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“Buildingmodels is verydifferent fromproclaiming truths. It’s anever-endingprocessofdiscovery
and refinement, not a war to win or destination to reach. Uncertainty is intrinsic to the process
of finding out what you don’t know, not a weakness to avoid. Bugs are features – violations of
expectations are opportunities to refine them. Anddecisions aremadeby evaluatingwhatworks
better, not by invoking received wisdom.”

Neil Gershenfeld in "Truth is aModel" (2011)
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Abstract

Time and cost efficient optimization of existing and design of novel materials is achieved by
prediction of the materials structure and properties by employing computational - in silico -
methods. For this purpose, pragmatic approaches for the targeted materials design are pre-
sented providing good compromise of prediction accuracy and computational efforts by the
exploitation of synergy between atomistic simulations and experiments. This is exemplarily
shown for three distinct types of materials.

Thefirst example concernspredictions of thephase stability and thermomechanical prop-
erties for optimizationof themicrostructureof zero thermal expansionglass ceramics consist-
ing of Ba1−mSrmZn2−2nMg2nSi2O7 (BZS) solid solutions. First, the tunable temperature of the
martensitic phase transition Tt from the low to the desired high temperature (HT) phase of
BZS solid solutions showing negative thermal expansion is predicted. This is achieved by cal-
culations of the vibrational density of states at the density functional theory (DFT) level using
the harmonic approximation (HA). Since calculations using theHA fail to predictTt evenqual-
itatively, model functions for the vibrational free energy are derived from DFT simulations in
combinationwith an empirical correction using experimentally observedTt for consideration
of anharmonic effects avoiding computationally demanding ab initio simulations. Predic-
tions ofTt for chemical compositions not included in the model derivation show good agree-
ment with experimental observations. In addition, those chemical compositions at which the
HT phase emerges from glass crystallization can be rapidly predicted by using the proposed
computational approach. Among these compositions are Ba1−mSrmZn2Si2O7 solid solutions
with m > 0.1. The thermomechanical properties of the HT phase of Ba1−mSrmZn2Si2O7 as a
function of the chemical composition m are elucidated, namely, the elastic constants, ther-
mal expansion and macroscopic Grüneisen parameters by combining DFT simulations with
experimentally determined lattice parameters. Moreover, the origin of the negative thermal
expansion at the atomic level is revealed for Ba0.5Sr0.5Zn2Si2O7 by calculation of the micro-
scopic Grüneisen parameters using DFT simulations along with the quasi-harmonic approx-
imation.

Thesecondcase study is theelucidationofatomicstructureandcrystallizationofnanopar-
ticulate Fe2O3 starting from its smallest Fe2O3 building block up to nanometer-sized Fe2O3
particles. Structure predictions of small (Fe2O3)n (n = 1-10) gas phase clusters used global
structure optimizations along with a two stage procedure that combines tailored, ab initio
derived interatomic potential functions (IP) with refinements at theDFT level. Computations
for the crystallization of larger nanoparticles up to a diameter of 5 nmusedmolecular dynam-
ics simulations along with the tailored IP. Most of the (Fe2O3)n clusters show compact, almost
amorphous structures with little or no symmetry, except for the tetrahedral, adamantane-like
(Fe2O3)2 structure. Larger gas phase clusters with n > 5 increasingly assume tetrahedral shape
with the adamantane-like (Fe2O3)2 entity as the main building unit. Such tetrahedral mor-
phologypersists for Fe2O3 nanoparticleswithdiametersup to3nm. Incontrast, single crystals
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withhexagonalmorphologywereobtainedbysimulatedcrystallizationof largernanoparticles
with diameters of about 5 nm leading to formation of ϵ-Fe2O3. The hexagonal morphology is
in excellent agreement with the results obtained for fabricated Fe2O3 nanopowders confirm-
ing the reliability of the computational procedure employed and providing the first direct in-
dication that ϵ-Fe2O3 may be thermodynamically the most stable phase for nanoparticles of
this size. In addition, the atomistic structuremodels predicted can serve as a starting point for
future simulations to sheda light on the thermodynamic andmagnetic properties of nanopar-
ticulate Fe2O3.

Finally, the third example case focusses on the optimization of polymeric nanocarriers for
the efficient encapsulation of biologically active substances such as drugs. The thermody-
namic compatibility of polymers with low molecular weight compounds is evaluated using
thermodynamicmodels parameterized by atomistic simulations. Here, a computationally ef-
ficient procedure based on the concept of inherent structures is proposed for the profound
statistical sampling of polymer conformations. Comprehensive test simulations confirm the
accuracy of the employed simulationprocedure for calculation of the physico-chemical prop-
erties such as cohesive energy densities (CED). Calculation of the CED along with their en-
ergetic contributions allow the determination of (Hansen) solubility parameters that facili-
tate rapid, qualitative solubility predictions in combination with the Flory-Huggins (FH) the-
ory. However, the FH theory fails to model specific interactions such as hydrogen bonding,
even though atomistic simulations of polymermixtures explicitly consider such interactions.
Therefore, themore accurate perturbedhard sphere chain (PHSC) equationof state (EOS)was
parameterized by using not only calculated CED but also pressures as a function of the tem-
perature. As test case, aqueous polyethylene glycol (PEG) solutions have been chosen, which
are known to show strong hydrogen bonding. The physico-chemical properties including the
phase diagram of PEG-water calculated by the PHSC EOS show good agreement with exper-
imental observations. Consequently, a two stage procedure is proposed for the efficient in
silico guided design of polymeric drug nanocarriers. It combines qualitative solubility predic-
tions using the FH theory for rapid prescreening of promising polymers that efficiently solubi-
lize active substances with computationally more demanding simulations for consideration
of specific interactions and an accurate modeling of the physico-chemical properties by pa-
rameterization of the PHSC EOS.
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Zusammenfassung

Die zeit- undkosteneffizienteOptimierung existierender sowiedasDesignsneuerMaterialien
wird durch die Vorhersage derMaterialstruktur und -eigenschaftenmithilfe rechengestützter
- in silico - Methoden erzielt. Zu diesem Zweck werden pragmatische Ansätze für das gezielte
Materialdesignvorgestellt, dieeinengutenKompromiss zwischenVorhersagegenauigkeitund
Rechenaufwand darstellen, indem Synergien zwischen atomistischen Simulationen und Ex-
perimenten genutzt werden. Dies wird beispielhaft für drei verschiedene Arten von Materi-
alien gezeigt.

Das erste Beispiel betrifft Vorhersagen der Phasenstabilität und der thermomechanischen
Eigenschaften zur Optimierung der Mikrostruktur von Glaskeramiken mit null Wärmeaus-
dehnung, bestehend aus Ba1−mSrmZn2−2nMg2nSi2O7 (BZS)Mischkristallen. Zunächstwird die
anpassbare Temperatur des martensitischen Phasenübergangs Tt von der Tief- zur gewün-
schten Hochtemperatur-Phase (HT) der BZS-Mischkristalle vorhergesagt, die eine negative
thermischeAusdehnungaufweist. DieswirddurchBerechnungender Schwingungszustands-
dichte auf dem Niveau der Dichtefunktionaltheorie (DFT) und mithilfe der harmonischen
Näherung (HN) erreicht. Da Berechnungen unter Verwendung der HN die Tt nicht einmal
qualitativ vorhersagen können, werden Modellfunktionen für die freie Schwingungsenergie
aus DFT-Simulationen zusammen mit einer empirischen Korrektur mithilfe experimentell
bestimmter Tt abgeleitet zur Berücksichtigung anharmonischer Effekte, um somit rechenin-
tensive ab initio-Simulationen zu vermeiden. Vorhersagen vonTt für jene chemische Zusam-
mensetzungen, die nicht in der Modellableitung enthalten sind, zeigen gute Übereinstim-
mung mit experimentellen Beobachtungen. Außerdem können die chemischen Zusam-
mensetzungen, bei denen ausschließlich dieHT-Phase aus der Glaskristallisation hervorgeht,
unter Verwendung des vorgeschlagenen, computergestützten Ansatzes schnell vorhergesagt
werden. Zu diesen Zusammensetzungen gehören Ba1−mSrmZn2Si2O7 Mischkristalle mit m

> 0.1. Die thermomechanischen Eigenschaften der HT-Phase von Ba1−mSrmZn2Si2O7 Mis-
chkristallen in Abhängigkeit der chemischen Zusammensetzung m werden ermittelt und
zwar die elastischenKonstanten,Wärmeausdehnung sowie diemakroskopischenGrüneisen-
Parameter durch die Kombination vonDFT-Simulationenmit experimentell bestimmtenGit-
terparametern. Außerdem wird der Ursprung der negativen thermischen Ausdehnung auf
atomaren Niveau für Ba0.5Sr0.5Zn2Si2O7 durch Berechnung der mikroskopischen Grüneisen-
Parametermithilfe vonDFTSimulationen zusammenmit der quasi-harmonischenNäherung
aufgeklärt.

Die zweite Fallstudie ist die Aufklärung der atomaren Struktur und Kristallisation von
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nanopartikulärem Fe2O3, beginnend mit dem kleinsten Fe2O3-Baustein bis zu nanometer-
großen Fe2O3-Partikeln. Strukturvorhersagen von kleinen (Fe2O3)n (n = 1-10) Gasphasen-
clusternverwendetenglobaleStrukturoptimierungenzusammenmit einemzweistufigenVer-
fahren, welches maßgeschneiderte, ab initio parametrisierte, interatomare Potentialunktio-
nen (IP) mit Verfeinerungen auf DFT Niveau kombiniert. Berechnungen für die Kristallisa-
tion von größerenNanopartikeln bis zu einemDurchmesser von 5 nm verwendetenMolekül-
dynamiksimulationen zusammen mit den maßgeschneiderten IP. Die meisten der (Fe2O3)n-
Cluster zeigen kompakte, fast amorphe Strukturen mit geringer oder keiner Symmetrie, mit
Ausnahmeder tetraedrischen, Adamantan-ähnlichen (Fe2O3)2 Struktur. GrößereGasphasen-
Cluster mit n> 5 nehmen zunehmend tetraedrische Form an, wobei die Adamantan-artige
(Fe2O3)2-Einheit das Hauptstrukturmerkmal darstellt. Eine solche tetraedrische Morpholo-
gie bleibt für Fe2O3-Nanopartikel mit Durchmessern bis zu 3 nm bestehen. Im Gegen-
satz dazu wurden Einkristalle mit hexagonaler Morphologie durch die simulierte Kristalli-
sation größerer Nanopartikel mit Durchmessern von etwa 5 nm erhalten, was zur Bildung
von ϵ-Fe2O3 führte. Die hexagonale Morphologie stimmt hervorragend mit den Ergebnis-
sen überein, die für hergestellte Fe2O3-Nanopulver experimentell bestimmt wurden, was die
Zuverlässigkeit des verwendeten Rechenverfahrens bestätigt und den ersten direkten Hin-
weis darauf liefert, dass ϵ-Fe2O3 die thermodynamisch stabilste Phase fürNanopartikel dieser
Größe sein kann. Darüber hinaus können die vorhergesagten atomistischen Strukturmodelle
als Ausgangspunkt für zukünftige Simulationendienen, umeinen tieferenEinblick indie ther-
modynamischen undmagnetischen Eigenschaften von nanopartikulärem Fe2O3 zu erhalten.

Das dritte Fallbeispiel befasst sich mit der Optimierung von polymeren Nanopartikeln
für die effiziente Einkapselung biologisch aktiver Substanzen, u.a. von Wirkstoffen. Hi-
erfür wird die thermodynamische Kompatibilität von Polymeren mit niedermolekularen
Verbindungen mithilfe thermodynamischer Modelle errechnet, die durch atomistische Sim-
ulationen parametrisiert werden. Hier wird ein recheneffizientes Verfahren vorgeschla-
gen, das auf dem Konzept der inhärenten Strukturen (IS) basiert, für die fundierte statis-
tische Erfassung von Polymerkonformationen. Umfassende Testsimulationen bestätigen
die Genauigkeit des verwendeten Simulationsverfahrens zur Berechnung der physikalisch-
chemischen Eigenschaften wie der kohäsiven Energiedichte (CED). Die Berechnung der CED
ermöglicht zusammen mit ihren energetischen Beiträgen die Bestimmung der (Hansen)-
Löslichkeitsparameter, die schnelle qualitative Löslichkeitsvorhersagen in Kombination mit
der Flory-Huggins (FH) Theorie ermöglichen. Die FH-Theorie erlaubt jedoch nicht die Mod-
ellierung spezifischer Wechselwirkungen, wie z. B. Wasserstoffbrücken, obwohl atomistische
Simulationen der Polymermischungen solche Wechselwirkungen explizit berücksichtigen.
Daherwurdedie genauerePHSC-ZustandsgleichungnichtnurunterVerwendungderberech-
neten CED, sondern auch mithilfe der Temperaturabhängigkeit des Drucks parametrisiert.
Als Testfall wurden wässrige Polyethylenglykol (PEG)-Lösungen gewählt, von denen bekannt
ist, dass sie starke Wasserstoffbrückenbindungen aufweisen. Die physikalisch-chemischen
Eigenschaften einschließlich des PHSC berechneten Phasendiagramms von PEG-Wasser
zeigen gute Übereinstimmungmit experimentellen Beobachtungen. Daher wird ein zweistu-
figes Verfahren für das effiziente Design von polymeren Wirkstoff-Nanoträgern vorgeschla-
gen. Es kombiniert qualitative Löslichkeitsvorhersagen unter Verwendung der FH-Theorie
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für ein schnelles Screening von vielversprechenden Polymeren, die aktive Substanzen ef-
fizient lösen, mit rechenintensiveren Simulationen zur Berücksichtigung spezifischer Wech-
selwirkungen und einer genauen Modellierung der physikalisch-chemischen Eigenschaften
durch Parametrisierung der PHSC.
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1 Introduction

Key prerequisite for the targeted design of novel materials showing a tailored property pro-
file is the profound understanding and control of structure-property relationship. However,
in case of, e.g., nanomaterials the experimental elucidation of the atomic structure and prop-
erties is a challenging task. In addition, if a vast number of chemical compounds along with
their structural modifications comes into question for a certain application, the experimen-
tal optimization of the materials properties can be costly and time-consuming. Therefore,
driven by increasing computational performance within the past decades, in silicomethods
using computer simulations have considerably gained importance for modeling, prediction
and screening of structure and properties of novel materials complementary to experimen-
tal characterization [1–3]. In particular, atomistic simulations at the density functional theory
(DFT) level as well as simulations using well parameterized interatomic potential functions
proved successful for the targetedmaterials design in various fields applications. These range
from the design of active substances in pharmacy [4] throughmaterials for energy generation
and storage [5] to materials in optoelectronics [2, 6], chemical catalysis and membrane tech-
nology [7].

Starting point of the materials modeling based on atomistic simulations is the determi-
nation of suitable structuremodels. While in some cases (e.g., simple ionic solids) sufficiently
accurate structuremodels canbeobtained fromexperiments, elucidationof the atomic struc-
ture ofmore complex chemical compounds andnanomaterials is very challenging. Therefore,
predictionsof theatomic structure is of vital importance in suchcases requiring computation-
ally efficientmethods [1, 8] thatmake no assumptions regarding thematerials structure. With
knowledge of the atomic structure, the thermodynamic stability and physico-chemical prop-
erties can be calculated as well by employing atomistic simulations [9, 10]. However, if com-
plex structure models or numerous calculations are required for prediction of the materials
properties at various operating conditions, sufficiently accurate simulations become compu-
tationally too demanding. Hence, lowering the computational costs by approximations is of-
ten unavoidable, yet limit the prediction accuracymaking the targetedmaterials design chal-
lenging.

Therefore, central aim of this thesis is to facilitate an efficient, in silico guided materials
design providing good compromise of accuracy and computational effort. For this purpose,
computationally efficientmethods for prediction of the atomic structure andmaterials prop-
erties are presented. These include multistage procedures employing different approxima-
tions including a combination of rapid prescreening calculations with more accurate simu-
lations for property evaluation. In addition, available experimental data facilitate empirical
corrections of themodels derived for pragmatic and time efficient property predictions.

In this thesis, atomistic simulations combinedwith thermodynamicmodeling are used for
elucidation of structure and properties of three distinct types of materials:
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(I) Prediction of the phase stability and modeling of anisotropic thermomechanical prop-
ertiesof zero thermal expansionglass ceramicsmadeofBa1−mSrmZn2−2nMg2nSi2O7 solid
solutions (BZS)

(II) Elucidation of the atomic structure and crystallization of Fe2O3 gas phase clusters and
nanoparticles

(III) Solubility predictions of active substances in amorphous polymers for optimization of
polymeric nanocarriers

The resultsof (II)werepreviouslypublished inNanoscale (RSCPublishing) [XI] andpartsof
thispublicationareadapted in this thesis. Mycontribution to thispublicationwas theconduct
of atomistic simulations, analysis of the results and draft preparation of themanuscript.

1.1 Computer-aidedmaterials design

FIGURE 1.1: Stages of the computer-aideddesign ofmaterials that fulfill predefined requirements
in the best possible way [2].

The process of the computer aided - in silico - design of novel materials is schematically
shown in Figure 1.1 [2]. Starting point of the materials design process is the definition of the
requirements on the materials properties, e.g., by using figure of merit. In addition, the de-
mands for sustainable materials (green chemistry) and their cost-effective synthesis as alter-
native to existingmaterials considerably increased in thepast twodecades [11–13]. While pre-
vious knowledge and experience such as chemical intuition provides a certain preselection
of materials that might fulfill the desired property profile, unexpected chemical compounds
andmaterials structures potentially showing unprecedented properties can only be obtained
by trial-and-error approaches. Since such approaches become costly and time consuming
by using experiments, the modeling and prediction of materials properties even of hypothet-
ical materials by employing computer simulations provide a promising route for the design
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of novel materials. In addition, if numerous materials are already known as potential candi-
dates for a certain application, yet their structure and properties are difficult to characterize,
simulations are capable screen themost promising ones.

However, as mentioned above, in case of materials that require complex structure models
and predictions for various operating conditions, simulations become computationally very
demanding, in particular at the atomic level. Therefore, approximations are indispensable to
ensure time efficient design process. However, this limits the accuracy of the predictions ren-
dering the targetedmaterials design difficult. Thus, the synthesis of at least someprescreened
materials and experimental characterization of the properties is essential for validation and
refinement of the employed model predictions. Establishing such feedback loop based on
synergy between theory and experiments is expected to provide an efficient in silico guided
design of novelmaterials. The computationalmethods presented in this work aim to facilitate
such a design process.

1.2 Zero thermal expansion glass ceramics

Zero thermal expansion (ZTE) materials have various applications ranging from common-
place ceramic hobs through telescope mirrors to micromechanical devices [14–16]. Among
these materials are glass ceramics containing crystal phases with highly anisotroic thermo-
mechanical properties along with negative thermal expansion (NTE) in at least one crys-
tallographic direction [17]. This applies also to the high temperature (HT) crystal phase of
Ba1−mSrmZn2−2nMg2nSi2−oGeoO7 solid solutions (BZS) [18, 19]. Figure 1.2 summarizes the
change of the phase stability and thermal expansion for wide variety of possible chemical
compositions of BZS solid solutions. The pronounced dependence of the coefficient of ther-
mal expansion of the HT BZS phase on the chemical composition allows straightforward tai-
loring of the thermomechanical properties of the corresponding glass ceramics. However, ex-
ploitation of the tunable NTE of theHTBZS phase for technical applications is hampered due
to themartensitic phase transition from the low temperature (LT) to theHTphase. This phase
transition is connected with a volume change of about 3 vol.% [20]. Thus, such large volume
change makes the use of the bulk glass ceramics as ZTE material at operating temperatures
close to the phase transition impossible.

Therefore, knowledge of the phase transition temperature Tt is indispensable for the tar-
geted design of BZS glass ceramics. It was shown, that the incorporation ofMg2+ and Sr2+ into
the crystal lattice of BaZn2Si2O7 shows strongly opposite effects onTt [21, 22]. While the sub-
stitution of Zn2+withMg2+ in BaZn2−2nMg2nSi2O7 increasesTt fromabout 550K (n = 0) to 1210
K (n = 1), [21] the incorporation of Sr2+ in Ba1−mSrmZn2Si2O7 solid solutions Tt considerably
decreases down to 473 K even at low Sr2+ concentrations ofm = 0.06 [22]. In addition, the crys-
tallization of glasses with (m = 0.06, n = 0) yields mixtures of the HT and LT phase. If the Sr2+
concentration is further increased (m > 0.1), only the HT phase emerges during glass crystal-
lization and, consequently, Tt cannot be determined experimentally. This indicates that the
substitution of Ba2+ with Sr2+ leads to thermodynamic stabilization of the HT phase. There-
fore, the incorporation of both, Mg2+ and Sr2+ into the crystal structure of BaZn2Si2O7, is ex-
pected to provide a simple way to tune the phase stability of the HT phase as well asTt over a
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FIGURE 1.2: Change of structure and phase stability of the low (LT) and high temperature (HT)
phase of BaZn2Si2O7 (black curve) caused by variation of the chemical composition [18, 19].

large temperature range from (theoretical) 0 up to 1200 K. However, the experimental charac-
terization for a high number of possible chemical compositions of Ba1−mSrmZn2−2nMg2nSi2O7
is a time-consuming task.

For this reason, the prediction ofTt by using atomistic simulations would facilitate the tar-
geted design of these BZS based ZTE glass ceramics. In particular, simulations at the density
functional theory (DFT) level proved successful for prediction of polymorphic phase transi-
tions [23, 24]. Predictions of the phase stability of crystalline polymorphs require the cal-
culation of the free energy as a function of temperature. For this, the vibrational density of
states (VDOS) and the corresponding vibrational free energy is calculated, e.g., by using the
harmonic approximation (HA) [24]. That is, the vibrational frequencies are assumed to be
independent of volume and temperature. However, predictions using the HA are limited in
accuracy, in particular at elevated temperatures and for materials showing strongly anhar-
monic lattice vibrations [25]. More accurate, but still qualitative predictions of the phase sta-
bility can be achieved by combiningDFT simulationswith the quasiharmonic approximation
(QHA), which takes the volumedependence of the VDOS into account (e.g., Ref. [26]). Quanti-
tative predictions of phase stabilities require the explicit consideration of anharmonicity at a
particular temperature by employing ab initiomolecular dynamics simulations (MD) [27–29].
However, applying ab initioMD or phonon calculations using the QHA to a large number of
chemical compositions (cf. Fig. 1.2) is computationally very demanding.

In order to provide rapid predictions ofTt as a function of chemical composition, simula-
tions at theDFT level for calculation of the VDOSof Ba1−mSrmZn2−2nMg2nSi2O7 solid solutions
are combined with parameterization of composition dependentmodel functions for the har-
monic free energy (cf. Chapter 2.2.2). For consideration of anharmonic effects on the temper-
ature dependence of the free energy, an empirical correction is derived using experimentally
determined Tt of the solid solution series Ba1−mSrmZn2Si2O7 (n = 0) and BaZn2−2nMg2nSi2O7
(m = 0). This empirically corrected model is then used for predictions of the phase transition
temperatures of Ba1−mSrmZn2−2nMg2nSi2O7 (m, n > 0) solid solutions (Chapter 3.1).

For chemical compositions which lead to a sufficient thermodynamic stabilization of the
HT BZS phase, that is, loweringTt far below operating or even room temperature, the charac-
terization of the anisotropic thermomechanical properties is of fundamental importance. In
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particular, the anisotopic thermal expansion is the key factor for the design of themicrostruc-
ture of such glass ceramics in order to facilitate zero volume expansion of the bulk material.
In addition, together with the (anisotropic) elastic properties (stiffness tensorC), the thermal
expansion hasmajor influence on the residual stresses introduced in themicrostructure dur-
ing fabrication of glass ceramics, which are of vital importance for crack formation in such
materials [30].

Therefore, a deeper understanding of both, the anisotropic elastic properties and thermal
expansion, is crucial for the targeted design of ZTE glass ceramics. In this context, DFT sim-
ulations proved to accurately predict the thermal expansion as well as elastic properties for
a variety of materials [10, 31, 32]. In addition, calculations of the VDOS using the QHA and
simulations at the DFT level provide insight into the microscopic mechanisms of NTE at the
atomic level [33]. Key quantity for characterization of thermal expansion is the Grüneisen pa-
rameter that provides the relation between the thermal and mechanical properties of solids
[34]. Furthermore, the microscopic Grüneisen parameter describes the volume dependency
of the phonon frequencies and its calculation using the QHA allows the elucidation of those
vibrational modes that contribute to the NTE. Chapter 3.2 describes the calculation of the
anisotropic thermomechanial properties and the Grüneisen parameters at the DFT level for
Ba1−mSrmZn2Si2O7 solid solutions withm = 0, 0.25, 0.5, 0.75.

1.3 Magnetic nanopowders: nanoparticulate Fe2O3

Tuning of the thermodynamic stability and properties of crystalline materials cannot only be
achieved by variation of the chemical composition as in the case of the glass ceramics intro-
duced in the previous section. For example, nanoparticulate materials show a pronounced
size dependence of their atomic structure and properties [35, 36]. Hence, the elucidation how
structure and properties change with increasing aggregation state, starting from small clus-
ters through nanoparticles to the bulk material is of fundamental importance for the design
of nanomaterials. This issue is addressed for nanoparticulate Fe2O3 in Ref. [XI], previously
published inNanoscale (RSC Publishing), and parts of this section are adapted from [XI].

Fe2O3 nanoparticles (NP) find anumber of applications due to their uniquemagnetic, bio-
chemical and catalytic properties [37]. They are used in catalysis, biomedicine for hyperther-
mia based anticancer therapy and targeted drug delivery, magnetic resonance imaging and
immunoassays aswell as formagnetic data storage [37–39]. Fe2O3 shows pronounced size de-
pendence of its structural andmagnetic properties [40, 41]. As bulkmaterial it exists either as
the thermodynamically most stable hematite (α-Fe2O3) or metastable maghemite (γ-Fe2O3),
both naturally occurring asminerals. In addition, two Fe2O3 polymorphs are known, β-Fe2O3
and ϵ-Fe2O3 that canonlybeobtained innanoparticulate form [40]. ϵ-Fe2O3 has attractedpar-
ticular attention since the discovery of its uniquemagnetic and dielectric properties [41] such
as thegiant coercivefielddueof the largemagneto-crystallineanisotropyanda relatively small
saturationmagnetization [42]. Thismakes ϵ-Fe2O3 apromising candidate for advancedmate-
rials. Its crystal structure can be described as intermediate between α- and γ-Fe2O3, contain-
ing one-quarter of Fe atoms in tetrahedral interstices and three-quarters in octahedral sites. A
unique feature ϵ-Fe2O3 is thepresence of five-fold coordinatedOatoms. It has been suggested
[43] that belowcertainparticle size ϵ-Fe2O3maybe thermodynamically themost stablephase.
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However, this assumption has not yet been explicitly verified [41]. It addition to the crystalline
forms it is also possible to obtain amorphous Fe2O3 [40].

Apart fromdeterminationof the thermodynamicallymost stable crystal phaseof Fe2O3NP,
the elucidation of the atomic structure is one of the key prerequisites for determination and
control of, e.g., their magnetic properties. In particular, small iron oxide clusters and Fe2O3
NP with diameters between 1-5 nm show strongly size dependent magnetic properties [44].
Furthermore, small nanoclusters can display chemical and physical properties distinct from
both smallmolecules and thecorrespondingbulkmaterials or largerNP [45]. However, atomic
level characterization of iron oxide nanoclusters is a very challenging task due to its compli-
cated electronic structure. In addition, computational studies of larger clusters are generally
hampered by a steeply increasing number of local minima with increasing cluster size [8, 46].
This makes the search for low energy structures by manual construction of all possible iso-
mers followed by local structure optimizations very challenging. Therefore, several global en-
ergy minimization techniques for automatic determination of the most stable cluster struc-
ture have been proposed [47, 48]. Among them, genetic algorithm (GA) finds the global min-
imum structure by an evolutionary process [46, 48, 49] and has been applied successfully for
structure predictions of variousmetal oxide nanoclusters (see, e.g., Ref. [8]).

Due to these difficulties computational studies of iron oxide clusters have so far been lim-
ited to small non-stoichiometric ionic [50–56] and neutral species [57, 58]. Stoichiometric,
neutral (Fe2O3)n clusters were investigated up to n = 2 [59–61] as well as for n = 2-6 and 10
[62] using only manually constructed and locally optimized structures. A previous study [XII]
reported the first global structure optimization of (Fe2O3)n clusters with n = 1-5 employing
density functional theory (DFT) and including precise determination of theirmagnetic (spin)
states. It was demonstrated that the geometric structure of larger (Fe2O3)n clusters is virtually
independent of theirmagnetic configurations. In addition, starting fromn = 4 the precise spin
state has only aminor influence on relative energies of different cluster isomers.

Thesteep increaseof computational costof global structureoptimizationalgorithmsmakes
search for global energyminimaof larger clusters andnanoparticles virtually impossible. Even
if the global minimum of a large system could eventually be located the large number of very
close-lying local minima renders the result meaningless. Instead, low-energy structures can
be located employingmolecular dynamics (MD) simulations along with carefully parameter-
ized interatomic potential functions (IP) [46, 63]. As an example, the simulated annealing
procedure was employed to investigate the crystallization process and structure of metal ox-
ide NP with several nm in diameter [64–66]. However, similar studies of Fe2O3 NP with di-
ameters in the range of 2-5 nm lead only to amorphous structures,[67] most probably due to
short simulation times and shortcomings of the potential functions employed. Despite the
unique properties, technological relevance and complex polymorphous transformations of
crystalline (Fe2O3)n NP no computational investigations of their structure and crystallization
processes have been reported before.

Thefirst systematic, comprehensive studyofnanoparticulateFe2O3 starting fromits small-
est Fe2O3 building unit and (Fe2O3)n clusters of increasing size through to nanometer-sized
Fe2O3 particles is presented in Chapter 4. This is achieved by employing tailored, ab initio
parameterized interatomic potential functions [68] (IP-Fe2O3) combinedwith a refinement at
the DFT level (cf. Chapter 2.2.3) to locate global energy minima of (Fe2O3)n clusters with n =
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1-10. Finally, the IP-Fe2O3 are used for simulated crystallization of Fe2O3 NP with diameters
up to 5 nm.

1.4 Solubility optimization of actives in polymeric nanocarriers

Solubility of low molecular weight compounds, such as solvents, dyes or other active sub-
stances in polymers is of fundamental importance for numerous industrial applications rang-
ing frommembrane separations through solvent extraction to thin filmcoating [69]. In partic-
ular, the optimization of polymeric nanocarriers for the efficient encapsulation of biologically
active substances plays a crucial role in nanomedicine, e.g., for targeted delivery of anticancer
therapeutics [70] or tumor imaging agents [71]. However, experimental optimization of the
encapsulation efficiency (EE) by adjustment of the polymer structure and chemical compo-
sition using trial-and-error approaches is costly and time-consuming. Therefore, solubility
predictions by employing thermodynamic modeling of polymer mixtures are a powerful tool
in the process of discovery and optimization of new drug delivery systems [72].

FIGURE 1.3: Encapsulation efficiency (EE) of
actives in PEG-PLA copolymer nanoparticles
as a function of predicted free energies ofmix-
ing ∆Gmix [X].

For this purpose, atomistic simulations
proved successful for predictions of the
thermodynamic drug-polymer compatibil-
ity and beyond that provide also a detailed
understanding of the intermolecular inter-
actions between polymers and active sub-
stances (e.g., refs. [X] and [73–75]). Keyquan-
tity for determination of the intermolecu-
lar interactions is the Hildebrand solubility
parameter (SP) of polymer and active, re-
spectively, defined as the square root of the
cohesive energy density (CED) [76, 77]. In
most theoretical studies, the CED are used
for parameterization of the Flory-Huggins
(FH) theory [78, 79] yielding the free energy
ofmixing asmeasure for the thermodynamic
compatibility between polymer and active

substances. Figure 1.3 depicts the successful correlation of predicted free energies of mixing
and experimentally observed EE of different actives in copolymer nanoparticles comprising
different ratios of polyethylene glycol (PEG) and polylactic acid (PLA) [X]. In addition, an ex-
tension of the SP approach was proposed by Hansen [80] that uses a separation of the CED
into different energetic contributions such as dispersion and hydrogen bonding interactions.
This facilitates amore detailed characterization of the intermolecular interactions, which can
be potentially used for rapid screening of the thermodynamic polymer-active compatibility.
For example, a machine learning approach was recently proposed for calculation of Hansen
SP in order to provide a versatile tool for polymer solubility predictions [81].
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Although atomistic simulations combined with the FH theory provided solubility predic-
tions in agreementwith experimental observations in several cases [73–75], the general appli-
cability of this approachwas under debate recently [82–84]. Employing the FH theory param-
eterized from atomistic simulations contradicting results were obtained in comparison with
experimental data for several polymer-active mixtures [83] clearly indicating the limited ac-
curacy of such solubility predictions. This is connectedwith twomajor factors that determine
accuracy and reliability of the the thermodynamicmodeling.

The first challenge is the atomistic modeling of bulk amorphousmaterials using structure
models with periodic boundary conditions which inherently assume long-range order. Thus,
generation and sampling of a sufficiently large number of polymer conformations is indis-
pensable for an accurate atomisticmodeling of amorphous polymers. Some theoretical stud-
ies employed molecular dynamics (MD) simulations with long equilibration times up to mi-
croseconds for relaxation of the polymer conformations [84, 85]. On the other hand, configu-
rational biasedMonte-Carlo (MC) algorithms [86, 87] were applied for generation of polymer
conformations, which were subsequently used for the sampling of the CED (cf. refs. [73] and
[X]) by employing comparatively shortMD simulations in the ns scale. However, the accuracy
and reproducibility of the latter sampling approach for calculationof theCEDhasnot yet been
critically evaluated.

Anothercomputationalmethod forcalculationof theatomic structureand thermodynamic
quantities of amorphous materials employs the concept of so called inherent structures (IS)
initially proposed by Stillinger and Weber [88–90]. It is based on the separation of the 3N -
dimensionalpotential energy surface (PES)and thecorrespondingpartition function intonon-
overlapping basins for a systemcontainingN atoms [89]. The IS represent these basins, which
can be calculated by applying geometry optimizations to MD trajectories of the equilibrated
liquid state at temperatures above the glass transition temperatureTg. The resulting distribu-
tion of the IS potential energyminima corresponds to theprobability distribution that a struc-
tureextracted fromthe liquid state is associatedwith the ISand their correspondingproperties
[91, 92]. Consequently, not only atomic structures but also thermodynamic quantities of glass
forming liquids at temperatures close toTg can be calculated [92]. Simulations employing the
concept of IS were used for elucidation of the structure and properties of various amorphous
materials including polymers and biomolecules [90, 93–95]. However, to the best of the au-
thor’s knowledge this methodology has not yet applied to polymer solubility predictions.

The second key factor for accurate thermodynamic description of polymer solutions is the
model parameterized from the simulation results. While atomistic simulations are capable
to describe the intermolecular interactions including specific interactions such as hydrogen
bonding,mean-field lattice theories such as the FH theory fail tomodel such interactions [82,
83]. For example, the FH theory is based on the regular solution theory assuming positive en-
tropyofmixingof the ideal lattice. However, several stronglyhydrogenbonding solutions such
as alcohol water mixtures [96] are known to show negative entropy of mixing due to the for-
mation clusters in solution [97]. This applies also to aqueous solutions of polyethylene glycol
(PEG) [98] and PEG drugmixtures [99] showing pronounced hydrogen bonding. Therefore, it
was pointed out in ref. [82] that more sophisticated equation of state (EOS) theories are re-
quired for reliable predictions of polymer-drug compatibility. Among the numerous EOS the-
ories for polymers [100] are the statistical associating fluid theory (SAFT) [101, 102] and the
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perturbed hard sphere chain (PHSC) EOS [103–105]. Most frequently the parameters of these
EOS were obtained by using experimentally determined pressure temperature dependencies
and phase diagrams. Despite also few examples for the derivation of EOSparameters for poly-
mersbyemployingatomistic simulationswere reported [106, 107] the critical evaluationof the
accuracy of the solubility predictionsusing such aparameterization, inparticular formixtures
showing pronounced hydrogen bonding is still lacking.

Chapter 5 focusses on both of the named factors, the accuracy of atomistic simulations
for the statistical sampling of the polymer conformations as well as the thermodynamicmod-
eling. First, a simulation procedure is proposed combining MC simulations for generation
of polymer structure models with relatively short MD simulations for the sampling of inher-
ent structures. Comprehensive test simulations of the simulation procedure are performed
in order to facilitate accurate and reproducible statistical sampling of polymer conformations
and the related physico-chemical properties such as CED and pressures. Subsequently, the
simulation results are used for parameterization of the FH theory including a correction that
considers the change of the intermolecular structure as a function of the composition. In ad-
dition, the concept of Hansen solubility parameters is applied for rapid qualitative solubility
predictions. Finally, the parameters of the PHSC EOS are derived from atomistic simulations
for calculation of the physico-chemical properties of aqueous PEG solutions as test case for
strongly hydrogen bonding polymermixtures.
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2 Theory and computational methods

2.1 Modeling of materials properties

2.1.1 Statistical thermodynamics

Predictions of the thermodynamic stability andphysico-chemical properties ofmaterials em-
ploying atomistic simulations requires the link of calculatedmicroscopic, atomistic states and
the macroscopic, observable states and properties. The methods used in this work are based
on classical statistical thermodynamics with basic concepts introduced in this section.

Central quantity linking microscopic states and macroscopic, thermodynamic quantities
is the canonical partition function Q . For a particular atomic configuration κ, the canonical
partition functionQ κ reads [108, 109]:

Q κ =
∑

i

exp(−βEi ), (2.1)

with the energy Ei of microstate i and β = (kT )−1, where k is the Boltzmann constant and
T the temperature. In general, the probability Pi of finding a microstate in the macroscopic
system which is in thermal equilibrium with its surrounding (e.g., a heat bath) is given by the
Boltzmann distribution [109]:

Pi =
1

Q κ
exp (−βEi ). (2.2)

The partition function can be separated into sums of states of, e.g., i electronic and j

vibrational states. This allows (in case of solids) the factorization of Q κ such that Q κ =

qκ,elqκ,vib with the electronic qκ,el =
∑

i exp(−βEi κ,el) and vibrational partition function qκ,vib =∑
j exp(−βE j κ,vib) [110]. For molecular systems also the translational and rotational partition

functions have to be considered. Since only non-metallic materials are considered in this
work, the thermal excitation of higher lying electronic states above the ground state with
E0κ = E0κ,el, which is relevant for the modeling of, e.g., metallic materials (electron gas), is ne-
glected. In other words, the probability of finding configuration κ in an electronic state with
Ei κ,el > E0κ is negligibly small and, consequently, qκ,el ≈ exp(−βE0κ). The vibrational partition
functionqκ,vib considers atomicdisplacements aroundconfiguration κ bycalculating the force
constants and vibrational frequencies, e.g., by using phonon calculations along with the har-
monic approximation (cf. Section 2.2). With knowledge ofQ κ or a reasonable approximation
of it, respectively, the Helmholtz free energy Aκ is given as [108]:

Aκ = −kT ln(Q κ). (2.3)
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The factorization ofQ κ implies that Aκ can be separated into additive contributions and writ-
ten as [10, 111]:

Aκ(T ) = E0κ + EZPE + Aκ,vib(T ), (2.4)

with the zero-point vibrational energy Eκ,ZPE and the temperature dependent vibrational free
energy Aκ,vib (T ) = Eκ,vib (T ) − T Sκ,vib (T ). Up to now, only the partition function Q κ and free
energy Aκ for one particular atomic configuration κ, that is one point on the potential energy
surface (cf. Section 2.2.1) was considered. However, in case of disordered solids, for exam-
ple substitutional solid solutions or amorphous materials, accurate thermodynamic model-
ing requires considerationofnumerousatomicconfigurations κ for calculationof thepartition
functionQ =

∑
κQ κ [111, 112]. The correspondingHelmholtz free energy A (T ) as a function of

temperatureT is (equivalent to eq 2.3):

A (T ) = −kT ln
(∑
κ

exp(−βAκ)

)
. (2.5)

Assuming that the vibrational free energy is independent of the atomic configuration κ, that is
Aκ,vib = Avib, eq 2.5 reads:

A (T ) = −kT ln
(∑
κ

exp (−βE0κ)

)
+ EZPE + Avib(T ). (2.6)

Similar to eq2.2, theprobability of thepresenceof anatomic configuration in themacroscopic
system, which is in thermal equilibrium with its surrounding, is given by the Boltzmann dis-
tribution [112]:

Pκ =
1
Q
exp (−βE0κ) . (2.7)

With knowledge of the energies E0κ of all possible configurations κ (or a representative set
of configurations) allows the calculation of (an approximated) Q and the average properties
Y =

∑
κ PκYκ using the quantitiesYκ of each configuration. For example, for the average energy

E0 of the electronic ground state applies [112]:

E0 =
∑
κ

PκE0κ. (2.8)

In addition, the configurational entropy Sconf can be calculated using:

Sconf = −k
∑
κ

Pκ lnPκ. (2.9)

Employing eqs 2.7-2.9 one can rewrite eq 2.6 to yield the expression for A (T ), which is used as
starting point for modeling phase stability of bulk polymorphs in Chapter 3:

A (T ) = E0 −T Sconf + EZPE + Avib(T ). (2.10)

This work mainly focusses on the thermodynamic modeling of incompressible phases,
that is only small volume changes dV have to be considered. Therefore, the volumework pdV
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is negligibly small at moderate pressures p (< 10 MPa) such that the Helmholtz free energy A

provides reasonable approximation to the Gibbs energyG = A + pV .
Using standard thermodynamic relations one directly obtains the pressure p from the

Helmholtz free energy A by using [34, 108]:

p = −

(
∂A

∂V

)
T

. (2.11)

This relation is of particular importance, since it provides the relation of the observable pres-
sure and the free energy. Obviously, the latter can be calculated by integration of p(V ) with
respect to the volume at a particular temperature. Therefore, knowledge of the pressure as a
function of volume and temperature - obtained either by experiments or simulations - facili-
tates derivation of thermodynamic models by parameterization of pressure explicit equation
of states (EOS) p = p(T ,V ). Such EOS are frequently expressed by using the dimensionless
compressibility factor Z :

Z =
p

ρkT
, (2.12)

alongwith the number density ρ = NV −1 (N - number of particles). In case of the ideal gas the
compressibility factor is simply Zid = 1. Many EOS use corrections to Zid for modeling of real
gases and liquids in form of the Virial EOS [108]:

Z = 1 + ρB2(T ), (2.13)

where B2(T ) is the second Virial coefficient considering particle pair correlations and interac-
tions. For example, one of the simplest expressions forZ and B2(T ), respectively, is the van der
Waals (vdw) EOS for which B2(T ) reads:

B2 (T ) = b −
avdw
kT

. (2.14)

The vdw EOS considers the excluded volume of two gas particles in contact using the co-
volume b as well as attractive (non-bonding) particle pair interactions by the van der Waals
perturbation parameter avdw. More sophisticated approximations forB2(T )will be introduced
in Section 2.1.4 for the thermodynamic modeling of amorphous polymers. In contrast to the
EOS for modeling of gases and liquids, EOS for (crystalline) solids such as the Vinet [113, 114]
or Birch-Murnaghan EOS [115, 116] are not based on the Virial EOS. They rather describe the
volumedependenceof p for isotropic solidsbyusing thebulkmodulusK aswell as its pressure
and in some cases also its temperature dependence [25].

Apart frommodeling of the free energy, knowledge of the p −V −T relation, e.g., provided
by an EOS, allows in principle the calculation of all thermodynamic quantities. In this work,
the isochoric thermal pressure coefficient - a measure for the thermally induced pressure at
constant volume - is of particular relevance [34, 117, 118]:(

∂p

∂T

)
V

= αK = γ
CV

V
=

pint + p

T
. (2.15)
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It provides the link between the thermomechanical properties, namely the thermal expansion
α and bulk modulus K , and the ratio of heat capacityCV to the volume along with the dimen-
sionless (macroscopic) Grüneisen parameter γ. The latter is connected with the vibrational
states of solids by the microscopic Grüneisen parameters that quantify the volume depen-
dence of vibrational frequencies. Since CV ,V and K are positive, negative thermal expansion
α is related to negative γ and, therefore, the Grüneisen parameter is of central importance for
modeling zero thermal expansionmaterials (cf. Section 2.1.3). In addition, the isochoric ther-
mal pressure coefficient is related to the internal pressure pint that equals thepartial derivative
of the internal (potential) energy with respect to volume at constant temperature [118–120].
This relation allows the calculationof the (residual) energy frompressure explicit EOSused for
the thermodynamicmodeling of polymers in Section 2.1.4.

2.1.2 Phase stability of bulk polymorphs

Starting point for modeling the phase stability and the phase transition temperature Tt of
Ba1−mSrmZn2Si2O7 (BZS) solid solutions is theHelmholtz free energyA(T ) as a functionof tem-
peratureT given in eq2.10. In this section,model functions forA(T ) as a functionof the chemi-
cal composition (m,n) are derived for prediction ofTt by combining simulations at the density
functional theory (DFT) level and experimentally observedTt.

Fundamental condition for the transition from the low (LT) to the high temperature (HT)
phase at temperature Tt is ∆A (Tt) = AHT (Tt) − ALT (Tt) = 0. Accordingly, relevant quantities
formodeling of the phase stability are the changes of configuration entropy ∆Sconf (cf. eq 2.9),
average lattice energy ∆E0 at 0 K (cf. eq 2.8), zero-point vibrational energy ∆EZPE as well as
the temperature dependent vibrational free energy ∆Avib(T ). Since the accurate calculation of
∆E0 and∆Sconf requires a large set of DFT calculations of all possible atomic configurations for
substitution of Ba2+ with Sr2+ and Zn2+ with Mg2+, it is assumed in the following that ∆E0 is
well approximated by∆E0 of the lowest energy structures obtained (cf. Section 2.2.2). Further-
more, it is assumed that the free energy contributions −T∆Sconf to ∆A(T ) are negligibly small
(cf. Section 3.1).

Figure 2.1a shows the Helmholtz free energy A(T ) as a function of temperature for
BaZn2Si2O7 (BaZn) and BaMg2Si2O7 (BaMg). If the vibrational free energy ∆Avib(T ) depends
only slightly on the chemical composition, the relative energy at 0 K of the of the HT phase
with respect to the LT phase ∆E 0K = ∆E0 + ∆EZPE is the most determining factor for predic-
tion Tt as a function of the chemical composition. Therefore, it is expected that the relative
lattice energies E0K correlate with Tt. For this purpose, the relative lattice energies ∆E0 calcu-
lated using DFT simulations at several compositions (m,n) (cf. Section 2.2.2) were fitted to a
quartic polynomial, in order to obtain a continuous functional dependence for ∆E0 on (m,n).
Similarly, a composition dependentmodel for the vibrational free energy Avib(T ) is derived by
using DFT simulations for different (m,n) along with the harmonic approximation (HA) that
frequently provides reasonable results at low temperatures [25]. However, at elevated temper-
atures the inclusionof anharmonic effects is indispensable for accurate thermodynamicmod-
eling [27] of phase transitions (Figure 2.1b), yet requires computationally demanding simu-
lations making predictions for numerous chemical compositions tremendously challenging.
Therefore, an empirical correction is applied to the vibrational free energy Avib,HT(T ) of the



2.1. Modeling of materials properties 15

FIGURE 2.1: Helmholtz free energy A as a function of temperature for prediction of phase transi-
tion temperatureTt. a) Free energies for BaZn2Si2O7 (BaZn) and BaMg2Si2O7 (BaMg) along with
their relative energies of thehigh (HT)with respect to the low temperature (LT) phase at 0K,∆E0K.
b) Empirical correction of the harmonic (HA) free energy of the HT phase (yielding Tt,HA) using
experimentally observed transition temperatures Tt,exp for consideration of anharmonic (ANH)
effects.

HT phase using available, experimentally determined Tt for Ba1−mSrmZn2Si2O7 (n = 0) and
BaZn2-2nMg2nSi2O7 solid solutions (m = 0) as depicted in 2.1b.

In general, Avib (T ) can be calculated from the vibrational entropy Svib using [25, 121]:

Avib (T ) = −

∫ T

0
Svib

(
T

′
)

dT ′. (2.16)

Together with the vibrational density of states (VDOS) g (ν), Svib of a solid can be calculated
using the vibrational entropy of a single harmonic oscillator (Einsteinmodel) and the [25, 121,
122]:

Svib (T ) = k

∫ νmax

0

(
u

exp (u) − 1 − ln (1 − exp (−u))

)
g (ν)dν, (2.17)

with u = βhν, the vibrational frequencies ν and the Planck constant h. First, the harmonic
Debye model for anisotropic solids is applied to find an approximation for g (ν) using three
different Debye temperatures θi0 [123]:

g (ν) = 9N
3∑

i=1

(
h

k θi0

)3
ν2. (2.18)

Next, a linear dependence of the Debye temperatures θi0(m,n) on the chemical composition
(m,n) is assumed for both, the LT and the HT phase:

θi0(m,n) = ΘBaZn,i + Θ1m + Θ2n. (2.19)

The parameters ΘBaZn,i , Θ1, Θ2 are fitted to the harmonic vibrational free energies and zero-
point vibrational energies calculated for different (m,n) by using phonon calculations at the
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DFT level describedmore detailed in Section 2.2.2. In theHA θi0 and, consequently, the VDOS
is independent of T and V . A correction of Svib for consideration of anharmonic effects can
be obtained introducing temperature dependent vibrational frequencies, that is, defining a
temperature dependent θi (T ) [25, 117, 121, 122] using θi0(m,n) of the harmonic VDOS:

θi (T ) = θi0(m,n) exp (τanhT ) . (2.20)

Similar to θi0(m,n), the quantity τanh is assumed to be linearly dependent on the chemical
composition. As mentioned above, this correction is applied to the vibrational free energy of
the HT phase by fitting ∆A(Tt) = 0 to experimentally observed phase transition temperatureTt
of Ba1-mSrmZn2Si2O7 (n = 0) and BaZn2−2nMg2nSi2O7 (m = 0) solid solution series (cf. Fig. 2.1):

τanh (m,n) = τBaZn + τ1m + τ2n, (2.21)

where τBaZn, τ1 and τ2 are adjustable parameters. Assuming that the vibrational free energy
continuously changeswithvaryingchemical composition, the compositiondependentmodel
VDOS in eqs 2.18-2.20 can be used for predictions ofTt for the complete composition range of
Ba1−mSrmZn2−2nMg2nSi2O7 solid solutions.

2.1.3 Anisotropic thermomechanical properties

For BZS glass ceramics with chemical composition that show Tt suitable for application of as
zero thermal expansion materials, characterization of the thermomechanical properties, in
particular of the thermal expansion α as well as the elastic properties is of fundamental im-
portance. In general, for an isotropic solid α is related to the bulk modulus K , heat capacity
CV , volumeV andmacroscopic Grüneisen parameter γ as given in eq 2.15. Since theHTphase
of BZS solid solutions shows an orthorhombic crystal structure, anisotropic thermal expan-
sion α = (αa , αb , αc )

T for each crystallographic axis a ,b , c is considered here. Together with the
three corresponding Grüneisen parameters γ = (γa , γb , γc )

T and the (3×3) compliance tensor
S = C−1, which is inverse of the stiffness tensor C, and neglecting shearing of the unit cell, eq
2.15 reads [117]:

α =
V

CV
Sγ. (2.22)

Here, CV and S are calculated by employing DFT simulations (cf. Section 2.2.2) and γ is ob-
tained by fitting α to experimentally observed as well as DFT calculated cell parameters of
theHT phase for Ba1-mSrmZn2Si2O7 solid solutions withm = 0, 0.25, 0.5 and 0.75. For this pur-
pose, the three adjustable parameters γa , γb , γc and the compliance tensorS are assumed tobe
independent of temperature. In addition, by using the DFT calculated C and S, elastic prop-
erties such as bulk modulus K and the linear Young’s modulusYi along every crystallographic
direction i = a ,b , c can be obtained [124]. Similarly, the linear compressibilities for each crys-
tallographic direction [25, 125] are calculated with:

bi =
∑

j

Si j . (2.23)
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The average (volumetric) Grüneisen parameter γ, which is also assumed to be independent of
temperature, provides the relation between the volumetric thermal expansion α, K andCV (cf.
eqn. 2.15) and reads [125]

γ =
baγa + bbγb + bzγc

ba + bb + bc
. (2.24)

On the other hand, for elucidation of the microscopic origin of the (negative) thermal ex-
pansion at the atomic level, the microscopic Grüneisen parameters γki for phonon branch i

and reciprocal lattice vector k can be calculated using phonon calculations (cf. Section 2.2.2)
alongwith the quasi-harmonic approximation (QHA). They quantify the volume dependence
of the vibrational frequencies νki defined as [25, 117, 125, 126]:

γki = −
V

νki

∂νki

∂V
. (2.25)

In addition, the DFT calculated γki allow the determination of the temperature dependent,
macroscopic Grüneisen parameter γDFT by using [126]:

γDFT =
∑
ki

Ckiγki

CV
, (2.26)

along with the contributionCki of each vibrational mode ki at k-point k for phonon branch i

to the heat capacityCV =
∑
ki Cki :

Cki = ku2 exp (u) (exp (u) − 1)−2 , (2.27)

with u = βhνki .

2.1.4 Thermodynamicmodeling of polymer solubility

The calculation of the thermodynamic driving force for formation of polymer-activemixtures
is of vital importance for prediction of the solubility of a low molecular weight compounds
(here: solvents) in polymeric nanocarriers. For this purpose, themolarGibbs energy ofmixing
∆gmix is the central quantity for determination of the thermodynamic compatibility between
the two compounds and, thus, provides ameasure how the encapsulation efficiency changes
with varying hydrophobicity of the polymer (cf. Section 1.4). Here, thermodynamic models
are derived from atomistic simulations (cf. Section 2.2.4), whereby the cohesive energy den-
sity (CED) ci of component i as well as the pressure as a function of temperature is of central
importance. Moreover, the CED is connected with the frequently used Hildebrand solubility
parameter δi through the relation ci = δ

2
i [76, 77]. Please note that every quantity with the in-

dices i = j = 1 refers to a polymer (PEG and PLA) whereas for solvents i = j = 2 is used in the
following.

The CED or the Hildebrand solubility parameter (SP), respectively, which quantify the in-
termolecular interactions, are connected with the potential energy per particle (segment or
molecular unit) ei through the molar volume vi = V N −1

s (Ns number of segments) by the rela-
tion ei = −vi δ

2
i = −vi ci for pure polymers or solvents. In case of mixtures showing the average

molar volume vm =
∑

i xivi and cohesive energy density cm , the potential energy per segment
is em = −vmcm (or em = −vmδ

2
m). In general, the intermolecular structure and interactions of
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liquids or amorphous solids are characterized by the radial distribution function (RDF) gi j (R)

and the segment pair potential φi j (R). Thepotential or residual energywith respect to thepure
ideal gases e reads [127]:

e =
ρs
2

l∑
i=1

l∑
j=1

xi x j

∫ R1

0
φi j (R) 4πR2gi j (R)dR , (2.28)

for a system containing l different components with mole fractions xi , the segment density
ρs (inverse of vi ) and the center-to-center distance R of two segments with cutoff distance R1.
With knowledge of ei and em, themolar energy of mixing per segment can be calculated with:

∆emix = em − x1e1 − x2e2. (2.29)

Since the volume change of mixing is small the molar enthalpy of mixing ∆hmix is well ap-
proximated by ∆emix at moderate pressures considered here. The method for parameteriza-
tionof the intermolecularpair potential φi j (R)byemployingatomistic simulations is shown in
Figure 2.2. Stating from atomistic model of polymers, active substances and the correspond-
ingmixtures, a coarsegrainingprocedure is applied (implemented in theMaterials Studiopro-
gram suite, Version 17.1, Dassault Systèmes BIOVIA) for definition of molecular units. Please
note that in case of atomistic and coarse grainedmodels obtained from simulations the term
unit is used,which refers to apolymer repeatingunit or a single solvent/activemolecule,while
segment is used for an arbitrarily defined molecular fragment of the thermodynamic models
described below. Nonetheless, the relations described in this section apply to both,molecular
units and segments. Next, the intermolecular RDFs of the coarse grained models are calcu-
lated. Together with the CED obtained from atomistic simulations, φi j (R) can be calculated
by assuming a square-well potential (SW) since it contains only one adjustable parameter, the
intermolecular interaction energy ωi j (Fig. 2.2b). The SW potential reads:

φi j (R) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞, R < R0

ωi j , R0 ≤ R ≤ R1

0, R > R1,
(2.30)

along with the the parameters R0 defined as the onset of the RDF and R1 chosen as diameter
of a sphere with volume vi (center-to-center distance of two particles). Such a pair potential
can be used for thermodynamic modeling of polymer mixtures using the Flory-Huggins (FH)
theory described in the next section. In addition, a composition dependent correction of the
FH theory (FHz) is applied for consideration of unequal sized segments (Fig. 2.2c).

A more accurate modeling of the intermolecular pair potential can be achieved using the
Lennard-Jones (LJ) potential with potential well depth ε that is used for parameterization of
the perturbed hard sphere chain (PHSC) equation of state (EOS) [103–105]:

φi j (r ) = εi j

((σi j

R

)12
− 2

(σi j

R

)6)
. (2.31)

Due to the additional parameterσ quantifying the equilibrium (center-to-center) distance
of two units, a second relation is required for parameterization of the LJ potential. For this
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FIGURE 2.2: Thermodynamic models derived from atomistic simulations: a) coarse graining of
atomistic models for definition of molecular units along with b) their intermolecular radial dis-
tribution functions (RDF) as well as the square-well (SW) and Lennard-Jones (LJ) pair potentials
φi j (R). c) Representation of the employed thermodynamic models: Flory-Huggins theory (FH)
and its correction considering unequally sized segments (FHz) and the perturbed hard sphere
chain (PHSC) equation of state.

purpose, the pressure p as a function of temperatureT (evaluated at constant volumeV ) cal-
culated using atomistic simulations (cf. Section 2.2.4) is used for calculation of the compress-
ibility factor defined in eq 2.12 [127]:

Z = 1 + ρs
kT

2π
3

l∑
i=1

l∑
j=1

xi x j

∫ R1

0
Rφ′i j gi j (R)R

2dr , (2.32)

where φ′i j is the first derivative of the effective LJ potential with respect to the distance R . For
parameterization of the LJ potential by employing the CED and pressure as a function of tem-
perature calculated fromatomistic simulations, the cutoffdistanceR1 in eqs 2.28 and 2.32was
set to 15 Å.

Solubility predictions using the Flory-Huggins (FH) theory

Solubility predictions using the Flory-Huggins (FH) theory [78, 79, 128] are based on the reg-
ular solution theory of non-electrolytes [76] by employing a mean-field lattice approach that
defines themixed state by equally sized (arbitrary defined) segments. Here, the averagemolar
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volume of the mixture vm was chosen as size of one segment. Each of these segments repre-
sent molecular fragments of a polymer or solvent molecule, respectively, interacting with an
average energy per segment pair ωi j . Therefore, the FH parameter χFH that determines the
energy of mixing per segment ∆emix,FH is defined as [129]:

χFH =
zFH
RT

(ω12 − 0.5 (ω11 + ω22)) , (2.33)

where zFH the segmentcoordinationnumberof themean-field lattice. Pleasenote that since in
FHtheoryevery segmenthas the samesize, the segmentmole fractionsxi equal thecommonly
used volume fractions of the components. For a binarymixture containing segment fractions
x1 and x2 of polymer and solvent segments, respectively, ∆emix,FH reads:

∆emix,FH = RT x1x2 χFH. (2.34)

Since FH assumes an incompressible lattice, themolar enthalpy ofmixing ∆hmix,FH = ∆emix,FH
as well as ∆gmix,FH = ∆amix,FH. Therefore, segment molar Gibbs energy of mixing ∆gmix,FH =
∆emix,FH − T∆Smix,FH for polymer and solvent molecules consisting of r1 and r2 segments, re-
spectively, is calculated with [129]:

∆gmix,FH = RT

(
x1x2 χFH +

x1
r1
ln x1 +

x2
r2
ln x2

)
. (2.35)

In order to consider changes of the intermolecular structure depending on the mixture
composition, a composition dependent FHparameter χz based on the segment coordination
numbers is derived in the following. This approach is similar to experimental studies that de-
rived composition dependent FHparameters by fitting polynomial functions to experimental
data [130]. Assuming the squarewell potential (eq 2.30), the general definition of the potential
energy per segment given in eq 2.28 can be written as:

e =
1
2

l∑
i=1

l∑
j=1

xiωi j ρs,j

∫ R1

R0
4πR2gi j (R)dR . (2.36)

Together with definition of the coordination number zi j , which is the average number of seg-
ments j surrounding segments i in a spherical shell ranging from R0 to R1 (cf. Fig. 2.2):

zi j = ρs,j

∫ R1

R0
4πR2gi j (R)dR , (2.37)

eq 2.36 simplifies for a pure (p) amorphous polymer or solvent, respectively, only containing
segments i to:

ei =
zi i ,p
2 ωi i . (2.38)

Similarly, the average coordination number z12 = x1z12 + x2z21 between unlike segments i-j

in a binary mixture (m), eq 2.36 reads:

em =
1
2 (x1z11,mω11 + x2z22,mω22 + z12ω12) . (2.39)



2.1. Modeling of materials properties 21

Together with the CED (ei = −vi ci ) and the RDF obtained from atomistic simulations, eqs 2.38
and 2.39 can be used for calculation of ωi j and, thus, χFH (eq 2.33). Furthermore, inserting
eqs 2.38 and 2.39 into the general definition of the segment molar energy of mixing ∆emix (eq
2.29), yields the energy of mixing ∆emix,z as a function of the coordination number changes
∆z i = zi i ,m − zi i ,p:

∆emix,z =
1
2 (x1∆z1ω11 + x2∆z2ω22 + z12ω12) . (2.40)

For the composition dependence of ∆z i and z12 quadratic polynomials are assumed:

∆z i = Ji (1 − xi )
2 + Li (1 − xi ) , (2.41)

as well as:

z12 = 2 J12x1x2. (2.42)

FIGURE 2.3: Coordination numbers zi j and z
as a function of the composition for PEG-H2O
mixture. Solid lines: model FHz using eqs
2.38-2.42, dotted lines: FH theory, squares:
values calculated from atomistic simulations.

Figure 2.3 shows the dependence of zi i ,m
and z12 on the composition calculated for
the mixture containing polyethylene glycol
(PEG) and H2O (solid lines). The parameters
Ji and Li in eqs 2.41 and 2.42 are obtained
using three known values of zi i ,p and z12 at
xi = 0, xi = 1 as well as the composition used
for the atomistic simulations (squares in Fig.
2.3). Obviously, z12 = 0 for compositions
close to the pure states. In addition, the to-
tal coordination number z for which applies
z = x1z11,m +x2z22,m + z12 is shown in Fig. 2.3.

In contrast to the FH theory (eq 2.33-
2.35) that uses a composition independent
lattice coordination number zFH, the model
functions eqs 2.41 and 2.42 allow to include
the effect of different coordination states of
unequal sized segments in the mixture as a
function of the composition. Here, zFH is de-
fined as the total coordination number z of
the mixture calculated from atomistic simu-

lations. Due to the randomFHmean-field lattice, the coordinationnumbersof themixture are
approximated as z12 ≈ 2x1x2zFH and zi i ,m ≈ xi zFH, respectively. Since the coordination num-
bers of the pure states are also zi i ,p = zFH, in the FH theory the coordination number change
∆z i is approximated as linear function of the composition ∆z i ≈ zFH(x i − 1) = −zFHx j . Insert-
ing these relations into eq 2.40 results in the known FH expression for the energy of mixing
∆emix,FH given in eq 2.34 [129].

Similar to the FH theory, themodel FHz also assumes equally sized segments for themixed
state showing the average molar volume of the mixture vm. However, the effects of unequal
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sized particles on the lattice coordination number as a function the composition are consid-
ered by employing the composition dependent χz. For this purpose, eq 2.40 is rewritten for
calculation χz, such that ∆emix,z = RT x1x2 χz, yielding:

χz =
1

RT

(
z12
2x1x2

ω12 + 0.5
(
∆z1
x2
ω11 +

∆z2
x1
ω22

))
. (2.43)

Finally, inserting eqs 2.41 and 2.42 into 2.43, using x1+x2 = 1 and defining the functions Fi (xi ):

Fi (xi ) =
∆z i

1 − xi
= Ji (1 − xi ) + Li , (2.44)

as well as F12:

F12 =
z12
2x1x2

= J12, (2.45)

results in a linear dependence of the FH parameter χz on the composition:

χz =
1

RT
(F12ω12 + 0.5 (F1 (x1)ω11 + F2 (x2)ω22)) . (2.46)

In this way, a composition dependent correction of the FH theory can be directly obtained
from atomistic simulations. However, it has to be examined if model FHz using the simple
functions, Fi (xi ) and F12, provides a reasonable modeling of the polymer solubility. This is
addressed in Chapter 5.

So far, the atomic structure andCEDof polymer, solvent as well as the correspondingmix-
ture was considered. For this purpose, simulations of the pure components as well as the cor-
responding mixtures are required. However, a simplification of the FH interaction parameter
in eq2.33provides apotentialway for rapid estimationof the thermodynamic compatibility of
polymer-active combinations by employing the so called mixing rule. That is approximating
the CED of the mixture and, thus, also the intermolecular interaction between unlike lattice
segments i − j , by the geometric average cm = (ci c j )

0.5 or accordingly for the SP δ2m = δi δj [77].
In this way, atomistic simulations of themixture are not required and the effects of specific in-
teractions such as hydrogen bonding are neglected. By using eqs 2.38 and 2.39 along with the
definitions ei = −vsδ2i as well as em = −vsδ2m [76] and assuming an average reference volume
for the segmentsvs, the FHparameter in eq 2.34 simplifies to theHildebrand-Scatchard (HSC)
equation by employing χFH ≈ χHSC:

χHSC =
vs

RT

(
δi − δj

)2 . (2.47)

The concept of Hansen [80] separates the CED and SP, respectively, into different energy
contributions yielding the so called Hansen solubility parameters. Applying this concept to
the interatomic potential functions (IP) used in this work [131], the SP calculated by atomistic
simulations (cf. Section 2.2.4) can be separated into electrostatic contributions (el) δi ,el and
van der Waals (vdw) δi ,vdw contributions. For this purpose, the intermolecular energy is de-
composed into the Coulomb (for δi ,el) and Lennard-Jones (for δi ,vdw) contributions of the IP
such that the (total) Hildebrand SP reads:

δ2i = δ
2
i ,el + δ

2
i ,vdw. (2.48)
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Following the concepts of Hansen to separate the SP and applying the mixing rules for both
δ2m,el = δi ,elδj,el and δ2m,vdw = δi ,vdwδj,vdw, the FH parameter χHSC for a polymer (i , j = 1) and
solvent (i , j = 2) reads:

χHSC =
vs

RT

( (
δ2,vdw − δ1,vdw

)2
+

(
δ2,el − δ1,el

)2) . (2.49)

Here, vs is themolar average volume for the considered set of solvents or activemolecules,
respectively. In accordance with the theory of Hansen [80], each compound i , j can be as-
signed to a point in the Cartesian coordinate system using δi ,el and δi ,vdw as coordinates. As
can be seen from eq 2.49, the FH interaction parameter and, consequently, the energy ofmix-
ing increaseswith increasingdifferencesof the electrostatic andvdwSPof the twocompounds
i , j , that is the mixture gets more endothermic. Therefore, if the distance between two points
(δ1,vdw, δ1,el) and (δ2,vdw, δ2,el) exceeds a critical value, the two components become immis-
cible. In FH theory, the maximum interaction parameter for which two components are still
miscible over the whole composition range is given by the critical FH parameter χc [129]:

χc =
1
2

( 1
√

r1
+

1
√

r2

)
. (2.50)

Since the segment volume was defined as average molar volume of the considered set of
solvents, thenumberof segmentsper solventmolecule is r2 = 1. Next, byusing the equationof
the circlewith center definedby the SPof the polymer (δ1,vdw, δ1,el) one candetermine the area
around this point inwhich thepolymer andaparticular solventwith (δ2,vdw, δ2,el) are complete
soluble over the whole composition range, that is, defining the critical distance Rc:

R2
c =

(
δ2,vdw − δ1,vdw

)2
+

(
δ2,el − δ1,el

)2 , (2.51)

for which applies χc = χHSC = vs (RT )−1R2
c . Rearranging this relation yields for Rc:

Rc =

√
RT

2vs

(
1 + 1

√
r1

)
. (2.52)

This concept denoted as solubilitymaps in Chapter 5 potentially provides rapid estimates
of the polymer solubility. Central question is whether the SP δi ,vdw and δi ,el calculated using
the employed IP provide a suitable separation of the intermolecular interactions for their ap-
plication to the Hansen solubility concept. In this work, the solubility of polyethylene glycol
(PEG) in different solvents is used as test case.

Perturbed hard sphere chain equation of state (PHSC EOS)

The parameterization of the FH lattice models described above employs only the CED com-
bined with analytical expression for the ideal entropy of mixing assuming random occupa-
tion of an incompressible mean-field lattice. However, the known shortcomings of the FH
theory due to assumption of random regular solutions, in particular the inaccurate modeling
of mixtures showing pronounced specific interactions makes reliable solubility predictions
using this approach difficult. In contrast, equation of state (EOS) theories proved to provide
more accuratemodeling of polymer solutions [100]. In addition, EOS theories allow to include
the effects of hydrogenbondingon thephysico-chemical properties of polymermixtures [101,
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102, 132]. Their parameterizationmost frequently used experimentally determined pressures
asa functionof the temperaturep(T ). Here, theperturbedhardspherechain (PHSC)EOS [103–
105] is parameterized by employing temperature dependent CED ci (T ) andpressures p(T ) cal-
culated using atomistic simulations.

The starting point for most EOS is the Virial EOS given in eq 2.13, that is correcting the
compressibility factor of the ideal gas Zid = 1, yet employing more accurate expressions for
the second Virial coefficientB2(T ) considering pairwise particle correlations and interactions.
In case of the PHSC EOS, the total compressibility factor Z (cf. eq 2.12) reads [103–105]:

Z = 1 + ZHS + ZCB + Zpert. (2.53)

FIGURE 2.4: Simplified representation of the perturbed hard sphere chain equation of state for
correction of the compressibility factor Z of the ideal gas (id) using a hard-sphere (HS) with the
segment diameterσ, chain bonding (CB)with chain length r aswell as a perturbation term (pert)
with interaction energy ε.

Figure 2.4 shows a simplified representation of the contributions to Z for the PHSC EOS. It
contains the compressibility factor for hard-sphere (HS) in contact, for chain bonding (CB) as
well as a perturbation term (pert) considering (non-bonding) interaction energy. For a sys-
tem with the molecular density ρ containing mole fractions xi of molecule i showing ri hard
spheres per molecule, the compressibility factor ZHS reads:

ZHS = ρ
l∑

i ,j
xi x j ri r j bvdw,i j gi j

(
η, ξi j

)
. (2.54)

Similar to the van der Waals (vdw) EOS given in eq 2.14, ZHS takes the excluded volume of
hard sphere particles in contact into account by using the vdw covolume bvdw,i j . The major
difference to the vdw EOS is the contact number gi j

(
η, ξi j

) representing the radial distribu-
tion function (RDF) of HS in a dense liquid. In case of the PHSC EOS the Boublik-Mansoori-
Carnahan-Starling (BMCS) equation is used as approximation of gi j

(
η, ξi j

) for hard-sphere
mixtures [133, 134]:

gi j
(
η, ξi j

)
=

1
1 − η +

3
2
ξi j

(1 − η)2
+
1
2
ξi j

(1 − η) . (2.55)
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The packing fraction η, that is the ratio of the excluded volume for contacts of identical parti-
cles to the total volume, is defined as:

η =
ρ

4
l∑
i

xi ri bvdw,i . (2.56)

In addition, the effective packing fraction ξi j for mixtures of unequally sized hard spheres
reads:

ξi j =
ρ

4

(
bvdw,i bvdw,j

bvdw,i j

)1/3 l∑
i

xi ri b2/3vdw,i . (2.57)

In order to model aspherical, chain like molecules such as polymers, a chain bonding com-
pressibility factor ZCB is added:

ZCB = −

l∑
i

xi (ri − 1) [gi i (η, ξi i ) − 1]. (2.58)

TogetherwithZid = 1, theHSandCBcompressibility factorsdefine the referenceEOSZref =
1+ZHS+ZCB, that is the statistical ensemble of non-interacting hard sphere chains sometimes
denoted as the athermal part of the EOS. It includes only the pairwise particle repulsion of
the liquid [104] defining the ’structure’ of the HS chain liquid. In order to add intermolecular
(non-bonding) interactions that do not affect the intermolecular structure, that is the RDF,
the vdw perturbation term is added with avdw,i j (eq 2.14) taking all attractive intermolecular
interactions into account:

Zpert = −
ρ

kT

l∑
i ,j

xi x j ri r j avdw,i j . (2.59)

For the PHSC EOS a temperature dependent vdw perturbation parameter avdw,i j was derived
[104]:

avdw,i j =

(2π
3

)
σ3i jεi j Fa (t ). (2.60)

Similarly, for the excluded volume (covolume) per particle contact bvdw,i j applies:

bvdw,i j =

(2π
3

)
σ3i j Fb (t ). (2.61)

The empirically derived functions Fa (t ) and Fb (t ) depending on the reduced temperature t =

kT ε−1 are given as [135]:

Fa (t ) = 1.8681 exp (−0.0619 t ) + 0.6715 exp
(
−1.7317 t 3/2

)
, (2.62)

for the perturbation parameter and for the covolumina Fb (t ) reads:

Fb (t ) = 0.7303 exp
(
−0.1649 t 1/2

)
+ 0.2697 exp

(
−2.3973 t 3/2

)
. (2.63)
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Forparameterizationof thePHSCEOS, three adjustableparametersdetermine the p−V −T

relation given by the compressibility factor Z in eqs 2.53-2.61. First, the diameter of a hard
sphere segment σi j that corresponds to equilibrium (center-to-center) distance of, e.g., the LJ
potential (cf. Fig. 2.2). Second, the number of HS ri j per molecular unit (polymer repeating
unit or solvent/active molecule) that considers together with σi j the asphericity of the unit.
Since the chain length depends on the degree of polymerization, that is the number of repeat-
ing units per polymermoleculeNun, the value r ∗ = ri j N −1

un is used as characteristic quantity for
apolymer inChapter 5. Andfinally theparameter εi j quantifies the intermolecular interaction
energy at the equilibriumHS distance σi j that corresponds, e.g., to theminimum value of the
LJ potential (cf. Fig. 2.2). If the CED and pressures for the mixture is available an additional
parameter λi j canbeused correcting the average particle (center-to-center) distance between
unlike HS segments:

σi j =
1
2

(
σi + σj

)
· (1 − λi j ). (2.64)

Similar expression can be used for εi j of unlike segments, however, in this work εi j of unlike
i − j contacts was an additional adjustable parameter.

The PHSCEOS fails to describe strongly hydrogenbonding systems, that is it does not con-
sider specific, directional interactions between the HS segments. As a consequence, lower
critical solutions temperatures (LCST) or closed-loop phase diagrams as for aqueous PEG so-
lutions [136] can not be described by this approach. A straightforward way to include the ef-
fects of specific interactions on the physico-chemical properties in EOS as well as lattice fluid
(e.g., FH) theories is to define temperature dependent interactionparameters. A simplemodel
for the temperature dependence of εi j is to define two potentials for the intersegment inter-
action, one considering specific (directional) εs,i j and one for non-specific εns,i j interactions
[105, 136–138]. The actual interaction energy of the segments at temperatureT is given by the
average interaction parameter εi j (T ):

εi j (T ) = εns,i j + fi j δεi j , (2.65)

along with the fraction of specific interactions fi j . This fraction is calculated by using the ratio
of the probabilities that the segments interact in a non-specificmanner (fi j ) to that for specific
interactions (1−fi j ) assuming theBoltzmanndistribution (cf. eq2.2withEi = −ε) yielding [105,
136]:

fi j =

(
1 + qi j exp

(
−δεi j

kT

))−1
, (2.66)

along with the difference δεi j = εs,i j − εns,i j > 0 and the ratio qi j of degeneracy of non-specific
to that of specific interactions. This leads to a modification of the temperature dependence
of avdw,i j in eq 2.60. At low temperatures the segments interact only via specific, directional
interactions, while at elevated temperatures the probability of specific interactions decreases
due to thermal excitation of, e.g., rotational degrees of freedom leading to less pronounced
directional interactions [137]. Such an approach has been successfully applied to the model-
ing of closed-loop phase diagrams as in case of PEG-H2Omixtures by employing lattice fluid
models [136]. Here, thismodel is also applied to the calculation of the FH parameter χ and χz
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(eqs 2.33 and 2.46), which is similar to the definition of a temperature dependent FH param-
eter frequently used for modeling of LCST [129]. Please note that due to the definition of the
interaction parameter of the square well potential ωi j , eq 2.65 uses opposite sign (cf. Fig. 2.2).

With knowledge of the required parameters of the PHSC EOS, one obtains from the com-
pressibility factorZ thepressure as functionof temperature andnumberdensity p(T , ρ), which
allows calculation of all thermodynamic quantities. The (residual) internal energy eEOS (here
permolecule)with respect to thepure ideal gases of a liquid at temperatureT , number density
ρ0 and containing mole fractions xi of molecules of type i calculated from a pressure explicit
EOS is given as [108]:

eEOS (T , ρ0, xi ) =

∫ ρ0

0

(
p–T

(
∂p

∂T

)
ρ

)
dρ

ρ2
. (2.67)

Similar to thepotential energycalculated fromtheeffectiveLJpotentialderived fromtheatom-
istic simulations (cf. eq 2.28), the potential energy eEOS is connected with the CED ci = −ρeEOS
(ρ is the inverse ofvi used above) [76]. Similarly, the (residual)Helmholtz free energy aEOSwith
respect to the pure ideal gases can be calculated using [108]:

aEOS (T , ρ0, xi ) = kT

∫ ρ0

0

(
p

ρkT
− 1

)
dρ

ρ
+ kT

l∑
i

xi ln
(

xi ρ0kT

p0

)
. (2.68)

In thiswork, eEOS and aEOS arenumerically calculated for the correspondingT , ρ0 and xi . In
addition, the enthalpyhEOS = eEOS+pV aswell as theGibbs energies gEOS = aEOS+pV aredeter-
mined. Finally, this allows calculation of the chemical potential µi of component i , defined as
partial derivative of the free energy with respect to the particle numberNi . In order to test the
accuracy of the PHSC EOS derived from simulations, the physico-chemical properties of PEG
and water as well as the corresponding phase diagram are calculated (cf. Chapter 5). Please
note that asmentioned above the considered volume change ofmixing and, thus, the volume
work pdV at moderate pressures (below 200 bar) is negligibly small in case of the phase dia-
gram calculations of PEG-H2O. In addition, since the volume of incompressible phases such
as solids and liquids changes only slightly with pressure, the vapor pressure of pure water was
taken for calculation of the phase PEG-H2O phase diagrams at all mixture compositions. All
phase equilibrium calculations used the conditions of the mechanical p ′(T , ρ) = p ′′(T , ρ) and
the chemical equilibrium µ ′

i = µ ′′
i of the phases ′ and ′′.

Incontrast to theFHtheory, the segment sizeσi j or thenumberof segments ri permolecule,
respectively, are not arbitrarily defined but rather adjustable parameter for parameterization
of the PHSC EOS to reproduce CED and pressures obtained from simulations. For derivation
of the required parameters σi j , ri , εns,i j , δεi j and qi j , the LJ potential derived from atomistic
simulations is separatedusing theWeeksChandler Andersondecomposition [139], whichwas
also applied for derivation of the PHSC EOS [104], by splitting φi j into a repulsive:

φi j,rep(R) =

{
φi j (R) + εi j R < σi j

0 R > σi j

, (2.69)
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as well as an attractive part:

φi j,att(R) =

{
−εi j R < σi j

φi j (R) R > σi j

, (2.70)

such that φi j = φi j,rep + φi j,att. As mentioned above, the reference EOS Zref = 1 + ZHS + ZCB
is only dependent on the repulsive potential φi j,rep, while Zpert contains only attractive inter-
molecular interactions φi j,att [104]. Consequently, the pressure can be split into repulsive and
attractive parts patt (using Zpert) and prep (using Zref). Similarly, the (residual) potential energy
eEOS (eq 2.67) and, thus, the CED can be split in the same way catt and crep. This allows the
targeted parameterization of the reference part of the PHSC EOS Zref for non-interacting hard
sphere chains and the perturbation partZpert containing all attractive interactions. Therefore,
the same separation of the CED and pressures is applied by employing the effective LJ po-
tential obtained from simulations along with eqs 2.28 and 2.32. This procedure was used for
derivation of the PHSCEOS parameters for PEG andH2Oby least square fitting of patt and prep
as well as catt and crep for temperatures ranging from 300 to 550 K. Since the CED for PEG is
considerably overestimated by the PHSC EOS (cf. Chapter 5), only the pressures patt and prep
were used for fitting of the parameters of unlike segments (λ12, q12, εns,12, δε12) in case of the
PEG-H2Omixture.

2.2 Structure and properties from atomistic simulations

As described in the Section 2.1, prerequisite for modeling the thermodynamic stability and
materials properties under operating conditions by employing atomistic simulations is local-
ization and sampling of appropriate atomistic structure model. In this section, the general
concepts of computationalmethods employed are described, in particular the representation
and sampling of the potential energy surface (PES). Subsequently, the atomistic simulations
used in this work are described inmore detail.

2.2.1 Potential energy surface (PES)

As shown in the Section 2.1.1, the key quantities formodeling of thermodynamic stability and
materials properties from atomistic simulations are the energy of the electronic ground state
E0κ of an atomic configuration κ and the canonical partition function Q =

∑
κQ κ along with

the probability Pκ of finding κ in themacroscopic state (cf. eq 2.7). First, the determination of
a suitable approximation forQ κ is required by calculation of E0κ and the energies of the vibra-
tional states (cf. eq 2.1).

The problems addressed in this work, as for many other materials science related ques-
tions, areconnectedwith the (non-relativistic) electronicgroundstateand its energyE0κ. How-
ever, for the systems investigated here, the exact quantummechanical description by solving
the Schrödinger is impossible due to its high dimensionality. Therefore, a number of approxi-
mationsareneeded, including theBornOppenheimerapproximation [140],which is the start-
ing point for all subsequent considerations. Due to the large mass difference between elec-
tronsandnuclei, theelectrons showconsiderablyhighervelocity compared to thenuclei in the
system. Therefore, the electronic and nuclearmotion can be decoupled from each other. This
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allows separationof themolecularwave function into awave functionof the electrons andnu-
clei, respectively. Consequently, the (fixed) nuclear coordinates X of an atomic configuration
κ are only parameters in the wave function of the electrons. The solution of the Schrödinger
equation of the electrons for the electronic ground state yields the (potential) energy E0κ rep-
resenting one point of the potential energy surface E0κ(X) (PES). In case of molecules or gas
phase clusters containing N atoms, the PES is a function of the 3N dimensional vector X. For
solids the PES is also a function of the unit cell volumeV or the lattice parameters.

However, solving the Schrödinger equation of the electrons even by using approximated
wave functionbasedmethods is for thequestions addressedhere still computationally toode-
manding. Therefore, the quantummechanical simulations used in thiswork are performed at
the Kohn-Sham (KS) density functional theory (DFT) level [141–143]. Central quantity in DFT
for calculation of E0κ is not the 3Nel dimensional electronic wave function (for Nel electrons)
but the electron density as a function of the 3 dimensional position vector. The potential en-
ergy is expressed as functional of the electron density. This functional with unknown exact ex-
pression can be separated into functionals of different energy contributions. Among themare
the (classical) Coulomb interactions between electrons among each other as well as between
electrons and nuclei, which can be computed exactly. In addition, the functional for the ki-
netic energy of the electrons is computed for a fictitious reference system of non-interacting
electrons (i.e., no explicit electron-electron interaction) moving in an effective potential and
showingsameelectrondensityas the real (interacting) system. Since theKSDFTassumessuch
a fictitious reference system of Nel non-interacting electrons the functional of the kinetic en-
ergycanbecomputedexactlyaswell. The remainingcontributions to thepotential energy that
cannot be treated exactly are summarized in the exchange-correlation (XC) functional. This
functional takes everything unknown (not exactly calculable) into account, that is, the non-
classical electron-electron interactions as well as the difference of the kinetic energy between
the reference system of non-interacting electrons and the real interacting system. Different
approximations are available for the XC-functional such as the generalized gradient approxi-
mation (GGA), e.g., the PBEsol [144, 145] XC-functional used in Chapter 3.

Due to the assumption of non-interacting electrons in KS DFT, themany body problem of
Nel electrons is expressed as set ofNel one-electron Schrödinger equations (Kohn-Shamequa-
tions). Solution of the KS equations provides the orbitals (one-electron wave functions) and
the corresponding energy eigenvalues (orbital energies). The orbitals are represented by a set
of basis functions. Formolecular systemsas inChapter 4Gaussian typeorbitals (GTO) are em-
ployed, while for solids as in Chapter 3 planewave basis sets are frequently used. The electron
density is calculated from the square of the absolute value of every occupied orbital. Since the
Hamiltonian of the one-electron Schrödinger equations also depends on the electron density,
the ground state electron density that minimizes the potential energy is calculated by an iter-
ative procedure (self-consistent fieldmethod) yielding E0κ.

However, for simulations of structure and properties of materials that require structure
models containing several thousand atoms as well as for simulation times in the ns scale cal-
culations at DFT level are computationally too demanding. Therefore, simplified expressions
for the PES E0κ(X) using interatomic functions (IP) are applied in this work to facilitate simu-
lations at larger time and space scales. Such IP can be derived either by employing quantum
mechanical simulations (e.g., at the DFT level) or experimental data. In Chapter 4 tailored IP
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for accurate and computationally efficient simulations of Fe2O3 are used, which were previ-
ously derived in the author’s master thesis [68] and ref. [XI] by employing DFT simulations.
They assume the functional form of the Born Mayer Huggins pair potential for ionic solids
[146]. In contrast, the IP used for atomistic simulations of polymers in Chapter 5, the IP con-
tain not only pair potentials but also three (bonding angles) and four-body (torsion angles)
terms for an accurate modeling of polymer conformations [131].

FIGURE 2.5: Simplified representation of the 3N + 1 dimensional potential energy surface (PES)
as potential energy E0κ (cf. eq 2.4) as a function of the (3N dimensional) nuclear coordinates X
and unit cell volumeV (in case of solids).

Figure 2.5 depicts a simplified representation of the PES E0κ as a function of the nuclear co-
ordinates X and, in case of solids of the volumeV , which can be calculated with the methods
described above. It contains all information required in this work for modeling the thermo-
dynamic quantities and relatedmaterials properties. It shows one global as well as numerous
localminima representing stress and force free atomic structures that are atT = 0 K stable and
metastable, respectively. The first derivative of E0κ with respect to the nuclear coordinates X
correspond to the interatomic forces, while the secondderivative (curvature)with respect toX
at theminima provides the force constants, which can be evaluated numerically, e.g., by using
finite differences approach [126]. That is, the forces acting on the atoms are calculated for two
small displacementper atomanddirection in space. This allows the calculationof thedynam-
ical matrix from the obtained force constants and by applying the harmonic approximation
the vibrational frequencies and the related thermodynamic quantities [9, 126, 147] required in
the Sections 2.1.2 and 2.1.3 for modeling of the BZS solid solutions. In addition, applying this
approach todifferent unit cell volumes facilitates the calculationof the volumedependenceof
vibrational frequencies (quasi-harmonic approximation) yielding themicroscopic Grüneisen
parameter (Section 2.1.3). Similarly, the second derivative (curvature) with respect to the unit
cell volume V at the minima obtained from, e.g., numerical differentiation by evaluation of
stress tensor for a set of unit cell deformations (elongation and shearing) yields together with
the stress-strain relation (Hookes law) the elastic constants also required in Section2.1.3 [148].
Furthermore, the saddlepoints of thePEScorrespond to transition structures, e.g., of chemical
reactions or phase transitions. They are not explicitly considered in this work.
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Sampling of the PES

So far, the calculation of the (approximated) partition functionQ κ of a particular atomic struc-
ture κ characterizing the microstate of κ was considered. Now, for determination of a suf-
ficiently good approximation of the partition function Q =

∑
κQ κ and its related thermody-

namic quantities (cf. eq 2.5), sampling of the PES E0κ(X) of numerous atomic configurations
is required. Central task is the calculation of the ensemble average of atomic configurations
and the corresponding properties for the adequately accurate modeling of the macroscopic
materials properties.

One computational method to achieve this is the Monte-Carlo (MC) algorithm [109] that
facilitates the calculation of the ensemble average by randomly sampling points of the config-
uration space and the PES. However, the exact value for the partition functionQ is most fre-
quently not available for high dimensional PES considered in thiswork. Therefore,Metropolis
et. al. [149] proposed an efficient sampling scheme for generation of a random walk through
configuration space avoiding the direct calculation ofQ . Starting from an initial structures κ1,
random displacements (trial moves) are applied yielding a new structure κ2. If E0κ2 < E0κ1
this randommove is accepted and the next random displacement is applied to κ2. In case of
E0κ2 > E0κ1, the ratio of the Boltzmann probabilities of both structures κ1 and κ2 is calculated
for a certain sampling temperatureT given according to eq 2.7. Therefore, partition function
cancels yielding the transition probability π from κ1 to κ2 that reads π = exp(−β(E0κ2 − E0κ1)).
The value of π is then comparedwith a randomnumber in the interval [0, 1]drawn fromauni-
form distribution. If π is larger than the obtained random number, the trial move is accepted
otherwise it is rejected. Every propertyYκ of the atomic structures sampled is thenused for cal-
culation of the ensemble averageY using the arithmetic average to obtain an approximation
for the correspondingmacroscopic properties [109].

Another possibility for sampling of the PES are molecular dynamics (MD) simulations.
Starting from an initial structure along with random initial velocities, the time evolution of
the system is calculated by numerical integration of the Newton equations of motion with re-
spect to the time using predefined (finite) time steps. Among the finite differencemethods for
integration of the equations of motion is, e.g., the Verlet algorithm [150]. These approaches
are based on the calculation of the interatomic forces (cf. Fig. 2.5) yielding the accelerations,
velocities and the positions (trajectory) of the atoms at every time step until a predefined to-
tal number of time steps is reached. In the first stage of MD simulations, the initial config-
uration is equilibrated until the properties of interest such as energy, pressure, temperature,
etc. reach a steady (equilibrium) state. In the following second stage - the production phase
- the properties fluctuate around their average equilibrium values. The fundamental hypoth-
esis for calculation of the ensemble average and the related properties for characterization
of the macroscopic state is the ergodic hypothesis [109]. It states the arithmetic average of
the microstates over time obtained from MD trajectories equals ensemble average. That is,
during the production phase of the MD simulation, the most relevant points in phase space
(atomicconfigurations κ andmomenta) are sampled (quasi-ergodicity). A straightforward test
whether an atomistic simulation procedure is (quasi-)ergodic can be performed by repeating
the same procedure starting from different initial conditions, that is, using distinct points in
configuration space and initial velocities [151]. However, in case of MD simulations of, e.g.,



32 Chapter 2. Theory and computational methods

amorphous materials at temperatures below or slightly above the glass transition tempera-
ture, the sampling of the PES (and phase space) is confined to a subset of points on the PES
(basin) yielding broken ergodicity [151–153]. The sampling of atomic structures and proper-
ties for amorphousmaterials such as polymers are described inmore detail in Section 2.2.4.

Both,MCandMDsimulations samplemicrostates in aparticular statistical ensemble. The
most important are themicrocanonicalNVE (constantparticlenumber, volume, total energy),
the canonical NVT (constant particle number, volume, temperature) and the isothermal-
isobaric NPT ensemble (constant particle number, pressure, temperature). The latter two re-
quire control of pressure and temperature, respectively. In case of MD simulations, pressure
and temperature control is achieved by employing thermostats such as theNosé-Hoover ther-
mostat [154, 155] as well as barostats for pressure control using, e.g., the Berendsen [156] or
Parrinello-Rahman [157] barostat. In this work, statistical sampling of microstates using the
canonical (NVT) along with the Nosé-Hoover thermostat is of particular importance. For this
purpose, theNewton equations ofmotion aremodified to control particle velocities such that
the system is effectively coupled to a heat bath showing the desired target temperature. Af-
ter proper equilibration, the system fluctuates in thermal equilibriumwith the fictitious heat
bath, and therefore, the probability of obtaining a microstate with energy E0κ corresponds
to the Boltzmann distribution Pκ given in eq 2.7. This is a necessary condition to ensure an
(quasi-)ergodic sampling of the phase space.

One crucial prerequisite for calculation of materials properties as well as proper sampling
of the PES and phase space by employing MD and MC simulations, respectively, is the initial
structure model chosen. In some cases a reasonable initial guess of the atomic structure can
be obtained from experiments, e.g., crystal structures determined by X-ray diffraction. How-
ever, in case of substitutional solid solutions (cf. Section 2.1.2) exact atomic structure models
would require tremendously large unit cells due to numerous possible configurations of the
substitutional atoms (configurational entropy). Instead, the average properties can be calcu-
latedbygenerationof various atomic configurations starting fromexperimentally determined
crystal structures [112] described more detailed in Section 2.2.2. In addition, the experimen-
tal characterization of the detailed atomic of nanoparticulatematerials and small gas phase is
very challenging. Therefore, simulation procedures for structure predictions finding low lying
or even the global energyminimumof the PES, that is localization structureswith high proba-
bilityPκ, is indispensable for an accuratemodeling of thematerials properties. Oneprocedure
frequently used for localization of low-energy structures by employing MC [109]) or MD sim-
ulations (e.g., ref. [158]) is the simulated annealing. Starting from an initial structure model,
an equilibration at sufficiently high temperature is applied such that enough kinetic energy
is available to leave the initial, local minimum and to overcome (high lying) energy barriers
of the PES (cf. Fig. 2.5). Subsequently, this equilibrated ’molten’ state is gradually cooled to
obtain atomic configurations that correspond to a low lying local or even the globalminimum
of the PES.

Another simulation procedure used this work for global structure optimizations is the ge-
netic algorithm (GA) - a search heuristic inspired by concepts of biological evolution [8]. The
GA is initialized using a set (population) of randomly generated structures that are subse-
quently optimized to a close lying local energy minimum. For the optimized structures, the
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quality or ’fitness’ is calculated using an objective function (here E0κ), which has to be mini-
mized. Thefitness of an atomic configurationdetermines theprobability that a structure is se-
lected from the population as ’parent’ for creation of the next generation. Then, random frag-
ments of two parents are combined bymeans of crossover operations into an offspringwhose
structure is optimized as well. The fundamental assumption of the GA is that energetically fa-
vorable structural features of the two parent structures are combined in a new, energetically
lower lying structure. If the offspring is indeed a new low energy structure, it will be added to
theGApopulationwhile a structure higher in energy is removed such that the total population
size remains constant. Due to this ’natural selection’ theGA is guided in direction of the global
minimum. In order to avoid premature convergence of the algorithm into a local minimum
and to ensure high structural diversity of the GA population, mutations (random structural
changes) are applied to randomly chosen structures. In addition, before adding a new struc-
ture to the population, it is compared with every member of the GA population by means of
a similarity detection procedure [159] in order to avoid filing of the population with almost
identical structures. Such a GA is applied to the elucidation of stable (metastable) Fe2O3 gas
phase clusters described in Chapter 4.

2.2.2 DFT simulations of zero thermal expansion glass ceramics

Asmentioned in the previous section, starting point for accuratemodeling ofmaterials prop-
erties and thermodynamic phase stability are suitable atomic structure models. While the
crystal structure for the low (LT) and high temperature phase (HT) of BaZn2Si2O7 (BaZn) is
known from X-ray diffraction experiments [20], the exact atomic positions of substitutional
ions (Sr2+, Mg2+) in Ba1−mSrmZn2−2nMg2nSi2O7 (BZS) solid solutions cannot be determined
experimentally. Due to the configurational entropy, the macroscopic state of BZS solid solu-
tions is expected to show rather a large set of possible atomic configurations that cannot be
represented using a single unit cell. Therefore, a sampling of the configuration space for dif-
ferent possible substitutions is indispensable for modeling the atomic structure and related
properties. For this purpose, simulations at the density functional theory levelwere applied to
the LT and HT phase of BZS solid solutions for 25 chemical compositions ranging from BaZn
(m,n = 0) to SrZn (m=1, n=0), BaMg (m=0, n=1) as well as SrMg (m=1, n=1). The structure
models generated in 0.25 steps form and n for the intermediate compositions are denoted as
Sr(100m)Mg(100n), e.g., Sr50Zn and Sr50Mg25 refer to the chemical compositions (m = 0.5, n

= 0) and (m = 0.5, n = 0.25), respectively.
Starting from the crystal structure of BaZn (LT and HT phase) [20], initial structure mod-

els for BaMg, SrZn and SrMgwere constructed by simply replacing the corresponding ions on
their lattice positions. In order to locate the lowest energy structures of Ba1-mSrmZn2Si2O7 (n
= 0) and BaZn2−2nMg2nSi2O7 (m = 0) solid solutions, initial structure models were generated
by employing the crystal structure of the LT and HT phase of BaZn along with the side order-
disorder (SOD) program [112]. It generates structure models using the crystal symmetry of
BaZn LT and HT phase, that is, C2/c (No. 15) for LT and Cmcm (No. 63) for HT, and replaces
Ba2+ and Zn2+ on every symmetry inequivalent lattice side with Sr2+ and Mg2+, respectively.
Next, single point calculations of E0κ were applied to every structure model obtained. In this
way, the probability of every configurationPκ (eq 2.7) and the configurational entropySconf (eq
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2.9) can be calculated. Then, all structures of the HT phase were geometrically optimized us-
ing constant (zero) pressure conditions. Due to the high number of structure models in case
of the LT phase (up to 1742 for BaMg50), the configurations were grouped into sets of struc-
ture models having the same crystal symmetry (space group). Then, (constant zero pressure)
geometry optimizations were applied to structuremodels selected from each set with relative
energies of less than 1 kJ/mol with respect to the lowest energy structure in the corresponding
set (about 40 optimizations per composition).

Finally, the initial structuremodels for Ba1−mSrmZn2−2nMg2nSi2O7 with bothm > 0 and n >
0, were generated by using the combination of the Ba2+/Sr2+ and Zn2+/Mg2+ positions of the
lowest energy structures obtained for the solid solutions (m = 0, n > 0) as well as (m > 0, n = 0).

All DFT calculations employed the Vienna ab initio Simulation Package (VASP) [160, 161].
The PBEsol exchange correlation functional [144, 145] in combination with the empirical dis-
persion correction of Grimme et al. [162] was used along with the Projector AugmentedWave
(PAW) method [163, 164]. Calculations under constant pressure and constant volume condi-
tions were performed with an energy cutoff of 900 and 400 eV for the plane wave basis sets,
respectively. Integration of the first Brillouin zone used Monkhorst-Pack [165] grids with a
linear k-point density of about 13 Å for each lattice vector. Finally, calculation of the vibra-
tional density of states (VDOS) for the lowest energy structures of BaZn, Sr50Zn, SrZn, BaMg50
and BaMg were performed by employing the finite difference (frozen-phonon) approach im-
plemented in Phonopy [126]. For this purpose, 2×1×1 and 2×1×2 supercells for the LT and
HT phase were used, respectively. Thermodynamic quantities such as heat capacity and vi-
brational free energy required for the models described in Section 2.1.2 and 2.1.3 are calcu-
lated from the phonon frequencies [9, 126] by employing Monkhorst-Pack grids with a linear
k-point density of about 140 Å for each lattice vector.

For determination of the thermomechanical properties of the HT phase for BaZn, Sr25Zn,
Sr50Zn and Sr75Zn (cf. Section 2.1.3), the elastic constants of the stiffness tensor C are ob-
tained using the stress tensor calculated for six unit cell deformations and the stress-strain re-
lation (Hookes law) as implemented in VASP [148]. In order to shed a light on themicroscopic
origin of zero thermal expansion of the Sr50Zn HT phase, themicroscopic Grüneisen param-
eters γki (eq 2.25) were obtained by employing phonon calculations along with the quasi-
harmonic approximation [126] for isotropically deformed unit cells with a volume expansion
and contraction of -3% and +3%, respectively.

2.2.3 Structure prediction of Fe2O3 cluster and nanoparticles

For elucidation of the atomic structure of Fe2O3 gas phase cluster and nanoparticles (NP),
global structure optimizations and molecular dynamics simulations are applied, that is, nu-
merous calculations of E0κ for a large set of configurations κ are required. Due to the complex
electronic structure connected with themagnetic (spin) states of Fe2O3makes calculations at
theDFT level very challenging for such simulationprocedures. Therefore, ab initio derived in-
teratomic potential functions (IP-Fe2O3) are themain computational tool used in the present
study. Asmentioned in Section2.2.1 theywerederivedusing simulations at theDFT level (refs.
[68] and [XI]) in order to accurately reproduce the structure and relative lattice energies of the
bulk Fe2O3 polymorphs. The employed methodology for the structure predictions described
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here was previously published inNanoscale (RSC Publishing) [XI] fromwhich parts of section
are adapted from.

The determination of global minimum structures of (Fe2O3)n nanoclusters with n = 6-10
used a two stage procedure. First, for each cluster size global structure optimizations employ-
ing the genetic algorithm [8] described in Section 2.2.1 in combinationwith the IP-Fe2O3were
performed. At least two independent GA runs with up to 4000 local optimizations in each
case (80 generations, 50 structures per population) were performed yielding identical low en-
ergy isomers. Next, the structures of the 50most stable isomers were refined at the DFT level.
Since the geometric structure and relative energies of different isomers of larger (Fe2O3)n clus-
ters are only weakly dependent on the precise magnetization (spin) state [XII], ferromagnetic
states are assumed for geometry optimizations of clusters with n > 6. The DFT calculations
were performed using the TURBOMOLE program package [166–168] along with the B3-LYP
exchange-correlation functional [169–171] and triple-zeta valence plus polarization (TZVP)
basis sets for all atoms[172]. The multipole accelerated resolution of the identity (MARI-J)
method [173] for the Coulomb term employing the corresponding auxiliary basis sets [174]
was applied to accelerate the calculations. The binding energies ∆Eb of the clusters with re-
spect to the ground state isomer of Fe2O3 were computed as energies of the reaction:

(Fe2O3)n → nFe2O3 (2.71)

Molecular dynamics simulations of larger (Fe2O3)n NP were performed employing the
Large-scaleAtomic/MolecularMassivelyParallel Simulator (LAMMPS) [175] alongwith the IP-
Fe2O3. Initial configurations were constructed as spherical cutouts from α-Fe2O3 (Hematite)
[176, 177] with diameters of 1 (n = 80, NP1), 3 (n = 282, NP3) and 5 nm (n = 1328, NP5). The
simulated crystallization used the following procedure. First, the initial structures were equi-
librated at 2000 K for 1 ns. Next, for each NP size six different models of the molten NP taken
from the second half of the equilibration phase were cooled down from 2000 to 300 K and
subsequently optimized. The cooling procedure applied linear velocity scaling for 1 ns in the
temperature ranges of 2000-1500 K and 1000-300 K. Between 1500 and 1000 K velocity scaling
was applied for 10ns. AllMDsimulationswere carried out using a time stepof 2 fs andwithout
periodic boundary conditions. To verify the independence of the final NP structures from the
initial configuration a second 5 nm large (Fe2O3)n NP model was constructed as a spherical
cutout from γ-Fe2O3 [178] and subsequently annealed applying the same procedure.

For determination of the melting point depression of the Fe2O3 NP, the melting tempera-
ture of bulk α-Fe2O3 was calculated by employing a series of independent MD simulations at
increasing temperatures between 1800-2200 K with a step of 50 K. At each temperature, a 3D
periodic 3×5×2 supercell of α-Fe2O3 (orthogonal unit cell) was equilibrated for 1 ns employ-
ing the isothermal-isobaric (NPT) ensemble. The Nosé-Hoover thermostat and barostat were
used following the equations ofmotion of Shinoda et al.[179, 180] alongwith a target pressure
of 1 atm and a time step of 2 fs. The average potential energy of the system was evaluated for
the last 200 ps.
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2.2.4 Atomistic simulations of amorphous polymers

The major challenge of atomistic modeling of bulk amorphous materials is the lack of long
range order since atomistic structuremodels of bulk systems require periodic boundary con-
ditions that inherently assume long range order. Therefore, in order to provide an adequate
statistical sampling of the configuration space and the PES, the unit cells have to include a
sufficiently large number of atoms (degrees of freedom). This means for polymers that the
sampling of the PES and calculation of the required properties such as cohesive energy densi-
ties (CED) has to include enough conformations of macromolecules.

To achieve this, a computational procedure for calculation of structure and properties of
amorphous materials is applied, which is based on the concepts initially proposed by Still-
inger andWeber [88–90]. It employsMD simulations of the equilibrated liquid state, that is at
T above the glass transition temperatureTg such that the atoms have sufficient kinetic energy
to overcome barriers of the PES. Structure optimizations of the obtainedMD trajectories yield
the so called inherent structures (IS) alongwith thedistributionof their potential energies (per
atom) eIS. This distribution corresponds to the probability distribution P (eIS) that an atomic
configuration extracted from the equilibrated liquid state is represented by the IS with energy
eIS. In addition, the partition function Q can be separated into non-overlapping basins [89],
which are characterized by the IS representing a particular basin of the PES. If theMD simula-
tions atT > Tg provide (quasi-)ergodic sampling, the probability distribution P (eIS) obtained
is related to theBoltzmanndistribution and the canonical partition functionQ (cf. Pκ in eq 2.7)
[91, 92]. Therefore, this approachcanbeusednot only forpredictionsof the atomic structures,
but also for calculations of thermodynamicquantities of glass forming liquids at temperatures
aboveTg. However, for temperatures close toTg andbelow, the kinetic energy is too low toover-
come higher lying energy barriers of the PES yielding broken ergodicity [152]. That is, not all
configurations that canbepresent in themacroscopic state are accessiblewithin the course of
one single MD simulation and the sampling is restricted to a particular basin of the PES pro-
viding local (internal) ergodicity [153]. In case of polymers, such a sampling of IS even above
Tg would require long equilibration times (uptomicroseconds [84, 85]) of theMD simulations
due to the relatively slow relaxation of polymer backbone conformations. Thismakes calcula-
tions of thermodynamic quantities by sampling of IS usingMD simulations very challenging.
However, it potentially provides an efficient way for predictions of the atomic structure and
properties such as CED and pressures of amorphous polymers required for parameterization
of the thermodynamicmodels described in Section 2.1.4.

The simulation procedure applied in this work combines MC and MD simulations for an
efficient sampling of the PES, denoted here as inherent structure sampling (ISS). A simplified
representation of this approach is depicted in Fig. 2.6. First, atomistic structuremodels of the
bulk polymer showing distinct polymer conformations (MC1-MC3) are generated by employ-
ing a configuration biasedMC algorithm [87]. Subsequently, comparatively shortMD simula-
tions (less than 1 ns) are performed for everyMC constructed structuremodel. Asmentioned
above, by applying structure optimizations to the calculatedMD trajectories the IS alongwith
their potential energy per atom eIS are obtained. Since the MD simulations use short simula-
tion times andmoderate temperatures close toTg, the ISS is restricted to the basins of the PES
corresponding to the polymer conformationsMC1-MC3 as indicated by the colored areas in
Fig. 2.6. However, assuming local (internal) ergodicity within the PES basins the ISS yields
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FIGURE 2.6: Sampling of the potential energy surface E0κ by applying structure optimizations
to MD trajectories of different polymer conformations (MC1-MC3) yielding inherent structure
(IS) energies eIS. Colored areas indicate accessible values for eIS during the sampling yielding
the probability distributions Pi (eIS) (colored curves) used for calculation of the total distribution
function P (eIS) (black curve, eq 2.72).

for a certain polymer conformation i (e.g. MC1) the distribution Pi (eIS). The total (average)
probability distribution P (eIS) that an IS with energy eIS characterizes themacroscopic state is
calculated for nMC polymer conformations sampled by the ISS:

P (eIS) =
nMC∑
i=0

wi Pi (eIS), (2.72)

using the Boltzmann weights wi = exp(−βeIS,i )Π−1 along with Π = ∑nMC
i exp(−βeIS,i ) and the

average ISenergyeIS,i of conformation i . AveragequantitiesY , suchasCEDorpressure, are cal-
culated withY =

∑nMC
i wiYi employingwi and average propertiesYi calculated fromMD simu-

lations. The average intermolecularRDFof themolecular units g (R) =
∑N

i Pi gi (R) is calculated
using the RDFs of the coarse-grained models gi (R) of the N IS obtained. Major advantage of
the ISS is the simple yet efficient parallelization by using nMC independent MD samplings of
the polymer conformations and related properties. Here, systematic test simulations for this
procedure were performed, in particular for the evaluation of the required nMC (up to 10 in
this work) by using themodel polymer polyethylene glycol (PEG) with chain length 50 as well
as its mixture with water. The unit cells contain 3 and 500 molecules in case of the structure
models for pure PEG and water, respectively. In case of the PEG-H2O mixture 3 PEG and 92
water molecules were used, which corresponds to a PEGweight fraction of about 80 wt.%.

Asanalternative to the ISS, samplingofdistinctpolymerconformationscanalsobeachieved
using one single MD simulation of structure models containing a sufficiently high number
of polymer molecules, here denoted as direct sampling (DS). For this purpose, the same MC
procedure for generation of the amorphous structures was used followed by an equilibration
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employing MD simulations. To test the reproducibility of the DS for calculation of the CED,
the procedure was repeated 10 times for themodel polymers PEG (chain length 25 and 50) as
well as polylactic acid (PLA) with chain length 25 using structure models containing 1 up to
30 molecules. In addition, in order to test the accuracy of the employed interatomic poten-
tial functions, the DS was also applied to several commonly used solvents listed in Table 5.1
(Section 5.1.1) using structure models with 800 molecules. The simulations for the DS were
performed in collaboration withMr. Mingzhe Chi [181].

Both simulation procedures described above, the ISS and DS, were performed by using
software fromDassault Systèmes BIOVIA implemented in theMaterials Studio (Version 17.1)
program suite along with the COMPASSII force field [131]. Construction of amorphous, three
dimensional unit cells used the configuration biased Monte Carlo procedure implemented
in the Amorphous Cell module, which is based on the algorithm of Theodorou and Suter [86,
87]. In case of lowmolecular weight compounds such as solvents or actives, themolecules are
placed randomly in the unit cell. In contrast, macromolecular compounds are divided into
segments and ’grown’ into the unit cell by placing each segment one by one. First, rotatable
bonds of the polymer backbone are assigned defining the torsional degrees of freedom of the
molecule. After placing the first segment of every chainmolecule,M trial conformation (10 in
this work) for the second segment of eachmolecule are generated providing a scan of the tor-
sion angles of the polymer backbone. For every trial conformation κ = 1, ...,M , the potential
energies E0κ and the corresponding Boltzmann weightswκ = exp(−βE0κ) are calculated. Next,
the probability Pκ (cf. eq 2.7) is determined, but instead of the partition functionQ simply the
sum of the Boltzmannweights of every trial configuration is used. Subsequently, the cumula-
tive probability for the arbitrarily sorted set of trail conformations Πκ =

∑κ
j=1 Pj is calculated

for each of the generated structures, that is Π0 = 0 and ΠM = 1. Similar to the Monte Carlo
Metropolis algorithm described in Section 2.2.1, Πκ is compared with a random number be-
tween 0 and 1 drawn froma uniformdistribution. Finally, if this randomnumber lies between
Πκ−1 andΠκ, the trial conformation is placed into theunit cell. This procedure is repeateduntil
all segments of the polymermolecules are placed in the unit cell.

The constructed structure models were geometrically optimized followed by a simulated
annealing procedure to refine theMC generated structures, that is finding lower energy struc-
tures showinghigherprobabilityPκ. For this purpose, all structuremodelswere equilibratedat
T = 300 K usingMD simulations along with the canonical (NVT) ensemble. Subsequently, the
temperature was stepwise increased up to 1000 K and a later decreased back to 300 K. In each
step, the temperaturewas increased (decreased) by 100K followedby an equilibration for 5 ps.
Next, the refined structure models were equilibrated for 100 ps using the isothermal-isobaric
(NPT) ensemble at zero target pressure and T = 300 K by employing the Berendsen barostat
and a further simulation using the Parrinello-Rahman barostat with a duration of 300 ps. Av-
erage cell parameters were evaluated for the last 200 ps of the NPT simulations. Finally, the
unit cells were scaled to the average cell parameters obtained from NPT simulations and the
structure models were again equilibrated for 250 ps employing the NVT ensemble with a tar-
get temperature of 300 K. Average properties such as CED were calculated from the last 200
ps of the NVT simulations. All MD simulations employed the module Forcite along with the
Nosé-Hoover thermostat and a time step of 1 fs.

In case of the ISS for PEG, water as well as their mixture additional MD simulations for
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temperatures ranging from 350 to 550 in 50 K steps were performed with a duration of 200
ps. For this purpose, NVT ensemble was used along with unit cell volume obtained from the
NPT simulations at 300 K. The sampling of inherent structures was performed by applying
structure optimizations every ps of the MD trajectories obtained for 400 K. This temperature
is above Tg of PEG (250 K) [182]. The CED and pressures as a function of the temperature as
well as the radial distribution functions of the coarse grained models calculated from the ISS
are then used for parameterization of the thermodynamicmodels described in Section 2.1.4.
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3 Atomic structure and properties of zero
thermal expansion glass ceramics

Tuning the physico-chemical properties of Ba1−mSrmZn2−2nMg2nSi2O7 (BZS) solid solutions
by simple variation of the chemical composition (m,n) allows straightforward tailoring of the
materials properties of these glass ceramics. As mentioned in Section 1.2, the martensitic
phase transition from the low (LT) to the high temperature (HT) phase and the thermome-
chanical properties are of particular importance for exploitation of BZS solid solutions as zero
thermal expansion (ZTE) materials. First, prediction of the phase transition temperature Tt
is addressed in Section 3.1 for localization of those chemical compositions at which the de-
siredHTphase showingnegative thermal expansion (NTE) along the crystallographic a-axis is
thermodynamically stable at operation conditions. Subsequently, for chemical compositions
showing sufficient thermodynamic stabilization of HT phase, the highly anisotroic, thermo-
mechanical properties are characterized in order to facilitate the in silico optimization of the
microstructure of BZS glass ceramics (Section 3.2).

3.1 Tunablemartensitic phase transition temperature

As described in Chapter 2, the starting point for modeling physico-chemical properties are
accurate atomistic structure models representing the (ensemble) average of themacroscopic
structure andproperties. In case of theBZS substitutional solid solutions, the exact positionof
substitutional ions, e.g., of Sr2+ on the lattice sites of Ba2+ cannot be determined experimen-
tally. This is connected with the configurational entropy Sconf leading to a macroscopic state
showing an average of numerous possible atomic configurations, which in principle cannot
be modeled using periodic boundary conditions [112]. Therefore, DFT calculations were ap-
plied toa setof atomicconfigurationsusing theexperimentallydeterminedcrystal structureof
the LT and HT phase of BaZn2Si2O7 (BaZn) for evaluation how structure and thermodynamic
properties depend on the atomic configuration and change with chemical composition (cf.
Section 2.2.2). Of particular importance is the relative energy∆E0 = E0,HT−E0,LT or its configu-
rational average ∆E0, respectively, as central quantity for the thermodynamicmodeling of the
phase stability as a function of the chemical composition as described in Section 2.1.2. Please
note that the chemical compositions are abbreviated as BaZn (m,n = 0), SrZn (m = 1, n = 0),
BaMg (m = 0, n = 1) as well as SrMg (m = 1, n = 1) and the structure models for intermediate
compositions are denoted as Sr(100m)Mg(100n) such that, e.g., Sr50Zn and Sr50Mg25 refer to
the chemical compositions (m = 0.5, n = 0) and (m = 0.5, n = 0.25), respectively.

Figure 3.1 shows the obtained lowest energy structures for the LT and HT phases of
Ba0.5Sr0.5Zn2Si2O7 (Sr50Zn) and BaZnMgSi2O7 (BaMg50). Comparison of cell parameters and
relative energies ∆E 0 are summarized in Table 3.1. In addition, the change of the cell param-
eters a and c for Ba1−mSrmZn2Si2O7 as a function of the chemical composition obtained from
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DFT simulations and experiments [22] are depicted in Fig. 3.2a. For all chemical composi-
tions, a monoclinic crystal structure for the LT phase showing lower symmetry compared to
the orthorhombic HT phase.

FIGURE 3.1: Lowest energy structures of the low (LT) and high temperature (HT) phase for
Ba0.5Sr0.5Zn2Si2O7 (Sr50) and BaZnMgSi2O7 (Mg50) obtained fromDFT simulations.

The fundamental assumption for construction of the atomisticmodels is the formation of
solid solutions, that is the basic crystal structure of BaZn2Si2O7 (BaZn) remains unchanged
by substitution of Ba2+ with Sr2+ and Zn2+ with Mg2+ (Fig. 3.1), respectively. Except from the
crystallographic c-axis of the LT phase for BaZn2−2nMg2nSi2O7 solid solutions, the lattice pa-
rameters change only slightlywith the chemical composition. In addition, the cell parameters
a and c vary almost linearly for the HT phase of Ba1−mSrmZn2Si2O7 in good agreement with
experimental observations (Fig. 3.2a). For SrZn (m = 1, n = 0), no experimental values avail-
able since neither the LT nor the HT phase was obtained from glass crystallization [22]. The
same trend was obtained for BaZn2−2nMg2nSi2O7 solid solutions from both, DFT simulations
and experiment [19, 21]. The almost linear change of lattice parameters of BaZn caused by
substitution of Ba2+ and Zn2+ supports, according to Vegard’s law [183], the assumption that
indeed solid solutions as depicted in Fig. 3.1 are formed.

TABLE 3.1: Change of lattice parameters with respect to BaZn, space groups and relative energies
at 0 K, ∆E0 [kJ/mol], calculated using DFT simulations for BaZn, BaMg50 and Sr50Zn.

Model Lattice parameters Space group ∆E0
a[Å] b[Å] c [Å]

BaZn LT 7.181 12.691 13.680 C2/c (15) 3.9
HT 7.812 12.956 6.614 Cmcm (63)

BaMg50 LT -0.035 -0.088 0.087 P21/c (14) 17.0
HT -0.052 0.025 0.027 Pnnm (58)

Sr50Zn LT -0.051 0.036 -0.257 C2 (5) 3.1
HT -0.095 -0.018 -0.086 Pmma (51)

Sr50Mg50 LT -0.081 -0.090 -0.162 P21 (4) 14.7
HT -0.103 -0.005 -0.073 Pm (6)
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FIGURE 3.2: Change of a) lattice parameters a and c of the HT phase for Ba1−mSrmZn2Si2O7 calculated
using DFT simulations in comparison with experimental (exp) values [22] and b) fit of the relative en-
ergies ∆E 0 of HT with respect to LT as a function of chemical composition (m,n).

In case of the Ba1−mSrmZn2Si2O7 solid solutions, all structuremodels constructedwere ge-
ometrically optimized. This allows the calculation of the average cell parameters aswell as the
average relative energy ∆E0 (cf. eq2.8). The differences between the average cell parameters
and the ones calculate for the lowest energy structures are lower than 0.03 Å. Similarly, the
deviation between ∆E 0 of the lowest energy configurations of the LT and HT phase and ∆E0
are lower in 1 kJ/mol in all cases. These minor deviations support the assumption that ∆E 0
can be used for the thermodynamicmodeling ofTt as a function of the chemical composition
of BZS solid solutions. Due to the high number of possible atomic configurations for the LT
phase of BaZn2−2nMg2nSi2O7 solid solutions, geometry optimizations were only applied to a
subset of structure models. Therefore, in order to estimate the difference of configurational
entropy ∆Sconf = Sconf,HT − Sconf,LT, the lattice energies obtained from single point calculations
of the generated structuremodels were used (cf. eq 2.9). Since the LT andHTphase differ only
in crystal symmetry (space groups, cf. Tab. 3.1), the free energy contributions −T∆Sconf are
only -1 kJ/mol (per formula unit) for Ba1−mSrmZn2Si2O7 and 2 kJ/mol for BaZn2−2nMg2nSi2O7
solid solutions, respectively, assumingaglass crystallization temperatureof 1200K [184]. Such
small free energy contributions, which are virtually independent of the actual values form and
n, can be assumed to be lower thanDFT accuracy for calculation of ∆E 0. Consequently, ∆Sconf
is assumed to be zero. Furthermore, the empirical correction of the harmonic vibrational free
energy considers not only the effects anharmonic lattice vibrations onTt but also includes the
DFT error of ∆E 0 as well as the neglect of ∆Sconf.

The fit of relative energies ∆E 0 as a function of (m,n) to a quartic polynomial is depicted in
Figure 3.2b showing very good agreement with DFT calculated values along with a mean ab-
solute error (MAE) of 0.1 kJ/mol. For ∆E 0 ≤ 0 the HT phase is predicted to be thermodynami-
cally stable for all temperatures and, thus,Tt is set to 0 K. For Sr2+ concentrations betweenm =
0 and 0.25, ∆E 0 remains virtually unchanged, yet considerably decreases for larger m. In con-
trast,∆E 0 increaseswith increasingMg2+ concentrationn, except for themaximumatn =0.75,
which is about 6 kJ/mol higher compared ton =1 andprobably connectedwith the inaccuracy
ofDFT.Nonetheless, there is anobvious qualitative correlationof∆E 0with experimentally ob-
served Tt [19, 21, 22], indicating that the calculation of ∆E0 for other chemical compositions
can indeed be used for prediction ofTt.
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TABLE 3.2: Model parameters of composition dependentDebye temperaturesΘBaZn,i ,Θ1,Θ2 [K] (cf. eqs
2.19) as well as anharmonicity parameter τBaZn, τ1, τ2 [K−1] and (cf. eqs 2.20 and 2.21).

ΘBaZn,1 ΘBaZn,2 ΘBaZn,3 Θ1 Θ2 τBaZn τ1 τ2
LT 216.0 734.7 1399.2 56.14 8.88 - - -
HT 198.9 837.2 1328.0 54.15 10.50 -1.356 10-4 4.192 10-5 -6.456 10-4

Theobtainedparameters formodelingof thecompositiondependentDebye temperatures
θi0(m,n) (eq2.19, i =1-3)and thecompositiondependentanharmonicityparameter τanh (m,n)

(eqs 2.20 and 2.21) are shown in Table 3.2. In addition, Fig. 3.3a compares the harmonic vibra-
tional density of states (VDOS) determined using phonon calculations at the DFT level with
the approximated Debye VDOS (cf. eq 2.18) for the HT phase of BaZn and BaMg. The three
Debye temperatures of the LT andHT phase, respectively, were determined by fitting the har-
monic free energies calculated using the Debye VDOS to the values obtained from DFT sim-
ulations for BaZn, BaMg50, BaMg, Sr50Zn and SrZn. In all cases, the vibrational free energies
calculated using theDebyemodel are in very good agreement with theDFT results alongwith
a MAE of 1.3 kJ/mol. However, the corresponding Tt predicted by employing the harmonic
approximation (HA) is, e.g., for BaZn and BaMg 2070 and 1830 K, respectively, that disagree
even qualitatively with the experimentally observed values of 553 and 1207 K [21]. Therefore,
considerationof the effects of anharmonic lattice vibrations on the vibrational free energyAvib
is indispensable for reliable predictions of Tt of BZS solid solutions over a wide composition
range.

The parameters of the empirical correction of the harmonic Debye model by using
τanh (m,n) (eqs 2.20 and 2.21) is determined by fitting the vibrational free energy of the HT
phase Avib,HT to experimentally observedTt of the BZS solid solution series with m = 0 and n =
0. Figure 3.3b shows the resulting model calculations for Tt for obtained in comparison with
experimentally determined values. In case of the substitution of Ba2+ by Sr2+ (m > 0, n = 0),
only two close lying experimental are available for m = 0.02 and m = 0.06 with Tt = 543 K and
473 K, respectively. For the latter, a mixture of the LT and HT phase was obtained from glass
crystallization,while for higher Sr2+ concentrations (m >0.1) only theHTphase evolvesduring
crystallization and, consequently, no Tt could be observed [22]. An atomistic model for such
lowSr2+ concentrationswould require large unit cells and a vast number of calculations for lo-
calization of the lowest energy structure rendering simulations at theDFT level tremendously
challenging. Therefore, values for of the polynomial fit of ∆E 0 (cf. Fig. 3.2) was used for the
fit of anharmonicmodel for Avib,HT in this case. In contrast, five experimentally determinedTt
were used for the (m = 0, n > 0) solid solution series [21].

Largest deviation ofTt calculated using the derivedmodel from experimental values are at
n = 0.75 of about 100 K due to DFT error of ∆E0 (see also Table 3.3). In order to estimate the
uncertainty of model predictions, a fit of only two observedTt for the (m = 0, n > 0) solid solu-
tion serieswasperformedand representedas a shadedarea in 3.3b corresponding to a valueof
±100 K. For comparison, an error in ∆E0 of only 0.8 kJ/mol, which is assumed to be lower than
the DFT accuracy, translates into a deviation of a polymorphous phase transition tempera-
ture of about 90 K with respect to the experimentally obtained value [24]. That is, even if only
twoTt is experimentally available for calculation of the empirical correction, the deviation of
the model predictions is in the same order of magnitude as the DFT accuracy. Therefore, the
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FIGURE 3.3: Modeling of a) the composition dependent vibrational density of states (VDOS) using the
derivedDebyemodel (eqs 2.18 and 2.19) of theHTphase for BaZn andBaMg compared to theDFT cal-
culated VDOS and b) the phase transition temperatures (Tt) as a function of the chemical composition
(m, n) alongwith experimentally observedTt [21, 22] used for themodel parameterization. The shaded
area indicates the uncertainty of model predictions (see text). BelowTt of approximately 500 K (dotted
line) only the HT phase was obtained from glass crystallization.

proposed procedure appears to be an efficient way to combine computationally inexpensive
phonon calculations employing the HA with two experimental values forTt to include the ef-
fects of anharmonic lattice vibrations, instead of performing computationallymore demand-
ing calculations such as ab initiomolecular dynamics simulations. Moreover, as mentioned
above for solid solutionswithm >0.1 andn =0only theHTphase emerges during glass crystal-
lization andpersists during cooling down to room temperature, which corresponds to a calcu-
latedTt of about 500 K indicated by the dashed line in Fig. 3.3b. Therefore, it can be expected
that for predictedTt below500Konly theHTphase is obtained fromglass crystallization,while
forTt > 500 K only the LT phase should be present in the crystallized samples.

Table 3.3 summarizes calculated and experimentally observedTt used for model parame-
terization [19, 22] aswell asTt for chemical compositions, whichwere not included in the least
squarefittingof theempirical correctionof theharmonicAvib,HT, namelySr25Mg50, Sr50Mg50,
Sr25Mg75andSr50Mg75 (providedbyC.Thieme,K.ThiemeandC.Rüssel). Inaddition, Figure
3.4a shows the results of model predictions for Tt as a function of the chemical composition
of BZS solid solutions with m,n between 0 and 1. They range from 0 K at compositions close
to SrZn upto 1283 K at m = 0 and n = 0.82. The latter is overestimated due to error in ∆E0 (cf.
Fig. 3.2). For Sr50Mg50 and for Sr25Mg75, the predictedTt show very good agreementwith the
experimentally determined ones with differences of about 120 and 40 K, respectively. These
deviations are approximately the same as the estimated uncertainty of ±100 K of the model
predictions and in the same order of magnitude of the expected inaccuracy of DFT simula-
tions. This indicates that the assumption of linear composition dependencies of θi0(m,n) and
τanh(m,n) provide a good approximation for modeling of Avib of BZS solid solutions.

Furthermore, a second phase was observed for Sr25Mg75 at 1114 K. In case of Sr50Mg75,
only one phase transition at 1079 K was observed. For Sr25Mg50 no phase transition was de-
tected, neither by employing DSC nor dilatometry. Since the derived thermodynamic model
for Avib assumes the formation of substitutional solid solutions, it considers only the con-
tinuous, linear dependence of the harmonic VDOS as well as of Tt of the previously known
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TABLE 3.3: Comparison of phase transition temperaturesTt [K] obtained by theory (theo) and ex-
periment (exp) for different chemical compositions (m, n) of Ba1−mSrmZn2−2nMg2nSi2O7.

Model Tt (exp) Tt (theo)
BaZn 550a 495
BaMg25 875a 840
BaMg50 1065a 1048
BaMg75 1156a 1253
BaMg 1207a 1142
Sr25Mg50 -b 707
Sr50Mg50 665 (DSC)c 547
Sr25Mg75 861 (Dil)c 821

1114 (Dil)c
Sr50Mg75 1079 (Dil)c 638
aTaken from ref. [21]
bNo phase transition detected
cProvided by C. Thieme, K. Thieme and C. Rüssel

martensitic phase transition on the chemical composition. In addition, the model derivation
included only the the solid solution series for substitutions of either Ba2+ by Sr2+ (m > 0, n =
0) or Zn2+ byMg2+ (m = 0,n > 0). That is, neither a second phase transition at higher tempera-
tures nor the effects of Sr2+/Mg2+ cosubstitutions apart from the assumed linear composition
dependence was considered in the model that could potentially lead to suppression of the
phase transition in case of Sr25Mg50. Moreover, glass crystallization of BZS solid solutions
yields defect containing crystallites showing local residual stresses and highly anisotropicmi-
crostructures [185] leading to the formation cracks that also influence themacroscopic prop-
erties of the glass ceramics [184]. In contrast, the employed thermodynamic model assumed
perfect, single crystalline and stress free BZS solid solutions. Therefore, the employed proce-
dureprovidespredictions of themartensitic phase transition temperaturewith anuncertainty
of about ±100 K only if the influence of lattice defects and the microstructure onTt is not too
pronounced, which could also rationalize the hinderance of the phase transition in case of
Sr25Mg50.

The corresponding contour plot of Fig. 3.4a is shown in 3.4b alongwith the chemical com-
position at which the LT (orange dots), HT (blue triangles) ormixtures of both phases (orange
triangles) were obtained from glass crystallization, respectively. The empirical value for Tt of
500Kunderwhich solely theHTcrystallizes fromglasses (dashed line in Fig. 3.3b) is also high-
lighted in Fig. 3.4b. Determination of the crystal phases used X-ray diffraction experiments
provided by C. Thieme, K. Thieme and C. Rüssel and taken from previous studies [19, 22] (cf.
Table 3.3). As mentioned above, for chemical compositions (m > 0.1, n = 0) only the HT phase
is present in the crystallized glass samples, while a mixture of HT and LT was observed at (m
= 0.06, n = 0). For the BZS solid solution series withm = 0.5 and n > 0, the crystallized samples
contained only the HT phase upto n = 0.25. At n = 0.35 a mixture of LT and HT was observed
along with a predicted Tt of approximately 500 K. If the Mg2+ concentration n is further in-
creased only the LT phase crystallizes during the crystallization process. This applies also to
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the chemical compositions Sr25Mg50 and Sr25Mg75.

FIGURE 3.4: a) Plot of predicted phase transition temperatures as a function of the chemical composi-
tion. b) Contour lines of (a) along with compositions at which only the high temperature (HT) phase
(blue triangles), only the low temperature (LT)phase (orangedots) andmixturesof bothphases (orange
triangle) were obtained by glass crystallization [19, 22].

The considerable decrease of both, the calculated ∆E0 using DFT simulations and the ex-
perimentally observed Tt, with increasing Sr2+ concentration m clearly indicates that the HT
is thermodynamically stabilized by substitution of Ba2+ with Sr2+. Most likely, the HT phase
emerges from glass crystallization at higher temperatures and transforms into the LT phase
during cooling of the samples. For chemical compositions with predictedTt below 500 K, the
martensitic phase transition is probably kinetically hindered such that only the HT phase is
observed at room temperature. For both sampleswith predictedTt of about 500 K show amix-
tures of the LT and HT phase. This is probably connected with small, local fluctuations of the
chemical composition such that only a certain fraction of the HT crystallites transform into
the LT phase during cooling of the sample. This allows the rapid localization of those chem-
ical compositions at which the desired HT phase showing NTE can be obtained from glass
crystallization as well as, despite certain limitationsmentioned above, the rapid prediction of
the corresponding phase transition temperature. In this way, promising chemical composi-
tions can be determined for further experimental characterization andmore demanding sim-
ulations, such as ab initioMD simulations or phonon calculations using the quasi-harmonic
approximation, inorder toprovide adeeperunderstandingof the structure-property relations
of this ZTE glass ceramics.

3.2 Anisotropic thermomechanical properties

For those chemical compositions at which the desired HT phase of BZS solid solutions is ob-
tained from glass crystallization, the characterization of the thermomechanical properties is
of fundamental importance for the targeted design of the glass ceramicmicrostructure. Since
the substitution of Ba2+ by Sr2+ leads to considerable thermodynamic stabilization of the HT
phase, the Ba1−mSrmZn2Si2O7 solid solution series was chosen along with m = 0, 0.25, 0.5 and
0.75 for investigation of the composition dependence of the thermomechanical properties.
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TABLE 3.4: Elements of the elastic stiffness C [GPa] and compliance S [TPa-1] tensor calculated using
DFT simulations.

Model Caa Cbb Ccc Cab Cac Cbc Saa Sbb Scc Sab Sac Sbc

BaZn 91 176 134 82 81 91 28 10 17 -6 -12 -3
Sr25Zn 88 177 137 81 81 91 30 10 17 -7 -13 -3
Sr50Zn 91 180 141 83 82 92 27 10 15 -7 -12 -3
Sr75Zn 83 183 145 81 81 92 33 10 15 -8 -13 -2

The compositionSrZn (m =1) is not consideredhere sinceneither theLTnor theHTBZSphase
was obtained from glass crystallization [22].

The elements of the stiffnessC aswell as compliance S = C−1 tensor are summarized in Ta-
ble 3.4. In addition, Table 3.5 shows the corresponding elastic properties calculatedusingDFT
simulations, namely the (Reuss) average bulk modulus K , Young’s modulusYi and the linear
compressibilities bi along the crystallographic axes (i = a ,b , c) [124]. For all chemical compo-
sitions highly anisotropic elastic properties were obtained, which are only weakly dependent
on the chemical composition. While the crystallographic a axis shows the highest compress-
ibility (S and bi ) or lowest stiffness (C andYi ), respectively, the b axis is the least compressible
one. With the exception of Sbb and Scc , the compliance tensor S (and alsoC) shows no system-
atic change form = 0, 0.25 and 0.5. Such small changes are expected to lie within the accuracy
of the employed DFT simulations. This applies also the the bulk modulus K . However, for
Sr75Zn (m = 0.75) a slightly higher value for Saa was obtained yielding higher compressibility
ba of the crystallographic a axis showing NTE. In contrast, the b and c axis show a systematic
decrease of the compressibility with increasingm.

Together with the heat capacity at constant volume CV calculated using phonon calcula-
tions along with the harmonic approximation, the compliance tensor S shown in Table 3.4
and experimentally observed cell parameters are used for determination of the anisotropic
thermal expansion α = (αa , αb , αc )

T (cf. Section 2.1.3). Figure 3.5 shows the experimentally de-
termined lattice parameters [19, 21, 22] alongwithDFT the calculated values (T =0K, crosses).
Values for 103, 173 and 293 K were measured using X-ray diffraction experiments conducted
by C. Thieme, K. Thieme and C. Rüssel. Due to the martensitic phase transition (cf. previous
section), experimentally determined cell parameters are only above 550 K available in case of
BaZn (m = 0).

TABLE 3.5: Bulkmodulus (Reuss), Young’s modulus [GPa] and linear compressibility [TPa-1] calculated
using DFT simulations.

Model K Ya Yb Yc ba bb bc

BaZn 89 36 97 59 8.9 0.8 1.6
Sr25Zn 87 34 99 59 9.7 0.6 1.1
Sr50Zn 89 37 101 65 9.1 0.7 1.4
Sr75Zn 83 30 101 65 11.7 0.1 0.3
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TABLE 3.6: Linear (γa , γb , γc ) and average γ Grüneisen parameter obtained from least square fitting of
α (eq 2.22) using the temperature dependent cell parameters of Ba1−mSrmZn2Si2O7 (Fig. 3.5).

Model γa γb γc γ

BaZn -0.16 0.02 0.10 -0.11
Sr25Zn 0.01 0.18 0.23 0.04
Sr50Zn 0.01 0.15 0.18 0.03
Sr75Zn 0.03 0.15 0.15 0.04

FIGURE 3.5: Fit of the anisotropic ther-
mal expansion α (eq 2.22) to DFT calcu-
lated cell parameters (T = 0 K, crosses)
and experimentally determined lattice pa-
rameters as a function of temperature of
Ba1−mSrmZn2Si2O7 solid solutions (trian-
gles: provided by C. Thieme, K. Thieme, C.
Rüssel; dots: ref. [21]; squares: ref. [22]; di-
amonds: ref. [19]).

The NTE of the crystallographic a axis lowers
with increasing Sr2+ concentration m. The thermal
expansion αa at 300 K increases from -34×10−6/K for
Sr25Zn (-32×10−6/K for BaZn) upto -19×10−6/K for
Sr75Zn. In contrast, the c axis shows pronounced
positive thermal expansion that considerably de-
ceaseswith increasingSr2+ content. That is, αc at 300
K is halved from 30×10−6/K for BaZn to 15×10−6/K
forSr75Zn. Incontrast,αb is virtually independentof
the chemical composition with values ranging from
7 to 10×10−6/K. The large anisotropy of both, elas-
tic properties and thermal expansion, can lead to
cracks and residual stresses in themicrostructure of
the glass ceramics depending on orientation of the
crystallites. For example, in case of surface crys-
tallization highly directional crystallite orientations
were observed leading to undesired crack formation
perpendicular to the c axis [185]. Therefore, knowl-
edge of the anistropic elastic properties (Tab. 3.5)
and the thermal expansion α as well as their depen-
dence on the chemical composition provide vital in-
put for continuum mechanics simulations, e.g., us-
ing the finite element method [186, 187] for the tar-
geted design of suitablemicrostructures to facilitate
ZTE in the desired temperature range.

The fit of α to the cell parameters (Fig. 3.5) pro-
vides the linear Grüneisen parameters γi that are
the adjustable parameters of the model (cf. Section
2.1.3). Table 3.6 shows the resulting linear and av-
erage Grüneisen parameters γ, which are assumed
to be independent of temperature. The average
(macroscopic) Grüneisen parameter γ provides the
relation between the volumetric thermal expansion,
the bulk modulus K and the heat capacityCV (cf. eq
2.15). The Grüneisen parameters for BaZn show no



50 Chapter 3. Atomic structure and properties of zero thermal expansion glass ceramics

clear correlationwith the remainingones, since the cell parameters ofHTphase are only avail-
able for temperatures above 550 K resulting in erroneous Grüneisen parameters that are as-
sumed to be temperature independent. For m = 0.25, 0.5 and 0.75, γ and γa are almost zero.
On the other hand, γc is 0.23 for Sr25Zn and decreases with increasing Sr2+ concentration to
0.15 (Sr75Zn), while γb is slightly lower or equal to γc . Due to the small differences between γb

and γc , the considerably lower thermal expansion of the b compared to the c axis is connected
with its lower linear compressibilitybb . As canbe seen fromeq2.22, theNTE indirectionof the
a axis is αa ∝ (γaSaa + γbSab + γc Sac ). Since the compliances Si j (Tab. 3.4) show no significant
change with chemical composition, the decrease of γb and γc with increasing m leads to the
reduction of NTE of the crystallographic a axis. This indicates that the change NTE along the
a axis is connected with, unlike b and c , the variation of vibrational states of the HT phase by
substitution of Ba2+ with Sr2+.

Figure 3.6 shows the harmonic vibrational density of states (VDOS) along with the partial
VDOS for all elements of BaZn. In addition, the VDOS for Sr2+ and Ba2+ are shown for Sr25Zn,
Sr50Zn and Sr75Zn. The partial VDOS of Ba2+ and Sr2+, respectively, range from 0 to 7 THz in
each case. While the Ba2+ VDOS shows its maximum at about 1.5 THz, the maximum value
of the Sr2+ VDOS is approximately at 3 THz. Due to the lower mass of Sr2+ the VDOS is clearly
shifted towards towards higher frequencies with increasing Sr2+ concentrationm. In contrast,
the remaining partial VDOS are almost independent of chemical compositions showing only
smaller shifts to higher frequencies due to substitution of Ba2+ by Sr2+.

FIGURE 3.6: Total and partial vibrational density of states (VDOS) of Ba1−mSrmZn2Si2O7 solid solution
for a) BaZn (m = 0) and b) partial VDOS of Ba2+ and Sr2+ as a function of the chemical composition.

In order to sheda light on themicroscopicmechanismsof theNTE, additional phononcal-
culations using the quasi-harmonic approximation are applied to Sr50Zn. This provides the
microscopic (mode) Grüneisen parameters γki for each branch i at reciprocal lattice vector k.
Figure 3.7a depicts the temperature dependence of the corresponding average (macroscopic)
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Grüneisen parameter weighted by the contribution of each vibrational mode to the heat ca-
pacity (eq 2.26). Up to 240 K the average (macroscopic) Grüneisen parameter γDFT is negative
indicating volumetric contraction (cf. eq 2.15). Indeed, the experimentally observed cell vol-
ume of Sr50Zn reduces between 107 and 293 K (cf. Fig. 3.5). At 300 K γDFT is about 0.05 close
to the averaged, temperature independent Grüneisen parameter γ of 0.03 obtained from the
fit of α to the experimentally determined cell parameters (cf. Table 3.6). In the limiting case
of high temperatures γDFT corresponds to the arithmetic average of all vibrational frequencies
(cf. eq 2.26) yielding a value of 0.21 (dashed line in Fig. 3.7a).

Furthermore, the distribution of the average (macroscopic) γDFT calculated for frequency
intervals of 1 THz at 300 K as well as number density g (γki ) of themode Grüneisen parameter
γki is shown in Figure 3.7b. Negative (average) γDFT were obtained at low frequencies between
0 to 5 THz alongwith aminimumvalue of -2.4 at 1.5 THz, that is the corresponding vibrational
modes contributemost to the NTE. In the same frequency range lie themain contributions of
theBa2+ VDOS (maximumat about 1.5 THz) to the total VDOS,which is shifted towards higher
frequencies when Ba2+ is replaced by Sr2+ (Fig. 3.6). For higher frequencies, γDFT is positive or
close to zero. This rationalizes the reduction of the NTE along a direction with increasing Sr2+
concentration (Fig. 3.5). The majority the mode vibrational modes show positive Grüneisen
parameter γki as can be seen from g (γki ) whose maximum value is at 0.5. Therefore, γDFT is
negative at low temperatures turning positive due to thermal excitation of higher frequency
modes with increasing temperature showingmostly positive γki .

FIGURE 3.7: AveragemodeGrüneisen parameter of BaZn γDFT a) as a function of temperature and b) its
distribution as a function of vibrational frequency ν calculated using frequency intervals of 1 THz and
T = 300 K. The inset shows the number density of themode Grüneisen parameter γki .

Atomic displacements along the polarization vector of the vibrational mode showing the
most negative Grüneisen parameter γki of -12.2 at a frequency of 1.3 THz is displayed in Fig-
ure 3.8a. A simplified sketch of the displacements of Si4+ and Zn2+ is depicted in 3.8b. Basic
building blocks of the crystal structure of the HT phase are SiO4 and ZnO4 tetrahedra. They
from twomembered OSi–O–ZnO (SOZ) rings, which in turn form two sheets aligned in paral-
lel to the a-c plane (see also Fig. 3.1). Twobridging oxygen ions connect both sheets by Si–O–Si
bridges, while Ba2+ and Sr2+ ions are located between the sheets. The vibrationalmode shows
anoscillation indirectionof theb axis in case of Ba2+ andSr2+, respectively, aswell as a rocking
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movement of the rigid Si–O–Si bridgeswithin the a-b plane. The latter leads to deformation of
the SOZ rings yielding contraction of the a axis (cf. Fig. 3.8b). Similarly, previous experimen-
tal studies using high temperature X-ray diffraction also concluded that the deformations of
ZnO4 and SiO4 tetrahedra lead to the NTE of the a axis [188].

In order to qualitatively evaluate the effect of this vibrational mode on the crystal lattice,
the stress tensor of the turning point +1 with (arbitrarily chosen) atomic displacements of
about 2 Å along its polarization vector at constant (zero pressure) cell volumewas calculated.
This yielded negative normal stress in a direction of about -2.8 GPa indicating that this mode
clearly contributes to NTE along the a axis. In contrast, in b and c direction a normal stress
of -0.02 and 2.4 GPawas obtained, respectively, showing that the vibrationalmode has almost
no effect on the b axis and contributes to the relatively large thermal expansion αc .

FIGURE 3.8: Representation of the vibrational mode showing the most negative mode Grüneisen pa-
rameter. a) Atomic displacements along its polarization vector between the turning points -1 and +1
and (b) simplified representation of the displacements of Zn and Si compared to their equilibrium po-
sition (0).
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4 Structure prediction of Fe2O3 cluster and
nanoparticles

In contrast to the BZS solid solutions described in the previousChapter, forwhich experimen-
tally determined structures were used as starting point, no previous knowledge of the precise
atomic structure of small Fe2O3 gas phase clusters and nanoparticles is available from exper-
iments. Therefore, prediction of the exact atomic structure using no assumptions except for
constant chemical composition of stoichiometric Fe2O3 is the fundamental prerequisite for
modeling of the formation processes andmaterials properties of Fe2O3 nanopowders. The re-
sults presented in this section were previously published in Nanoscale (RSC Publishing) [XI]
and parts of the computational results and discussion of [XI] are adapted in this section.

4.1 Gas phase cluster by global structure optimization

Elucidation of atomic structures showing highest probability of being present in the macro-
scopic, gaseous state requires the localization of those atomic configurations κ showing low-
est potential energy E0κ (cf. eq 2.7). For this purpose, the genetic algorithm [8] described in
Section 2.2.1 was employed to find not only the global energy minimum but also several low
lying local energy minima. Figure 4.1 shows the obtained global energy minima of (Fe2O3)n
clusters with n = 1-10. It includes also structures with relative energies of less than 1 kJ/(mol
Fe2O3) with respect to the global minimum and at least the twomost stable ones. The cluster
structures for n = 1-5 are taken from a previous publication [XII] and are included here for the
sake of completeness. For these structure models with n = 1-5, additional DFT simulations
were performed for calculation of the magnetic ground state (GS) [XII]. It was shown that the
atomic structure and relative energies of the clusters isomers are virtually independent of the
magnetic state and, therefore, DFT calculations of larger gas phase clusters assumed ferro-
magnetic (FM) states.

The twomost stable isomers of Fe2O3 consist of a two-membered Fe-O ring and a terminal
O atom. The planar, C2v symmetric 1A with its 1B1 ground state is the global minimum. This
structure has been reported as the most stable for Fe2O3 [59, 60] and Fe2O3- [55]. The second
most stable isomer is the angled 1B with the 3A“ GS, similar to the most stable configuration
of the quartet GS of Fe2O3+ [56]. The global minimum 2A of (Fe2O3)2 with its antiferromag-
netic (AF) 1A2GSassumes the adamantane-likeC2v symmetric structure. The open sheet-like,
C2 symmetric 2Bwith the 11B GS consists of five fused two-membered Fe-O rings and is 30.6
kJ/(mol Fe2O3) higher in energy. Both 2A and 2B have been reported as themost and the sec-
ond most stable structure of (Fe2O3)2, respectively [61, 62]. However, these studies predicted
either a ferrimagnetic,C3v symmetric [61] or a FM,T d symmetric 21A1GS [62] for 2A and a FM,
C2h symmetric 21Bg GS for 2B. For (Fe2O3)2- an AF state of 2Awas reported as themost stable
spin configuration [54].
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FIGURE 4.1: Low-energy structures of (Fe2O3)n clusters with n = 1-10. Relative energies with re-
spect to the global minimum are given in parentheses [kJ/(mol Fe2O3)] [XI]. Fe grey, O red.

The global minimum of (Fe2O3)3 is the compact, C1 symmetric 3A with the AF GS. The
second most stable C s symmetric 3B with the 1A GS is an open, sheet-like structure contain-
ing exclusively two-membered Fe-O rings. It is 15.1 kJ/(mol Fe2O3) less stable than the global
minimum. The two most stable isomers 4A and 4B of (Fe2O3)4 are compact, C1 symmetric
structures with the AFGS and relative energy difference of only 4 kJ/(mol Fe2O3). For (Fe2O3)5
the tower-like 5Awith the AF GS is the global minimum. The secondmost stable compact 5B
with its ferrimagnetic 11A GS is 7.3 kJ/(mol Fe2O3) higher in energy.

Starting from n = 6 all (Fe2O3)n clusters contain the tetrahedral adamantane-like (TAL)
structural element similar to 2A. The global minimum of (Fe2O3)6 is the C2h symmetric 6A
build up of a central cage unit fused with two TAL units. The next most stable C1 symmetric,
compact 6B is only 0.4 kJ/(mol Fe2O3) less stable than 6A. Similarly, (Fe2O3)7 shows two low
energy isomers 7A and 7B that are separated by only 0.7 kJ/(mol Fe2O3). The globalminimum
7A of (Fe2O3)7 is C s symmetric and consists mainly of two- and three-membered Fe–O rings,
with two of the three-membered rings bridged by one O atom. 7B is a compact structure with
no symmetry elements.

For (Fe2O3)8 the global structure optimization procedure yields four isomers with relative
energies within less than 1 kJ/(mol Fe2O3). The C2 symmetric 8A is the most stable structure.
Among the higher energy isomers 8C exhibitsC s symmetry and resembles the structure of 7A.
8B and 8D have no symmetry elements.

In contrast to (Fe2O3)8 the twomost stable isomers 9A and 9B of (Fe2O3)9 are energetically
well separated with a relative energy difference of 5.2 kJ/(mol Fe2O3). The TAL unit can be
considered as the main building block of both clusters. 9A belongs to the symmetry point
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group C2v and has nearly tetrahedral structure. This structure bears a resemblance to 7A and
8C. The next most stable 9B shows a lower C s symmetry but very similar structure. In case of
(Fe2O3)10 the global optimizationprocedure yields four structureswith relative energiesbelow
1.0 kJ/(mol Fe2O3), all consistingmainly of the TAL building units.

FIGURE 4.2: Comparison of IP-Fe2O3 andDFT re-
sults for ferromagnetic (FM) states for (Fe2O3)n

clusters with n = 2-10: (a) average Fe-O bond
lengths, rFe-O, (b) binding energies, ∆Eb , of the
most stable clusters and (c) relative stability, ∆E ,
of the two lowest energy isomers (nA and nB, cf.
Fig. 4.1) [XI].

As a general feature the most stable
(Fe2O3)n clusters assume compact struc-
tures with little or no symmetry. One excep-
tion is the nearly Td symmetric TAL unit of
2A. For n = 2-5 the clusters contain mainly
two and three-membered Fe-O rings. Some
isomers, in particular those with no symme-
try elements contain also larger Fe-O rings,
e.g., 3A. Starting from n = 5 the clusters start
to assume increasingly tetrahedral shape
with TAL unit as the main building block.
However, the small energy differences be-
tween different isomers of the same cluster
size make precise structural assignment for
larger (Fe2O3)n clusters difficult. In addition,
only the potential energy minima of the gas
phase clusters were considered here so far.
For evaluation of the thermodynamic stabil-
ity of the obtained isomers at elevated tem-
peratures, also vibrational, translational as
well as rotational free energy contributions
have to be considered (cf. Section 2.1.1). The
located lowenergy structuresprovide theba-
sis for such simulations as well as for model-
ing of their physico-chemical properties.

Essential factor that determines the relia-
bility of the structure predictions is the accu-
racy of the employed interatomic potential
functions IP-Fe2O3, whichwerederived from

simulations of the bulk Fe2O3 polymorphs at the DFT level (refs. [68] and [XI]). Even though
the IP-Fe2O3 proved to accurately describe structure, relative phase stability and mechanical
properties of the bulk Fe2O3 polymorphs, further evaluation of their accuracy for description
of the atomic structure and properties of small clusters is indispensable for proper structure
predictions. Figure 4.2 summarizes the main IP-Fe2O3 and DFT results for (Fe2O3)n clusters
with n = 2-10: mean Fe–O bond lengths, binding energies of global minimum structures and
relative stability of the two lowest energy isomers (nA and nB, cf. Fig. 4.1) for each cluster size.
For the sake of completeness DFT results for the FM state of (Fe2O3)n clusters with n = 2–5 are
included taken from [XII].

The transferability and reliability of the IP-Fe2O3 is demonstrated by the very good agree-
ment of structural parameterswith those obtained at theDFT level. For (Fe2O3)n clusters with
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n = 2-5 themean Fe–O bond lengths deviate less than 0.02 Å (Fig. 4.2a) between IP-Fe2O3 and
theDFT results. In addition, the general trendof increasing Fe–Obonddistanceswith increas-
ing cluster size is very well reproduced by IP-Fe2O3.

Figure4.2bshows thecluster sizedependenceofbindingenergy,∆Eb, for the lowest-energy
structures. It showsonly small variationwith thecluster size. The IP-Fe2O3 results are inagood
agreement with the DFT values and show a constant shift of about 75 kJ/(mol Fe2O3) towards
higher binding energies. IP-Fe2O3 also properly reproduces the monotonic increase of ∆Eb
with increasing cluster size.

Figure 4.2c compares the relative energies ∆E of the twomost stable (Fe2O3)n isomers cal-
culated using IP-Fe2O3 and DFT. In case of n = 2 and 3 large deviations between IP-Fe2O3 and
the DFT results for FM states were obtained. However, for the calculated magnetic GS the
deviation is less than 15 kJ/(mol Fe2O3) [XII]. Such deviations for small clusters are not unex-
pected since the training set of IP-Fe2O3 contains only bulk structures. However, the agree-
ment between IP-Fe2O3 and DFT is very good, within 5 kJ/(mol Fe2O3), for cluster sizes n > 3.
In addition, as mentioned above, the relative energies are almost independent of the precise
spin state for gas phase clusters with n > 3 [XII]. This supports our approach for determina-
tion of low-energy cluster structures employing GA in combinationwith IP-Fe2O3 followed by
structure refinement at the DFT level assuming FM states.

These findings demonstrate that IP-Fe2O3 can accurately describe the structures and rel-
ative stabilities of both small (Fe2O3)n clusters and bulk Fe2O3 [68]. Therefore, one can expect
that IP-Fe2O3 is alsowell suited for simulations of larger (Fe2O3)n NPat an intermediate length
scale between clusters and bulk material.

4.2 Nanoparticles: crystallization and atomic structure

Due to the vastnumberof energetically close lying localminimaof larger gasphase cluster and
nanoparticles makes the localization of the actual global minimum by employing the genetic
algorithm meaningless. Instead, predictions of the precise atomic structure of larger Fe2O3
nanoparticles (NP) can be achieved by using MD simulations combined with the simulated
annealing procedure (cf. Section 2.2.1), that is, by the simulated crystallization of theNP start-
ing from an equilibratedmolten state. This procedurewas applied to (Fe2O3)n structures with
n = 80, 282 and 1328, which correspond to NP with diameters of 1 (NP1), 3 (NP3) and 5 nm
(NP5), respectively.

The results of the simulated crystallization for NP5 are depicted in Figure 4.3 including
temperature dependence of potential energy ∆E0k appa and coordination number (CN) distri-
butions of Fe and O atoms. During the phase transition from the liquid to solid state the cor-
responding latent heat is released from the system. This can be seen as a sudden drop of po-
tential energy of NP5 between 1235 and 1215 K (Fig. 4.3a), yielding the melting temperature
of about 1225 K. This value is significantly lower than the melting and decomposition point
of bulk Fe2O3 (1835 K). This size-dependentmelting point depression of nanoparticulatema-
terials connected to their large specific surface area is a well-know phenomenon [189]. Using
the calculated α-Fe2O3melting temperature of 2025 K themelting point depression forNP5 is
about 800 K. This value is probably somewhat overestimated due to high cooling and heating
rates of NP5 and bulk α-Fe2O3, respectively, during ourMD simulations.
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FIGURE 4.3: MD simulation of the crystallization
process of NP5: (a) change of the potential en-
ergy (∆E0κ) at the melting point and (b) coor-
dination number (CN) distribution of Fe and O
atoms, respectively, as a function of temperature.
CNdistributions are calculated for the core (CNc)
and the entire NP5 (CNe). For each temperature
cross-sections ((010) plane of the final ϵ-Fe2O3
crystallite) are shown highlighting Fe atoms with
octahedral (blue) and tetrahedral (yellow) coor-
dination [XI].

The structural evolution of NP5 during
crystallization is shown in Figure 4.3b along
with its cross-sections along [010] direction
of the final ϵ-Fe2O3 crystal and temperature
dependence of the coordination number dis-
tribution for Fe and O atoms. To facilitate
comparisonwith bulk Fe2O3 polymorphs and
discern structure differences between the in-
ner and surface parts of NP5 the CN distribu-
tion is evaluated separately for the core part
(4 nm in diameter) and the whole NP5, de-
noted as CNc and CNe, respectively. In gen-
eral, CNe is shifted towards lower values due
toa largernumberof low-coordinated surface
atoms. Equilibration of the initial spherical
cuts of bulk Fe2O3 for 1 ns at 2000 K is suffi-
cient to generate melted configurations that
are independentof the initial structure,which
was verified by two independent simulated
annealing procedures starting from spherical
cutouts of α- and γ-Fe2O3 yielding virtually
the same results [XI]. At the starting temper-
ature of 2000 K, the CN distribution shows
mainly four- and five-fold coordinated Fe as
well as three-fold coordinated O atoms. De-
creasing temperature increases themeanCNe
from 3.9 and 3.0 at 2000 K to 5.3 and 3.6 at 0
K for Fe and O atoms, respectively. At 1235
K the corresponding NP cross-sections indi-
cate beginning of crystallizationwith a nucle-
ation center forming close to the NP surface.
Compared to 2000 K bothCNe andCNc distri-
butions show an increased fraction of six-fold
coordinated Fe and four-fold coordinated O
atoms. In the temperature range from 1235 to
1225 K advancing crystallization transforms
five-fold coordinated Fe atoms to six-fold co-
ordinated ones and three-fold coordinated O
atoms into four-fold coordinated ones. For
temperatures between 1225 and 1215 K CN
distributions show a significant reduction of
five-fold coordinated Fe and emergence of
five-fold coordinated O atoms. In contrast,
the fractionof four-fold coordinatedFe atoms
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remains virtually constant. TheCNhistograms for temperatures below1215K showno signifi-
cant structural changes indicating complete crystallization. The somewhat irregular distribu-
tionof four-fold coordinatedFe atoms seen in the cross-section at 0Karises from thepresence
of defect sites within the NP core.

Comparison of structural characteristics of the final NP5with bulk Fe2O3 polymorphs in-
dicates that it consists of a single, albeit imperfect ϵ-Fe2O3 crystal. Analysis of CNc yields 0.17
and 0.83 as fractions of Fe atoms with tetrahedral and octahedral coordination, respectively
(cf. Fig. 4.3b, 0 K). These values are close to the fractions of four- (0.25) and six-fold (0.75) coor-
dinatedFe atoms inbulk ϵ-Fe2O3. In contrast, γ-Fe2O3 contains a considerably higher fraction
(0.375) of Fe atoms in tetrahedral coordination and α- as well as β-Fe2O3 contain exclusively
six-fold coordinated iron. Furthermore, CNc distribution shows presence of five-fold coordi-
nated O atomswhich are a unique structural feature of ϵ-Fe2O3. Deviations from the ideal CN
distribution of ϵ-Fe2O3 are related to lattice defects present inNP5 such as vacancies and dis-
locations. Similar deviations of CN fractions due to lattice disorders within nanoparticulate
ϵ-Fe2O3 were also reported in experimental studies [190].

FIGURE 4.4: Structure of (Fe2O3)n nanoparticles:
(a)NP1 (n =80)andNP3 (n =282), (b) comparison
of NP5 (n = 1328)with twodifferent lattice planes
of ϵ-Fe2O3 and (c) high-resolution TEM micro-
graph of a LAVA synthesized ϵ-Fe2O3 NP and its
indexed Fourier transform (ϵ-Fe2O3, zonal axis
[331]). Thecoordinate systemsrefer to theNPori-
entation [XI]. Fe grey, O red.

The most stable structures of NP1, NP3
andNP5determinedby thesimulatedcrystal-
lization procedure are depicted in Figure 4.4.
For NP5, two orientations are shown along
with two lattice planes of ϵ-Fe2O3 (Fig. 4.4b).
Figure 4.4c shows a high-resolution transmis-
sion electron microscopy (TEM) micrograph
of a 18 nm Fe2O3 NP prepared by laser va-
porization (LAVA) of Fe2O3 raw powders [191]
(results provided by H.-D. Kurland, J. Grabow
and F. A. Müller).

The most stable configurations of Fe2O3
NP with 1 (NP1) and 3 nm (NP3) diame-
ter show tetrahedral, wedge-like morphology
(Fig. 4.4a) also present in smaller (Fe2O3)n
clusters, such as 7A, 8C, 9A, 9B and 10A (cf.
Fig. 4.1). This particular shape can be ra-
tionalized by the presence of a large number
of the TAL (Fe2O3)2 building blocks forming
a surface layer and a high surface-to-volume
ratio of NP1 andNP3. This is different in case
of NP5 that consists of a single crystalline,
hexagonally shaped domain. In order to in-
vestigate the reproducibility of the crystalliza-
tion process of NP5 we repeated the proce-
dure for several independent initial configu-
rations. In all cases similarNP structureswere
obtained that are in a narrow energy window,
less than 9 kJ/(mol Fe2O3) compared toNP5.
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The final confirmation comes from the comparison of NP5with Fe2O3 nanoparticles syn-
thesized in the LAVA process. Figure 4.4c displays a high-resolution TEMmicrograph of such
an NP with a diameter of about 18 nm showing the typical hexagonal morphology as well as
the corresponding Fourier transform (FT). The lattice planes are visible throughout thewhole
particle, suggesting a single crystalline structure although the presence of defects cannot be
ruled out. The FT of the lattice fringes was indexed according to the structuralmodel of Tronc
et al. [190] and identifies theNPas ϵ-Fe2O3 aligned along its [331] axis. Our earlier study shows
that larger Fe2O3NPwithdiameters in the rangeof 50nmcanalsodisplay octagonalmorphol-
ogy [191]. The hexagonal shape of the LAVA synthesized Fe2O3 NP is very well reproduced by
the results of simulated crystallization of NP5 (Fig. 4.4b). Apart from the NPmorphology, the
simulated annealing procedure applied alongwith IP-Fe2O3 provide detailed insights into the
atomic structure of Fe2O3 NP, which can be used for future theoretical studies of the thermo-
dynamic andmagnetic properties of these NP.

An earlier study of LAVA synthesized Fe2O3 nanopowders reported formation of different
ratios of ϵ-Fe2O3 and γ-Fe2O3, dependingonoxygenconcentration in the condensationatmo-
sphere [191]. The formation of the two phases is connected with their very similar stability as
indicated by the small differences of the lattice energies between ϵ-Fe2O3 and γ-Fe2O3 of less
than 1 kJ/mol calculated at the DFT level [XI]. In addition, the condensation of both phases
was attributed to differences in the nucleation kinetics due to the presence of remarkably sta-
ble iron-ozone complexes. They act as precursors for octahedrally coordinated Fe sites upon
rapid condensation and solidification of nanoparticles. Therefore, higher concentration of
ozone in oxygen-rich condensation gas leads to an increased amount of ϵ-Fe2O3 with a larger
number of octahedrally coordinated Fe atoms. In contrast, oxygen-poor atmosphere results
in formation of a higher fraction of γ-Fe2O3 containing significantly less octahedral Fe sites.
Strong dependence of ϵ-Fe2O3 content on experimental conditionwas also reported for other
synthetic routes [41]. The appearance of only ϵ-Fe2O3 phase during simulated crystallization
ofNP5canbe rationalizedby theabsenceofkinetic factors influencing thenucleationprocess.
All simulated crystallizations were performed for stoichiometric Fe2O3 systems starting from
awell equilibrated,molten state. In contrast, NP formationby the rapid condensation of LAVA
generated plasma is a non-equilibriumprocess that involves different non-stoichiometric gas
phase species present during nucleation. This can result in formation of thermodynamically
metastable phases [191]. However, in the present case the very good agreement between re-
sults of simulated crystallization of NP5 and structure analysis of LAVA generated Fe2O3 NP
provides the first direct indication that ϵ-Fe2O3 may be thermodynamically the most stable
phase in this size range. The significant melting point depression of 800 K found in this study
provides explanation for thermal instability of small ϵ-Fe2O3 NP observed by several authors
[41] due to sintering and formation of larger agglomerates favoring conversion to α-Fe2O3. In-
deed, it has been reported [41] that restricting growth of Fe2O3NPby isolation in a SiO2matrix
[192] or special synthesis conditions [43] significantly enhances stability of the ϵ-Fe2O3 phase.
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5 Polymer solubility predictions by atomistic
simulations

5.1 Prediction of atomic structure and properties

For reliable predictions the thermodynamic compatibility of low-molecular weight com-
pounds based on the calculation of the free energy of mixing two prerequisites have to be ful-
filled. First, sufficiently accurate calculations of the physico-chemical properties are needed,
such as cohesive energy density ci (CED) and pressures from atomistic simulations. The sec-
ond requirement is the parameterization of appropriate thermodynamic models by employ-
ing the calculated CED and pressures, respectively. Twomodels presented in Section 2.1.4 are
applied, the Flory-Huggins (FH) theory using constant and composition dependent interac-
tion parameters as well as the perturbed hard sphere chain (PHSC) equation of state (EOS).
Please note that in the following the indices i , j = 1 refer to the polymers PEGandPLA, respec-
tively, while i , j = 2 are used for lowmolecular weight compounds such as solvents.

5.1.1 Accuracy of atomistic simulations

As described in Section 2.2.1 and 2.2.4, a sufficiently large set of points in phase space (atomic
configurations and momenta) has to be sampled by atomistic simulations in order to obtain
reproducible values of themacroscopic, thermodynamic quantities. For this purpose, a com-
bination of Monte-Carlo (MC) and molecular dynamics (MD) simulations is applied using
two different sampling procedures, denoted here as direct sampling (DS) and inherent struc-
ture sampling (ISS).WhileMC simulations are used for generation of polymer conformations,
the sampling of the physico-chemical properties is achieved by employing MD simulations
for a particular set of conformations constructed. In case of the DS, the ensemble average
of the polymer conformations is calculated using sufficiently large unit cells, that is contain-
ing enough molecular units (polymer repeating units or solvent molecules). In order to find
the best compromise of computational effort and accuracy of the simulation procedure, the
reproducibility of the sampling of CED or Hildebrand solubility parameters (SP) δi =

√
ci , re-

spectively, was tested by repeating the DS for 10 different MC generated unit cells using dif-
ferent system sizes (No. of polymer repeating units per unit cell). This was done for themodel
polymers PEG (chain length 25 and 50) and PLA (chain length 25) in collaboration with Mr.
Mingzhe Chi [181]. The resulting SP as a function of the system size are shown in Figure 5.1a.

For both, PEG and PLA, the SP show large fluctuations (standard deviations) for repeated
simulations of unit cells containing less than 150 polymer repeating units. In contrast, for sys-
tem sizes of 500 repeating units the SP for PEG are 21.5 (DP 25) and 20.5 (DP 50) as well as for
PLA 19.4MPa0.5 along with standard deviations of less than 0.2MPa0.5. In addition, the SP are
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FIGURE 5.1: Hildebrand solubility parameters δi for a) PEG (chain lengths 25 and 50) and PLA
(chain length 25) as a function of the number of repeating units in the unit cells (shaded areas
indicate range of exp. values [193], PEG: gray, PLA: green) and b) for solvents listed in Table 5.1.
Blue dots in b) correspond to compounds containing only C, H, N and O.

are almost identical with those calculated for unit cells comprising 750 repeating units con-
firming thata sufficient statistical samplingofpolymerconformations is achievedbyusing500
units per unit cell providing reproducible values for δi . These lie in the range of experimen-
tallydetermined δi from18.2-22.2 and19.0-21.2MPa0.5 forPEGandPLA, respectively, showing
that the employed simulation procedure not only provides realistic atomic structures but also
indicates reliable quality of the used interatomic potential functions [131] for calculation of
SP.

To further verify the accuracy of the used interatomic potential functions (IP), theDS is ap-
plied to various commonly used solvents for calculation of the SP. Comparison of the resulting
SP with the corresponding experimentally determined values [80] is depicted in Figure 5.1b.
In addition, Table 5.1 summarizes the total (Hildebrand) δi obtained from simulations and ex-
periment aswell as the calculated vanderWaals δi ,vdw andelectrostatic δi ,el SP. For compounds
containing only C, N, O andH the calculated SP show a very good agreementwith experimen-
tal observations. For this set of solvents (blue dots in Fig. 5.1b) themean absolute error (MAE)
is about 0.6MPa0.5 and 30 J/cm3 for the SP andCED, respectively. However, considerable devi-
ationsof 4.2, 3.7 and8.7MPa0.5 fromtheexperimental valueswereobtained incaseof thehalo-
gen containing solvents hexafluoro-2-propanol (HfiP) and dichloromethane (DCM) aswell as
the sulfur compound dimethyl sulfoxide (DMSO), respectively. Therefore, reliable solubility
predictions using the IP employed in this work are only possible for polymers and active sub-
stances consisting of C, N, H, O, which is sufficient in most pharmaceutical and biomedical
applications. Pleasenote, forwater a vanderWaalsCEDof -564 J/cm3wasobtained, that is re-
pulsive contributions of the Lennard-Jones term of the IP to the intermolecular energy in this
case. Therefore, δi ,vdw is undefined and in the following it is assumed that the intermolecular
interactions between water molecules are purely electrostatic with δi ,el = δi = 46.59 MPa0.5
such that δi ,vdw = 0.
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TABLE 5.1: Comparison of total δi , electrostatic δi ,el and van der Waals solubilty parameters δi ,vdw
[MPa0.5] determined using atomistic simulations (sim) and experiments (exp) [80].

Solvent sim expa
δtot δel δvdw δtot

acetone 19.26 9.30 16.87 19.94
acetonitrile 23.86 16.69 17.05 24.40
benzene 18.96 5.74 18.07 18.51
n-dodecane 16.11 0.51 16.10 16.00
dichloromethane (DCM) 17.88 6.15 16.79 20.20
diethyl ether (DEE) 15.27 3.35 14.90 15.64
dimethyl acetamid (DMAc) 22.30 10.53 19.66 22.77
dimethyl formamide (DMF) 24.08 13.15 20.17 24.86
dimethyl sulfoxide (DMSO) 18.04 9.48 15.34 26.68
ethanol 25.50 22.40 12.19 26.52
n-hexane 14.44 0.45 14.43 14.90
hexafluoro-2-propanol (HfiP) 18.91 12.85 13.87 23.07
methanol 29.23 26.86 11.53 29.61
tetrahydrofuran (THF) 18.33 4.85 17.68 19.46
water 46.59 52.30 -a 47.81
a Van derWaal cohesive energy density of water is -564 J/cm3

5.1.2 Inherent structure sampling

As shown in the previous section, by using unit cells containing at least 500 polymer repeating
units facilitates sufficient sampling of polymer conformations to provide reproducible results
for the CED and the Hildebrand SP, respectively. However, sampling of the intermolecular
interactions of complex, amorphous polymer-active mixtures can be very challenging since
even larger unit cells are required to ensure the reliable samplingof all relevantmolecular con-
figurations. Here, the inherent structure sampling (ISS) described in Section 2.2.4 is applied
as potential, computationally more efficient alternative to the DS. It employs a set of consid-
erably smaller MC constructed unit cells, e.g., containing 150 instead of 500 PEG repeating
units, and allows a parallelized, hence, computationally efficient sampling of the generated
unit cells byMD simulations.

Figure 5.2 depicts the total probability densities P (eIS) (eq 2.72) of the inherent structures
(IS) as a function of their potential energy (per atom) eIS relative to the lowest energy struc-
ture calculated for pure PEG and water as well as the corresponding mixture. In addition, the
weighted distributionswi Pi (eIS) for eachMC generated unit cell is shown. In case of pure wa-
ter, every MD sampling of the MC constructed unit cells cover virtually the whole range of
the relative IS energies eIS with almost identical mean eIS values for each sampling. Despite a
sampling temperature of 400 Kwas chosen for the ISS that is clearly above the glass transition
temperature of PEG (about 250 K) [182], mean value and sampled range of eIS depend, albeit
slightly, on the initial conformation constructed. This is connected with the far longer relax-
ation times of macromolecular compound compared to low molecular weight molecules in
the liquid state [194]. Therefore, not all relevant conformations of the configuration space can
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FIGURE 5.2: Total probability density P (eIS) (red lines, eq 2.72) as a function of the relative poten-
tial energy (per atom) eIS (w.r.t. the lowest energy structure) of the sampled inherent structures
(IS) along with the weighted distributionswi Pi (eIS) (gray lines) calculated for individual MC gen-
erated unit cells for PEG, H2O as well as the correspondingmixture.

be sampled during one single MD simulation using simulation times of less than 1 ns. How-
ever, assuming local (internal) ergodicity of MD simulations [153], the employed ISS samples
the basin of the PES represented by particular chain conformations of the 3 PEG molecules
(each with 50 repeating units) within theMC constructed unit cells.

FIGURE 5.3: Results of inherent structure sampling (ISS) of PEG using different numbers of MC
generated unit cells: a) Hildebrand solubility parameter δ as well as b) interaction parameter ω11
of the squarewell potential (eq2.30) andcoordinationnumber z11 (eq2.37). The lines indicate the
resultsof thedirect sampling (DS)using500unitsperunit cell. Theshadedarea in (a) corresponds
to the standard deviation of δ obtained fromDS.

For calculation of themacroscopic properties, theDS employs large unit cells for sampling
of a sufficiently large number of polymer conformations. In contrast, the calculation of P (eIS)
by the ISS allows to combine separate MD samplings of different smaller structure models.
Figure 5.3 shows the Hildebrand SP δ1, coordination number z11 (eq 2.37) and the interaction
parameterω11 of the squarewell potential (eq 2.30) for PEGcalculatedusing the ISS alongwith
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different numbers of MC generated unit cells nMC (samplings) in comparison with the results
of the DS. Starting from nMC = 4, the SP of PEG shows very good agreement with the value ob-
tained fromDS.Moreover, it changes onlywithin the standard deviation of δ1 calculated using
DS (shaded area in Fig. 5.3a) when nMC is further increased. Similarly, the coordination num-
ber z11 quantifying the intermolecular structure of the first coordination shell of the PEG re-
peating units agrees well with the results of the DS. Thus, the interaction parameterω11 of the
intermolecular (square well) potential required for the thermodynamic modeling described
in the next section shows the same trend. Consequently, the ISS using nMC = 10 provides sta-
tistically relevant sampling of both, the intermolecular structure and interactions, with same
accuracy as the DS.

FIGURE 5.4: Radial distribution functions gi j (R) of PEG repeating units andH2Omolecules in the
pure (p) and mixed (m) state (a-e) calculated using direct sampling (black dots) and inherent
structures sampling (ISS) with 10 MC generated unit cells (green lines). In addition, a structure
model of themixture containing PEG (gray segments) and H2O (blue) is shown (f).

More detailed comparison ISS and DS for the intermolecular structure is shown in Fig-
ure 5.4 using the radial distribution functions (RDF) gi j (R) of PEG repeating units and H2O
molecules in the pure (p) andmixed (m) state. Very good agreement of ISS and DS results are
obtained in each case, while the ISS provides higher resolution of the RDF indicating a more
accurate sampling of the intermolecular structure if 10 MC generated unit cells are sampled
byMD simulations. As can be seen fromPEG-H2ORDF and the structuremodel shown in Fig.
5.4f, PEG and H2O are not randomly mixed but rather show partial demixing at the molecu-
lar level. Such incomplete mixing at the molecular scale was observed for strongly hydrogen
bonding mixtures such as concentrated alcohol-H2O mixtures [96], yet this molecular level
phase separation can also be connected with the periodic boundary conditions employed for
both ISS and DS. However, in this work an intermolecular potential is derived from atomistic
simulations and applied to parameterization of thermodynamicmodels that assume random
mixing. Therefore, exact long-range intermolecular structure is not of major importance for
the solubility predictions in this work rather than the nearest neighbor interactions deter-
mined by the short andmedium-range order. This implies the lower limit of the unit cell size,
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which can be used for the ISS. Due to the periodic boundary conditions, the unit cells have
to be large enough to include at least the first or for modeling of themedium-range order, the
second coordination shell of the intermolecular structure. Therefore, the lengthof each lattice
vector has to be twice as large as the range of theRDFused for calculation of the pair potential.
In case of PEG and H2O as well as their mixture, the lengths of the lattice vectors of the equi-
librated structure models are at least 21 Å such that the RDF captures structural information
at least upto 10 Å. As shown in Fig. 5.4, this includes the first and second coordination shell in
each case.

5.2 Polymer solubility models

5.2.1 Qualitative solubility predictions

As shown in Section 2.1.4, the simplest approximation of the FH interaction parameter χFH ≈

χHSC using the Hildebrand-Scatchard (HSC) equation 2.47 assuming that the intermolecular
interaction between unlike lattice segments i − j is approximated by the geometric average
of the CED [77]. Applying this mixing rule to the concept of the Hansen solubility parameters
[80], the contributions of i − j contacts to the CED are approximated as δ2

i j,el = δi ,elδj,el and
δ2

i j,vdw = δi ,vdwδj,vdw for the electrostatic (el) and vanderWaals (vdw) interactions, respectively,
calculated with the interatomic potential functions used.

Figure 5.5 shows the plot of δi ,el and δi ,vdw for PEG and different solvents listed in Table 5.1,
denoted here as solubility maps in which each compound is assigned to a point (δi ,vdw, δi ,el).
Since thedistancebetween twopoints isproportional to the (positive) energyofmixing∆emix,FH
(cf. eqs 2.34 and 2.49), one can define a critical distance Rc (eq 2.52) of two points upto both
compounds are soluble in each other. Assuming a segment volume of the FHmean-field lat-
tice ofvs =75.4 cm3/mol (averagemolar volumeof solvents listed inTable 5.1) and aPEGchain
length of 50, Rc is 4.6MPa0.5. Therefore, a circle can be defined around PEG (δi j,el = 18.5, δi j,vdw
= 7.9MPa0.5) enclosing all solvents that are predicted to solubilize PEG for every solution com-
position.

As can be seen in Figure 5.5, this qualitative solubility predictions show good agreement
withexperiments [193] if δ2,el of the solvents are lower thanapproximately 15MPa0.5. However,
the solubility predictions fail for solvents with higher δ2,el, in particular in case of water (δ2,el
= 46.59 MPa0.5) and ethanol (δ2,el = 22.4 MPa0.5). This is connected with the formation of hy-
drogenbonds in solution and, consequently, themixing rule assumed above does not apply to
δi j,el. However, for sufficiently low δi ,el, solubilitymaps as shown inFig. 5.5 allow rapid qualita-
tive solubilitypredictions, sincenoatomistic simulationsof theactualmixture are required. In
this way, the thermodynamic compatibility between numerous polymers and biologically ac-
tive compounds can be qualitatively evaluated facilitating rapid prescreening of, e.g., promis-
ing polymer-drug combinations showing high encapsulation efficiency. In addition, δi ,el can
be potentially used as measure for specific interactions in order to evaluate which polymer-
active combination requires further simulations of the corresponding mixture to achieve a
more accurate modeling of the thermodynamic compatibility. However, more simulations of
different (bio-)polymers, solvents and active substances are required to test this hypothesis.
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FIGURE 5.5: Qualitative solubility prediction of PEG in different solvents using the electrostatic
δel and van der Waals solubility parameter δvdw calculated using atomistic simulations in com-
parisonwith experimental observations [193]. Solvents enclosed by the circlewith radiusRc = 4.6
MPa0.5 are predicted to dissolve PEG for arbitrary solution compositions.

5.2.2 Refinedmodeling of polymermixtures

In case of strongly hydrogen bonding mixtures, such as aqueous PEG solutions, the qualita-
tive solubility model described in the previous section clearly fails. Therefore, atomistic sim-
ulations of the actual mixtures are indispensable in order to account for specific interactions.
While atomistic simulations were shown to accurately describe intermolecular interactions
(Section 5.1.1), thermodynamic models such as FHmean-field lattice theory do not consider
the effects of specific (directional) interactions. Similarly, the PHSC EOS assumes a statistical
ensemble of randomlymixedhard sphere chains (cf. Fig. 2.4)without explicit considerationof
specific interactions. Therefore, the effects of specific interactions on the temperature depen-
dence of the interaction parameters εi j and ωi j of the FH model and the PHSC EOS, respec-
tively, are considered using themodel in eq 2.65 for modeling the closed-loop phase diagram
of PEG-H2O.

TABLE 5.2: Parameters ωi j,ns [K], δωi j [K] and qi j for calculation of the temperature dependent inter-
segment interaction ωi j (eq 2.65) of the square well potential (eq 2.30). In addition, the coordination
numbers zi j and the parameters Ji j , Li j used for calculation of the composition dependent FH param-

eter χz (eq 2.46) for PEG (i , j = 1) and H2O (i , j = 2) are shown.

Model ωi j,ns δωi j qi j z11 z22 z12 Ji j Li j

PEG 491 704 1.627 3.599 0 0 -1.257 -2.342
H2O 585 964 5.386 0 7.086 0 -9.087 2.001
PEG-H2O 128 976 5.726 2.527 4.835 1.896 4.022 -

Table 5.2 lists the parameters for calculation of the temperature dependence of interaction
parameterωi j (eq 2.65) of the squarewell (SW) potential (eq 2.30), which is used togetherwith
the coordination numbers zi j for calculation of the FH parameter χFH (eq 2.33). Please note,
in order to keep consistency with the original formulation of the FH theory ωi j was defined as
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ωi j (T ) = −εi j (T ) in eq 2.65. The intermolecular interaction parameter of PEG segment is -1100
K at 300 K and increases to -976 K at 550 K. For water, stronger intersegment interactions with
ω22 ranging from-1378 to -1084Kbetween300and550Kwere found. In the same temperature
range the interaction between PEG andH2O segments changes decreases from -928 to -624 K.
Together with an average coordination number zFH = 5.3 (black dotted line in Fig. 2.3), the
calculated FH interaction parameters χFH are highly positive ranging from 5.5 at 300 K to 3.9
at 550 K.

Moreover, the parameters used for calculation of the composition dependent FH parame-
ter χz are shown in Table 5.2. Due to the large difference of z11 and z22, pronounced composi-
tion dependence of the lattice coordination number was obtained (cf. Fig. 2.3). The relatively
large coordination number of water z22 of 7.1 originates from the definition ofR1 (about 3.9 Å)
in eq 2.28 as diameter of a sphere showing themolar volume ofwater, which includes also free
volumeand, thus, z22 includesparts of the secondcoordination shell (next nearest neighbors).

TABLE 5.3: Parameters σuni j [Å] as well as εuni j,ns [K], δεuni j [K] and quni j of the temperature dependent
Lennard-Jones potential (eqs 2.31, 2.65) of molecular units (un) defined as PEG repeating units and

H2Omolecules, respectively.

εuni j,ns δεuni j quni j σuni j (T )

300 350 400 450 500 550
PEG 398.308 962.871 337.238 4.575 4.622 4.657 4.689 4.719 4.743
H2O 592.601 958.375 5.457 2.867 2.870 2.873 2.877 2.881 2.886
PEG-H2O 82.479 1084.703 7.022 3.481 3.504 3.533 3.559 3.584 3.613

In contrast to the SWpotential, the derivation of the effective Lennard-Jones (LJ) potential
of PEG repeating units (un) and H2Omolecules, respectively, used not only the CED (eq 2.28)
but also the pressure as a function of temperature (compressibility factor Z , eq 2.32) obtained
from atomistic simulations. The resulting parameters σuni j (T ) as well as εuni j,ns, δεuni j and quni j for
calculation of the temperature dependent interaction parameter εuni j (T ) (eq 2.65) are summa-
rized in Table 5.3. In each case, these parameters provide good agreement of the CED and
pressure with a root mean square deviation lower than 1.8 J/cm3 and 0.9 MPa, respectively,
far lower than the estimated uncertainty of the employed IP (Section 5.1.1). The (average)
equilibrium distance of two neighboring units σuni j (T ) increases slightly with temperature in
accordance with positive thermal expansion of PEG-H2O mixtures observed in experiments
[195]. The interaction parameter εuni j (T ) of PEG-PEG, H2O-H2O and PEG-H2O pairs decreases
between 300 and 550 K in the range of 464-415 K, 1376-1082 K and 995-631 K, respectively.
This indicates that specific interactions of H2O-H2O and PEG-H2O pairs affect the physico-
chemical properties of aqueous PEG solutionsmost.

Table 5.4 shows three parameter sets P1-P3 of the PHSC EOS for pure PEG and H2O cal-
culated by using least square fitting of the repulsive (rep) and attractive (att) CED (crep, catt)
and pressures (prep, patt) obtained from simulations (cf. Section 2.1.4). The same model for
the temperature dependence of the interaction parameters εi j (eq 2.65) as for the LJ and SW
potential was applied. The PHSC EOS models every molecular unit (polymer repeating unit
or solventmolecule) as chains of spherical segments with σi j and chain length r ∗i (cf. Fig. 2.4).
The total length of a (macro)molecule consisting of Nun units is ri = r ∗i Nun (used in eqs 2.53-
2.59). In addition, the parameters of the intersegment potential of PEG-H2Osegment pairs for
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TABLE5.4: Fittedparameter setsP1-P3of the intersegmentpotential of thePHSCEOS (eqs2.53-2.66) for
pure PEG andH2O. They include the segment diameter σi j [Å], the number of segments permolecular
unit r ∗i aswell asmodel parameters of the temperature dependent interaction parameter (eq 2.65) εi j,ns

[K], δεi j [K] and qi j .

PEG H2O
ε11,ns δε11 q11 σ11 r ∗1 ε22,ns δε22 q22 σ22 r ∗2

P1 171.04 0.5903 233.36 2.7237 3.8693 501.07 130.61 1.7977 2.9446 1.4631
P2 171.89 0.5849 231.31 2.7201 3.8643 479.76 134.09 1.7314 2.9985 1.4177
P3 170.79 0.5924 234.27 2.7250 3.8711 497.25 129.36 1.7948 2.9353 1.4532

P1-P3 are shown in Table 5.5 including parameter λ12 that corrects the arithmetic average of
σ11 and σ22 for calculation of σ12 (eq 2.64).

TABLE 5.5: Fitted parameter sets P1-P3 of the intersegment potential the PHSC EOS (eqs 2.53-2.66) for
PEG-H2O segments pairs. The temperature dependence of ε12 is modeled using eq 2.65 along with

ε12,ns [K], δε12 [K] and q12, while λ12 corrects the average segment diameter σ12 (eq 2.64).

PEG-H2O
ε12,ns δε12 q12 λ12

P1 318.50 369.38 572.84 -0.050759
P2 306.42 475.54 833.44 -0.088426
P3 321.96 401.43 516.17 -0.045405

Least square fitting of the PHSC EOS to the simulation results yielded three very similar
parameter sets P1-P3 for the pure components. Slightly larger differences between the pa-
rameter sets were obtained for segment pairs. The mean interaction parameters εi j (T ) show
qualitatively the same trends compared to the LJ parameters εuni j (T ). Strongest interactions
were found for H2O segment pairs with, e.g. in case of P1, ε22 of 561 K at T = 300 K that de-
creases to 555 K when temperature raises to 550 K. For all parameter sets, ε11 is about 171 K
and independent of temperature indicating low influence of specific interactions of PEG-PEG
segment pairs on CED and pressure. The interaction parameter ε12 is only slightly dependent
on temperature ranging from about 321 K to 320 K in case of P1.

Figure 5.6 shows (total) CED as well as pressures p as a function of temperature calculated
using the parameter sets P1-P3 of the PHSC EOS and the LJ potential derived from atomistic
simulations (SIM). Calculations used constant density obtained fromNPT simulations at 300
K. In case of pure PEG, the p(T ) curves show fairly good agreement at 300 and 350 K. However,
due to the clearly lower slope of p(T ) for P1-P3 compared to SIM, the PHSC EOS considerably
underestimates the pressures at higher temperatures. The corresponding CED of P1-P3 are
systematically higher than SIM by about 30%. In contrast, for water a larger slope of p(T )was
found for P1-P3 in comparison with SIM, while the CED are upto 15% lower in case of P2 (at
300 K). Due to the systematic overestimation of the CED of PEG, the CED of the mixture were
not included in the training data for fitting of the PEG-H2O parameters. Therefore, the p(T )

curves calculated using P1-P3 show a very good agreement with SIM, and similar to PEG, the
CED is overestimated upto 27%. In general, the similarity of the PHSC EOS parameters P1-P3
results in close lying values for CEDandpressureswith exception of slightly lowerCEDof pure
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FIGURE 5.6: Pressures (a) and cohesive energy (b) densities (CED) as a function of temperature
calculated using the Lennard-Jones potential derived from atomistic simulations (SIM) and the
PHSC EOS employing the parameter sets P1-P3 (cf. Tables 5.4 and 5.5).

water in case of P2.
The separation of the intersegment (PHSC EOS) and LJ potential into repulsive (rep) and

attractive (att) parts (cf. eqs 2.69 and 2.70) allows split of the total CED and pressures into at-
tractive and repulsive contributions crep, catt and prep, patt, respectively. Deviations of crep, catt,
prep and patt calculated using the fitted PHSC parameter set P1 with respect to the results of
the LJ potential derived from atomistic simulations (SIM) at different temperatures are sum-
marized in Table 5.6. For pure PEG, only minor deviations were obtained for crep, while catt
is considerably overestimated by P1 over the whole temperature range yielding too high total
CED (Fig. 5.6). In contrast, the too low values of prep are compensated by too large patt at lower
temperatures. However, deviations of prep considerably increase with temperature, while the
error of patt remains almost constant resulting in a lower slope of p(T ) for P1 compared to SIM.
Similarly, the relatively small deviations of prep and patt in case of H2O compensate at lower
T , yet the overestimation of prep by P1 strongly increases at higher temperatures. Conversely,
deviations crep are virtually independent of temperature, while the overestimation of catt in-
creases with increasing temperature yielding error compensation at higher T . In case of the
PEG-H2O mixture, largest deviations were obtained for catt and comparatively pronounced
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TABLE 5.6: Difference of repulsive (rep) and attractive (att) cohesive energy densities crep, catt [J/cm3]
and pressures prep, patt [MPa] of fitted PHSC parameter set P1 with respect to results calculated using
the Lennard-Jones (LJ) potential obtained from atomistic simulations at different temperaturesT [K].

PEG H2O PEG-H2O
T crep catt prep patt crep catt prep patt crep catt prep patt
300 -68 492 611 -628 -147 2313 2106 -2109 -91 881 957 -973

SIM400 -92 490 796 -611 -144 2085 2062 -1907 -106 812 1069 -890
500 -117 502 986 -616 -147 1917 2085 -1760 -123 765 1194 -834
300 +0.3 +160 -92 +93 -340 +180 +17 -17 -58 +223 -36 +36

P1 400 +7 +136 -165 +98 -375 +296 +158 -81 -52 +219 +12 +4
500 +8 +116 -256 +122 -344 +339 +271 -121 -49 +220 +38 -17

relative errors for crep, both almost independent ofT .
In summary, an accurate fit of the PHSC (EOS) to the results obtained from atomistic sim-

ulations of both, p(T ) dependence and absolute values of CED for PEG containing systems,
could not be achieved. As shown in eq 2.67, the (residual) potential energy eEOS < 0 calcu-
lated from a pressure explicit EOS decreases with increasing slope of p(T ) at constant den-
sity. Consequently, steeper increase of pressure with temperature results in higher CED since
c = −ρeEOS. Therefore, the employed PHSC EOS is not accurate enough to reproduce the
simulation results for temperature dependence of the CED and pressure with equal quality.
This is mainly connected with two major shortcomings of the parameterized EOS. First, the
simple van der Waals perturbation Zpert (eq 2.59) does not consider hard sphere contacts of a
dense liquid, that is, it does not include a realistic (hard sphere) radial distribution function
gi j

(
η, ξi j

) (eq 2.55) as used in ZHS. More accurate expressions for Zpert have been derived by
Hino andPrausnitz [196] using a squarewell potential for attractive intersegment interactions
alongwithanapproximateexpression for considerationof gi j

(
η, ξi j

) . Seconddeficiencyof the
employed PHSC EOS is the simplifiedmodel for consideration of specific, directional interac-
tions by using an average, temperature dependent interaction parameter εi j (T ) (eq 2.65). Ob-
viously, this model is insufficient to accurately include the effects of hydrogen bonding. This
can be resolved by adding analytical expressions for association sites of hydrogen bonds to
the PHSC using, e.g., the Statistical Association Fluid Theory (SAFT) [101, 102, 132]. Employ-
ing such extensions of the PHSC EOS appears promising to facilitatemore accuratemodeling
of the temperature dependence of CED and pressures obtained from atomistic simulations.

Figure 5.7 shows experimentally observed water vapor pressures [197], mass densities of
PEG-water solutions [195] and phase diagrams [198] for different PEG chain lengths (76 and
341) in comparison with the results calculated using the PHSC EOS along with the parame-
ter sets P1-P3. Best agreement with experimentally determined water vapor pressures shows
P2, despite it deviates most from CED obtained from simulations (Fig. 5.6). However, also P1
and P3 provide good agreement with experiments upto temperatures of about 500 K. In con-
trast, P1 andP3 showbest agreementwith experimental results for themass densities of aque-
ous PEG solutions, yet all PHSCEOSparameters underestimate densities of concentratedPEG
mixtureswith PEGweight fractions above 0.8. The calculated phase diagrams using P1 and P2
depicted in Figure 5.7c show fairly good agreement with the experimentally determined ones.
In particular, P1 accurately reproduces the experimentally observed upper critical solution
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FIGURE 5.7: Results of the PHSC EOS using the parameter sets P1-P3 in comparison with experi-
mental results (EXP): a) temperature dependence of the H2O vapor pressure [197], b) mass den-
sities of PEG-H2Omixtures (PEG chain length 9) [195] and PEG-H2O phase diagrams calculated
using P1 and P2 for PEG chain lengths of 76 (c) as well as 341 (d). Experimentally determined
phase diagrams taken from ref. [198].

temperatures (UCST) upto PEG weight fractions of 0.3, yet clearly overestimates the LCST. In
case of P3, PEG is predicted to be soluble in water over the whole temperature (300 to 700 K)
and composition range (0 to 1) considered. In addition, the calculated phase diagrams us-
ing P1 for different PEG chain lengths show a very good qualitative correlation with the chain
length dependencies observed in experiments, particularly in case of the UCST. This clearly
proofs that the employed parameterization procedure of the PHSC EOS by atomistic simu-
lations is capable to provide reasonable thermodynamic models even for mixtures showing
pronounced specific interactions, albeit it is connected with an error cancellation (at least) in
case of the PEG and PEG-H2OCED.

Despite the obtained parameters P1-P3 are very similar providing almost identical fits of
CED and pressures (with exceptions of thewater CED for P2), they yield distinct results for the
physico-chemicalpropertiesofPEG-watermixtures. Inparticular, only smalldeviationsGibbs
energies ofmixing∆gmix (permolecular unit) can lead to very different phasediagrams. Figure
5.8a depicts the comparison of ∆gmix,FH and ∆gmix,z calculated using the Flory-Huggins (FH)
theory along with constant χFH (eq 2.33) and composition dependent χz (FHz, eq 2.46) inter-
action parameter, respectively. Furthermore, values for ∆gmix,EOS calculated using the PHSC
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EOS along with P1-P3 are shown. As mentioned above, the parameters of the square well po-
tential and the coordination numbers derived from simulations (Table 5.2) yield clearly pos-
itive χFH and, therefore, incorrectly predicts positive values for ∆gmix,FH for all mixture com-
positions. One shortcoming of this approach is the assumption of a randommeanfield lattice
with a coordination number zFH independent of composition, which clearly disagrees with
the RDF calculated from simulations (cf. Figs. 5.4 and 2.3). By employing the simple quadratic
interpolation of the coordination numbers zi j (cf. eqs 2.41 and 2.42) for calculation of χz pro-
vides indeed a qualitative correction of ∆gmix,FH for PEG-water mixtures below PEG weight
fractions of 0.8, yet quantitatively disagree with PHSC results for P1-P3. For the latter, similar
∆gmix,EOS as a function of the solution composition were obtained, however, these minor dif-
ferences lead to very distinct results for modeling of the PEG-H2O phase diagram. Therefore,
precise predictions of phase diagrams are not possible by combining the atomistic simula-
tions with the PHSC EOS presented in this work. Yet, reasonable and reproducible values for
∆gmix,EOS were obtained with an absolute deviation between P1 and P2 of less than 0.5 kJ/mol
(MAE0.3 kJ/mol). Thus, the employed simulation andmodelingprocedure is expected topro-
vide sufficiently accurate ∆gmix,EOS for evaluation of thermodynamic compatibility of active
substances and various polymers. In contrast, the FH theory even by employing the proposed
composition correction is unsuitable for thermodynamicmodeling of mixtures showing pro-
nounced specific interactions.

This is not only connected with the incorrect modeling of ∆hmix but also with the assump-
tion of an ideal lattice for calculation of ∆smix. Figure 5.8b shows the enthalpic ∆hmix and en-
tropic contributions −T∆smix to ∆gmix for P1 and FHz along with experimentally determined
∆hmix [199] for a PEG chain length of 68 at 353 K. Please note, as mentioned in Section 2.1.4
∆hmix is well approximated by the energy of mixing ∆emix at moderate pressures considered
in this work. The composition dependence of ∆hmix,z is similar to ∆gmix,z due to the minor
(negative) contributions of−T∆smix,z using the ideal entropy ofmixing∆smix,z > 0. In contrast,
positive values −T∆smix,EOS upto a PEG weight fraction of about 0.8 were obtained in case of
P1, while ∆hmix,EOS, contrary to ∆hmix,z, shows fairly good agreement with the experimentally
determined values. As for∆gmix,EOS, similar values of the enthalpy and entropy ofmixingwere
calculated for P2 and P3.

Table 5.7 compares∆gmix,∆hmix and∆smix calculatedusing thePHSCEOS (P1-P3) aswell as
the Flory-Huggins theory (FH and FHz) with values for ∆hmix obtained from simulations and
experiments [199] for a PEGweight fraction of about 0.8 andT = 353 K. The error of∆hmix,sim ≈

∆emix,sim calculated using atomistic simulations, was estimated using error propagation of the
general definition of ∆emix (eq 2.29) assuming an uncertainty of the CED for pure PEG, water
as well as their mixture of 30 J/cm3 (MAE, cf. Section 5.1.1) yielding error limits of about ±1.9
kJ/mol. Therefore, the incorrect simulation result of an endothermic mixture with ∆hmix,sim
of 0.8±1.9 kJ/mol originates from the inaccuracy of the interatomic potential functions em-
ployed for calculations of CED. An uncertainty of 1.9 kJ/mol for ∆hmix corresponds to an ex-
pected error of the FH interaction parameter χFH of about ±3 in case of PEG-H2O mixtures
at 300 K and a PEG weight fraction of 0.8. Such error exceeds the value of FH parameters
for many common polymer-solvent combinations [130, 193]. Therefore, the parameteriza-
tion of accurate thermodynamic models exclusively based on CED and the energy of mixing
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FIGURE 5.8: Results of the Flory-Huggins theory using composition independent (FH) and com-
position dependent (FHz) interaction parameters as well as of the PHSC EOS using different pa-
rameter sets: a) Gibbs energy ∆gmix of mixing and its b) enthalpy ∆hmix (solid lines) and entropy
contribution −T∆smix (dashed lines) per molecular unit as a function of the PEG weight fraction.
Calculations usedPEGchain lengths of 68 atT = 353K. Experimental (EXP) results for∆hmix taken
from ref. [199].

is virtually impossible, despite the calculated solubility parameters show a very good agree-
ment with experiments (cf. Fig. 5.1). Furthermore, the estimated error of ∆hmix,sim rational-
izes the contradicting results of solubility predictions using the FH theory for various polymer
drug/active mixtures obtained recently, which only partially agree with experimental obser-
vation (e.g., refs. [74, 82, 83] and [X]). However, if specific interactions do not dominate the
physico-chemical properties of polymermixtures, as indicated by relatively low values of δi ,el,
the calculated SP δi ,vdw and δi ,el can be used for qualitative solubility predictions potentially
facilitating rapid screening of the thermodynamic compatibility between polymers and bio-
logically active compounds (cf. Fig. 5.5).

TABLE 5.7: Gibbs energy ∆gmix, enthalpy ∆hmix [kJ/mol] and entropy ∆smix of mixing [J/(mol K)] calcu-
latedusing the PHSCEOS (P1-P3) aswell as the Flory-Huggins theory (FHandFHz) in comparisonwith
simulations (sim.) and experiments (exp.) [199] for a PEGweight fraction of about 0.8 andT = 353 K.

FH FHz P1 P2 P3 sim. exp.
∆gmix 2.4 -0.3 -1.3 -1.8 -1.5 - -
∆hmix 3.5 0.8 -1.2 -2.4 -1.4 0.8 ± 1.9 -0.70±0.01
∆smix 3.1 3.1 0.4 -1.8 0.3 - -

Contrary to the FH theory, the parameterization of the PHSC EOS used not only the tem-
perature dependence of CED but also of pressures. This allows a more accurate modeling of
the intermolecular interactions by employing a LJ potential using both, pure andmixed states
of the compounds under consideration. The subsequent separation of the intermolecular po-
tential into repulsive and attractive contributions (eqs 2.69 and 2.70) facilitates the targeted
parameterization of the reference part of the PHSC EOS Zref = 1 + ZHS + ZCB representing an
ensemble of non-interacting hard sphere chains and the perturbation part Zpert including all
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attractive interactions. In thisway, considerably improved thermodynamicmodelingof aque-
ous PEG solutions is achieved compared to the FH theory providing fairly good agreement of
∆hmix,EOS with experiments as well as negative ∆smix,EOS. The decrease of entropy due to mix-
ing of two compounds showing strong hydrogen bonding is connected with the formation of
complexes in solution as observed, e.g., for alcohol-watermixtures [96, 97]. Similarly, previous
theoretical studies [98] on the thermodynamic properties of PEG-H2Omixtures found nega-
tive ∆smix, which coincides largely with the results obtained in this work. In addition, negative
∆smix were, e.g., obtained formixtures ofmeloxicam, a non-steroidal anti-inflammatory drug,
and aqueous PEG solutions. This emphasizes the need for accurate thermodynamic models
including the effects of pronounced hydrogen bonding on the physico-chemical properties
of polymer-active mixtures. Even though the PHSC EOS parameterized in this work provides
a reasonable thermodynamic description of PEG-H2O solutions, its accuracy is still insuffi-
cient to reproduce both, CED and pressures as a function of temperature, with equal quality.
However, by usingmore sophisticated expressions for Zpert and applyingmore accuratemod-
els for consideration of specific interactions as discussed above, the present computational
methodology appears a promising way for predictions of the capability of polymers to sol-
ubilize biologically active compounds. Moreover, the PHSC EOS has been extended for the
thermodynamicmodeling of statistical, block and alternating copolymers as well as their cor-
responding mixtures [135]. Therefore, the combination of such EOS with the atomistic sim-
ulation procedures presented here would provide a promising tool for the efficient, in silico
design of sophisticated (co-)polymeric drug nanocarriers.
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6 Conclusions

In summary, computational methods for the time effective, targeted design of materials have
been proposed and applied to three case studies for distinct types of materials. Starting point
in all cases was the determination of suitable atomic structure models allowing the subse-
quent calculation of the physico-chemical properties. Due to the combination of atomistic
simulations with experimental observations, not only the prediction accuracy of the models
parameterized was evaluated but also empirical corrections were derived facilitating compu-
tationally efficient predictions of structure property relationships.

In Chapter 3, comprehensive sampling of atomic configurations of
Ba1−mSrmZn2−2nMg2nSi2O7 (BZS) solid solutions provided not only the lowest energy
structures but also confirmed that structure and relative energies are almost independent
of the precise arrangement of Ba2+, Sr2+, Zn2+ and Mg2+ ions on the respective lattice sites.
Consequently, the lowest energy configurations obtained could be used for predictions of
the martensitic phase transition temperatures Tt as a function of the chemical composi-
tions (m,n). For this purpose, model functions for the vibrational free energy along with
the harmonic approximation have been derived from DFT simulations for five chemical
compositions with (m > 0, n = 0) and (m = 0, n > 0), respectively. However, predictions using
the harmonic approximation considerably overestimate Tt by more than 1000 K and also
qualitatively disagree with experimental observations of Tt for different chemical compo-
sitions. Therefore, available experimentally determined Tt have been used for derivation
of an empirical correction of the vibrational free energy considering not only the effects of
anharmonic lattice vibrations but also the error of DFT simulations as well as the simple
composition dependent Debye model for the vibrational density of states (VDOS). The
estimated prediction uncertainty is about ±100 K that is similar to the accuracy of the DFT
simulations for prediction of polymorphous phase transitions. By employing the derived
model, theTt for all compositions (m,n) have been calculated showing almost same deviation
of ±100 K from experimentally determinedTt not included in themodel derivation.

Moreover, an empiricalmeasure forTt of 500 K has been used for elucidation of the chemi-
cal compositions forwhich theHTphaseemergesduringglass crystallizationandpersistsdur-
ing cooling down to room temperature. This is probably connected with kinetic hindrance of
themartensitic phase transition. Therefore, the employed approach that combines DFT sim-
ulations with experimental data can be used for rapid predictions of both, Tt and promising
chemical composition for which the desired HT phase can be obtained. For the latter, com-
putationally more demanding simulations such as ab initio MD simulations can be applied
in future studies to provide a deeper understanding of the structure-property relations of this
BZS glass ceramics.

For BZS solid solutions Ba1−mSrmZn2Si2O7 with m = 0.25, 0.5 and 0.75, only the HT phase
showing negative thermal expansion (NTE) emerges during glass crystallization. In addition,
they show pronounced dependence of the anisotropic thermal expansion on the chemical
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compositions. In contrast, the highly anisotropic elastic constants are almost independent
of the chemical compositions. Therefore, the change of the negative thermal expansion along
the crystallographic a axis has been attributed to the dependence of the Grüneisen param-
eters on the chemical composition that are connected with the lattice vibrations. Most pro-
nounced changes of the VDOS have been obtained in the low frequency range (0-5 THz) at
which the average microscopic Grüneisen parameters show negative values. The consider-
able shift of VDOS in this frequency range due to the substitution Ba2+ with Sr2+ rationalizes
the decrease of the NTE along the a axis with increasing m. Furthermore, this NTE originates
from the deformation of two-membered OSi–O–ZnO rings as indicated by the calculated mi-
croscopic Grüneisen parameters. By characterization of the anisotropic thermal expansion
and calculation of the elastic constants, future continuummechanics simulations, e.g., using
the finite element method are capable to facilitate the targeted design of the microstructure
of BZS glass ceramics for development of novel zero thermal expansionmaterials.

In case of small Fe2O3 gas phase clusters and nanoparticles (NP), the precise atomic struc-
tures cannot be determined by experiments. Therefore the atomic structure and properties
of nanoparticulate Fe2O3 are characterized by combining global structure optimizations for
small (Fe2O3)n gas phase clusters and simulated crystallizations of lager Fe2O3 NP. Structure
elucidation of (Fe2O3)n nanoclusters used a two stage procedure that combines ab initio de-
rived interatomic potential functions (IP) with refinements at the DFT level. Except for the
tetrahedral, adamantane-like (Fe2O3)2, (Fe2O3)n nanoclusters assumecompact, almost amor-
phous structures with little or no symmetry. For larger (Fe2O3)n gas phase cluster with n >
5, lowest energy structures show the adamantane-like (Fe2O3)2 entity as the main building
unit. In addition, with growing cluster size they increasingly assume tetrahedral morphol-
ogy. Simulated crystallization of larger NP used molecular dynamics simulations along with
the tailored IP yielding single crystals with tetrahedral morphology in case of NP with diam-
eters up to 3 nm. Larger NP with diameters of about 5 nm show hexagonal morphology and
monocrystalline structures resembling ϵ-Fe2O3. These findings show very good agreement
with the structure analysis of Fe2O3 nanopowders prepared by laser vaporization. Together
with the good agreement between the IP calculated structures and properties of small nan-
oclusters and the results refined at the DFT level, this confirms the reliability of the employed
approach for elucidation of structure and properties of nanoparticulate Fe2O3. Therefore, the
structure models predicted are the basis for future simulations of the thermodynamic and
magnetic properties to acquire deeper understanding of the structure property relations of
Fe2O3 nanoparticles. Moreover, the first direct indication that ϵ-Fe2O3maybe thermodynam-
ically themost stable phase in this size regime has been provided.

Finally, computationally efficient approaches for predictions of the thermodynamic com-
patibility between polymers and lowmolecular weight compounds have been proposed. For
this purpose, the two main factors that determine the accuracy of polymer solubility predic-
tions have been addressed. First, the inherent structures sampling (ISS) has been used for
accurate modeling of the atomic structure of amorphous polymers facilitating efficient cal-
culations of physico-chemical properties, particularly cohesive energy densities (CED) and
pressures. Accuracy of the ISS has been confirmed by comprehensive test calculations using
thedirect sampling (DS)of polymer conformationswithin a singleunit cell, whichwere shown
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to provide reproducible results for the CED.Main advantage of the ISS over the DS is the sim-
ple yet efficient parallelization of the sampling of the potential energy surface. In addition, the
accuracy of the interatomic functions used for calculation of CED has been evaluated yield-
ing good agreement with experiments along with amean absolute error of about 30 J/cm3 for
compounds containing C, N, O and H, that are the most important elements of biomedically
relevant substances.

Subsequently, different models have been parameterized from the simulation results to
facilitate an accuratemodeling of the polymer solubility - the second central factor for predic-
tionof the thermodynamicpolymer-active compatibility. TheCEDobtained fromsimulations
along with their energetic contributions of electrostatic and van der Waals interactions have
been used for calculations of the solubility parameters (SP) based on the concept of Hansen.
Together with the Flory-Huggins (FH) theory, the SP have been employed for qualitative sol-
ubility predictions of themodel polymer polyethylene glycol (PEG) with various solvents, de-
noted here as solubility maps. These show good agreement with experimental observations,
if the van derWaals part dominates the intermolecular interactions. However, thismodel fails
for polymer mixtures showing pronounced specific interactions such as hydrogen bonding.
The electrostatic SP can potentially be used for quantification of specific interactions, albeit
more test simulations are required to confirm this. Such an approachwould allow rapid deter-
mination of promising polymer-active combinations that show high encapsulation efficiency
of the corresponding nanocarriers.

For the refinedmodeling of the polymer solubility, the specific interactions have to be ex-
plicitly considered by atomistic simulations of the actual polymer solution. Here, aqueous
PEG solutions showing pronounced hydrogen bonding have been chosen as test case. The FH
theory clearly fails to describe such systems irrespective if a constant or composition depen-
dent interaction parameter is used. This is mainly due to the inaccuracy of the IP employed
for calculation of the CED that translates into an error of 1.9 kJ/mol for the enthalpy ofmixing.
Since such an uncertainty exceeds the enthalpy of mixing of most polymer mixtures, param-
eterization of accurate thermodynamic models based on CED alone is virtually impossible.
Second shortcoming of FH theory is the assumption of the ideal lattice for calculation the en-
tropy of mixing unable tomodel negative entropy changes of strongly hydrogen bondedmix-
tures such as aqueous PEG solutions.

In contrast, theparameterizationof thePHSCEOSusedboth, CEDandpressures as a func-
tion of the temperature yielding good agreement with experimental data as well as previous
theoretical studies of PEG-watermixtures including the enthalpy andentropyofmixing. How-
ever, this is partially connected with error compensations of the CED of PEG and the PEG-
watermixture since the used PHSCEOS is still too inaccurate to reproduceCEDandpressures
obtained from simulations with same quality. This is most probably due to the oversimpli-
fied van der Waals perturbation term of the compressibility factor used that emphasizes the
need ofmore accurate expressions tomodel such systems. Consequently, accurate and repro-
ducible predictions of phasediagrams couldnot beobtained since only small errors of the free
energy lead to large deviations of the calculated phase diagrams. Nonetheless, the PHSC EOS
provides reproducible values of the free energy of mixing that are expected to be sufficiently
accurate for reliable predictions of the thermodynamic compatibility between polymers and
drugs even for systems showing strong specific interactions. Moreover, the PHSC EOS can



80 Chapter 6. Conclusions

be straightforwardly extended to copolymers for modeling of more sophisticated polymeric
nanocarriers. Therefore, the combination of qualitative solubility predictions using the FH
theory (solubility maps) as rapid prescreening approach with parameterization of the PHSC
EOS by atomistic simulations of polymer mixtures for explicit consideration of specific inter-
actions is expected to be an efficient tool for the in silico design of polymeric drug nanocarri-
ers.
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