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Abstract 

 

 

The Tibetan Plateau is a vast and elevated plateau in Central Asia with an average elevation 

measuring more than 4500 meter a.s.l. This region is source area of the most important rivers 

of China, India and Southeast Asia providing water to more than 1.4 billion people. In this 

context,  reliable  predictions  about  the  evolution  of  water  supply  from  lacustrine  and  river 

systems are valuable for the authorities to ensure freshwater availability and environmental 

disaster prevention, especially in time of global warming. 

For this proposal, organisms that provide a proxy record are particularly valuable. Especially 

ostracods, small bivalved crustaceans, have a large potential in this type of studies and live in 

practically every aquatic environment. In fact, ostracods allow multi-proxy studies in 

themselves  because (1)  their fossil  shells  provide  evidence  of  past  distribution from  which 

palaeoclimate  inferences  can  be  drawn  via  indicator  species,  transfer  function  and  mutual 

climatic range approaches; and (2) the biogenic calcite of their shells allows stable isotope and 

trace element analyses as proxies for temperature and salinity. Recent studies of ostracod 

assemblages  from  modern  water  bodies  of  the  Tibetan  Plateau  and  palaeoenvironmental 

records provide the basis to assess the environmental and societal impact of recent global 

change on the Tibetan Plateau, especially with regard to moisture changes and runoff of large 

rivers in its densely populated eastern and southern foreland and to compare the amplitude 

and timing of environmental change with those of the pre–industrial history and as proxies for 

environmental and climatic change on this area. This study wants to contribute to a better 

understanding and thus improving the ostracods as reliable indicators for the environmental 

and social impact of Quaternary and recent global change on the Tibetan Plateau.  

The first study was conducted on the Taro Co lake system. Its Late Quaternary history was 

investigated to reconstruct local hydrological conditions and the regional moisture availability. 

For this aim, ostracod-based water depth and habitat reconstructions combined with OSL and 

radiocarbon dating were performed to better understand the Taro Co lake system evolution. 

The results showed a high-stand at 36.1 ka before present which represents the highest lake 

level  since  then  related  to  a  wet  stage  and  resulting  in  a  merging  of  Taro  Co  and  its 

neighbouring lakes Zabuye and Lagkor Co. The lake level then decreased and reached its 

minimum around 30 ka. After c. 20 ka, the lake rose above the present day level. A minor low-

stand, with colder and drier conditions, is documented at 12.5 cal. ka BP. Taro Co, Zabuye 

and  Lagkor  Co  formed  one  large  lake  with  a  corresponding  high-stand  during  the  early 

Holocene (11.2–9.7 cal. ka BP). After this Holocene lake level maximum, all three lakes shrank, 

probably  related  to  drier  conditions,  and  the  lakes  became  separated  from  Taro  Co.  The 

accelerating lake-level decrease of Taro Co was interrupted by a short-term lake level rise after 
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2 ka BP, probably related to minor variations of the monsoonal components. A last minor high-

stand occurred at about 0.8 ka before today. 

The second study concerned the Tangra Yumco lake system, located about 240 km east of 

Taro Co in the central–southern part of the Tibetan Plateau. The extension and position of this 

lake system makes it valuable for reconstructing palaeoclimatic variations through the lake 

history and to compare both with the adjacent lake systems. We reconstructed Late Quaternary 

lake level changes based on data from two lacustrine sediment cores. A micropalaeontological 

analysis  focusing  on  Ostracoda  was  carried  out  combined  with  dating  (14C, 210Pb, 137Cs), 

sedimentology  and  stable  isotope  data  from  bulk  sediment.  An  ostracod-based  transfer 

function for specific conductivity was applied to assess and refine the reconstruction of lake 

level changes and to compare the results with other reconstructions from the Tibetan Plateau 

for evaluating inter-regional climatic patterns. The synthesis of ostracod-based environmental 

reconstruction and chronology for samples from Tangra Yumco reveals the evolution of the 

lake system during the past 17 ka. A low  lake level around 17 cal ka BP is followed by a 

recovering until a high stand around 8–9 cal ka BP. Subsequently, between 7.7 and 2.5 cal ka 

BP, the lake level remained relatively stable with a subsequent short-living lowstand–highstand 

cycle at around 2 ka. Thereafter, the ostracod-based conductivity transfer function shows a 

decrease  of  conductivity  corresponding to  a  lake  level  rising  phase  at around  0.4 ka. The 

recorded  changes  are  indicators  of  past  climatic  conditions  and  refine  the  palaeoclimatic 

models in this area. 

The third study focuses on ostracod associations of the Zhada Basin located in the western 

Tibetan Plateau. In this area almost no taxonomical studies were carried out so far, and, aiming 

to  a  future  use  of  ostracods  as  palaeoenvironmental  proxy  for  this  sector  of  the  Tibetan 

Plateau, a documentation of several unknown species was performed. This work increases 

the taxonomical knowledge and sets up a database for further studies on the poorly studied 

Pleistocene and Neogene sediments, especially in the western part of the Tibetan Plateau. A 

new species, Leucocytherella dangeloi is described.  

To  compare  the  obtained  results  with  published  records  from  other  lakes,  the  considered 

transect was extended with information from articles regarding several water bodies present 

in different regions of the southern Tibetan Plateau. This database includes the lakes Bangong 

Co and Tso Moriri in the western part, Nam Co, the already discussed Tangra Yumco and Taro 

Co lake systems in the central part, Paiku Co, Puma Yumco and Chen Co in the southern part, 

and Naleng Co in the eastern part. Because of differences in dating, a correlation among the 

lakes was possible for selected time periods only. 
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Considering the first stage (40-30 ka), Taro Co shows high lake level followed by a fast decline 

between 35-30 ka, Paiku Co a general increasing trend probably related to the influence of 

meltwater  in  the  latter.  During  the  time  frame  30-25  ka,  Taro  Co  shows  stable  conditions 

followed by a rising of the lake level not in phase with the reconstructions of Paiku Co and 

Chen Co. This could be related to a bigger influence of the winter westerlies on the region 

more impacting the western part and a weaker Indian monsoonal component. In the third stage 

(25-22  ka),  Chen  Co  lake  level  continued  to  fall,  whilst  Paiku  Co  passed  from  stable  to 

increasing lake level and Taro Co rose. Following the precedent statement, an intensification 

of the winter westerlies is a potential explanation. During the fourth stage (22-18 ka), a general 

increasing trend for almost all the lakes considered is reported. In the following (18-14 ka) the 

general reconstructed climate conditions were splitted, with the transect from Tso Moriri to 

Nam Co in the west registering increasing of lake levels, and the eastern and south eastern 

part almost always with falling lake levels. At 14-10 ka we registered a general increasing trend 

for all the lakes considered. Almost all records report fluctuations at around 12-11 ka reflecting 

variations in the intensity of the atmospheric circulation factors at the transition to the Holocene 

confirmed by the trends of the ostracod assemblages and δ18O for Taro Co and Tangra Yumco. 

After this interval, between 10-7, lake levels generally fell after a high stand at around 9-8 ka. 

In the last stage (7-0.4 ka), the lakes followed a discontinuous decreasing trend. Important 

fluctuations between 3 and 0.8 ka are reported for several lakes. Considering the uncertainties 

of the  chronological models  and  the  time-lag for  this  event  comparing the  two  records  we 

assume a synchronous timing. The comparison of all records shows a general homogeneous 

pattern indicating that the moisture availability evolved almost synchronously on the southern 

Tibetan Plateau.  

The lakes present in the northern part of the Tibetan Plateau are not easily comparable to the 

southern  lakes,  because  of  the  influence  of  the  East  Asian  Summer  Monsoon  and  of  the 

Summer Westerlies. However, the climate reconstruction for lake Kuhai shows the highest lake 

level during the middle Holocene, about 1-2 ka later compared to the southern lakes, probably 

due to the influence of the East Asian Summer Monsoon. Anyhow, a strong decline afterwards 

due to deterioration of precipitation/evaporation balance is also reported, showing the general 

weakness of influence of the summer monsoonal components. 

Especially in the time frame after 18 ka, where more information are available for the southern 

Tibetan Plateau, our results corresponds with only some time-shift, probably due to different 

dating or different exposure to the Indian Monsoon and the Westerlies although the lacking of 

information on tectonic and climate models will be needed to assess the different influence of 

the circulation patterns for the single lakes.  
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Kurzfassung 

 

 

Das tibetische Plateau ist ein ausgedehntes Hochplateau in Zentralasien mit einer 

durchschnittlichen Höhenlage von mehr als 4500 m über dem Meeresspiegel. Diese Region 

ist Quellgebiet  der  wichtigsten  Flüsse  Chinas, Indiens  und  Südostasiens,  die mehr  als  1,4 

Milliarden  Menschen  mit  Wasser  versorgen.  In  diesem  Zusammenhang  sind  verlässliche 

Vorhersagen  über  die  Entwicklung  der  Wasserversorgung  durch  die  Flusssysteme  für  die 

Behörden unerlässlich, um die Verfügbarkeit von Süßwasser und die Verhütung von 

Umweltkatastrophen  zu  gewährleisten,  insbesondere  in  Zeiten  der  globalen  Erwärmung. 

Grundlage solcher Vorhersagen sind nicht nur ein Prozessverständnis und Monitoringdaten, 

sondern  auch  eine  Rekonstruktion  der  spätquartären  klimatischen  Entwicklung  auf  dem 

Tibetplateau.  Organismen,  die  als  Proxys  dienen  können,  sind  für  Klimarekonstruktionen 

besonders wertvoll. Insbesondere Ostracoden, kleine Krebstiere mit einer doppelklappigen, 

kalzitischen  Schale,  haben  ein  großes  Potenzial  für  diese  Art  von  Studien  und  leben  in 

praktisch allen aquatischen Habitaten. In der Tat stellen Ostracoden an sich einen Multi-Proxy 

dar, da ihre Fossilien Paläoklima-Rückschlüsse sowohl (1) über Indikatorarten, 

Transferfunktionen und ökologische Toleranzen erlauben, als auch (2) der biogene Calcit ihrer 

Schalen stabile  Isotopen- und  Spurenelementanalysen als Proxys für  Temperatur und 

Salzgehalt ermöglicht. Jüngste Studien über Ostrakodenverbreitungen in modernen 

Gewässern des tibetischen Hochplateaus und Paläoumweltaufzeichnungen liefern eine 

Grundlage,  um  die  Auswirkungen  des  jüngsten  globalen Wandels  auf  die  Umwelt  und  die 

Gesellschaft des tibetanischen Hochlandes zu bewerten, insbesondere hinsichtlich der 

Feuchtigkeitsänderung und des Abflusses großer Flüsse in den dicht besiedelten Gebieten 

des östlichen und südlichen Vorlands und des Vergleichs der Amplitude und zeitlicher Muster 

der Umweltveränderungen in der vorindustriellen Geschichte. Diese Studie soll dazu 

beitragen, Ostracoden als verlässliche Indikatoren für die ökologischen und sozialen 

Auswirkungen des jüngsten globalen Wandels auf dem tibetischen Hochplateau besser zu 

verstehen und ihre Einsatzmöglichkeiten zu verbessern. 

Die erste Studie wurde am Taro Co-Seesystem durchgeführt. Die spätquartäre Geschichte 

wurde untersucht, um die örtlichen hydrologischen Bedingungen und die regionale 

Verfügbarkeit von Feuchtigkeit zu rekonstruieren. Zu diesem Zweck wurden Rekonstruktionen 

von Wassertiefen und Lebensräumen auf der Basis von Ostrakodenanalysen in Kombination 

mit  OSL-  und  Radiokarbon-Datierungen  durchgeführt,  um  die  Entwicklung  des  Taro  Co-

Seesystems besser zu verstehen. Die Ergebnisse zeigen einen Hochstand bei 36,1 ka vor der 

Gegenwart, was den höchsten Seespiegel seither darstellt. Diese relativ feuchte Phase führte 

zu einer Verschmelzung von Taro Co und den benachbarten Seen Zabuye und Lagkor Co. 
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Der Seespiegel sank dann ab und erreichte sein Minimum um 30 ka. Nach ca. 20 ka stieg der 

See  wieder  über  das  heutige  Niveau.  Ein  geringer  Tiefstand  mit  kälteren  und  trockeneren 

Bedingungen ist bei 12,5 cal ka BP dokumentiert. Taro Co, Zabuye und Lagkor Co 

verschmolzen während des frühen Holozäns (11,2–9,7 cal. ka BP) zu einem großen See mit 

einem entsprechend hohen Seespiegelstand. Nach diesem holozänen Maximum schrumpften 

alle drei Seen, was auf trockenere Bedingungen zurückzuführen war, und die Seen trennten 

sich vom Taro Co. Das sich beschleunigende Schrumpfen des Taro Co wurde durch einen 

kurzfristigen Anstieg des Seespiegels nach 2 ka unterbrochen und war wahrscheinlich durch 

geringfügige Abweichungen der Monsunintensität verursacht. Ein letzter, kleinerer und 

kurzfristiger Seespiegelhochstand war bei etwa 0,8 ka vor heute. 

Die zweite Studie behandelt das Tangra Yumco-Seesystem, das sich etwa 240 km östlich des 

Taro Co im zentral-südlichen Teil des Tibetischen Plateaus befindet. Die Ausdehnung und 

Position dieses Seesystems macht es wertvoll, paläoklimatische Veränderungen zu 

rekonstruieren und mit den benachbarten Seesystemen zu vergleichen. Wir rekonstruieren die 

Änderungen  des  späten  quartären  Seespiegels  auf  der  Grundlage  von  Daten  aus  zwei 

Sedimentkernen.  Eine  mikropaläontologische  Analyse  mit  Fokus  auf  Ostracoda  wurde  in 

Kombination mit Datierungen (14C, 210Pb, 137Cs), der Sedimentologie und stabilen 

Isotopendaten aus Bulk-Sediment durchgeführt. Es wurde eine Transferfunktion auf der Basis 

von Ostracoden  für die Rekonstruktion der spezifischen Leitfähigkeit angewendet, um 

Änderungen des Seespiegels zu bewerten und zu verfeinern und die Ergebnisse mit anderen 

Rekonstruktionen  für  Seen  des  Tibetischen  Plateaus  für  die  Bewertung  interregionaler 

Klimamuster zu vergleichen. Die Synthese der Rekonstruktion des Tangra Yumco zeigt die 

Entwicklung des Seesystems in den letzten 17.000 Jahren. Auf einen niedrigen Seespiegel 

um 17 cal ka BP folgt ein Anstieg bis zum Erreichen eines Maximums um 8–9 cal ka BP. 

Anschließend, zwischen 7,7 und 2,5 cal ka BP, blieb der Seespiegel relativ stabil mit einem 

darauf folgenden, kurzlebigen Tiefstand-Hochstand-Zyklus bei etwa 2 ka. Danach zeigt die auf 

Ostracoden beruhende Leitfähigkeitstransferfunktion einen Salinitätsabfall, der einer 

Anstiegsphase des Seespiegels bei etwa 0,4 ka entspricht. Die aufgezeichneten Änderungen 

der Proxys sind Indikatoren vergangener  klimatischer Bedingungen  und  verfeinern die 

paläoklimatischen Modelle in diesem Bereich. 

Die dritte Studie konzentriert sich auf die Ostrakoden Fauna des Zhada-Beckens im westlichen 

Tibetischen Plateau. In diesem Bereich wurde bisher fast keine Taxonomie durchgeführt. Um 

Ostracoden auch für diesen Sektor des Tibetischen Plateaus als Paläoumweltproxy einsetzen 

zu  können,  wurde  eine  taxonomische  Dokumentation  von  mehreren  unbekannten  Arten 

durchgeführt. Diese Arbeit zielte darauf ab, das taxonomische Wissen zu erweitern und damit 

eine  Grundlage  für  weitere  Untersuchungen  zu  Seen  und  Sedimenten  in  den  schlecht 
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untersuchten,  westlichen  Gebieten  des  Tibetischen  Plateaus  zu  erstellen.  Eine  neue  Art, 

Leucocytherella dangeloi, wird beschrieben. 

Um die erzielten Ergebnisse mit publizierten Daten anderer Seen zu vergleichen, wurde der 

betrachtete Seentransekt mit Informationen aus Artikeln zu Seen aus verschiedenen Zonen 

des südlichen Tibetischen Plateaus erweitert. Diese Datenbasis umfasst die Seen Bangong 

Co und Tso Moriri im westlichen Teil, Nam Co, die bereits diskutierten Seesysteme Tangra 

Yumco und Taro Co im zentralen Teil, Paiku Co, Puma Yumco und Chen Co im südlichen Teil 

und Naleng Co im östlicher Teil des Tibetischen Plateaus. Aufgrund von Problemen mit den 

verschiedenen  Chronologien  wurde  die  Korrelation  zwischen  den  Seen  auf  ausgewählte 

Zeiträume beschränkt 

In der ersten Phase (40-30 ka) weist der Taro Co einen hohen Seespiegel auf, gefolgt von 

einem rapiden Rückgang zwischen 35 und 30 ka. Auch für den Paiku Co ist ein allgemein 

zunehmender  Trend  erkennbar,  der  wahrscheinlich  mit  dem  Einfluss  von  Schmelzwasser 

zusammenhängt. Während des Zeitraums von 30-25 ka zeigt der Taro Co stabile 

Bedingungen, gefolgt von einem Anstieg des Seespiegels, der nicht mit den Rekonstruktionen 

von  Paiku  Co  und  Chen  Co  übereinstimmt.  Dies  könnte  mit  einem  größeren  Einfluss  der 

winterlichen Westwinde auf die Region zusammenhängen. Sie treffen eher auf den westlichen 

Teil des tibetischen Plateaus und auf eine schwächere indische Monsunkomponente. In der 

dritten Phase (25-22 ka) sank der Seespiegel des Chen Co weiter, während der Paiku Co von 

einem stabilen Zustand zu einem ansteigenden Seespiegel überging und auch der Taro Co 

anstieg.  Eine  Zunahme  der  winterlichen  Westwinde  ist  eine  mögliche  Erklärung  dafür. 

Während  der  vierten  Phase  (22-18  ka)  wird  für  fast  alle  untersuchten  Seen  ein  allgemein 

zunehmender  Trend  dokumentiert.  Im  Folgenden  (18-14  ka)  lassen  sich  die  Trends  der 

rekonstruierten Klimabedingungen aufteilen, wobei der Transekt vom Tso Moriri bis zum Nam 

Co einen Anstieg der Seespiegel verzeichnet und der östliche und südöstliche Teil fast immer 

fallende Seespiegel aufweisen. Von 14-10 ka verzeichnen wir für alle betrachteten Seen einen 

allgemein zunehmenden Trend. Nahezu alle Aufzeichnungen berichten von Schwankungen 

um 12 bis 11 ka, die die schwankende Intensität der atmosphärischen Zirkulationsfaktoren 

beim Übergang zum Holozän widerspiegeln, was durch die untersuchten Trends der 

Ostrakodenfaunen und des δ18O für Taro Co und Tangra Yumco bestätigt wird. Nach diesem 

Intervall sanken nach einem Hochstand zwischen 9 und 8 ka die Seespiegel im Allgemeinen. 

In der letzten Etappe (7-0,4 ka) folgten die Seespiegel einem diskontinuierlichen, negativen 

Trend. Für einige Seen sind bedeutende Schwankungen zwischen 3 und 0,8 ka erkennbar. 

Unter Berücksichtigung der Unsicherheiten der chronologischen Modelle und der 

Zeitverzögerung  für  dieses  Ereignis  beim  Vergleich  der  beiden  Datensätze  gehen  wir  von 

einem möglichen synchronen Timing aus. Der Vergleich aller Datensätze zeigt ein allgemein 
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homogenes Muster, das darauf hinweist, dass sich die Feuchtigkeitsverfügbarkeit auf dem 

südlichen Tibetischen Plateau nahezu synchron entwickelte. 

Die im nördlichen Teil des Tibetischen Plateaus vorhandenen Seen sind nicht leicht mit den 

südlichen Seen vergleichbar, was auf den Einfluss des ostasiatischen Sommermonsuns und 

der  sommerlichen  Westwinde  zurückzuführen  ist.  Die  Rekonstruktion  des  Klimas  für  den 

Kuhai-See zeigt den höchsten Seespiegel im mittleren Holozän, also etwa 1-2 ka später als 

für die südlichen Seen, wahrscheinlich aufgrund des Einflusses des ostasiatischen 

Sommermonsuns.  Trotzdem  wird  auch  hier  ein  starker  Rückgang  infolge  eines  negativen 

Niederschlags/Verdunstungsbilanz  berichtet,  was  die  allgemeine  Schwäche  des  Einflusses 

der Monsun-Komponenten des Sommers zeigt. 

Insbesondere in der Zeitspanne nach 18 ka, wo mehr Informationen verfügbar sind, 

entsprechen unsere Ergebnisse nur einer gewissen Zeitverschiebung, wahrscheinlich 

aufgrund  einer  unterschiedlichen  Exposition  gegenüber  dem  indischen  Monsun  und  den 

Westwinden, obwohl es an Informationen über Tektonik- und Klimamodelle mangelt. Es ist 

erforderlich, den unterschiedlichen Einfluss der atmosphärischen Zirkulationsmuster für die 

einzelnen Seen zu bewerten.  
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Chapter 1 - Introduction 

 

 

1.1 General background 

The Tibetan Plateau (fig. 1) is a vast and elevated plateau in Central Asia covering an area of 

about 2.5 million km2 and comprising most of the Tibetan Autonomous Province and Qinghai 

Province in Western China (75 －105° E, 27.5－37.5° N). The average elevation measures 

more than 4500 meter a.s.l. (Li et al., 1983; Molnar, 1989; Tuttle and Schaeffer, 2013). The 

plateau is enclosed by the Himalayas and Gangdise Mountains to the south, the Karakoram 

Range and the Pamirs to the west, the Hengduan Mountains to the east and the Kunlun and 

Qilian Mountains to the north (Dewey et al., 1988; Lehmkuhl and Haselein, 2000; Lehmkuhl 

and Owen, 2005; Yao et al., 2012). The Tibetan Plateau is source area of the most important 

rivers of China, India and Southeast Asia (Liniger et al., 1998; Viviroli et al., 2007) and it is 

obviously  a  very  important  hydrological  resource,  providing  water  to  more  than  1.4  billion 

people (Immerzeel et al., 2010). The discharge of these rivers depends mostly on monsoonal 

rainfall (Wang et al., 2006; Jian et al., 2009) and snowmelt (Immerzeel et al. 2010). Agriculture, 

freshwater caption and hydropower generation are present activities on the plateau 

(Mukhopadhyay and Khan 2014). The enhanced human impact (Miao et al. 2011), namely 

growths in water demand due to increasing population (Vörösmarty et al. 2000) have been 

recognized as the main drivers of current or prospective water scarcity (Wang et al. 2006, 

Immerzeel and Bierkens 2012). In this context, reliable predictions about the evolution of water 

supply from lacustrine and river systems are valuable for the authorities to ensure freshwater 

availability and environmental disaster prevention, especially in time of global warming (Morril 

et al., 2003; Jian et al., 2009; Mischke et al., 2010a).  

Concerning this, the past and present processes and variability of moisture availability on the 

Tibetan Plateau is a central discussion point and its temporal reconstruction through multy 

proxies approach is urgently needed. Especially lake environments or palaeolakes are among 

the most sensitive continental recorders of climatic, hydrologic, and environmental changes.  

Geological studies in this area began in the 1950s as results of petroleum exploration in the 

northern part of the Tibetan Plateau, but only in recent decades it was monitored to detect 

possible Quaternary environmental and climatic changes related to global warming, focusing 

on Asian summer monsoon mainly controlling precipitation (e.g. An et al., 2000; Bransod et 

al., 2003; Herzschuh, 2006; Xu et al., 2007; Mischke et al., 2008; Günther et al., 2015; Yan et 

al., 2018). In the last decade, several studies of lacustrine sediments from the Tibetan Plateau 

identified significant lake level changes during the Late Quaternary that are related to monsoon 

and westerlies variability, especially in its central-southern part, where the biggest and more 

stable  lakes  are  present  and  where  the  environmental  conditions  are  more  comparable 
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(Mischke and Zhang, 2010; Kasper et al., 2012; Günther et al., 2013; 2015; 2016; Doberschütz 

et al., 2013; Mishra et al., 2015; Ahlborn et al., 2016; Henkel et al. 2016).  

Given  the  increasing  attention  paid  to this type of studies,  organisms that  provide  a  proxy 

record  are  especially  valuable.  In  particular  ostracods,  small  bivalved  crustaceans,  have  a 

large potential in this type of studies and live in practically every aquatic environment. In fact, 

ostracods are multi proxy because their fossil shells provide evidence of past distribution from 

which  palaeoclimate  inferences  can  be  drawn  via  indicator  species,  transfer  function  and 

mutual climatic range approaches. Furthermore, biogenic calcite of their shells allow stable 

isotope and trace element analyses as proxies for temperature and salinity.  

Recent studies of ostracod assemblages from modern water bodies of the Tibetan Plateau and 

palaeoenvironmental  records  provide  the  basis  to  assess  the  environmental  and  societal 

impact  of recent global  change  on  the Tibetan Plateau,  especially  with  regard to moisture 

changes and runoff of large rivers in its densely populated eastern and southern foreland and 

to compare the amplitude and timing of environmental change with those of the pre–industrial 

history (e.g. Mischke et al., 2003; 2006; 2007; 2010a; 2012; Wrozyna et al., 2009a, 2009b, 

2010; Frenzel et al., 2010; Li et al., 2010; Akita et al., 2016) and as proxies for environmental 

and climatic change on this area. This study wants to contribute to a better understanding and 

improving  the  ostracods  as  reliable  indicators  for  palaeoclimatic  changes  on  the  Tibetan 

Plateau. 

 

1.2 Lacustrine sediments 

To investigate how climatic changes influence the Tibetan Plateau, several types of analysis 

can be used, e.g. δ18O of glaciers (e.g. Thompson et al., 2006; Yang et al., 2006), speleothems 

(e.g. Kotlia et al., 2012; Li et al., 2014a) as well as tree-rings (Qin et al., 2015; Hochreuther et 

al., 2016). Also the dating of palaeo-shorelines allows to assess moisture availability changes 

(Kong et al., 2011; Liu et al., 2013; Rades et al., 2015). The big amount of lacustrine records 

provides sensitive, high-resolution long time palaeoecological and palaeohydrological records, 

including datasets on lake level changes. In the last decades many scientific works on this 

topic  were  published  using  seismic  profiling  (e.g.  Dietze  et  al.,  2010)  sedimentology  (e.g. 

Kasper et al., 2012), palaeomagnetic (e.g. Herb et al., 2013) pollen (e.g. Ma et al., 2014), 

biomarkers (e.g. Günther et al., 2016) and microfossils (e.g. Akita et al., 2016).  

  



Chapter 1 

   
3 

1.3 Ostracoda 

Ostracoda (Arthropoda) are small crustaceans providing information on environmental 

processes,  biological  activities,  ecological  and  sedimentary  events,  geological  and  climatic 

conditions through the presence or abundance of species (Rodriguez-Lazaro and Ruiz-Munoz, 

2012).  This  group  has  a  large  fossil  record  and  is  present  in  the  marine,  brackish  and 

freshwater realm as a consequence of which it is widely employed as a palaeoenvironmental, 

palaeoclimatic and biostratigraphic indicator. Ostracod studies range into various disciplines 

such as evolutionary biology, zoology, molecular biology, (palaeo-)ecology, (palaeo-) 

limnology and (palae-)oceanography. 

In terms of crustacean relationships, Horne et al. (2005) discuss the validity of palaeontological 

and  neontological  criteria  in  the  definition  of  this  group  and  conclude  that  ostracods  are 

bivalved arthropods with up to eight pairs of limbs in adults, plus copulatory limbs and a furca 

all of which are totally  enclosed by a bivalved carapace without growth lines. The juvenile 

ostracods grow by moulting. The calcitic carapace with two valves enclosing the soft body 

protects ostracods against the potential dangers of the aquatic milieu where they live and also 

bears  the  geochemical  and  isotopic  signal  of  the water  at  the  moment  of  biomineral 

precipitation.  This  carapace  has  a  high  potential  to  be  preserved  in  sediments  and  as  a 

consequence ostracods have a fossil record extending back at least 450 Ma.  

Ostracoda is the oldest fossil arthropod group (Early Ordovician period to the present) with 

living  representatives  (Maddocks,  1982;  Kempf,  1996;  Willams  et  al.,  2008).  The  global 

diversity  of  Ostracoda  estimates  about  20,000  living  species  from  marine,  freshwater  and 

transitional waters (Martens et al., 2008) with a total of about 65,000 living and fossil ostracod 

taxa at or below the species level, including subspecies and synonymies (Ikeya et al., 2005). 

The  success  of  ostracods  in  freshwater  and  brackish  habitats  is  due  to  efficient  osmotic 

adaptation (calcification in low mineralised waters) providing often wide tolerance to different 

salinity ranges (Iglikowska, 2014; Iglikowska and Pawlowska, 2015). Ostracods are efficient 

colonisers  of  new  habitats  (Newman,  2005;  Iglikowska,  2014).  The  wide  geographical 

distribution and simultaneous appearance on palaeocontinents indicate their rapid dispersal, 

reproductive  modes  and  wide  environmental  tolerance  (Willams  et  al.,  2008).  Ostracods 

occupy  all  types  of  aquatic  environments from the  oceanic  abyss  to temporary  waters,  on 

aquatic plants and in semi-terrestrial environments (Morgan, 1930; Benzie,1989; Frenzel and 

Boomer, 2005; Griffiths, 2006; Rodriguez-Lazaro and Ruiz-Munoz, 2012). 

The secretion of ostracods shells occurs fairly rapidly, a few hours to a few days, and directly 

takes up elemental composition from ambient water. The geochemistry (trace-elements and 

stable  isotopes)  of  ostracod  shells  is  a  biomarker  of  ambient  water  chemistry  at  time  of 

secretion  (conductivity,  dissolved  ions  and  solute  compositions)  (Forester,  1983;  Ito  and 

Forester, 2009; Deocampo, 2010).  The geochemical information stored in ostracod shells (e. 
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g.,  low  Mg/Ca)  is  commonly  used for  reconstructing  the  palaeo-environmental  evolution  of 

continental water bodies (Forester, 1986; Holmes, 1996; Börner et al., 2013). The chemical 

shell  composition  (Mg,  Sr,  Na  and  Ba)  is  useful  for  the  reconstruction  of  past  water 

temperature, water balance and salinity (Chivas et al., 1983; 1986; Griffiths and Holmes, 2000; 

Gouramanis and De Deckker, 2010). The changes in Sr/Ca of ostracod shells are believed to 

reflect changes in salinity while the changes in Mg/Ca shell do reflect both salinity and water 

temperature (Forester, 1986; Ito and Forester, 2009). However, new studies demonstrated this 

relation to be more complex than observed before, with the water chemistry playing a more 

important role (e.g. Börner et al., 2013).  

Ostracod isotopic composition (δ 18O andδ13C) is used to infer past temperature changes in 

deep lakes, hydroclimatic evolution of the continental waters, productivity changes etc. (von 

Grafenstein et al., 1999; Schwalb, 2003; Wrozyna et al., 2010; Börner et al., 2013).  

Their ecological plasticity based on tolerance to environmental constraints and adaptation to 

different feeding and reproduction types allow them to occupy most of the ecologic  aquatic 

niches  with  the  exception  of  that  of  planktonic  in  brackish  and  non-marine  waters.  Since 

ostracods  have  no  pelagic  larval  stage  they  are  dispersed  in  marine  environments  by 

successive  occupation  of  ecosystems  represented  by  water  mass  (pelagic  species)  or 

sediment  and  water–sediment  interface  (benthonic  species).  In  the  case  of  non-marine 

representatives, dispersal is favoured by the resting eggs and desiccation-resistant stages of 

many of these ostracods, thus intercontinental exchanges can be produced by the dispersal 

of eggs by prevailing winds, bird migrations, or even by amphibians, insects and, in recent 

times,  by  humans  (Martens  and  Horne,  2009).  Factors  affecting  ostracod  distribution  at 

different scales are influenced by temporal and physico-chemical stability of the ecosystems 

where ostracods are living and can be estimated by measuring alpha and beta diversity of the 

assemblages  (Smith  and  Horne,  2002).  In  any  case,  the  ecological  peculiarities  of  the 

ostracods are clues to estimate the potential of these microcrustaceans in 

palaeoenvironmental interpretations and many authors agree that much work has to be done 

describing modern ecosystems to complete already existing databases. The NODE 

(Nonmarine  Ostracod  Distribution  in  Europe;  Horne  et  al.,  1998)  and  NANODe  (North 

American  Nonmarine  Ostracode  Database;  Forester  et  al.,  2005)  databases  are  excellent 

examples  of  this  attempt  for  putting  together  ostracod  distributions  for  the  Recent  and 

Quaternary assemblages of Europe and North America, respectively. Knowledge of modern 

ostracod diversity is incomplete and variable due to the different intensity of studies of different 

biogeographical regions. Of c. 20,000 species of ostracods estimated living today, 2000 are 

non-marine species with irregular geographical distribution, with 400–500 from Palaearctic and 

Afrotropical regions (Martens and Horne, 2009). Recent work on groundwater faunas (e.g., 
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Reeves et al., 2007) suggests that future studies in this area are likely to increase substantially 

the known biodiversity of non-marine ostracods. 

Ostracod species show characteristic spatial-temporal patterns of distribution due to varying 

environmental and climatic parameters (Griffiths, 2006; Walter and Hengeveld, 2014).  

An important aspect of this taxon is the worldwide activity of the ostracodologist’ community, 

with more than 400 researchers currently registered in the International Research Group of 

Ostracoda  (IRGO,  https://www.ostracoda.net/about-irgo).  This  community  of  biological  and 

palaeontological  ostracod  researchers  covers  several  aspects  and  geographical  regions, 

providing a large set of scientific publications on this group. 

 

1.3.1 Ostracoda as (palaeoenvironmental) proxies 

In  a  geological  context,  applications  of  ostracods  include  relative  dating  and  correlation 

(biostratigraphy) as well as palaeoenvironmental and palaeoclimatic uses. The ostracod-based 

biostratigraphy is widely utilised (Colin and Lethiers, 1988; Horne, 1995; Whittaker and Hart, 

2009), and integrates especially the sections where planktonic foraminifers and nannoplankton 

(in marine settings) or diatoms and pollen (in non-marine settings) are scarce. A comparison 

among living and fossil ostracods needs a good knowledge of potential range of similarity and 

difference between a living population and the fossil association recovered from a sediment 

sample, which can range from something close to the original living fauna (thanatocoenosis—

if in situ, i.e. autochthonous) to associations that have been subjected to varying degrees of 

transport with consequent sorting and loss (taphocoenosis). Most taphocoenoses will contain 

both autochthonous and allochthonous components, and ostracod analysis allows 

discrimination of both in situ and transported components of the association. Fossil 

associations, relative and absolute abundances of species, diversity, dominance, the ratios of 

adult males to females, adults to juveniles, carapaces to valves, etc., all have potential value 

provided that in situ and transported taxa are discriminated. It follows that fossil associations 

must be interpreted with care and that recognition of the autochthonous elements is vital for 

palaeoclimatic analysis, whether the ostracods are being used as an ecological or 

biogeographical indicator or the shell material is utilised for its chemical or isotopic signals. 

Mixtures  of  fossil  and  modern  ostracod  specimens  can  be  recognised  and  separated  by 

making  use  of  adult  to  juvenile  ratios,  proportions  of  carapaces  to  valves,  abundance  of 

individual species, preservation of the valve morphologic features and presence or absence of 

soft parts. Taphocoenoses that reflect a mixture of species from various water depths along 

the gradient of the continental shelf and slope, but which are contemporaneous, can be readily 

distinguished  by  examining  adult  to  juvenile  ratios,  taking  advantage  of  the  fact  that  finer 

grained particles such as juvenile valves are more readily transported over greater distances; 

such transported assemblages have a clearly skewed adult to juvenile ratio (Brouwers, 1988). 
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Ostracods are commonly found in Quaternary deposits of marine, lacustrine and freshwater 

environments and thus they can be successfully used as palaeoenvironmental and 

palaeoclimate  proxies.  Quantitative  and  qualitative  analyses  on  faunal  assemblages  and 

geochemical analyses on their carapaces permit palaeoenvironmental reconstructions by the 

estimation  of  past  environmental  parameters  including  temperature,  salinity,  main  solute 

concentrations,  productivity,  hydrology  and  oxygenation  (e.g.  Frenzel  and  Boomer;  2005; 

Mischke et al., 2007; Börner et al., 2013).  

Palaeoecological applications of ostracod-based transfer functions have proven to be a useful 

tool to assess palaeoclimatic conditions (Mischke 2012, Viehberg and Mesquita-Joanes 2012). 

 

1.3.2 Importance of taxonomy in the western part of the Tibetan Plateau 

Studies of Ostracods from the Tibetan Plateau began in the 1950s at the same time of the 

petroleum  exploration  in  this  area.  The  reports  from  this  period  were  mainly  published  in 

Chinese language (Sun 1998; Hou and Gou, 2002; 2007), not allowing an easy access for 

non-Chinese readers. As a result of the economic significance of Quaternary ostracods from 

the  Qaidam  Basin  for  the  oil  and  gas  exploration,  papers  often  summarized  unpublished 

reports without a presentation of the detailed original data of ostracod records from individual 

sites (e.g. Huang, 1964, 1979; Wang and Zhu, 1991). Some of the earlier studies included the 

investigation of modern ostracods and the relevant habitats of the Tibetan Plateau as a basis 

for  palaeoecological  inferences although the  majority focused  on  the  stratigraphical  use  of 

Quaternary  ostracods from the Qaidam  Basin  (e.g.  Huang  et  al.,  1985;  Yang  et  al.,  1995, 

1997). In the last years, with the increasing of palaeontological studies in this region, the quality 

and  availability  of  ostracod  taxonomy  became  relevantly  higher.  Unfortunately,  the  largest 

amount of works has been mostly concentrated in the most easily accessible northeastern and 

southeastern part of the Tibetan Plateau (Mischke et al., 2012), with only a few works published 

about the western part (Li et al., 1991; Kempf et al., 2009; Mishra et al., 2015). Among the 

localities already geologically and environmentally investigated, the Bangong Lake (Li et al., 

1991),  Tianshuihai  lake  (Li  et  al.,  1997a,  1997b)  and  South  Hongshan  (Zhu  et  al.,  2007) 

concern mostly biostratigraphy and most of them are published in Chinese language. The only 

locality already investigated in more aspects is the Zhada Basin, where studies concerning its 

tectonical origins (Wang et al., 2004; Wang et al., 2008; Saylor et al., 2010a) and 

palaeoenvironmental  reconstruction  (Saylor  et  al.,  2010b)  were  carried  out.  Kempf  et  al. 

(2009),  which  first  investigated  ostracod  assemblages  in  this  area  in  association  with 

petrographic and sedimentological proxies, found several not identified species, thus further 

studies are needed. 
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1.4 Late Quaternary climate evolution 

The Quaternary period (last 2.6 million years) is characterised by great variability in 

environments and climate in the Earth history (e.g., continental ice sheets, sea level and lake 

level fluctuations) (e.g. Bradley, 1985; Anderson et al., 2007). The Tibetan Plateau is especially 

sensitive to global climate change (e.g., temperature rise) during the Quaternary (Mischke and 

Zhang,  2010;  Zhu  et  al.,  2015).  High  lake-water-levels  across  Africa,  Arabia  and  India 

(monsoon rains over the Sahara and the Indian subcontinent (between 10,000 and 5000 years 

B.P., before present) is evidence for a strengthening of monsoon while it was weak during the 

glacial maximum at 18,000 years BP (Street and Grove, 1979; An, 2000). It is largely accepted 

that  the  climate  system on  the Tibetan  Plateau  is  mostly  influenced  by  the  Asian  summer 

monsoon system (e.g. Gasse et al., 1991; Liu et al., 2009; An et al., 2012b, Maussion et al., 

2014). During the Quaternary, its intensity variations and its interplay with the Indian monsoon 

and the Westerlies influenced the moisture availability and, as consequence, the evolution of 

the lake systems on the plateau. These were driven by climatic changes and often also through 

switches from an open to closed lake basins and vice versa. 

Several studies using different approaches on the lakes and their catchments on a southern 

west-east  transect  were  carried  out  in  the  last  decades.  Among  them,  there  is  a  general 

agreement  on  the  climate  evolution  during  the  early  Holocene,  where  the  conditions  were 

relatively warmer and wetter than in the previous period and, after this, the general trend in the 

whole region is a progressive drying of the climate, with a consequent lowering of the lake 

levels (e.g. Fontes et al., 1996; Zhu et al., 2009; Kasper et al., 2015; Ahlborn et al., 2017). 

However, several discrepancies concerning interpretation and time-shifts of the climate-related 

events are still under discussion. 

 

1.5 Outline of the thesis 

This  PhD  thesis  is  part  of  the  joint  research  “Lake  systems  response  to  Late  Quaternary 

monsoon  dynamics  on  the  Tibetan  Plateau”  funded  by  the  German  Research  Foundation 

(Deutsche  Forschungsgemeinschaft  –  DFG)  within  the  Priority  Programme  1372;  “Tibetan 

Plateau: Formation – Climate – Ecosystems (TiP)” in cooperation with the Institute of Tibetan 

Plateau  Research  of  the  Chinese  Academy  of  Sciences.  The  goal  was  to  evaluate  the 

monsoons impact and their past and present evolution, in order to give predictions for the 

future in this time of strong anthropogenic impact and climatic changes 

(http://www.tip.unituebingen. de/index.php/de).  

Within this project, an additional publication written during this PhD work (Ahlborn, Haberzettl, 

Wang,  Alivernini  et  al.,  2015)  concerning  a  multi-proxy  sedimentological,  geochemical, 

micropalaeontological, and palynological study of a lacustrine sediment record from the small 

TT  Lake  within  the  catchment  of  Tangra  Yumco  (southerncentral  Tibetan  Plateau)  was 
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published.  The manuscript  was  not  included  in  this  thesis  because  of  the  different field  of 

application and objective. 

 

1.6 Objectives of the thesis 

On the basis of what has been written above, the objective of this thesis is to improve our 

palaeoclimatic and palaeoenvironmental knowledge based on late Quaternary ostracods of 

Tibetan Plateau lakes during the last 40 ka. Moreover, for future researches, it is intended to 

improve the poor ostracod dataset in  Western  Tibet. This work is composed by the 

investigation  and  reconstruction  through  a  multy-proxy  approach  of  Taro  Co  and  Tangra 

Yumco  lake  systems.  These  two  sites  were  chosen  to  assess  and  refine  the  lake  level 

reconstruction mainly concentrated on ostracods and their related application. Concerning the 

improvement of taxonomical research in this area, the ostracod fauna from the western Tibetan 

lakes  was  poorly  studied  so  far,  and  the  obtained  material  from  the  Zhada  basin  is  an 

opportunity to improve the knowledge for this sector. 

More precisely this work aims  

1) To reconstruct the evolution of the Taro Co lake system for the last 40 ka especially with 

respect to changes in lake level variations (Chapter 2) discerning climate change, i.e. shifts of 

the  precipitation/evaporation  balance,  from  lake  system  changes  by  investigating  all  three 

lakes of the system. 

2) To refine and complete the already published Tangra Yumco lake level curve of Ahlborn et 

al. (2016) based on new ostracod data and to reconstruct possible scenarios of the interactions 

between the basins of the Tangra Yumco system during the past 17 ka using an ostracod-

based conductivity reconstruction to discriminate climatic and hydrographic effects (Chapter 

3). 

3) To characterize the poorly studied ostracod fauna of the Zhada Basin, in order to improve 

their potential for future (palaeo)environmental reconstruction in Western Tibet (Chapter 4). 

4) to answer the question of whether there were synchronous or asynchronous late Quaternary 

climate  shifts  along  a  west-east  transect  on  the  southern  Tibetan  Plateau.  The  general 

comparison  was  carried  out based on own  results and  adding several lakes  already 

investigated by several authors (Tab. 1). 
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Lakes Author(s) 

Bangong Co 
Fontes et al., 1996; Van Campo et al., 1996; Wie 
and Gasse 1999 

Tose Moirier Leipe et al., 2014; Mishra et al., 2015 

Tandra Yumco lake system (inclusive Tangung 
Co and Xuru Co)  

Ahlborn et al., 2016; Alivernini et al., 2018b 
(present study) 

Taro Co lake system (inclusive Zabuye and 
Lagkor Co) 

Alivernini et al., 2018a (present study) 

Nam Co Kasper et al., 2015 

Puma Yumco 
Wang et al., 2009; Peng et al., 2013; Nishimura et 
al., 2014 

Chen Co Zhu et al., 2003;2009 

Naleng Co Kramer et al., 2010a;2010b 

Paiku Co Wünnemann et al., 2015 

 

Figure 1: Overview of the Tibetan Plateau with the investigated and compared lakes’ locations. TM 
– Tso Moriri, BC – Bangong Co, TC ls – Taro Co lake system, PC – Paiku Co, TYC ls – Tangra Yumco 
lake system, NC – Nam Co, CC – Chen Co, PY – Puma Yumco, NLC – Naleng Co 

Table 1: Records of the considered lakes from the southern Tibetan Plateau 
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Chapter 2 - Late quaternary lake level changes of Taro Co and 

neighbouring lakes, southwestern Tibetan Plateau, based on OSL dating 

and ostracod analysis  
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A R T I C L E I N F O

Keywords:
Quaternary
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OSL dating
Transfer function
Taro Co
Zabuye Salt Lake
Lagkor Co

A B S T R A C T

The Late Quaternary lake history of Taro Co and three neighbouring lakes was investigated to reconstruct local
hydrologicalconditions and the regionalmoisture availability.Ostracod-based water depth and habitatre-
constructions combined with OSL and radiocarbon dating are performed to better understand the Taro Co lake
system evolution during the Late Quaternary.A high-stand is observed at36.1 ka before presentwhich re-
presents the highest lake level since then related to a wet stage and resulting in a merging of Taro Co and its
neighbouring lakes Zabuye and Lagkor Co this time.The lake level then decreased and reached its minimum
around 30 ka. After c. 20 ka, the lake rose above the present day level. A minor low-stand, with colder and drier
conditions,is documented at 12.5 cal.ka BP. Taro Co Zabuye and Lagkor Co formed one large lake with a
corresponding high-stand during the early Holocene (11.2–9.7 cal. ka BP). After this Holocene lake level max-
imum,all three lakes shrank,probably related to drier conditions,and Lagkor Co became separated from the
Taro Co-Zabuye system at c.7 ka. Subsequently, the lake levels decreased further about 30 m and Taro Co began
to separate from Zabuye Lake at around 3.5 ka. The accelerating lake-level decrease of Taro Co was interrupted
by a short-term lake level rise after 2 ka BP, probably related to minor variations of the monsoonal components.
A last minor high-stand occurred at about 0.8 ka before today and subsequently the lake level of Taro Co reg-
isters a slight increase in recent years.

1. Introduction

The climate in several parts of central Asia is controlled primarily by
the summermonsoonalcirculation,(Molnar et al., 1993; Yu et al.,
2001;Wang,2006),and,understanding of its naturalvariability and
anthropogenic impacts is a crucial question in climate research. Several
palaeoenvironment and palaeoclimate studies have shown that the Ti-
betan Plateau is one of the places most influenced by factors such as the
globalclimate and have demonstrated its high sensitivity to climatic
changes,(Gasse et al., 1991; Liu and Yang,2003) making this area of
greatinterestfor the atmospheric and environmentalsciences (Shen
et al., 2005; Morrill et al., 2006; Zhao et al., 2010; Mischke et al., 2012;
Nishimura et al., 2014; Ahlborn et al., 2016; Henkel et al., 2016).

Ostracod associations are widely used to deduce information about
many palaeoenvironmentalparametersarchived in lake sediments

(Anadòn etal., 1994;Schwalb etal., 2002;Alvarez Zarikian etal.,
2005; Mischke et al.,2008).Shell chemistry analysis and the applica-
tion of ostracod-based transfer functions show thatostracods are in
assessingpalaeoclimaticconditions (Mischke, 2012). Several pa-
laeoenvironmental investigations using ostracods from Quaternary se-
diments ofthe Tibetan Plateau have been conducted in recent years
(Mischke et al.,2006;Frenzelet al., 2010;Mischke,2012;Wrozyna
et al., 2012;Ahlborn et al.,2014;).This analysis,combined with the
dating of lake levels indicated by beach bars,enables a detailed re-
construction of past lake and climate conditions.Closed lake systems
reflect climatically induced water balance changes through lake level
variation.

This work analysed severaloutcrops in the catchments of two ad-
jacent lakes, Taro Co and Zabuye Salt Lake, both located on the
southwestern Tibetan Plateau (Fig.1). We used ostracod analysis
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combined with radiocarbon and optically stimulated luminescence
(OSL) dating to assess the evolution of this area during the late Qua-
ternary. The evolution of Taro Co’s level during this period was almost
unknown before but such information is required to estimate the pre-
cipitation/evaporation balance to model climate changes in the region.
The additionalanalysis of other closed basin lakes in the neighbour-
hood of Taro Co enable an investigation of Taro Co as part of a more
complex hydrologicalsystem,including possible opening/closing sce-
narios for the basins.A comparison with palaeoclimate records from
other large lakes in the region,such as Tangra Yum Co and Nam Co,
allows the reconstruction ofvarying monsoonalimpacts and an un-
derstanding ofhydrologicalsystem changes on the southwestern Ti-
betan Plateau.

We aim to achieve the following objectives:(i) to reconstruct the
late Quaternary evolution of the Taro Co lake system,especially with
respect to changes in the lake level, (ii) to discern climate change, i.e.
shifts of the precipitation/evaporation balance,from lake system
changes by investigating all three lakes of the system and (iii) to answer
the question of whether there were synchronous or asynchronous pri-
marily late Quaternary climate shifts along a west-east transect on the
southern Tibetan Plateau.

2. Study area

Taro Co (31°03′N, 83°55′E) is situated on the northern slope of the
Gangdise Mountains,southwestern Tibetan Plateau.The catchment
geology is characterised mainly by mudstone, siltstone, conglomerates,
marine clastic rocks,siliceousmudstone and marlstone (Bureau of
Geology and Mineral Resources of Xizang Autonomous Region, 1993).
The elevation of the modern lake level is 4566 m, above sea level (a.s.l.)
with a maximum water depth of 132 m (Guo et al., 2016). The area of
the modern lake basin is 487.6 km2, and the catchmentarea is
6929.4 km2 (Wang and Dou, 1998). It is mainly fed by the Buduo River,
deriving from the glacial melt water of the Gangdise Mountains in the
southern part of the catchment (Zheng et al., 1989). When the lake level
rises above 4570 m a.s.l.,the excess water from Taro Co drains tem-
porarily into the hypersaline Zabuye Salt Lake to its north. Taro Co is a
lake of the Ca-Mg-Cl-SO4 type, (Börner et al., 2017) with a mean con-
ductivity of 1.0 mS/cm (salinity 0.8 psu), a pH of 9.4 and an alkalinity
of 6.8 mmol/l as measured in September 2011. The basin is located in
an alpine,semi-arid region,with a mean annualprecipitation ofap-
proximately 200 mm and a mean annual temperature of 0–2 °C (Wang

and Dou, 1998). The vegetation type is mainly that of the alpine steppe
and alpine meadow (Ma et al., 2014).

Zabuye Salt Lake (31°35′N, 84°07′E, 4421 m a.s.l.) has a catchment
of 6680 km2, excluding the drainage basin of Taro Co. The Cretaceous-
Eocene bedrock in the catchment of Zabuye is composed of acidic ig-
neous rocks, mudstones and sandstones (Zheng et al., 1989). The pre-
sence of lacustrine deposits at elevations above the modern lake level
indicates that the level has been higher in the past than it is today (Qi
and Zheng,1995; Zheng etal., 1989). The basin is surrounded by
mountains with an elevation of about 4600–5200 m a.s.l. The lake has
no outflow,but there are two tributaries,one entering from the west
and one from the east. The modern lake has an area of 243 km2, a mean
water depth of0.7 m and a maximum water depth of < 2 m (Zheng
et al., 1989, cited in Yu et al., 2001). The salinity of the Na-Cl-HCO3-
dominated lake water is very high at 360–410 psu.

Lagkor Co (32°01′N, 84°06′E) is situated north of Zabuye Salt Lake
at an altitude of 4472 m,i.e. distinctively below that of Taro Co but
49 m above the present-day lake level of Zabuye. It is surrounded by a
diverse rock association, from limestone to ultramafic rocks. A zone of
amphibolite > 9 km in length crops out on the north shore of the lake,
while mainly sandstones and limestones occur on the other margins of
the lake (Lee et al., 2009). It has an area of 95.6 km2 and a catchment of
4294 km2. Lagkor Co is fed primarily by two perennial tributaries from
south-east and south-south-west (Lee et al., 2009). The lake water is a
Na-SO4-Cl type, with a salinity of 60 psu (Zheng et al., 1989). A narrow
and currently dry valley connects the catchments ofLagkor Co and
Zabuye Salt Lake with a threshold at 4579 m a.s.l.

Zhari Namco (30°55′N,85°37′E) is situated at 4617 m a.s.l.about
80 km east of Taro Co. The lake is surrounded, in particular in the west
and east,by carbonaceous lake sediments and shorelines up to an al-
titude of 4757 m a.s.l. A few sandy palaeo-shore levees are distributed
near the lake,the highestreported by Wang and Dou (1998) being
119 m above the recentlake level.The western shallower lake area
consists of a gently alluvialfan influenced by severallarge inflowing
rivers (Wang et al., 2010). Zhari Namco is one of the largest lakes on the
Tibetan Plateau covering 1073 km2, with a catchment of18,407 km2

(Hudson and Quade, 2013). The catchment area borders directly on this
lake and on Tangra Yumco in the east,one of the few lakes in this
region with an already existing Holocene lake-levelreconstruction
(Ahlborn et al., 2016). The north and south catchments of Zhari Namco
constitute a fault zone within low hills of no > 500 m a.s.l.,almost in
parallel along the lake bank. The deepest part of the lake is located in
the eastern area, at a water depth of 71 m.

3. Material and methods

3.1. Fieldwork

All samples were taken in September 2011 and 2014 during two
field campaigns to the Taro Co area. Ancient shorelines and lake sedi-
ments were mapped east,north and north-eastof Taro Co and in a
broad valley in the southern catchment of Zabuye Salt Lake. Sediment
sections and the relative positions of shorelines were documented using
a hand-held GPS device with a horizontalerror of 3–6 m,while their
altitude differences and distances were measured using a Leica Disto D8
laser distance meter. Selected sediment profiles were documented and
sampled for ostracods.Altitude values from GPS measurements were
corrected by calculated elevation differencesand Google Earth.
Samples were preferentially collected from horizons immediately below
assumed lake sedimentsor at their base for dating and micro-
palaeontologicalanalysisin order to reconstructthe trends of pa-
laeoenvironmental change at these sites.

OSL samples were taken using iron tubes of about 7 cm diameter
and 30 cm length hammered into the cleaned verticalsurfaces of the
sediment units. A piece of fabric covered the proximal end of the tube to
control penetration and provide light sealing.The other tube end was

Fig. 1. Location of the Tibetan Plateau in China and position of the four studied
sites: three of the Taro Co lake system (Taro Co, Zabuye Salt Lake and Lagkor
Co) and Zhari Namco (Geomapapp image modified).
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immediately sealed after extraction of the tube and the whole sample
was wrapped in black lightproof plastic bags. One adjacentNAA
(neutron activation analysis) sample and one water content sample c.
20 cm around the OSL sample were taken within every sedimentary
unit selected for OSL dating.

In total, four sectors of outcrops where sampled within the Taro Co-
Zabuye lake system: one immediately to the east of Taro Co, the second
located close to Taro Co’s north-eastern shore,the third in the south-
eastern part of Zabuye Salt Lake's catchment and the fourth in Zabuye's
southern part, situated at the potential outflow of Taro Co (Figs. 2, 5,
6).

One additionalsample from the ZhariNamco catchment was col-
lected in 2011 from exposed lake sediments in the northern outskirts of
the city of Coqen,immediately below an ancientcarbonaceous lake
sedimenthorizon (Fig. 7). This sample was taken atan altitude of
4684 m (67 m above the modern lake level).

3.2. OSL dating

Fourteen OSL samples from outcrops were dated,and three were
also radiocarbon dated for comparison. The water content of the sam-
ples accompanying the OSL dating samples was measured a few days
after sampling in the Lhasa Branch of the Institute of Tibetan Plateau
Research,Chinese Academy ofSciences.A water content of5% was
used for the higher values. This water content originally existed at some
localities and then diminished as the sediment dried up.OSL sample
preparation was carried out in the Luminescence Dating Laboratory of
the Qinghai Institute of Salt Lakes (Chinese Academy of Sciences) under
red safe lights. Raw samples were first treated with 30% H2O2 and 10%
HCl to remove organic materials and carbonates.Since the samples
were quite coarse, grains between 90 and 200 μm were dry sieved. To
extract quartz these grains were then treated with 35% H2SiF6 acid for
abouttwo weeks to remove feldspars.The purity of the quartz was
checked with infrared stimulation, then, the quartz grains were
mounted in a 7 mm centralcircle on stainless steeldiscs (10 mm dia-
meter), using silicone oil. OSL measurements were carried out using an
automated Risø TL/OSL DA-20 reader. Stimulation was from blue LEDs
(λ470 ± 20 nm) with 90% LED power.The OSL signalwas detected
through a 7.5 mm Hoya U-340 filter,with a peak transmission at
340 nm. Equivalent doses (De) were determined using the single-aliquot
regenerative-dose (SAR) protocol for quartz (Murray and Wintle, 2000).
Laboratory irradiation used a 90Sr/90Y beta source.OSL stimulation

was carried out for 40 s at 130 °C.Signals from the initial0.64 s sti-
mulation were integrated for growth curve construction after subtrac-
tion of the last10 s of signals.Lithogenic radionuclide activity con-
centrationswere determined from measurementsof U, Th and K
concentrations using neutron activation analysis (NAA) ofdried and
ground bulk samples. NAA data were measured at the Chinese Atomic
Energy Institute in Beijing. The cosmic-ray dose was estimated for each
sample as a function of depth, altitude and geomagneticlatitude
(Prescottand Hutton, 1994). For the analysiswe selected preheat
conditions at 260 °C for 10 s for the regenerative dose and we cut the
heat 220 °C test dose OSL measurements,after a preheat plateau test
and a dose recovery test (measured/given dose is 0.93).Quartz OSL
signals are fast-component dominant,and in general,recuperation is
within 10%. Quartz grains are quite bright when it comes to OSL sen-
sitivity. The growth curves and shine-down curves of a typical sample
are shown in Fig.4. Due to the using of quartz,unaffected by anom-
alous fading (Duller, 2004), fading test were not performed.

3.3. Radiocarbon dating

In total, seven sediment samples were used for radiocarbon dating,
three from profile TiP14-P, single samples from three other profiles and
one from the sandy base of the 10.4 m long core TR 14-3 which had
been taken from Taro Co at about a 132 m water depth in 2014.The
sandy base of this core,representative of the lowermost 50 cm of the
sedimentcore is considered to representthe shallowestknown lake
level for Taro Co. Exceptfor the sample from the core,all samples,
consisting of carbonaceous bulk sediment, were dated by Beta Analytics
(Miami, U.S.) using the < 180 μm size fraction without chemicalpre-
treatments. As Haberzettl et al. (2015) determined a reservoir effect of
120 ± 30 years for the late Holocene sediments from Taro Co which
accords with paleomagnetic secular variation stratigraphic investiga-
tions have been constant through time. We applied this reservoir age to
the conventionalradiocarbon ages in this study before calibration by
Calib 7.0 (Stuiver et al., 2017) and the IntCal13 curve (http://calib.qub.
ac.uk/calib/) (Reimer et al., 2013). Reversed agesand those sig-
nificantly older than the accompanying OSL ages were excluded from
the chronologies assuming contamination by reworked material.

3.4. Micropalaeontologicalanalysis

Micropalaeontological work was done mainly using ostracod valves.

Fig. 2. Localization of the profiles from the Taro Co catchment. Satellite images by Google Earth (date of acquisition: 26/12/2004).
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In total, 41 samples containing valves were analysed, of which 21 were
from the catchment of Taro Co, 19 from the catchment of Zabuye Salt
Lake and one from old exposed lake sediments ofZhari Namco.The
samples were treated with H2O2 (ca. 5–10% for about 1–2 h) to separate
aggregatesof mud and they were subsequently sieved with water
through a 200 μm-sieve to enrich the valves.Depending on the grain
size of the sediment,about 3–10 g were prepared for fine-grained se-
diment and up to 200 g for sand and gravels. For quantitative ostracod
analysis, the samples were split into sub-samples using a microsplitter
and valves from subsequentsplits were counted until300–500 in-
dividuals were reached. The species proportions and the total ostracod
abundance were calculated. For ostracod abundance we considered all
ontogenetic stages (juvenile and adult valves). In order to assess water
turbulence (Boomer et al., 2009) and to check for the possible removal
of thinner juvenile valves by dissolution,the adult/juvenile ratio was
determined,identification was performed primarily with a low-power
binocular microscope and was occasionally supported by a Scanning
Electron Microscope (SEM).Counted valves ofostracod species and
their adult/juvenile ratio is showed in Table 1.

A modern training set of ostracod distributions from Taro Co and its
catchment was also set up from the 34 samples reported by Guo et al.
(2016),complemented by sixteen new ostracod samples from ponds,
streams,wetlands and shallow water in and around Taro Co.Eight of
the new samples added to the Guo et al. (2016) data set were used to
build up an improved ostracod-based transfer function for the water
depth in Taro Co. The dataset of Guo et al. (2016) was restricted to the
lake and contained only a few shallow water samples. Thus, we added
all the new samples from the Taro Co itself to the existing data set. All
training-set samples represented the uppermost 1–2 cm of surface se-
diment taken with a box corer in 2011. A minimum of 100 valves were
picked and identified in a manner similar to that of the ones in Guo
et al. (2016)’s data set.The new ostracod-based water depth transfer
function was intended to estimate the palaeo-water depth for fossil
samples,the program C2 (Juggins,2003) as wellas Weighted Aver-
aging Partial Least Squares(WAPLS) regression were used,in ac-
cordance with several other authors (Mischke et al., 2007; 2010a; Guo
et al., 2016). The water depth was log10-transformed before analysis. A
Google Earth file of all modern sampling positionsis provided as
electronic supplementary material (supplementary online material).

A Hierarchical Cluster Analysis (WARD method) of the relative os-
tracod abundance of all samples with at least 50 valves was applied to
reveal similarities between recent and fossil associations as a proxy for
habitat similarity.

The calculations estimations of lake level elevations, reconstructed
environments and water depths are presented in Appendix A.

3.5. Modelling of lake system stages

Digital elevation models were builtwith MATLAB® using SRTM-
data covering 30°N-33°N and 83°E-85°E at a resolution of 90 m (USGS,
2004). The lake area was computed in 1 m steps for all altitudes from
recent lake levels to the high-stands. The lake volume was calculated as
the integralof the single lake areas.The catchment was tracked and
calculated by observation on Google Earth.To better understand the
relative water inflow and the importance ofthe evaporation in the
lakes, variations of the catchment/area ratio were calculated.

4. Results

4.1. Sediment profiles

The profile TiP14-P,in the south-eastern partof the Zabuye Salt
Lake's catchment is located at an altitude of 4586 m a.s.l., close to Taro
Co’s recent temporary outflow. This profile is 90 cm long (Fig. 6). Fine
brownish banded sand occurs between its base and 48 cm above the
base. On top, the sediment gradually becomes finer, always containing
root remains.Between 78 cm and the top, the sedimentis pre-
dominantly composed of silt,penetrated by sub-recent roots and mot-
tled with brown rust patches (Fig. 6).

The lithology of the profiles of Taro Co’s north-eastern sector
(Figs. 2, 3b) is dominated by sandy sediments with some gravels. Profile
P32 consists of a 12.2 m thick sequence often characterised by cross and
horizontal bedding.

Sediments in the profiles in the eastern sector are mainly sandy with
coarse gravels.Unconsolidated lacustrine limestones and marls con-
taining shells of the gastropod Radix sp. were found in P29a-b of Taro
Co and in samples P30-1 and P31-1 (Figs. 2, 3b). The sandy sediments
of the Zabuye catchmentcontain gravels,often with horizontaland

Table 1
Counted valves of ostracod species and adult/juvenile ratio in sediment samples taken from the Taro Co, Zabuye and Zhari Namco catchments in September 2011 and
2014. Samples without ostracod valves are omitted.

Sample TiP11# L. sinensis L. dorsotuberosaT. gyirongensisF. gyirongensisC. xizangensisL. inopinata L. postilirata Ilyocypris sp. H. salina Adults Juvenile Total

Taro Co
P29 b/8 5 1 0 0 0 0 0 0 0 4 2 6
P29-7 217 211 8 41 16 0 17 0 0 196 314 510
P30-2 131 11 0 1 0 0 0 0 0 62 81 143
P31-2 30 6 0 0 0 0 0 0 0 7 29 36
P10 518 24 0 6 81 0 7 1 0 222 414 637
P9 289 7 0 2 4 0 0 0 0 55 247 302
P8 249 15 0 7 3 0 4 16 8 71 231 302
P7 275 5 0 10 2 0 0 5 0 66 231 297
P6 252 7 0 24 25 1 0 2 0 63 248 311
P5 242 13 0 35 7 0 0 1 4 73 229 302
P4 235 11 0 49 15 0 0 0 0 106 204 310
P3 251 2 0 18 13 0 1 4 0 54 235 289
P2 291 8 0 13 2 0 1 4 0 55 264 319
P1 306 6 0 4 17 0 1 2 0 60 276 336

Zabuye
P37/2 8 0 0 0 0 0 0 0 0 8 7 15
P37-3 122 8 0 0 2 1 4 0 0 137 179 316
P37-4 126 9 0 0 3 0 3 0 0 141 160 301
P37-5 24 0 0 0 0 0 0 0 0 24 37 61
P40-2 1 0 0 0 0 0 0 0 0 1 4 5

Zhari Namco
P28-1 31 5 0 3 4 0 1 0 0 44 64 108
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low-angle cross-bedding.Some gastropod shells were found in profile
P37.

The sediment profile from ZhariNamco has a thickness of25 cm
(Fig. 7). The profile consists of a whitish marl with thin sandy layers
and only a few small gravels at 5 cm above base.

4.2. Chronology

In the Taro Co catchment, OSL-dating of sediment samples yielded
ages between 27.6 ka and 0.8 ka. In the Zabuye catchment, five samples
were dated with ages between 36.1 and 3.0 ka. The sample TiP11P28-1
from Zhari Namco dated by OSL had an age of 4.2 ± 0.4 ka (Table 2).

The samples from profiles TiP14-P, TiP11-29 and TiP11-30 provided
radiocarbon ages between 16.0 and 3.8 cal. ka BP (Table 3).

Fig. 3. (a) Legend for the Figs. 3b, 5, 6, 7. (b) Profiles from the Taro Co catchment. P29a is situated stratigraphically slightly lower than P29b, both together represent
a continuous succession.
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The sample from the sandy base of the core was collected from Taro
Co at 143 m below its present water level and yielded an age of 30.3 cal.
ka BP.

4.3. Results of micropalaeontologicalanalysis

4.3.1. Ostracod record and performance of transfer function
In total, nine ostracod species were detected within 41 fossil-bearing

sediment samples.The abundance ofthese species varied between 0
(for 25 barren samples) and 43.3 valves/g. The highest abundance was
recorded in the Zabuye catchment. In profile TiP14-P, ostracod valves
were present in each sample with a mean abundance of 19.5 valves/g.
In the other two sectors located north-eastand eastof the Taro Co
catchment,the distribution of ostracods was discontinuous due to the

high number of barren samples. Most valves were found as single valves
and adult valves were dominant.

Leucocytherella sinensisdominated the assemblage with an abun-
dance between 27% and 92%. Other frequently occurring species were
Candona xizangensis, Leucocythere? dorsotuberosa and
Fabaeformiscandona gyirongensis. Tonnacypris gyirongensis, Ilyocypris sp.,
Heterocypris salina and Limnocythere inopinata,only occurred in a few
samples and at low percentages (0.2–3%) (Fig. 8).

Surface sediment samples from Taro Co and its catchment contained
the same species as the fossilsamples,but Bradleystrandesia reticulata
(Zaddach,1844),Candona candida (O.F. Müller, 1776),Eucypris sp.,
Heterocypris incongruens (Ramdohr,1808) and Potamocypris cf.villosa
(Jurine, 1820) were also found (Table 6). All additional species derived
from small water bodies.

Fig. 4. Growth curve and shine-down curves of a typical sample of Taro Co.

Fig. 5. Zabuye catchment lithology. Satellite images by Google Earth (date of acquisition: 26/12/2004).
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The performanceof the extendedostracod-basedwater-depth
transfer function is indicated with R 2= 0.64 and RMSEP = 0.28
(Fig. 9).

4.3.2. Profile TiP14-P
The ostracod record of profile TiP 14-P was relatively continuous in

terms of abundance (Fig. 10). The dominant species in all samples were
L. sinensis, always with percentages higher than 75%. Other abundant
ostracods were C.xizangensis, F.gyirongensis and L.? dorsotuberosa, in-
cluding its variant,f. postilirata sensu Pang (1985).Limnocythere in-
opinata,H. salina and Ilyocypris sp.were poorly represented,with an
abundance between 0.3% and 5%. The ostracod fauna showed a slight

increase ofC. xizangensis and F.gyirongensis,respectively in samples
P10 and P4.The adult/juvenile ratio was relatively low with juvenile
individuals always more abundant than adults.

4.3.3. Other profiles in the Taro co catchment
Ostracod valves were present in only a few samples (Fig.11). Os-

tracod valves were abundant in samples TiP11P29b-7 and TiP11P30-2,
with the dominant species being L. sinensis with an abundance between
42% and 91% as wellas L.? dorsotuberosa (7–41%).The other valves
were classified as T. gyirongensis, F. gyirongensis, C. xizangensis and L.?
dorsotuberosa f. postilirata. The highest degree of diversity is present in
sample TiP11P29b-7.

Fig. 6. Location and lithology of profile TiP14-P (N31.19812°; E084.37550°). Satellite images by Google Earth (date of acquisition: 25/8/2011). The tubes present in
the picture were inserted to take the sediment samples.

Fig. 7. Sediment section TiP11P28-1 from Zhari Nam Co at an altitude of 4684 m a.s.l. (date of acquisition: 8/8/2013).
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In TiP11P29b-7 and TiP11P29b-8 the valves were not translucent as
in the other samples but were often encrusted. The adult/juvenile ratio
was low with more adult than juvenile valvesfound have only in
sample TiP11P29b-8.

Seventeen samplesin the catchmentof Taro Co were ostracod-
barren butcontained low quantities ofhead capsules ofchironomid
larvae,shells of gastropods (Radix),plant remains and invertebrate
eggs.

4.3.4. Zabuye catchment
Ostracod valveswere found in this area in four samplesonly

(Fig. 12). The ostracod associationsof low abundance were char-
acterised by the almost 100% the dominance of L.sinensis,while the
other species are extremely rare with a relative abundance between
0.3% and 5%. The juvenile valves were more abundant than the adult
valves with sample TiP11-P37/2 being the only exception. In addition
to the ostracod fauna, five shells of the gastropod Radix sp. were found
in sample TiP11-P37/3. The rare L.? dorsotuberosa valves showed traces
of erosion.

4.3.5. Zhari Namco
The ostracod fauna from sample TiP11P-28-1 were dominated by L.

sinensis with proportions of c. 10% L.? dorsotuberosa and C. xizangensis
and low numbers of F. gyirongensis.

4.4. Lake system stages

The lake system changes in altitude, volume, area, catchment/area
ratio and lost volume were calculated and are represented in Tables 4, 5
and compared in Fig.13. To confirm the merging of the three lakes,
some closed shorelines and some shorelines higher than the present-day
threshold separating the catchment were found. These shorelines have
not been yet dated so far, but they can be used as indicators of higher
lake levels. Fig. 16 shows a possible scenario of the merging of the three
lakes and the present-day visible shorelines.

5. Interpretation and discussion

5.1. Water depth transfer function

The R2 value of 0.64 determined for the new water depth transfer
function is significantly lower than the R2 of 0.86 calculated by Guo
et al. (2016) for the smaller data set. However, the RMSEP of our new
transfer function is significantly lower and represents an error of only
1.9 m at a 1 m water depth compared to 13.3 m in Guo et al. (2016). In
shallow waters,the improved accuracy ofthe new transfer function
results from the filling in of the gaps of the previously established
water-depth training set by new samples (Fig. 9).

Fig. 8. SEM pictures of ostracod species found in recent and fossil samples from
the Taro Co lake system:a) Fabaeformiscandona gyirongensis (Huang,1982),
female, RV; b) Candona xizangensisHuang, 1982, female, RV; c) F. gyirongensis,
female, LV; d) C. xizangensis, juvenile, RV; e) Leucocythere? dorsotuberosaHuang,
1982 f. postilirata, male, RV; f) L.? dorsotuberosa f. postilirata, female, LV. g) L.?
dorsotuberosa (Huang,1982), adult female,RV; h) Leucocytherella sinensis
(Huang,1982),juvenile,LV; i) L.? dorsotuberosa,juvenile,RV; j) L. sinensis,
juvenile, RV; k) L. sinensis, adult female, LV; l) L. sinensis (Huang, 1982), adult
male, RV.
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5.2. Taro Co and south-eastern Zabuye catchments

Considering the much younger OSL dates many ofthe radio-
carbon data for the profiles of the south-eastern sectorof the
Zabuye catchmentwere apparently influenced by reworking,the
only exception being sample TiP29-3 (Table 2, 3). Additionally,
TiP14P-5 included an inverse age within the profile. These re-
worked samples were not considered for further analysis.Compar-
ison of OSL and radiocarbon data for sample TiP11P29-3 indicated
a low reservoir effect of close to 120 ± 30 years, reported by
Haberzettl et al. (2015). We therefore assume reservoir effects to be
constant over the studied period and applied this reservoir correc-
tion for all radiocarbon dates, in accordance with the investigations
by Haberzettl et al. (2015) for the late Holocene.

The oldest age of the Taro Co catchment was obtained from profile
TiP11-P32 at 27.6 ka (OSL).This catchmentis located about1.4 m
above the base of a fluvial sequence 53 m higher than the present-day
lake level.The medium to coarse sandy sediments with gravels and
without macro-or microfauna remains indicate that a fluvialsystem
well above the modern lake levelexisted at this time.The following
suite of cross-bedded gravelsand sand mirrors (between 702 and
1020 cm, Fig. 3b) the changing fluvial and colluvial conditions near the
lake. The sample close to the top of the profile at 4639 m a.s.l. indicates
that the lake level never reached the elevation of the profile between

27.6 ka and 1.2 ka limiting the maximum potentiallake level to
4639 m a.s.l. for the last 28 ka.

Samples from profile TiP-P29 yielded ages between 25.3 ka
(OSL, sample P29-1),and 2 ka (OSL,sample P29-5).This profile is
located 6 m above the present-day lake level. The older OSL sample
represents a unit ofsandy-silty sediments without faunalremains
which indicates a shallow fluvial system and sedimentaccumula-
tion above the lake level.Subsequently,the presence of lacustrine
calcareous sedimentcombined with the palaeoecology ofthe os-
tracod fauna suggests a deep lake environment dated to 8.2 ka.In
the upper part of this profile, the depositional setting becomes
shallower again as indicated by shells of the pulmonate gastropod
Radix.

The core base sample from Taro Co (TR 14-3) indicates the
lowest documented lake levelat about 4423 m a.s.l.(about 143 m
below present day lake level) for the Taro Co catchment at 30.3 cal.
ka BP. The coarse sediment directly below a continuous succession
of lacustrine silts is assumed to reflect a lake level low-stand.

Profile TiP11-P44 is situated atan ancientshoreline and can be
correlated to profile TiP11-P32.Sample P44-1 provided an age of
11.4 ka (OSL) and is located 27 m above the present-day lake level. This
sample indicatesthe highestpoint reached by the lake during the
Holocene.

The ostracod fauna in profile TiP14-P contains stable, low-diversity

Fig. 10. Relative abundances and Adult/Juvenile ratio of the ostracod valves in profile TiP14-P. For these parameters only the most abundant ostracod species were
considered.

Fig. 11. Relative abundances of ostracod valves and juvenile ratio in profiles of the north-eastern sector of the Taro Co catchment.
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lacustrine fauna with nine species.Ecologically stable conditions are
assumed from similar percentages of the species over the profile, with a
dominance of L. sinensis typical of shallow lacustrine conditions and low
proportions of L.? dorsotuberosa typicalof deeper water (Akita et al.,
2016). Only the proportion of F. gyirongensisdocumentsa gradual
change of increasing and, later, of decreasing water depth (Akita et al.,
2016). A comparison with present day ostracod associations of Taro Co
and its catchmentreveals the greatestsimilarities,with associations
from the lake's epilimnion and upper hypolimnion.Water depth esti-
mation based on the ostracod-based transfer function indicates depths
between 20 and 39 m with only slight variations.

Profiles TiP11-P30 and TiP11-P31 consist of grey sediments with
L. sinensis indicating aquatic deposition.The second profile is lo-
cated stratigraphically higher than the first one and is related to an
ancient shoreline. The corresponding ostracod associations of
TiP11–P30 can be found in a shallow lacustrine habitat or in small
water bodies bound to the present-day outflow area.

5.3. Southern Zabuye catchment

The valley in the southern catchmentof Lake Zabuye contains a
series of distinct ancient shorelines.The OSL ages of these shorelines
show an increasing trend in elevation,exceptsample TiP11-P41-2
(Fig. 14). This sample is taken from lake sediments, not from a shore-
line, and it therefore indicates deeper water conditions.However,be-
cause the lacking of ostracods, a water depth estimation is not possible.
We assume a more or less continuous regressive trend between samples
TiP11-P39 and TiP11-P42, reflecting the shrinking of Zabuye Salt Lake
(Fig. 15).

Ostracodsare missing in most of the samples from Zabuye's
southern catchment because gravelly beach bars were preferentially
sampled. Another reason for ostracod-barren samples is potentially
a high salinity which may have existed in the Zabuye Lake during its
recessional stages. Ostracods are present in profile TiP11-P37 only.
The associations are dominated by L.sinensis indicating a shallow
water environment by comparison with recent samples, which is in
good agreement with an ostracod-based water depth estimation of

Fig. 12. Relative abundances of ostracod valves and juvenile ratio in profiles of the Zabuye catchment.

Fig. 13. Variations of altitude, lake area, lost lake volume and catchment/area ratio of the Taro Co lake system divided into time phases.
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about 20 m, exceptfor beach bar sample TiP11P37–2, the oldest
sample of the profile.

5.4. Lake level changes to the Taro co lake system

The reconstruction ofthe lake level(Fig. 15) is based on chron-
ological, geomorphological,sedimentologicaland palaeoecological
data. A synthesis for the Taro Co lake system covering the last 36.1 ka
was carried out by adding OSL data from Lee et al. (2009) for Lagkor Co
to our data set. Unfortunately,no micropalaeontologicaldata are
available from this older study. Lee et al. (2009) documented that about
5.2 ka ago the lake level of Lagkor Co was 130 m higher than the pre-
sent one.The lake level dropped rapidly by 25 m between 5.2 ka and
3.7 ka.Lake shrinkage further accelerated between 3.7 ka and 3.2 ka
before the present day where the lake level was 74 m above the present
surface of Lagkor Co (Fig. 15).

The oldest maximum lake level documented in our study was found
at 36.1 ka (4632 m a.s.l.). After that, a relatively fast lake decline in the
level was recorded at 30.3 ka.In this part of the lake several samples
indicate a lower lake level related to the altitude of the sampling points.
An elevation of4423 m a.s.l.,i.e. 143 m below the present-day lake
level of Taro Co, is given by the core base of TR 14-3 and indicates the
presence of a shallow water body. However, it is not clear whether Taro
Co became a small and very shallow salt lake.

At 18 ka, the lake level had already recovered and reached
4626 m a.s.l.,as indicated by the position of sample TiP11P37-2,
indicating a shoreline deposit. This is > 50 m above the thresholds
among the three lakes,implying the possibility that the three pre-
sent lakes,Taro Co, Zabuye Salt Lake and Lagkor Co,merged and
formed a single vast lake. To confirm this statement,however,
further sampling will be needed in the future. After this high-stand,
the water depth estimations based on ostracod data from lake

Fig. 14. Cross-Profile through shorelines of the southern Zabuye Salt Lake catchment. The dashed lines indicate the lake level during the correspondent age of the
samples.

Fig. 15. Reconstructed lake level curve for the Taro Co lake system. Black (Taro Co), grey (Zabuye Salt Lake) and white (Lagkor Co) circles indicate former lake levels
either by beach bare dating directly or by ostracod-based water depth estimation (transfer function) indirectly. Discontinuous lines indicate uncertainties in lakes
level evolution. Error bars indicate vertically performance of the used water depth transfer function and are set at +2 m respectively  −1 m for beach bars and reflect
horizontally age uncertainties of dating. Radiocarbon dating produce small errors and OSL dating larger ones. Triangles indicate lake levels below them if pointing
downwards (fluvial or wetland deposits) and above them if pointing upwards (lake deposits without ostracod-based water depth estimation). Question marks stand
for minimum lake levels during highstands. Threshold elevations of lake separation are given based on today's swells between catchments.
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sediments of profile TiP14-P in the south-eastern part of Zabuye Salt
Lake's catchment point to a slight regression during the Pleistocene-
Holocene transition. The maximum Holocene lake level reached an
altitude between 4623 m and 4639 a.s.l.(Fig. 15) during the early
Holocene (between 51 and 67 m above today's lake level of Taro Co)
as indicated by samples TiP14-P10 and TiP11P32-11. This max-
imum was followed by a long trend of decrease in the lake level
causing the separation of Lagkor Co from the system about 7 ka ago
(Lee et al., 2009) and of Zabuye Salt Lake from Taro Co between 3.5
and 3.0 ka.The degree of water loss during this drier period is de-
termined by the catchment/area ratio ofthe lakes, a higher ratio
implies relatively more water inflow or less deficiency by eva-
poration than does a lower one. Lagkor Co had a higher catchment/
area ratio than the merged Taro Co and Zabuye lakes between 7 and
3.5 ka, implying a relatively smaller loss ofwater as indicated by
the volume difference over this time span. Lagkor Co yielded a
much smaller water volume,an even smaller loss of water that in
Taro Co-Zabuye lake resulting in a quickly dropping lake levelin
Lagkor Co. After 3.5 ka, Zabuye had a much lower catchment/area
ratio than the other two lakes and it decreased much more quickly
in water volume and area until it reached a higher ratio.The se-
parations happened well before the lake level fell to the present-day
thresholds between the catchments.This indicates either a limited
water outflow through the narrow valleys and/or an erosion of
these swells by a cutting of the rivers flowing out of Lagkor Co and
Taro Co into Zabuye Salt Lake. A lower lake level phase of
4579 m a.s.l. is documented for Taro Co at 2.0 ka BP. It followed the
maximum lake level between 1.1 and 0.8 ka. A subsequent fast
decline caused the present-day lake level of Taro Co,the lowest of
the entire Holocene (4570 m a.s.l.).Today, the three lakes are se-
parated,and water only temporarily and occasionally flows out of
Taro Co into the Zabuye catchment.

5.5. Lake level changes in Zhari Namco

The ostracod assemblage in the single sample (TiP11-P28–1)
from Zhari Namco, with an OSL age of 4.2 ka, resembles those of the
upper hypolimnion of Taro Co today. An ostracod-based water
depth estimation indicates a water depth of about 42 m. Hence, the
reconstructed water depth reflects a lake level 109 m higher
(4726 m a.s.l.) at 4.2 ka than today. The highest shoreline re-
cognizable in Google Earth images in the western catchment of
Zhari Nam Co is situated at an altitude of 4757 m a.s.l.,thus only
31 m below the ostracod-based estimation of the palaeo-lake level
for 4.2 ka. The shoreline of Zhari Namco analysed by Liu et al.
(2013) is located ca. 80 m above the presentday lake level and
dated at about 4.7 ka,close to the present-work interpretation.

6. Palaeoclimatic implications

6.1. Previous studies

The pollen record of a 3.1 m-long sediment core from Taro Co
was published by Ma et al. (2014). Their chronology relies on a
model assuming a reservoir effect of 3223 years for the upper 20 cm
of the core and of 3483 years below. Based on a reservoir correction
of 120 14C years as introduced by Haberzettl et al. (2015) we
modelled the chronology for the core studied by Ma et al. (2014) for
the sake of comparison. The pollen record, combined with the
corrected age model, implies that the climate was wetter at c.
15 cal. ka BP and that it was drier at the Pleistocene-Early Holocene
transition, probably due to a weakening of the Indian monsoon.
After the transition, the climate was cooler and wetter between 11.7
and 7.7 cal. ka BP. During the middle Holocene, the climate was
cold and dry, related to the influence ofthe westerlies.Ma et al.
(2014) also assumed several minor cold spells during the Holocene,
placed in the re-calculated chronology at c. 10.2–9.0, 8.2–7.9,

Fig. 16. Possible scenario of the high stand phases
(around 36.1,18.0 and 12.5 ka)of Taro Co lake
system, when the three lakes were merged together.
The rectanglesindicate the present-dayvisible
shorelines close to the catchment‘s borders ofthe
three lakes. The altitudes of the shorelines are higher
than the present day thresold connecting the three
catchments.Google Earth images,date of acquisi-
tion: 12/2/2011 (above); 9/9/2004 (below).
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7.5–7.1, 6.2–5.8 and 4.9–3.8 cal. ka BP. Guo et al. (2016) analysed
the ostracod fauna from the same core and recorded the opportu-
nistic Leucocytherella sinensis as the dominant species, accompanied
by four other species (Leucocythere? dorsotuberosa,

Fabaeformiscandona gyirongensis, Candona xizangensis and Ilyocypris
sp.) in low abundance. Because the chronology of Guo et al. (2016)
relies on the same age modelpublished by Ma et al. (2014), we
present their results here with the remodelled chronology. Guo
et al. (2016) support the conclusion of Ma et al. (2014) between
15 cal. ka BP and c. 13.4 cal. ka BP. After this, the climate tended to
be wetter.In general, the reconstructions by Ma et al.(2014) and
Guo et al. (2016) are similar, but the pollen record gives a more
detailed temperature estimation and documents a decrease in pre-
cipitation around 9 cal. ka BP. A comparison of the presentwork
with Ma et al. (2014) and Guo et al. (2016) is represented in Fig. 17.
Zabuye Salt Lake was investigated by Wang et al. (2002), re-
constructing the glacial-interglacial cycles using carbon and oxygen
isotopes in a sediment core for the last 30 ka in low temporalre-
solution. The results indicated that climatic changes led to a drastic
negative shift of stable isotopic ratios at 16.2 cal. ka BP and to a fast
positive shift at the Pleistocene–Holocene transition (10.6 cal.ka
BP). After this period, the stable isotope results indicate a drastic
climate warming until the Early–Middle Holocene characterised by
unstable climatic conditions.The last phase marked by the forma-
tion of a hypersaline lake is dated after 5 cal.ka BP, with a clear
negative water balance from 3.8 cal. ka BP until present.

6.2. Climatic and lake system changes

The evolution of the Taro Co lake system was driven by climatic
and system changes causing switches from an open to a closed lake
basin and vice versa. A high-stand observed at 36 ka ago represents
the highest lake level since then. In a review of dated ancient
shorelines of several lakes located on the north-western and south-
eastern part of the Tibetan Plateau, Li and Zhu (2001) assumed for

Fig. 17. Comparison between the presentwork (a) and the results with the
modified age of Ma et al.(2014) (c) based on pollen analysis and Guo et al.
(2016) (b) based on ostracod analysis, regarding temperature and precipitation
of the Taro Co lake system.

Table 2
OSL dating results of sediments from Taro Co and Zhari Namco lake systems. Water content of the wet sediment is 5%. Studied grain sizes lie between 90 and 200  μm
for all samples.

Sample ID P28-1 P29-1 P29-3 P29-5 P30-2 P32-2 P32-11 P33-1 P37-2 P38-2 P39-2 P41-2 P42-2 P43-1 P44-1

Altitude 4684 4578 4578 4578 4586 4625 4626 4632 4626 4606 4601 4584 4580 4587 4605
Age (ka) 4.2 25.3 8.2 2.1 0.8 27.6 1.2 36.1 18.4 3.9 3.4 5.9 3.0 1.1 11.4
Error (ka) 0.4 1.9 0.6 0.2 0.1 2.6 0.1 3.3 1.7 0.4 0.3 0.6 0.3 0.1 1.2
De (Gy) 21 67 34 10.2 3.4 119 5.1 125 62 12 14.3 17.5 10.4 3.7 54
Uncertainty 1.5 1.9 0.8 0.2 0.5 7 0.4 7 3.4 1 0.8 1.1 0.8 0.4 4
Aliquot # 24 30 23 23 30 23 28 24 29 24 24 24 30 27 23
% K 2.66 1.08 2.23 2.70 1.84 2.40 2.57 2.19 2.26 2.12 2.49 1.94 2.29 1.99 2.65
Error (%K) 0.07 0.04 0.06 0.08 0.06 0.07 0.07 0.07 0.06 0.06 0.07 0.06 0.07 0.06 0.07
Th (ppm) 16.00 7.01 14.00 17.10 8.77 15.20 12.10 9.12 7.53 6.76 13.00 6.33 5.94 10.60 17.90
Error (ppm) 0.38 0.22 0.35 0.41 0.25 0.38 0.33 0.26 0.24 0.24 0.34 0.22 0.21 0.30 0.43
U (ppm) 5.26 3.95 3.74 4.06 2.36 3.51 3.02 2.39 2.16 1.66 3.13 2.09 2.90 2.14 3.72
Error (ppm) 0.18 0.16 0.17 0.18 0.14 0.15 0.14 0.15 0.13 0.13 0.15 0.13 0.15 0.15 0.17
Total dose rate. (Gy/ka) 5.01 2.65 4.13 4.84 4.18 4.32 4.16 3.46 3.37 3.06 4.15 2.96 3.44 3.30 4.76
Error 0.37 0.19 0.30 0.36 0.25 0.32 0.31 0.25 0.25 0.23 0.30 0.22 0.26 0.24 0.35

Table 3
Radiocarbon dating results of sediment samples from the Taro Co catchment.
Dates with a star are regarded as representing reworked material and are dis-
carded from our age models.

Radiocarbon
sample

Measured radiocarbon
age [14C ka BP]

Calibrated radiocarbon age [cal.
ka BP] with reservoir correction

TiP-14P-1 11.23 ± 0.04 12.91 ± 0.09
TiP-14P-5* 16.04 ± 0.05 19.10 ± 0.11
TiP-14P-10 9.67 ± 0.04 11.01 ± 0.06
P29-3 7.43 ± 0.03 8.12 ± 0.04
P29-5* 14.36 ± 0.05 17.25 ± 0.14
P30-2* 3.83 ± 0.03 4.06 ± 0.02
TR 14-3

core base
26.97 ± 0.10 30.30 ± 0.17

M. Alivernini et al. Global and Planetary Change 166 (2018) 1–18

13



this period a relatively high precipitation in the entire region.But
concerning the three lakes in the present study, the only one
documented in Li and Zhu (2001) is Zabuye, where the highest lake
level is supposed to have occurred before 29 ka, with a corre-
sponding merging with the other lakes.If we consider the neigh-
bouring regions, lake Paiku Co reached its highest lake level prior to
25 cal. ka BP (Wünnemann etal., 2015). This finding contradicts
this study, but always Wünnemann et al. (2015) hypothesized that
Paiku Co was mainly controlled by the contribution of meltwater
from the next glaciers ofthe Himalaya Region,implying a higher
meltwater flux in the basin. This could have caused a switch in time
with the Taro Co lake system,where there was only a partialcon-
tribution from the glaciers (Guo et al.,2016).

After this lake level high-stand,it decreasedand reached a
minimum around 30 cal. ka BP with the corresponding separation of the
three lakes.Wang and Zheng (1998)postulate a warm,interglacial
phase for Zabuye between 30 and 20 cal.ka BP. However,our data
suggest a very low lake level for Zabuye Salt Lake during this period.
Relatively high water temperaturesduring the summersupporting
warm-waterphytoplankton were documented by Wang and Zheng
(1998), but this would not be a proof of interglacialtemperatures,

because a very shallow lake would have been heated more quickly than
one with a larger water volume.

The lake rose above the present-day level after 20 cal. ka BP. Other
lakes close to the Taro Co lake system indicate a similar trend. Kasper
et al. (2015) detected a rising lake level for Nam Co at about 20 cal. ka
BP. A minor low-stand around 12.5 cal. ka BP was detected by a dating
of sample TiP14-P1 and was confirmed by the trend ofthe ostracod
fauna. During the early Holocene (11.2–9.7 ka), the three lakes in this
study formed one large lake at an altitude probably between 4625 m
and 4630 m a.s.l. Our inferences are validated by the re-assessed pollen
record of Ma et al.(2014) which confirms the presence of colder and
drier conditions around 12.5 cal. ka BP and warmer and wetter climate
for the subsequent period.In addition,Guo et al. (2016) recorded a
drier phase around 12.5 cal. ka BP.

The exact date of the Holocene lake level maximum remains
uncertain. However, it occurred sometime after 11.0 cal. ka BP, the
last water depth estimation before 3.9 ka,when the lake level was
about 20 m lower. Ma et al. (2014) and Guo et al. (2016) both
suggested wetter conditions for the early Holocene and detected a
switch to a drier climate at 7.7 cal.ka BP. An early Holocene lake
level maximum around 9 ka is recorded for many lakes of the
southern Tibetan Plateau (Kasper et al., 2015; Ahlborn et al., 2016).
Concerning lakesseated westof Taro Co, Tso Moriri shows this
maximum as well.Mishraa et al. (2015) depict maximum Ticon-
centrations in a sediment core indicating increased inflow for this
time. This confirms a similar influence at this time of Indian
summer monsoon and westerlies in this area.Concerning the most
southern part of the Tibetan Plateau, a high lake level also appeared
in Paiku Co also during the late glacial/early Holocene period be-
tween 11.9 and 9.5 cal. ka BP (Wünnemann et al., 2015), probably
for the already cited stronger control of meltwater in its basin. After
the lake level maximum,all three lakes of the presentstudy de-
creased in size and at 3.5 ka Lagkor Co was completely separated

Table 4
Temporal variation in altitude, catchment and area of the Taro Co lake system.

Table 5
Lost lake volume during the separation of Lagkor Co from the system
(5.2–7.0 ka),during the separation of Zabuye from Taro Co (5.2–3.5 ka),and
during the onset of modern conditions (3.5 ka – today).

Lake 7.0–5.2 ka 5.2–3.5 ka 3.5 ka–today

Taro Co – – 14.7 km3

Zabuye – – 344.1 km3

Lagkor Co 13.5 km3 14.4 km3 49.6 km3

Taro Co + Zabuye 20.2 km3 15.8 km3 –
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from the Taro Co-Zabuye system.Subsequently (3.5–1.1 ka),the
lake levels decreased further,and Taro Co became separated from
Zabuye Salt Lake. Another low-stand is recorded around 2 ka ago, as
Ahlborn et al. (2016) lake-level curve which was also reported for
Tangra Yumco, a large lake east of Taro Co. This low-stand at 2 ka
before the present day was followed by an increase in the lake level,
as was likewise observed for Tangra Yumco and Nam Co further
east. This sequenceis probably related to minor variations in
monsoonal components (Kasper et al., 2012; Ahlborn et al., 2016).
The last recorded high-stand for Taro Co at about 0.8 ka is not re-
ported in other works, but the position and presence/absence of
fauna in the TiP11-30P and TiP43-1 samples suggesta lake level
between 4580 and 4600 m a.s.l.Due to missing data,we were not
able to determine whether Zabuye followed also this tendency.
Subsequentto this period the lake level of Taro Co decreased as
modern conditions began to prevail, with a slight increase in recent
years.

7. Conclusion

According to the multi-proxy approach used in this work, the evo-
lution of the lake level of the Taro Co lake system can be divided into
five main phases:

1) The results indicate,at about 36 ka BP, the presence ofa Late
Pleistocene high stand, with a corresponding positive water balance
with the three lakes merged together.

2) Since then,a rapid decline in lake levelduring a dry phase was
recorded for the period between 35 and 23 ka before the present
day. We do not know exactly when and at which elevation this low
stand occurred, but the presence of coarse lake sediment in core TR
14-3 from Taro Co suggests that its level was slightly above 4423 m
a.s.l.

3) The three lake basins were combined into one large lake during the
early and middle Holocene. The lake reached its highest level of the
entire Holocene during c. 11.2–9.7 ka cal BP.

4) Lagkor Co was separated from Taro Co at around 7 ka and Zabuye
Lake was separated at around 3.5 ka.

5) A last minor high stand occurred at about 0.8 ka before the present.
6) The levels of the three lakesdecreased,setting up the modern

conditions, with only a little rise for Taro Co in recent years.

Comparing the evolution of this system with the other basins
already investigated along a west-east transect, a synchronicity for
almost all the events which occurred is recognizable. However, it is
still difficult to interpret the phase after 3.5 ka BP, where the results
indicate different reactions of other lakes within the E-W transect,
probably due to a different exposure to the westerlies and the
summer monsoon.A possible explanation could be a differing in-
fluence of the westerlies at about 2 ka, which impacted Taro Co
more than Nam Co and Tangra Yum Co butless than Tso Moriri,
causing a time lag in reaction between them.
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Appendix A. Ages, lake level calculation and reconstructed palaeoenvironments for analysed samples from the Taro Co lake system and
Zhari Namco. Reconstructed water depths rely on the ostracod-based transfer function. The ages given with “*” are relative to radiocarbon
ages and they are considered as cal ka BP

Sample Age
[ka]

Error
[ka]

Altitude [m
a.s.l.]

Water depth
[m]

Error+
[m]

Error−
[m]

Lake level [m
a.s.l.]

Inferred depositional setting

Taro Co
Today 0.00 0.00 4572 0 0 0 4572 Shore line
P29-1 25.30 1.90 4578 – 0 0 < 4578 Colluvial?
P29-3 8.18 0.04 4578 – 0 0 > 4578 Lake
P29-5 2.00 0.20 4579 – 1 1 ?4579 Shallow lake or wetland
P29b-7 – – 4580 84 82 42 4664 Lake, hypolimnion
P29b-8 – – 4581 – – – ?4581 Shallow lake or wetland
P29c-9 – – 4581 – – – ?4581 Shallow lake or wetland
P30-1 – – 4586 – – – max4586 Shallow lake or wetland at

outflow
P30-2 0.80 0.10 4586 24 23 12 4610 Lake, epilimnion
P30-4 – – 4587 – – – max4587 Shallow lake or wetland at

outflow
P31-1 – – 4606 – – – < 4606 Alluvial fan
P31-2 – – 4606 0 0 0 max4606 Shallow lake or wetland at

outflow
P32-1 – – 4624 – – – < 4624 Alluvial fan
P32-4 – – 4625 – – – < 4625 Alluvial fan
P32-2 27.60 2.60 4625 – 0 0 < 4625 Alluvial fan
P32-5 – – 4626 – – – < 4626 Alluvial fan
P32-6 – – 4627 – – – < 4627 Alluvial fan
P32-7 – – 4628 – – – < 4628 Alluvial fan
P32-8 – – 4630 – – – < 4630 Alluvial fan
P32-9 – – 4633 – – – < 4633 Alluvial fan
P32-11 1.20 0.10 4639 – 0 0 < 4639 Alluvial fan
P43-1 1.10 0.10 4575 0 2 1 4575 Beach bar
P44-1 11.40 1.19 4611 0 2 1 4611 Beach bar
14P-1 12.91* 0.09 4586 25 23 12 4611 Lake, epilimnion
14P-2 – – 4586 23 21 11 4609 Lake, epilimnion
14P-3 – – 4586 25 23 12 4611 Lake, epilimnion
14P-4 – – 4586 29 26 14 4615 Lake, epilimnion
14P-5 – – 4586 28 25 13 4614 Lake, epilimnion
14P-6 – – 4586 28 25 13 4614 Lake, upper hypolimnion
14P-7 – – 4586 22 21 11 4608 Lake, epilimnion
14P-8 – – 4587 39 37 19 4626 Lake, upper hypolimnion
14P-9 – – 4587 20 21 10 4607 Lake, epilimnion
14P-10 11.01* 0.06 4587 36 32 17 4623 Lake, upper hypolimnion
Core base 30.30* 0.17 4432 0 0 0 < 4432 Just before transgression

Lake Zabuye
Today 0.00 0.00 4429 0 0 0 4429 Shore line
P33-1 36.10 3.33 4632 0 2 1 4632 Beach bar
P36 – – 4614 0 – – 4614 Beach bar
P37-2 18.40 1.68 4626 0 2 1 4626 Beach bar
P37-3 – – 4626 24 23 12 4650 Lake, epilimnion
P37-4 – – 4626 23 23 12 4649 Lake, epilimnion
P37-5 – – 4626 18 18 9 4644 Lake
P38-2 3.90 0.44 4606 0 2 1 4606 Beach bar
P39-2 3.40 0.32 4601 0 2 1 4601 Beach bar
P40-2 – – 4592 0 – – ?4592 Beach bar?
P41-2 5.90 0.57 4584 – 0 0 ? > 4584 Lake?
P42-2 3.00 0.30 4580 0 2 1 4580 Beach bar

Lagkor Co
Today 0.00 0.00 4472 0 0 0 4472 Shore line
Lee 2008 5.50 0.20 4600 0 2 1 4600 Beach bar
Lee 2008 5.00 0.20 4597 0 2 1 4597 Beach bar
Lee 2008 3.70 0.20 4575 0 2 1 4575 Beach bar
Lee 2008 3.30 0.10 4544 0 2 1 4544 Beach bar
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Zhari Namco
P28-1 4.20 0.40 4684 42 36 19 4726 Lake, upper hypolimnion

Appendix B. Supplementary data

Supplementary data associated with this article can be found in the online version, at https://doi.org/10.1016/j.gloplacha.2018.03.016. These
data include the Google map of the most important areas described in this article.

References

Ahlborn, M., Haberzettl, T., Wang, J., Alivernini, M., Schlütz, F., Schwarz, A., Su, J.,
Frenzel, P., Daut, G., Zhu, L., Mäusbacher, R., 2014. Sediment dynamics and hy-
drologic events affecting small lacustrine systems on the southern-central Tibetan
Plateau? The example from the TT Lake. The Holocene 25, 508–522.

Ahlborn, M., Haberzettl, T., Wang, J., Fuerstenberg, S., Mäusbacher, R., Mazzocco, J.,
Pierson, J., Zhu, L., Frenzel, P., 2016. Holocene lake level history of the Tangra
Yumco lake system. Southern-central Tibetan Plateau. The Holocene 26, 176–187.

Akita, L.G., Frenzel, P., Börner, N., Wang, J., Peng, P., 2016. Distribution and ecology of
the recent Ostracoda of the Tangra Yumco lake system, Southern Tibetan Plateau,
China. Limnologica 59, 21–43.

Alvarez Zarikian, C.A., Swart, P.K., Gifford, J.A., Blackwelder, P.L., 2005. Holocene pa-
leohydrology of little salt spring, Florida, based on ostracod assemblages and stable
isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 225, 134–156.

Anadòn, P., Utrilla, R., Julià, R., 1994. Palaeoenvironmental reconstruction of a
Pleistocene lacustrine sequence from faunal assemblages and ostracod shell geo-
chemistry, Baza Basin, SE Spain. Palaeogeogr. Palaeoclimatol. Palaeoecol. 111,
191–205.

Boomer, I., Wünnemann, B., Mackay, A.W., Austin, P., Sorrel, P., Reinhardt, C., Keyser,
D., Fontugne, M., 2009. Advances in understanding the late Holocene history of the
Aral Sea. Quaternary International 194, 79–90.

Börner, N., De Baere, B., Akita, L.G., Francois, R., Jochum, K.P., Frenzel, P., Zhu, L.,
Schwalb, A., 2017. Stable isotopes and trace elements in modern ostracod shells:
implications for reconstructing past environments on the Tibetan Plateau, China. J.
Paleolimnol. 58 (2), 191–211.

Bureau of Geology and Mineral Resources of Xizang Autonomous Region, 1993. Regional
Geology of Xizang Autonomous Region. Geological Publishing House, Beijing.

Duller, G.A.T., 2004. Luminescence dating of quaternary sediments: recent advances. J.
Quat. Sci. 19 (2), 183–192.

Frenzel, P., Wrozyna, C., Xie, M., Zhu, L., Schwalb, A., 2010. Palaeowater depth esti-
mation for a 600–year record from Nam co (Tibet) using an ostracod–based transfer
function. Quat. Int. 218, 157–165.

Gasse, F., Arnold, M., Ch, Fontes J., Fort, M., Gibert, E., Huc, A., Li, B., Li, Y., Liu, Q.,
Melieres, F., Van Campo, E., Wang, F., Zhang, Q., 1991. A 13.000-year record from
western Tibet. Nature 353, 742–745.

Guo, Y., Zhu, L., Frenzel, P., Ma, Q., Ju, J., Peng, P., Wang, J., Daut, G., 2016. Holocene
lake level fluctuations and environmental changes at Taro Co, southwestern Tibet,
based on ostracod inferred water depth reconstruction. The Holocene 26, 29–43.

Haberzettl, T., Henkel, K., Kasper, T., Ahlborn, M., Su, Y., Wang, J., Appel, E., St-Onge, G.,
Stoner, J., Daut, G., Zhu, L., Mäusbacher, R., 2015. Independently dated paleomag-
netic secular variation records from the Tibetan Plateau. Earth Planet. Sci. Lett. 416,
98–108.

Henkel, K., Haberzettl, T., St-Onge, G., Wang, J., Ahlborn, M., Daut, G., Zhu, L.,
Mäusbacher, R., 2016. High-resolution paleomagnetic and sedimentological in-
vestigations on the Tibetan Plateau for the past 16 cal. ka B.P. The Tangra Yumco
record. Geochem. Geophys. Geosyst. http://dx.doi.org/10.1002/2015GC006023.

Huang, B., 1982. Ostracods from surface deposits of Recent lakes in Xizang. Acta
Micropalaeontologia Sinica 2, 369–376 [in Chinese with English abstract].

Hudson, A.M., Quade, J., 2013. Long-term east-west asymmetry in monsoon rainfall on
the Tibetan Plateau. Geology 41, 351–354.

Juggins, S., 2003. User Guide C2, Software for Ecological and Palaeoecological Data
Analysis and Visualisation, User Guide Version 1.3. Department of Geography,
University of Newcastle, Newcastle upon Tyne.

Kasper, T., Haberzettl, T., Doberschütz, S., 2012. Indian Ocean summer monsoon (IOSM)-
dynamics within the past 4 ka recorded in the sediments of Lake Nam Co, central
Tibetan Plateau (China). Quat. Sci. Rev. 39, 73–85.

Kasper, T., Haberzettl, T., Wang, J., Daut, G., Doberschütz, S., Zhu, L., Mäusbacher, R.,
2015. Hydrological variations on the central Tibetan Plateau since the last glacial
maximum and their teleconnection to inter-regional and hemispheric climate varia-
tions. J. Quat. Sci. 30, 70–78.

Lee, J., Sheng-Hua, L., Aitchison, J.C., 2009. OSL dating of paleoshorelines at Lagkor Tso,
Western Tibet. Quat. Geochronol. 4, 335–343.

Li, B., Zhu, l., 2001. “Greatest lake period” and its paleo-environment on the Tibetan
Plateau. J. Geogr. Sci. 11, 34–42.

Liu, M., Yang, Y., 2003. Extensional collapse of the Tibetan Plateau: results from three-
dimensional modelling. J. Geophys. Res. 108, B082361.

Liu, X.J., Lai, Z., Zeng, F., Madsen, D.B., Chong-Yi, E., 2013. Holocene lake level varia-
tions on the Qinghai-Tibetan Plateau. Int. J. Earth Sci. 102, 2007–2016.

Ma, Q., Liping, Z., Xinmiao, L., Yun, G., Jianting, J., Junbo, W., Yong, W., Lingyu, T.,
2014. Pollen-inferred Holocene vegetation and climate histories in Taro Co,

southwestern Tibetan Plateau. Chin. Sci. Bull. 59, 4101–4114.
Mischke, S., 2012. Quaternary ostracods from the Tibetan Plateau and their significance

for environmental and climate-change studies. In: Horne, D.J., Holmes, J., Rodriguez-
Lazaro, J., Viehberg, F. (Eds.), Ostracoda as Proxies for Quaternary Climate Change.
Developments in Quaternary Science 17. Elsevier, pp. 263–279.

Mischke, S., Herzschuh, U., Sun, Z., Qiao, Z., Sun, N., Zander, A.M., 2006. Middle
Pleistocene Ostracoda from a large freshwater lake in the presently dry Qaidam Basin
(NW China). J. Micropaleontol. 25, 57–64.

Mischke, S., Herzschuh, U., Massmann, G., Zhang, C., 2007. An ostracod-conductivity
transfer-function for Tibetan lakes. Journal of Paleolimnology 38, 509–524.

Mischke, S., Aichner, B., Diekmann, B., Herzschuh, U., Plessen, B., Wünnemann, B.,
Zhang, C., 2010a. Ostracods and stable isotopes of a late glacial and Holocene lake
record from the NE Tibetan Plateau. Chemical Geology 276, 95–103.

Mischke, S., Kramer, M., Zhang, C., Shang, H., Herzschuh, U., Erzinger, J., 2008. Reduced
early Holocene moisture availability in the Bayan Har Mountains, northeastern
Tibetan Plateau, inferred from a multi-proxy lake record. Palaeogeogr.
Palaeoclimatol. Palaeoecol. 267, 59–76.

Mishraa, P.K., Anoop, A., Schettler, G., Prasad, S., Jehangir, A., Menzel, P., Naumann, R.,
Yousuf, A.R., Basavaiah, N., Deenadayalan, K., Wiesner, M.G., Gaye, B., 2015.
Reconstructed late quaternary hydrological changes from Lake Tso Moriri, NW
Himalaya. Quat. Int. 371, 76–85.

Molnar, P., England, P., Martinod, J., 1993. Mantle dynamics, uplift of the Tibetan
Plateau, and the Indian monsoon. Rev. Geophys. 31, 357–396.

Morrill, C., Overpeck, J.T., Cole, J.E., 2006. Holocene variations in the Asian monsoon
inferred from the geochemistry of lake sediments in Central Tibet. Quat. Res. 65,
232–243.

Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved
single-aliquot regenerative-dose protocol. Radiat. Meas. 32, 57–73.

Nishimura, M., Matsunaka, T., Morita, Y., 2014. Paleoclimatic changes on the southern
Tibetan Plateau over the past 19.000 years recorded in Lake Pumoyum Co and their
implications for the southwest monsoon evolution. Palaeogeogr. Palaeoclimatol.
Palaeoecol. 396, 75–92.

Pang, Q., 1985. On a new Ostracoda genus from Pleistocene in the pass of Kunlun
Mountain. Qinghai–Xizang (Tibet) Plateau. In: Contribution to the Geology of the
Qinghai – Xizang (Tibet) Plateau.vol. 16. pp. 269–279 (in Chinese with English
abstract).

Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence
and ESR dating: large depths and long-term time variations. Radiat. Meas. 23,
497–500.

Qi, W., Zheng, J.P., 1995. Sedimentology of core ZK91-2 from Zabuye Lake in Tibet and
the climate and environmental evolution. J. Lake Sci. 7, 133–140 (in Chinese).

Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E.,
Cheng, H., Lawrence, E.R., Friedrich, M., Grootes, P.M., Guilderson, T.P., Haflidason,
H., Hajdas, I., Hatté, C., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A.,
Kaiser, K.F., Kromer, B., Manning, S.W., Mu, N., Reimer, R.W., Richards, D.A., Scott,
E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., Van der Plicht, J., 2013. Radiocarbon
55, 1869–1887.

Schwalb, A., Burns, S.J., Cusminsky, G., Kelts, K., Markgraf, V., 2002. Assemblage di-
versity and isotopic signals of modern ostracods and host waters from Patagonia,
Argentina. Palaeogeogr. Palaeoclimatol. Palaeoecol. 187, 323–339.

Shen, J., Liu, X., Wang, S., 2005. Palaeoclimatic changes in the Qinghai Lake area during
the last 18.000 years. Quat. Int. 136, 131–140.

Stuiver, M., Reimer, P.J., Reimer, R.W., 2017. CALIB 7.1.[WWW program] at. http://
calib.org, Accessed date: 14 December 2017.

USGS, 2004. Shuttle Radar Topography Mission, 3 Arc Second scenes N30E083-N32E084,
Unfilled Unfinished 2.0, Global Land Cover Facility. University of Maryland, College
Park, MD February 2000.

Wang, B., 2006. The Asian Monsoon. Springer Praxis Books in Environmental Sciences.
Springer, Berlin, Heidelberg, New York (787 pp).

Wang, S.M., Dou, H.S., 1998. Lakes in China. Science Press, Beijing, pp. 402 (in Chinese).
Wang, R., Zheng, M., 1998. Occurence and environmental significance of long-chain al-

kenones in Tibetan Zabuye Salt Lake, S.W. China. Int. J. Salt Lake Res. 6, 281–302.
Wang, R.L., Scarpitta, S.C., Zhang, S.C., Zheng, M.P., 2002. Qinghai-Xizhang Plateau

(Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments. Earth
Planet. Sci. Lett. 203, 461–477.

Wang, J., Peng, P., Ma, Q., Zhu, L., 2010. Modern limnological features of Tangra Yumco
and Zhari Namco, Tibetan Plateau. J. Lake Sci. 22, 629–632.

Wrozyna, C., Frenzel, P., Daut, G., Mäusbacher, R., Zhu, L., Schwalb, A., Holmes, J.A.,
Rodriguez-Lazaro, J., Viehberg, F., 2012. Holocene lake level changes of Lake Nam
Co, Tibetan Plateau, deduced from ostracod assemblages and δ18O and δ13C signature
of their valves. In: Horne, D.J. (Ed.), Ostracoda as Proxies for Quaternary Climate
Change. Developments in Quaternary Science 17. Elsevier, pp. 281–295.

M. Alivernini et al. Global and Planetary Change 166 (2018) 1–18

17



Wünnemann, B., Yan, D., Ci, R., 2015. Morphodynamics and lake level variations at Paiku
Co, southern Tibetan Plateau, China. Geomorphology 246, 489–501.

Yu, G., Harrison, S.P., Xue, B., 2001. Lake status records from China: data base doc-
umentation. In: MPI-BGC Tech Rep 4.

Zhao, C., Yu, Z., Zhao, Y., 2010. Holocene millennial-scale climate variations documented

by multiple lake-level proxies in sediment cores from Hurleg lake, Northwest China.
J. Paleolimnol. 44, 995–1008.

Zheng, M.P., Xiang, J., Wei, X.J., Zheng, Y., 1989. Saline Lakes on the Qinghai-Xizang
(Tibet) Plateau. Beijing Scientific and Technical Publishing House (in Chinese).

M. Alivernini et al. Global and Planetary Change 166 (2018) 1–18

18



Chapter 3 
 

 
29 

Chapter 3 - Ostracod-based reconstruction of Late Quaternary lake level 

changes within the Tangra Yumco lake system (southern Tibetan Plateau) 

 

 

This chapter appeared as an internationally peer-reviewed article in  Journal of Quaternary 

Science in 2018: Alivernini M., Akita L.G., Ahlborn M., Börner N., Haberzettl T., Kasper T., 

Plessen B., Peng P., Schwalb A., Wang J., Frenzel P. (2018): Ostracod-based reconstruction 

of Late Quaternary lake level changes within the Tangra Yumco lake system (southern Tibetan 

Plateau). Journal of Quaternary Science (2018) 33, 713–720 

 

 

Alivernini M., Akita L.G., Ahlborn M., Börner N., Haberzettl T., Kasper T., Plessen B., Peng P., Schwalb A., Wang J., Frenzel P. 

(2018): Ostracod-based reconstruction of Late Quaternary lake level changes within the Tangra Yumco lake system (southern 

Tibetan Plateau). Journal of Quaternary Science (2018) 33, 713–720. 

 Alivernini 

M. 

Akita 

L.G. 

Ahlborn 

M. 

Börner 

N. 

Haberzettl 

T. 

Kasper 

T. 

Plessen 

B. 

Peng 

P. 

Schwalb 

A. 

Wang 

J. 

Frenzel 

P. 

Conceptual 

research 

design 

X          X 

Planning of 

research 

activities 

X X         X 

Data 

Collection 
X X X  X X  X X  X 

Data 

analyses and 

interpretation 

X X X X X X X X   X 

Manuscript 

writing 
X  X X X X   X X X 

Suggested 

publication 

equivalence 

value 

1.0 n.a. n.a. n.a. n.a n.a n.a n.a n.a n.a n.a. 

 

 



Ostracod-based reconstruction of Late Quaternary lake level changes
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ABSTRACT: Tangra Yumco,a large saline lake located in the central–southern partof the Tibetan Plateau,lies
in a hydrologically closed basin and is part of a cascade lake system including Tangqung Co, Tangra Yumco and
Xuru Co. The extension and position ofthis lake system makes itvaluable forreconstructing palaeoclimatic
variations through the lake history and to compare both with the adjacentlake systems.We reconstructed Late
Quaternary lake levelchangesbased on data from two lacustrine sedimentcores.A micropalaeontological
analysis focusing on Ostracoda was carried outcombined with dating (14C, 210Pb, 137Cs), sedimentology and
stable isotope data from bulk sediment.Ostracod analysis involves the quantitativedocumentationof
associations.An ostracod-based transfer function for specific conductivity was applied to assess and refine lake
level changesand to compare the resultswith otherlake levelreconstructionsfrom the Tibetan Plateau for
evaluating inter-regionalclimatic patterns.Seven ostracod species were detected,with Leucocytherella sinensis
dominating the associations followed by Leucocythere? dorsotuberosa,Limnocythere inopinata and Tonnacypris
gyirongensis.Fabaeformiscandona gyirongensis,Candona candida and Candona xizangensis were found in only
a few samplesand at low percentages.The synthesisof ostracod-based environmentalreconstruction and
chronology for samples from Tangra Yumco reveals the evolution of the lake system during the past 17 ka. A low
lake level around 17 cal kaBP is followed by a recovering until the reaching of a high stand around 8–9 cal kaBP.
Subsequently,between 7.7 and 2.5 cal kaBP, it remained relativelystablewith a subsequentshort-living
lowstand–highstand cycle ataround 2 ka. Thereafter, the ostracod-based conductivity transfer function shows an
increase ofconductivity corresponding to a lake levelrising phase ataround 0.4 ka.The recorded changes are
indicators of past climatic conditions and refine the palaeoclimatic models in this area.
Copyright # 2018 John Wiley & Sons, Ltd.
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Introduction
In the lastdecade,severalstudies oflacustrine sediments
from the Tibetan Plateau identified significantlake level
changesduring the Late Quaternary thatare related to
monsoon and westerliesvariability (Mischke and Zhang,
2010; Kasperet al., 2012; G€untheret al., 2013, 2015,
2016; Mishra et al., 2015; Ahlborn et al., 2016; Henkel
et al., 2016). Due to the role of this area as origin of
many large rivers of south-easternAsia, the climate
variationsin this area force environmental,social and
economic consequencesfor millions of people and their
better understanding is urgently needed to offer indications
of future scenarios.

A multi-proxy approach,integrating chemical,physical
and palaeontologicaldata, was applied in this study to
reconstructthe lake level variationsof Tangra Yumco in
detail. In such a context,ostracodshave alreadybeen
widely used as palaeoenvironmentalindicatorson the
Tibetan Plateau (e.g.Mischke etal., 2006;Frenzelet al.,
2010;Wrozyna etal., 2010,2012;Mischke,2012;Ahlborn
et al., 2015; Akita et al., 2015; Alivernini et al., 2018).

Palaeoecologicalapplicationsof ostracod-basedtransfer
functions have proven to be a usefultool to assess palae-
oclimatic conditions(Mischke,2012; Viehberg and Mes-
quita-Joanes,2012).Such approaches have generally been
used to reconstructrelative lake level changeson the
Tibetan Plateau,identifyingthe timing of past moisture
availability and evaporation intensity.

This work focuseson the lake Tangra Yumco,which is
part of a cascadelake system includingTangqungCo,
Tangra Yumco and Xuru Co (Fig. 1), located on the
southern–centralTibetan Plateau.Tangra Yumco hasbeen
investigated in severalstudies in recentyears to assess lake
level changesduring the Late Quaternary(Long et al.,
2012; Radeset al., 2013; Miehe et al., 2014; Ahlborn
et al., 2016, 2017; G€untheret al., 2016; Henkel et al.,
2016).Akita etal. (2016)provided a datasetof the ecology
of recentOstracoda ofTangra Yumco as a groundwork for
palaeoecologicalapplications.In Ahlborn et al. (2016)an
analysison surface sampleswas carried out and a lake
level curve of Tangra Yumco was reconstructed.We
compared these with the resultsof this study to have a
continuousdatasetto refine their results.For the present
study,an 11.5-m-long piston core (31˚13.930N, 86˚43.250E,
217 m waterdepth)and a gravity core (31˚15.150N, 86˚
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43.370E, 223 m water depth) located close-by were
micropalaeontologically analysed,dated by14C, and for the
piston core the resultingchronologywas confirmed by
palaeomagneticsecular variationstratigraphy(Haberzettl
et al., 2015; Henkel et al., 2016).

Tangra Yumco together with other large lakes improves our
understanding ofhydrologicalsystem changes on the south-
ern–centralTibetan Plateau and the varying monsoonal
impact.Estimation ofthe specific conductivity isvaluable
tool in reconstructing lake levelchanges and switches from
open to closed lake basins or vice versa, allowing a
comparison with neighbouring lakes and other basins on the
Tibetan Plateau.

This work aims (i) to reconstructthe Late Quaternary
evolution ofthe Tangra Yumco lake system,by refining and
integrating the work of several authors (Ahlborn et al., 2016,
2017; Henkel et al., 2016), (ii) to assess possible scenarios of
the interactionsbetween the basinsof the Tangra Yumco
system during the past 17 ka using an ostracod-based conduc-
tivity reconstructionto discriminateclimatic and hydro-
graphic effects and (iii)to contribute to a holistic picture by
comparing with otherlakes in order to detectclimate shifts
along an east–westtransecton the southern Tibetan Plateau
during the Late Quaternary.

Study area

Tangra Yumco (30˚45031˚22 0N, 86˚23089˚49 0E; Fig. 1) is a
terminal lake located on the central-southern Tibetan Plateau
at an elevation of4545 m a.s.l.(Rades etal., 2013)with a
catchmentsize of 8219 km2 and a salinity of8.3‰ (Long
etal., 2012). Tangra Yumco is the second deepest (230 m m)
lake in China (Wang etal., 2010)and third largestlake on
the Tibetan Plateau.The population in the Tangra Yumco
area is sparse and human impactis mainly restricted to
pastoralism (Mieheet al., 2014). Precipitation atTangra
Yumco is mainly dominated by the Indian summer monsoon
originating from the south (Miehe etal., 2014)and westerly
winds during the wintermonths(Maussion etal., 2014).
Today, the lake system comprises three lakes: Tangra Yumco,
Tangqung Co and Xuru Co located in a 300-km-long and
40-km-wide graben (Akita etal., 2016).Tangra Yumco and
adjoining lakesare covered with ice in winterbut do not
completely freeze in some years due to the high salinity of
theirwaters (Kropacek et al., 2013).The cold arid climate
supports alpine meadow with Kobresia and steppe vegetation
with Artemisia (Miehe etal., 2014).Tangra Yumco isan
endorheic lake formed by active tectonic movementin a
north–south-trending graben (Zhu etal., 2004;Kong etal.,
2011). Whereas the southern Tibetan Plateau is dominated by
Palaeozoic–Mesozoiccarbonateand clastic sedimentary
rocks (Galy and France-Lanord, 1999), the flank of the rift of
Tangra Yumco is mainly composed of volcanic rocks, granit-
oid intrusions and potassic lavas (Gao etal., 2010).During
the middle Pleistocene,the three waterbodies formed one
large lake and lacustrine deposits are well preserved between
Tangqung Co and Tangra Yumco (Kong etal., 2011).The
three lakesare arranged ason a staircase,with Xuru Co
seated atthe highestposition (4720 m a.s.l.)and the other
basinssubsequently lower.TangraYumco has two large
rivers entering from the south-eastand westbutno outflow.
Due to its terminalcharacter,lake levelvariations ofTangra
Yumco are mainly controlledby precipitationand the
contribution ofglacialmeltwater is negligible (Biskop etal.,
2015).Quaternary palaeo-shorelinesand lake terracesare
located up to 200 m above the present-day lake levelof
Tangra Yumco (Rades etal., 2013),indicating a Holocene
shrinkage ofa largerancientlake (Long etal., 2012;Liu
et al., 2013; Ahlborn et al., 2017). The large lake was divided
gradually into independentsmallerwaterbodies during the
Early and Late Holocene due to an extensive drop ofwater
level (Zhang,2000; Zhu et al., 2004; Liu et al., 2013).
However, the presenceof submerged lakelevel terraces
(Akita et al., 2015) indicates significantly lower lake levels in
the past. Additionally, beach rocks formed by precipitation of
secondary carbonates,Holocene stromatolites and tufa can
be found in the northern part of the Tangqung Co catchment
(Akita et al., 2015).

Material and methods
Sedimentological analysis

The composite profile consists ofthe 1.62-m-long gravity
core TAN 10/4 and the 11.5-m-long piston core TAN12-2
(Henkel et al., 2016).The complete record with lamina-
tion of differentthickness(sub-mm to cm) consistsof
interbeddedsilty sedimentsand blackish sandy layers
(Fig. 2). The cores were subsequentlysampled every
centimetre.For further details,see Henkelet al. (2016).In
Tangra Yumco radiocarbon dating on the coresyielded
agesfrom 17.4 cal kaBP to today, for a total of 29 dated
samples (Ahlborn etal., 2017).

Figure 1. Location ofthe three studied lakes ofthe Tangra Yum
Co lake system (with elevation,area and salinity):Tangqung Co
(4475 m a.s.l.;57 km2; ca. 100‰),Tangra Yum Co (4595 m a.s.l.;
818 km2; 8.3‰) and Xuru Co (4720 m a.s.l.; 206 km2; 3.2‰).
Source:www.geomapapp.org.Lake Monco Bunnyiwas notpartof
the Tangra Yum Co lake system during the investigated time frame.
The position ofsedimentcore TAN12-2 is indicated by the white
triangle.
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Micropalaeontology

In total,168 samples containing mostly disarticulated ostra-
cod valves were taken every 10 cm,and shorterintervals if
valves were notfound within selected samples.The results
from the pilot core TAN 10/4 (126 sub-samples)were
integrated in the piston’s core dataset to complete the record
for the most recentpast. Speciespercentagesand total
ostracod abundancewere calculated.For ostracod abun-
dance,juvenile and adultstageswere counted separately.
The adult/juvenileratio was determined to assesswater
turbulence (Boomeret al., 2009)and to check forpossible
removalof thinnerjuvenile valvesby dissolution.Samples
were treatedwith H 2O2 (ca. 5% for about 1–3 h) and
subsequently sieved with waterthrough a 200-mm sieve to
enrich the valves.In addition,the sieve residues were split
into sub-samplesusing a microsplitterto perform a more
indicative quantitative analysis with a large number of valves.
Identification was mainly done with a low-powerbinocular
microscope and occasionally supported by a scanning elec-
tron microscope as well as a Keyence Digital Microscope and
the ostracodswere classifiedon the basis of previous
taxonomicalworksin this geographicalarea (e.g.Mischke,
2012; Wrozyna et al., 2010). Valves were subsequently
counted to 300–500 individualsfor every sample.If the
number of 50 valves in a single sample was notreached, the
sampleswere combined with thesubsequentsamplesto
achieve the required minimum number of valves (>50), within
0.1-ka intervals.For a complete overview ofthe grouped
samples and the ostracod species see the Supporting Informa-
tion (https://doi.pangaea.de/10.1594/PANGAEA.890591).

An ostracod-based transferfunction forthe reconstruction
of past conductivity values was applied (Peng et al., 2016) to
trace lake level and system changes. The modern training set
of Peng etal. (2016)covers34 lakesof the southern and
western Tibetan Plateau with a totalof 75 samplesand
conductivity ranging from 0.3 to 18 mS cm1 . The program
C2 (Juggins,2003) and Weighted Averaging PartialLeast
Squares (WAPLS) regression were used (Mischke et al., 2007;
Guo et al., 2016) to develop quantitativerelationships
between environmentalvariables and ostracod assemblages.
The conductivity values were log10-transformed before calcu-
lation.The performance ofthe ostracod-based conductivity
transferfunction isindicated by a correlation ofR2¼ 0.77

between observed and estimated values and an error (RMSEP)
of 0.25 (Peng et al., 2016).

Stable oxygen isotope analysis

For stable isotope analysis, the cores TAN 10/4 and TAN12-2
were sampled atintervals of1 cm,and bulk sedimentwas
freeze-driedand ground. The analysisof stable oxygen
isotopeswas carried out at Helmholtz-Zentrum Potsdam,
Deutsches Geoforschungszentrum (GFZ),Germany,using a
Finnigan GasBench-IIwith carbonate-option connected to a
DELTAplus XL isotope ratio mass spectrometer (IRMS). Before
analysis sediment samples were reacted with 100% H3PO4 at
75 ˚C for60 min,and each sample was analysed nine-fold.
Results are expressed in the standard delta notation in per mil
relative to VPDB (Vienna Pee Dee Belemnite).Standardiza-
tion was done using internationalreference materials IAEA-
NBS18 and NBS19,as well as laboratory internalstandards
CO1 and C1 (calibrated againstVPDB).Analyticalprecision
was better than  0.07‰ for d18O.

Results
Micropalaeontological analysis

The composite profile comprising the short and the long core
covers about18 ka.Totalabundances vary between 32 and
602 valves g1 with a mean value of 109 valves g1 for both
cores (Fig.3). Most valves were disarticulated and juvenile
valves were dominant.Ostracods were lacking in the oldest
partof the core,i.e. between 18 and 17 cal kaBP. Afterthis,
Limnocythere inopinata (Baird, 1843) was dominant until ca.
16.0 cal kaBP and, from 16.0 to 12 cal kaBP Leucocythere?
dorsotuberosa(Huang, 1982) becamethe most frequent
species.Between ca.12 and 10 cal ka bp,three dominant
species were detected in differentintervals.The mostpromi-
nent speciesis the opportunistic Leucocytherella sinensis
(Huang, 1982), which often occurs in associationwith
Leucocythere?dorsotuberosa.Fabaeformiscandonagyiron-
gensis (Huang, 1982) was prominent at around 10.1 cal kaBP.
After this interval, L.? dorsotuberosa returned to be dominant
until5 cal kaBP. Concerning the finalperiod, Leucocytherella
sinensisand L.? dorsotuberosa were alternately dominating
from 1.8 cal kaBP until today, but they are largely replaced by
L. inopinata for the period between 1.8 cal kaBP and 400 bp

Figure 2. Composite profile (withoutturbiditic layers)of the two coreswith age–depth modeland sedimentation ratesas published by
Henkel et al. (2016).
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cal aBP. Candona xizangensis(Huang,1982),Tonnacypris
gyirongensis(Yang, 1982) and Candona candida (O.F.
M€uller,1776) were also found butin very smallpercentages
along the cores. The relative abundancesof the most
abundant ostracods are shown in Fig. 3.

Conductivity reconstruction

The conductivity transfer function shows the highest value of
13.6 mS cm1 close to the bottom of the composite core
TAN12-2 at17.1–16.1 cal kaBP (Fig.4). Thereafter,the con-
ductivity followsa general decreasing trend,reaching its
minimum value (0.6 mS cm1 ) around 10.1 cal kaBP. Subse-
quently, conductivityincreasesagain until 9.6 cal ka bp
(3.3 mS cm1 ). Thereafter,values decrease until1.7 cal kaBP,
ranging between 2.8 and 1.2 mS cm1 with the exception of a
single peak of4.3 mS cm1 around 1.9 cal kaBP. For the last
1.1 ka, values range between 5.2 and 8.2 mS cm1 and, close
to the top of the core, are ca. 0.4 cal kaBP; today, conductivity
generally showsa decrease,with valuesbetween 5.1 and
2.1 mS cm1 .

Stable oxygen isotopes

The d18O record from Tangra Yumco shows high values at
around 17.0 cal kaBP. Afterthis there is a generaldecrease
until about 11.0 cal kaBP. Thereafterthe curve follows a
positive trend towards higher values untilabout0.4 cal kaBP,
where a new negative trend until today was observed.

Discussion and interpretation
Lake level changesof the Tangra Yumco lake
system

A possible explanation for the lack ofostracods between 18
and 17 cal kaBP could be high salinity as indicated by high
d18O values of the bulk sediment(Fig. 4) and a high
sedimentation rate due to a pronounced low lake level stand.
This hypothesisis also supportedby the reconstructed
conditions of the lake level between 17 and 16 cal kaBP, with

a dominance ofL. inopinata.This speciesindicatesa low
lake level and meso- to polyhaline conditions in the southern
partof the Tibetan Plateau (Akita etal., 2016).At the same
time L.? dorsotuberosa confirms the presence ofa lacustrine
water body.The maximum conductivity reached during this
period is 13.6 mS cm1 . Until about 12 cal kaBP, the
dominance ofL.? dorsotuberosa indicates a rising lake level
(Akita et al., 2016) with a correspondinglydecreasing
conductivity and negative d18O trend. Based on the increased
relative abundance ofL. sinensis and lower numbers ofthe
deep waterspeciesL.? dorsotuberosa,there wasa slight
increase in waterdepth during thisperiod,although the
conductivity transferfunction does notshow a cleartrend.
This alternation could be due to temporary variations ofthe
lake levelor variations to the inflow/outflow ofthe system.
The switch in dominancefrom L.? dorsotuberosato the
opportunistic L. sinensis and shallow-water taxon L. inopinata
(Akita etal., 2016)between 9.8 and 7.5 cal kaBP indicates a
slow and progressivelowering of the lake level with a
corresponding slightincrease in conductivity.This trend is
also confirmed by d18O analysis, indicating an enrichment in
heavy18O isotopes within the sediments after8.5 cal kaBP,
which can be assumed to be directly related to the lake
water,reflecting a decrease in effective moisture and thus a
slow, long-term reduction in lake watervolume typicalof
large terminallakes (Leng and Marshall,2004).These d18O-
based lake volume reconstructionsare supportedby a
quantitative lake levelreconstruction from Tangra Yumco
based on optically stimulated luminescence (OSL)agesof
exposed lacustrine sediments (Ahlborn etal., 2016)showing
a very similar pattern (Fig. 4).

During the period 7.5–3.7 cal kaBP the evolution of the lake
could not be reconstructed based on the ostracod assemblage
as only two samples dated to 5.7 and 5 cal kaBP are available.
Nevertheless,the bulk sedimentoxygen isotopesshow a
gradualincrease,indicating a high butgradually falling lake
level accompanied by slowly increasing conductivity.

For the last 3.7 cal kaBP, it is possible to distinguish four phases
(Fig.3). The first,with L. sinensisas the dominantspecies,

Figure 3. Relative abundancesand valves/weightratio of the ostracods.For relative abundancesonly the mostabundantspecieswere
considered.From leftto right,L. sinensis adultmale,RV, ext.,L. inopinata adultmale,LV ext., L.? dorsotuberosa adultmale,LV ext., F.
gyirongensis adult female, RV, int.
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Figure 4. Comparison of the lake level curve of Ahlborn et al. (2016; upper diagram),changesin bulk d 18O and ostracod-based
conductivity estimation.The black points are calculated values and the grey line indicates the 5-pointaverage (the broken line indicates
uncertaintiesdue to a lack of samples).In the oldest stage (1)at 17–10.5 ka calBP, the conductivity decreases.(2) An increase is
recorded,followed by a decrease, in contrast to Ahlborn et al.’s record. Good agreementwith Ahlborn et al.’s (2016) curve is
recognizable around 2 ka (3),and by the fastswitch of decreasing and laterincreasing lake levelreported in the conductivity curve.
Subsequently (4),the two curves agree until 0.4 ka calBP where the conductivity startsto decrease earlierthan the rise of the lake
assumed by Ahlborn etal. (2016).
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indicates a relatively stable lake level with low conductivity and
corresponding oligohaline conditions. Around 2 ca kaBP, a switch
in dominance between L.sinensisand the two speciesL.?
dorsotuberosa and L. inopinata suggests a fast lake level decline
and a subsequentfastrise.The dominance ofthe halotolerant
speciesL. inopinata between 1.1 and 0.2 cal kaBP indicates
mesohaline conditions and a falling lake level. In the uppermost
six samples, L. sinensis reappears, probably due to a recovery of
the lake levelas also confirmed by d18O analysis revealing a
negative trend during this period.

Comparison with previousstudiesand regional
comparison

Tangra Yumco sediments have already been investigated for
palaeoecologicaland palaeoclimatic purposes in the recent
years (Long etal., 2012;Rades etal., 2013;Miehe etal.,
2014; Ahlborn et al., 2016, 2017; Akita et al., 2016; G€unther
et al., 2016; Henkel et al., 2016).Ahlborn et al. (2016)
reconstructed the lake levelhistory based on OSL dating
(Fig. 4) of massive carbonate banksin the catchmentof
Tangra Yumco integratingsimilar datasetsfrom several
authors (Kong etal., 2011;Long etal., 2012;Rades etal.,
2013, 2015). In addition of this, we match our micropalaeon-
tologicaldata with datasetspresented byAhlborn et al.
(2017), who compared lithological and geochemical analysis
on the cores of Tangra Yumco with similar records from other
water bodies on the southern part of the Tibetan Plateau, and
with the results of the d18O analysis data from Tangra Yumco.
Regarding the whole system, neotectonics probably had only
a minor role in the interaction between the lakes,given the
dramatic lake level fluctuations and the relatively low impact
of tectonics in this region (Armijo et al., 1986).

Akita et al. (2016) demonstrated small and temporary water
bodieswere populated by differentostracod assemblages
compated with large lakes,but the distribution oflacustrine
ostracods is mainly driven by salinity.This observation was
made by Mischke etal. (2007)as well and supportsthe
reliability ofostracod-based conductivity transferfunctions
for lakes of the Tibetan Plateau.

The results show low conductivity values, probably related
to a shallow lake level around 17 ka,also confirmed by

Ahlborn et al. (2017). After this, mergingof the lake
Tangqung Co in Tangra Yumco,forming one large lake at
around 10.5 cal kaBP, is recorded (Ahlborn etal., 2016).
Subsequently to this period, a highstand of 181–183 m above
the present lake level is recorded and Tangra Yumco reached
its highestelevation during the entire Holocene between 9
and 8 cal kaBP (Ahlborn etal., 2016).A comparison ofthe
lake levelreconstruction ofAhlborn etal. (2016)with the
ostracod-based conductivity ofthe presentstudy showsa
generally similar pattern, especially concerning the first phase
of increasing lake level (10.5 cal kaBP) and the phase between
4 and 0.4 cal kaBP, where the lake levelshowslowstand–
highstand switchesfollowed by a new decrease,before
stabilizing.However,some differences are observed (Fig.4).
At about 10 cal kaBP, conductivity shows an increase, despite
a postulated lake levelrise.A possible explanation could be
that before this event,TangraYumco was integrated to
Tangqung Co with a decrease ofconductivity due to over-
flowing into the latter. With a furtherrise of the lake
Tangqung Co atabout10.2 ka,the latterreached the water
level of Tangra Yumco,mixing with its more saline waters
and leading to a subsequentincrease in conductivity.The
results indicate,at about9.8 cal kaBP, a decrease in conduc-
tivity as result of the further rise of the lake level. The general
lack of data forthe period 7.5–3.7 cal kaBP for the ostracod
datasetand for the OSL samplesdoes not allow a more
precise reconstruction, although a moderate trend of increas-
ing conductivity is conceivable.

The documentedconductivityreconstructionbased on
ostracods shows a rapid highstand–lowstand ataround 2 cal
kaBP (Fig.4),documented also in the OSL-based reconstruc-
tion of Ahlborn etal. (2016).Although notshown in the
isotope data,the slightincrease is probably compounded by
the short-term mixing with Tangqung Co water. So our proxy
would show this minor variation best. In the youngest part of
the record the conductivity increase is confirmed by the lake
level trend documented by Ahlborn etal. (2016).Afterca.
0.4 cal kaBP, decreasing conductivity,as suggested by the
ostracod conductivity transferfunction,is in contrastto a
falling lake levelindicated by the OSL-based reconstruction.
However,this resultagrees with the d18O ratio datasetfrom
the same core where a negative trend ofthe isotopes for the

Figure 5. Location of the four lakes considered for the lake system comparison on the southern Tibetan Plateau.Source: www.geomapapp.org
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last 0.5 cal kaBP is recorded.The lake level possibly rose
slightly earlierthan previously reported by Ahlborn etal.
(2016), also given the chronology’s uncertainty (0.3 ka).

As Ahlborn etal. (2017)reported,we also note the first
synchronousdevelopmentbetween17 and 16 ka where
relatively low lake levelconditions switch with the startof
deglaciation to an increasing lake level registered in Taro Co
(Aliverniniet al., 2018),Nam Co (Kasperet al., 2015)and
Tso Moriri(Mishra etal., 2015)along an east–westtransect
on the Tibetan Plateau (Fig. 5).

After this shift, between 12 and 8.5 ka,an increase in
moisture availability and temperature atthe transition to the
Holocene and a generalprecipitation decrease thereafteris
reported forTaro Co (Aliverniniet al., 2018),Tso Moriri
(Mishra etal., 2015)and Nam Co (Kasperet al., 2015),
showing a similarpattern with Tangra Yumco.A lowstand
recorded around 2 ka ago followed by an increase in lake
level was also reported by Kasper et al. (2015) for Nam Co to
the eastand by Aliverniniet al. (2018)for Taro Co to the
west. For lake Tso Moriri, Leipe et al. (2014)registered,
during the general trend of decreasing humidity after 9 ka, an
increase in moisture availability between 1.1 and 0.4 ka.
Considering the uncertainties ofthe chronologicalmodelfor
the Tso Moriricore (Leipe etal., 2014)and the time lag for
this eventwhen comparing the two recordswe assume a
possible synchronous timing.This lastsequence is probably
related to minor variations ofthe monsoonalcomponents in
the lakes studied (Kasper et al., 2012; Ahlborn et al., 2016).

Conclusions
According to the ostracod-based approach used here and the
comparison with otherdatasets,the lake levelevolution of
the Tangra Yumco lake system as refined with the ostracod-
based transfer function and the d18O analysis can be divided
into six main phases.

In the oldest stage (17–10.5 ka)conductivity and
d18O generally decrease from relatively high values,in
phasewith the generalincreasinglevels of the other
considered Tibetan lakes.
At around 10 ka,a decrease ofconductivity in contrastto
Ahlborn et al.’s (2016)curve is recorded.The different
trend in the ostracod-basedtransferfunction can be
explained by a switch from an open to a closed lake basin
and a mix of saltier water from Tangqung Co with oligoha-
line water from Tangra Yumco.
Between 9.8 and 7.5 cal kaBP the ostracod faunaand
conductivity based on itindicate a slow and progressive
lowering ofthe lake level.This trend is also confirmed by
d18O analysis.
During the period 7.5–3.7 cal kaBP the general lack of data
for both for the ostracod datasetand for the OSL samples
does not allow a more precise reconstruction, although the
moderate trend of increasing of d18O could be related to a
decrease of the lake level.
After this, the conductivity is in general in good agreement
with Ahlborn etal.’s (2016)lake levelcurve,especially
around 2 ka,where the fastswitch ofdecreasing and later
increasing lake levelis synchronously mirrored by the
conductivity curve.
Thereafter,the conductivity,d18O and lake level curve
agree until 0.4 ka, where the conductivity starts to decrease
earlier than the rise ofthe lake leveland the positive shift
of the d18O.

Comparison ofthe evolution ofthe Tangra Yumco lake
system with the adjacentbasins along an east–westtransect

shows synchronism for almostall the events recognizable at
Tangra Yumco.However,the ostracod-based transferfunc-
tion has proven to be a valuable toolfor refining lake level
curves, discriminating climatic and hydrographic effects such
as switching between closed and open lakes.
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Abstract 

We present a list of Ostracoda (Crustacea) from profiles from Zhada Basin, Western Tibetan 

Plateau. In this area almost no taxonomical studies were carried out so far, and, aiming to a 

future use of ostracods as palaeoenvironmental proxy for this sector of the Tibetan Plateau, a 

documentation of several unknown species was performed. The taxa Leucocytherella sinensis 

(Huang, 1982), ?Leucocythere dorsotuberosa (Huang, 1982), Leucocythere postilirata (Pang, 

1985), Ilyocypris spp., Eucypris cf. zandaensis  Yang, 1982, ?Trajancypris sp., Paraeucypris 

sp. and Leucocytherella dangeloi (Alivernini, sp. nov.) were found and classified. The new 

species Leucocytherella dangeloi shows a higher rounding in the posterior part and a general 

weaker ornamentation than in Leucocytherella sinensis. It was possible to classify it as distinct 

species. Ilyocypris spp belong probably to three different species, although for the complexity 

of the taxonomical classification of this genus, further work is needed as well as for the species 

in open nomenclature: Ilyocypris spp., Paraeucypris sp., Eucypris cf. zandaensis and 

?Trajancypris sp. The taxa from the Zhada Basin are mainly lacustrine species indicating lake 

sediments for most samples. Based on the taxonomical analysis and more sample material a 

quantitative  palaeoecological  analysis  of  ostracod  faunas  from  the  Plio-Pleistocene  Zhada 

Basin will enable new palaeoenvironmental and palaeoclimatic reconstructions. 

 

1 Introduction 

There are many examples for the prominent role of Ostracoda (Crustacea) in different 

fields  of  geosciences  and  their  use  as  palaeoenvironmental,  palaeoclimatic  and 

biostratigraphic indicators. Their sensitivity to environmental changes and their wide 

distribution in all types of water bodies make their good documentation also in less 

studied areas desirable. In contrast to the large number of geological and 

palaeontological studies on the Tibetan Plateau, research on ostracods in this area is 

rather rare and improved only in the last decade (e.g. Wrozyna et al., 2009; Frenzel et 

Manuscript Click here to access/download;Manuscript;Alivernini et al.,
2019.pdf
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al., 2010; Mischke, 2012). Investigations were mainly conducted in the more easily 

accessible northern and eastern part of the plateau, and only a few studies (e.g. Li et 

al., 1991; Zhu et al., 2010) improved the available knowledge of the local ostracod 

fauna of its central and western part. Furthermore, ostracod studies in the central and 

southern  parts  of the Tibetan  Plateau focussed  on  Holocene and  Late  Pleistocene 

faunas  whereas  the  precursors  of  these  partly  endemic  species  are  not  known. 

Investigations on Plio-Pleistocene ostracods from the Tibetan Plateau are restricted to 

the Qaidam Basin so far (e.g. Sun et al., 1988; Yang et al., 1997; Mischke et al., 2006, 

2010) where they are a valuable tool for biostratigraphy in hydrocarbon exploration. 

This work focuses on Plio-Pleistocene ostracods of the Zhada Basin located in the 

western Tibetan Plateau. Previous works carried out in this area concern its tectonic 

origins  (Wang  et  al.,  2004;  2008;  Saylor  et  al.,  2010b)  and  palaeoenvironmental 

reconstruction (Saylor et al., 2010a) using mostly pollen records and sedimentological 

analyses.  Kempf et  al.  (2009),  who  investigated petrographic  and  sedimentological 

properties, were the first to describe also elements of the ostracod fauna in this area. 

They found some typical endemic taxa like Leucocytherella sinensis and several not 

identified species. In this work we present the Plio-Pleistocene ostracod assemblage 

recovered from 105 sub-samples of Joel Saylor’s stratigraphic “South Zhada” (“SZ”) 

section, localised in the southern part of the Zhada Basin and already 

sedimentologically  analysed  and  dated  by  Saylor  (2008)  in  order  to  improve  the 

taxonomic  data  base  on  ostracods  of  this  area  for  future  palaeoecological  and 

potentially stratigraphical studies. 

2 Study area 

The  Zhada Basin  is  the  largest late  Cenozoic  sedimentary  basin in  the  Tibet 

Autonomous Region. It is located north of the high Himalayan ridge crest in the western 

part of the orogen (~32°N, 82°E; Fig. 1). The basin is at least 150 km long and 60 km 

wide, and the current outcrop extent of the basin fill covers at least 9000 km 2 (Saylor 

et al., 2010b). It is bounded by the South Tibetan detachment system to the southwest, 

the  Indus  suture  to  the  northeast,  and  the  Leo  Pargil  and  Gurla  Mandhata  gneiss 

domes to the northwest and southeast, respectively (Saylor et al., 2010a). The Zhada 

Basin contains a thick sequence of late Neogene fluvial and lacustrine deposits (Kempf 

et al., 2009) which allows the reconstruction of long term climate history. 

3 Material and methods 
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3.1 Fieldwork 

A total of 124 sediment samples were collected from Saylor’s “South Zhada” section 

(Saylor, 2008). Seven prominent lake beds distributed more or less evenly over the 

820 m thick sediment sequence were selected to enable the comparison of ostracods 

from  stagnant  water deposits formed over the  last  ca.  8  Ma  (Saylor  et  al.,  2010b). 

Sediment samples from individual lake beds were collected at ca. 0.5 m intervals. The 

seven selected lake beds are located between 31.46538 °N and 79.72865 °E as the 

lowermost  and  northernmost  position  and  31.36556  °N  and  79.75152  °E  as  the 

uppermost and southernmost position, and centred at 114, 232, 325, 377, 422, 631 

and 771 m above the base of the “South Zhada” section (Saylor et al., 2010b).  

3.2 Micropalaeontological analysis 

All  124  sediment  samples  were  treated  for  micropalaeontological  analysis.  The 

samples  were  treated  with  H2O2  (ca.  5-10  %  for  about  1-2  hours)  to  separate 

aggregates of mud, and they were subsequently sieved with water through a 200 µm-

sieve to remove fine-grained particles. In total, 105 samples contained ostracod valves. 

For quantitative ostracod analysis, the sieve residues were split into sub-samples using 

a microsplitter. The species proportions and the relative ostracod abundances were 

calculated considering all ontogenetic stages (juvenile and adult valves). In order to 

assess water turbulence (Boomer et al., 2009) and the possible removal of thinner and 

smaller juvenile valves by dissolution, the adult/juvenile ratio was determined. 

Identification was performed primarily with a low-power binocular microscope and was 

occasionally  supported  by  a  Scanning  Electron  Microscope  (SEM)  as  well  as  a 

Keyence Digital Microscope. The valves were classified and taxonomically attributed, 

where possible by comparison with previous studies about the ostracods of the Tibetan 

Plateau (e.g. Mischke, 2010; Wrozyna et al., 2009, 2010; Akita et al., 2016) and using 

Chinese literature (Huang, 1982; Hou et al., 2002; Hou and Gou, 2007). In addition to 

this, an amended description of the shells, where they present differences from the 

original description, was added. 

4 Results 

4.3 Micropalaeontological analysis 

4.3.1 Preservation 
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The samples contain 6722 ostracod valves and the abundances fluctuate 

considerably, 19 samples did not contain ostracods. Most valves were disarticulated 

and adult valves were dominant. Especially in presence of alluvial sediment, 

deformations  on  juvenile  valves  are  recorded.  Beside  ostracods,  gyrogonites  of 

charophytes  and molluscs,  mostly  fragments  of  Gastropoda,  were found frequently 

within the samples.  

4.3.2 Taxonomy 

We found at least eight ostracod species in the 124 samples from the Zhada Basin. 

The most abundant species is Leucocytherella sinensis (Huang, 1982) which often 

occurs  in  association  with  ?Leucocythere  dorsotuberosa  and  its  morphotype  L. 

postilirata (Tab.1). Other abundant taxa are Paraeucypris sp., Leucocytherella 

dangeloi (spec.nov) and the genus Ilyocypris.  

A systematic overview on the ostracod taxa of the Zhada Basin follows below. The 

synonymy lists contain first description, emendations and other taxonomically 

important references. The systematic is adopted from Martin and Davis (2001) and 

Fürstenberg et al. (2015) 

Classis Ostracoda Latreille, 1802 

Order Podocopida Müller, 1894 

Superfamily Cytheroidea Baird, 1845 

Family Limnocytheridae Klie, 1938 

Subfamiliy Limnocytherinae Klie, 1938 

Genus Leucocytherella, Huang, 1982 

Leucocytherella sinensis (Huang, 1982) 

Fig.1, 1-2 

*1982 Leucocytherella sinensis Huang gen. et sp. nov. — Huang et al., p. 341-342, 

text-fig. 23-26, pl. 12, figs. 1-8; pl. 13, figs. 1–7 [type species of Leucocytherella 

Huang, 1982] 

2015 Leucocytherella sinensis Huang — Fürstenberg et al., p. 67-70, fig. 6, figs. 10-

12 [comprehensive synonymy list] 
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2016 Leucocytherella sinensis Huang — Akita et al., p. 7, figs. 3/6-10 

2016 Leucocytherella sinensis Huang — Guo et al., fig. 2 [upper left valve] 

2018 Leucocytherella sinensis Huang — Alivernini et al., fig. 8/1 

Material: 2714 valves (females, males, juveniles, including carapaces specimens) 

Size: 0.64-0.72mm (adults) 

Original  Description  (Huang,  1982; plate  12):  Valve  of female  rectangular  in  lateral 

view, anterior end higher than posterior, two transverse sulci anterodorsally, radial pore 

canal zone moderately  broad,  with  slender,  straight and  sparse  radial pore  canals. 

Hinge of left valve consists of an anterior small reniform tooth, posterior small triangular 

one and middle shallow groove. Valve of male rather long, both ends  nearly 

equivalently high. Valve of larva rather short, anterior end higher than posterior. 

For  the  general  description  of  the  valves  of  recent  specimens  (males,  females, 

juveniles) on the Tibetan Plateau see Fürstenberg et al. (2015).  

Ecology and distribution: Leucocytherella sinensis is ubiquitous and endemic on the 

Tibetan Plateau above 4000 m a.s.l. (Akita et al., 2016). Valves of  L. sinensis were 

found in lakes, ponds, rivers,  and lagoon-like and estuary-like water bodies at lake 

shores in salinities of 0.08–12.81 psu. It lives on mud, sand, sandy gravel and in phytal 

habitats in permanent fresh to brackish-lacustrine waters, dominating in Ca2+ depleted 

waters. The nodes on the calcitic valves in low salinity can be used as a proxy for 

palaeosalinity (Fürstenberg et al., 2015). 

Fossil record. From Miocene to recent (Huang, 1985) 

 

Leucocytherella dangeloi Alivernini, sp. nov. 

Fig.5, 1-7 

Material examined. 129 valves (females, males, juveniles, including carapaces 

specimens) 

Size. 0.58-0.72 mm (adults) 
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Diagnosis: Typical Leucocytherella species but with smooth surface and with posterior 

part higher compared to anterior part than in L. sinensis more evident in the left valve. 

Lophodont hinge.  

Holotype: A female right valve (0.70 mm). Nanjing Institute of Geology and 

Palaeontology, Chinese Academy of Sciences 

Locus typicus: Zhada Basin, sample Z068.  

Description: Carapace nearly rectangular. The posterior part of L. dangeloi, as well as 

of L. sinensis, is more rounded and higher than the anterior one, but in L. dangeloi this 

difference is more pronounced with an even higher rounding. Valves smooth and less 

pitted  than  in  L.  sinensis.  Weak  dorsomedian  sulcus  at  half-length  of  carapace. 

Protuberance in the anterodorsal part of the carapace. Valves are un-noded or weakly 

noded. Four adductor muscular scars in an almost vertical and slightly inclined row are 

shifted slightly anteriorly from the centre of the valve. Marginal pore canals thin, from 

weakly inclined to straight and not numerous. Weak ornamentation of the hinge. Similar 

to L. sinensis, the hinge of the right valve consists of a pit on both ends and a ridge in 

between; the hinge of left valve presents an anterior small rounded tooth, posterior a 

small triangular one and a shallow groove in between. Inner posterior lamella broad. 

Dorsal carapace sexually dimorphic, males are larger and more expanded posteriorly 

than females. 

Derivatio nominis: The name “dangeloi” was given to commemorate the death of Fabio 

D'Angelo, a young micropalaeontologist at the beginning of his academic career who 

died in 2012. 

Genus Leucocythere Kaufmann, 1892 

?Leucocythere dorsotuberosa (Huang, 1982) 

Fig. 6-8 

*1982 Leucocythere dorsotuberosa Huang — Huang et al., p. 335-336, plate 10, figs. 

10-17  

pars 2009 ?Leucocythere dorsotuberosa, Huang — Wrozyna et al., p. 668-669, plate 

2, fig. 2, 4-9, 11 [non p. 670-671, plate 2, fig. 1, 3, 10, 12-13 = ?Leucocythere 

postilirata which is considered as forma of ?L. dorsotuberosa by Wrozyna et 

al. (2009) who provide a comprehensive synonymy list] 
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2010 Leucocythere dorsotuberosa f. parasculpta — Zhu et al., fig. 3/5  

2010 Leucocythere dorsotuberosa f. typica — Zhu et al., fig. 3/7  

pars 2010 ?Leucocythere dorsotuberosa Huang — Wrozyna et al., fig. 3/1-3 [non fig. 

3/4 = ?L. postilirata] 

non 2011 Leucocythere dorsotuberosa Huang — Wu et al., p. 64, plate 3, fig. 10 [= 

juvenile Cyprideis torosa] 

2010 Leucocythere dorsotuberosa, Huang — Mischke, fig. 15.3/16-17  

2016 ?Leucocythere dorsotuberosa Huang — Guo et al., fig. 2 [middle row right] 

2016 Leucocythere? dorsotuberosa Huang — Akita et al., p. 32 + 33, figs. 3/1-5 

non 2017 Leucocythere dorsotuberosa — Song et al., fig. 5/7 

2018a Leucocythere? dorsotuberosa Huang — Alivernini et al., fig. 8e-g + 8i  

2018b Leucocythere? dorsotuberosa Huang — Alivernini et al., fig. 3 [3rd from left] 

Material examinated: 1061 valves (females, males, juveniles, including double-valved 

specimens) 

Size: 0.65-0.77 mm 

Original  Description: (Huang,  1982,  p. 335):  Male  valve  rectangular,  anterior  end 

higher than posterior, dorsal margin nearly straight, ventral margin distinctly concave 

in the middle. Valves with reticulation. Two transverse sulci anterodorsally, and an alar 

protuberance extending posteroventral to medioventral, and a tubercle in 

posterodorsal position. Marginal pore-canal zone broad, comprising 10%-11% of the 

length of carapace, marginal pore-canals slender, not numerous, several are furcated, 

anterior with nineteen marginal pore-canals. Hinge of the left valve consists of sockets 

in  both  sides  and  a  shallow  ridge  in  between;  hinge  of  the  right  valve  consists  of 

elongated teeth in both ends and a groove in between. 

Valve  of  male  is  longer  than  female,  posterior  bulgy.  Juvenile  valve  short,  anterior 

broadly rounded, dorsal margin slightly rounded. Hinge of male, female and juvenile 

are similar. Valves are transparent. Carapaces sub-rectangular in lateral view.  

Further  description:  Wrozyna  et  al.  (2009)  observed  on  recent  valves  that  female 

carapaces are more triangular, the posterior to anteriomedian region bears 

protuberances interrupted by a mediodorsal sulcus partly divided by a central node. In 
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dorsal view  anterior and posterior ends are pointed. Right valve  overlaps left valve 

anteroventral and posterior in a lobe-like protrusion. (modified from Wrozyna et al., 

2009) 

Remarks: The found valves of  ?L. dorsotuberosa present a lophodont hinge. Wrozyna 

et al. (2009) and Danielopol et al. (1989) doubted that L. dorsotuberosa belongs to the 

genus Leucocythere because of the different hinge, lophodont in ?L. dorsotuberosa 

instead of the typically anterior significantly smaller tooth of the genus Leucocythere.  

Ecology  and  distribution:  Living  ?L.  dorsotuberosa  occur  mainly  in  brackish  lakes 

(phytal  and  muddy  substrate)  and  its  marginal  lagoon-like  water  bodies.  Living 

individuals have also been found in freshwater, but in low numbers only. Empty valves 

of ?L. dorsotuberosa were found in higher proportions at deeper water depth (Akita et 

al., 2016). 

Fossil record: Pliocene to recent (Huang, 1982) 

 

Leucocythere postilirata (Pang, 1985) 

Fig.2, 3-5 

*1985 Leucocythere postilirata sp. n. — Pang, p. 257, plate 2, fig. 13-16 

2009 ?Leucocythere dorsotuberosa f. postilirata Pang — Wrozyna et al., p. 670-671, 

plate 2, fig. 1, 3, 10, 12-13  

2010 ?Leucocythere dorsotuberosa f. postilirata Pang — Wrozyna et al., fig. 3/4 

2016 ?Leucocythere dorsotuberosa f. postilirata Pang — Akita et al., fig. 2  

2018 ?Leucocythere dorsotuberosa f. postilirata, Pang — Alivernini et al., fig. 8/e-f  

Material examinated: 457 valves (females, males, juveniles, including double-valved 

specimens) 

Size: size 0.78-0.92 mm 

Original  description  (Pang,  1985,  p.  257):  Elongated  carapace.  Valve  of  male  of 

elongated  kidney-shape.  Anterior  slightly  higher  and  /  or  has  the  same  height  as 

posterior. Both ends curved. Dorsal margin is elongated and almost straight, 

mediodorsal slightly curved. Anteromediodorsal is obviously compressed. Two 

transverse  sulci  anterodorsally,  the  more  anterior  sulcus  shorter  than  the  more 
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posterior one. A rounded node is located between the sulci, another more obvious 

bulge behind the posterior sulcus and a third at the end of both sulci. A distinctive 

anterodorsal carina occurs where the dorsal margin meets the anterior one, another 

carina runs along the central ventral side below the sulci. A third carina lays posteriorly 

and protrudes the valve outline. The ventral and posterior carinae are not connected 

to each other. The maximum width lies at ¼ length of the valve. Valve not curved so 

much, ornamented with a net of large alveoles. Valves of female shorter than male, 

kidney-shaped.  Anterior  higher  than  posterior.  Posterior  carina  and  ventral  carina 

weak. (modified from Wrozyna et al., 2009) 

Further description: As already observed by Wrozyna et al. (2009) the valves present 

a typical sharp carina running parallel to the ventral margin; more distinct on the right 

valve. Another more or less developed carina runs parallel to the anteroventral margin. 

Additionally, a margin parallel posterior carina following the curvature of the margin 

can be more or less developed, separated from or fused with the ventral carina. The 

valves are strongly reticulated. 

Remarks:  Wrozyna  et  al.  (2009)  and  Frenzel  et  al.  (2010)  regard  L.  postilirata  as 

morphotype of ?L. dorsotuberosa with most pronounced medio-ventral and anterior 

and often posterior carinae as protruding foldings of the shell. 

Ecology and distribution. Living ?Leucocythere postilirata occur where Leucocythere 

dorsotuberosa is present. Following Wrozyna et al. (2009) for Nam Co, ?L. postilirata 

shows a higher salinity tolerance (max. 8-10 psu) than ?L. dorsotuberosa, and is limited 

to  water  below  the  thermocline  (20-30 m)  and  increases  in  number  and  relative 

abundance with water depth. 

Fossil record. Recent from Nam Co and Pumoyong Co; Early Holocene of Peiku Co 

(Peng, 1997), Pleistocene of Kunlun mountains (Pang, 1985), Late Pleistocene of 

Bangong lake (Li et al., 1991), Cenozoic of Siling and Bangkok lakes (Pang, 1985), 

Tertiary of the Qaidam Basin (Sun et al.,1988) 

Suborder Cypridocopina Jones 1901 

Superfamily Cypridoidea Baird 1845  

Family Ilyocyprididae Kaufmann 1900 

Ilyocypris spp. 
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Fig.4, 1-8 

Material: 676 valves (juveniles and adults, including double-valved specimens) 

Remarks: The species of the genus Ilyocypris are often hard to discriminate relying on 

hard parts only, even in well studied regions as Central Europe (Meisch, 2000). Hou et 

al. (2002) list eleven Ilyocypris species for the Tibetan Plateau but many of them are 

of dubious taxonomic state. The partly poor preservation of our material and impossible 

attribution of most juvenile valves to adult stages makes it difficult to discriminate and 

identify Ilyocypris species from the Zhada Basin.  

All  documented  valves  bear  the  typical  characters  of  the  genus  –  a  rectangular 

carapace  in  side  view,  about  1 mm  long,  with  pitted  to  smooth  surface  and  two 

conspicuous transverse dorsolateral sulci; the left valve overlaps the right one.  

Based on outline and ornamentation three morphotypes, probably different species, 

are  recognisable:  a)  well  rounded  anterior  and  posterior  end  in  side  view,  surface 

weakly or not pitted, no tubercles; b) well rounded anterior and posterior end in side 

view, surface weakly pitted, five distinct tubercles similar to Qinghaicypris 

subpentanoda  Yang,  1982;  c)  side  view  with  truncated  posterior  end  similar  to 

Ilyocypris inermis Kaufmann, 1900, surface pitted, no tubercles. Left valves of the two 

well rounded morphotypes (a and b) show distinct marginal ripplets on the inner lamella 

of  both  ends. This character resembles  Ilyocypris  bradyi  Sars,  1890  and  Ilyocypris 

decipiens Masi, 1905 (Mazzini et al., 2014) but the ripplets are more numerous and 

can be found at the anterior end as well. 

 

Family Cyprididae Baird, 1845 

Subfamily Eucypridinae Baird, 1845 

Eucypris cf. zandaensis  Yang, 1982 

 Fig.3, 1-2   

*1982 Eucypris zandaensis Yang sp. nov. ― Yang in Huang et al.: 330, pl. 2, fig. 1-9 

2002 Eucypris zandaensis Yang, 1982 ― Hou et al.: 169, pl. 19, fig. 5-10 

Material found: 59 valves  
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Size. 0.78-1.1 mm   

Original description (Hou et al., 2002): Valves big, female elliptical in side view, dorsal 

margin straight and short inclining to the posterior part in side view, ventrally slightly 

concave, highest point at 2/5 of length, network of lines on the valve, marginal pore 

channels thick and numerous, central muscle scars with four in front of two others, 

oviduct traces, male valve longer, traces of four loops of testes recognisable. 

Remarks: Our material differs from the holotype in having a slightly more trapezoidal 

outline of the right valve and being slightly smaller.  

Distribution: Plio-Pleistocene of Zanda, Zhada Basin (Hou et al. 2002) 

 

?Trajancypris sp. 

Fig.3, 7-8 

Material examined: 5 valves (only juveniles) 

Size: 0.78-1.00mm 

Description: Valves rounded triangular with highest point at about a third of length, 

anterior margin broadly rounded, posterior end more pointed, dorsal margin only very 

weakly curved over the hinge, ventral side slightly concave. Surface of valves smooth. 

No lists recognisable on inner lamella of the juvenile valves. Central muscle scars paw-

like, marginal pore channels straight and numerous.  

Remarks: No adult valves were available for description. 

Paraeucypris sp. 

Fig. 3, 3-6 

Material examined: 756 juvenile valves 

Size: 0.86-1.3 mm 

Description: Valves elongated elliptical in side view, both ends well rounded, highest 

point well in front of mid-length, posterior part of right valves slenderer than anterior 

one, dorsal margin along the hinge straight and distinctively inclined towards posterior, 

ventral margin slightly concave. Surface of valves smooth. Lists on inner lamella not 

recognisable on juvenile valves. Hinge with a simple groove in the left valve and a 
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smooth bar in the right  valve.  Central muscle scars of the typical  cypridid  paw-like 

pattern. 

Remarks: Adult valves are needed for a comprehensive description of this species. 

6 Discussion and Conclusion 

Our list of ostracod taxa from the Zhada Basin contains at least eight species, several 

of them are already described for the Tibetan Plateau. Among them, the opportunistic 

and ubiquitous L. sinensis is the most abundant species. Leucocytherella sinensis is 

often observed together with  ?L. dorsotuberosa and  L. postilirata as  it  is  known for 

recent faunas (Wrozyna et al., 2009, Akita et al., 2016). Kempf et al., 2009 lists only 

five species from the Zhada Basin. One of them, Candona xizangensis Huang, 1982, 

was not found in our study. Adding it to our list we get a minimum of nine species, a 

low diversity for the studied area and time. Akita et al. (2016) found eleven species 

inthe recent Tangra Yumco lake system, a number comparable to our count from the 

Zhada Basin. We assume the harsh environmental conditions of the high elevation to 

be the cause for the low diversity observed. 

The taxa from the Zhada Basin and also known from the recent ostracod fauna of the 

Tibetan  Plateau  are  mainly  lacustrine  species  indicating  lake  conditions  for  most 

samples. The ostracod-based  palaeoenvironment  of  the  sediment  varies  from  river 

mouth to moderately deep lacustrine water 

The newly described species Leucocytherella dangeloi sp. nov. is very interesting for 

the  evolution  of  the  genus  Leucocytherella  Huang,  1982  endemic  to  the  Tibetan 

Plateau. All specimens of the genus described so far and studied by Fürstenberg et al. 

(2015) belong to Leucocytherella sinensis Huang, 1982. The association of L. dangeloi 

with lacustrine species points to a lacustrine habitat of the new species as well. 

Based on the taxonomical analysis and more sample material a quantitative 

palaeoecological analysis of ostracod faunas from the Plio-Pleistocene Zhada Basin 

will enable new palaeoenvironmental and palaeoclimatic reconstructions. 

 

Acknowledgements 

We are indebted to Tim Jonas for help during fieldwork. Funding was provided by the 

German  Research  Foundation  (grants  Mi  730/11  +  /16  and  Fr  1489/4)  within  the 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Priority Program SPP 1372 TiP “Tibetan Plateau: Formation – Climate – Ecosystems” 

and by the Graduate Scholarship of Thuringia. Additional funding was received from 

the National Natural Science Foundation of China (41571189) and ITP (TEL201605). 

We thank Ping Peng (Beijing) and Dada Yan (Shanghai) for translations of original 

ostracod descriptions in Chinese. 

 

 

  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

References 

 

Akdemir  D.,  Külköylüoğlu  O.,  2014.  Preliminary  study  on  distribution,  diversity,  and  ecological 

characteristics  of  nonmarine  Ostracoda  (Crustacea)  from  the  Erzincan  region  (Turkey).  Turkish 

Journal of Zoology. 38, 421-431 

Akita, L.G., Frenzel, P., Börner, N., Wang, J., Peng, P., 2016. Distribution and ecology of the recent 

Ostracoda of the Tangra Yumco lake system, Southern Tibetan Plateau, China. Limnologica 59, 21–

43 

Alivernini M., Lai Z., Frenzel P., Fürstenberg S., Wang J., Guo Y., Peng P., Haberzettl T., Börner N., 

Mischke  S.,  2018a.  Late  Quaternary  lake  level  changes  of  Taro  Co  and  neighbouring  lakes, 

southwestern Tibetan Plateau, based on OSL dating and ostracod analysis. Global and Planetary 

Change 166: 1-18 

Alivernini  M.,  Akita  L.G.,  Ahlborn  M.,  Börner  N.,  Haberzettl  T.,  Kasper T.,  Plessen  B.,  Peng  P., 

Schwalb A., Wang J., Frenzel P., 2018b. Ostracod ‐based reconstruction of Late Quaternary lake 

level  changes  within  the  Tangra  Yumco  lake  system  (southern  Tibetan  Plateau).  Journal  of 

Quaternary Science. 33, 713–720. 

Boomer I., Wünnemann B., Mackay A.W, Austin P., Sorrel P., Reinhardt C., Keyser D., Guichardf 

F., Fontugnef M., 2009. Advances in understanding the late Holocene history of the Aral Sea region. 

Quaternary International 194, 79-90. 

Brady, G. S. 1867. A synopsis of the recent British Ostracoda. Intell. Observ 12, 121 

Bridgland David R., Harding P., Allen P., Candy I., Cherry C., George W., Horne D. J., Keen D. H., 

Penkman K.E.H., Preece R.C., Rhodes E. J., Scaife R., Schreve D. C., Schwenninger J., Slipper I. 

et al., 2013. An enhanced record of MIS 9 environments, geochronology and geoarchaeology: data 

from  construction  of  the  High  Speed  1  (London–Channel  Tunnel)  rail-link  and  other  recent 

investigations at Purfleet, Essex, UK. Proceedings of the Geologists’ Association 124, 417–476 

Bristow C. S., Holmes J. A., Mattey D., Salzmann U., Sloane H. J., 2018 (in press). A late Holocene 

palaeoenvironmental ‘snapshot’ of the Angamma Delta, Lake Megachad at the end of the African 

Humid Period. Quaternary Science Reviews 202, 182-196 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Cabral  M.  C.,  Lord  A.R.,  Dambeck  R.,  Kunst  M.,  2016.  Ostracod  evidence  for  the  Neolithic 

environment of Rio Sizandro, Portugal: Part 2. Palaeobiodiversity and Palaeoenvironment. 96, 541-

557 

Danielopol D.L., Martens J. Et Casale L.M., 1989. Revision of the genus Leucocythere Kaufmann, 

1892 (Crustacea, Ostracoda, Limnocytheridae), with the description of a new species and two new 

tribes. Bull. Inst.  Rech. Sci. Nat. Belg., Biol., Bruxelles, vol. 59, 63-64 

Delorme L.D., 1971. Freshwater ostracodes of Canada. Part V. Families Limnocytheridae, 

Loxoconchidae. Canadian Journal of Zoology 49, 43-64. 

Frenzel P., Wrozyna C., Xie M., Zhu L., Schwalb A., 2010. Palaeowater depth estimation for a 600–

year record from Nam Co (Tibet) using an ostracod–based transfer function. Quaternary 

International 218, 157–165 

Fuhrmann  R.,  2012.  Atlas  quartärer  und  rezenter  Ostrakoden  Mitteldeutschland.  Altenburger 

Naturwissenschaftliche Forschungen 279. 

Fürstenberg  S.,  Frenzel  P.,  Peng  P.,  Henkel  K.,  Wrozyna  C.,  2015.  Phenotypical  variation  in 

Leucocytherella sinensis Huang, 1982 (Ostracoda): a new proxy for palaeosalinity in Tibetan lakes. 

Hydrobiologia 751, 55–72 

Griffiths  H.I.,  Holmes  J.A.,  2000.  Non-marine  ostracods  and  Quaternary  palaeoenvironments. 

Quaternary Research Association, London. 

Guo Y., Zhu L., Frenzel P., Ma Q., Ju J., Peng P., Wang J., Daut G., 2016.  Holocene lake level 

fluctuations and environmental changes at Taro Co, southwestern Tibet, based on ostracod inferred 

water depth reconstruction. The Holocene 26, 29-43 

Hamad A.B., Viehberg F.A., Khadraoui A., Zahibi C., Trabelsi Y., Mouanga G.H., Langer M. R., 

Abida H., Kamoun F., 2018. Water level and atmospheric humidity history of Lake Ichkeul (northern 

Tunisia) during the last 3000 years. Arabian Journal of Geosciences 11: 316.  

Hajek-Tadesse V., Ilijanić N., Miko S., Hasan O., 2018. Holocene Ostracoda (Crustacea) from the 

shallow  Lake  Vrana  (Dalmatia,  Croatia)  and  their  paleoenvironmental  significance.  Quaternary 

International 494, 80-91 

Holmes J.A., Allen M.J., Street-Perrott F.A., Ivanovich M., Perrott R.A., Waller M.P., 1999.  Late 

Holocene palaeolimnology of Bal Lake, Northern Nigeria, a multidisciplinary study. 

Palaeogeography, Palaeoclimatology, Palaeoecology 148, 169–185. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Hou, Y., Gou, Y., 2007. Fossil Ostracoda of China. Cytheracea and Cytherellidae, vol. 2. Science 

Press, Beijing [in Chinese]. 

Hou,  Y.,  Gou,  Y.,  Chen,  D.,  2002.  Fossil  Ostracoda  of  China.  Superfamilies  Cypridacea  and 

Darwinulidacea, vol. 1. Science Press, Beijing (in Chinese). 

Huang, B., 1982a. Ostracods from surface deposits of Recent lakes in Xizang. Acta 

Micropalaeontologia Sinica 2, 369–376 [in Chinese with English abstract]. 

Huang, B., 1985. Quaternary ostracod biogeographical provinces in China. In: Tung-sheng, L. 

(ed.), Quaternary Geology and Environment of China. China Ocean Press Beijing and Springer-

Verlag, Berlin, Beijing. 

Hudson,  A.M.,  Quade,  J.,  2013.  Long-term  east-west  asymmetry  in  monsoon  rainfall  on  the 

Tibetan Plateau. Geology, 41, 351-354. 

Kempf O., Blisniuk P. M., Wang S., Fang X., Wrozyna C., Schwalb A., 2009.  Sedimentology, 

sedimentary petrology, and paleoecology of the monsoon-driven, fluvio-lacustrine Zhada Basin, 

SW-Tibet. Sedimentary Geology 222, 27–41 

Kramer M., Kotlia B.S., Wünnemann B., 2014. A late quaternary ostracod record from the Tso 

Kar basin (North India) with a note on the distribution of recent species. Journal of Paleolimnology. 

51, 549-565  

Külköylüoglu O., Sarı N., Dügel M., Dere Ş., Dalkıran N., Aygen C., Çapar Dinçer S., 2014. Effects 

of limnoecological changes on the Ostracoda (Crustacea) community in a shallow lake (Lake 

Çubuk, Turkey). Limnologica 46, 99-108 

Külköylüoglu O., Tanyeri M., Yilmaz O., 2017. Alpha and Beta species diversity of freshwater 

Ostracoda  (Crustacea)  and  their  seasonal  distribution  in  Seben-Taşliyayla  Reservoir  (Bolu, 

Turkey). Turkish Journal of Fisheries and Aquatic Sciences 17, 1357-1365 

Li Y.F., Zhang Q. S., Li B.Y. et al., 1991. Late Pleistocene Ostracoda from Banggong Lake, Xizang 

and its palaeogeographic significance. Acta Micropalaeontologica Sinica, 8, 57 - 64 [in Chinese 

with English Abstract] 

Martin  J.W.,  Davis  G.E.,  2001.  An  updated  classification  of  the  Recent  Crustacea  (Science 

Series). Los Angeles, California: Natural History Museum of Los Angeles County. 1-132  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Mazzini  I.,  Gliozzi  E.,  Rossetti  G.,  Pieri  V.  (2014).  The  Ilyocypris  puzzle:  A  multidisciplinary 

approach to the study of phenotypic variability. International Review of Hydrobiology 99(6), 395-

408. 

Meriç E., Nazik A., Yümün Z. Ü., Büyükmeriç Y., Avşar N., Yildiz A., Sagular E. K., Koral H., 

Gökaşan E., 2018. Fauna and flora of drilling and core data from the İznik Lake: The Marmara 

and the Black Sea connection. Quaternary International. 486, 156-184 

Meisch C., 2000. Freshwater Ostracoda of Western and Central Europe. Spektrum Akademischer 

Verlag, Heidelberg, 427 pp 

Mischke  S.,  2012.  Quaternary  ostracods  from  the  Tibetan  Plateau  and  their  significance  for 

environmental  and  climate-change  studies.  In:  Horne  D.J.,  Holmes  J.,  Rodriguez-Lazaro  J., 

Viehberg.  F.  (Eds).  Ostracoda  as  Proxies  for  Quaternary  Climate  Change.  Developments  in 

Quaternary Science 17, 263-279 

Mischke, S., Herzschuh, U., Sun Z., Qiao Z., Sun N., Zander, A. M., 2006. Middle Pleistocene 

Ostracoda from a large freshwater lake in the presently dry Qaidam Basin (NW China). Journal 

of Micropalaeontology 25, 57-64. 

Mischke S., Lai Z., Zhang C., 2014. Re-assessment of the paleoclimate implications of the Shell 

Bar in the Qaidam Basin, China. Journal of Paleolimnology 51, 179–195 

Mischke, S., Sun Z., Herzschuh, U., Qiao Z., Sun N., 2010. An ostracod-inferred large Middle 

Pleistocene freshwater lake in the presently hyper-arid Qaidam Basin (NW China). Quaternary 

International 218, 74-85 

Mischke S., Zhang C., Börner A., 2007. Bias of ostracod stable isotope data caused by drying of 

sieve residues from water. Journal of Paleolimnology 40, 567-575 

Pang J., 1985. On a new Ostracoda genus from Pleistocene in the pass of Kunlun Mountain, 

Qinghai-Xizang (Tibet) Plateau. In Collection of Geology of the Qinghai-Xizang (Tibet) Plateau 

Beijing: Geological Publishing House 16, 257-279 [in Chinese with English Abstract 

Peng J.L., 1997. Ostracod assemblages and environmental changes during 13000 ~ 4500 a BP 

in Peiku Co, Tibet. Acta Micropalaeontologica Sinica. 14, 239 ~ 254 

Peng P., Zhu L., Frenzel P., Wrozyna C., Ju J., 2013. Water depth related ostracod distribution 

in Lake Pumoyum Co, southern Tibetan Plateau. Quaternary International 313(11), 47-55 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Pint A., Frenzel P., Horne D. J., Franke J., Daniel T., Burghardt A., Funai B., Lippold K., Daut G., 

Wennrich V., 2015. Ostracoda from inland waterbodies with saline influence in Central Germany: 

Implications for palaeoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, 

Palaeoecology. 419, 37-46 

Pint A., Schneider H., Frenzel P., Voigt M., Viehberg F., 2015. Late Quaternary salinity variation 

in  the  Lake  of  Siebleben  (Thuringia,  Central  Germany)  –  Methods  of  palaeoenvironmental 

analysis using Ostracoda and pollen. The Holocene. 27, 526-540. 

Salel T., Bruneton H., Lefèvre D., 2016. Ostracods and environmental variability in lagoons and 

deltas along the north-western Mediterranean coast (Gulf of Lions, France and Ebro delta, Spain). 

Revue de Micropaléontologie. 59, 425-444 

Saylor J.E., 2008. The Late Miocene through modern evolution of the Zhada Basin, south-western 

Tibet. Ph.D. thesis at The University of Arizona, Department of Geosciences, 306 pp. 

Saylor J., Decelles P., Quade J., 2010a. Climate-driven environmental change in the Zhada basin, 

southwestern Tibetan Plateau. Geosphere. 6, 74–92 

Saylor J., DeCelles P., Gehrels G., Murphy M., Zhang R., Kapp P., 2010b. Basin formation in the 

High Himalaya by arc-parallel extension and tectonic damming: Zhada basin, southwestern Tibet. 

Tectonics, TC1004. 

Schuett B., Berking J., Frechen M., Frenzel P., Schwalb A., Wrozyna C., 2010. Late Quaternary 

transition from lacustrine to a fluvio-lacustrine environment in the north-western Nam Co, Tibetan 

Plateau, China. Quaternary International 218, 104–117 

Song B., Ji J., Wang C., Xu Y., 2017. Intensified aridity in the Qaidam Basin during the Middle 

Miocene:  constraints  from  ostracod,  stable  isotope,  and  weathering  records.  Journal  of  Earth 

Science 54, 242–256. 

Sun Z., Gu Y., Yang F. et al., 1988 Tertiary ostracode fauna from Qaidam  Basin, NW China. 

Nanjing: Nanjing University Press, 190 pp. [in Chinese with English abstract] 

Wang W., Zhang J., Zhang B., 2004. Structural and sedimentary features in Zanda Basin of Tibet: 

Acta Scientiarum Naturalium 40, 872–878 

Wang S.F., Blisniuk P., Kempf O., Fang X.M., Chun F., Wang E., 2008. The basin-range system 

along the south segment of the Karakorum fault zone, Tibet: International Geology Review. 50, 

121–134 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Wrozyna,  C.,  Frenzel,  P.,  Xie,  M.,  Zhu,  L.,  Schwalb,  A.,  2009.  A  taxonomical  and  ecological 

overview of Recent and Holocene ostracodes of the Nam Co region southern Tibet. Quaternary 

Sciences. 29, 665–677. 

Wrozyna. C., Frenzel. P., Steeb P., Zhu L., Van Geldern R., Mackensen A., Schwalb A., 2010. 

Stable isotope and ostracode species assemblage evidence for lake level changes of Nam Co, 

southern Tibet, during the past 600 years. Quaternary International 212, 2–13. 

Wu  K.,  Yu  J.,  Feng  Q.,  2011.  Miocene-Pliocene  Ostracoda  assemblage  and  its  geological 

significance in Eboliang Area, Qaidam Basin. Advances in Geosciences, 1, 54-64. 

Yan D., Wuennemann B., 2014. Late Quaternary water depth changes in Hala Lake, northeastern 

Tibetan  Plateau,  derived  from  ostracod  assemblages  and  sediment  properties  in  multiple 

sediment records. Quaternary Science Reviews 95, 95-114. 

Yang, F., Sun, Z., Ma, Z., Zhang, Y., 1997. Quaternary ostracode zones and magnetostratigraphic 

profiles in the Qaidam Basin. Acta Micropalaeontologica Sinica 14, 378-390. [In Chinese with 

English abstract] 

Yin Y., Martens K., 1997. On a new species of Fabaeformiscandona KRSTIC, 1972 (Crustacea, 

Ostracoda) from China, with a preliminary checklist of Recent Chinese non-marine ostracods. 

Hydrobiologia 357, 117-128. 

Zhai D., Xiao J., Fan J., Zhou L., Wen R., Pang Q., 2013. Spatial heterogeneity of the population 

age  structure of  the  ostracode  Limnocythere  inopinata  in  Hulun Lake, Inner Mongolia and  its 

implications. Hydrobiologia 716, 29–46. 

Zhai D., Xiao J., Fan J., Zhou L., Wen R., Pang Q., 2015. Differential transport and preservation 

of the instars of Limnocythere inopinata (Crustacea, Ostracoda) in three large brackish lakes in 

northern China. Hydrobiologia 747, 1–18. 

Zhang  W.,  Mischke  S.,  Zhang  C.,  Gao  D.,  Fan  R.,  2013.  Ostracod  distribution  and  habitat 

relationships in the Kunlun Mountains, northern Tibetan Plateau. Quaternary International 313–

314, 38-46. 

Zhang W., Mischke S., Zhang C., Zhang H., Wang P., 2015. Sub ‐recent sexual populations of 

Limnocythere inopinata recorded for the first time from > 3500 m altitude on the Tibetan Plateau. 

Acta Geologica Sinica 89, 1041-1042. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Zhu L., Peng P., Xie M., Wang J., Frenzel. P., Wrozyna. C., Schwalb A., 2010. Ostracod-based 

environmental reconstruction over the last 8,400 years of Nam Co Lake on the Tibetan plateau. 

Hydrobiologia 648, 157–174. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



ZHADA 
BASIN 

Ilyocypris 
spp 

L. 
sinensis 

L. 
dorsotube

rosa 

L. 
postilirata 

Paraeucy
pris sp 

?Trajanc
ypris juv 

L. 
dangeloi 

Eucypris 
cf. 

zandaen
sis 

tot juv. 

Z01 6 4 0 1 0 0 0 0 1 

Z02 32 68 1 4 0 0 0 0 59 

Z03 16 43 15 4 0 0 0 0 50 

Z04 48 6 16 18 0 0 0 0 20 

Z05 10 0 0 4 0 0 0 0 2 

Z06 2 0 2 0 0 0 0 0 1 

Z07 4 2 1 8 0 0 0 0 6 

Z08 27 0 0 12 0 0 0 0 3 

Z09 14 0 2 2 0 0 2 0 3 

Z010 36 33 5 1 0 0 0 0 35 

Z010 
dirty 

40 0 3 0 0 0 8 0 7 

Z011 25 7 3 14 0 0 0 1 19 

Z012 13 1 0 5 1 0 0 0 3 

Z013 20 0 8 12 0 0 0 0 12 

Z014 11 0 3 4 0 0 0 0 5 

Z015 37 0 0 5 0 0 0 0 3 

Z016 7 10 26 4 0 0 0 0 32 

Z017 12 1 9 3 0 0 0 0 4 

Z018 2 57 44 1 1 0 12 0 70 

Z018a 37 29 18 11 2 0 0 0 46 

Z019 3 12 16 43 3 0 0 0 45 

Z020 5 8 45 11 0 0 1 0 34 

Z021 4 0 4 0 12 0 0 0 14 

Z022 0 3 26 1 0 0 0 0 21 

Z023 0 0 10 0 0 0 0 0 2 

Z024 0 33 64 6 0 0 0 0 74 

Z025 1 1 0 0 1 0 3 0 4 

Z026 0 0 0 0 3 0 0 0 3 

Z027 0 8 8 0 0 0 4 0 18 

Z027a 0 35 49 5 1 0 0 0 76 

Z028dirty 1 33 24 0 5 0 34 0 70 

Z029 1 3 11 0 5 0 0 0 19 

Z036 22 8 2 2 2 0 0 0 9 

Z037 10 18 37 8 0 0 0 0 46 

Z039 27 19 46 2 0 0 7 0 69 

Z042 0 0 6 0 0 0 0 0 2 

Z043 0 5 10 5 7 0 10 0 22 

Z044 0 7 7 12 15 0 13 0 45 

Z045 5 11 2 1 86 0 0 0 96 

Z046 7 10 5 7 64 0 46 0 118 

Z047 0 15 3 0 0 0 9 0 19 

Z048 3 6 0 1 29 0 0 0 36 

Z049 3 27 0 2 70 0 0 0 95 
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Z050 1 42 1 3 46 0 5 0 79 

Z052 10 3 0 2 68 0 6 0 77 

Z053 1 93 6 2 52 1 1 2 134 

Z054 1 44 9 4 15 0 22 1 55 

Z055 6 23 7 1 25 0 30 0 81 

Z055 
dirty 

1 0 0 0 0 0 0 0 0 

Z057 0 4 4 0 0 0 0 0 8 

Z058 1 22 1 0 1 0 0 0 16 

Z059 3 4 0 0 3 0 1 0 7 

Z060 0 78 9 0 0 0 0 0 78 

Z061 0 5 1 0 0 0 0 0 6 

Z062 7 7 1 0 0 2 27 0 23 

Z063 71 7 1 3 8 0 0 1 31 

Z064 11 50 0 0 16 2 9 0 60 

Z065 6 53 4 1 1 0 12 0 53 

Z067 0 108 0 0 0 0 18 0 88 

Z068 0 172 0 0 0 0 25 0 101 

Z069 6 116 0 0 0 0 18 0 99 

Z070 2 35 0 1 0 0 45 0 39 

Z071 2 53 1 0 0 0 35 0 44 

Z072 0 61 0 0 0 0 21 0 47 

Z073 0 81 0 0 0 0 18 0 47 

Z074 0 64 6 0 0 0 28 0 73 

Z077 6 0 6 11 0 0 4 0 14 

Z078 0 1 0 0 0 0 0 0 1 

Z079 0 0 4 1 0 0 0 0 4 

Z080 0 8 5 1 0 0 0 0 6 

Z081 0 0 12 0 0 0 0 0 2 

Z082 0 0 6 0 0 0 0 0 2 

Z083 0 2 4 0 0 0 0 0 6 

Z084 0 9 30 0 0 0 0 0 16 

Z085 0 5 16 3 0 0 0 0 11 

Z086 0 0 12 4 0 0 0 0 5 

Z089 0 17 9 0 0 0 0 0 18 

Z090 0 82 61 0 0 0 0 0 89 

Z091 2 4 23 30 0 0 0 0 39 

Z092 29 144 62 19 0 0 0 0 96 

Z093 16 25 26 9 0 0 0 0 19 

Z094 0 0 22 0 0 0 0 0 22 

Z095 0 53 20 5 4 0 0 12 52 

Z096 0 64 9 4 10 0 0 11 71 

Z097 0 62 1 18 5 0 0 10 78 

Z098 0 121 4 4 0 0 0 0 60 

Z099 0 98 1 6 0 0 0 0 65 

Z0100 0 120 10 2 4 0 0 0 83 



Z0101 0 63 12 0 0 0 0 1 34 

Z0102 0 51 26 0 0 0 6 0 56 

Z0103 0 119 12 4 0 0 6 0 92 

Z0104 0 103 10 33 0 0 0 0 96 

Z0105 0 11 1 1 0 0 0 0 9 

Z0106 0 1 9 0 0 0 0 0 5 

Z0107 0 21 12 1 0 0 0 0 11 

Z0108 0 67 12 6 3 0 0 0 52 

Z0109 0 32 4 18 62 0 0 0 86 

Z0110 0 11 12 4 7 0 10 18 22 

Z0111 0 82 3 23 21 0 9 2 61 

Z0112 0 109 14 13 4 0 0 0 85 

Z0113 0 63 8 1 4 0 0 0 40 

Z0115 0 2 0 0 1 0 1 0 2 

Z0117 0 0 0 0 75 0 0 0 75 

Z0118 3 4 0 0 6 0 0 0 8 

Z0119 0 0 0 0 3 0 0 0 3 

Z0121 0 0 1 0 4 0 0 0 5 

Z0122 0 0 0 0 1 0 0 0 1 

 

Tab.1 Counted valves of ostracod species and adult/juvenile ratio in sediment samples taken from 
the Zhada basin. Samples without ostracod valves are omitted. 



 

 

 

 

 

Fig.1 Location of the Zhada basin on the Tibetan Plateau and position of the 
sampling area (Geomapapp image modified). 
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Fig.2: L.sinensis (Huang, 1982) (1) a. RV ext., sample Z063, (2) a. LV int., sample Z063); 
Leucocythere postilirata (Pang, 1985) (3) LV ext. sample Z0104, (4) RV int. sample Z037, (5) RV. 
int sample Z037;? L.dorsotuberosa (Huang, 1982) (6) RV ext. sample Z0110, (7) RV ext. sample 
Z0112, (8) RV ext. Z0112 



 

 

 

 

 

 

 

Fig.3: Eucypris cf. zandaensis Yang, 1982 (1) LV, ext., sample Z095; (2) a. RV int., sample Z096; 
Paraeucypris sp. (3) RV ext., sample Z053; (4) LV int., sample Z053; (5)  RV int., sample Z053; (6) 
LV int., sample Z053; ?Trajancypris sp. (7) RV ext sample Z018; (8) RV int sample Z018 



 

 

 

 

 

 

Fig.4: Ilyocypris spp. (1) LV, ext., sample Z010; (2) RV, ext sample Z010; (3) RV, ext., 
sample Z010; (4) RV, ext., sample Z010; (5) RV, ext., sample Z010; (6) LV, ext., sample 
Z010; (7) RV, ext., Z093; (8) RV, ext., sample Z010 



 

 Fig.5: Leucocytherella dangeloi Alivernini sp. nov. (1) RV, int., sample Z068; (2) RV ext., sample 
Z069; (3) LV int., sample Z068; (4) LV ext., sample Z069; (5) RV int., sample Z068; (6) muscle scars; 
(7) marginal pores 
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Chapter 5 - Synthesis 

 

 

In the three conducted studies ostracod taxonomy, lake levels variations and related climate 

changes were discussed. The lake level evolution of the Taro Co system for the last 40 ka and 

Tangra Yumco system for the last 17 ka were reconstructed using different approaches: The 

first  study  was  conducted  on  the  Taro  Co  lake  system.  Its  Late  Quaternary  history  was 

investigated to reconstruct local hydrological conditions and the regional moisture availability. 

For this aim, ostracod-based water depth and habitat reconstructions combined with OSL and 

radiocarbon dating were performed to better understand lake system evolution. The results 

show a high-stand at 36.1 ka before present which represents the highest lake level since then 

related to a wet stage and resulting in a merging of Taro Co and its neighbouring lakes Zabuye 

and Lagkor Co. The lake level then decreased and reached its minimum around 30 ka. After 

c. 20 ka, the lake rose above the present day level. A minor low-stand, with colder and drier 

conditions, is documented at 12.5 cal. ka BP. Taro Co, Zabuye and Lagkor Co formed one 

large lake with a corresponding high-stand during the early Holocene (11.2–9.7 cal. ka BP). 

After  this  Holocene  lake  level  maximum,  all  three  lakes  shrank,  probably  related  to  drier 

conditions,  and  the  lakes  became  separated  from  Taro  Co.  The  accelerating  lake-level 

decrease of Taro Co was interrupted by a short-term lake level rise after 2 ka BP, probably 

related to minor variations of the monsoonal components. A last minor high-stand occurred at 

about 0.8 ka before today. The remodelled chronology applied to the previous works of Ma et 

al. (2014) and Guo et al. (2016) allowed a direct comparison among the different 

reconstructions. 

The second study concerned the Tangra Yumco lake system, located about 240 km east of 

Taro Co in the central–southern part of the Tibetan Plateau. The extension and position of this 

lake system makes it valuable for reconstructing palaeoclimatic variations through the lake 

history and to compare both with the adjacent lake systems. We reconstructed Late Quaternary 

lake level changes based on data from two lacustrine sediment cores. A micropalaeontological 

analysis  focusing  on  Ostracoda  was  carried  out  combined  with  dating  (14C, 210Pb, 137Cs), 

sedimentology  and  stable  isotope  data  from  bulk  sediment.  An  ostracod-based  transfer 

function for specific conductivity was applied to assess and refine the reconstruction of lake 

level changes and to compare the results with other reconstructions from the Tibetan Plateau 

for evaluating inter-regional climatic patterns. The synthesis of ostracod-based environmental 

reconstruction and chronology for samples from Tangra Yumco reveals the evolution of the 

lake system during the past 17 ka. A low lake level around 17 cal ka BP is followed by a 

recovering until a high stand around 8–9 cal ka BP. Subsequently, between 7.7 and 2.5 cal ka 

BP, the lake level remained relatively stable with a subsequent short-living lowstand–highstand 
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cycle at around 2 ka. Thereafter, the ostracod-based conductivity transfer function shows a 

decrease of  conductivity  corresponding  to a  lake  level  rising  phase  at around  0.4  ka.  The 

recorded  changes  are  indicators  of  past  climatic  conditions  and  refine  the  palaeoclimatic 

models in this area. 

Among the two lake systems several synchronous trends were highlighted: 

1) A general growth of the water bodies between 14-10 ka with a fluctuation of the lake levels 

at around 12-11 ka. In this case, the only information available were the ostracod fauna (Taro 

Co and Tangra Yumco) and stable oxygen isotopes from bulk sediment (Tangra Yumco).  

2) An increase of the lake levels during the early Holocene, with a corresponding highstand at 

around 10-9 ka. For Taro Co no ostracod assemblage was available, and the reconstruction 

was carried out by sedimentology. Concerning Tangra Yumco, however, the transfer function 

was able to assess the increasing trend and to evaluate interaction among lakes of this system.  

3) In the following, a progressive general lowering of the lakes happened. During the Early and 

Middle Holocene the quantity of obtained samples was scarce and consequently, information 

about ostracod fauna is poor. 

4) A minor lowstand-highstand sequence occurred between 2 and 0.8 ka. Concerning Tangra 

Yumco  this  was  assessed  already  in  the  previous  work  of  Ahlborn  et  al.  (2016)  and  was 

confirmed by the ostracod-based transfer function. Taro Co’s assemblages were useful to give 

an evaluation of the highstand at this point.  

The third study focuses on ostracod associations of the Zhada Basin located in the western 

Tibetan Plateau. In this area almost no taxonomical studies were carried out so far, and, aiming 

to  a  future  use  of  ostracods  as  palaeoenvironmental  proxy  for  this  sector  of  the  Tibetan 

Plateau, a documentation of several unknown species was performed. This work increases 

the taxonomical knowledge and sets up a database for further studies on the poorly studied 

Pleistocene and Neogene sediments, especially in the western part of the  Tibetan Plateau. 

Our list of ostracod taxa from the Zhada Basin contains at least eight species, several of them 

are already described for the Tibetan Plateau. Among them L. sinensis is the most abundant 

species  often  observed  together  with  ?L.  dorsotuberosa  and  ?L.  postilirata  like  known  for 

recent faunas (e.g. Wrozyna et al., 2009b, Akita et al., 2016). Wrozyna (in Kempf et al., 2009) 

lists only five species from the Zhada Basin. One of them, Candona xizangensis Huang, 1982, 

was  not  found  in  our  study.  We  assume  the  harsh  environmental  conditions  of  the  high 

elevation to be the cause for the low diversity observed. The taxa from the Zhada Basin and 

also known from the recent ostracod fauna of the Tibetan Plateau are mainly lacustrine species 

indicating lake sediments for most samples. The ostracod-based palaeoenvironment of the 

sediment varies from estuarine-like to moderately deep lacustrine water. The new species 

Leucocytherella dangeloi sp. nov. is very interesting for the evolution of the genus 

Leucocytherella Huang, 1982 endemic to the Tibetan Plateau and points to a lacustrine habitat 
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as  well.  Species  in  open  nomenclature  as  Ilyocypris  spp.,  Paraeucypris  sp.,  Eucypris  cf. 

zandaensis and ?Trajancypris sp. need more material and further studies to be classified on 

the species level. 

Based on the taxonomical analysis and more sample material a quantitative palaeoecological 

analysis of ostracod faunas from the Plio-Pleistocene Zhada Basin will enable new 

palaeoenvironmental and palaeoclimatic reconstructions.
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Chapter 6 - Discussion 

 

 

6.1 Analysis of methods used 

6.1.1 Ostracoda 

In  this  thesis  the  use  of  ostracods  as  tools  to  achieve  and  refine  lake-level  curves  was 

discussed in the included articles. One of the most useful points for this group of Crustacea is 

their sensitivity to the environmental changes and consequently their use for transfer functions. 

This tool for the Taro Co lake system’s case, offered to evaluate a range of previous water 

depth for the sampling points. This could be particularly valuable in case of difficult facies 

attribution for the assumed ancient shorelines. However, the difference in RMSEP with the 

previous  article  of Guo  et  al.  (2016)  suggests the  necessity  of  a  reliable  taxonomical  and 

ecological ostracod dataset because bigger  uncertainties would blur the transfer function’s 

potential. Another important issue is a stable lake system for reliable water depth estimates. 

Greater salinity or productivity changes would distort the results of the water depth estimates 

increasing the inaccuracies. 

Concerning the Tangra Yumco lake system another important point related to the ostracod-

based conductivity transfer function is the possibility to reconstruct, in association with the 

stable oxygen isotopes, the interactions among lakes and their possible conductivity conditions 

in a specific time frame. Also in this case, the technique has the limitations of the ostracod 

dataset, as long as if they do not have a narrow range of conductivity tolerance their transfer 

functions will show a high error. Another problem, like for Tangra Yumco and Tanqung Co 

interaction  around  10  ka,  the  ostracod  assemblage’s  answers  could  be  affected  by  the 

interactions  among  the  water  bodies  and  not  only  by  difference  in  water  level  and  the 

assemblages should be always considered within more proxies to achieve a reliable 

reconstruction. 

 

6.1.2 Dating 

The dating methods used for this work were OSL and 14C and the combined use of the two 

methodologies avoided problems often associated  with organic  material for 14C, difficult  to 

obtain on paleoshorelines or affected by hard water effects (Berger et al., 2002, Li et al., 2002, 

Forman et al. 2006, Lee et al., 2009). Problems related to the particle sizes of the sediment 

are relevant for OSL dating.  

OSL dating is based on time-dependent dosimetric properties of quartz and feldspar (Aitken, 

1998) and provides an estimate of the time since mineral grains, like quartz and K-feldspar, 

were  last  exposed  to  sunlight  prior  to  ultimate  burial.  However,  recent  work  comparing 
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independently dated sediments with luminescence ages based on feldspars has shown that, 

at least in some circumstances, feldspars underestimate the age (Wallinga et al., 2001). Many 

feldspars suffer from a phenomenon known as ‘anomalous fading’ whereby charge trapped 

within the crystal that is predicted to be stable for periods of hundreds of thousands of years, 

or more, can be observed to decrease during laboratory experiments lasting a few tens of days 

(Duller, 2004). In this work we used quartz grains, unaffected by anomalous fading (Duller, 

2004), and fading test were not necessary.  

Other problems affecting the reliability of the OSL dating of Quaternary sediments are (1) the 

possible  exposure  of  some  grains  to  sufficient  daylight  to  reset  pre-existing  luminescence 

signals, and (2) some grains that received little or no exposure to daylight and hence retained 

a large signal at deposition (Duller, 2004). For the first case, it would be necessary to use 

methodologies based on the scatter in OSL results, the form of the optical decay curve or the 

comparison of different luminescence signals (Wallinga et al., 2001). If these methods are not 

applicable, the age obtained should be interpreted as a maximum age for the deposits. 

The second point could be related to the presence of turbid water in lacustrine environments, 

where the intensity of the light is greatly reduced, and the spectrum of the light is restricted 

(Wallinga et al., 2001). As a consequence, some trapped charge might remain at the time of 

deposition  and  burial  of  the  grains.  As  luminescence  measurements  cannot  distinguish 

between charge trapped before and after burial, such remaining trapped charge may lead to a 

significant  overestimation  of  the  luminescence  age.  In  this  case  Duller  (2004)  suggests to 

check the variations of single aliquots of grains (in extreme cases, among single grains), to 

check the variability of light exposure and eventually to identify samples with ages that may be 

suspect. 

Radiocarbon dating has been the most commonly applied method to establish chronologies 

for Quaternary records. Unfortunately, dating sediments on the Tibetan Plateau is a challenge 

since most of the lacustrine archives are affected by a reservoir effect varying from lake to lake 

and can be as high as >6000 years (Hou et al., 2012). Different approaches have been used 

to determine the reservoir effect and overcome this hurdle in establishing reliable and robust 

chronologies in individual lakes. However, a uniform and effective method has not yet been 

established. To solve this problem, it is common to obtain an age from the sediment–water 

interface or modern water plant which is subtracted from the other ages using the assumption 

of a constant reservoir effect over time (Hou et al., 2012; Kasper et al., 2012; Mischke et al., 

2013). Recently, radiocarbon-based chronologies for the late Holocene have been evaluated 

using palaeomagnetic secular variation data from lake sediments and they proved to be a 

valuable tool (Kasper et al., 2012; Ahlborn et al., 2015; Haberzettl et al., 2015), in combination 

with measurements on 210Pb and 137Cs activity on the uppermost part of the cores. Haberzettl 

et al. (2015), through magnetostratigraphy and 210Pb measurements, corrected the previously 
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reported reservoir effect and determined a new one of 120 ± 30 years for the late Holocene 

sediments from Taro Co. Following Guo et al. (2016) and Ma et al. (2014), our results would 

not be chronologically in phase for the Taro Co lake system but, after the dating correction of 

Haberzettl et al. (2015), their results are comparable with those discussed in the present study.   

 

6.1.3 Ancient shorelines and lake horizon identification 

In general, one of the most difficult problem for the reliability of the lake level reconstruction on 

the Tibetan Plateau are the sequences were the lake level was lower than present, because 

their presence could be hidden or eroded by the lake’s water. For the Tibetan lakes it could be 

very relevant during the LGM, where the majority of the water bodies dropped strongly. In this 

case coring inside the basins are necessary to assess their depth during this lower phases. If 

shorelines  or  phases  of  lake  sedimentation  of  previous  higher  lake  levels  are  not  easily 

recognisable or sortable, the ostracod association combined with sedimentology could be a 

further proxy to discern them by evaluating their palaeoenvironments.  

 

6.2 Palaeoclimate reconstruction 

6.2.1 Factors influencing the Tibetan Plateau lakes’ evolution and their study 

In general differences between the observed lake records may be not only related to climate 

factors. Other important components could be the tectonic impact on climate and hydrography 

of lake systems. In a large scale, the uplift of the Tibetan Plateau, which began 50 Ma ago (An 

et  al.,  2001),  is  considered  the  primary  cause  of  monsoon  initiation  and  intensification 

(Kutzbach et al., 1989; Yanai et al., 1992; Zhang et al., 2015). Concerning the period between 

the Late Miocene until recent times the NE Tibetan Plateau was best investigated (e.g. An et 

al., 2001 Zhang et al., 2007), showing accelerated uplift and differential rotation phases from 

8 ka until recent times (Li et al., 2014b). The tectonic trend reported in literature is in phase 

with the one of Tangra Yumco and Taro Co lake system levels, where a general aridification 

from ca. 8 ka is reported. In this work time-frame, however, if the tectonic could be an important 

factor to cause the opening or closing of lake systems, it is difficult to assess a direct climate 

influence for the considered area, mainly because the short period of time considered. In order 

to evaluate on a smaller time-scale the climate response to the tectonic in the studied area, it 

is still to assess if the whole Tibetan Plateau has been subjected to a similar or a differential 

compression  among  its  sub-regions,  which  has  been  not  investigated  so  far.  Anyhow, 

concerning the investigated lakes Armijo et al. (1986) consider neotectonics probably with only 

a minor role in the lakes interaction in this region. 

The Asian monsoon system interplay with the mid-latitude westerlies over large parts of China 

(fig. 2)  is  considered  the  most  important  factor  which  controls  the  climate  on  the  Tibetan 
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Plateau (Wang et al., 2001; Hu et al., 2008; Liu et al., 2014). The existing paleoclimate records 

on the Tibetan Plateau disagree on the timing and nature of climate change and it is unclear 

whether these differences are due to hydroclimatic spatial heterogeneity or due to differences 

between proxies. Furthermore,  it is difficult to distinguish between the influence of different 

moisture sources using existing individual proxy reconstructions. In addition, summer monsoon 

and extratropical circulation are controlled by different forcing mechanisms on millennial and 

orbital time scales. For this, the relative predominance of monsoons and westerlies are still 

uncertain, mainly due to the different methodologies used as well as many interpretations lack 

an in-depth discussion of interacting processes which are fundamental preconditions for the 

understanding  of  hydro-climatic  variations  over  longer  time  scales.  However,  in  the  last 

decades several studies discussed the possibility to bound and reconstruct the single forces 

driving the moisture availability on the Tibetan Plateau, e.g. Hou et al., (2017) reconstruct the 

Indian summer monsoon influence using leaf wax δD records. The results showed a moderate 

influence of this force during the Late Pleistocene and from the Middle to the Late Holocene, 

suggesting drier periods during these time intervals, which is in general phase with the results 

of  the  present  study.  Concerning  the  Asian  summer  monsoon  evolution,  several  studies 

proposed a migration of the Asian summer monsoon deep into the interior of the plateau during 

the early and middle Holocene followed by a general decline of summer monsoon strength 

after about 6 ka (e.g. Gasse et al., 1991; Yao et al., 1997; Qiang et al., 2017). Its boundary 

detection is limited at the north-eastern part (Wünnemann et al., 2018) of the Tibetan Plateau 

and  so  far  it  was  not  possible  to  distinguish  clearly  its  penetration  limit  in  the  inner  part, 

Figure 2: Major atmospheric circulation pattern on the Tibetan Plateau derived after Wünnemann et 
al., 2018. Coloured arrows: Indian summer monsoon (blue), East Asian summer monsoon (dotted 
red); major position of westerly jet in winter (orange) and summer (dotted orange). The full names 
for the discussed lakes are given in fig. 1. 



Chapter 6 
 

 
76 

increasing the risk of a wrong interpretation if transferred directly to the southern and western 

area.  

Another  important  factor  that  could  potentially  shift  the  lake  level  reconstructions  is  the 

meltwater influx in the considered lakes, but unfortunately there are no many references about 

a  strong  influence  of  the  glaciers  water  overall  the  Tibetan  Plateau  in  the  literature.  It  is, 

however, considered a possible important factor only for the lakes close to the Himalaya chain 

(e.g. Zhang et al., 2012; Wünnemann et al., 2015). In Taro Co, Guo et al. (2016) consider this 

input present but not dominant. 

Because of all these reasons, a comparison of synchronisms among different lakes on the 

Tibetan Plateau needs a detailed analysis and interpretation between the individual factors, 

which is not always available. For the comparison lakes have therefore been considered in 

which the analyses envisaged research approaches based on palaeobiological, sedimentary 

and  /  or  geochemical  components,  although  obviously  this  is  not  a  safety  index  on  their 

complete  reliability.  However,  a  temporal  correlation  between  the  different  lakes  is  made 

difficult by the time intervals considered in the various works, of which most consider phases 

since 20 ka and rarely before. 

 

6.2.2 Synchronicity and general trends on the Southern Tibetan Plateau 

This thesis evaluates and compares the results among the investigated lake systems of Tangra 

Yumco and Taro Co with other lakes on the southern part of the Tibetan Plateau. Concerning 

this, we considered water bodies already investigated by several authors along a west-east 

transect, in order to check possible synchronicity with Tangra Yumco and Taro Co evolution 

(fig. 3): 

Considering the first stage (40-30 ka) for the southern Tibetan Plateau we have information 

only about the already discussed Taro Co lake system and for Paiku Co (Wünnemann et al., 

2015) with different trends reported. Taro Co shows a high lake level followed by a fast decline 

between 35 and 30 ka, Paiku Co a generally increasing trend. The only possible confirmation 

of this different trend is related to works on the northern part of the Plateau, where a large-

scale increasing of water bodies is reported by Zheng et al. (2005). However, the general lack 

of information and the different condition of Paiku Co where probably meltwater plays a bigger 

role than in Taro Co could be also an explanation for the different water bodies evolution, 

especially in case of warm conditions. 

During the time frame 30-25 ka Taro Co shows stable conditions followed by a rising of the 

lake level. This process is not in phase with the lake reconstructions of Paiku Co and Chen 

Co, where a stable to decreasing and a falling lake level are reported, respectively. This could 

be related to a bigger influence of the winter westerlies on the region meeting more the western 

part and a weaker Indian monsoonal component. 
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In the third stage (25-22 ka) Chen Co lake level continued to fall, whilst Paiku Co passed from 

stable  to  increasing  conditions  and  Taro  Co  rose.  Following  the  precedent  statement,  a 

possible intensification of the winter westerlies with a correspondent decreasing influence from 

west to east is a potential explanation, although for these firsts three stages, the dataset is still 

too scarce to elaborate a more detailed climate evolution of the area. 

During the fourth stage (22-18 ka) a general increasing trend for almost all the lakes considered 

is reported, with the only exception of Paiku Co. In this case a possible reinforcing of the Indian 

Monsoon component could be also taken in consideration following its differential spreading 

through the Himalayan chain (Wünnemann et al., 2018) meeting Chen Co and Nam Co but 

with negligible or no effect on Paiku Co. 

In the following stage (18-14 ka) the general reconstructed climate conditions were splitted in 

two regions, with the transect from Tso Moriri to Nam Co registering increasing of lake levels, 

and the eastern and south eastern part with a falling lake level. The only exception is Taro Co, 

where, however, the lacking of data in the dataset during this period could suggest a slightly 

different trend, where the lake level is still rising. The general tendency suggests a major role 

of the Westerlies compared to the Indian Monsoon at this time frame. 

The  fifth  stage  (14-10  ka)  is  characterised  by  a  general  increasing  trend  for  all  the  lakes 

considered. Almost all records report fluctuations at around 12-11 ka, reflecting variations in 

the  intensity  of  the  circulation  factors  at  the  transition  to  the  Holocene,  confirming  the 

investigated trend of the ostracod assemblages and δ18O for Taro Co and Tangra Yumco.  

After this interval, between 10-7 ka, lake levels generally fell after a highstand at around 9-8 

ka, with the only exception of Chen Co. It is difficult to evaluate the different response of Chen 

Co, where local factors like meltwater input are predominant (Zhu  et al., 2003) and dating 

should be revised following Haberzettl et al. (2015). 

In  the  last  stage  (7-0.4  ka),  the  lakes  follow  a  discontinuous  negative  trend.  Important 

fluctuations between 3-0.8 ka is reported for Tso Moriri (1.1-0.4 ka) Taro Co (2-0.8 ka), Tangra 

Yumco (2.3-1.8 ka), Nam Co (2.4-1.8 ka), Puma Yumco (~2 ka) and Bangong Co (2.2-1.2 ka). 
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Figure 3: Lake level evolution for the considered water bodies in the period 40-0.4 ka. The white 
points  indicate  lacking  of  information  for  the  correspondent  time  frame.  The  better  general 
synchronicity of lake evolution from 14 ka is evident, where more information are available. For 
the name of the lakes see fig. 1. 
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Considering the uncertainties of the chronological model for the Tso Moriri core (Peng et al., 

2013; Leipe et al. 2014) and the time-lag for this event comparing the two records we assume 

a possible synchronous timing. This last sequence is probably related to minor variations of 

the monsoonal components in the considered lakes (Kasper et al. 2012, Ahlborn et al. 2016). 

As fig. 2 suggests, the lakes present in the northern part of the Tibetan Plateau are not easily 

comparable  to  the  southern  lakes,  because  of  the  influence  of  the  East  Asian  Summer 

Monsoon and of the Summer Westerlies. However, the climate reconstruction for lake Kuhai 

(Wünnemann et al., 2018) shows the hydro-climatic optimum with the highest lake level during 

the middle Holocene shifted about 1-2 ka later compared to the southern lakes, probably due 

to  the  influence  of  the  East  Asian  Summer  Monsoon,  negligible  in  the  considered  lakes. 

Anyhow, a strong decline afterwards due to climate deterioration is also reported, showing the 

general weakness of influence of the summer monsoonal components.
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Chapter 7 - Conclusion and outlook 

 

 

This thesis is part of the research on the Tibetan Plateau climate evolution, investigating two 

different lake systems according to ostracod-based approaches. To prove the reliability of the 

present  study’s  lake  level  reconstructions,  possible  synchronisms  or  asynchronisms  with 

others Tibetan water bodies were checked and evaluated. An additional work to characterize 

the poorly studied ostracods fauna of Zhada Basin was carried out. Concerning the scientific 

questions of this study it was possible to give the following answers:  

1) The evolution of the lake level of the Taro Co lake system can be divided into five main 

phases: (1) at about 36 ka BP, the presence of a Late Pleistocene highstand, with the three 

lakes merged together; (2) since then, a rapid decline in lake level during a dry phase between 

35 and 23 ka before the present day; (3) the three lake basins were combined into one large 

lake during the early and middle Holocene. The lake reached the highest level of the entire 

Holocene during c. 11.2–9.7 ka cal BP; (4) Lagkor Co was separated from Taro Co at around 

7 ka and Zabuye Lake was separated at around 3.5 ka; (5) a least a minor high stand occurred 

at about 0.8 ka before present. 

2) The lake level evolution of the Tangra Yumco lake system as refined with the ostracod-

based transfer function and the δ 18O analysis can be divided into six main phases; (1) in the 

oldest stage (17–10.5 ka) of generally increasing lake levels. (2) At around 10 ka, a decrease 

of conductivity explained by a switch from an open to a closed lake basin; (3) between 9.8 and 

7.5cal  ka  BP  progressive  lowering  of  the  lake  level.  This  trend  is  also  confirmed  by  δ18O 

analysis. (4) During the period 7.5–3.7 cal ka BP the general lack of data does not allow a 

more precise reconstruction, but the moderate trend of increasing δ 18O could be related to a 

decrease of the lake level; (5) after this, the conductivity is in general in good agreement with 

Ahlborn  et  al.’s  (2016)  lake  level  curve,  especially  around  2  ka,  where  the  fast  switch  of 

decreasing and later increasing lake level is synchronously mirrored by the conductivity curve; 

(6)  thereafter,  the  conductivity, δ18O  and  lake  level  curve  agree  until  0.4  ka,  where  the 

conductivity starts to decrease earlier than the rise of the lake level and the positive shift of 

δ18O. 

3) The general trends and the synchronicity of the studied lakes compared with other lakes on 

the Tibetan Plateau were mostly recognisable. Especially in the time frame after 18 ka, where 

more information are available, our results correspond with only some time-shift, probably due 

to different dating or different exposure to the Indian Monsoon and the Westerlies. 

4) Our taxonomic work highlights the presence of several ostracod taxa in the Zhada Basin, 

correspondent  as  well  as  not  correspondent  to  species  already  described  on  the  Tibetan 
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Plateau so far.  The new species  Leucocytherella  dangeloi shows  a higher rounding in the 

posterior part and a general weaker ornamentation than in  Leucocytherella sinensis. It was 

possible to  classify  it as distinct  species.  Ilyocypris  spp. belong probably  to  three  different 

species, although for the complexity of the taxonomical classification of this genus, further work 

is needed as well as for the species in open nomenclature: Ilyocypris spp., Paraeucypris sp., 

Eucypris  cf.  zandaensis  and  ?Trajancypris  sp.  The taxa from the  Zhada Basin  are  mainly 

lacustrine  species  indicating  lake  sediments  for  most  samples.  Based  on  the  taxonomical 

analysis and more sample material a quantitative palaeoecological analysis of ostracod faunas 

from the Plio-Pleistocene Zhada Basin will enable new palaeoenvironmental and 

palaeoclimatic reconstructions. 

The multi-proxy approach including micropalaeontology, sedimentology and dating in both the 

lakes was proven to be a valuable tool for lake level reconstructing and their refining. However, 

several time frames for both the lake systems are still with incomplete datasets and further 

sampling and dating to cover that intervals are needed. Another necessary point should be an 

additional work to assess the ostracods’ (palaeo)ecology in these water bodies, especially 

based on living individuals. A more complete dataset could reduce the errors intervals for the 

ostracod-based transfer functions for both depth and conductivity, allowing a better level of 

detail in reconstructions. 

Regarding  the  investigated  lake  systems’  evolution  a  very  interesting  point  would  be  the 

influence of tectonic, meltwaters or underground springs in these water bodies. The evaluation 

of their impact would be of great interest to better assess the impact of westerlies and summer 

monsoons in this area. 

The most incomplete lakes dataset for the whole region is the western part mainly due to its 

difficult accessibility. As already mentioned in the previous paragraphs only a few works were 

carried out so far and almost nothing concerning ostracods. Because of the relative isolation 

and the possibility of endemisms additional taxonomical and (palaeo)ecological work on the 

local  faunal  assemblages  is  needed.  The  present  study  in  the  Zhada  basin  starts  with 

taxonomical work in the area and time frame, but in the future further work is needed. 

The comparison among lakes from the southern part of the Tibetan Plateau showed several 

critical points, due to the fact that lake level records are based mainly on different proxies and 

it is not easy to resolve the variable influence of the moisture sources. Good opportunities are 

the stable oxygen isotopes that can shed some more light on this aspect to check the dominant 

factors (e.g. Yao et al 2013; Maussion et al., 2014 Li and Garzione, 2017) and are able to 

distinguish impact of local recycled /convective water resources and/or mixture with westerlies 

or monsoonal components.  

The evaluation of the circulation pattern is another crucial point. Although some boundaries of 

the monsoonal and westerlies components’ influence were detected (e.g. Polanski et al., 2013; 
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Chiang et al., 2015; Wünnemann et al., 2018) their seasonal interplay in the most internal part 

of the Tibetan Plateau is still to assess. Reanalysis data show that the moisture transport from 

the Bay of Bengal is blocked by the Himalayan mountains and redirected north-eastwards and 

not directly transported to the Tibetan Plateau (Maussion et al. 2014). Thus, the sources of 

monsoonal air masses and the transport route are still unknown and setting up and refining of 

climate models is needed.  

Misinterpretation  due  to  uncertain  chronologies  and  poor  understanding  of  the  proxies 

(Mischke et al. 2010b, Opitz et al. 2015) are a problem for palaeoclimatic reconstructions. To 

scope with this problem, the multi-proxies approach of Tangra Yumco and Taro Co proved to 

be a suitable method. As valid chronologies are a crucial precondition for climate 

reconstruction (Haberzettl et al., 2015) more effort should be spent on this, also re-calibrating 

previous works in order to compare easier the different lake evolutions.
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