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Abstract

Set-optimization has attracted increasing interest in the last years, as for
instance uncertain multiobjective optimization problems lead to such prob-
lems with a set- valued objective function. Thereby, from a practical point of
view, most of all the so-called set approach is of interest. However, optimality
conditions for these problems, for instance using directional derivatives, are
still very limited. The key aspect for a useful directional derivative is the
definition of a useful set difference for the evaluation of the numerator in the
difference quotient.

We present here a new set difference which avoids the use of a convex
hull and which applies to arbitrary convex sets, and not to strictly convex
sets only. The new set difference is based on the new concept of generalized
Steiner sets. We introduce the Banach space of generalized Steiner sets as
well as an embedding of convex sets in this space using Steiner points. In this
Banach space we can easily define a difference and a directional derivative. We
use the latter for new optimality conditions for set optimization. Numerical
examples illustrate the new concepts.

Key Words: Set optimization, Set relation, Set difference, Support function, Direc-
tional derivative, Optimality condition, Steiner point, Generalized Steiner set

Mathematics subject classifications (MSC 2010): 26E25, 49K99, 49J53

∗Department of Mathematics, Universität Bayreuth, 95440 Bayreuth, Germany,
robert.baier@uni-bayreuth.de
†Institute for Mathematics, Technische Universität Ilmenau, Po 10 05 65, D-98684 Ilmenau,

Germany, gabriele.eichfelder@tu-ilmenau.de
‡Institute for Mathematics, Technische Universität Ilmenau, Po 10 05 65, D-98684 Ilmenau,

Germany, tobias.gerlach@tu-ilmenau.de

1



1 Introduction.

In set optimization one considers optimization problems with a set-valued objective
function. Set optimization problems arise in many recent fields of application. Cur-
rent important applications of set optimization can be found for instance in the areas
of socio economics [1], welfare economics [2], and finance [3]. Such problems arise
also for instance when a vector-valued objective map is considered, but (relative)
errors are allowed [4], in case of robust approaches to uncertain multiobjective opti-
mization problems [5, 6], or in bilevel optimization, if neither the optimistic nor the
pessimistic approach is used [7, 8]. For a detailed introduction to set optimization
see the extensive book by Khan, Tammer and Zǎlinescu [9].

For set optimization problems first a reasonable optimality concept has to be
defined. We use in this work the so-called set approach [10, 11, 12], which has
gained increasing attention in the last years as it is considered to be more realistic
in many situations [13]. In the set approach, one defines binary relations in order
to compare sets. There are different possibilities how to compare sets. Many such
binary relations have been proposed in the literature [11]. Most prominent are the
`-less order relation, the u-less order relation, and the set less order relation which
is the combination of both.

Which of these set order relations is suitable depends on the considered ap-
plication. The set approach with the u-less order relation allows for instance the
treatment of decision uncertainty in multiobjective optimization [5, 6]. Moreover,
the `-less order relation and the u-less order relation correspond to the optimistic
and pessimistic approach in bilevel optimization [8], respectively. The set less order
relation is an appropriate relation for many practical situations where one is inter-
ested in comparing sets by comparing the best and the worst elements of the sets
at the same time.

Dealing with set optimization problems with such set relations is theoretically
and numerically a challenge. Just comparing two strictly convex and compact sets
is difficult, and is for instance done in [14] by solving a large number of optimization
problems with a linear objective function. This is based on the idea that one can
use supporting points and support functions for describing convex sets.

Recently, such supporting points have also been used by Jahn in [13] to define
a set difference for strictly convex and compact sets. The advantage of this new
set difference proposed in this pioneering work is that it can easily be calculated
numerically as it does not contain a convex hull or similar. Moreover, it is ’sufficiently
small’ to allow to derive useful necessary optimality conditions: for a strictly convex
set it holds that the set minus the set itself is the set containing just the zero. A
property, which is for instance not satisfied by the Minkowski-difference (i.e., the set
of all differences of elements of both sets), but it is needed for defining a meaningful
directional derivative for set-valued maps.

This set difference by Jahn applies to strictly convex sets only. It requires that
the supporting faces to the considered directions are singletons. Jahn proposes

2



in [13, Remark 2.1] also a generalization to arbitrary convex sets by using metric
difference in case the supporting faces are not singletons, but this does not lead to
satisfying results in case for instance the set-valued map is such that just the unit
square is moved around in the space.

The approach by Jahn has also another drawback: it defines the set differences
as sets while for numerical purposes and for defining the directional derivative,
it is important to keep the direction and the associated supporting points. For
these reasons we propose her a new Banach space, the Banach space of generalized
Steiner sets, for which the Steiner points of supporting faces are saved with their
corresponding directions. We define an embedding of sets in this space, which also
allows to embed the images of set-valued maps. Based on that we can define a
difference which keeps the correspondence between the directions and supporting
points which would be lost if the difference would be itself a set in Rm.

Thereby we use the concept of Steiner points as applied in [15, 16] for selections of
set-valued maps. These allow to choose a uniquely defined point from a supporting
face and this gives the possibility to extend our examinations to arbitrary convex
sets which are not necessarily strictly convex. Hence, this allows for instance to work
with the large class of polytopes. Another important property of the new concepts is
that they allow a numerical calculation and visualization of the results. We give such
numerical illustrations within this paper. We also derive strong necessary optimality
conditions for set optimization problems.

The concept of the Banach space of generalized Steiner sets and the embedding of
convex sets into this Banach space uses ideas presented in [17, 18, 19] for the Banach
space of directed sets, which also allows an embedding of convex sets. Directed
sets were already successfully applied to study derivatives of set-valued maps with
convex, compact and nonempty images, see for instance [20]. However, also they
have not been used for set optimization and the specific order relations so far. The
concept of generalized Steiner points which we are going to use here is much simpler,
from the point of view of definition but also numerical calculation. Moreover, we
define embeddings of sets in such a way that they directly fit to set optimization
with the set approach. Using the embedding and the difference in the new Banach
space we introduce a new directional derivative.

Thus, in the next section, Section 2, we introduce the necessary concepts for set
order relations as well as for characterizing convex sets be supporting faces. Then,
in Section 3, we introduce the Banach space of generalized Steiner sets before we
propose an embedding of convex sets in this space by using Steiner points. We give
characterizations of the set order relations by using this embedding. Using so called
visualizations we can associate again sets to the generalized Steiner sets. Finally,
in Section 4, we use the new concepts for defining necessary optimality conditions
for set optimization problems. We introduce a directional derivative by using the
embedding in the Banach space. With several examples, also with numerical illus-
trations, we show the practical relevance of the new necessary conditions. We also
relate our results to those from Jahn [13].
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2 Notation and basic results.

At first, we list some notations and basic results used throughout the paper. For
a nonempty subset A of Rm we denote by intA, bdA, clA, coA, and coneA the
interior, the boundary, the closure, the convex hull, and the conical hull of A, re-
spectively. If nonempty sets A,B ⊂ Rm and a scalar λ ∈ R are given, then we define
the Minkowski sum and the Minkowski difference of A and B by A+B := {a+ b ∈
Rm | a ∈ A, b ∈ B} and A − B := {a − b ∈ Rm | a ∈ A, b ∈ B}. Moreover, we
set λA := {λa ∈ Rm | a ∈ A} and −A := {0Rm} − A = {−a ∈ Rm | a ∈ A}, where
0Rm is the zero element of Rm. For a matrix M ∈ Rp×m we define furthermore
MA := {Ma ∈ Rp | a ∈ A} and we use Im ∈ Rm×m for the identity matrix of
dimension m.

We denote by C(Rm) and CS(Rm) the set of all nonempty, convex, and compact
subsets and the set of all nonempty, strictly convex, and compact subsets of Rm,
respectively. Recall that a subset A of Rm with intA 6= ∅ is strictly convex if and
only if for arbitrary a1, a2 ∈ A with a1 6= a2 it holds λa1 + (1 − λ)a2 ∈ intA for
all λ ∈ (0, 1). For this definition and other equivalent characterizations we refer to
[21, Definition 2.2] and Lemma 2.1. An example for a nonempty, strictly convex,
and compact subset of Rm is given by the Euclidean ball with midpoint c ∈ Rm

and radius r > 0 defined by B(c, r) := {y ∈ Rm | ‖y − c‖2 ≤ r}. Here, ‖ · ‖2
denotes the Euclidean norm in Rm. Moreover, we define the unit sphere of Rm by
Sm−1 := {y ∈ Rm | ‖y‖2 = 1}.

Throughout the paper we use the following assumption:

Assumption 1. The space Rm is partially ordered by a closed, pointed, and convex
cone C 6= {0Rm} with intC 6= ∅.

Recall that a nonempty subset C of Rm is a cone if and only if y ∈ C and λ ≥ 0
imply λy ∈ C. A cone is pointed if and only if C ∩ (−C) = {0Rm} holds. A pointed
convex cone defines an antisymmetric partial ordering ≤ on the space Rm by

a ≤ b :⇔ b− a ∈ C

for arbitrary elements a, b ∈ Rm.
For a cone C ⊂ Rm we denote by C? := {l ∈ Rm | ∀ c ∈ C : l>c ≥ 0} the dual

cone of C and we set

Tu := C? ∩ Sm−1, T` := (−C?) ∩ Sm−1 = −Tu, and Ts := Tu ∪ T`. (1)

The indices u, `, and s will relate to set relations used in set optimization and which
we define later in this section. Moreover, we define a sign function for directions
l ∈ Ts by

sign(·) : Ts → {−1, 1} with l 7→ sign(l) :=

{
1 , if l ∈ Tu
−1 , if l ∈ T`

. (2)
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Note that C? is a closed and convex cone (see for instance [22], p. 53) and that under
the Assumption 1 the dual cone C? is pointed (see for instance [4, Lemma 1.27 (a)])
and has a nonempty interior (see again [22], p. 53). Hence it holds C? ∩ (−C?) =
{0Rm} and (2) is well defined. The defined sets T♦ with ♦ ∈ {`, u, s} are compact
subsets of Rm.

The parametrization of sets via their support functions and supporting points
is in the following of central importance. For a nonempty convex set A ⊂ Rm the
support function is defined by

δ∗(·, A) : Rm → R ∪ {∞} with l 7→ δ∗(l, A) := sup
a∈A

l>a.

Based on this for a given direction l ∈ Rm the supporting face of A w.r.t. l is defined
by

Y (l, A) := {y(l, A) ∈ A | l>y(l, A) = δ∗(l, A)}. (3)

An element y(l, A) of the supporting face Y (l, A) is called a supporting point. In
case Y (l, A) = {y(l, A)}, the singleton y(l, A) is called an exposed point of A w.r.t. l.
Moreover, it is easy to see that Y (l, A) = Y (αl, A) for all l ∈ Rm and all α > 0.

If the set A ⊂ Rm is nonempty, closed, and convex, then it holds (see [23,
Chap. V, Theorem 2.2.2, Theorem 2.2.3, Proposition 3.1.5, and Theorem 3.3.1])

y ∈ intA⇔ l>y < δ∗(l, A) for all l ∈ Rm \ {0Rm} (4)

and
A =

⋂
l∈Sm−1

{y ∈ Rm | l>y ≤ δ∗(l, A)}. (5)

If A is additionally compact, then by Straszewicz’s theorem (see for instance [24,
Theorem 1.4.7]) it holds

A = co
⋃

l∈Sm−1

Y (l, A) = cl co
⋃

l∈Sm−1

{y(l, A)}. (6)

Note that if for an l ∈ Sm−1 the supporting face Y (l, A) is not a singleton, then
the element y(l, A) ∈ Y (l, A) in (6) can be chosen arbitrarily. Furthermore, for
A ∈ C(Rm) it follows by (4)

Y (l, A) ⊂ bdA ⊂ A for all l ∈ Rm \ {0Rm}. (7)

By (6) it is also easy to see that for two nonempty, convex, and compact sets
A,B ⊂ Rm it holds

(A = B)⇔ (Y (l, A) = Y (l, B) for all l ∈ Sm−1).
Moreover, for directions l ∈ Rm, η ∈ Rp, arbitrary sets A,B ∈ C(Rm), a matrix

M ∈ Rp×m, and arbitrary scalars λ, µ ≥ 0 it holds (see for instance [23, Chap. V,
Theorem 3.3.3 and Proposition 3.3.4])

δ∗(l, λA+ µB) = λδ∗(l, A) + µδ∗(l, B) and δ∗(η,MA) = δ∗(M>η, A).
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The supporting face is by [24, Theorem 1.7.4.] a subdifferential of the support
function. By applying the calculus rules for the sum and linear image of subdiffer-
entials [23, Chap. VI, Theorems 4.1.1 and 4.2.1]) one then obtains

Y (l, λA+ µB) = λY (l, A) + µY (l, B) and Y (η,MA) = MY (M>η, A). (8)

The following result characterizes nonempty, strictly convex, and compact sets
by the uniqueness of supporting points.

