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1. Introduction 

The diagnostics of diseases is one of the main challenges in modern medicine. 

Classical approaches such as interviewing a patient, screening body temperature, 

or measuring blood pressure provide valuable information about patients to phy-

sicians. These tests can be performed as a part of a general medical examination 

and may reveal a patient’s state of health. More specific diagnostics require 

deeper insights into the patient’s condition. In many cases, this additional infor-

mation is obtained by means of anatomic and clinical pathology. 

Anatomic pathology is associated with examination of surgical samples by 

trained pathologists. Clinical pathology is the discipline that focuses on the in-

vestigation and diagnostics of diseases by means of various routine laboratory 

tests, such as blood cell count, throat cultures, or urinalysis. One of the subsec-

tions of clinical pathology is chemical pathology, also called clinical chemistry. In 

contrast to other specialties of clinical pathology, clinical chemistry is focused on 

the measurement of concentrations of specific chemical substances in body fluids, 

cells and tissues. [1] 

All the above-mentioned disciplines perform tests on samples taken from pa-

tients. These disciplines aim to improve the understanding of diseases. Deeper 

understanding can increase the effectiveness of diagnostics and lead to better 

patient outcomes. Within this work a combination of these disciplines, known as 

general pathology, will be referred as pathology. 

The pathological investigation of tissues and cells reveals changes, which can be 

used as markers of a given disease. If some diseases are suspected due to the 

symptoms or the results of other tests, the final diagnostics in clinical practice 

are often done or confirmed by pathologists. To assist pathologists in their de-

manding work, a large number of physicians and scientists in the fields of bio-

medicine, bio-imaging, and physics are working together to develop new tools and 

to improve our understanding of diseases. 
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1.1.  Tissue and cell-based diagnostics 

Among various branches of pathology, we can find two major areas of application: 

the investigation of cells (cytopathology) and tissues (histopathology). Cyto-

pathology mainly focuses on subcellular structures and the chemical composition 

of cells. It can provide additional information on diseases such as the presence of 

specific cell types, a shift in the cell count, or abnormal cell morphology. These 

factors can reveal details on a patient’s condition to the physician. These details 

can be useful for infection and inflammation detection. On the other hand, histo-

pathology is an investigation of whole tissue samples. It focuses on distinguishing 

specific structures within tissues and detecting various disorders related to spe-

cific organs. For such an investigation, a tissue sample taken from a specific or-

gan should be analyzed. One of the typical examples of histopathological applica-

tions in clinical practice is the diagnostics of cancer. 

A common approach for disease diagnostics in histopathology [2] and cytopathol-

ogy [3] is the visual inspection of stained samples using an optical microscope. 

This approach is the “gold standard” for many diagnostic applications and for dif-

ferentiation between cell types or tissue types. To allow such diagnostics, stain-

ing is utilized prior to the visual inspection of the sample. Staining reveals de-

tails of tissue morphology and subcellular structures [4]. After staining, the 

pathologist can assign tissue areas or cells within the field of view of the micro-

scopic image. 

The information obtained from white-light microscopy and staining techniques is 

limited for both conventional and immunohistochemical staining approaches. 

Conventional staining highlights only the distribution of broad classes of mole-

cules, rather than specific molecules. The visualization of specific molecules is 

possible with immunohistochemical staining, but these staining techniques are 

costly, labor-some and complex. In contrast to the dramatic improvement in mi-

croscopic techniques, some conventional staining techniques remain unchanged 

for many decades or, as in the case of Hematoxylin and Eosin (H&E) stain, for 

about a century [5]. Even though these conventional staining techniques are 

quite old, they are widely applied because of their low cost and high diagnostic 
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accuracy. H&E staining, as well as Kimura staining [6], are widely used in tissue 

and cell analyses. Unfortunately, these staining approaches often require manual 

investigation of stained samples, which is labor intensive and leads to an in-

crease in the total analysis time. In many diagnostic applications, manual inspec-

tion of stained samples remains the “gold standard”.  

Prior to sample preparation and staining, the tissue or cells need to be extracted 

from the human body and then reagents need to be added. Therefore, this proce-

dure cannot be performed in-vivo [7]. On-site analysis of samples during surgery 

is also challenging and, if the analysis is performed manually, it may be impossi-

ble within the required time. Intra-operative sample inspection could be of criti-

cal importance since the additional information can increase efficiency during 

surgery. Even higher impact can be achieved by in-vivo analysis, because a pre-

cise detection of cancerous tissue margins during surgery decreases the possibil-

ity of local cancer re-occurrence. This low cancer re-occurrence results due to the 

complete removal of cancerous tissue [8] and preservation the surrounding tis-

sue. These aspects are especially crucial in brain tumor surgery [9]. Therefore, 

stained frozen sections are analyzed during brain and head&neck tumor removal 

surgeries. Unfortunately, a certain trade-off between the required time and the 

quality of the diagnostics often needs to be made when staining approaches are 

applied. One strategy to achieve a better trade-off is to automate the analysis. 

Another strategy would be applying different measurements techniques in paral-

lel to increase information content of the collected data. Furthermore, the devel-

opment of optical probes may make in-vivo spectroscopic analysis possible in rou-

tine diagnostic. 

The informational content used for diagnostics can be increased by applying opti-

cal measurement techniques, sensitive to chemical composition of the sample [2]. 

Due to the availability of other measurement techniques as alternatives to opti-

cal microscopy, additional information can be extracted, and a deeper under-

standing of tissue and cell structures can be obtained. In biomedical research 

tasks, various fluorescence, dark-field, and phase-contrast microscopic tech-

niques, as well as spectrometric and spectroscopic imaging techniques, are widely 
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used. Unfortunately, spectroscopic techniques are not often employed in routine 

diagnostic, because enormous amount of multidimensional data is collected. 

Manual analysis of these data sets is very time consuming, and spectral varia-

tions are often too small to be recognized by the naked eye. The mentioned issues 

make usage of spectroscopic techniques in clinical routine very challenging. 

Therefore, staining remains a main tool in pathology. 

Pathological investigations of stained samples are usually performed in manual 

mode and require a decision made by pathologists. This decision is made based 

on a visual inspection of the sample and may be subjective [10]. The pathologist’s 

experience [11] plays an important role in this diagnostic process. Experience is 

especially crucial in cases where the information content obtained by visual in-

spection of stained samples do not provide sufficient information for doubtless 

diagnostics. Extending the amount of information, which is available for 

pathologist, and representing it in a simple interpretable form, may improve effi-

ciency of the diagnostics. To provide more information on the sample’s chemical 

composition to pathologists and physicians, new spectroscopic tool may be intro-

duced to the clinical routine. 

Along with new measurement techniques, software tools for the automated anal-

ysis of the obtained spectral and image data need to be introduced. This software 

should extract diagnostic information and automatically convert this information 

into a simple interpretable form. The common challenges of the automated data 

analysis include simultaneous usage of multiple data types, large number of ob-

servations, and the multidimensionality of data. To overcome these issues, statis-

tics and machine learning can be used. 

Machine learning methods make it possible to obtain robust and unbiased re-

sults [12], but the data needs be standardized prior to the application of the ma-

chine learning methods [P3]. To standardize the data, a preprocessing pipeline 

must be established, which is specific to a given task and the measured data. At 

best, the data processing needs to be automated to decrease analysis time and 

avoid the introduction of a human bias. 
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Besides automation and optimization of the data processing pipeline, a research-

er’s expertise and a set of preliminary studies need to be employed to find an op-

timal measurement technique for every analytical task. For simple tasks, when 

the difference between the investigated groups among the samples is large and 

well understood, a suitable measurement technique can be easily chosen. For 

more complex diagnostic tasks, a single measurement technique may not provide 

all the required information. To investigate the complex samples to their full ex-

tent, multiple analytical approaches are often required. 

Employing multiple measurement techniques instead of one single technique 

may increase the robustness of the analysis and the reliability of the diagnostics. 

Of a wide variety of spectroscopic and imaging techniques that are sensitive to 

and selective for different substances, only a few were considered within the 

frame of this work. Multiple data types provided by these techniques were 

merged for combined analyses by means of introducing various data fusion 

schemes in the data processing pipelines. For each demonstrated example, the 

data preprocessing, data fusion, and analysis by means of machine learning were 

implemented and adjusted to improve the efficiency of analysis. 

1.2. Machine learning 

As stated above, machine learning methods are needed to automate the analysis 

of large datasets. Automated data analysis in histological diagnostics makes it 

possible to overcome the bias of manual analysis [13] and the subjective decisions 

based on visual inspection of stained samples [14]. Additionally, an introduction 

of machine learning methods in clinical routine would improve the robustness of 

the diagnostics and prediction [15]. To efficiently apply machine learning meth-

ods, well-standardized data is needed. For a proper standardization, an automat-

ed data processing pipeline should be developed and optimized for each specific 

machine learning task. 

Machine learning approaches can be either unsupervised or supervised. Unsu-

pervised machine learning does not require additional metadata, such as labels, 

for establishing the model. The unsupervised machine learning methods reveal 

the common patterns and variations within the data. Dimension reduction and 
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clustering are the common applications of unsupervised machine learning meth-

ods. On the other hand, supervised machine learning approaches, such as classi-

fication and regression, require labels ore other metadata to train the model. For 

instance, in diagnostic applications, sample types or the severity of a patient’s 

condition can be predicted using supervised machine learning methods. Exam-

ples of supervised machine learning methods for multivariate data include artifi-

cial neural networks, linear discriminant analysis (LDA), and support vector ma-

chines (SVM). These methods are often used in a combination with dimension 

reduction techniques, such as principal component analysis (PCA) [P3]. Alterna-

tively, supervised machine learning methods that do not require prior dimension 

reduction, such as partial least squares regression (PLS) [16], can be employed 

for regression, classification, and supervised unmixing or dimension reduction. 

Proper implementation of the regression and classification methods described can 

provide the reliable prediction of diagnostic values. For this automated imple-

mentation of diagnostics, the data needs to be standardized using several prepro-

cessing steps. Even images obtained by optical or holographic microscopy should 

be preprocessed before utilizing machine learning, chemometric, or classical sta-

tistical methods. Standardization is especially crucial for spectral data. Typical 

preprocessing routines for spectroscopic and spectrometric data usually include 

calibration [17, 18] and background correction. Another step that is often re-

quired prior to constructing models by means of machine learning is dimension 

reduction or feature extraction. This step is necessary to avoid model overfitting 

and to improve the performance of the diagnostic model on independent data. 

1.3. Data fusion 

Despite advances in measurement techniques and data analysis methods, a sin-

gle measurement technique may not be suitable for investigation of the sample 

from different perspectives. To obtain a broader overview and improve the diag-

nostics, the data from available measurement techniques should be com-

bined [19]. This approach of combining data from different sources is referred to 

as data fusion. 
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Figure 1: Types of data fusion architecture. Depending on the task, different fusion centers can be chosen 

within the processing workflow [20]. Centralized architecture (a) has a data fusion center directly after pre-

processing. Decentralized architecture (b) allows interactions between data types at different stages of pro-

cessing and may have more than one fusion center. In contrast to other approaches, distributed architec-

ture (c) is aimed at performing data fusion during the last step of the analysis by combining the results ob-

tained from the analysis of data from different sources. 

Data fusion can be categorized in different ways [20]. In this work, the data fu-

sion schemes are categorized based on the type of architecture (see Figure 1). 

When the data from different sources is combined using centralized or low-level 

architecture (see Figure 1a), the data fusion is performed directly after prepro-

cessing and then the combined data analyzed together. In a decentralized archi-

tecture (see Figure 1b), the data fusion may be performed on different phases of 

the data processing pipeline for different data sources. Hierarchical architecture 

is a common example of the decentralized approach. In this architecture, the re-

gions of interest are determined using one measurement technique, and then an-

other measurement technique is employed to obtain a final prediction. In another 

type of architecture, referred to as distributed (see Figure 1c) – or high-level – 
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architecture, a data fusion center is located in the data processing workflow after 

the analysis for every data type is performed separately. According to the dis-

tributed data fusion approach, the predicted values or scores are combined in-

stead of combining the data directly. The selection of data fusion architecture 

must be based on the analytical concept of the task and on the structure of data 

obtained by each measurement technique. 

Correlated imaging, which uses the multiple measurements technique, is one ap-

proach. To utilize this approach, the sample needs to be measured in the imaging 

mode using different techniques. These measurements can be performed either 

simultaneously or sequentially. If the measurements are performed sequentially, 

the imaging data must be aligned pixel by pixel after acquiring the images or 

scans. One drawback of correlated imaging is that multiple technical and exper-

imental challenges exist [21]. Despite these challenges, a combination of spectro-

scopic and mass spectrometric mapping techniques demonstrated high potential 

for biomedical applications. For example, combinations of spectroscopic and mass 

spectrometric imaging techniques have shown their potential for three-

dimensional samples [22] and single cell analysis [23]. Data fusion of co-

registered mass spectrometric and Raman spectroscopic data was successfully 

applied in a wide range of medical and biological applications, such as the inves-

tigation of biofilms [24, 25] and differentiation of bacteria [26] and fungi [27]. 

Correlated imaging using matrix assisted laser desorption/ionization (MALDI) 

and Raman spectroscopy has also brought advantages [28] in tissue research. 

The combination of different measurement techniques can improve the investiga-

tion of biomedical samples. In addition, biomedical diagnostics can also be im-

proved by adding clinical information to the analysis. In medical practice, physi-

cians use the patient’s known symptoms, health condition, and history for relia-

ble disease diagnostics. This clinical information can also strengthen the robust-

ness and predictive efficiency of automated diagnostics using machine learning. 

Unfortunately, clinical information is often poorly structured, and some values 

may be missing, which leads to the exclusion of this data from automated data 

analysis. To overcome these issues, data imputation can be implemented within 
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the data processing pipeline. The imputation of missing data allows the estima-

tion of unknown values based on known values. One advantage of this approach 

is that the model can be trained on a complete set of variables even if some in-

formation or measurements are not available for all patients. 

1.4. Outline of thesis 

In the diagnostics of many diseases, cytopathology and histopathology play an 

important role [29]. To provide new tools and methods to the pathologist, differ-

ent measurement techniques can be brought into clinical routine, and machine 

learning methods can be applied to increase the robustness and speed of the 

analysis. Nevertheless, a single measurement technique may not be sufficient for 

obtaining a complete overview of the sample. To overcome this issue, a few meas-

urement techniques can be applied, and the recorded data can be combined by 

means of data fusion. In this work, the data obtained by various measurement 

techniques from diverse biological samples have been investigated by means of 

machine learning methods and data fusion. 

