. General case

As described in section 1.4.1, the force on the magnet system of the LLFV can be calculated
from the induced eddy currents j in the fluid. Combining equations (1.45), (1.31), and (1.38)
gives

F L = σ

∫
V

[
v(r)×B(r)−∇ϕ(r)

]
×B dV . (B.1)

The integral is taken over the fluid volume V . B is the externally applied magnetic field, i.e. its
source is outside of V . v is the velocity field and σ the electrical conductivity of the fluid. ϕ is
the electric scalar potential. The second term of the integrand in (B.1) can be transformed into
a surface integral over the closed surface S of V using ∇ × (ϕB) = (∇ϕ) ×B inside V and
applying Stokes’ theorem

F L = σ

∫
V

(
v(r)×B(r)

)
×B(r) dV − σ

∮
S
ϕ(s)

(
n(s)×B(s)

)
dS . (B.2)

Here, n(s) is the surface normal vector at a point s ∈ S.
The scalar potential ϕ is calculated from the Poisson equation (1.39). This partial differential

equation can be transformed into an integral equation by applying Green’s second theorem, which
states for two scalar fields Ψ and Θ [109]∫

V

[
Ψ∇2Θ−Θ∇2Ψ

]
dV =

∮
S

[
Ψn ·∇Θ−Θn ·∇Ψ

]
dS . (B.3)
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B. Calculation of the Lorentz force

Ψ is now identified with ϕ and Θ with the Green’s function G of the Laplace operator. G ≡
G(r, r′) is defined as the solution of ∇′2G(r, r′) = δ(r − r′) for two spatial vectors r and r′.
∇′ denotes the nabla operator with respect to r′ and δ is the Dirac delta function. G is given by

G(r, r′) = − 1

4π|r − r′| . (B.4)

Inserting Ψ = ϕ, Θ = G, and (B.4) into (B.3) results in

ϕ(r) = −
∫
V

∇′2ϕ(r′)

4π|r − r′| dV
′ −
∮
S

[
ϕ(s′)

n(s′) · (r − s′)

4π|r − s′|3 − n(s′) ·∇′ϕ(s′)

4π|r − s′|

]
dS′ . (B.5)

With the Poisson equation (1.39) for ϕ and its boundary condition (1.40) this becomes

ϕ(r) =

∫
V

(
v(r′)×B(r′)

)
· (r − r′)

4π|r − r′|3 dV ′ −
∮
S
ϕ(s′)

n(s′) · (r − s′)

4π|r − s′|3 dS′ . (B.6)

Equation (B.2) shows, that ϕ only has to be known on the fluid surface. As a result, the surface
integral in (B.6) exhibits a singularity for r = s′. This can be circumvented by considering the
limit s′ → r [110, 111], which results in

ϕ(s) =

∫
V

(
v(r′)×B(r′)

)
· (s− r′)

2π|s− r′|3 dV ′ −
∮∗
S
ϕ(s′)

n(s′) · (s− s′)

2π|s− s′|3 dS′ . (B.7)

∫∗ stands for the Cauchy principal value of an integral. (B.7) is an implicit integral equation, since
ϕ itself appears in the surface integral on the right-hand side. Solving the equation for arbitrary
shapes of V poses a complex problem. One approach is to apply an iterative scheme [110]

ϕ(s) =
∞∑
i=0

ϕ(i)(s) , (B.8)

where

i = 0 : ϕ(0)(s) =
1

2π

∫
V

(
v(r′)×B(r′)

)
· (s− r′)

|s− r′|3 dV ′ , (B.9)

i ≥ 1 : ϕ(i)(s) = − 1

2π

∮∗
S
ϕ(i−1)(s(i))

n(s(i)) · (s− s(i))

|s− s(i)|3 dS(i) . (B.10)

The first term ϕ(0) in (B.8) is simply the volume integral from (B.7). The additional retroaction
of ϕ onto itself is then successively added by the following terms ϕ(i≥1).
ϕ(i−1) in (B.10) can be expanded by applying (B.10) i− 1 times and (B.9) once. The volume

integral from (B.9) is then interchanged with the surface integrals from (B.10). This gives ϕ(i)

as

ϕ(i)(s) =

∫
V

(
v(r′)×B(r′)

)
·Φ(i)(s, r′) dV ′ , (B.11)
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where

i = 0 : Φ(0)(s, r′) =
1

2π

(s− r′)

|s− r′|3 , (B.12)

i ≥ 1 : Φ(i)(s, r′) = − 1

2π

∮∗
S

Φ(i−1)(s(i), r′)
n(s(i)) · (s− s(i))

|s− s(i)|3 dS(i) . (B.13)

By applying (B.11) to (B.8), the electric potential can now be written as

ϕ(s) =

∫
V

(
v(r′)×B(r′)

)
·Φ(s, r′) dV ′ , (B.14)

Φ(s, r′) =
∞∑
i=0

Φ(i)(s, r′) . (B.15)

The vector fieldΦ has the unit m−2 and is purely geometry-dependent. This means it is a constant
for any given set-up, without regard to the magnetic system or the flow field present in the fluid.
This solution of ϕ can now be inserted into (B.2). By renaming the integration variables

r′ → r in (B.14) and s → s′ in the surface integral of (B.2) and interchanging the volume and
surface integrals, one finally reaches

F L = σ

∫
V

[(
v(r)×B(r)

)
×B(r)−

(
v(r)×B(r)

)
K(r)

]
dV . (B.16)

K is a matrix, which only depends on the geometry and the magnetic field of the present problem:

K(r) =

∮
S

Φ(s′, r)⊗
(
n(s′)×B(s′)

)
dS′ . (B.17)

The operator ⊗ denotes the tensor product or dyadic product of two vectors.
Equations (B.16) to (B.17) give a closed solution for the cumulative Lorentz force acting on the

fluid. Formula (B.16) can be further condensed by writing the integrand in Einstein summation
convention and transforming it into a product of the velocity vector and a sensitivity matrix W

F L =

∫
V

W(r)v(r) dV , (B.18)(
W(r)

)
ij
≡Wij = σ

(
Bi(r)Bj(r)− δijBk(r)2 − εjklBk(r)Kli(r)

)
. (B.19)

δij is the Kronecker delta, εjkl the Levi-Civita symbol and Kli are the elements of K. (B.18)
clearly shows the linear dependency of the Lorentz force on the flow velocity, since the matrix
W is only dependent on the shape of the fluid surface S, the electrical conductivity σ and the
magnetic fieldB. This makes W a characteristic constant of a given set-up which only has to be
calculated once and is valid for any kind of flow field. It represents the contribution of a velocity
component at any point in the fluid to a final force component. In practice, the calculation
of F L with equation (B.18) is often analytically impossible and numerically difficult, since it
contains a volume integral and m + 1 surface integrals, where m is the cut-off value of the
infinite sum in (B.15). For fine grid resolutions in more complex geometries this would lead
to an excessive increase of computation time compared to other common numerical methods.
However, for certain simple problems, the effort in calculating F L can be strongly reduced. This
is demonstrated in the next section.
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B. Calculation of the Lorentz force

B.2. The penetration depth of LLFV

An important information for the usage of LLFV is which part of the fluid flow has the largest
influence on the final measurement signal. The full answer to this question depends on the
investigating magnetic field, the fluid properties, the geometry of the experiment and the velocity
field of the liquid. While the first three properties of the set-up are generally known, the last one
is an unknown quantity, as it is supposed to be measured by the LLFV.
In the previous section the Lorentz force was separated into the flow field and a sensitivity

matrix, which is characteristic for the experimental set-up. In the following, this sensitivity
matrix will be used to calculate a characteristic penetration depth down to which the LLFV can
investigate the fluid. In order to reduce the complexity of the calculations, approximations are
made for the geometry and velocity field of the problem. The magnetic field will be required to
exhibit certain symmetries, but can otherwise be of arbitrary shape.
The considered fluid volume covers the lower infinite half space V = {r ∈ R3 : z ≤ 0}. This

is a suitable approximation for any experiment, where the magnet system of the LLFV is much
smaller than the fluid volume and is positioned above a plane surface. It is assumed that ϕ(s)
goes to zero for |s| → ∞. The surface S is the x-y-plane at z = 0 with a normal vector n = ez .
As a result, the surface integral in (B.13) vanishes for all i ≥ 1 since s, s(i) ∈ S do not have a
z-component, and thus n · (s − s(i)) = 0. This reduces the infinite sum in (B.15) to only the
first element: Φ = Φ(0). Consequently, the elements of K become

Kli =
1

2π

∫
S

s′l − rl
|s′ − r|3

[
−δixBy(s′) + δiyBx(s′)

]
dS′ . (B.20)

In the next step, the velocity field is simplified. The investigated flow is assumed to be
stationary, to move only in x-direction and to depends only on the depth z

v(r) = vx(z)ex . (B.21)

This is an appropriate approximation for most forced convection cases, such as channel flow, or if
the magnet system is sufficiently small compared to the large-scale flow structures. The product
Wv becomes

W(r)v(r) = eiWix(r)vx(z) ≡ vx(z)w(r) , (B.22)

(w)i ≡ wi = Wix = σ
(
BxBi − δixB2

k −ByKzi +BzKyi

)
. (B.23)

Since the velocity profile is independent of x and y, the respective integrations of the volume
integral in (B.18) only apply to w. This gives the equation

F L =

∫ 0

−∞
vx(z)w̃(z) dz , (B.24)
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with

w̃(z) =

∫ ∞
−∞

∫ ∞
−∞

w(r) dx dy = w̃x(z)ex + w̃y(z)ey + w̃z(z)ez , (B.25)

w̃x(z) = −σ
∞∫
−∞

∞∫
−∞

[
By(r)2 +Bz(r)2 +

∫
S

By(r)z +Bz(r)(y′ − y)

2π|s′ − r|3 By(s
′) dS′

]
dx dy ,

w̃y(z) = σ

∞∫
−∞

∞∫
−∞

[
Bx(r)By(r) +

∫
S

By(r)z +Bz(r)(y′ − y)

2π|s′ − r|3 Bx(s′) dS′

]
dx dy ,

w̃z(z) = σ

∞∫
−∞

∞∫
−∞

Bx(r)Bz(r) dx dy .

Next, a cubic permanent magnet is chosen for the magnetic system. It has a side length of 2l
and a homogeneous magnetisationM = Mez . Its edges are aligned with the coordinate system
and its centre is positioned at rm = (0, 0, h), with h > l. The magnetic field outside of the
magnet is [112]

B(r) = −µ0M

4π
B̂(r − rm, r

′)

∣∣∣∣l
x′, y′, z′=−l

, (B.26)

B̂(r, r′) =


Artanh

(
y−y′
|r−r′|

)
Artanh

(
x−x′
|r−r′|

)
− arctan

(
(x−x′)(y−y′)
(z−z′)|r−r′|

)
 .

This magnetic field exhibits the symmetries

Bx(−x, y, z) = −Bx(x, y, z) , (B.27)
By(−x, y, z) = By(x, y, z) , Bz(−x, y, z) = Bz(x, y, z) . (B.28)

With this, the termsBxBy andBxBz in (B.25) are antisymmetric with respect to thex-integration
and vanish. The integrand of the surface integral of w̃y also vanishes under x- and x′-integration,
when these symmetries are applied. Thus, w̃y = w̃z = 0 and the resulting Lorentz force F L

has only the x-component FL,x remaining. This last component can be further simplified by
applying the symmetry

By(x,−y, z) = −By(x, y, z) (B.29)

of the magnetic field with respect to the y-coordinate. It eliminates the first term of the surface
integral in w̃x containing By(r)z, which vanishes under y- and y′-integration, analogous to the
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2l 5 10 15

h d90 d95 d90 d95 d90 d95

7.5 7.0 10.6 – – – –
10.0 9.6 14.5 9.3 14.0 – –
12.5 12.1 18.1 12.2 18.2 11.4 17.5
15.0 14.5 22.0 14.7 22.2 14.0 21.7
17.5 17.2 25.8 17.3 26.0 17.1 25.7
20.0 19.7 29.3 19.7 29.3 19.7 29.3
25.0 24.6 36.0 24.3 35.8 24.6 36.1
30.0 28.9 41.7 28.6 41.5 28.9 41.8
35.0 33.2 47.0 32.8 46.5 32.9 46.7
40.0 40.6 54.5 36.6 50.7 36.8 51.4
45.0 44.2 58.7 39.8 54.3 40.1 55.1

Table B.1.: LLFV penetration depths d for different magnet sizes 2l, vertical magnet positions h
and contribution percentages 90% (d90) and 95% (d95). All values are given in mm.

surface integral of the w̃y-component. The final solution for the total Lorentz force is

FL,x =

∫ 0

−∞
vx(z)w̃x(z) dz , (B.30a)

w̃x(z) = −σ
∫ ∞
−∞

∫ ∞
−∞

[
By(r)2 +Bz(r)2 +

∫
S

Bz(r)(y′ − y)

2π|s′ − r|3 By(s
′) dS′

]
dx dy . (B.30b)

Since the velocity profile in an experiment is generally unknown, the sensitivity function w̃x
can be used to characterize the penetration depth d of the flow measurement. The approach has
been outlined in section 2.3: A relative contribution P̃ (z) towards the total Lorentz Force of
the flow up to a depth z is calculated from w̃x (2.2). The penetration depth d is then defined
by the depth, at which a certain percentage of the total Lorentz force is reached. Table B.1
lists the penetration depths d90 and d95 for the threshold percentages P̃ (−d90) = 90% and
P̃ (−d95) = 95%, respectively.
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C. Power law fitting and error estimation

In thermal convection and a number of other branches of fluid mechanics, the determination of
scaling laws of a quantity on one or multiple input variables is a common occurrence. Very
often, power laws of the form

A ' cBγ (C.1)

are used to describe the dependence of a quantityA on a variableB. The pre-factor or amplitude
c and the scaling exponent γ are either determined from theory or by fitting (C.1) to experimental
or numerical data. The most common fitting procedures are least-squares approaches, which
calculate the residuals between the data points A and the values of the fit Afit, and minimise
the sum of its squares (A − Afit)

2. The uncertainty of A, given by its standard deviation ∆A,
can be incorporated into this fit method by e.g. normalising the residuals ((A − Afit)/∆A)2.
Thus, measurement points of high uncertainty have a lower impact on the overall fit result. Any
uncertainty of the input variable B, however, cannot be included.
Another fit algorithm is orthogonal distance regression (ODR) [113]. Here, the smallest

distances between the fit function and the data points are minimised. This also includes the
residuals of B in the minimisation calculation. A and B can potentially have very different
magnitudes or even different units. In the former case, the larger quantity would dominate the
fit calculation. In the latter case, the calculation would be impossible, since addition of different
physical dimensions is not possible. One way to resolve both issues, is to use the standard
deviations of A and B to normalise the data. This means, that ODR can only be applied, if the
standard deviations for both quantities are known. If only one or neither of the uncertainties are
known, a standard least-squares algorithm can be used.
Figure C.1 show the ODR power law fit (solid line) to the experimental data set ReLSC(Ra)

from section 4.3.2, i.e. A = ReLSC and B = Ra. The data is replotted from figure 4.13 and
the fit gives values of c = 9.66 for the amplitude and γ = 0.410 for the exponent. Additionally,
the ODR algorithm supplies standard deviations of the fit parameters ∆ODRc = 0.40 and
∆ODRγ = 0.003. Since the uncertainties of Ra are relatively small, a least-squares fit (which
considers the ReLSC uncertainties only) produces the same parameter values and uncertainties
for this data set. Plotting power laws with exponents γ + ∆ODRγ and γ −∆ODRγ in figure C.1
(dotted lines) indicates the variation of the exponent allowed by the ODR uncertainties. They
show no visible deviation from the original fit line. However, from the error bars of the data
it is clear, that power laws with much higher or lower exponents could be feasible. The ODR
uncertainties are consequently not a good indicator of the possible ranges of exponents that are
viable for the data.
In this thesis, a different approach is taken to estimate the uncertainty of the power law exponent

and amplitude. The uncertainties ∆ReLSC and ∆Ra are given by the standard deviation of the
respective quantity and are assumed to be normally distributed. That means, the probability
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Figure C.1.: ODR power law fit to the experimental data ReLSC(Ra) from figure 4.13. The
uncertainty of the fitted exponent γ is shown as two dashed lineswith fixed exponents
γ + ∆ODRγ and γ −∆ODRγ.
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Figure C.2.: Probability density functions of (a) the amplitude c′ and (b) the exponent γ′ for
25 000 randomly generated data sets (Ra′,Re′LSC). The red lines display (a) an
inverse Gaussian distribution and (b) a Gaussian distribution withmean and standard
deviation of the respective data.
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Figure C.3.: ODR power law fit to the experimental data ReLSC(Ra) from figure 4.13 with
the alternative uncertainty calculation. The new uncertainty (C.2) of the fitted
exponent γ is shown as two dashed lines with fixed exponents γ + ∆γ and γ −∆γ.

density function (PDF) of the quantities are Gaussian distributions with mean ReLSC and Ra,
and standard deviations ∆ReLSC and ∆Ra, respectively. Each measurement point is now varied
by drawing a random value Re′LSC and Ra′ from their respective distribution. Fitting a power
law to this new data using a least-squares fit gives new values for c′ and γ′. Repeatedly fitting
power laws to new randomly generated data Re′LSC and Ra′, gives sets of values for c′ and
γ′. The PDF of each set converges into a distinctive distribution, shown in figure C.2. For the
exponent γ′ (figure C.2(b)), the PDF is a Gaussian distribution. Since the amplitude c′ has to
always be positive, its PDF cannot be purely Gaussian. Instead, it converges towards an inverse
Gaussian distribution [114] (figure C.2(a)). The new uncertainties of the power law amplitude
and exponent are now computed as the standard deviation of these distributions with respect to
the ODR fit results c and γ

∆c =

√∑N
i=1(c′i − c)2

N
, ∆γ =

√∑N
i=1(γ′i − γ)2

N
. (C.2)

c′i and γ′i are the individual fit results from N realisations of Re′LSC and Ra′. The standard
deviations are normalised by N instead of the more commonly used N − 1, since the mean
values of the distributions are not calculated and instead the already known results from the ODR
fits are used. For the present example of ReLSC(Ra), these standard deviations are calculated
from 25 000 realisations of c′ and γ′ to be ∆c = 4.4 and ∆γ = 0.03. These values are one order
of magnitude larger than the standard deviations provided by the ODR algorithm.
Figure C.3 re-plots the experimental data and the ODR fit from figure C.1. The dotted lines,

however, now represent the new standard deviation ∆γ from (C.2). The new uncertainty of the
exponent represents the data uncertainty much better than the ODR uncertainty.
The standard deviation ∆c for the amplitude is very much dependent on how close the fit

value c is to zero with respect to its variation due to the data uncertainty. As can be seen for
the data Recentre(Ra) in figure 4.13, ∆c can even exceed the value of c. This does not imply,
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that c may become negative. Since the amplitude follows an inverse Gaussian distribution, this
describes a PDF with a peak close to zero and with a long positive tail.
The standard deviations ∆c and ∆γ are used as uncertainties for all power law fits in the

present thesis. If different fit functions are used to model a set of data and the uncertainty of both
the input variables and output quantity are available, the regular standard deviations provided by
the ODR algorithm are used. If the uncertainty is unknown for either the input variable or the
output quantity (or for both) a least-squares fit is applied and the standard deviation calculated
by that algorithm is given as the fit parameter uncertainty.
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