Lemma 2.1. [21, Corollary 3.1] Let A ∈ C(Rm) with intA 6= ∅. Then A ∈ CS(Rm)
if and only if the supporting face Y (l, A) is a singleton for all l ∈ Rm \ {0Rm}.

It is well known that for a given set A ∈ C(Rm) the support function is Lipschitz-
continuous w.r.t. the direction (see for instance [24, Lemma 1.8.10.]) and thus by
using Rademacher’s theorem (see [25, Satz I], [26, Satz VII]) differentiable almost
everywhere in Rm. Hence, together with [24, Corollary 1.7.3] it holds for nonempty,
convex, and compact sets the following result:

Lemma 2.2. If A ∈ C(Rm), then the supporting face Y (l, A) is a singleton for
almost all l ∈ Rm \ {0Rm}, i.e., the set of all directions l ∈ Rm \ {0Rm} for which
Y (l, A) is not a singleton has Lebesgue measure zero.

Our motivation for this paper is to give optimality conditions for set optimization
problems. In these optimization problems one has to work with set-valued objective
functions, i.e., we have to compare sets in the image space. According to [11]
practical relevant relations for comparing sets are the following three set relations
[10, 12, 27] defined for arbitrary nonempty subsets A and B of Rm:

(a) the `-less order relation: A 4` B :⇔ (∀b ∈ B ∃a ∈ A : a ≤ b)⇔ (B ⊂ A+C),

(b) the u-less order relation: A 4u B :⇔ (∀a ∈ A ∃b ∈ B : a ≤ b) ⇔ (A ⊂
B − C), and

(c) the set less order relation: A 4s B :⇔ (A 4` B and A 4u B).

For an illustration of the defined set relations see Figure 1. Note that by definition
it holds

A 4` B ⇔ −B 4u −A, A 4u B ⇔ −B 4` −A, and A 4s B ⇔ −B 4s −A.

These set order relations are in general not antisymmetric. Instead, it holds
(cf. [11, Proposition 3.1])

(A 4` B and B 4` A) ⇔ (A+ C = B + C),
(A 4u B and B 4u A) ⇔ (A− C = B − C), and
(A 4s B and B 4s A) ⇔ (A+ C = B + C and A− C = B − C).

6



A

B

A + C

(a) A 4` B.

A
B

B − C

(b) A 4u B.

A

B

A + C

B − C

(c) A 4s B.

Figure 1: Illustration of the set relations 4`, 4u, and 4s for A,B ⊂ R2 and ordering
cone C = {x ∈ R2 | x1 ≥ x2 ≥ 0}.

As before let Assumption 1 be satisfied, i.e., C is a closed cone. If A and B are
nonempty, convex, and compact subsets, then for instance by [4, Remark 1.5 and
Lemma 1.34] the sets A + C and B − C are nonempty, convex, and closed. Thus
the sets A ± C and B ± C, which appear in the above definition of the three set
relations, can also be described by the intersection of half-spaces and using support
functions (cf. (5)). We obtain for all l ∈ Sm−1 by [23, Sec. V, Corollary 3.1.2 and
Theorem 3.3.3]

δ∗(l, A+ C) = δ∗(l, A) + δ∗(l, C) and δ∗(l, B − C) = δ∗(l, B) + δ∗(l,−C).

By the definition of the dual cone and as 0Rm ∈ C ∩ (−C) it holds

δ∗(l, C) = sup
c∈C

l>c =

{
0 , if l ∈ T` ⊂ −C?

∞ , if l ∈ Sm−1 \ T`

and

δ∗(l,−C) = sup
c∈−C

l>c =

{
0 , if l ∈ Tu ⊂ C?

∞ , if l ∈ Sm−1 \ Tu
.

Thus it holds for A+ C, which appears in the `-less order relation,

δ∗(l, A+ C) = δ∗(l, A) for all l ∈ T`

and for B − C, which appears in the u-less order relation,

δ∗(l, B − C) = δ∗(l, B) for all l ∈ Tu.

This also explains our choice of indices when defining the sets T` and Tu (cf. (1)).
We obtain by using (5)

A+ C =
⋂
l∈T`

{y ∈ Rm | l>y ≤ δ∗(l, A)} (9)
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and
B − C =

⋂
l∈Tu

{y ∈ Rm | l>y ≤ δ∗(l, B)}. (10)

We give the definition of the set optimization problems and the corresponding so-
lution concepts using the set approach at the beginning of the forthcoming Section
4.

3 Generalized Steiner sets as a tool in set opti-

mization

In this section we introduce the new concept of generalized Steiner sets. These gen-
eralized Steiner sets form a Banach space in which we will embed arbitrary convex
and compact sets by using the known concept of Steiner points. This embedding al-
lows us to use the arithmetic of the Banach space to define concepts like a directional
derivative for set-valued maps (see the forthcoming subsection 4.2).

From the basic structure we follow the guideline of directed sets in [18, 19].
That is due to the fact that generalized Steiner sets and directed sets are related.
However, directed sets are much more complicated to define and to calculate. They
are based on the definition of directed intervals. The definition for subsets of Rm

with m ≥ 2 is then done recursively by a definition for Rm−1. In contrary to directed
sets, generalized Steiner sets are not recursively defined. They are simple families
of vectors parameterized by directions l of the unit sphere. In analogy to directed
sets the arithmetics for two generalized Steiner sets are done only for elements
with a common unit direction and the norm of a generalized Steiner set is just the
supremum norm of its elements. Following [19] we define for visualization purposes
the boundary part of a generalized Steiner set and the positive, the negative, and the
mixed-type part. As the embedding of a convex and compact set A into the Banach
space of all generalized Steiner sets, the vectors parameterized by the directions l
will be defined in direction of unique support by the exposed point y(l, A) and in
directions of non-unique support by the Steiner point of the supporting face Y (l, A).

3.1 The Banach spaces of generalized Steiner sets.

All our further considerations are related to the concept of generalized Steiner sets,
which we introduce in the following:

Definition 3.1. Let T be a nonempty subset of the unit sphere Sm−1. A generalized
Steiner set w.r.t. T is defined by

FGS,T :=
(
F(l)

)
l∈T ,

where F : T → Rm is a function such that the set F(T ) :=
⋃
l∈T {F(l)} ⊂ Rm is

bounded. The set of all generalized Steiner sets w.r.t. T is denoted by GS(Rm, T ).
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We will use this definition in most cases with a special setting: We choose T := T♦
with ♦ ∈ {`, u, s} (cf. (1)), fix a convex and compact set A, and define the function
F : T → Rm using the concept of Steiner points by F(l) := St(Y (l, A)) for all l ∈ T
(cf. the forthcoming Definition 3.9). This will imply in the case of unique support
for an l ∈ T that F(l) = y(l, A), i.e., we associate to l the exposed point of A
w.r.t. l. Thus to each convex and compact set A we define a generalized Steiner set.

Nevertheless we first analyze the structure of the set of all generalized Steiner
sets w.r.t. any given nonempty subset T of Sm−1. We are motivated to do so,
since we believe that generalized Steiner sets w.r.t. more general sets T are a
versatile tool also in other areas of set-valued analysis as for instance for nonconvex
subdifferentials.

We start by introducing an addition ⊕T and a scalar multiplication �T on
GS(Rm, T ).

Definition 3.2. Let two generalized Steiner sets FGS,T =
(
F(l)

)
l∈T and GGS,T =(

G(l)
)
l∈T w.r.t. T and a scalar α ∈ R be given. Then we define

FGS,T ⊕T GGS,T :=
(
F(l) + G(l)

)
l∈T and α�T FGS,T :=

(
αF(l)

)
l∈T . (11)

It is easy to verify that the following holds:

Proposition 3.3. Let T be a nonempty subset of Sm−1 and let the arithmetic oper-
ations ⊕T and �T be defined as in (11). Then (GS(Rm, T ),⊕T ,�T ) is a real linear
space with zero element

0GS,T :=
(
0Rm

)
l∈T

and additive inverse

	TFGS,T :=
(
−F(l)

)
l∈T for all FGS,T ∈ GS(Rm, T ).

Furthermore,
‖FGS,T ‖ := sup

l∈T
‖F(l)‖2 (12)

defines a norm on (GS(Rm, T ),⊕T ,�T ) based on the Euclidean norm of the elements
F(l) of the corresponding generalized Steiner set w.r.t. T .

Note that for convergence studies in the following the definition of the norm in
(12) with the supremum over all l ∈ T will guarantee a uniform convergence w.r.t.
the directions l (see for instance the proof of the following theorem). The set of all
generalized Steiner sets forms also a complete linear space.

Theorem 3.4. Let T be a nonempty subset of Sm−1 and let the arithmetic operations
⊕T and �T be defined as in (11). Then (GS(Rm, T ),⊕T ,�T ) equipped with the
norm defined as in (12) is a Banach space.
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Proof. Let
(
F (k)
GS,T

)
k∈N =

((
F (k)(l)

)
l∈T

)
k∈N ⊂ GS(Rm, T ) be a Cauchy sequence of

generalized Steiner sets w.r.t. T , i.e., for all ε > 0 there exists a constant k0 =
k0(ε) ∈ N such that

‖F (i)
GS,T 	T F

(j)
GS,T ‖ = sup

l∈T
‖F (i)(l)−F (j)(l)‖2 ≤ ε for all i, j ≥ k0 = k0(ε),

and thus

‖F (i)(l)−F (j)(l)‖2 ≤ ε for all l ∈ T and all i, j ≥ k0 = k0(ε). (13)

Hence, for all l ∈ T the sequence
(
F (k)(l)

)
k∈N ⊂ Rm is a Cauchy sequence in Rm

and therefore convergent. We define F(l) := limk→∞F (k)(l) for all l ∈ T and based
on this FT :=

(
F(l)

)
l∈T .

First we show by using the triangle inequality that F(T ) =
⋃
l∈T {F(l)} is bounded

and thus FT is a generalized Steiner set. If we choose ε := 1 in (13), then we obtain
for the corresponding k0 = k0(1)

‖F (k0+j)(l)‖2 ≤ ‖F (k0+j)(l)−F (k0)(l)‖2 + ‖F (k0)(l)‖2 ≤ 1 + ‖F (k0)(l)‖2

for all l ∈ T and all j ∈ N and thus by the continuity of the Euclidean norm it holds

‖F(l)‖2 = lim
j→∞
‖F (k0+j)(l)‖2 ≤ 1 + ‖F (k0)(l)‖2 ≤ 1 + sup

l∈T
‖F (k0)(l)‖2 = 1 + ‖F (k0)

GS,T ‖

for all l ∈ T . Consequently, the set F(T ) is bounded and it holds FT ∈ GS(Rm, T ).

Finally, we show that
(
F (k)
GS,T

)
k∈N converges to FT w.r.t. the norm defined in (12).

By (13) it holds for arbitrary ε > 0 and i ≥ k0 = k0(ε)

‖F (i)(l)−F (i+j)(l)‖2 ≤ ε for all l ∈ T and all j ∈ N

with limj→∞F (i+j)(l) = F(l) for all l ∈ T . Moreover, again by the continuity of the
norm we obtain

‖F (i)(l)−F(l)‖2 = lim
j→∞
‖F (i)(l)−F (i+j)(l)‖2 ≤ ε for all l ∈ T ,

i.e., the convergence of the sequences
(
F (k)(l)

)
k∈N ⊂ Rm is uniform w.r.t. l ∈ T .

Hence, it follows

‖F (i)
GS,T 	T FT ‖ = sup

l∈T
‖F (i)(l)−F(l)‖2 ≤ ε

for all ε > 0 and all i ≥ k0 = k0(ε). Thus we obtain limk→∞F (k)
GS,T = FT ∈

GS(Rm, T ) and we are done.
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Note that	T is defined in such a way that for any generalized Steiner set FGS,T =(
F(l)

)
l∈T it holds FGS,T 	T FGS,T = 0GS,T =

(
0Rm

)
l∈T .

Generalized Steiner sets are related to bounded subsets of Rm, what can be seen
by the assumed boundedness of F(T ) =

⋃
l∈T {F(l)} ⊂ Rm. But they contain

more information: Generalized Steiner sets save an association of each l ∈ T to
the point F(l) ∈ F(T ). Nevertheless, sometimes one is only interested in the set
F(T ), what we will call the boundary part of the generalized Steiner sets. Moreover,
the points F(l) will later be defined using the supporting faces Y (l, A) for convex
and compact subsets A of Rm. By (5) such subsets A can be characterized by
the intersection of the sets {y ∈ Rm | l>y ≤ δ∗(l, A)} for all l ∈ Sm−1, where
δ∗(l, A) = l>y(l, A) for any y(l, A) ∈ Y (l, A). For the generalized Steiner sets we
only use a subset T of the unit sphere Sm−1. Hence, we obtain by the intersection
of the sets {y ∈ Rm | l>y ≤ δ∗(l, A)} for all l ∈ T in general only a superset of
A. We will call this superset the positive part of the visualization for a generalized
Steiner set. Note that the visualization defined in the following consists of two
convex (positive and negative part) and an in general nonconvex set (mixed-type
part). We will use the positive and the negative part in the formulation of our
optimality conditions in Section 4.

Definition 3.5. Let T be a nonempty subset of Sm−1 and let a generalized Steiner
set FGS,T =

(
F(l)

)
l∈T ∈ GS(Rm, T ) be given. Then the boundary part of FGS,T is

defined by
BT (FGS,T ) := F(T ) =

⋃
l∈T
{F(l)},

and based on this the visualization of FGS,T is defined by

VT (FGS,T ) := PT (FGS,T ) ∪NT (FGS,T ) ∪MT (FGS,T )

where
PT (FGS,T ) :=

⋂
l∈T
{y ∈ Rm | l>y ≤ l>F(l)},

NT (FGS,T ) :=
⋂
l∈T
{y ∈ Rm | l>y ≥ l>F(l)}, and

MT (FGS,T ) := BT (FGS,T ) \
(
PT (FGS,T ) ∪NT (FGS,T )

)
are denoted as the positive part, the negative part, and the mixed-type part of
VT (FGS,T ), respectively.

Note that the boundary part is already used in the definition of a generalized
Steiner set and there its boundedness was required.

Example 3.6. Let A := B(0R2 , 1) be the unit ball in R2, C = C? = R2
+, T := Tu,

and F : Tu → R2 with

F(l) := y(l, A) = argmax{l>a | a ∈ A} for all l ∈ Tu.

11



Then we obtain for the generalized Steiner set FGS,Tu =
(
F(l)

)
l∈Tu

the following

visualization parts (cf. the forthcoming Proposition 3.15):

BTu(FGS,Tu) = {y ∈ R2 | ‖y‖2 = 1, y1 ≥ 0, y2 ≥ 0},
PTu(FGS,Tu) = A− R2

+,

NTu(FGS,Tu) = {(1, 1)>}+ R2
+, and

MTu(FGS,Tu) = ∅.

3.2 Embeddings of convex sets via Steiner points.

So far, we have introduced the concept of generalized Steiner sets in a very general
way. In this subsection we suggest a definition for a generalized Steiner set for a
given convex and compact set, i.e., we answer the question of how to embed such
a set in the Banach space of all generalized Steiner sets. Thereby and as already
stated above we will restrict ourselves in the following to the cases T := T♦ with
♦ ∈ {`, u, s}, as only these cases are of interest for our set optimization problems.
Then the suggested embeddings save for given directions l ∈ T♦ the exposed points
in the case of unique support. For directions l with non-unique support we use the
concept of Steiner points:

Definition 3.7. [28] The Steiner point for a set A ∈ C(Rm) is defined as

St(A) :=
1

Vm

∫
B(0Rm ,1)

m(Y (l, A))dl,

where dl denotes the Lebesgue measure, Vm is the Lebesgue measure of the unit ball
B(0Rm , 1) ⊂ Rm and m(Y (l, A)) denotes the (unique) norm-minimal point of the set
Y (l, A).

Note that in view of Lemma 2.2, the norm-minimal point m(Y (l, A)) in Def-
inition 3.7 coincides almost everywhere with the unique exposed point y(l, A) so
that the choice for the non-unique case does not matter for the Lebesgue integral
(and the Steiner point). Moreover, for sets A,B ∈ C(Rm), scalars α, β ∈ R, and an
orthogonal matrix R ∈ Rm×m it holds (see for instance [24, Sec. 1.7 and 5.4])

St(A) ∈ A, St(αA+ βB) = α St(A) + β St(B), and St(RA) = R St(A). (14)

By using (14) we obtain for a singleton x ∈ Rm immediately St({x}) = x and
St({−x}) = − St({x}). Further examples for which the Steiner point can easily be
calculated either directly from the definition or from basic properties are listed in
the following example.

Example 3.8. (i) For a line segment co{z1, z2} between two points z1, z2 ∈ Rm the
Steiner point is given by its midpoint, i.e., St(co{z1, z2}) = 1

2
(z1 + z2).

12



(ii) For an Euclidean ball B(c, r) with c ∈ Rm and r > 0 it holds St(B(c, r)) = c.
(iii) For an m-dimensional Box [r1, r2]m := [r11, r

2
1] × [r12, r

2
2] × . . . × [r1m, r

2
m] ⊂ Rm

with r1, r2 ∈ Rm and r1i ≤ r2i for all i ∈ {1, . . . ,m} it holds St([r1, r2]m) = 1
2
(r1+r2).

Note that for a general polytope in R2, we can calculate the Steiner point with
external angles as a convex combination of vertices, see [29] for more details. More-
over, for A ∈ C(Rm) it holds by using (3), (7), and (14)

St(Y (l, A)) ∈ Y (l, A) ⊂ bdA ⊂ A for all l ∈ Rm \ {0Rm}

and
l> St(Y (l, A)) = δ∗(l, A) for all l ∈ Rm. (15)

Steiner points are uniquely defined. This allows us to define the embeddings of
nonempty, convex, and compact sets into the Banach space of generalized Steiner
sets as follows:

Definition 3.9. Let Assumption 1 be fulfilled, let ♦ ∈ {`, u, s}, and let A ∈ C(Rm).
Then the embedding of the set A into the Banach space (GS(Rm, T♦),⊕T♦ ,�T♦)
equipped with the norm of (12) is defined by

J♦(A) :=
(

St(Y (l, A))
)
l∈T♦

.

These embeddings are positive homogeneous of degree 1 and additive:

Lemma 3.10. Let Assumption 1 be fulfilled and let ♦ ∈ {`, u, s}. Then it holds

J♦(αA+ βB) =
(
α�T♦ J♦(A)

)
⊕T♦

(
β �T♦ J♦(B)

)
for A,B ∈ C(Rm) and α, β ≥ 0.

Proof. By definition and using (8) and (14) it holds

J♦(αA+ βB) =
(

St(Y (l, αA+ βB))
)
l∈T♦

=
(

St(αY (l, A) + βY (l, B))
)
l∈T♦

=
(
α St(Y (l, A)) + β St(Y (l, B))

)
l∈T♦

=
(
α�T♦ J♦(A)

)
⊕T♦

(
β �T♦ J♦(B)

)
.

The embeddings defined in Definition 3.9 are in general not injective. This fact
is not surprising, since the embeddings take into account only directions from T♦
with ♦ ∈ {`, u, s}. On the other hand, if two sets A,B ∈ C(Rm) have an identical
embedding in the space (GS(Rm, T♦),⊕T♦ ,�T♦), then a necessary condition must be
fulfilled which uses the set order relation 4♦ (cf. Lemma 3.12). For the proof of this
lemma we need the following result:

13



Lemma 3.11. [14, Lemma 2.1, Remark 2.1, Remark 2.2, and Theorem 2.1] Let
Assumption 1 be fulfilled, let A,B ∈ C(Rm), and let the sign function be defined as
in (2). Then for ♦ ∈ {`, u, s} it holds(

A 4♦ B
)
⇔

(
∀ l ∈ T♦ : sign(l)δ∗(l, A) ≤ sign(l)δ∗(l, B)

)
and (

A 4♦ B and B 4♦ A
)
⇔

(
∀ l ∈ T♦ : δ∗(l, A) = δ∗(l, B)

)
.

The necessary condition for two nonempty, convex, and compact subsets with
an identical embedding can now be stated and proved :

Lemma 3.12. Let Assumption 1 be fulfilled and let A,B ∈ C(Rm). Then for ♦ ∈
{`, u, s} it holds (

J♦(A) = J♦(B)
)
⇒
(
A 4♦ B and B 4♦ A

)
. (16)

Proof. By definition, using (15) and Lemma 3.11 it holds

J♦(A) = J♦(B) ⇔ ∀l ∈ T♦ : St(Y (l, A)) = St(Y (l, B))
⇒ ∀l ∈ T♦ : l> St(Y (l, A)) = l> St(Y (l, B))
⇔ ∀l ∈ T♦ : δ∗(l, A) = δ∗(l, B)
⇔ A 4♦ B and B 4♦ A.

Note that in general A 4♦ B and B 4♦ A does not imply J♦(A) = J♦(B) with
♦ ∈ {`, u, s} as the following example shows.

Example 3.13. Let C = C? = R2
+ and ♦ ∈ {`, u, s}. For the sets A,B ∈ C(R2)

with

A := [−1, 1]× [−1, 1] and B := A ∩ {y ∈ R2 | y1 − 1 ≤ y2 ≤ y1 + 1},

it holds A 4♦ B and B 4♦ A for all ♦ ∈ {`, u, s},

y(l, A) = y(l, B) =

{
(−1,−1)> if l ∈ T` \

{
(−1, 0)>, (0,−1)>

}
(1, 1)> if l ∈ Tu \

{
(1, 0)>, (0, 1)>

} ,

St(Y (l, A)) = l if l ∈
{

(−1, 0)>, (0,−1)>, (1, 0)>, (0, 1)>
}
,

St(Y (l, B)) =


(−1,−1

2
)> if l = (−1, 0)>

(−1
2
,−1)> if l = (0,−1)>

(1, 1
2
)> if l = (1, 0)>

(1
2
, 1)> if l = (0, 1)>

,

and thus J♦(A) 6= J♦(B) for all ♦ ∈ {`, u, s}.
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(c) B♦ (J♦(B)).

Figure 2: The sets A,B ∈ C(R2) and the boundary parts of their embeddings for
♦ ∈ {`, u, s} for Example 3.13.

For an illustration see Figure 2. In subfigure 2a the sets A (the gray filled square)
and B (overlapping in black) are shown. Moreover, the boundary parts B♦ (J♦(A))
and B♦ (J♦(B)) are depicted in subfigure 2b and 2c. Note that in both subfigures
the blue points represent the points St(Y (l, A)) and St(Y (l, B)) for l ∈ Tu while the
red points represent the points St(Y (l, A)) and St(Y (l, B)) for l ∈ T`. Additionally,
small arrows attached to these points illustrate some of the corresponding (scaled)
directions l ∈ Ts = T` ∪ Tu.

Hence, the reverse implication in (16) can only hold under additional assump-
tions. One needs the uniqueness of the supporting points, which is fulfilled for
instance if A and B are strictly convex (cf. Lemma 2.1).

Lemma 3.14. Let Assumption 1 be fulfilled, let A,B ∈ C(Rm), and let ♦ ∈ {`, u, s}.
If additionally for all l ∈ T♦ the supporting faces Y (l, A) and Y (l, B) are singletons,
i.e., Y (l, A) = {y(l, A)} and Y (l, B) = {y(l, B)} for all l ∈ T♦ , then it holds(

J♦(A) = J♦(B)
)
⇔
(
A 4♦ B and B 4♦ A

)
. (17)

Proof. We restrict ourselves to the case ♦ = ` and use ideas of the proof of [30,
Corollary 2.1]. Let A,B ∈ C(Rm) with A 4` B and B 4` A. Then by Lemma 3.11
it holds δ∗(l, A) = l>y(l, A) = l>y(l, B) = δ∗(l, B) for all l ∈ T`. Assume, there
exists l̂ ∈ T` such that y(l̂, A) 6= y(l̂, B). By the definition of A 4` B it follows for
y(l̂, B) the existence of â ∈ A and k̂ ∈ C such that y(l̂, B) = â+ k̂ and hence

l̂>y(l̂, A) = l̂>y(l̂, B) = l̂>(â+ k̂) = l̂>â+ l̂>k̂.

Using l̂ ∈ T` ⊂ (−C?) it holds l̂>k̂ ≤ 0 and by l̂>â ≤ l̂>y(l̂, A) we obtain l̂>k̂ = 0 and
l̂>y(l̂, A) = l̂>â. Thus using the uniqueness of the supporting points for all l ∈ T♦ it
holds y(l̂, A) = â and consequently y(l̂, B) = y(l̂, A)+ k̂. Analogously, using B 4` A
it can be shown that there exist k̄ ∈ C with y(l̂, A) = y(l̂, B) + k̄. Due to y(l̂, A) 6=
y(l̂, B) it holds k̂ 6= 0Rm and k̄ 6= 0Rm and we obtain −k̂ = y(l̂, A) − y(l̂, B) = k̄ –
contradicting the pointedness of C. Finally, by using Lemma 3.12 we are done.
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It is easy to see that for all A,B ∈ C(Rm) and ♦ ∈ {`, u, s} it holds(
BT♦(J♦(A)	T♦ J♦(B)) = {0Rm}

)
⇔

(
J♦(A) = J♦(B)

)
, (18)

and thus under the additional assumption of Lemma 3.14 we can extend (17) and
(18) to (

BT♦(J♦(A)	T♦ J♦(B)) = {0Rm}
)
⇔

(
J♦(A) = J♦(B)

)
⇔

(
A 4♦ B and B 4♦ A

)
.

To conclude this section, we study the visualization introduced in Definition 3.5
in more detail for the generalized Steiner sets, which we obtain by the embeddings of
nonempty, convex, and compact sets given by Definition 3.9. Note that for instance
the mixed-type part is empty in this case. These results will be used in Section 4
for the formulation of optimality conditions for set optimization problems.

Proposition 3.15. Let Assumption 1 be fulfilled, let ♦ ∈ {`, u, s}, and let A ∈
C(Rm). Then it holds

PT`
(
J`(A)

)
= A+ C, (19)

PTu
(
Ju(A)

)
= A− C, (20)

PTs
(
Js(A)

)
=
(
A+ C

)
∩
(
A− C

)
, and (21)

MT♦
(
J♦(A)

)
= ∅. (22)

If additionally C = C? = Rm
+ and the points a, a ∈ Rm are defined by

ai := min
a∈A

ai and ai := max
a∈A

ai for all i ∈ {1, . . . ,m},

then it holds

NT`
(
J`(A)

)
= {a} − Rm

+ and NTu
(
Ju(A)

)
= {a}+ Rm

+ . (23)

Proof. By definition and (9) we have

PT`
(
J`(A)

)
=

⋂
l∈T`
{y ∈ Rm | l>y ≤ l> St(Y (l, A))}

=
⋂
l∈T`
{y ∈ Rm | l>y ≤ δ∗(l, A)}

= A+ C

and (20) can be proved in an analogous way. Thus (21) follows by

PTs
(
Js(A)

)
= PT`

(
Js(A)

)
∩ PTu

(
Js(A)

)
.

By using the previously proven results and

BT♦(J♦(A)) ⊂ A ⊂
(
A+ C

)
∩
(
A− C

)
⊂
(
A± C

)
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we obtain (22) by definition.
Let now C := Rm

+ and thus C = C? = Rm
+ = cone(co({ei | i ∈ {1, . . . ,m}}))

where ei, i ∈ {1, . . . ,m} denotes the i-th unit vector of Rm. For the defined points
a, a ∈ Rm we obtain by the definition of the support function

ai = min
a∈A

ai = −max
a∈A

(−ei)>a = −δ∗(−ei, A) = (ei)
>

St(Y (−ei, A)) (24)

and
ai = max

a∈A
ai = max

a∈A
(ei)

>
a = δ∗(ei, A) = (ei)

>
St(Y (ei, A))

for all i ∈ {1, . . . ,m}. Moreover, it follows

l>a =
m∑
i=1

liai ≤
m∑
i=1

li ai = l>a for all l ∈ T` ⊂ (−Rm
+ ) and all a ∈ A

and

l>a =
m∑
i=1

liai ≤
m∑
i=1

li ai = l>a for all l ∈ Tu ⊂ Rm
+ and all a ∈ A.

Thus we obtain

l> St(Y (l, A)) ≤ l>a for all l ∈ T` ⊂ (−Rm
+ ) (25)

and
l> St(Y (l, A)) ≤ l>a for all l ∈ Tu ⊂ Rm

+ .

In the following we restrict ourselves to the proof of the left equation in (23). It
follows by definition and (24)

NT`
(
J`(A)

)
=

⋂
`∈T`
{y ∈ Rm | l>y ≥ l> St(Y (l, A))}

⊂ ⋂
i∈{1,...,m}

{y ∈ Rm | (−ei)>y ≥ (−ei)> St(Y (−ei, A))}

=
⋂

i∈{1,...,m}
{y ∈ Rm | (ei)>y ≤ (ei)

>
St(Y (−ei, A))}

=
⋂

i∈{1,...,m}
{y ∈ Rm | yi ≤ ai}

= {a} − Rm
+ .

Finally, we obtain by (10), as Tu = −T` , and by (25)

{a} − Rm
+ =

⋂
l∈Tu
{y ∈ Rm | l>y ≤ l>a}

=
⋂
l∈T`
{y ∈ Rm | −l>y ≤ −l>a}

=
⋂
l∈T`
{y ∈ Rm | l>y ≥ l>a}

⊂ ⋂
l∈T`
{y ∈ Rm | l>y ≥ l> St(Y (l, A))}

= NT`
(
J`(A)

)
and we are done.
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Note that the defined points a, a ∈ Rm in Proposition 3.15 are often denoted as
the ideal point and as the antiideal point of the set A ∈ C(Rm), respectively. By
using 0Rm ∈ C and (19), (20), and (21) it follows

A ⊂ P♦
(
J♦(A)

)
for A ∈ C(Rm) and ♦ ∈ {`, u, s}. (26)

4 Optimality conditions for set optimization

The aim of this paper are optimality conditions for set optimization problems. In
view of this we need the following assumption:

Assumption 2. Let Assumption 1 be fulfilled. Moreover, let S ⊂ Rn with S 6= ∅, Ŝ
be an open superset of S, and let F : Ŝ ⇒ Rm be a set-valued map with F (x) ∈ C(Rm)
for all x ∈ Ŝ.

Under this assumption we study the set optimization problem

min
x∈S

F (x). (SOPF,S)

A point x̄ ∈ S is called a minimal solution of (SOPF,S) w.r.t. the order relation 4♦
and ♦ ∈ {`, u, s} if

F (x) 4♦ F (x̄), x ∈ S =⇒ F (x̄) 4♦ F (x) (27)

holds. Obviously, this is equivalent to the fact that there exists no x ∈ S such that

F (x) 4♦ F (x̄) and F (x̄) 64♦ F (x).

Moreover, by using Lemma 3.11 one obtains for the set optimization problem (SOPF,S)
the following characterization of minimal solutions (cf. [13, Theorem 5.3]):

Lemma 4.1. Let Assumption 2 be fulfilled and let ♦ ∈ {`, u, s}. Then x̄ ∈ S is a
minimal solution of (SOPF,S) w.r.t. 4♦ if and only if there is no x ∈ S such that

∀ l ∈ T♦ : sign(l)δ∗(l, F (x)) ≤ sign(l)δ∗(l, F (x̄)) and

∃ l̂ ∈ T♦ : sign(l̂)δ∗(l̂, F (x)) < sign(l̂)δ∗(l̂, F (x̄)).

We illustrate the definition of a minimal solution of a set optimization problem
with the following example, which we will also use in the following to illustrate our
new optimality conditions.

Example 4.2. Let Ŝ = R, S = [0, 1], C = C? = R2
+, and A := [0, 1] × [0, 1] ⊂ R2.

Moreover, we define the set-valued map F : Ŝ ⇒ R2 by

F (x) := A ∩ {y ∈ R2 | y1 + y2 ≥ x}.
It is obvious from the geometrical construction of the sets F (x) or by Lemma 4.1
that the unique minimal solution of (SOPF,S) w.r.t. the order relations 4` and 4s
is given by x̄ = 0, and all feasible points are minimal solutions of (SOPF,S) w.r.t.
the order relation 4u.
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4.1 Optimality conditions for set optimization problems based
on visualization results

In this subsection we formulate optimality conditions for set optimization problems
based on visualization results for generalized Steiner sets. One possible approach
is the application of Proposition 3.15 to reformulate the definitions of the set order
relations. Thereby we obtain for A,B ∈ C(Rm) for instance the following equiva-
lences:

Lemma 4.3. Let Assumption 1 be fulfilled and let A,B ∈ C(Rm). Then it holds(
A 4` B

)
⇔
(
PT`(J`(B)) ⊂ PT`(J`(A))

)
and(

A 4u B
)
⇔
(
PTu(Ju(A)) ⊂ PTu(Ju(B))

)
.

Proof. We restrict ourselves to the proof of the first equivalence. Thus, let A 4` B.
Then by definition and Proposition 3.15 we obtain

A 4` B ⇔ B ⊂ A+ C
⇒ B + C ⊂ A+ (C + C) = A+ C
⇔ PT`

(
J`(B)

)
⊂ PT`

(
J`(A)

)
.

If PT`
(
J`(B)

)
⊂ PT`

(
J`(A)

)
, then A 4` B follows immediately by Proposition 3.15

and (26):
B ⊂ PT`

(
J`(B)

)
⊂ PT`

(
J`(A)

)
= A+ C.

As a consequence of Lemma 4.3 we obtain(
A 4` B and B 4` A

)
⇔

(
PT`(J`(A)) = PT`(J`(B))

)
and(

A 4u B and B 4u A
)
⇔

(
PTu(Ju(A)) = PTu(Ju(B))

)
,

and thus by definition also(
A 4s B and B 4s A

)
⇔

(
(PT♦(J♦(A)) = PT♦(J♦(B))) for ♦ ∈ {`, u}

)
⇒

(
PTs(Js(A)) = PTs(Js(B))

)
.

The following lemma gives additional reformulations of the set relations:

Lemma 4.4. Let Assumption 1 be fulfilled and let A,B ∈ C(Rm). Then it holds(
A 4` B

)
⇔
(
0Rm ∈ PT`(J`(A)	T` J`(B))

)
and (

A 4u B
)
⇔
(
0Rm ∈ PTu(Ju(B)	Tu Ju(A))

)
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Proof. Again we restrict ourselves to the proof of the first equivalence. By Lemma 3.11
and the definition of the positive part we obtain

A 4` B ⇔ ∀ l ∈ T` : − δ∗(l, A) ≤ −δ∗(l, B)
⇔ ∀ l ∈ T` : 0 ≤ δ∗(l, A)− δ∗(l, B)
⇔ ∀ l ∈ T` : l>0Rm ≤ l> St(Y (l, A))− l> St(Y (l, B))
⇔ ∀ l ∈ T` : l>0Rm ≤ l>

(
St(Y (l, A))− St(Y (l, B))

)
⇔ 0Rm ∈ ⋂

l∈T`
{y ∈ Rm | l>y ≤ l>

(
St(Y (l, A))− St(Y (l, B))

)
}

⇔ 0Rm ∈ PT`
((

St(Y (l, A))− St(Y (l, B))
)
l∈T`

)
⇔ 0Rm ∈ PT`

((
St(Y (l, A))

)
l∈T`
	T`

(
St(Y (l, B))

)
l∈T`

)
⇔ 0Rm ∈ PT`

(
J`(A)	T` J`(B)

)
.

Using these reformulations the following optimality conditions for set optimiza-
tion problems follow immediately:

Corollary 4.5. Let Assumption 2 be fulfilled.

(a) Then x̄ ∈ S is a minimal solution of (SOPF,S) w.r.t. 4` if and only if for all
x ∈ S the following implication holds(
0Rm ∈ PT`(J`(F (x))	T` J`(F (x̄)))

)
=⇒

(
0Rm ∈ PT`(J`(F (x̄))	T` J`(F (x)))

)
.

(b) Then x̄ ∈ S is a minimal solution of (SOPF,S) w.r.t. 4u if and only if for all
x ∈ S the following implication holds(
0Rm ∈ PTu(Ju(F (x̄))	TuJu(F (x)))

)
=⇒

(
0Rm ∈ PTu(Ju(F (x))	TuJu(F (x̄)))

)
.

Finally, using the statements of Lemma 4.4 further characterizations of the set
relations can be given:

Lemma 4.6. Let Assumption 1 be fulfilled and let A,B ∈ C(Rm). Then it holds(
A 4` B and B 4` A

)
⇔

(
PT`(J`(A)	T` J`(B)) = PT`(J`(B)	T` J`(A)) = C

)
,(

A 4u B and B 4u A
)

⇔
(
PTu(Ju(A)	Tu Ju(B)) = PTu(Ju(B)	Tu Ju(A)) = −C

)
,

(28)

and (
A 4s B and B 4s A

)
⇔

(
PTs(Js(A)	Ts Js(B)) = PTs(Js(B)	Ts Js(A)) = {0Rm}

)
.
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Proof. If A 4` B and B 4` A, then by definition of the positive part, Lemma 3.11,
and (9) it holds

PT`
(
J`(A)	T` J`(B)

)
= PT`

(
(St(Y (l, A)))l∈T` 	T` (St(Y (l, B)))l∈T`

)
= PT`

(
(St(Y (l, A))− St(Y (l, B)))l∈T`

)
=

⋂
l∈T`
{y ∈ Rm | l>y ≤ l>(St(Y (l, A))− St(Y (l, B)))}

=
⋂
l∈T`
{y ∈ Rm | l>y ≤ l> St(Y (l, A))− l> St(Y (l, B))}

=
⋂
l∈T`
{y ∈ Rm | l>y ≤ δ∗(l, A)− δ∗(l, B)}

=
⋂
l∈T`
{y ∈ Rm | l>y ≤ 0 = δ∗(l, {0Rm})}

= {0Rm}+ C
= C

and by analogous conclusions PT`
(
J`(B)	T J`(A)

)
= C.

Otherwise, if PT`(J`(A) 	T` J`(B)) = PT`(J`(B) 	T` J`(A)) = C, then 0Rm ∈
PT`(J`(A)	T` J`(B)) and 0Rm ∈ PT`(J`(B)	T` J`(A)) are true and by Lemma 4.4 it
follows A 4` B and B 4` A.
The equivalence in (28) can be proved by using similar arguments.
Let now A 4s B and B 4s A, then it follows by the pointedness of C

A 4s B and B 4s A
⇔ A 4` B and B 4` A and A 4u B and B 4u A
⇔ PT`(J`(A)	T` J`(B)) = PT`(J`(B)	T` J`(A)) = C and

PTu(Ju(A)	Tu Ju(B)) = PTu(Ju(B)	Tu Ju(A)) = −C
⇒ PT`(J`(A)	T` J`(B)) ∩ PTu(Ju(A)	Tu Ju(B)) = {0Rm} and

PT`(J`(B)	T` J`(A)) ∩ PTu(Ju(B)	Tu Ju(A)) = {0Rm}
⇔ PTs(Js(A)	Ts Js(B)) = PTs(Js(B)	Ts Js(A)) = {0Rm}.

Finally, if PTs(Js(A) 	Ts Js(B)) = PTs(Js(B) 	Ts Js(A)) = {0Rm}, then it holds by
Lemma 4.4

PTs(Js(A)	Ts Js(B)) = PTs(Js(B)	Ts Js(A)) = {0Rm}
⇔ PT`(J`(A)	T` J`(B)) ∩ PTu(Ju(A)	Tu Ju(B)) = {0Rm} and

PT`(J`(B)	T` J`(A)) ∩ PTu(Ju(B)	Tu Ju(A)) = {0Rm}
⇒ 0Rm ∈ PT`(J`(A)	T` J`(B)) and 0Rm ∈ PTu(Ju(A)	Tu Ju(B)) and

0Rm ∈ PT`(J`(B)	T` J`(A)) and 0Rm ∈ PTu(Ju(B)	Tu Ju(A))
⇔ A 4` B and B 4u A and B 4` A and A 4u B
⇔ A 4s B and B 4s A.

For deriving now optimality conditions for (SOPF,S) note that the implication
(27) can also be reformulated as

F (x) 4♦ F (x̄), x ∈ S =⇒
(
F (x) 4♦ F (x̄) and F (x̄) 4♦ F (x)

)
.

Hence, we obtain by Lemma 4.4 and Lemma 4.6 the following optimality condition:
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Corollary 4.7. Let Assumption 2 be fulfilled.

(a) Then x̄ ∈ S is a minimal solution of (SOPF,S) w.r.t. 4` if and only if for all
x ∈ S the following implication holds(

0Rm ∈ PT`(J`(F (x))	T` J`(F (x̄)))
)

=⇒
(
PT`(J`(F (x))	T` J`(F (x̄))) = PT`(J`(F (x̄))	T` J`(F (x))) = C

)
.

(b) Then x̄ ∈ S is a minimal solution of (SOPF,S) w.r.t. 4u if and only if for all
x ∈ S the following implication holds(

0Rm ∈ PTu(Ju(F (x̄))	Tu Ju(F (x)))
)

=⇒
(
PTu(Ju(F (x̄))	Tu Ju(F (x))) = PTu(Ju(F (x))	Tu Ju(F (x̄))) = −C

)
.

In conclusion of this subsection we apply our formulated optimality conditions
on the following example:

Example 4.8. We consider again the set optimization problem (SOPF,S) defined in
Example 4.2. We verify the statements regarding the minimal solution made there
by our optimality conditions for ♦ ∈ {`, u}.
Thereby it holds

St(Y (l, F (0))) =



(1, 1
2
)> , if l = (1, 0)>

(1, 1)> , if l ∈ Tu \ {(1, 0)>, (0, 1)>}
(1
2
, 1)> , if l = (0, 1)>

(0, 1
2
)> , if l = (−1, 0)>

(0, 0)> , if l ∈ T` \ {(−1, 0)>, (0,−1)>}
(1
2
, 0)> , if l = (0,−1)>

and

St(Y (l, F (x))) =



(1, 1
2
)> , if l = (1, 0)>

(1, 1)> , if l ∈ Tu \ {(1, 0)>, (0, 1)>}
(1
2
, 1)> , if l = (0, 1)>

(0, 1+x
2

)> , if l ∈ T` and l1 < l2
(x
2
, x
2
)> , if l = − 1√

2
(1, 1)>

(1+x
2
, 0)> , if l ∈ T` and l1 > l2

for all x ∈ (0, 1].
First, we consider the minimal solutions of (SOPF,S) w.r.t. the `-less order relation
4`. In this case, for all x ∈ (0, 1] we obtain

PT`
(
J`(F (x))	T`J`(F (0))

)
=
⋂
l∈T`

{y ∈ R2 | l>y ≤ l>(St(Y (l, F (x)))−St(Y (l, F (0))))}

with

St(Y (l, F (x)))− St(Y (l, F (0))) =


(0, x

2
)> , if l = (−1, 0)>

(0, 1+x
2

)> , if l ∈ T` and −1 < l1 < l2
(x
2
, x
2
)> , if l = − 1√

2
(1, 1)>

(1+x
2
, 0)> , if l ∈ T` and l1 > l2 > −1

(x
2
, 0)> , if l = (0,−1)>

.
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Figure 3: Visualization results in Example 4.8.

For x = 1, the differences St(Y (l, F (1))) − St(Y (l, F (0))) ∈ R2 are illustrated in
subfigure 3a with black dots, where the directions l ∈ T` are shown scaled as red
arrows. The union of these differences is then the boundary part BT`

(
J`(F (1))	Ts

J`(F (0))
)
.

Moreover, for l = − 1√
2
(1, 1)> ∈ T` it holds

{y ∈ R2 | l>y ≤ l>(St(Y (l, F (x)))− St(Y (l, F (0))))} = {y ∈ R2 | y1 + y2 ≥ x}

and thus
0R2 /∈ PT`

(
J`(F (x))	T` J`(F (0))

)
(29)

for all x ∈ (0, 1]. Hence, by using Corollary 4.5 (a) or Corollary 4.7 (a) we obtain
that x̄ = 0 ∈ S is a minimal solution of the set optimization problem (SOPF,S)
w.r.t. 4`.
Note that by (29) it also follows

PT`
(
J`(F (x))	T` J`(F (0))

)
6= C = R2

+

for all x ∈ (0, 1]. Moreover, it is easy to see that St(Y (l, F (0))) − St(Y (l, F (x))) ∈
−R2

+ and thus 0 ≤ l>(St(Y (l, F (0)))− St(Y (l, F (x)))) hold for all x ∈ (0, 1] and all
l ∈ T` ⊂ −R2

+.
If we now consider the minimal solutions of (SOPF,S) w.r.t. the u-less order relation
4u, then for all x1, x2 ∈ [0, 1] and l ∈ Tu it holds St(Y (l, F (x1))) = St(Y (l, F (x2)))
and we get

Ju(F (x1))	Tu Ju(F (x2)) =
(

St(Y (l, F (x1)))− St(Y (l, F (x2)))
)
l∈Tu

= 0GS,Tu

(cf. subfigure 3a for the case x1 = 1 and x2 = 0, the directions l ∈ Tu are shown
scaled as blue arrows) and thus

0R2 ∈ PTu
(
Ju(F (x1))	Tu Ju(F (x2))

)
=
⋂
l∈Tu

{y ∈ R2 | l>y ≤ 0} = −R2
+ = −C.
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By Corollary 4.5 (b) or Corollary 4.7 (b) we obtain that all x ∈ [0, 1] are minimal
solutions of (SOPF,S) w.r.t. 4u.
In subfigure 3b, the positive part PTu

(
Ju(F (1))	Tu Ju(F (0))

)
is given in light green.

The blue lines illustrate some of the hyperplanes

{y ∈ R2 | l>y = l>
(

St(Y (l, F (1)))− St(Y (l, F (0)))
)

= 0}
for l ∈ Tu which define the half-spaces forming the positive part. The green arrows
give the (scaled) directions l which are normal vectors to these hyperplans. Fi-
nally, subfigure 3c shows again the positive part PTu

(
Ju(F (1))	Tu Ju(F (0))

)
, which

contains here the zero element 0R2 .

4.2 A new directional derivative for set optimization

To formulate in the following a necessary condition for a minimal solution of the set
optimization problem (SOPF,S) we use a new directional derivative for set-valued
maps embedded in the spaces of generalized Steiner sets. Before we do this, we first
recall the concept of a directional derivative for a vector-valued map. Let Ŝ be an
open and nonempty subset of Rn, let f : Ŝ → Rm be a vector-valued map, let x ∈ Ŝ,
and let d ∈ Rn. Then the map f is called directionally differentiable at x in direction
d if the limit

D[f(·)](x; d) := lim
λ→0+

1

λ

(
f(x+ λd)− f(x)

)
exists. Note that we will use in the following this concept for the special setting
f(·) := St(Y (l, F (·))) with l ∈ T♦ and ♦ ∈ {`, u, s}.

We define the proposed new directional derivative for set-valued maps in the
Banach spaces of generalized Steiner sets as follows:

Definition 4.9. Let Assumption 2 be fulfilled, let x ∈ Ŝ, let d ∈ Rn, and let
♦ ∈ {`, u, s}. Then the set-valued map F is called GS♦-directionally differentiable
at x in direction d if in the Banach space (GS(Rm, T♦),⊕T♦ ,�T♦) equipped with the
norm of (12) the limit

DF GS♦ (x; d) := lim
λ→0+

1

λ
�T♦

(
J♦(F (x+ λd))	T♦ J♦(F (x))

)
exists.

A map F is by definition GSs-directionally differentiable at x in direction d if
and only if F is GS`-directionally differentiable and GSu-directionally differentiable
at x in direction d. The advantage of this directional derivative is that it can be cal-
culated numerically in many cases and that it is also applicable to set-valued maps
with images which are not strictly convex. What is more, we can give optimality
conditions based on it. Nevertheless, the assumption of GS♦-directional differentia-
bility for a set-valued map is already a strong assumption, as the following example
illustrates. Later, we also give examples for set-valued maps where such a derivative
exists.
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Remark 1. In case a set-valued map is GS♦-directionally differentiable at some
x in direction d, then this implies that the maps fl : Rn → Rm with fl(x) :=
St(Y (l, F (x))) are directional differentiable at x in direction d for all l ∈ T♦, i.e., the
limits

lim
λ→0+

1

λ

(
St(Y (l, F (x+ λd)))− St(Y (l, F (x)))

)
exist for all l ∈ T♦.

Remark 1 gives only a necessary condition. For a full characterization we refer
to Theorem 4.11.

Example 4.10. We consider again the set optimization problem (SOPF,S) defined
in Example 4.2 with the unique minimal solution w.r.t. the order relations 4` and
4s given by x̄ = 0. Let x ∈ (0, 1] be arbitrarily chosen and set d := x − x̄ = x.
Based on the statements in Example 4.8 it holds

1

λ

(
St(Y (l, F (λx)))−St(Y (l, F (0)))

)
=



0R2 , if l ∈ Tu
(0, x

2
)> , if l = (−1, 0)> ∈ T`

(0, 1+λx
2λ

)> , if l ∈ T` and −1 < l1 < l2
(x
2
, x
2
)> , if l = − 1√

2
(1, 1)> ∈ T`

(1+λx
2λ

, 0)> , if l ∈ T` and l1 > l2 > −1
(x
2
, 0)> , if l = (0,−1)> ∈ T`

for all λ ∈ (0, 1
x
]. Thus the set-valued map F is GSu-directionally differentiable at

x̄ = 0 in direction d = x for all x ∈ (0, 1].
However, the limits

lim
λ→0+

1

λ

(
St(Y (l, F (λx)))− St(Y (l, F (0)))

)
do not exist for l ∈ T` \ {(−1, 0)>,− 1√

2
(1, 1)>, (0,−1)>} and thus (cf. Remark 1) F

is not GS♦-directionally differentiable at x̄ = 0 in direction d = x for all x ∈ (0, 1]
with ♦ ∈ {`, s}.

The following theorem provides an equivalent characterization of GS♦-directional
differentiability:

Theorem 4.11. Let Assumption 2 be fulfilled, let x ∈ Ŝ, let d ∈ Rn, and let
♦ ∈ {`, u, s}. Then the set-valued map F is GS♦-directionally differentiable at x
in direction d, i.e., the generalized Steiner set DF GS♦ (x; d) :=

(
DF GS♦ (x; d)(l)

)
l∈T♦

w.r.t. T♦ exists, if and only if the following two conditions (a) and (b) hold:

(a) The vector-valued maps St(Y (l, F (·))) : Rn → Rm are directionally differen-
tiable at x in direction d for all l ∈ T♦ and the set

⋃
l∈T♦{D[St(Y (l, F (·)))](x; d)}

is bounded.
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(b) For all ε > 0 there exists λ̄ = λ̄(ε) > 0 such that for all λ ∈ (0, λ̄) it holds∥∥D[St(Y (l, F (·)))](x; d)− 1

λ

(
St(Y (l, F (x+λd)))−St(Y (l, F (x)))

)∥∥
2
≤ ε (30)

for all l ∈ T♦.

Moreover, if F is GS♦-directionally differentiable at x in direction d, then for all
l ∈ T♦ it holds

DF GS♦ (x; d)(l) = D[St(Y (l, F (·)))](x; d). (31)

Proof. Let the set-valued map F be GS♦-directionally differentiable at x in direction
d. This is by definition and by the definition of the norm equivalent to the fact that
for all ε > 0 there exists λ̄ = λ̄(ε) > 0 such that for all λ ∈ (0, λ̄) it holds∥∥DF GS♦ (x; d)	T♦

(
1
λ
�T♦ (J♦(F (x+ λd))	T♦ J♦(F (x)))

)∥∥
=

∥∥(DF GS♦ (x; d)(l)− 1
λ
(St(Y (l, F (x+ λd)))− St(Y (l, F (x))))

)
l∈T♦

∥∥
= supl∈T♦

∥∥DF GS♦ (x; d)(l)− 1
λ
(St(Y (l, F (x+ λd)))− St(Y (l, F (x))))

∥∥
2

≤ ε.

This in turn is equivalent to the fact that for all ε > 0 there exists λ̄ = λ̄(ε) > 0
such that for all λ ∈ (0, λ̄) it holds∥∥DF GS♦ (x; d)(l)− 1

λ
(St(Y (l, F (x+ λd)))− St(Y (l, F (x))))

∥∥
2
≤ ε

for all l ∈ T♦. This implies

DF GS♦ (x; d)(l) = lim
λ→0+

1

λ
(St(Y (l, F (x+λd)))−St(Y (l, F (x)))) = D[St(Y (l, F (·)))](x; d)

for all l ∈ T♦. Thus (a), (b), and (31) hold.
Let now on the other hand (a) and (b) be fulfilled and define the generalized Steiner
set FGS,T♦ =

(
F(l)

)
l∈T♦

by F(l) := D[St(Y (l, F (·)))](x; d) for all l ∈ T♦. Then we

obtain by (30) that for all ε > 0 there exists λ̄ = λ̄(ε) > 0 such that for all λ ∈ (0, λ̄)
it holds

ε ≥ supl∈T♦
∥∥D[St(Y (l, F (·)))](x; d)− 1

λ

(
St(Y (l, F (x+ λd)))− St(Y (l, F (x)))

)∥∥
2

=
∥∥(F(l)− 1

λ
(St(Y (l, F (x+ λd)))− St(Y (l, F (x))))

)
l∈T♦

∥∥
=

∥∥FGS,T♦ 	T♦ ( 1λ �T♦ (J♦(F (x+ λd))	T♦ J♦(F (x)))
)∥∥

and thus lim
λ→0+

1
λ
�T♦

(
J♦(F (x + λd)) 	T♦ J♦(F (x))

)
= FGS,T♦ . Hence, by definition

the set-valued map F is GS♦-directionally differentiable at x in direction d and we
are done.
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Note that if a set-valued map F is GS♦-directionally differentiable at a point x
in direction d, then it holds by (31)

DF GS♦ (x; d) =
(
D[St(Y (l, F (·)))](x; d)

)
l∈T♦

,

and we obtain for all l ∈ T♦

l>DF GS♦ (x; d)(l) = l>D[St(Y (l, F (·)))](x; d)

= l>
(

lim
λ→0+

1
λ
(St(Y (l, F (x+ λd)))− St(Y (l, F (x))))

)
= lim

λ→0+

1
λ

(
l> St(Y (l, F (x+ λd)))− l> St(Y (l, F (x)))

)
= lim

λ→0+

1
λ

(
δ∗(l, F (x+ λd))− δ∗(l, F (x))

)
= D[δ∗(l, F (·))](x; d),

(32)

where D[δ∗(l, F (·))](x; d) := lim
λ→0+

1
λ

(
δ∗(l, F (x+λd))− δ∗(l, F (x))

)
is the directional

derivative of the scalar valued function δ∗(l, F (·)) at x in the direction d.
Next, we give some calculations rules for the new directional derivative. The

following proposition provides a sum rule and a product rule for the directional
derivative.

Proposition 4.12. Let Assumption 1 be fulfilled, let Ŝ be an open and nonempty
subset of Rn, let g : Ŝ → R be a scalar-valued function, let G,H : Ŝ ⇒ Rm be two
set-valued maps with G(x) ∈ C(Rm) and H(x) ∈ C(Rm) for all x ∈ Ŝ, let x̂ ∈ Ŝ and
d ∈ Rn, and let ♦ ∈ {`, u, s}. Then it holds:

(a) If G and H are GS♦-directionally differentiable at x̂ in direction d, then for
all α, β ≥ 0 the set-valued map F : Ŝ ⇒ Rm with

F (x) := αG(x) + βH(x) for all x ∈ Ŝ

is GS♦-directionally differentiable at x̂ in direction d with

DF GS♦ (x̂; d) =
(
α�T♦ DGGS♦ (x̂; d)

)
⊕T♦

(
β �T♦ DHGS♦ (x̂; d)

)
.

(b) If g is directionally differentiable at x̂ in direction d, G is GS♦-directionally
differentiable at x̂ in direction d, and if there exists λ̄ > 0 such that g(x̂+λd) ≥
0 for all λ ∈ [0, λ̄], then the set-valued map F : Ŝ ⇒ Rm with

F (x) := g(x)G(x) for all x ∈ Ŝ

is GS♦-directionally differentiable at x̂ in direction d with

DF GS♦ (x̂; d) =
(
D[g(·)](x̂; d)�T♦ J♦(G(x̂))

)
⊕T♦

(
g(x̂)�T♦ DGGS♦ (x̂; d)

)
.
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Proof. For the proof of statement (a) it holds by the calculation rules for the sup-
porting faces and the Steiner points for sufficiently small λ > 0

J♦(F (x̂+ λd))	T♦ J♦(F (x̂))
=

(
St(Y (l, αG(x̂+ λd) + βH(x̂+ λd)))

)
l∈T♦
	T♦

(
St(Y (l, αG(x̂) + βH(x̂)))

)
l∈T♦

=
(

St(αY (l, G(x̂+ λd)) + βY (l, H(x̂+ λd)))
)
l∈T♦

	T♦
(

St(αY (l, G(x̂)) + βY (l, H(x̂)))
)
l∈T♦

=
(
α�T♦ (St(Y (l, G(x̂+ λd))))l∈T♦

)
⊕T♦

(
β �T♦ (St(Y (l, H(x̂+ λd))))l∈T♦

)
	T♦

(
α�T♦ (St(Y (l, G(x̂))))l∈T♦

)
	T♦

(
β �T♦ (St(Y (l, H(x̂))))l∈T♦

)
= α�T♦

(
(St(Y (l, G(x̂+ λd))))l∈T♦ 	T♦ (St(Y (l, G(x̂))))l∈T♦

)
⊕T♦β �T♦

(
(St(Y (l, H(x̂+ λd))))l∈T♦ 	T♦ (St(Y (l, H(x̂))))l∈T♦

)
= α�T♦

(
J♦(G(x̂+ λd))	T♦ J♦(G(x̂))

)
⊕T♦ β �T♦

(
J♦(H(x̂+ λd))	T♦ J♦(H(x̂))

)
and we obtain

1

λ
�T♦

(
J♦(F (x̂+ λd))	T♦ J♦(F (x̂))

)
= α�T♦ Γ(λ)⊕T♦ β �T♦ Λ(λ)

with

Γ(λ) :=
1

λ
�T♦

(
J♦(G(x̂+ λd))	T♦ J♦(G(x̂))

)
and

Λ(λ) :=
1

λ
�T♦

(
J♦(H(x̂+ λd))	T♦ J♦(H(x̂))

)
.

Then it holds

lim
λ→0+

Γ(λ) = DGGS♦ (x̂; d) and lim
λ→0+

Λ(λ) = DHGS♦ (x̂; d)

and thus (a) is proven.
For the proof of (b) it holds by similar arguments for sufficiently small λ > 0

J♦(F (x̂+ λd))	T♦ J♦(F (x̂))
= (St(Y (l, g(x̂+ λd)G(x̂+ λd))))l∈T♦ 	T♦ (St(Y (l, g(x̂)G(x̂))))l∈T♦
= (g(x̂+ λd) St(Y (l, G(x̂+ λd))))l∈T♦ 	T♦ (g(x̂) St(Y (l, G(x̂))))l∈T♦
= ((g(x̂+ λd)− g(x̂)) St(Y (l, G(x̂+ λd))))l∈T♦
⊕T♦(g(x̂)((St(Y (l, G(x̂+ λd))))l∈T♦ 	T♦ (St(Y (l, G(x̂))))l∈T♦))

=
(
(g(x̂+ λd)− g(x̂))�T♦ J♦(G(x̂+ λd))

)
⊕T♦

(
g(x̂)�T♦ (J♦(G(x̂+ λd))	T♦ J♦(G(x̂)))

)
=

(
(g(x̂+ λd)− g(x̂))�T♦ (J♦(G(x̂+ λd))	T♦ J♦(G(x̂))⊕T♦ J♦(G(x̂)))

)
⊕T♦

(
g(x̂)�T♦ (J♦(G(x̂+ λd))	T♦ J♦(G(x̂)))

)
=

(
(g(x̂+ λd)− g(x̂))�T♦ (J♦(G(x̂+ λd))	T♦ J♦(G(x̂)))

)
⊕T♦

(
(g(x̂+ λd)− g(x̂))�T♦ (J♦(G(x̂)))

)
⊕T♦

(
g(x̂)�T♦ (J♦(G(x̂+ λd))	T♦ J♦(G(x̂)))

)
and we obtain

1

λ
�T♦

(
J♦(F (x̂+ λd))	T♦ J♦(F (x̂))

)
= Θ(λ)⊕T♦ Φ(λ)⊕T♦ Ψ(λ)
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with

Θ(λ) := λ

(
1

λ
(g(x̂+ λd)− g(x̂))

)
�T♦

(
1

λ
�T♦ (J♦(G(x̂+ λd))	T♦ J♦(G(x̂)))

)
,

Φ(λ) :=
1

λ

(
g(x̂+ λd)− g(x̂)

)
�T♦ J♦(G(x̂)), and

Ψ(λ) := g(x̂)�T♦
(

1

λ
�T♦ (J♦(G(x̂+ λd))	T♦ J♦(G(x̂)))

)
.

Then it holds

lim
λ→0+

Θ(λ) =
(

lim
λ→0+

λ
)
D[g(·)](x̂; d)�T♦ DGGS♦ (x̂; d) = 0GS,T♦ ,

lim
λ→0+

Φ(λ) = D[g(·)](x̂; d)�T♦ J♦(G(x̂)), and

lim
λ→0+

Ψ(λ) = g(x̂)�T♦ DGGS♦ (x̂; d),

and we are done.

In the following we apply Proposition 4.12 (a) to the special case of a set-valued
map defined by {f(x)}+A with a convex and compact set A, and we obtain that the
directional derivative depends on the directional derivative of f only, as one would
expect. We will shortly come back to this aspect in subsection 4.3 again.

Lemma 4.13. Let Assumption 1 be fulfilled, let Ŝ be an open and nonempty subset
of Rn, let x̂ ∈ Ŝ, let d ∈ Rn, let f : Ŝ → Rm be a vector-valued function which is
directionally differentiable at x̂ in direction d, and let ♦ ∈ {`, u, s}. Then for all
A ∈ C(Rm) the set-valued map F : Ŝ ⇒ Rm defined by

F (x) := {f(x)}+ A for all x ∈ Ŝ

is GS♦-directionally differentiable at x̂ in direction d with

DF GS♦ (x̂; d)(l) = D[f(·)](x̂; d) for all l ∈ T♦.

Proof. To apply Proposition 4.12 (a) we set α = β = 1, G(x) := {f(x)} for all
x ∈ Ŝ, and H(x) := A for all x ∈ Ŝ. Then it is sufficient to show that G and H
are both GS♦-directionally differentiable at x̂ in direction d with DGGS♦ (x̂; d)(l) =

D[f(·)](x̂; d) for all l ∈ T♦ and DHGS♦ (x̂; d) = 0GS,T♦ .
We start with the map H. By definition it holds for sufficiently small λ > 0

J♦(H(x̂+ λd))	T♦ J♦(H(x̂)) = J♦(A)	T♦ J♦(A) = 0GS,T♦ .

Hence, the set-valued map H is GS♦-directionally differentiable at x̂ in direction d
and it holds

DHGS♦ (x̂; d) = lim
λ→0+

1

λ
�T♦

(
J♦(H(x̂+ λd))	T♦ J♦(H(x̂))

)
= 0GS,T♦ .
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Finally, for the set-valued map G it holds for sufficiently small λ > 0(
J♦(G(x̂+ λd))	T♦ J♦(G(x̂))

)
(l) = f(x̂+ λd)− f(x̂) for all l ∈ T♦.

By using the directional differentiability of f we can define a generalized Steiner set
FGS,T♦ =

(
F(l)

)
l∈T♦

by F(l) := D[f(·)](x̂; d) for all l ∈ T♦. Now it holds

lim
λ→0+

∥∥FGS,T♦ 	T♦ ( 1λ �T♦ (J♦(G(x̂+ λd))	T♦ J♦(G(x̂)))
)∥∥

= lim
λ→0+

sup
l∈T♦

∥∥D[f(·)](x̂; d)− 1
λ

(
f(x̂+ λd)− f(x̂)

)∥∥
2

= lim
λ→0+

∥∥D[f(·)](x̂; d)− 1
λ

(
f(x̂+ λd)− f(x̂)

)∥∥
2

= 0.

Hence, the set-valued map G is also GS♦-directionally differentiable at x̂ in direction
d with

DGGS♦ (x̂; d) = FGS,T♦ =
(
D[f(·)](x̂; d)

)
l∈T♦

and we are done.

We now formulate a necessary optimality condition for set optimization problems
as the main result of this subsection:

Theorem 4.14. Let Assumption 2 be fulfilled and let ♦ ∈ {`, u, s}. Moreover, let
x̄ ∈ S such that there exists λ̄ > 0 such that for all x ∈ S \ {x̄} and all λ ∈
[0, λ̄] it holds x̄ + λ̄(x − x̄) ∈ S and such that for all x ∈ S the map F is GS♦-
directionally differentiable at x̄ in direction d := x− x̄, i.e., the generalized Steiner
sets DF GS♦ (x̄; x− x̄) :=

(
DF GS♦ (x̄; x− x̄)(l)

)
l∈T♦

w.r.t. T♦ exist for all x ∈ S. Then

the following holds:
If x̄ ∈ S is a minimal solution of (SOPF,S) w.r.t. the order relation 4♦, then for
all x ∈ S there exists l ∈ T♦ such that

sign(l)l>
(
DF GS♦ (x̄; x− x̄)(l)

)
≥ 0. (33)

Proof. Let x̄ ∈ S be a minimal solution of (SOPF,S) w.r.t. 4♦ and let x ∈ S. Since
the map F is GS♦-directionally differentiable at x̄ in direction d = x− x̄ we obtain
by Theorem 4.11 that for all ε > 0 there exists λ̃ ∈ (0, λ̄] such that for all λ ∈ (0, λ̃]
it holds∥∥ 1

λ

(
St(Y (l, F (x̄+ λ(x− x̄))))− St(Y (l, F (x̄)))

)
−DF GS♦ (x̄, x− x̄)(l)

∥∥
2
≤ ε

for all l ∈ T♦ and thus by the Cauchy-Schwarz inequality it follows

sign(l) 1
λ

(
δ∗(l, F (x̄+ λ(x− x̄)))− δ∗(l, F (x̄))

)
− sign(l)l>DF GS♦ (x̄, x− x̄)(l)

= sign(l)l>
(
1
λ
(St(Y (l, F (x̄+ λ(x− x̄))))− St(Y (l, F (x̄))))−DF GS♦ (x̄, x− x̄)(l)

)
≤

∥∥ sign(l)l
∥∥
2

∥∥ 1
λ
(St(Y (l, F (x̄+ λ(x− x̄))))− St(Y (l, F (x̄))))−DF GS♦ (x̄, x− x̄)(l)

∥∥
2

=
∥∥ 1
λ
(St(Y (l, F (x̄+ λ(x− x̄))))− St(Y (l, F (x̄))))−DF GS♦ (x̄, x− x̄)(l)

∥∥
2

≤ ε
(34)
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for all l ∈ T♦. Note that the definition of the norm in (12) by using the supremum
over all l ∈ T does again guarantee the uniform convergence w.r.t. the directions l.
Assume now that for all l ∈ T♦ it holds sign(l)l>

(
DF GS♦ (x̄, x− x̄)(l)

)
< 0. Then we

obtain by definition and (32) that for all l ∈ T♦ it holds

0 > sign(l)l>DF GS♦ (x̄, x− x̄)(l) = sign(l) D[δ∗(l, F (·))](x̄; x− x̄), (35)

where D[δ∗(l, F (·))](x̄; x− x̄) := lim
λ→0+

1
λ

(
δ∗(l, F (x̄+ λ(x− x̄)))− δ∗(l, F (x̄))

)
is the

directional derivative of δ∗(l, F (·)) at x̄ in the direction d = x− x̄.
Using Assumption 2 the support function δ∗(·, F (x̄)) is Lipschitz-continuous (see for
instance [24, Lemma 1.8.10.]) and by [23, Chap. VI, Subsec. 1.1, Remark 1.1.3.]
it follows that the directional derivative D[δ∗(l, F (·))](x̄; x − x̄) is also Lipschitz-
continuous w.r.t. the direction l. Since T♦ is a compact subset of Rm we obtain by
the Weierstraß Theorem that

κ := max
l∈T♦

sign(l)D[δ∗(l, F (·))](x̄; x− x̄)

exists and by (35) it holds

κ = max
l∈T♦

sign(l)D[δ∗(l, F (·))](x̄; x− x̄) = max
l∈T♦

sign(l)l>
(
DF GS♦ (x̄; x− x̄)(l)

)
< 0.

If we now choose ε := −κ
2
> 0 in (34), then there exists λ̃ ∈ (0, λ̄] such that for all

λ ∈ (0, λ̃] it holds

sign(l) 1
λ

(
δ∗(l, F (x̄+ λ(x− x̄)))− δ∗(l, F (x̄))

)
− κ

≤ sign(l) 1
λ

(
δ∗(l, F (x̄+ λ(x− x̄)))− δ∗(l, F (x̄))

)
− sign(l)l>DF GS♦ (x̄; x− x̄)(l)

≤ −κ
2

which leads to

sign(l)δ∗(l, F (x̄+ λ(x− x̄)))− sign(l)δ∗(l, F (x̄)) ≤ λ
κ

2
< 0

for all l ∈ T♦. Thus we obtain for instance by setting λ := λ̃

sign(l)δ∗(l, F (x̄+ λ̃(x− x̄))) < sign(l)δ∗(l, F (x̄))

for all l ∈ T♦ – contradicting by Lemma 4.1 that x̄ ∈ S is a minimal solution of
(SOPF,S) w.r.t. the order relation 4♦.

Note that we can simplify (33) in the case of l ∈ T` to l>
(
DF GS♦ (x̄; x− x̄)(l)

)
≤ 0

and in the case of l ∈ Tu to l>
(
DF GS♦ (x̄; x − x̄)(l)

)
≥ 0. This also leads to the

following necessary optimality conditions using the positive and the negative part
of the visualization of DF GS` (x̄; x− x̄) and DF GSu (x̄; x− x̄), respectively:
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Lemma 4.15. Let all assumptions of Theorem 4.14 be fulfilled and let x̄ ∈ S be a
minimal solution of (SOPF,S) w.r.t. the order relation 4♦. Then for all x ∈ S it
holds:

(a) If ♦ = `, then 0Rm /∈ intPT`
(
DF GS` (x̄; x− x̄)

)
.

(b) If ♦ = u, then 0Rm /∈ intNTu
(
DF GSu (x̄; x− x̄)

)
.

(c) If ♦ = s, then 0Rm /∈
(

intPT`(DF
GS
` (x̄; x− x̄))

)
∩
(

intNTu(DF GSu (x̄; x− x̄))
)
.

Proof. Let ♦ = ` and let x̄ ∈ S be a minimal solution of (SOPF,S) w.r.t. 4`. Then
we obtain by Theorem 4.14 that for all x ∈ S there exists l ∈ T` such that

l>
(
DF GS` (x̄; x− x̄)(l)

)
≤ 0. (36)

Assume now that there exists x̃ ∈ S such that 0Rm ∈ intPT`
(
DF GS` (x̄; x̃ − x̄)

)
.

Hence, there exist ε̃ > 0 such that

B(0Rm , ε̃) ⊂ PT`
(
DF GS` (x̄; x̃− x̄)

)
and thus

ε̃η ∈ PT`
(
DF GS` (x̄; x̃− x̄)

)
for all η ∈ Sm−1.

By the definition of the positive part it follows for all l ∈ T` that

ε̃l>η = l>(ε̃η) ≤ l>DF GS` (x̄; x̃− x̄)(l) for all η ∈ Sm−1.

Hence, we obtain for all l ∈ T` by setting η := l

0 < ε̃ = ε̃l>l ≤ l>DF GS` (x̄; x̃− x̄)(l)

– contradicting (36).
The corresponding statements for ♦ ∈ {u, `} can be proved by similar arguments.

The usefulness of the optimality conditions formulated in Theorem 4.14 and
Lemma 4.15 will be illustrated with the following example. Thereby, this necessary
condition is applied to all feasible points and it succeeds to exclude all points which
are not a minimal solution of the set optimization problems.

Example 4.16. Let Ŝ = R, S = [0, 1], C = C? = R2
+, g, h : Ŝ → Rm with g(x) := x

and h(x) := 1 − x for all x ∈ Ŝ, A := [0, 1] × [0, 1] ⊂ R2, r > 0, B := B(0R2 , r),
G,H : Ŝ ⇒ Rm with G(x) := g(x)A ∈ C(Rm) and H(x) := h(x)B ∈ C(Rm) for
all x ∈ Ŝ, and x̂ ∈ S. Moreover, we define the set-valued map F : Ŝ ⇒ R2 with
F (x) := G(x) +H(x) = g(x)A+ h(x)B for all x ∈ Ŝ. Thus we have

F (x) = [0, x]× [0, x] + B(0R2 , (1− x)r) for all x ∈ Ŝ.
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0

1

Figure 4: The images of F (x) for r = 1
2

and x ∈ { i
8
| i = 0, 2, 4, 6, 7, 8} in Exam-

ple 4.16.

For a visualization of the map F for r = 1
2

see Figure 4. By Proposition 4.12 (b)
the set-valued maps G and H are GS♦-directionally differentiable at x̂ in direction
d := x− x̂ for all x ∈ S \ {x̂} with

DGGS♦ (x̂; x− x̂) = D[g(·)](x̂; x− x̂)�T♦ J♦(A) = (x− x̂)�T♦
(

St(Y (l, A))
)
l∈T♦

where

St(Y (l, A)) =



(1, 0)> , if l = (1, 0)>

(1, 1)> , if l ∈ Tu \ {(1, 0)>, (0, 1)>}
(0, 1)> , if l = (0, 1)>

(−1, 0)> , if l = (−1, 0)>

(−1,−1)> , if l ∈ T` \ {(−1, 0)>, (0,−1)>}
(0,−1)> , if l = (0,−1)>

,

and

DHGS♦ (x̂; x− x̂) = D[h(·)](x̂; x− x̂)�T♦ J♦(B) = −(x− x̂)�T♦
(
rl
)
l∈T♦

.

Thus by Proposition 4.12 (a) the set-valued map F is also GS♦-directionally differ-
entiable at x̂ in direction d := x− x̂ for all x ∈ S \ {x̂} with

DF GS♦ (x̂; x− x̂) =
(
DF GS♦ (x̂; x− x̂)(l)

)
l∈T♦

,

DF GS♦ (x̂; x−x̂)(l) =



(x− x̂)(1− r)(1, 0)> , if l = (1, 0)>

(x− x̂)
(
(1, 1)> − rl

)
, if l ∈ Tu \ {(1, 0)>, (0, 1)>}

(x− x̂)(1− r)(0, 1)> , if l = (0, 1)>

(x− x̂)(1− r)(−1, 0)> , if l = (−1, 0)>

(x− x̂)
(
(−1,−1)> − rl

)
, if l ∈ T` \ {(−1, 0)>, (0,−1)>}

(x− x̂)(1− r)(0,−1)> , if l = (0,−1)>

,

and ♦ ∈ {`, u, s}. We restrict ourselves in the following to the case 0 < r < 1. In
this case it is easy to see that
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• x̄ = 1 is the unique minimal solution of (SOPF,S) w.r.t. 4`,

• x̄ = 0 is the unique minimal solution of (SOPF,S) w.r.t. 4u, and

• all x ∈ S = [0, 1] are minimal solutions of (SOPF,S) w.r.t. 4s.

First, we check the necessary condition of Theorem 4.14 for the case ♦ = `. Let
therefore x̂ ∈ [0, 1) and x = 1. Then it holds

DF GS` (x̂; x−x̂)(l) =


(1− x̂)(1− r)(−1, 0)> , if l = (−1, 0)>

(1− x̂)
(
(−1,−1)> − rl

)
, if l ∈ T` \ {(−1, 0)>, (0,−1)>}

(1− x̂)(1− r)(0,−1)> , if l = (0,−1)>

and thus l>
(
DF GS` (x̂; x − x̂)(l)

)
> 0 for all l ∈ T`. Hence, by Theorem 4.14 all

x̂ ∈ [0, 1) are not a minimal solution of (SOPF,S) w.r.t. 4`.
Now, let x̄ = 1 and x ∈ S be arbitrarily chosen. Then it holds

DF GS` (x̄; x−x̄)(l) =


(x− 1)(1− r)(−1, 0)> , if l = (−1, 0)>

(x− 1)
(
(−1,−1)> − rl

)
, if l ∈ T` \ {(−1, 0)>, (0,−1)>}

(x− 1)(1− r)(0,−1)> , if l = (0,−1)>

(cf. subfigure 5a in the case r = 1
2
, x̄ = 1, and x = 0) and thus l>

(
DF GS` (x̂; x −

x̂)(l)
)
≤ 0 for all l ∈ T`. Hence, x̄ = 1 fulfills the necessary condition (33) of

Theorem 4.14 for a minimal solution of (SOPF,S) w.r.t. 4` for all l ∈ T`. Moreover,
the necessary condition of Lemma 4.15 (a) is also fulfilled (cf. subfigure 5b and
subfigure 5c).
If ♦ = u, x̂ ∈ (0, 1], and x = 0, then it follows

DF GSu (x̂; x− x̂)(l) =


−x̂(1− r)(1, 0)> , if l = (1, 0)>

−x̂
(
(1, 1)> − rl

)
, if l ∈ Tu \ {(1, 0)>, (0, 1)>}

−x̂(1− r)(0, 1)> , if l = (0, 1)>

and thus l>
(
DF GSu (x̂; x − x̂)(l)

)
< 0 for all l ∈ Tu. Hence, by Theorem 4.14 all

x̂ ∈ (0, 1] are not a minimal solution of (SOPF,S) w.r.t. 4u.
Finally, let x̄ = 0 and x ∈ S. Then we obtain

DF GSu (x̄; x− x̄)(l) =


x(1− r)(1, 0)> , if l = (1, 0)>

x
(
(1, 1)> − rl

)
, if l ∈ Tu \ {(1, 0)>, (0, 1)>}

x(1− r)(0, 1)> , if l = (0, 1)>

and thus l>
(
DF GSu (x̂; x− x̂)(l)

)
≥ 0 for all l ∈ Tu. Hence, x̄ = 0 fulfills the necessary

condition (33) for a minimal solution of (SOPF,S) w.r.t. 4u for all l ∈ Tu.
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(c) 0R2 /∈ PT`
(
DFGS` (1;−1)

)
.

Figure 5: Visualization results for r = 1
2
, x̄ = 1, and x = 0 in Example 4.16.

4.3 Relation to Jahn’s set difference and directional deriva-
tive

The new set difference and directional derivative using the embeddings of nonempty,
convex, and compact subsets of Rm into the Banach space of generalized Steiner sets
are related to the concepts introduced by Jahn in [14, 13]. We discuss the relations
(and differences) in more detail in the following.

Jahn also bases his results on Lemma 4.1 (which he states originally under weaker
assumptions). He only makes use of the set Tu, also for the `-less order relation,
and not of the set T`. For that reason he needs to solve maximization as well as
minimization problems, while we only have the maximization problems from the
definition of the support functions. This is only a matter of notation but leads to a
notation using vectors in R2 in some of the results by Jahn: inf

y∈F (x)
l>y

sup
y∈F (x)

l>y

 =

(
−δ∗(−l, F (x))
δ∗(l, F (x))

)
.

We propose a unified notation by using the sign function and the sets Tu, T`, and
Ts.

A more significant difference between our approach and the approach of Jahn is
the fact that he considers only the values of the support functions and we consider
(and save) the values and an element of the supporting face at the same time by
the embedding. This is for instance important for defining a meaningful directional
derivative. In [13, Definition 2.2] Jahn defines a set difference for two suitable
nonempty subsets A and B of Rm by

A−J B :=
⋃
l∈Ts

{y(l, A)− y(l, B)}. (37)

For being suitable, he requires that the supporting faces of the sets are singletons for
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the functionals l ∈ Ts. For instance strictly convex sets have such unique supporting
points. Then, the elements y(l, A) and y(l, B) in (37) are uniquely defined.

Obviously, the set difference is a set again, and the set A −J B does not reveal
which elements have been obtained by which functionals l ∈ Ts. For overcoming
this issue, we define the set difference in the Banach space of generalized Steiner
sets after an embedding of the sets. As we use Steiner points in this context we can
also handle sets with non-unique supporting points.

Using the concept of Steiner points one could also easily extend the set difference
of Jahn and one can omit the uniqueness requirements of the supporting points:

A−St B :=
⋃
l∈Ts

{St(Y (l, A))− St(Y (l, B))}. (38)

This new set difference (without an embedding) is directly related to our difference
which uses the embedding for A and B. Using the visualization and the boundary
part, we obtain

A−St B = BTs
(
Js(A)	Ts Js(B)

)
.

The set difference in (38) is well defined for arbitrary sets A,B ∈ C(Rm). For the
new difference −St it still holds A −St A = {0Rm}, which is an important property
for further results in set optimization.

If, additionally, the supporting faces Y (l, A) and Y (l, B) are singletons for all
l ∈ Ts, then it holds

A−J B = A−St B = BTs
(
Js(A)	Ts Js(B)

)
.

Hence, in the special case of strictly convex sets, the set difference by Jahn equals the
boundary part of our new set difference in the Banach space of generalized Steiner
sets.

Also Jahn has proposed in [13, Remark 2.1] a generalization to arbitrary con-
vex sets by using metric difference in case the supporting faces are not singletons.
However, this does not lead to satisfying results. To see this, one might have a
look on set-valued maps defined by F (x) = {f(x)} + A where f : Rn → Rm is a
vector-valued map and A is some polyhedral set, for instance the unit cube. Then
the difference between two sets F (x1) and F (x2) should obviously depend on the
difference f(x1)− f(x2) only. This is true for A−St B but not for the modification
proposed by Jahn using metric differences. For the study of such specific set-valued
maps we also refer to [31].

Moreover, Jahn introduced in [13], again under the additional assumption of
unique supporting points, a directional derivative for set-valued maps: if the sup-
porting faces Y (l, F (x)) are singletons for all x ∈ Ŝ and all l ∈ Ts and if the maps
y(l, F (·)) are directionally differentiable at x in direction d for all l ∈ Ts, i.e., the
limits

D[y(l, F (·))](x; d) := lim
λ→0+

1

λ

(
y(l, F (x+ λd))− y(l, F (x))

)
(39)
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exist for all l ∈ Ts, then Jahn’s directional derivative of F at x in direction d is
defined by

DFJ(x; d) :=
⋃
l∈Ts

{D[y(l, F (·))](x; d)}.

One can again observe that the limit is calculated for each direction l individually.
Thus, one cannot just define the directional derivative as one is used to by using a
difference quotient and by replacing the difference of the sets F (x+λd) and F (x) by
Jahn’s difference. Instead, one defines a directional derivative for each l individually
and combines those by taking the union. The concept of generalized Steiner sets
allows us to define a directional derivative in a classical way by using a difference
quotient and a suitable difference in the denominator. However, we can only do this
in the space of generalized Steiner sets.

Again, by using the concept of Steiner points, we can also generalize this concept
of Jahn directly. This allows to omit the uniqueness requirements:

DFSt(x; d) :=
⋃
l∈Ts

{D[St(Y (l, F (·)))](x; d)}

where the limits

D[St(Y (l, F (·)))](x; d) = lim
λ→0+

1

λ

(
St(Y (l, F (x+ λd)))− St(Y (l, F (x)))

)
have to exist for all l ∈ Ts. Thus, we obtain, if the set-valued map F is GSs-
directionally differentiable at x in direction d, by Theorem 4.11 that

DFSt(x; d) = BTs
(
DF GSs (x; d)

)
.

Finally, in [13, Theorem 5.2] Jahn formulates in analogy to Theorem 4.14 a nec-
essary optimality conditions for set optimization problems using his original concept
of the directional derivative. Please note that in the original proof the additional
assumption that the convergence of the limits in (39) is uniform w.r.t. l is required.
Thus, the assumptions imposed by Jahn for his necessary optimality conditions and
the assumptions needed for our results are similar strong in case one has already
assumed that the supporting faces are singletons. He needs to assume the uni-
form convergence additionally, while it is a consequence from our definition of the
directional derivative, i.e., of GSs-directional differentiability, see Theorem 4.11.

So to sum up, we have been able, using the key ideas of Jahn, to extend his
set difference and his directional derivative to the case where the supporting points
are not unique. Moreover, we have found a way to keep track of the associated
functionals l to the supporting points in a mathematical rigorous manner.
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