As combining different data types increases complexity of data processing work-

flows, multiple challenges were faced in the combined analysis. In the second 

chapter, it is shown how to overcome the challenges of combining Raman spectro-

scopic and MALDI spectrometric data for tissue diagnostics. The chapter de-

scribes the measurement techniques, related preprocessing methods, and two 

different data fusion examples. First, an investigation of brain tissue using low-

level data fusion is shown, in which an unbalanced contribution of different data 

types has been faced. To overcome this issue, two methods for balancing the data 

contribution in the resulting model were investigated: an identical normalization 

for both data types and a data weighting approach. In addition, a method for the 

comparison of different weighting schemes has been suggested. Another example 

of the data fusion of Raman and MALDI image data is shown for a cancer diag-

nostic task in which some measurements were missing. To avoid exclusion of in-

complete observations, these missing values were computationally estimated dur-

ing data fusion. This data imputation made a full set of variables available for 

model training and testing. 
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The third chapter of this work is focused on a cell-based diagnostic. In this chap-

ter, the Raman spectra and morphological features of cells were used for white 

blood cell subtype classification. Another demonstrated example of cell-based di-

agnostics is the combined analysis of Raman spectroscopic data and biomarkers 

for the detection of sepsis and inflammation severity. These cell-based analyses 

were motivated by a multi-modal blood diagnostic device that should detect sep-

sis based on blood count, Raman spectral data, and biomarkers. 

After presenting the examples of data fusion and the obtained results, the find-

ings revealed in this work are summarized. The summary in English and Ger-

man can be found in the fourth and fifth chapters, respectively. 
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2. Data fusion for tissue diagnostics 

Robust clinical diagnostics may require performing specific tests on the sample. If 

specific biomarkers for diseases are known, then biomarker-specific staining pro-

cedures can be employed. However, if a specific biomarker is not known or the 

complexity of the disease does not allow diagnostics based on just a few bi-

omarkers, then techniques with high chemical sensitivity, such as vibrational 

spectroscopy [30] or various “-omics” approaches, such as proteomics or metabo-

lomics [31], can be applied. 

Among a wide range of measurement techniques, Raman spectroscopic imaging 

and MALDI mass spectrometric imaging were considered for tissue investiga-

tions within this work. Both Raman spectroscopy and MALDI spectrometry were 

found suitable for biomedical imaging due to their high sensitivity. To gain deep-

er insight into the chemical composition of the sample, Raman spectroscopic and 

MALDI spectrometric data were fused and analyzed together. Fundamental dif-

ferences between the working principles of the measurement techniques provided 

an overview of the chemical composition of the tissue samples from different per-

spectives. The working principle of the measurement techniques and the specifics 

of related data preprocessing are described in the first two sections of this chap-

ter. 

Following the description of the measurement techniques, two examples of data 

fusion approaches for tissue investigations are demonstrated in sections 2.3 and 

2.4. In the first example, low-level data fusion was applied for the unsupervised 

analysis of a mouse brain tissue section. Within this analysis, a data-weighting 

approach was investigated to balance the contribution of different data types. 

Another example demonstrates the data fusion of Raman and MALDI spectral 

data for the detection of cancerous tissue in human liver samples. A high-level 

data fusion approach was implemented for this task. In this example, the chal-

lenge of handling missing data was met since Raman and MALDI measurements 

were performed independently, and not all regions of interest were measured by 

both measurement techniques. 
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2.1. Raman spectroscopy 

One of the measurement techniques used for tissue investigations within this 

work is Raman spectroscopy. This measurement technique provides information 

on the vibrational states (see Figure 2a) of the molecules present in the sample. 

Raman spectroscopy is sensitive to the chemical content of the sample, and the 

preprocessed spectra characterize an overall chemical composition of the sample. 

Due to its high sensitivity, Raman spectroscopy is convenient for a wide range of 

biological [32] [P4] [P7] and biomedical [33] [P3] [P5] applications. The main ad-

vantages of this measurement technique include the possibility of non-invasive 

medical diagnostics [14] and real-time monitoring [34]. In combination with con-

focal microscopy, Raman spectroscopy can be utilized in the imaging mode, 

providing spectral scans with high spatial resolution [35]. Another advantage of 

Raman spectroscopy is that due to a relatively simple schematic of a basic Raman 

set up (see Figure 2b), easy-to-use and cost-effective instruments can be de-

signed [36]. 

  

Figure 2: Raman spectroscopy. Energy diagram showing the energy states involved in the Raman scattering 

processes (a) and a simplified schematic of a Raman spectrometer with the key elements (b) are shown. In 

the Rayleigh scattering, the scattered photon features the excitation wavelength. On the other hand, the 

presence of the vibrational energy states gives rise to a small probability that the resulting vibrational state 

of the molecule differs from the incident vibrational state. Thus, the scattered photon will have an energy 

that is different from the energy of the excitation photon (a). This difference represents a certain vibrational 

energy state. By filtering out the frequency of the excitation laser and analyzing the spectrum of the Stokes 

(or anti-Stokes) Raman scattered light, the information about chemical composition of the sample can be 

obtained. 

One drawback of analyzing biological samples using Raman spectroscopy is that 

the obtained data is extremely complex. This complexity of the data is further 
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increased due to the corrupting effects that originate even from slight deviations 

in the sample preparation routine. Another typical example of a sample-related 

corrupting effect is fluorescence background, which impact is especially signifi-

cant in the investigation of biological samples. The magnitude of such corrupting 

effects can be comparable to the level of the signal that represents actual biologi-

cal information. To suppress these effects and achieve sample-to-sample compa-

rability of such complex data, a set of standardization procedures must be applied 

during data preprocessing. This set of procedures was organized into a prepro-

cessing pipeline [P3], and specific approaches were developed for treating each 

corrupting effect (see Figure 3). 

Besides corrupting effect related to the samples, a number of non-sample-related 

corrupting effects can be found.  One of these effects is a cosmic ray noise, which 

is not directly related to the sample or to the settings of the device. Other signifi-

cant non-sample related corrupting effects are related to the differences in wave-

number axis and intensity responses of the measurement devices. Due to these 

inter-device differences, it may be extremely challenging to compare the data sets 

measured on different devices. Furthermore, deviations in the wavenumber axis 

can be observed even if the compared data sets are measured on the same device, 

but within a large time span. The preprocessing steps that aim to suppress these 

non-sample related corrupting effects will be discussed separately since these 

steps should not be optimized within the model optimization routine. Within the 

frame of this work, this group of preprocessing steps will be referred to as data 

pretreatment steps. 
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Figure 3: Raman spectroscopic data processing workflow. The illustrated pipeline includes the steps re-

quired for the Raman data analysis. It also shows the order and cross-interactions of the processing steps. 

The first three steps of preprocessing are aimed to eliminate non-sample related variations in data. The 

subsequent steps of the preprocessing further standardize the data and can be additionally tuned for a spe-

cific task along with a model optimization process. Adopted from [37] [P6]. 

The pretreatment steps for Raman spectroscopic data include cosmic ray spike 

correction and wavenumber and intensity calibration (see Figure 3). In the stud-

ies presented in this work, in-house written algorithms were employed for the 

pretreatment steps of spike correction [P1] and calibration [17]. 

The spike correction step aims to eliminate cosmic ray noise, which originates 

from high-energy particles hitting the charge-coupled device (CCD). This effect 

appears at random spectral positions and cannot be described with statistical dis-

tributions utilized for additive or shot noise effects. As in the imaging mode, 

many spectra are acquired, and spikes need to be located and removed in a fully 

automated mode. This can be achieved by setting constant parameters in the al-

gorithm or by defining the parameters through the properties of the data. The 

cosmic ray noise removal can be more efficient if the spikes are detected consider-

ing intensities and sharpness of the peaks in the data subset. Thus, a marker 

was developed, and spectra with spikes were detected based on the distribution 

(see Figure 4) of this parameter R [P1]: 
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𝑅𝑖 = max (

𝑠𝑑((𝛥 𝑆)𝑖,1, … , (𝛥 𝑆)𝑖,𝑗−5, (𝛥 𝑆)𝑖,𝑗+5, … , (𝛥 𝑆)𝑖,𝑚)

(𝛥 𝑆)𝑖,𝑗
) , 

(1) 

where S is a matrix with spectra in rows and ΔS is a matrix with the second de-

rivative of the spectra. In the case of time series measurements, the matrix ΔS 

can be a two-dimensional Laplacian of the matrix S, which further improves the 

performance of the algorithm. 

 

Figure 4: Automated parameter selection. On the left side (a, b), the distribution of the parameter R calcu-

lated for all spectra in the scan at the first iteration of spike correction is shown. This parameter is defined 

by formula(1). The red dashed line depicts a threshold, selected automatically from the distribution. On the 

right side (c, d), the plot demonstrating a typical spectrum from the data set with artificially induced spikes 

(red solid line) and the corrected spectrum (black solid line) are shown. The gray area depicts the standard 

deviation of the spectral values within the data set. The positions of the induced spikes, which were correct-

ed by the proposed method, are depicted in green vertical lines. The undetected spike’s position is depicted 

in blue. The values of the parameter R on different iterations are depicted with the same color codes (a, b). 

The bottom plots (b, d) depict the same as the upper plots (a, c), but with the range of ordinate that makes it 

possible to see more details. From the distribution of the parameter R, calculated for each spectrum in the 

scan, spectra with artifacts can be found in the minor peak of the distribution. 

After spike correction, calibration steps should be performed. The wavenumber 

calibration can be carried out according to a measured wavenumber standard. 

This calibration is necessary for the comparability of spectra measured within 
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different time frames or with different excitation wavelengths [17]. The purpose 

of the subsequent intensity calibration is that it should correct for the instrument 

response function, which is represented as a wavelength dependent function. 

These calibration procedures are necessary for obtaining comparable peak inten-

sities between devices or conditions [38]. Although the wavenumber calibration is 

necessary for Raman data pretreatment, the intensity calibration may be skipped 

if all spectra are measured by a single instrument. 

The data pretreatment steps described suppress non-sample-dependent corrupt-

ing effects. Nevertheless, for further standardization, Raman spectral data re-

quires additional preprocessing steps such as noise reduction, baseline removal, 

and spectral normalization [17] [P3]. Although the smoothing of the spectrum is 

an optional step, it can be applied to decrease the influence of the signal-to-noise 

ratio on baseline correction and normalization. It may even be used for smoothing 

spectra prior to calculating the background, which is then subtracted from non-

smoothed spectra. 

Background removal is one of the most crucial preprocessing steps for the stand-

ardization of Raman spectra from biological samples [39]. The frequently-used 

approach for background fitting is a polynomial fit algorithm [40]. The main dis-

advantage of this method is the appearance of the so-called Runge’s phenomenon, 

in which the error of the fitting is larger at the edges than at the center of the 

wavenumber range. Large errors at the edges result in insufficient fluorescence 

background removal, and a loss of information may occur. Another method ap-

plied for Raman spectral analysis is a sensitive nonlinear iterative peak (SNIP) 

clipping algorithm [41]. The baseline estimation using SNIP is more stable on the 

edges of the wavenumber region, but an optimal number of iterations may vary 

depending on a specific signal-to-noise ratio, spectral resolution, wavenumber 

range, and the width of Raman bands in the data set. 

The next step in Raman spectral data preprocessing is normalization. This step 

allows decreasing variations in signal intensity that occur due to optical focusing 

during the acquisition of Raman spectra. Normalization and the smoothing step 
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are optional, especially in applications where false-color images are generated by 

the integration of spectral bands. 

Besides standardization steps, feature extraction or dimension reduction may be 

required for Raman spectroscopic data. These steps are applied if the analysis 

itself is not performed with methods that include an intrinsic dimension reduc-

tion. Since these preprocessing steps can be optimized within the model optimiza-

tion routine, it is quite difficult to separate preprocessing from the analysis clear-

ly. Thus, dimension reduction is often considered as part of the analysis stage 

rather than preprocessing and can even be used as an analytical technique. One 

example of such a procedure is the use of PCA for data analysis and visualiza-

tion, which is described in section “2.3. Combined data analysis.” 

The preprocessing routine described above allows the conversion of raw data into 

standardized Raman spectra suitable for biological and biomedical applications. 

These spectra provide complex information on the chemical composition with a 

high scattering cross section for lipids and proteins. This Raman spectra pro-

cessing (see Figure 3) was applied for a different Raman spectroscopic task, such 

as the investigation of human hepatic stem cells [P5] and fungal spores [P7]. The 

same preprocessing approach was also used to investigate the content of caro-

tenes in tomatoes [P4] and to detect the uptake of nanoparticles by macrophag-

es [P8] using surface-enhanced Raman spectroscopy. 

Despite the wide range of applications and high chemical sensitivity, Raman 

spectroscopic imaging is not the best measurement technique to differentiate pro-

teins from each other or to differentiate lipids from each other, because different 

molecules of the same class may have very similar Raman spectroscopic signa-

ture and the concentrations of specific substances may be too low. Thus, it is ben-

eficial to combine Raman spectroscopy with a measurement technique which pro-

vides specific information on the lipid (or protein) content of the sample. One 

such analyte-specific sensitive measurement technique is MALDI mass spec-

trometry, which can also be applied in the imaging mode. 
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2.2. MALDI spectrometric imaging 

Matrix-assisted laser desorption/ionization (MALDI) is a soft ionization tech-

nique, which is typically coupled with a mass spectrometric detection technique. 

MALDI mass spectrometry (MALDI-MS) is used for the investigation of a certain 

class of chemical compounds in a sample. This selectivity is achieved by choosing 

the laser energy-absorbing matrix that is the most suitable for co-crystallization 

with a specific class of molecules [42]. After the matrix is applied to the sample, a 

mixture of the matrix and the analyte is illuminated by a short laser pulse (see 

Figure 5). The energy of this laser pulse activates the co-crystallization, desorp-

tion, and ionization of the matrix and the co-crystallized analyte. Subsequently, 

the detection of ion masses is performed. One conventional approach to ion mass 

detection in MALDI-MS is time-of-flight (TOF) detection. According to this detec-

tion approach, ions are accelerated by an electric field and fly freely through the 

field-free area to the detector. As the acceleration depends on the mass of the ions 

and their charge, the detected time of flight is proportional to the mass-to-charge 

ratio of the ion. For imaging applications, the process is performed in scanning 

mode, so spectra are collected from the sample area in a point-by-point manner. 

 

Figure 5: MALDI-TOF spectrometry. A diagram of the MALDI measurement (a) and a simplified schematic 

of the MALDI-TOF (time-of-flight) spectrometric system (b) with the key elements are shown. The co-

crystallized matrix and analyte molecules absorb the energy of a laser pulse. This energy triggers desorption 

and ionization of the molecules (a). Then, the generated ions are accelerated by an electric field (b). Lighter 

ions are accelerated to higher velocities compared to heavier ions of the same charge. Thus, the time of flight 

through the field-free area is related to the mass-to-charge ratio of the ions. 

Often MALDI-MS is used to obtain detailed information about the lipid or protein 

content of biological samples. MALDI imaging has been suggested as a suitable 

measurement technique in various biological applications including the imaging 
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of kidney biopsies [43], rat brain slices [44], and the subcellular imaging of pan-

creatic islet cells [45]. Unfortunately, various corrupting effects introduce non-

sample related variations in the spectra. The presence of these corrupting effects 

needs to be considered during data processing to obtain robust results. 

By analogy with Raman spectroscopy, the data processing pipeline of MALDI da-

ta can be divided into preprocessing and analysis. Although both measurement 

techniques have similar analysis strategies, the preprocessing shows some signif-

icant differences. These differences appear as early as the first steps of the 

MALDI data processing pipeline (see Figure 6): the spike correction is not needed 

since particles are detected and not photons. However, calibration, or warping, is 

extremely crucial for mass spectral data preprocessing. The baseline correction is 

also needed, but the baseline can be subtracted efficiently without parameter op-

timization by the sensitive nonlinear iterative peak (SNIP) algorithm. 

 

Figure 6: MALDI spectrometric data processing workflow. Although the workflow is divided into prepro-

cessing and analysis parts, some preprocessing steps should be optimized to improve the robustness of the 

analysis. In addition to the order and interactions between the processing steps of the MALDI processing 

routine, the main differences in the Raman spectrometric data processing workflow (see Figure 3) are point-

ed out. Adopted from [37] [P6] 
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Besides baseline correction, the smoothing of the mass spectrometric data can be 

useful for improving the performance of peak picking methods; however, due to 

the high sharpness of peaks, it is important to use smoothing procedures careful-

ly and only when absolutely required. Another drawback of the sharp MALDI 

peaks is that even after calibration, peaks might not be correctly aligned. To 

equalize the mass values of nearby peaks, a binning procedure must be applied. 

The peak binning procedure considers peaks within a certain window of masses 

as the same. The width of the window should be set indirectly through a parame-

ter called tolerance, which specifies a relationship between the width of the bin-

ning window and the mass values. The tolerance parameter is used for peak bin-

ning instead of a fixed window size because peak width and mass detection preci-

sion differ for light and heavy ions. The peak binning procedure combines the da-

ta from different measurements in a single data matrix where every column rep-

resents the peak intensity of a specific mass value. 

After background removal and peak binning, normalization can be performed. 

The normalization approaches of the MALDI data correspond to Raman spectro-

scopic data normalization. The most common normalization approaches include 

median, total ion count (TIC), and root mean square (RMS) normalization. More-

over, normalization to a spectrum noise level or to a peak value (as well as its 

square root or logarithm) can be useful in some applications. 

The preprocessed MALDI spectra have much lower dimensionality than the raw 

data but still contain hundreds of variables. Since the data set is represented as a 

matrix with spectra in rows and variables (mass values) in columns, the dimen-

sion reduction for further analysis can be performed by means of component ex-

traction methods (PCA, NMF, ICA, MCR-ALS) or by means of variable selection 

methods. Variable selection and dimension reduction can also be applied sequen-

tially. One example of such a sequential use of dimension reduction and variable 

selection methods for MALDI data is shown in the next section. 

2.3. Combined data analysis 

To determine if a combination of Raman spectral imaging and MALDI mass spec-

trometric imaging leads to an improved analysis outcome, both measurement 
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techniques were applied on the same mouse brain tissue section. A matrix that is 

specific for lipids was applied during the MALDI spectrometric investigation of 

the sample. Before both data types could be analyzed together, the Raman spec-

tra were co-registered to the MALDI measurement grid. As a Raman spectroscop-

ic scan had a higher resolution than a MALDI spectrometric scan, Raman spectra 

taken from the positions affiliated with a single MALDI measurement were aver-

aged. After performing standard preprocessing for each type of spectra, the data 

matrices with Raman and MALDI spectra were combined into a single matrix. 

Each row contained a vector with normalized MALDI counts and normalized 

Raman intensities related to the same point on the sample. Subsequently, a PCA 

was performed on the Raman, MALDI, and combined data. As mentioned in the 

introduction (“1.3 Data fusion”), such a data combination approach that interacts 

with the preprocessed data directly is referred to as centralized data fusion (see 

Figure 1a). 

Due to the use of a centralized data fusion, the problem of an unbalanced contri-

bution of the two data types in the overall data variance was encountered. To 

overcome this issue, the PCA using the combined data matrix was performed af-

ter introducing a weighting coefficient between the Raman and MALDI data. The 

coefficient was selected to equalize the sums of the absolute values of the two 

spectral data matrices. This weighting approach was validated by investigating 

the cumulative proportion of variance explained by a given number of PCs. For 

this investigation, the PCA was performed for the data combined using different 

weighting coefficients. The weighting coefficient, which led to the slowest in-

crease in cumulative variance, was considered optimal for extracting more valua-

ble information (e.g., factors) [P6]. 

The first three principal components (PC) were visualized for separate and com-

bined data analyses (see Figure 7). The PC-score false-color image obtained from 

the combined analysis demonstrates a better distinction of spatial features in 

comparison to both separate data analyses. A closer inspection of the PCA load-

ings (see Figure 8) showed that the first two PCs did not differ significantly from 
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the combined and separated data analyses, but the third principal compo-

nent (PC3) changed notably. 

 

Figure 7: PCA of separate and combined spectral data. Separate analyses were performed utilizing a PCA of 

preprocessed normalized Raman (a) and MALDI (b) spectra. The combined data matrix (c) was created by 

merging Raman and MALDI data matrices in a way that each row contained both normalized Raman inten-

sities and normalized MALDI counts. The false color images in (a), (b), and (c) were obtained by visualiza-

tion of the principal components of Raman, MALDI, and combined data. In these images, the first three 

principal components are visualized in red, green, and blue, respectively.  

Without data fusion, PC3 of the MALDI data contains coefficients with opposite 

signs related to the isotopes of the same ions. This can be caused by the differ-

ence in signal-to-noise ratio between spectra, rather than by the lipid content of 

the sample. PC3 of the Raman data alone is also hard to interpret. On the other 

hand, PC3 of the combined data contains MALDI and Raman parts at the same 

time. It depicts differences in the lipid content, according to the MALDI data, and 

differences in the protein-to-lipid ratio, according to the Raman data. This addi-

tional interpretable feature was revealed, and the data visualization quality was 

increased by implementing a weighted data fusion for Raman spectroscopic and 

MALDI spectrometric imaging data [P6]. 
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Figure 8: PCA loading for separated (a) and combined (b) analysis. The colors of the spectra are the same as 

in the composite false-color images of the PC in Figure 7. The significant change in the third principal com-

ponent can be seen when a PCA is applied to the combined data: the behavior of the isotopes of the same 

ions is stable for the MALDI part of PC3 (b). 

2.4. Treating misaligned and incomplete data 

In research tasks that deal with multiple measurement techniques, the experi-

ments should be designed to avoid missing values or incomplete observations. 

This planning increases the robustness and reliability of the data analysis from 

multiple data sources. Pathologists also rely on multiple diagnostic tools in clini-

cal practice. However, in extreme cases physicians need to perform diagnostics 

even if not all tests were completed. Unfortunately, dealing with incomplete ob-
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servations is challenging for machine learning algorithms. This complicates the 

transfer of a developed diagnostic pipeline to the clinic. Additional complications 

arise for correlated imaging [21] when the data obtained from several measure-

ment techniques have to be aligned pixel by pixel. This alignment may even be 

impossible if the spectral imaging by various techniques is performed inde-

pendently or on different areas of the sample. To overcome this issue, a data pro-

cessing pipeline that allows analysis of such misaligned incomplete data was con-

structed. 

As an example of data fusion for incomplete data, Raman and MALDI spectral 

scans of hepatic tissue samples were used. These samples were obtained from 

patients with hepatocellular carcinoma (HCC), and the spectra were acquired 

from areas that were characterized as HCC or fibrosis. As the Raman and 

MALDI measurements were not used in a correlated manner, the direct align-

ment of data points was not possible. In addition, for some samples only one 

measurement (Raman or MALDI) was performed. To handle such misaligned da-

ta, every area measured by one of the measurement techniques was divided into 

fifteen subareas. From these subareas, average spectra were extracted. After av-

eraging, fifteen Raman spectra and/or fifteen MALDI spectra were obtained for 

each area. Subsequently, principal components (PCs) were calculated separately 

based on the obtained MALDI and Raman spectra. 

The number of PCs was optimized separately for Raman and MALDI data by 

means of a leave-batch-out cross validation (LBOCV) of an LDA model. Next, the 

PCA scores from two data types were merged into a single matrix. In this matrix, 

a large portion of the observations had missing data because some areas were 

investigated only by one of the measurement techniques (see Figure 9). Removing 

incomplete data from the data set would lead to a significantly decreased dataset 

size. To avoid data exclusion, the missing data points were imputed using the 

iterative expectation maximization principal component analysis (EM-PCA) [46]. 

Finally, an LDA model was built for the combined data with imputed missing 

values. 
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Figure 9: Missing data imputation as a part of decentralized data fusion. Decentralized data fusion allows 

interaction between different data types and the influence of data from one source to data from another 

source. After performing data alignment, cells with missing data were revealed and filled using EM-PCA 

imputation. The prediction for each sample can be achieved according to the type of available data (Raman 

or MALDI) but also by the model, which includes all the training data, unrelated to the type of data. 

To estimate the performance of each LDA model, an LBOCV approach was uti-

lized. Within the LBOCV loop, receiver operating characteristic (ROC) curves 

were built for the LDA scores of each patient. Areas under ROC curves (AUC) 

were used as the performance metric. The results of the data cross validation for 

separate and combined analyses are shown in Figure 10. The results show that 

different measurement techniques make it possible to achieve separation be-

tween two groups with different performance. So, Raman spectroscopic imaging 

significantly outperforms MALDI spectrometric imaging in HCC detection. The 

combined data analysis made it possible to achieve the efficiency of Raman spec-

tral data analysis, even though the Raman spectra were not available for all the 

samples. 
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Figure 10: Leave-one-batch-out performance of PCA-LDA prediction. For each patient ROC curves were 

built for predicted decision values of three different LDA models. The figure shows boxplots for AUC of these 

LDA models. The Raman data analysis demonstrated better performance than the MALDI imaging data 

analysis, and the combined data with imputed missing values demonstrated good performance even though 

Raman spectra were not available for some samples. 
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3. Cell-based diagnostics 

Cell analysis is a routine procedure in clinical diagnostics. Commonly, cell sam-

ples are analyzed to diagnose cancer, infectious diseases, and inflammatory con-

ditions. This analysis is performed within a branch of pathology called cyto-

pathology. The information obtained about cell count, cell morphology, and chem-

ical composition can indicate various disorders and provides valuable information 

about the patient’s condition to clinicians. 

Cell morphology and chemical composition can be investigated by various meas-

urement techniques to improve understanding of diseases. The techniques ap-

plied for this purpose include microscopy, spectroscopic techniques, mass spec-

trometry, and “-omics” techniques. These measurement techniques produce large 

amounts of data that cannot be analyzed in manual mode due to the large 

amount of time needed for manual inspection. To convert the measured multivar-

iate data into a small set of interpretable scores, machine learning methods can 

be applied. 

When machine learning is applied to each type of data separately, a prediction 

can be made based on each measurement technique. Although each of these pre-

dictions may be interpretable by itself, the full set of the results obtained from 

multiple techniques can be controversial. To overcome this issue and perform a 

reliable combined analysis of data from multiple sources, the data fusion ap-

proaches previously mentioned in “1.3 Data fusion” can be employed. 

In this chapter, the use of data fusion for cell-based diagnostics is demonstrated. 

Such types of data as Raman spectra and microscopic images were employed for 

WBC subtype identification. In another example, Raman spectra and biomarker 

data were analyzed in a combined manner for rapid sepsis detection using a min-

imal amount of the patient’s blood [47]. According to the suggested concept, a pa-

tient’s blood sample should be separated by microfluidics into three parts (see 

Figure 11), which are further investigated using three different measurement 

techniques: holographic imaging [48], Raman spectroscopy [49], and fluorescence-

based biomarker detection [50]. The suggested workflow promises higher objec-
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tivity and shorter analysis time than conventional methods of sepsis diagnostics. 

When a rapid diagnosis needs to be made, this three-module blood investigation 

device may become a useful analytical tool for a physician. 

 

Figure 11: Workflow of multi-module blood analysis. The concept is based on a parallel analysis of a blood 

sample using three different measurement techniques. A single blood sample is divided inside the device 

into three subsamples. Subsequently, every subsample is analyzed by different measurement techniques, 

which provide specific information about the blood sample. 

The chapter is organized as follows. Sections 3.1 and 3.2 demonstrate that image-

based analysis alone and in combination with Raman spectroscopic data can pro-

vide information about the cell subtypes. At the end of this chapter (section 3.3), 

the improvement of the inflammation severity prediction based on the combined 

analysis of biomarker data and Raman spectra is shown. 

3.1. Image-based hemogram 

Despite multiple disadvantages highlighted in the introduction (“1.1 Tissue and 

cell-based diagnostics”), the visual inspection of microscopic cell images by a 

pathologist remains the “gold standard” in clinical cytopathology. As an alterna-

tive to manual inspection of the stained cell images, automated analysis methods 

for stained cell image classification can be used. These automated methods are 

often based on deep learning and convolutional neural networks. A typical data 

set size for training an image classification model by such deep learning methods 

is usually estimated above 1000 independent observations per class because 

these methods tend to overfit on smaller data sets. Since the images must be in-
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dependent (collected from different patients) and the variations between the 

measurements are quite high, an enormous number of experiments need to be 

performed to obtain a training data set. This would be necessary for a stable im-

age-based cell classification by deep learning. On the other hand, with well-

standardized data, chemometric approaches can provide fast and objective analy-

sis without large data sets [51]. Digital image processing was proven to allow 

blood cell analysis [52], specifically for blood cell identification [53], even with a 

limited amount of training data [54] [P2] and in the presence of low-resolution 

images [55]. Due to the ability of classic machine learning approaches to con-

struct a robust model with a limited amount of data, they are more suitable for 

small data sets than deep learning methods. One drawback of classic machine 

learning methods is that a complex preprocessing and feature extraction pipeline 

needs to be implemented to obtain image features that can be statistically ana-

lyzed (see Figure 12).  

 

Figure 12: Microscopic cell image processing workflow. The processing pipeline is shown in analogy to the 

processing pipelines for Raman and MALDI data shown in Figure 3 and Figure 6. Despite the differences in 

preprocessing, the analysis part and its interaction with the preprocessing part are similar to spectral data 

processing. The first four preprocessing steps of the workflow pretreat the microscopic images to standardize 

them, and then the image invariants extraction and dimension reduction are performed. The number of 
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extracted image invariants and the number of PCs used for the analysis are optimized in the CV loop to 

obtain an optimized model. 

We applied classic machine learning on microscopic images to differentiate be-

tween the WBC subtypes. The microscopic images were obtained from cells 

stained with a Kimura stain that colors the cell nuclei in blue. As the images of 

Kimura-stained cells are almost monochromatic, the variations of the color 

shades do not provide additional information. Therefore, only the lightness of the 

images was used in the further steps of the analysis. An additional reason to ana-

lyze monochromatic images was the possibility of transferring the developed im-

age processing pipeline to other types of cell images, such as false color Raman 

images [56] or digital holographic images, acquired within the three-module sep-

sis diagnostic setup (see Figure 11). 

After extracting the lightness values from the images, the background was re-

moved from each image by a k-means clustering, and each cell image was 

cropped and centered according to the estimated radius and center of the cell. 

The radius and center were estimated for every cell by fitting a two-dimensional 

Gaussian function to the lightness values. Then, the histogram of the lightness 

values within the cropped cell area was equalized to obtain a uniform distribu-

tion for every cell.  

In addition to preprocessing, which aims to decrease the variations that are re-

lated to the measurement and not to the cell or its subtype, an extraction of spa-

tial morphological features from the images is necessary before analysis. To make 

the prediction independent from spatial orientation of the cell, these morphologi-

cal features need to be independent from rotation and mirroring. To fulfill these 

requirements, pseudo-Zernike moments (PZM) were employed for feature extrac-

tion. Although these moments are not rotationally invariant, their absolute val-

ues, referred to as pseudo-Zernike invariants (PZI), are independent of mirroring 

and rotation of the image. Mathematically, the PZM can be expressed in the fol-

lowing way [57]: 
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As shown in equation (2), the PZM are defined through an orthogonal set of com-

plex-valued pseudo-Zernike polynomials 𝑽𝒏𝒍 with order 𝒏 = 𝟎, … , ∞ and 

tion 𝒍 = 𝟎 ≤  𝒏. In an oversimplified way, the order 𝒏 can be described as spatial 

frequency along the radial coordinate 𝒓, and the repetition 𝒍 can be interpreted as 

a spatial frequency along the angular coordinate 𝜽.  

To visualize the principle of image decomposition into features based on the PZM, 

the functions described by a single PZM were generated and shown in Fig-

ure 13a. The relationship of these features to cell type can be seen from the LDA 

loadings, which are projected back to the PZI space in Figure 13b. This figure 

shows that the moments of high repetition (a spatial frequency along the angular 

coordinate 𝜽) are related to neutrophils and the moments with low repetition are 

characteristic for lymphocytes. 

 

Figure 13: The visualization of the functions that can be described by a single pseudo-Zernike moment (a) 

and the LDA loadings of a binary classification between neutrophils and lymphocytes (b). For the visualiza-

tion, the loadings are projected from the LDA space to the PCA space and then to the PZI space. 

The LDA model shown in Figure 13b has the advantage that the loadings can be 

easily interpreted. One weak point regarding LDA is the assumption that the in-

dependent variables are normally distributed, which may not be the case for PZI. 

To increase the classification performance, a support vector machine (SVM) 

method was utilized, which does not assume normal distribution of variables [58]. 
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The model was optimized by leave-batch-out cross validation (LBOCV) to achieve 

the best mean sensitivity. In addition to LBOCV, the model testing was per-

formed on an independent data set. The test data classification results are shown 

in the form of a confusion matrix (see Table 1) with original and preprocessed 

images shown for all three misclassified cells. The accuracy of the prediction of 

an independent test data set for the optimized SVM model was 97% [P2].  
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Table 1: SVM prediction of test data. The correctly predicted cells are indicated by numbers. All three wrong 

predicted cells are shown as images in two variants: original images (top rows) and preprocessed images 

(bottom rows, grayscale). Along with the labels of true values, their schematic diagrams are shown.  

3.2. Merging the predictions from morphological and Raman 

spectroscopic data................ 

Raman micro-spectroscopy can be efficiently used both for imaging purposes and 

for differentiation between cell types. In the imaging mode, a Raman micro-

spectrometer provides complete spectral information and generates false-color 

images of the investigated cell. Both representations of the measured data were 

used to illustrate the effect of combining Raman spectroscopic data with the mor-

phological features of the cells [56]. 

The morphological features were extracted from the Raman false-color images 

generated from the spectral scans. To do so, a spectral band at 782 cm−1 (from 

765 to 798 cm−1), which is related to the ring breathing mode of nucleotides (cyto-

sine, thymine, and uracil), was integrated [59]. Subsequently, the images were 

cropped to the cell area, centered, and scaled as described in the previous section 

(see Figure 12). 
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In addition to the analysis of Raman false-color images, Kimura-stained micro-

scopic cell images were analyzed in combination with Raman data. Preprocessing 

of the Kimura-stained images was also performed as described in the previous 

section. The morphological features were extracted from the Raman false-color 

images and from the microscopic images by means of calculating pseudo-Zernike 

invariants. These morphological features extracted from both image types were 

further analyzed by PCA-LDA models. 

Besides analyzing morphological features, the analysis of averaged Raman spec-

tra extracted for each cell was carried out. Preprocessing was performed in the 

same manner as described in section “2.1 Raman spectroscopy” (see Figure 3), 

and a PCA-LDA model for the leukocyte subtype was constructed. To ensure a 

reliable validation of the results, the data set was divided into independent 

batches that were used as folds in the CV routine of the analysis. To keep the 

folds independent, the samples collected from the same donor or measured on the 

same day were combined to a batch. This CV approach was utilized because it 

estimates how the models will perform for an independently measured test data 

set.  

After the separate models were evaluated, the morphological features were re-

duced via a PCA. Thereafter, the respective PC scores were combined with the 

PC scores extracted from the mean Raman spectra of the WBC. The combined 

data were further analyzed via an LDA. To decrease the number of free parame-

ters, the number of PCs for the Raman spectroscopic data was fixed to achieve 

the best identification of leukocyte subtypes according to LBOCV. For the optimi-

zation of the number of PCs obtained from the morphological features, two-level 

cross validation has been used. In this CV, each batch was predicted by a model 

with an optimized PC number. This optimization was performed for every batch 

by an LBOCV of the data without the current batch. Two-level CV provided the 

best parameters for the model and estimated how accurate the predictive model 

will perform in practice. To get an overview on how the order of pseudo-Zernike 

invariants influences the model performance, the order of PZI was left as a free 

parameter (see Figure 14). 
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Figure 14: PCA-LDA classification between two major types of lymphocytes. Prediction efficiency of the 

model is visualized as a function of the included moments order. The dotted line is related to classification 

by Raman spectra without any morphological features [56]. The improvement of the classification by adding 

Raman data to the morphological features is clearly seen for low-resolution false-color Raman images (a). 

The analysis of Kimura-stained cell images also benefits from adding the Raman spectral data to the analy-

sis (b) but to a smaller extent. Despite the smaller improvement in the second case, the optimized combined 

model with six orders of PZI (b) showed the best performance in this analysis. 

As expected, the classification of high-resolution microscopic images provided 

better results than the classification of the low-resolution false-color Raman im-

ages. In the previous section, the high-resolution images were proven to be classi-

fied with even higher accuracy, up to 97%. This performance was reached by ana-

lyzing morphological features of a larger number of cells using a PCA-SVM model 

instead of a PCA-LDA. Nevertheless, Figure 14 demonstrates that Raman data 

significantly contributes to the prediction efficiency when the Raman data is 

combined with morphological features extracted from either type of images. 

3.3. Combining scores obtained from Raman data and clinical 

values 

In the following example of the automated sepsis diagnostic pipeline [60], a set of 

input variables was chosen considering the further implementation of the ap-

proach in the clinical routine. To construct the model, Raman spectroscopic data 

and inflammatory biomarkers were used. The chosen biomarkers were C-reactive 

protein (CRP), procalcitonin (PCT), interleukin-6 (IL-6), and soluble urokinase 
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plasminogen activator receptor (suPAR). These biomarkers were used as the in-

put because they are proven markers for bacteremia in patients with systemic 

inflammatory response syndrome (SIRS) [61]. For the prediction, three classes of 

severity were considered: patients with SIRS, patients with SIRS and an infec-

tion, and patients with sepsis (SIRS with an infection and organ dysfunction). 

Prior to the analysis, the biomarkers and the averaged preprocessed Raman spec-

tra for every patient were merged into a single data matrix. As the multiple cell 

spectra were recorded per patient, averaging also made it possible to increase the 

signal-to-noise ratio of the spectra, which improved the classification robustness 

compared to a model that was built on single cell spectra. 

To establish a classification model using the combined data, canonical powered 

partial least squares (CPPLS) [62] discriminant analysis was utilized. This 

method performs weighted supervised dimension reduction and provides a good 

fit with just a few components. Another advantage of the CPPLS model is that 

additional response values can be included during model training. These addi-

tional responses incorporate additional information into a model (e.g., infor-

mation that is not related to inflammation severity). In the constructed model, 

different demographical characteristics like age, sex, weight, and height of the 

patients were used in CPPLS as additional responses. 

Although CPPLS does not require additional dimension reduction, limiting the 

number of components used for the prediction plays an important role. As only 

four biomarkers are available, less than four components must be used for a reli-

able interpretation of the loadings. Because low-level data fusion was utilized for 

the Raman and biomarker data, additional weighting between the data types was 

necessary. In order to balance the effect of the contributions of Raman spectral 

data and biomarker data on the analysis (see Figure 15), the weighting was per-

formed using an unsupervised approach of the weighting coefficient optimization 

described in “2.3 Combined data analysis” [P6]. 
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Figure 15: Distributed data fusion workflow for sepsis diagnostics. Three different branches of the workflow 

represent different data types. The Raman spectral data, shown in the first branch, requires a multi-step 

preprocessing procedure (see Figure 3). The other two data types do not require advanced preprocessing but 

need to be scaled as they contain variables of different measurement units and ranges. After data pro-

cessing, the measured data (Raman data and biomarkers) is weighted and analyzed considering additional 

responses by a CPPLS model. 

The weighted data set was utilized to construct a classification model using 

CPPLS discriminant analysis. A number of CPPLS components in the model was 

optimized by a leave-batch-out cross validation (LBOCV) to take a batch ef-

fect [63] into account. This validation approach also estimates how the model will 

perform on an independent test data set and helps to avoid model overfitting, 

which is a crucial issue for many advanced machine learning methods. For a 

CPPLS model, overfitting can occur with a small number of components because 

the method was designed to minimize the number of components needed to fit the 

data. In the CPPLS prediction of the inflammation severity, overfitting occurred 

with a third component. Therefore, two components were found optimal for the 

combined analysis of Raman spectra and biomarkers (see Figure 16b). 
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Figure 16: Scores of a combined CPPLS model (a) and a cross-validated performance of disease severity pre-

diction (b). The score plot (a) demonstrates that the first component separates SIRS and sepsis groups, and 

the second component improves the discrimination of the intermediate state (SIRS with infection group). 

The mean sensitivity plot (b) demonstrates that two CPPLS components are optimal for prediction according 

to the LBOCV of the model. 

Although the resulting mean sensitivity of the optimized model is only about 

65%, it is important to keep in mind that this three-class prediction (see Table 2) 

corresponds directly to real-life prediction efficiency and can be further improved 

by extending the data set size and adding further clinical data. It was demon-

strated on this small data set that data fusion can improve diagnostic efficiency. 

 
Predicted    

1. 2. 3. Accuracy Sensitivity Specificity 

True 

1. SIRS 18 1 0 

0.66 

0.95 0.71 

2. SIRS+infection 7 10 3 0.5 0.88 

3. Sepsis 4 3 7 0.5 0.90 

Table 2: LBOCV prediction of inflammatory conditions by combined CPPLS model. The three-class model 

was constructed using a combination of biomarkers and Raman spectra of leukocytes. Although the overall 

accuracy of the model is 66%, the model provides high sensitivity for discrimination between non-infection 

inflammation (SIRS) and infection (sepsis and SIRS with infection) and high specificities for the infection 

groups. 

The data fusion improved the mean sensitivity of the model from 52% (biomarker 

data) and 59% (Raman data) to 65%. To reveal the possible reason for the im-

provement, the combined model loadings and fitted scores of CPPLS were inves-

tigated. The inspection of the loadings revealed that the first CPPLS component 
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is mainly influenced by the biomarkers, and the second component provided an 

additional separation according to Raman spectral data and improved the dis-

crimination of the “SIRS with infection” group from other groups (see Fig-

ure 16a). 

With the help of data fusion, not only the diagnostic performance but also under-

standing the changes that characterize the disease can be improved. In the latter 

example, it was shown that variations in the chemical composition of cells meas-

ured by Raman spectroscopy and the biomarker data are complementary to each 

other within the frame of inflammatory condition diagnostics. A similar observa-

tion was made in section “2.3 Combined data analysis”, where low-level data fu-

sion applied to Raman spectroscopic imaging and MALDI spectrometric imaging 

revealed an additional component in the tissue sample analysis. 
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4. Summary 

In the presented work, several data fusion and machine learning approaches 

were explored within the frame of the data combination for various measurement 

techniques in biomedical applications. The overall goal of using data fusion with 

machine learning approaches was to improve the robustness of diagnostic appli-

cations. For each of the measurement techniques used in this work, the data was 

analyzed by means of machine learning. Prior to applying these machine learning 

algorithms, a specific preprocessing pipeline for each type of data had to be estab-

lished. In these pipelines different preprocessing procedures, which were specific 

for the measurement techniques, had to be applied sequentially. The sequences of 

the preprocessing steps used for MALDI spectrometric data, Raman spectroscopic 

data, and microscopic images are briefly summarized in Figure 17. These pipe-

lines made it possible to standardize the data and to decrease sample-to-sample 

variations which originate from the instability of devices or small deviations in 

the sample preparation or measurement routine. 

 

Figure 17: Preprocessing workflows used for various data types. Data obtained from each technique requires 

specific preprocessing. Some preprocessing steps (depicted in red) can be defined without optimization, but 

parameters for other preprocessing steps (depicted within gray boxes) can be optimized within the cross 

validation and can be included either in the preprocessing or in the analysis pipelines. 

After preprocessing, the analysis models were established and optimized. Along 

with the model optimization, the preprocessing steps that deeply influence the 
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outcome of the analysis (gray areas in Figure 17) were optimized, too. This opti-

mization was carried out to establish the most robust preprocessing strategy. 

The preprocessed data sets were used for various analyses of biological samples. 

Separate data analyses were performed for microscopic images [P2], Raman spec-

tra [P5] [P7], and SERS data [P4] [P8]. However, this work mainly focused on the 

application of data fusion methods for the analysis of biological tissues and cells. 

To do so, different data fusion pipelines were constructed for each task, depend-

ing on the data structure. Both low-level (centralized) and high-level (distributed) 

data fusion approaches were tested and investigated within in this work. In the 

examples of centralized data fusion, the data types were combined for the analy-

sis directly after the preprocessing. In the distributed data fusion pipeline, each 

type of data was preprocessed and analyzed separately, and then the scores ob-

tained or predictions for each type of data were combined for further analysis. 

Schematic workflows of these two data fusion pipelines are shown in Figure 18. 

 

Figure 18: A diagram that demonstrates the difference between data fusion approaches. The data fusion 

may be performed on a low or high level by means of implementing a centralized or distributed data fusion 

approach, respectively. These approaches are highlighted in purple and green, respectively. The “prepro-

cessing” boxes are related to the preprocessing workflows shown in Figure 17. However, depending on the 

data specifics, the dimension reduction can be considered either as a part of the preprocessing or as a part of 

the analysis. 

To demonstrate centralized and distributed data fusion, two examples were im-

plemented for tissue investigation. In both examples, a combination of Raman 

spectroscopic and MALDI spectrometric data were analyzed. One example 

demonstrated centralized data fusion for the analysis of the chemical composition 
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of a mouse brain section, and the other example employed distributed data fusion 

for liver cancer detection. 

For the analysis of mouse brain tissue, Raman spectroscopic and MALDI spec-

trometric imaging data were collected from the same brain section. After aligning 

Raman data to the grid of the MALDI scan, the spectra of both types were pre-

processed and combined. Then an unsupervised analysis was performed by 

means of PCA. The unsupervised analysis was applied because assignments were 

not available for sample areas, and the study was focused on obtaining an over-

view of the observable chemical variations within the sample. 

While analyzing the PCA results, it was found that a weighting coefficient needs 

to be introduced to balance the contribution of MALDI and Raman data within 

the low-level data fusion pipeline. Several weighting approaches were tested, but 

the optimal weighting approach was selected based on the cumulative proportion 

of variance explained by PCs. After applying optimal weighting, an increase in 

visualization quality was observed, and additional interpretable features could be 

extracted from the data [P6]. 

In addition to the unsupervised analysis of the brain tissue section, a combina-

tion of Raman spectroscopic and MALDI spectrometric data was used for the 

classification of hepatocellular carcinoma. It was found that the Raman spectro-

scopic data provided better separation between HCC and fibrosis than the  

MALDI spectrometric data. The combined analysis of these two data types was 

also performed, but it was complicated by observations with incomplete data. To 

overcome this issue, the missing values were estimated by EM-PCA. Imputation 

of estimated values to complete the observations extended the data set used in 

the analysis and increased stability of the model. Even though the significant 

number of the samples was measured using only MALDI spectrometry, a similar 

level of separation has been observed for the better performing technique (Raman 

spectroscopy) and for the combined data. 

Other data fusion examples were demonstrated for cell-based analysis. It was 

demonstrated that leukocyte cell subtype identification can be improved by a cen-
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tralized data fusion of Raman spectroscopic data and morphological features ob-

tained from microscopic images of stained cells. Moreover, a similar trend was 

observed when Raman spectral information was combined with morphological 

features extracted from false-color images generated by integrating a DNA band 

(782 cm−1) in the Raman spectral scans. This analysis confirmed that both spec-

troscopic data and microscopic images perform well for WBC subtype prediction, 

but the combined approach can further improve the model outcome. 

The last example presented in this work demonstrated a sepsis diagnostic pipe-

line based on the combination of Raman spectroscopic data and biomarkers. The 

biomarkers utilized for this study were C-reactive protein (CRP), procalciton-

in (PCT), interleukin-6 (IL-6), and soluble urokinase plasminogen activator re-

ceptor (suPAR). This example of a combined data analysis is a proof-of-concept 

study and aims at future implementation of a three-module-blood investigation 

device for inflammatory severity diagnostics (see chapter 3). According to the 

concept, the biomarkers should be measured by a fluorescence module, and the 

blood cell count should be obtained by a holographic microscopy module. These 

biomarkers and blood cell count values should be analyzed together with Raman 

spectra of white blood cells. The output of the complete analytical workflow 

should predict the severity of a patient’s inflammatory condition. Besides the 

measured values, the demographic information of the patient was included in the 

analysis process for considering non-disease-related variations. This information 

was included in the training phase as additional responses for a CPPLS model. 

These additional responses and the biomarkers used for model construction were 

represented as small sets of independent variables and did not require advanced 

preprocessing and dimension reduction prior to the analysis. The only necessary 

standardization step was the scaling because the variables had different dynamic 

ranges. In addition to the scaling of biomarkers, the contribution of Raman spec-

tral data and biomarker data had to be balanced prior to the low-level data fu-

sion. To balance the data, a weighting coefficient was introduced in the same 

manner as in the Raman-MALDI data fusion for mouse brain tissue analy-

sis [P6]. In comparison to the single models, the combined model improved the 
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sepsis prediction efficiency. This improvement was achieved by combining in-

flammatory biomarkers with Raman spectral data collected from leukocytes and 

introducing the additional responses at the phase of model training. 

Finally, I would like to highlight that on the way to a combined data analysis, or 

data fusion, a number of challenges can be met, but the improvement of the re-

sults show that it is worth tackling these challenges. During the construction of 

data fusion pipelines, such issues as unbalanced data contribution, missing val-

ues, and variations that are not related to the investigated responses were faced. 

To resolve these issues, data weighting, missing data imputation, and the intro-

duction of additional responses were employed. For further improvement of anal-

ysis reliability, the data fusion pipelines and data processing routine were ad-

justed for each study in this work. In doing so, researchers’ knowledge was used 

at every step of the analysis process. As a result, the most suitable data fusion 

approach was found for every example, and a combination of the machine learn-

ing methods with data fusion approaches was demonstrated as a powerful tool for 

data analysis in biomedical applications. 





Zusammenfassung | 45 

   

 

5. Zusammenfassung 

In der vorliegenden Arbeit wurden mehrere Datenfusionsverfahren und maschi-

nelle Lernansätze im Rahmen einer Datenkombination verschiedener Messtech-

niken für biomedizinische Anwendungen untersucht. Das übergeordnete Ziel ei-

ner kombinierten Verwendung von Datenfusionsverfahren mit maschinellen 

Lernansätzen war es, die Robustheit von Diagnoseverfahren zu verbessern. Für 

jede, der in dieser Arbeit verwendeten, Messtechniken wurden die Daten mittels 

maschinellen Lernens analysiert. Vor der Anwendung dieser maschinellen Ler-

nalgorithmen musste für jede Art von Daten eine spezifische Daten-

Vorverarbeitungspipeline erforscht werden. In diesen Vorverarbeitungspipelines 

mussten verschiedene, spezifische Vorverarbeitungsverfahren nacheinander an-

gewendet werden. Die Sequenzen der Vorverarbeitungsschritte für MALDI-

spektrometrische Daten, Raman-spektroskopische Daten und mikroskopische 

Bilder sind in Abbildung 17 kurz zusammengefasst. Diese Datenpipelines ermög-

lichten es, die Daten zu standardisieren und Proben-zu-Proben-Variationen zu 

reduzieren, welche durch die Instabilität der Geräte oder kleine Abweichungen in 

der Probenvorbereitung oder der Messroutine entstehen können. 

Nach der Datenvorverarbeitung wurden Analysemodelle konstruiert und opti-

miert. Neben der Modelloptimierung wurden auch die Vorverarbeitungsschritte 

optimiert, da diese Vorverarbeitungsschritte das Ergebnis der Analyse stark be-

einflussen (siehe grau hinterlegte Vorverarbeitungsschritte in Abbildung 17). 

Diese Optimierung der Vorverarbeitungsparameter wurde durchgeführt, um die 

robusteste Vorverarbeitungsstrategie zu etablieren. 

Die vorverarbeiteten Datensätze wurden für verschiedene Analysen von biologi-

schen Proben verwendet. Eine separate Datenanalyse wurde für mikroskopische 

Bilder [P2], Ramanspektren [P5] [P7] und SERS-Daten [P4] [P8] durchgeführt. 

Allerdings konzentrierte sich diese Arbeit hauptsächlich auf die Anwendung von 

Datenfusionsmethoden für die Analyse von biologischen Geweben und Zellen. 

Dazu wurden für jede Analyseaufgabe und für verschiedene Datenstrukturen 

unterschiedliche Datenfusionsdatenpipelines konstruiert. Sowohl zentralisierte 
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(Low-Level) als auch verteilte (High-Level) Datenfusionsansätze wurden in die-

ser Arbeit getestet und untersucht. In der zentralen Datenfusion werden die Da-

tentypen direkt nach der Vorverarbeitung kombiniert und dann kombiniert ana-

lysiert. In der verteilten Datenfusionspipeline wurde jede Art von Daten separat 

vorverarbeitet und analysiert. Dann werden die erhaltenen Ergebnisse oder Vor-

hersagen zur weiteren Analyse kombiniert. Schematische Arbeitsabläufe dieser 

beiden Datenfusionspipelines sind in Abbildung 18 dargestellt. 

Um die zentralisierte und verteilte Datenfusion zu demonstrieren, wurden als 

Beispiele zwei Gewebeanalysen untersucht. In beiden Beispielen wurde eine 

Kombination aus Raman-spektroskopischen und MALDI-spektrometrischen Da-

ten kombiniert. Im ersten Beispiel wurde eine zentralisierte Datenfusion für die 

Analyse der chemischen Zusammensetzung eines Maus-Hirnschnitts implemen-

tiert. Im zweiten Beispiel wurde eine verteilte Datenfusion für eine Lebertumor-

Vorhersage verwendet. 

Für die Analyse des Maus-Hirngewebes wurden Raman-spektroskopische und 

MALDI-spektrometrische Bilddaten vom gleichen Gehirnschnitt aufgenommen. 

Nachdem die Raman-Daten auf das Raster des MALDI-Scans interpoliert wur-

den, konnten die Spektren beider Datentypen vorverarbeitet und kombiniert 

werden. Anschließend wurde eine unüberwachte Datenanalyse mittels einer PCA 

durchgeführt. Dieses unüberwachte Analyseverfahren wurde angewandt, da für 

die Probenbereiche keine Gewebe-Annotation verfügbar waren. Daher kon-

zentrierte sich die Studie darauf einen Überblick über die chemische Zusammen-

setzung der Probe zu generieren. 

Bei der Interpretation der PCA-Ergebnisse wurde festgestellt, dass ein Gewich-

tungskoeffizient eingeführt werden muss, um den Beitrag von MALDI- und Ra-

man-Daten innerhalb der Low-Level-Datenfusionspipeline anzugleichen. Es 

wurden mehrere Gewichtungsansätze getestet, wobei der optimale Gewichtungs-

ansatz basierend auf dem kumulativen Anteil der Varianz, der durch verschiede-

ne PC-Anzahlen beschrieben wird, gewählt wurde. Nachdem diese optimale Ge-

wichtung gefunden wurde, konnte eine verbesserte Visualisierung des Scans be-
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obachtet werden [P6]. Des Weiteren konnten zusätzliche spektrale Merkmale 

extrahiert werden, die interpretiert werden konnten [P6]. 

Neben dieser unüberwachten Analyse wurde eine Kombination aus Raman-

spektroskopischen und MALDI-spektrometrischen Daten für die Klassifikation 

von hepatozellulären Karzinomen (HCC) verwendet. Es wurde festgestellt, dass 

die Raman-spektroskopischen Daten eine bessere Trennung zwischen HCC und 

Fibrose ermöglichen als die MALDI-spektrometrische Daten. Die kombinierte 

Analyse dieser beiden Datentypen wurde ebenfalls durchgeführt, aber sie wurde 

durch unvollständige Messdaten erschwert. Um dieses Problem zu lösen, wurden 

die fehlenden Werte mittels einer EM-PCA geschätzt. Diese Berechnung von 

Schätzwerten zur Vervollständigung des Datensatzes erweitert den in der Analy-

se verwendeten Datensatz und erhöht damit die Stabilität des Modells. Obwohl 

eine signifikante Anzahl der Proben nur mit der MALDI-Spektrometrie vermes-

sen wurden, konnte eine ähnliche Klassifikationsgenauigkeit für die kombinier-

ten Daten wie für die leistungsstärkere Raman-Spektroskopie beobachtet wer-

den. 

Weitere Beispiele für die Datenfusion wurden für zellbasierte Anwendungen de-

monstriert. Es konnte gezeigt werden, dass die Identifizierung des Leukozyten-

Subtyps durch eine zentralisierte Datenfusion von Raman-spektroskopischen 

Daten und morphologischen Merkmalen aus mikroskopischen Bildern von ge-

färbten Zellen verbessert werden kann. Darüber hinaus wurde ein ähnlicher 

Trend beobachtet, wenn Raman-spektroskopische Informationen mit morphologi-

schen Merkmalen kombiniert wurden, die aus Falschfarbenbildern einer DNA-

Bande (782 cm-1) erzeugt wurden. Diese Analyse bestätigte, dass sowohl spektro-

skopische Daten als auch mikroskopische Bilder für die Vorhersage des Leukozy-

ten-Subtyps genutzt werden können. Durch einen Datenfusionsansatz kann das 

Modellergebnis weiter verbessert werden. 

Das letzte Beispiel, das in dieser Arbeit vorgestellt wurde, zeigte eine Sepsis-

Diagnosepipeline, die auf der Kombination von Raman-spektroskopischen Daten 

und Biomarkern basiert. Die für diese Studie verwendeten Biomarker waren C-

reaktives Protein (CRP), Procalcitonin (PCT), Interleukin-6 (IL-6) und löslicher 
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Urokinase Plasminogenaktivator-Rezeptor (suPAR). Dieses Beispiel einer kom-

binierten Datenanalyse ist eine Proof-of-Concept-Studie und zielt auf die zukünf-

tige Implementierung eines drei-moduligen Blutuntersuchungsgerätes zur Ent-

zündungsdiagnostik ab (siehe Kapitel 3). Gemäß dem Konzept sollten die Bio-

marker mit einem Fluoreszenzmodul gemessen und die Leukozytensubtypen-

Anzahl mit einem holographischen Mikroskopie-Modul ermittelt werden. Diese 

Biomarker und Leukozytensubtypen-Anzahlen sollen dann zusammen mit Ra-

man-Spektren weißer Blutzellen analysiert werden. Die Ergebnisse des gesamten 

Verfahrens soll dann genutzt werden, um den Entzündungszustand eines Patien-

ten vorherzusagen. Neben den Messwerten wurden auch die demographischen 

Informationen der Patienten in den Analyseprozess zur Berücksichtigung nicht 

krankheitsbedingter Schwankungen einbezogen. Diese Informationen wurden in 

der Trainingsphase als zusätzliche Informationen für ein CPPLS-Modell mit auf-

genommen. 

Diese zusätzlichen Informationen und die für den Modellaufbau verwendeten 

Biomarker wurden als kleine Mengen unabhängiger Variablen genutzt und er-

forderten vor der Analyse keine erweiterte Vorverarbeitung und Dimensionsre-

duktion. Der einzige notwendige Standardisierungsschritt war die Skalierung, da 

die Variablen unterschiedliche Dynamikbereiche aufwiesen. Neben der Skalie-

rung der Biomarker-Werte musste der Beitrag der Raman-spektroskopischen 

Daten und der Biomarker-Daten vor der Low-Level-Datenfusion angeglichen 

werden. Um die Daten anzugleichen, wurde ein Gewichtungskoeffizient einge-

führt, ähnlich dem Gewichtungskoeffizient bei der Raman-MALDI-Datenfusion 

für die Hirngewebeanalyse [P6]. Im Vergleich zu den Einzelmodellen verbesserte 

das kombinierte Modell die Effizienz der Sepsis-Vorhersage. Diese Verbesserung 

wurde durch die Kombination von inflammatorischen Biomarkern mit Raman-

Spektren von Leukozyten und die Einführung von zusätzlichen Informationen in 

der Modelltrainingsphase erreicht. 

Abschließend soll hervorgehoben werden, dass es auf dem Weg zu einer kombi-

nierten Datenanalyse oder Datenfusion eine Reihe von Herausforderungen be-

wältigt werden müssen. Die Verbesserung der Ergebnisse zeigt aber, dass es sich 
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lohnt, diese Herausforderungen anzugehen. Bei der Konstruktion von Datenfusi-

onsdatenpipelines entstehen verschiedene Herausforderungen, wie das es zu ei-

nem unausgewogenen Beitrag verschiedener Datentypen im Modell kommt, das 

fehlende Messwerte existieren und das unkorrelierte Variationen auftreten. Um 

diese Probleme zu lösen, wurden Datengewichtung, Datenschätzungsverfahren 

und die Einführung zusätzlicher Informationen in die Trainingsphase eingesetzt. 

Zur weiteren Verbesserung der Robustheit der Analyseverfahren wurden die Da-

tenfusionspipelines und die Datenverarbeitungsroutinen für jede Studie in dieser 

Arbeit individual angepasst und optimiert. Für diese Anpassung wurde Exper-

tenwissen genutzt um jedem Schritt des Analyseprozesses zu verbessern. 

Dadurch wurde für jedes der präsentierten Beispiele in dieser Arbeit der am bes-

ten geeignetste Datenfusionsansatz gefunden und es konnte die Kombination von 

maschinellen Lernmethoden mit Datenfusionsansätzen als leistungsfähiges 

Werkzeug zur Datenanalyse in biomedizinischen Anwendungen demonstriert 

werden. 
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Raman spectroscopy as a technique has high potential for biological applications, e.g. cell and tissue analysis. In
these applications, large data sets are normally recorded which require automated analysis. Unfortunately, a
lot of disturbing external influences exist, which negatively affect the analysis of Raman spectra. A problematic
corrupting effect in big data sets is cosmic ray noise, which usually produces intense spikes within the Raman
spectra. In order to exploit Raman spectroscopy in real world applications, detection and removing of spikes
should be stable, data-independent and performed without manual control. Herein, an automatic algorithm for
cosmic ray noise correction is presented. The algorithmdistinguishes spikes from spectra based on their response
to a Laplacian, e.g. their sharpness. Manual rating of the spike presence was used as a benchmark for algorithm
validation. The algorithm's sensitivity was estimated to be above 99%.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

With Raman spectra a label-free molecular characterization of
biological samples, such as prokaryotic and eukaryotic cells or tissue
specimen, can be carried out [1–3]. For example, the analysis of
leukocytes by means of Raman spectroscopy offers a high potential for
future application as a Raman spectroscopic hemogram [4]. Such spec-
troscopic hemogramcanbeutilized alongwith conventional hemogram
for the diagnosis of infections [5] and for routine medical examination
[6]. However, the analysis of Raman spectra of biological specimens re-
quires sophisticated statistical data analysismethods as the biochemical
changes occurring are subtle.

Prior to an application of these statistical methods, it is important to
pretreat the Raman data [7]. This includes standardization and correc-
tion procedures for dealing with corrupting effects, which might mask
the useful Raman information. The pre-processing should always start
with a quality control of the Raman spectra, in order to verify that
they contain useful information [8]. Thereafter, correction procedures,
such as wavenumber correction, noise reduction and background
removal, have to be performed. For each task, specialized and adapted

correction algorithms have to be applied for a stable and reliable analysis
[9].

Spikes are usually sharp and intense features within a measured
Raman spectrum originating from cosmic ray noise on a CCD camera.
They result from high energy particles which constantly bombard the
earth and hit the CCD detector. When hitting the CCD detector, the par-
ticle generates a large number of electrons. If the amount of generated
electrons is much larger than the charge packet of the CCD, then bloom-
ing and smear effects can appear and bright pixels will be observed in
two or more consecutive frames or pixels until all electrons are
transferred or leaked [10,11].

In Raman spectra, cosmic ray noise is represented as spikes — high
intensity sharp peaks. The intensities, position along the wavenumber
axis and the frequency of spikes occurrence are random. Only in the
case of a blooming effect, spikes can be found on the same position
with decreasing intensities in a few consecutive Raman spectra or in
neighboring pixels [12]. Cosmic ray noise influences the analysis of
large data negatively, because it affects the outcome of normalization
procedure and analysis methods. Therefore, spike correction has to be
performed during the pre-processing before the normalization is car-
ried out. Here, we present amethodology for a cosmic-ray spikes detec-
tion, removal and data interpolation, where no manual optimization by
an operator is required. There are some published methods for cosmic
ray spikes correction and these methods differ in respect to different
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tasks. For some biological issues an algorithm could be used, which
compares each data point with its nearest neighbors within the
Raman spectra to determine presence of cosmic ray noise with a band-
width of only 1–2 pixels [13].Wavelet transform [14,15], polynomial fil-
ters or other smoothingmethods [16] are also used for spikes correction
along with noise reduction. Smoothed spectra can be used for further
analysis or the difference between smoothed and original Raman spec-
tra can be used for spikes detection [17]. The possibility to use these
methods on a single Raman spectrum is an advantage of thesemethods.
However, all of them require preset parameters, and the efficiency of the
methods depends strongly on the parameter selection. For Raman spectral
scans of biological samples this becomes a particular challenge, because of
the big number of Raman spectra, which are often in the order of hundreds
or thousands of spectra per scan. There are some algorithms that allow for
a correction based on the similarity of spectra in a data set. Such methods
as the Upper-Bound spectrum data matrices, which is a combination of the
Upper-Bound Spectrum method with PCA [18], or the Nearest Neighbor
Comparisonmethod for Ramanmaps,which is based on calculation of corre-
lation coefficients of the spectrum and each of its neighbors [19], are proven
to be effective. However, these algorithms also require extensive processing
time and adaptation of parameters to a specific data set.

Another important step for a spike correctionmethod is the interpo-
lation of the data points after removing of the spikes. Excluding data
without interpolation is also possible, but can produce problems in
further steps of analysis, due to missing data. The most reliable way
for real-time systems is to repeat the measurement [13]. Different
polynomials and linear approximations are most often used, but for
the consecutive Raman spectra the average of neighboring Raman
spectra can be also used.

In this contribution an automated optimization of the spike correc-
tion is achieved, which allows the researcher to work with the large
data sets necessary for Raman spectroscopic investigations of complex
biological samples. Appropriate criteria, obtained from the feedback of
the correction procedure, were used for the purpose of automation.

2. Materials and methods

2.1. Sample preparation

White blood cells (WBCs) were isolated from five healthy volun-
teers' blood with informed consent according to the Ethics Committee
of the Jena University Hospital (Ethic vote 4004–02/14). Briefly,
~100 μl blood from fingertip was obtained using lancet and collected
in ethylenediaminetetraacetic acid (EDTA) capillary tube. Red blood
cell lysis was carried out by mixing the blood with an ammonium
chloride solution such that the total volume of the diluted blood is
1 ml. After 5 min of incubation at room temperature (RT) the mixture
is centrifuged for 10 min at 400 g at RT. The WBCs pellet at the bottom
of the Eppendorf tube was collected by discarding the supernatant and
suspended in phosphate buffer saline solution (PBS, Biochrom AG,
Berlin, Germany). The WBCs were chemically fixed with 4% formalde-
hyde (Carl RothGmbH&Co. KG, Karlsruhe, Germany) for 10min, follow-
ed by washing the cells successively with PBS and 0.9% NaCl (Carl Roth
GmbH & Co. KG, Karlsruhe, Germany). For Raman spectroscopy the
WBCs (~1 × 106 cells) were suspended in 100 μL of 0.9% NaCl prepared
in distilled water and coated onto CaF2 slides (Crystal GmbH, Berlin,
Germany) by means of cytospin (Shandon Cytospin3 Cytocentrifuge,
ThermoScientific, Waltham, USA, 6 min, 300 g). To ensure immobiliza-
tion of the WBCs the CaF2 slides were precoated for 10 min at RT, with
0.2% gelatin (Sigma-Aldrich, Darmstadt, Germany) solution prepared
using distilled water and sterilized by heating up to 121 °C.

2.2. Raman spectra acquisition

Raman spectra of WBCs were measured with an upright micro-
Raman setup (CRM 300, WITec GmbH, Germany) equipped with a

300 g/mm grating (spectral resolution about 7 cm−1) and a Deep
Depletion CCD camera (DU401 BR-DD, ANDOR, 1024 × 127 pixels)
cooled to −75 °C. An excitation wavelength of 785 nm (diode laser,
Toptica Photonics, Germany) was utilized. The laser was focused
through a Zeiss 100× objective (NA 0.9) onto the cells giving 75 mW
of power in the object plane. Raman images of leukocytes were record-
ed in the scanningmodewith a step size of 0.3 μm and integration time
of 1 s per spectrum. The investigated data set, in total 30 Raman spectral
scans of cells from 5 donors, featured 53.235 Raman spectra and 1024
wavenumbers positions ranging from 249 cm−1 to 3452 cm−1.

3. Calculations

3.1. Computer system

All calculationswere carried out using R (version 3.0.2) [20] running
on aWindows 7 Professional 64-Bit system. (Intel® Core™ i5–4570CPU
@ 3.20 GHz 2.70 GHz with 8 GB RAM). The used packages were ‘Peaks’
[21] and ‘e1071’ [22]. All Raman scans, were imported into R and
arranged into a matrix with Raman spectra in the same order as they
were measured. Therefore, this matrix can be considered as a
2-dimensional data set with wavenumbers in one dimension and time
in the other. Prior to spike correction, fluorescence background was
removed by the SNIP algorithm [23]. Thewavenumbers region between
249 cm−1 and 415 cm−1 was excluded from analysis, because of the
presence of a CaF2 band that originated from the substrate.

3.2. Algorithm

There are three important steps within a correction procedure for
spikes removal: identification of spikes, choosing a threshold to
separate spikes from other peaks and the interpolation of data after
spike removal. Several basic characteristics of spikes may be helpful
for their identification: spikes usually feature a high intensity, sharpness
and random position in the Raman spectrum. A high number of spikes
have intensities much higher than the intensity of Raman spectral
bands, but some of them are comparable with Raman peaks and cannot
be recognized by their intensity alone. Therefore, amarker has to be de-
veloped to better differentiate between spikes and Raman spectral
bands. This marker should take the different spike characteristics into
account. Spikes are usually represented by one or few pixels within
the Raman spectra that are more intense than previous and subsequent
points. However, in a real Raman spectrum of biological samples the
change of intensity from point to point is not as abrupt as for spikes. A
mathematical formula of this idea is the discrete Laplace operator Dx

2

(Eq. (1)), which corresponds to the sharpness of spectral features.

D2
x ¼ �1 2 � 1½ � ð1Þ

The discrete Laplace operator response of a sharp thin spectral feature,
like a spike is much higher compared to the response of a wider peak
with samemaximal intensity. On each side of the response to a sharp spec-
tral feature two minima are occurring, which exhibit high absolute values.
As it is shown in Fig. 1, the usage of a Laplacian operator enhances the sep-
aration betweenRamanpeaks and spikes. In thisway not only the intensity
is used for separation but also the Spikes sharpness.

Another typical characteristic of spikes, but not for Raman bands, is
their random position. In the case of biological Raman scans, the change
between Raman spectra of nearby scanning positions are usually small.
If a spike appears in one of the Raman spectra, then the intensity change
at the spike position from previous and subsequent Raman spectra is
significantly higher than in other spectral regions.

This feature can be used to further enhance the Laplacian response
for spikes. If the matrix with Raman spectra consists of consecutive
spectra, a similar method as for sharpness can be used to achieve a
high response for unexpected deviations of intensity within the current
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spectrum in a comparison to previous and next rows of the spectral
matrix. By applying operator Dy

2 (Eq. (2)) that is similar to Dx
2

(Eq. (1)) for columns of the matrix a higher response from peaks with
random position can be obtained.

D2
y ¼

�1
2
�1

2
4

3
5 ð2Þ

pt?>Each of these two operators gives an enhanced response for
spikes. Combining Eqs. (1) and (2) a typical representations of a 2-
dimensional Laplacian matrix can be constructed:

D2
xy ¼

0 �1 0
�1 4 �1
0 �1 0

2
4

3
5: ð3Þ

Applying the 2-dimensional Laplacian operatorDxy
2 (Eq. (3)) to ama-

trix of Raman spectra produces response matrix ΔS. Single element of
this matrix can be described by the following formula:

ΔSð Þi; j ¼ 4 Si; j � Si�1; j � Siþ1; j � Si; j�1 � Si; jþ1: ð4Þ

Location of spikes positions within the matrix of Raman spectra
(Fig. 2a) can be performed by applying a preset threshold to the
2-dimensional Laplacian response (Fig. 2b).

However, for real-time or real-world application a spike correction
applying amanual threshold is an unsuitable solution. For such applica-
tions it is important to find a way that allows the detection of spikes
without additional manipulations by a researcher. The easiest way to
determine a threshold automatically is to investigate the distribution
of absolute values of the response. A difficulty occurring within this
framework is that scanning regions differ widely in signal-to-noise
ratio and contain bands with different sharpness and intensities. There-
fore, the response of each Raman spectrum has to be normalized to ac-
count for this irregularity. One possible solution is the normalization to
the standard deviation. The maximal value and a small window around
it can be excluded from standard deviation estimation. This procedure
minimizes the influence of the spike presence to normalization value.

As a marker indicating the presence of a spike in a Raman spectrum,
the maximal value of the normalized Laplacian response was applied.
The normalization was carried out with respect to the standard devia-
tion of the Laplacian response excluding a window around themaximal
value. To make this spike marker more representative it was inverted:

Ri ¼ max
sd Δ Sð Þi;1;…; Δ Sð Þi; j�5; Δ Sð Þi; jþ5;…; Δ Sð Þi;m
� �

Δ Sð Þi; j

0
@

1
A: ð5Þ

In this equation the ratio Ri is calculated for the ith spectrumwithin
the matrix of spectra (S). The Laplacian (response) of matrix S is
denoted as ΔS and m represents the number of columns in ΔS. For
large data sets the distribution of this value has two maxima. The
maximum with the lower R value is much smaller compared to the
maximum with higher R values and corresponds to Raman spectra
with spikes. Therefore, we can determine the threshold ratio as a first
local minimum on the left side from the absolute maximum of the
distribution. Thereafter, all spectra with R below the threshold are
considered as spectra with spikes.

For Raman spectra which are selected as spectra with spikes, the
wavenumbers, related to spike positions, can be found in the areas
around highest response within each of those spectra. After detecting
the presence and position of a spike in a Raman spectrum it can be easily
excluded. However, using data with empty values leads to a lot of
additional problems and increased complexity of further analysis proce-
dures. The simplest approach to replace empty values is an interpolation
by linear functions between the previous and subsequent spectral
points. This easy method has the disadvantage that it introduces
artifacts if a spike is found on the top of a Raman band. Interpolation
can be done using nonlinear functions within each spectrum or within
the area around missing data points in the 2-dimensional matrix of
the Raman spectra. This type of correction procedure is more efficient
and produces better results. Nevertheless, choosing good parameters
for this interpolation is a complex task because of the difference in
noise levels of the Raman spectra and differences in intensities and
sharpness of Raman bands in different wavenumber regions. Therefore,
we suggest an interpolation procedure that iteratively replaces missing
data points by the medians of more than three nearest neighbors in the

Fig. 1. Single Raman spectrum (left) and its one-dimensional Laplace operator response (right) is visualized. The response improves separation between Raman peaks and spikes.

Fig. 2. Two-dimensional representation of spectra with low-intensity spike (a) and absolute response |ΔS| to the Laplace operator (b) are plotted. A threshold can be used to identify the
spike within the Raman spectra.
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matrix of Raman spectra. This method takes Raman intensities around
the current wavenumber position within the current Raman spectrum
and in previous and subsequent Raman spectra into account. It can be
compared with a wound healing, because “damaged” data is not
interpolated in one step, but the area of missing data points is iteratively
decreased step by step. In more detail this process is shown on Fig. 4. To
protect the algorithm from an endless loop (in case of missing points in
the corner of the matrix) the number of requested neighbors in the
current iteration is decreased by one if none of the missing data points
have enough neighbors with known values. The method is similar
to running amedianfilter thatmakes the procedure less sensitive to noise.

However, with a single run of the described algorithm it is possible to
detect only one spike within the spectrum. To detect spectra with more
than one spike, the entire algorithm should be repeated iteratively until
no spectrawith spikes are detected or afixed limit of iterations is reached.

4. Results

After defining the spike correction procedure a validation should be
carried out. It is difficult to validate the results using real data set,
because there is no available information about the presence of spikes
in the original data. That is why it is not possible to make standard
calculations for sensitivity and specificity of results. In order to evaluate
the results of our correction procedure, we applied our algorithm to the
test data set. The algorithm predicted 273 Raman spectra out of 53.235
Raman spectra to feature a spike. In order to estimate these results, all
273 Raman spectra with detected spikes and the same number of
Raman spectra without identified spikes near to the threshold of 0.138
detected as a local minimum from density distribution of Ri (Fig. 3)
were checked visually for the presence of spikes. (See Fig. 5.)

Only 5 Raman spectra of the 546 Raman spectrawerewrongly predicted.
21 Raman spectra which were predicted contain a spike, had an artifact that
couldbeaffectedbycosmic rays (Table1). The judgment isnotpossible as the
noise in these Raman spectra was so high that a differentiation between
Raman signals, spikes and other types of noise was not possible. These
Raman spectra are presented in the confusion table as “uncertain”, because
the “true value” for these spectra cannot be estimated. In Fig. 3 these
Raman spectra have ratios between 0.1 and 0.138, which was the automati-
cally determined threshold. The range of the ratios for wrong predictions is
much larger, but their number is too small to generalize the statement.

However, oneof the twoRamanspectra, inwhichspikeswerewronglyunde-
tected, had a low-intensity spike and the other Raman spectrum featured a
spike, which was untypically wide. Raman spectra with wrongly predicted
spikes featuredonamapasasmall areasurroundedbysubstrateonly.Within
these Raman spectra (Fig. 6) carbon occurred probably due to a burning ef-
fect. The atypical shape of the spectral featureswithin thesewrongly predict-
ed spectra might be a reason for the wrong detection.

An example of a falsely detected spectrum is shown in Fig. 6. The figure
shows that the detection method features some limitations. In case of a
small number of spectra featuring unusual spectral features, the 1-
dimensional operator Dx

2 (Eq. (1)) should be applied rather than the 2-
dimensional Dxy

2 (Eq. (3)), as it produces robust results. In our experimental
setup the Raman spectra were derived from a scanning experiment, where
the spectra are collected sequentially. Therefore, the two dimensional scan-
ninggrid is rasteredby theexcitation laser,whichallowedus toapply thepre-
sented algorithm without any change to the sequentially recorded spectra.
However, if the recording of the scan is not made in such a manner, a 3d
Laplacian operator should be applied in three dimensions: awavenumber di-
mension and twodimensions related to thepositionwithin the scan. This ap-
plication is straight forward and doesn't require changes in the idea of the
algorithm. On the other side, it requires higher computational cost and is
not necessary due to high efficiency of 2-dimensional approach.

5. Discussion

5.1. Spike detection limit

To illustrate the detection limit for the algorithm, artificial spikes
were induced into 100 random spectra in the data set. In each of the

Fig. 3. Density distribution of the ratio R for 53.235 Raman spectra is visualized. The
automatically detected threshold is indicated by red dotted line. (For interpretation of the
references to color in this figure legend, the reader is referred to theweb version of this article.)

Fig. 4. The interpolation scheme is sketched, which is similar to a wound healing process. In such a process the new tissue starts to grow in the corners, which was adapted here. The first
sub-image (0) shows a matrix before first iteration with marked spike positions (red). The spectra in these positions are not further used. In the next image (1) the spectra on the green
positions are interpolated with the help of the spectra on the yellow positions. The yellow points are only shown for the darker green spots for clarity reasons and left away for the light
green spots. At the last sub-image (5) the excluded data is filled upwith interpolated spectra from the surrounding. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 5. Histogram of the ratio R for the manually checked Raman spectra is depicted. In
total 546 spectra with spikes (red) and without spikes (green) are visualized. The
threshold, which is determined automatically from probability density (Fig. 3), is shown
by red dashed line. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Table 1
Confusion table for the spike detection.

Predicted

Spike No spike

True Spike 249 2
No spike 3 271
Uncertain 21
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selected spectra an intensity value for one wavenumbers between fin-
gerprint region and CH-band was set to higher intensity. Thereafter,
the method, proposed in this contribution was applied to this modified
data set. By changing the intensity of the artificial spikes and tracking if
induced spikeswere detected,we could determine a detection limit. For
a one-pixel spikewith automatic threshold selection this detection limit
was at spike intensity of around 40% of the highest peak in the Raman
spectrum (Fig. 7). This corresponds to twelve times the standard devia-
tion of the noise within the Raman spectra. The detection limit can be
decreased by a manual change of the threshold. However, in this case
the balance between sensitivity and specificity will be ruined and a
large number of bands not reflecting spikeswill be changed by the algo-
rithm in a similar way as outlined for the wrongly predicted spectrum
(Fig. 6). For the noise estimation, the difference between original
Raman spectrum and Raman spectrum smoothed by fast Fourier
transform was utilized. The maximal intensity of the Raman band is
approximately 30 times higher than standard deviation of noise that
corresponds to peak signal-to-noise ratio (Eq. (6)) around 29 dB. The
peak signal-to-noise ratio (PSNR) is defined as

PSNR ¼ 10� log10
MAX2

I

MSE

 !
¼ 20� log10 MAXIð Þ � 10� log10 MSEð Þ: ð6Þ

Here MAXI represents the maximal intensity of the Raman signals
and MSE corresponds to the mean variation of background noise. With
this definition the ratio of lowest detectable spike-to-noise is 20 dB.

5.2. Non-consequence data sets

The use of the two-dimensional Laplace operators is possible for data
from scanning spectroscopy. However, in the case of data sets with in-
dependent measurements or large distances between points within
the Raman scan it is more appropriate to use the one-dimensional
operator. Usage of the one-dimensional algorithm on the same data
set provides a spike detection limit of about 22 dB or 50% intensity of
highest peak of the spectrum (Fig. 8). Therefore, thismethod is less sen-
sitive than the two-dimensional approach. The reason for this behavior

may be associated with a reduction of data points covered by the oper-
ator and an increased response range from other types of noise. In this
case, the Laplacian response enhancement occurs only by sharpness of
the spike without taking its random position into account. However, a
decrease in detection efficiency of typical high intensity spikes has not
been noticed.

6. Conclusion

In this work, an algorithm for cosmic ray noise correction in large
data sets of Raman spectra such as Raman scans is presented. It includes
spike detection, removal and replacement by interpolated values. The
detection is realized by an automatically selected threshold from a
distribution of marker values, which is proportional to a maximal
normalized response on the Laplace operator calculated for each
Raman spectrum. This method detects spikes based on their three
main characteristics: high intensity, sharpness and random position in
Raman spectra. The algorithm is adapted to consecutive data sets, but
a one-dimensional approach can be applied to a large data set as well.
Testing of the algorithmon a real data set showed an estimated sensitiv-
ity of about 99%. The detection limit for simulated spikes was estimated
to be around 40% of the highest Raman band intensity or 20 dB of the
peak signal-to-noise ratio. The developed method can be used as part
of an automated analysis system, which processes large data sets with-
out the need of a manual control. Automated selection of the threshold
for cosmic ray noise detection allows the application of the algorithm to
heterogeneous Raman spectral data sets, which differ in Raman intensi-
ties and signal-to-noise ratios. The presented automated method
for spike threshold estimation allows a spike correction without
preselecting parameters. Therefore, it can be used in a fully automated
analysis and pre-processing routine. However, for a fully-automated
routine it is also important to construct similar automatic systems for
fluorescence background correction methods and other steps of the
pre-processing. To do so an optimization of the corresponding parame-
ters has to be achievedwith a certain feedback from the correction pro-
cedures. Only with a full automation of the pre-processing and analysis
the application of Raman spectroscopy to real-world applications, like,
for example, in diagnostics in a clinical setting, is possible.
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Fig. 6. An example of a wrongly predicted spectrum containing a spike (black line) is
visualized. The green spectrum represents the mean of six nearby spectra and the red
inset shows the corruption caused by our algorithm. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 7. The influence of artificial spike intensity relative to highest Raman peak in the spectrum is shown. The ratio (Ri) used for spike detection is derived from a two-dimensional Laplace
operator. The green spikeswere detectedwhile the red spikeswere not found. The ratio for undetectable spikes is plotted inmagenta and the ratio for detected spikes is shown in cyan. The
dashed red line represents the automatically detected threshold. (For interpretation of the references to color in this figure legend, the reader is referred to theweb version of this article.)
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A R-script for the described algorithm can be requested from Thom-
as Bocklitz (thomas.bocklitz@uni-jena.de) and Jürgen Popp (juergen.
popp@ipht-jena.de).
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Abstract—The classification of leukocyte subtypes is a routine
method to diagnose many diseases, infections, and inflammations.
By applying an automated cell counting procedure, it is possible
to decrease analysis time and increase the number of analyzed
cells per patient, thereby making the analysis more robust. Here
we propose a method, which automatically differentiate between
two white blood cell subtypes, which are present in blood in the
highest fractions. We apply generalized pseudo-Zernike moments
to transfer morphological information of the cells to features and
subsequently to a classification model. The first results indicate
that information from the morphology can be used to obtain
efficient automatic classification, which was demonstrated for the
leukocyte subtype classification of neutrophils and lymphocytes.
The approach can be extended to other imaging modalities, like
different types of staining, spectroscopic techniques, dark field
or phase contrast microscopy.

I. INTRODUCTION

WHITE blood cells (WBCs) are also called leukocytes.
These cells protect the body from infections caused

by viruses and other foreign invaders like bacteria or fungi,
which make WBCs an important part of the immune system.
Leukocytes are produced and derived from the bone marrow
and circulate through the bloodstream. A change of the number
of different WBC subtypes in the blood is utilized as marker
for various diseases. Therefore a blood cell count is often
utilized for a routine health examination or diagnosis of
specific conditions of a patient. There are five major subtypes
of WBCs [1], [2]:

• neutrophils (50-70%);
• lymphocytes (25-30%);
• monocytes (3-9%);
• eosinophils (0-5%);
• basophils (0-1%).
The ranges within the brackets display the percentage of the

corresponding cell subtypes in the blood, which are typical
ratios for a healthy person. There are various classification
approaches, which can be roughly divided into manual and
automated methods of cell classification.

The manual classification is performed by a pathologist
through the subjective recognition of cell subtypes on mi-
croscopic images of stained cells. This type of analysis
does not require complex equipment or highly specialized
chemical reagents. To simplify the identification, cells are
usually stained with the Kimura stain, which colors cell nuclei
in blue. Manual differentiation between varying subtypes is
accomplished based on characteristics of the cell morphology,
like cell size, transparency, granularity, and the shape of the
cell nucleus, which are the major differences between the
subtypes. Manual classification is widely used in some specific
cases of diagnosis and as a “gold standard” for scientific
purposes. However, variation of cell morphology within the
same cell subtype is very high, and manual classification
efficiency is dependent on the pathologist’s qualification and
experience.

On the other side, there are various automated classification
methods, based on different physical and chemical charac-
teristics of the cells. The main advantage of the automated
devices is that they efficiently analyze large number of cells in
a short time. Unfortunately, their analyzing workflows include
very specific combinations of chemical and physical processes.
The complexity of the analysis does not allow the design
of a simple portable device. Therefore, automated blood cell
counting machines are usually big and expensive.

An alternative approach is an automatic image analysis of
microscopic images of stained cells. In a combination with
a small camera this method can become a useful tool for
doctors, providing them an instant access to the information
about WBCs population at bedside of a patient. There are some
studies that show efficient leukocyte identification [3], [4] and
segmentation [5], [6] within microscopic images. However,
these studies are focused on the leukocyte count without the
classification of the leukocytes into subtypes. That leads to
the loss of important information about the proportions of
each cell subtype. In distinction to the mentioned studies, the
current manuscript describes an algorithm for the classification
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of WBCs, focusing on the textural features analysis of single
cell images.

The concept of the work is to extract quantitative features
related to the cell morphology from the microscopic images.
Subsequently, these features are used to train and evaluate a
statistical model for cell subtype identification. Moreover, the
same type of images as for manual classification is used, there-
fore, this approach allows a direct comparison to the “gold
standard”. In order to use these images for an automated image
analysis, standardization and preprocessing have to be carried
out. However, during the pretreatment step, it is important to
eliminate corrupting effects, such as uniformities in staining
and lighting, but to keep the morphological information for
further analysis steps.

The textural information extraction from preprocessed im-
ages can be carried out by various methods [7], [8]. How-
ever, image description by means of pseudo-Zernike (PZ)
moments [9] was chosen for the cell subtype identification
because it was proven to be a reliable method for the recog-
nition of shapes [10], characters [11], [12], faces [13], [14],
[15], and viruses [16]. An advantage of the representation by
PZ-moments is that their absolute values are independent from
image rotation, which is necessary due to random orientation
of the cells on a microscopic slide. The PZ-moments are
derived from PZ-polynomials, which are orthogonal to each
other and can be used in further statistical analysis, thus an
automated classification technique can be established.

The proposed automated cell classification method is aimed
to combine the simplicity of the manual classification and the
advantages of automatization. The approach is based on the
analysis of images, which are similar to the images used for
manual “gold standard” method and are produced by common
microscopy from a blood sample after non-complicated prepa-
ration. On the other side, due to automatization, extremely
short classification times and objectivity, comparable with a
human observer, can be achieved.

II. MATERIALS AND METHODS

A. Sample preparation

Leukocytes were isolated from the venous blood of patients
admitted to the intensive care unit with informed consent
according to the Ethics Committee of the Jena University
Hospital (Ethic vote n 4004-02/14). Briefly, 2.7ml of blood
in ethylenediaminetetraacetic acid (EDTA) was drawn freshly
from an existing catheter using the BD monovettes. In case of
healthy donor, blood (about 100µl) was collected from finger-
tip using lancet. Red blood cell lysis was carried out by mixing
the blood with an ammonium chloride solution with a ratio of
1:5 in a 50ml falcon tube. After 5 minutes of incubation at
room temperature (RT), the mixture was centrifuged for 10
minutes at 400g at RT. The WBC pellet at the bottom of the
falcon tube was collected by discarding the supernatant and
suspending it in a phosphate buffer solution (PBS). The WBCs
were chemically fixed with 4% formaldehyde for 10 minutes,
followed by washing the cells successively with PBS and 0.9%
NaCl. The cells were coated on slides using cytospin and

stained with a Kimura staining solution (which stains only the
cellular nucleus) and washed with distilled water. The slides
were dried at RT and stored at 4 ◦C for maximum one hour
until further use. The Kimura stained images of the WBCs
(Fig. 1 a,b) were captured with an upright epifluorescence
microscope (Axioplan 2, Carl Zeiss, Germany) equipped with
an AxioCam HRc camera (Carl Zeiss, Germany). Images
were acquired using Zeiss Axio Vert software (Carl Zeiss,
Germany).

B. Calculations

All calculations reported in this work were carried out
in Gnu R (version 3.0.2) [17] running on a Windows 7
Professional 64-bit system (Intel R© CoreTM i5-4570 CPU @
3.20 GHz 2.70 GHz with 8GB RAM). In addition to the base
R package, which contains the input/output, basic program-
ming support, and arithmetic functions, some more specific
algorithms were utilized from other packages. For orthogonal
moment analysis the “IM” package [18] was used. A support
vector machine (SVM) classification model was built with the
“e1071” package [19]. Parallel computing was obtained by
functions from “foreach” [20] and “doParallel” [21] package.
K-means clustering from the “stats” package [17] was utilized
for the background removal. The functions for principal com-
ponent analysis (PCA), nonlinear least squares estimation, and
the fast Fourier transform (FFT) are all contained in the base
package [17]. JPEG files were loaded into the R environment
via the “jpeg” package [22].

Prior to analysis, each image was converted from sRGB
color space to Lab color space, one of the most common
color spaces for image analysis applications. It was chosen
due to the fact that, unlike additive or subtractive color models
(for example RGB or CMYK), it is not optimized for image
representation on a screen or for printing, but is adapted to
cover the entire range of colors distinguishable by the human
eye and to match the perception of these colors. In this color
space, a and b components are related to chromatic color
values. The L component of Lab color space closely matches
the human perception of lightness, which allows to expect that
in this representation cell subtypes can be identified based
on their morphology. The conversion of the color space was
performed by base R function “convertColor”.

Subsequently to the color space conversion, other steps,
such as noise reduction, background removal and intensity nor-
malization were performed. The details of these preprocessing
steps are described in the “Results and discussion” section.

C. Pseudo-Zernike (PZ) Moments

As mentioned previously, PZ-moments were chosen for fea-
ture extraction from the images. These orthogonal, complex-
valued moments are defined on a unit disk and are widely used
for pattern recognition. The PZ-moments can describe a 2-
dimensional function on the unit circle. However, the function
f(x, y) can represent an image if two arguments, x and y, are
related to a pixel position and the function value is related to
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Fig. 1. Original images of two Kimura stained cell subtypes from the patients are displayed in the first row: lymphocytes (a), which are characterized by
deep staining of the nuclei and a relatively small amount of cytoplasm, and neutrophils (b), which are the most common subtype that normally contain a
nuclei divided into 2-5 lobes. All images are sized according to the scale (e). At the bottom preprocessed false-color equivalents of the presented images (c,
d) normalized to the unit scale (f) are shown.

lightness or another color component in that pixel. The PZ-
moments (Anl) of an image on a unit disk are defined in radial
coordinates by [23]:

Anl =
n+ 1

π

2π

∫
0

1

∫
0
[Vnl (r cos θ, r sin θ)]

∗

f (r cos θ, r sin θ) rdrdθ .

In this equation n = 0, . . . ,∞ represents the order, the
repetition is denoted by l ≤ n, and f is the value related
to the current pixel position: 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π
(polar coordinates of the pixel). Vnl is the orthogonal set of
complex-valued PZ-polynomials, which can be written as:

Vnl(r, θ) = Rnl (r) e
jlθ ,

where Rnl represents radial polynomials with integer coeffi-
cients Dn,m,s:

Rnl(r) =

n−|l|∑

s=0

Dn,|l|,sr
(n−s) ,

Dn,m,s =
(−1)s(2n+ 1− s)!

s!(n−m− s)!(n+m− s+ 1)!
.

Both the order n and the repetition l are related to the spatial
frequencies of the image. However, the order n represents
the spatial frequency along the unit disk’s radius, while the
repetition l represents the spatial frequency along the unit
disk’s angular coordinate. Moreover, by clarifying the idea
behind order n and repetition l, the respective moments can be
interpreted. Therefore, the classification model can be checked,
analyzed and the morphological differences between the cell
subtypes can be examined.

As it is seen from the formulas, the angular coordinate is
included in the PZ-moments only within the multiplier ejlθ ,
which is related to the phase of the complex value [9], [10],
[12]. Due to this fact, the absolute values of moments are
independent from a rotation of the coordinate system. Thus,
they are independent from the spatial alignment of the cell
within the image and from the orientation on the microscopic
slide. Other advantages of these particular moments are their
low sensitivity to noise [10] and that the PZ-moments are
orthogonal to each other.

III. RESULTS AND DISCUSSION

A. Data set

Taking into account the extremely low number of mono-
cytes, eosinophils, and basophils in the data, only two major
subtypes could be investigated in the current study. These both
subtypes represent about 90% of WBCs in the blood and were
included in the statistical evaluation. Thus, the training data
included 28 lymphocytes and 45 neutrophils from 6 patients
which were showing signs of inflammation. On the other side,
the test data included 128 cells from two healthy volunteers.
Unlike the training set, where some cell subtypes were sorted
out, the test data included randomly selected cells without
presorting or labeling according to their subtypes.

The cell subtypes included in the training data are different
in sizes and cell nuclei morphology (see Fig. 1). Most notable
is that the neutrophils are relatively big and have multi-lobed
nuclei, while lymphocytes have almost round nuclei and are
smaller. Other WBC subtypes, which were not included in
the training data, are characterized by their granularity and
the following properties of the cell nuclei: monocytes have
kidney shaped nuclei, eosinophils have relatively small bi-
lobed nuclei, and basophils have bi-lobed or tri-lobed nuclei.
Although each subtype has a typical average cell size and
other specific characteristics, each single cell varies from that
average characteristics, which make some of its parameters
dissimilar to the typical characteristics of its subtype.

B. Workflow

To obtain a stable and efficient analytical system, an image
processing workflow was developed and optimized for the
specific task of leukocyte subtype classification. The data was
loaded, preprocessed, and represented as a set of pseudo-
Zernike moments based invariants for further analysis. The
workflow is presented in more detail in Fig. 2.

Important and nontrivial steps are the image preprocessing
and standardization, which have to be optimized. These pro-
cedures should reduce the variations of brightness and color
tones between the images of cells within the same sample
and occasional appearing variations caused by the sample
preparation routine for images taken from different samples. If
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the workflow presented here is applied to other imaging modal-
ities, like holographic imaging and phase contrast microscopy,
these variations are expected to be less significant. Therefore,
the preprocessing procedure has to be modified individually for
each microscopic imaging technique and classification task.

For the construction of the classification model based on
image analysis, the measured cells were labeled according
to the classification made by the pathologist. The labeled
and preprocessed training data were subsequently divided into
three batches for cross-validation of the model. This step of
the workflow was of enormous importance for setting model
parameters and estimating the model quality. Thereafter, it
should not be underestimated.

Leave-batch-out-cross-validation of SVM classification was
performed on the training data with different combinations of
input variables. This cross-validation procedure was designed
to avoid any relations between different batches of cells.
Therefore, the data splitting into three batches was arranged
so, that the batch reflect the measurement dates and patient’s
origin. Thus, the generalization performance for the prediction
of an independent dataset is well estimated by the leave-
one-patient-out-cross-validation. Consequently, classification
models with various numbers of PZ-moments’ orders and
principal components were compared. The variable selection
was carried out according to the highest sensitivity for cross-
validation of SVM classification model. The model with
highest sensitivity was chosen as an optimal one and further
used for the test data prediction.

Besides high identification efficiency, the proposed algo-
rithm has to be suitable for real-life applications. Therefore,
the workflow was optimized by parallelization of each single
image loading, preprocessing, and calculation of the moments.
Thereby, the parallelization on hardware with a multi-core
processor should decrease the calculation time for a large
amount of data roughly by a factor related to the number
of calculation units. We chose the number of clusters for
parallel calculation as one less than the number of processor
cores, which was three for the PC on which the analysis was
performed. During the preliminary study stage, the amount
of data was relatively small, and thus, the parallelization
of calculations had a negligible effect. However, despite the
insignificant improvement on a small data set, parallelization is
highly important for further applications and implementation
of the algorithm, especially for the case if the number of
analyzed cells is on the order of thousands.

C. Preprocessing

Examples of WBC images are shown in Fig. 1 a,b. As it
can be seen by naked eye, differences between some images,
which are not related to the cell’s morphology, occur. These
fluctuations originate from the sample preparation procedure,
which is simple and standardized. There are some systematic
deviations between the cells of different patients, but also the
images of cells from the same patient can differ due to the
spatial alignment of the cells and non-uniform coloring of
samples along microscopic slides. Moreover, parts of other

Training Testing

Start

Load images from
hard drive (HDD)

Preprocess images, calculate
PZ-moments, convert
moments to invariants

Cross-validate SVM models
for different variable selections

Choose model with
highest specificity

Store the model and
the algorithm

on HDD

Start

Load images
from HDD

Preprocess images, calculate
PZ-moments, convert
moments to invariants

Load classification
model

Apply model to unlabeled data

Store prediction
results

Compare prediction results with
classification by pathologist

Calculate sensitivity
values and accuracy

Store confusion table
and mispredicted images

StopStop

Fig. 2. Schematic workflow of the presented algorithm and the model
validation.

cells are visible within some images and, additionally, other
influences on the brightness, contrast, and tone are present on
the microscopic images. To reduce the discussed corrupting
effects, an advanced preprocessing has to be carried out before
the feature extraction procedure.

According to the chosen concept of the analysis, it was
important to keep the morphological features which can be
distinguished visually. The automation of the preprocessing
procedure took an important part in the development of the
algorithm. The original images were stored in the standard
sRGB representation, which is designed to display images in
electronic systems, such as a computer’s screens. However,
analysis of the color channels separately from each other
can be problematic and leads to a high complexity of the
classification model. Switching to a single component can be
circumvented by applying a more convenient color space. As
it was mentioned in “Materials and methods”, the lightness
L of Lab color space is closely related to the human visual
perception of images. In order to keep the features used for
manual classification, the Lab color space was used in the
further analysis. Moreover, the cells used for analysis were
colored by Kimura staining, which highlights the cell nucleus
in blue. Due to monochromatic coloring, all variations of the
chromatic values are only related to the deviations of the
sample preparation process and staining. Thus, related color
components (a and b) were skipped and only the lightness
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L was analyzed. However, for staining procedures which
stain different cell organelles or cytoplasm in different colors,
normalized a and b components should be also included in the
analysis.

Due to high variations between different images, even for
the single L-component, the automation of preprocessing took
an important part in the analysis development. Pretreatment
was aimed to decrease deviations of the features extracted
from images within the same cell subtype and to increase the
overall identification accuracy. Consequently, the background,
or non-cell area of the images, was cut off via the unsupervised
k-means clustering of lightness values within each image.
In order to improve the background removal, an FFT-filter
was applied to the images prior to the clustering. After the
background removal, the lightness distribution within each cell
was standardized by means of normalization to the unit interval
and equalization of the histogram.

Subsequently to the lightness standardization of the images,
a 2-dimensional Gaussian function was fitted to each cell
image using nonlinear least squares. Based on the coefficients
of the fitted function, centers and estimated radii were deter-
mined for each cell. As the next step, background-free images
of the single cells were cropped according to the estimated
cells’ radii. This procedure was performed, to preserve the
full region of the stained nucleus with a cytoplasm area and
to exclude regions of other cells, non-cell area, or unexpected
artifacts which were present in some images outside of the
cell area. After cropping, images were placed on frames with a
determined preset size, which was chosen to fit the biggest cell
expected among the analyzed cell subtypes: 13x13 µm, which
was equivalent to 200x200 pixels. On this step the centers
of the cells were also matched to the centers of the frames.
Pretreated images are shown in Fig. 1 c,d.

D. Features extraction

As quantitative features which can be used to describe
the morphology of cell images, the complex-valued pseudo-
Zernike moments where chosen. However, the position of each
individual cell on a slide is random and it is necessary to
operate with rotationally independent features. Since the phase
of the moment is related to the angular coordinate within
the image plane, complex-valued moments were converted to
absolute PZ-moments and then normalized to the zero-order
moment. Therefore, invariants, which are not dependent on the
image rotation and scale, were produced. These invariants skip
all information about the phase (angular coordinate), and thus,
the obtained variables are independent of the image rotation.

Unfortunately, as it is shown above in the “Materials and
methods” section, the calculation of PZ-moments requires a
double integration of a two-dimensional function which is a
costly CPU process. Because the pre-computed images were
transferred to a frame with a preset size, the algorithm for
the PZ- moment calculation can be simplified. Instead of the
integration, the sum of a scalar product of the image with
a pre-computed complex matrix can be used. The matrices
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Fig. 3. Mean sensitivity of SVM leave-batch-out-cross-validation of training
data. Classification models were created for a different number of selected
orders of moments and for a different number of principal components (called
variables in the image). The maximum value, which is related to the optimal
model, is indicated with a white arrow.

TABLE I
CONFUSION TABLE FOR THE LEAVE-BATCH-OUT-CROSS-VALIDATION OF

THE SVM MODEL WITH OPTIMAL VARIABLE SELECTION.

Predicted
Lymphocytes Neutrophils Sensitivity

True Lymphocytes 26 2 0.893
Neutrophils 1 44 0.978

related to each moment can be generated once and then stored
on a hard disk drive for the further use.

E. