
Full Reviewed Paper at ICSA 2019
Presented* by VDT.

The Virtual Acoustic Spaces Unity Spatializer with custom head tracker
T. Resch1, M. Hädrich2

1 Hochschule für Musik Basel FHNW, Research and Development | TU Berlin, Audiocommunication Group
Email: thomas.resch@fhnw.ch

2 TU Berlin, Audiocommunication Group, Germany, Email: markus.haedrich@tu-berlin.de

Abstract
The virtual acoustic spaces (VAS) unity spatializer is a plugin for dynamic binaural synthesis for Unity. It can handle
impulse responses (IRs) of arbitrary length (limited only by hardware resources). Hence, it is possible to calculate the
binaural synthesis not only with head related transfer functions (HRTFs), but also on the basis of binaural room impulse
responses (BRIRs). The plugin can also virtualize reflections calculated by raytracing and it is possible to load an individual
IR set for each instance. In addition to being compatible with off-the-shelf cross reality (XR) hardware it features a Bluetooth
binding for an easily built, custom-made head tracker based on an ESP32 board. It is therefore predestined for audio
augmented reality applications.

1. Introduction
The game engine Unity has become very popular. Not only in
the field of game development, but also in scientific areas, for
example in the virtualization of acoustic environments. In
combination with off-the-shelf XR systems such as the HTC
Vive, Unity provides a very simple setup for dynamic binaural
synthesis: the angles (azimuth and elevation) between sound
source and the person wearing the XR glasses are sent directly
from the integrated head tracker to the spatializer plugin. The
binaural synthesis is calculated depending on the user's head
orientation. But this is only a solution if a complete virtual
reality experience is desired. For an audio-only augmented
reality (AR), a standalone head tracker is necessary.
Furthermore, the existing binaural spatializers for Unity can
either not load custom IRs, or at most one set, or the length of
the IRs is limited. Most of them are not available for all
operating systems. Due to these constraints (which are
described in detail in section 2) a first version of the VAS
Unity Spatializer was developed for the project Analog
Speicher [1] where architecture and the corresponding
acoustics of various ancient buildings were simulated. The
plugin had to be able to load ten different BRIR sets with
lengths of up to 0.5 s into one Unity scene simultaneously. For

the game LosEmal which is currently being developed for the
project Myosotis [2], three further requirements were added:
firstly, the plugin had to support iOS. Secondly (because the
target platform is not a VR system), a connection to a
standalone head tracker had to be implemented, because the
game principle relies on a well-functioning binaural synthesis.
And third, early reflections for less reflecting outdoor
environments as described in [3] should be simulated to make
the binaural synthesis more plausible.

Therefore, a new version of the plugin was developed with
iOS and OSX bindings to an inexpensive, custom-made
Bluetooth head tracker, based on an Adafruit Huzzah32
development board. The sensor fusion was realized with a
Sparkfun BNO080 inertial measurement unit (IMU) because
according to its datasheets, the BNO080 is supposed to
perform an outstanding sensor fusion and has not been used
in any open source projects yet.

This paper starts with a brief discussion of related work in
section 2. Section 3 describes the setup of the native Unity
plugin, the corresponding C# scripts, the head tracker and its
communication with Unity. Section 4 outlines the
implementation details of all components. Section 5 deals
with measurement results regarding latency and CPU usage.

Proceedings of ICSA 2019 5th International Conference on Spatial Audio
September 26th to 28th, 2019, Ilmenau, Germany

DOI (proceedings): 10.22032/dbt.39936DOI: 10.22032/dbt.39962

© Verband Deutscher Tonmeister e.V., 2019 - 107 -

https://doi.org/10.22032/dbt.39962
https://doi.org/10.22032/dbt.39936

2. Related Work
Several binaural spatializer plugins are available for Unity.
The Oculus plugin [4] supports Android, OSX and
Windows. It cannot handle custom IR sets. Microsofts
plugin is neither able to do this, nor is it compatible with
systems other than Windows [5]. Resonance Audio by
Google supports all platforms, but it is not documented how
custom HRTFs can be used [6]. Steam Audio provides an
SDK and a spatializer for Unity [7]. It supports the Sofa file
format [8] and can thus load custom HRTFs and render
dynamic binaural synthesis. There is no support for iOS yet
and only one IR set can be loaded globally for all plugin
instances. The SOFAlizer for Unity is capable of loading up
to 10 different HRTFs, but the impulse responses are always
shortened to 256 samples. According to the developers there
is only support for Windows [9]. The Soundscape Renderer
(SSR) [10] [11] is a C++ software capable of rendering
dynamic binaural synthesis. In combination with a virtual
sound device such as Jack it can be used in conjunction with
Unity. However, compiling the SSR for iOS or Android is
not documented. EVERTims [12] [13] is a framework for
the auralization of 3D models with raytracing for OSX,
Windows and Linux. It’s based on the Accelerated Beam
Tracing Algorithm by Lane, Siltanen, Lokki and Savioja
[14]. While it looked promising, the Binaural Synthesis Kit
[15] is not yet available for download. Open source head
tracker projects such as the Hedrot by Alexis Baskind [16],
the EDTracker [17], the open headtracker [18] or the
MrHeadTracker by Romanov, Berghold, Rudrich,
Zaunschirm, Frank, Zotter [19] all have a wired transmission
only. Robert Twomey’s bluetooth-headtracker [20] comes
with Bluetooth but the used sensor board is no longer
available. The very advanced project DIY-low-cost-head-
tracker with sensor fusion, BLE- and serial connection by
Sascha Spors [21] uses the MPU9250 which will be
deprecated soon.

3. Setup and availability
The presented solution consists of four components: the
plugin, the scripts for plugin configuration, the head tracker
and a small Bluetooth app with two corresponding Unity
scripts which enable the communication between head tracker
and Unity. In its simplest configuration, the plugin renders a
dynamic binaural synthesis with the possibility to apply a
directional pattern to the sound emitter. In order to take full
advantage of the Unity environment, the plugin can be
configured to calculate up to 20 reflections. All components
are available as source code at the project repository [22]
including precompiled plugin binaries for iOS and OSX, a
sample scene for Unity and detailed installation instructions.
Head tracker firmware, circuit diagram and additional
information for building, programming and configuration are
also available there. Detailed calibration instructions for the
BNO080 are provided by the manufacturer [23].

3.1. Unity
The plugin binary must be placed in the Unity project folder
in Assets/Plugins/(TARGET_PLATFORM) and the

VAS_Unity_Spatializer must be chosen as Spatializer Plugin
under Project Settings/Audio. Unity will search automatically
for the version appropriate for the respective target platform.
IRs must be placed within the Assets/StreamingAssets folder
to ensure cross-platform file access. In the settings of any used
audio source the checkbox Spatialize must be activated and
Spatialize Blend should (usually) be set to 1. In order to load
an IR set into a plugin instance, one of the C# VasSpatConfig
scripts must be added to the Unity Game Object that contains
the audio source. Three different versions are available:

• VasSpatConfigSimple
• VasSpatConfigManual
• VasSpatConfigAuto

All three implement the basic communication between the
native audio plugin and C#. The latter one demonstrates the
usage of Unity’s physics engine in cooperation with the VAS
Unity Spatializer for raytracing.

3.1.1. VasSpatConfigSimple

This script configures the plugin as a simple binaural renderer.
Audio sources can be provided with a directional pattern. The
script exposes seven variables in the Unity editor view:

• IR set has to be set to the IR filename including its
extension but without its path. Supported file
types are .txt files in the VAS format and Sofa
files [8].

• Global denotes whether the IR set should be used as
a global filter for all instances of the plugin.

• Directivity damping defines, whether the signal is
damped linearly or logarithmically outside its full
sound pressure area.

• Horizontal source width sets the area in degrees in the
horizontal plane where the source is audible.

• Horizontal full sound pressure defines the area where
the signal is emitted with full sound pressure in the
horizontal plane.

• Vertical source width sets the directivity in degrees in
the vertical plane where the source is audible.

• Vertical full sound pressure defines the area where
the signal is emitted with full sound pressure in the
vertical plane.

Fig. 1: Directional pattern example with a horizontal source width
of 120º and full sound pressure level of 80º.

If the four latter parameters are set to 360°, the source behaves
as an omnidirectional emitter. If the horizontal width
parameter is, for example, set to 120° and the full horizontal

© Verband Deutscher Tonmeister e.V., 2019 - 108 -

Proceedings of ICSA 2019 5th International Conference on Spatial Audio
September 26th to 28th, 2019, Ilmenau, Germany

sound pressure to 80° (fig 1.), the source emits from 0° to 40°
and from 320° to 0° with full energy. Within 40° to 60° and
330° to 340° the signal is gradually lowpass-filtered and
attenuated. This is done either linearly or logarithmically
(depending on the Directivity damping parameter). Bi-
directional patterns can be achieved with two sources,
emitting into opposite directions. Distance related damping is
realized with Unity’s build-in audio source features.

3.1.2. VasSpatConfigManual

With the VasSpatConfigManual script it is possible to add
five binaural reflections for an Audio Source. The user has to
manually create and place game objects in the Unity scene and
drag them onto the public variable slots of the script. They
determine the locations of the corresponding reflections.
Public variables in addition to those of the first script are:

• Reflection 1–5 are public variable slots for arbitrary
game objects representing the position of the
reflections.

• Material stiffness selects a material characteristic.
Possible settings are low, middle and high.

3.1.3. VasSpatConfigAuto

This script uses raytracing to determine the locations of the
reflections which are updated in real time. The number of rays
is currently hardcoded to five rays. It has one additional
variable:

• Reflection order defines, how many reflections per
ray shall be calculated.

3.2. Head tracker
Precision and latency of the head tracking are among the
most important quality assurance factors for an immersive
auralization of virtual acoustic scenes, eg. dynamic binaural
synthesis. For the entire audio path, refresh rates of 60 Hz
and total delay times of 50 ms are considered acceptable
[24]. Because head tracking is only the first part of this audio
path, less latency at this point leaves more time for
subsequent audio processing and is therefore desirable.
The practical aim of the presented solution is an interaction
in which both source and listener are moving. Therefore, the
minimal audible movement angles (MAMA) [25] are
relevant factors. Strybel, Manligas and Perrott found a
sensitive area for movement detection with 1° to 2° at a
position of +40° and -40° azimuth and elevations below 80°.
Outside of this area the MAMA increased to 3° to 10° [26].
Keeping this in mind the head tracker device should offer a
minimum accuracy of less than 3°. The presented do-it-
yourself (DIY) low cost head tracker device is made of an
Host MCU - Adafruit Huzzah32 development board
(ESP32), which supports Wifi and Bluetooth Low Energy
(BLE) 4.2, and a Sparkfun BNO080 IMU sensor board
connected via I2C. Apart from receiving the IMU data, the
ESP32 handles the wireless communication and device
management. For mobile use, the device has its own power
supply, in the form of a 3.7 V LiPo battery, and a hardware
on/off switch. The BNO080 provides orientation data with
and without inclusion of the magnetometer. The internal
sensor fusion uses the magnetometer for drift correction of

the gyroscope. Thus, a smooth output (e. g. for games) or the
most accurate output can be selected. The former setup can
lead to the typical drift in long-term applications, the second
setup to possible jumps during the correction process.
However, with the help of a stabilization function (AR/VR
stabilization), these jumps can be gradually corrected so that
this sensor board is well suited for AR/VR tracking
applications. When using the Gaming Rotation Vector,
which does not use the magnetometer, a static/dynamic error
of 1.5°/2.5° is specified. This complies with the Strybel et.
al. [26] condition for the MAMA. In this setup, the drift of
0.5°/min can be balanced if AR/VR stabilization of this
vector is selected [27].

3.3. Head tracker connection to Unity
VAS Head Tracker Connect is a standalone software,
currently available for iOS and OSX, that serves as an
intermediary between Unity and head tracker. It connects to
the head tracker via Bluetooth and sends azimuth and
elevation as open sound control (OSC) UDP packets to Unity.
Two values can be set in the user interface:

• OSC port number must be set to match the receiver
port in Unity

• Headtracker ID must be set to match the head
tracker’s name which is currently hardcoded to the
head trackers firmware.

Fig. 2: VAS head tracker consisting of an Adafruit Huzzah32
development board, a Sparkfun BNO080 IMU sensor board and a
mobile power supply, (LiPo battery, 3.7 V).

Azimuth and elevation do not describe the exact head
position of the listener, as a possible lateral tilt of the head is
not included. There is currently no HRTF or BRIR dataset
that also shows lateral tilt of the head on a straight torso.
The advanced Head-Above-Torso (HATO) HRTF database
created by Brinkmann et. al. [28] also uses only azimuth
and elevation. In the future, if there are data sets that
support a lateral head tilt (Euler angle: roll), this angle can
easily be provided by the BNO080. However, such data sets
would either be very large, since for every possible head tilt
a complete 360° data set would have to be present or would
have very high computational costs due to the interpolation
required for reduced data sets. Both cases are rather
unfavorable in terms of resource allocation for mobile use
and require further development work, both hardware and
software.
Since both, the BNO080 and Unity work internally with
quaternions with the y-axis (here elevation) is limited to
±90° [27, 29], no problems with the gimbal-lock are known.

© Verband Deutscher Tonmeister e.V., 2019 - 109 -

Proceedings of ICSA 2019 5th International Conference on Spatial Audio
September 26th to 28th, 2019, Ilmenau, Germany

In Unity the package uOSC [30] has to be installed. The
scripts uOSCServer and ReceiveHeadtrackerData have to be
attached to the Audio Listener object.

4. Implementation details
The plugin performs a uniformly partitioned overlap add
convolution. Length of the IRs is not limited (only by
hardware resources). For implementation details about the
underlying rendering engine, please refer to the publication
and documentation about the VAS library [22] [31] .

4.1. Unity
The plugin is implemented with Unity’s native audio plugin
SDK in C++. Azimuth and elevation are automatically
accessible in C++ for the direct path from source to listener.
To be able to calculate angles and delay times for the
reflections, their positions must be transmitted manually as
float values from C#, along with the parameters for material
characteristics. The maximum number of reflections is limited
by the native plugin parameters which have to be declared and
initialized in advance in the data structure of the plugin. The
current implementation uses five rays. Reflections are
calculated up to the 4th order, resulting in twenty reflections
in total. The complete signal processing pipeline is illustrated
in figure 3 below.

Fig. 3: The complete signal processing pipeline from source to
listener.

Frequency related air absorption is approximated for 20º C
and 20 % humidity with two cascaded biquad filters, similar
to the illustrated filter curves in [32]. The directional pattern
(and the corresponding damping) is applied to the direct path
from sound emitter to receiver only. Reflections are
considered to be omnidirectional. Their positions are
calculated with the basic raytracing technique as described in
[33]. As recommended by the authors, a predefined
distribution pattern is used due to the small number of rays.
Schröder suggests distributing them evenly across the
source’s surface [34]. In the presented solution, sound sources
are considered as points without volume. Therefore, rays are
evenly distributed within the source’s directional pattern in

the horizontal plane as shown in figure 4. Material
characteristics are currently modelled in a simplified manner
using a lowpass and a highpass biquad filter.

Fig. 4: Five evenly distributed rays with a directional width of 120º
in a Unity scene with 4th order reflections.

Since outdoor environments usually have no ceiling,
reflections of a higher order would no longer reach the listener
if elevation angles are too large. Therefore, they are randomly
varied by ±2° only. Only specular reflections are calculated.
The possibility of diffuse reflections is currently ignored. The
delay line is realized with two delays. In the moment the delay
time changes, both the current and the target delay are
performed and a crossfade with a length of 1024 samples is
calculated from current to target delay. This makes large
jumps possible without artefacts and prevents the typical pitch
shifting effects of interpolated delays.

4.2. Head tracker
Overall latency for head tracking consists of the packet
delivery time 𝜏"#"$%, which is the sum of packet transmission
time 𝜏"&$'(and the sensor device latency 𝜏*+,. With a polling
time 𝜏-#%% at a sample rate of 200 Hz and a propagation delay
𝜏-&#- of 3.7 ms [23], 𝜏*+, is about 8.7 ms. The transmission
time 𝜏"&$'(is determined by the Bluetooth LE (BLE)
transmission speed of the connection between the ESP32 and
the mobile device. BLE uses channel hopping and so its
communication consists of a consecutive number of
connection events, organized at a specific connection interval
𝜏./. After one 𝜏./ the frequency channel will be switched. The
connection parameters are initially determined when a
connection is established.

In the presented soft- and hardware solution the computer or
smartphone acts as the master and finally defines 𝜏./ to the
peripheral slave head tracker device. However, the peripheral
device may ask for certain connection parameters. In case the
suggested parameters do not meet the specifications of the
central device, the request will be rejected. Depending on the
operating system and the device generation, this minimum
connection interval ranges from 7.5 ms to 30 ms and the
maximum number of packets per connection interval 𝑁12	 may
be 4, 6 or 7. Because BLE is a shared resource on mobile
devices, the operating system can scale down 𝑁./	as needed
and increase 𝜏./ as needed. In central mode the connection
parameters are determined by iOS. On the iPhone 8 test
device, a 𝜏./ of 15 ms [35] and a 𝑁./	 of 7 is supported.

© Verband Deutscher Tonmeister e.V., 2019 - 110 -

Proceedings of ICSA 2019 5th International Conference on Spatial Audio
September 26th to 28th, 2019, Ilmenau, Germany

The data (azimuth and elevation as CSV) takes 8 bytes per
orientation event, which fits easily into the default maximum
transfer unit (MTU) size of 23 bytes which has a possible
payload of 20 bytes, so only one packet per orientation event
is needed. In line with our requirement of transmitting small
data sizes within a strict time limit we need the smallest
possible effective connection interval 𝜏3./ and the highest
𝑁./	.	Therefore, the slave latency, the number of skipped
connection intervals, 𝑁(%	is set to zero with 𝜏3./ = 	 𝜏./ [36]
and the peripheral will send an update request to the central to
ask for the smallest 𝜏./.

5. Results
5.1. Latency

The predicted latency 𝜏67689	of the head tracking device in
conjunction with the iPhone 8 test device should be:

𝜏"#"$% 	= 	 𝜏"&$'(+	𝜏*+,

𝜏"&$'(= 	
;<=>
?@A=B

𝜏3./ = 𝜏./(1 +	𝑁(%)

𝜏*+, 		= 𝜏-#%% +	𝜏-&#-

𝜏"#"$% = 	
FG	H(

I	-$.J3"(
+ 5	ms	 + 	3.7	ms	 = 	 FP.Q	H(

-$.J3"

with 𝜏.3 	< 	
;<=>
?@A=B

 to be able to use the maximum allowed

number of packets.

With the capability of BLE to transmit 1 symbol in 1 μs [37],
the time for a single connection event consisting of one
communication cycle can be estimated as follows [36]:

1. Receive packet with a payload of 8 bytes and a
maximum protocol overhead of 14 bytes [37]
(22 × 8	bit	 × 	1	µs),

2. Mandatory interframe space (150	µs),
3. Send acknowledge packet	(80	bit	 × 	1	µs),
4. Mandatory interframe space (150	µs).
The sum meets the above condition for 𝜏.3: 0.536	ms <
2.14	ms.

A theoretical number of possible 𝑁-$.J per 𝜏./ can be
calculated with:
 𝑁-$.J =

;=>
;=<

Under real world conditions the influence of the bit error rate
(BER), as demonstrated by Gomez, Demirkol and Paradells
[38], the interference with other devices using the 2.4 GHz
band, packet loss [36] and the restrictions of the central
operating system leads to a much lower transmission rate
and varying latencies. Especially the limitation of 𝑁-$.J	per
𝜏./ by the operating system means that no further data

exchange takes place after reaching the maximum 𝑁-$.J
until the end of the 𝜏./.
For the measurement 10,000 numbered packets were sent in
ten iterations from the peripheral to the central device at a
distance of 1 m and with a received signal strength
indicator (RSSI) of -70 ± 5 dB. By using offline logging and
a subsequent evaluation of timestamps and quantity of sent
and received packets, an average packet loss of < 1.5 % was
measured.
Packet loss leads to sporadically occurring higher latencies,
which directly affects the update rates of the central device.
Therefore, only an averaged update rate of appr. 5	ms at a
IMU refresh rate of 200 Hz can be considered. With this
setup, we estimate an average latency of the head tracking
system of appr. 11 ms.

Using the Best Latency setting in Unity’s audio preferences
leads to a vector size of 256 samples under both operating
systems (iOS in conjunction with an iPhone 8, and OSX)
which corresponds to 5.8 ms (assuming a sample rate of
44.1 kHz). The dynamic filter change and the resulting
crossfade between current and new angle causes an additional
latency of 11.6 ms. The average OSC transmission time from
the VAS Head Tracker Connect software to Unity was
measured on a Macbook Pro 2018 (14.4 ms) and an iPhone 8
(18 ms).

At a refresh rate of 200 Hz this results in a total system latency
of 42.2 ms on OSX and 46.2 ms on iOS, which meets the
above-mentioned criterion [24]. The default latency setting,
which leads to a vector size of 1024 samples on iOS, leads to
a total latency of 63.6 ms. This value could still be considered
acceptable, but savings in terms of CPU load are almost
negligible (see table 1).

5.2. CPU load
CPU load was measured with Xcode Instruments on an
iPhone 8. Partition and FFT size for the convolution were set
to match the vector size. The percentage value in the right
column is the CPU load for one core for one voice.

Vector size CPU load (iPhone 8, one core)

256 9 %

1024 8 %

Tab. 1: CPU load on an iPhone 8.

A voice includes the playback of the audio source, Unity
internal DSP (distance attenuation, doppler effect, mixer) and
the complete signal processing of the plugin with 20
reflections. The head tracker was turned constantly, so that the
convolution for the binaural synthesis (with an HRTF length
of 256 samples) had to be carried out continuously for the
current and the target angle.

6. Conclusion and outlook
The presented soft- and hardware is a powerful and easily
configurable engine for rendering dynamic binaural synthesis
in Unity. Besides real time calculation of HRTF based

© Verband Deutscher Tonmeister e.V., 2019 - 111 -

Proceedings of ICSA 2019 5th International Conference on Spatial Audio
September 26th to 28th, 2019, Ilmenau, Germany

binaural synthesis including up to 20 reflections it can process
BRIRs of arbitrary length (only limited by hardware
resources). The possibility to load an individual IR set for
every plugin instance makes the VAS Unity Spatializer
unique for the time being. This enables the user to, for
example, equip different rooms with different BRIRs, preload
several IR sets for listening tests or allow multiple users to
experience one scene with different (for instance
individualized) HRTFs simultaneously.

In Unity, the audio vector size is not as finely adjustable as in
other environments, especially those focused primarily on
audio (such as Pure Data or Max/MSP) where sizes as small
as 16 samples are achievable. However, due to the low latency
of the presented head tracker, the overall system latency is
well within the requirements for dynamic binaural synthesis.

The Adafruit board can be configured as a Wifi access point.
With the next firmware version, it will be possible to set all
parameters (data format: e. g. euler angles or quaternions,
connection type, sensor fusion method) via a static page
hosted on the board. In order to enable use in environments
without Bluetooth, data transmission via Wifi and OSC will
be implemented. For the presented raytracing solution,
physical principles have been simplified to ensure good
usability and not to overuse hardware resources on the iOS
platform. The focus was on outdoor environments with little
reflections. A future release will enable the user to use more
natural directional patterns, different material characteristics
and a much larger number of reflections.

7. References
[1] HZK, "Auralisierung archäologischer Räume",

[Online]. Available: https://www.interdisciplinary-
laboratory.hu-berlin.de/de/content/analogspeicher-ii-
auralisierung-archaologischer-raume. [Accessed 29.
08. 2019].

[2] FHNW, "FHNW Mysotis Garden," [Online].
Available: https://www.fhnw.ch/de/die-
fhnw/hochschulen/ht/institute/institut-fuer-data-
science/fhnw-myosotis-garden. [Accessed 22. 06.
2019].

[3] F. Stevens, D. T. Murphy, L. Savioja and V. Välimäki,
"Modeling Sparsely Reflecting Outdoor Acoustic
Scenes Using the Waveguide Web," IEEE/ACM
Transactions On Audio, Speech, and Language
Processing, p. pp. 1566–1578, 08. 2017.

[4] Oculus, "Oculus Spatializer," [Online]. Available:
https://developer.oculus.com/downloads/
package/oculus -spatializer-unity/. [Accessed 21. 06.
2019].

[5] Microsoft, "Microsoft Mixed Reality Documentation,"
[Online]. Available: https://docs.microsoft.com/en-

us/windows/mixed-reality/spatial-sound-in-unity.
[Accessed 21. 06. 2019].

[6] Google, "Resonance Audio," [Online]. Available:
https://resonance-audio.github.io/resonance-audio/.
[Accessed 21. 06. 2019].

[7] Steam Audio, "Git Repository Steam Audio," [Online].
Available: https://valvesoftware.github.io/steam-
audio/downloads.html. [Accessed 27. 02. 2019].

[8] P. Majdak, Y. Iwaya, T. Carpentier, R. Nicol, M.
Parmentier, A. Roginska, Y. Suzuki, K. Watanabe, H.
Wierstorf, H. Ziegelwanger und M. Noisternig,
„Spatially Oriented Format for Acoustics: A Data
Exchange Format Representing Head-Related Transfer
Functions,“ in Proceedings of the 134th Convention of
the Audio Engineering Society, Rom, 2013.

[9] M. P. Jenny C. and C. Reuter, "SOFA Native
Spatializer Plugin for Unity - Exchangeable HRTFs in
Virtual Reality," in Proceedings of the 144th
Convention of the Audio Engineering Society, Milan,
2018.

[10] M. Geier, J. Ahrens and S. Spors, "SoundScape
Renderer," [Online]. Available:
http://spatialaudio.net/ssr/. [Accessed 10. 02. 2019].

[11] M. Geier, J. Ahrens und S. Spors, „The SoundScape
Renderer, A unified spatial audio reproduction
framework for arbitrary rendering methods,“ in 124th
AES Convention, Amsterdam, 2008.

[12] LIMSI/CNRS, TKK/Department of Media
Technology, IRCAM, "EVERTims," [Online].
Available: https://evertims.github.io. [Accessed 27. 02.
2019].

[13] M. Noisternig, B. Katz, S. Siltanen and L. Savioja,
"Framework for real-time auralization in architectural
acoustics," Acta Acustica United with Acustica, vol. 94,
no. 6, p. 1000–1015, 2008.

[14] S. Laine, S. Siltanen, T. Lokki und L. Savioja,
„Accelerated beam tracing algorithm,“ Applied
Acoustics, Bd. 70, Nr. 1, p. 172–181, 2009.

[15] A. Franck, G. Costantini, C. Pike and F. M. Fazi, "An
Open Realtime Binaural Synthesis Toolkit for Audio
Research," in Audio Eng. Soc. 144th Conv, Milano,
2018.

[16] A. Baskind, "Hedrot," [Online]. Available:
https://abaskind.github.io/hedrot/. [Accessed 21. 06.
2019].

[17] V. Manoukian, "EDTracker2," [Online]. Available:
http://www.edtracker.org.uk. [Accessed 21. 06. 2019].

[18] D. Frie, "DIY Headtracker (Easy build, No drift,
OpenSource)," [Online]. Available:

© Verband Deutscher Tonmeister e.V., 2019 - 112 -

Proceedings of ICSA 2019 5th International Conference on Spatial Audio
September 26th to 28th, 2019, Ilmenau, Germany

http://www.rcgroups.com/forums/showthread.php?t=1
677559. [Accessed 21. 06. 2019].

[19] M. Romanov, P. Berghold, D. Rudrich, M. Zaunschirm,
M. Frank and F. Zotter, "Implementation and
Evaluation of a Low-cost Head-tracker for Binaural
Synthesis.," in 142th AES Convention, Berlin, 2017.

[20] R. Twomey, "bluetooth-headtracker," [Online].
Available: https://github.com/roberttwomey/bluetooth-
headtracker/tree/d3df1d65b69e2e189bb189d9948c26a
76d16ca1a. [Accessed 21. 06. 2019].

[21] S. Spors, "diy-low-cost-head-tracker-2," [Online].
Available: http://spatialaudio.net/diy-low-cost-head-
tracker-2/. [Accessed 21. 06. 2019].

[22] T. Resch, „Git Repository VAS Library,“ [Online].
Available: https://github.com/funkerresch/vas_library.
[Zugriff am 22 06 2019].

[23] Hillcrest Labs, "BNO080/BNO085 Sensor Calibration
Procedure," [Online]. Available:
https://www.hillcrestlabs.com/downloads/bno080-
sensor-calibration-procedure. [Accessed 17. 06. 2019].

[24] M. Vorländer, Auralization, Heidelberg: Springer
Berlin, 2008.

[25] D. W. Chandler and D. Grantham, "Minimum audible
movement angle in the horizontal plane as a function of
stimulus frequency and bandwidth, source azimuth, and
velocity.," J. Acoust. Soc. Am., Vol. 91, No. 3,, p. pp.
1624–1636, 03. 03. 1992.

[26] T. Strybel, C. L. Manligas and P. D. R. ., "Minimum
audible movement angle as a function of the azimuth
and elevation of the source," Human Factors The
Journal of the Human Factors and Ergonomics Society,
p. 267–275, 07. 1992.

[27] Hillcrest Labs, "BNO080/BNO085 Datasheet,"
[Online]. Available:
https://www.hillcrestlabs.com/downloads/bno080-
datasheet. [Accessed 17. 06. 2019].

[28] F. Brinkmann, A. Lindau, S. Weinzierl, S. v. d. Par, M.
Müller-Trapet, R. Opdam and M. Vorländer, "A High
Resolution and Full-Spherical Head-Related Transfer
Function Database for Different Head-Above-Torso
Orientations," J. Audio Eng. Soc, vol. 65, no. 10, p.
841–848, 2017.

[29] Unity Technologies, "Unity Documentation," [Online].
Available:
https://docs.unity3d.com/Manual/QuaternionAndEuler
RotationsInUnity.html. [Accessed 20. 08. 2019].

[30] Hecomi, „Git Repository uOSC,“ [Online]. Available:
https://github.com/hecomi/uOSC. [Zugriff am 22 06
2019].

[31] C. B. S. W. T. Resch, „VAS – A cross platform C-
library for efficient dynamic binaural synthesis on
mobile devices,“ in AES, International Conference on
Headphone Technology, San Francisco, 2019.

[32] L. S. M. K. J. Huopaniemi, „Modeling of reflections
and air absorption in acoustical spaces — A digital
filter desing,“ in Proceedings of 1997 Workshop on
Applications of Signal Processing to Audio and
Acoustics, New Paltz, NY, USA, 1997.

[33] U. P. S. L. Savioja, „Overview of geometrical room
acoustic modeling techniques,“ The Journal of the
Acoustical Society of America 138, p. 708–730, 2015.

[34] D. Schröder, „PHYSICALLY BASED REAL-TIME
AURALIZATION OF INTERACTIVE VIRTUAL
ENVIRONMENTS,“ Aachener Beiträge zur
technischen Akustik 11, 2011.

[35] Apple, "Technical Q&A QA1931 Using the correct
Bluetooth LE Advertising and Connection Parameters
for a stable connection," [Online]. Available:
https://developer.apple.com/library/archive/qa/qa1931/
_index.html. [Accessed 05. 06. 2019].

[36] J. Afonso, A. Maio and R. Simoes, "Performance
Evaluation of Bluetooth Low Energy for High Data
Rate Body Area Networks," Wireless Personal
Communications, p. 121–141, 09. 2016.

[37] Bluetooth SIG, Inc., "CS – Core Specification,"
[Online]. Available:
https://www.bluetooth.org/docman/handlers/download
doc.ashx?doc_id=441541. [Accessed 23. 06. 2019].

[38] C. Gomez, I. Demirkol and J. Paradells, "Modeling the
Maximum Throughput of Bluetooth Low Energy in an
Error-Prone Link," IEEE COMMUNICATIONS
LETTERS, vol. 15, no. 11, p. 1187–1190, 11. 2011.

© Verband Deutscher Tonmeister e.V., 2019 - 113 -

Proceedings of ICSA 2019 5th International Conference on Spatial Audio
September 26th to 28th, 2019, Ilmenau, Germany

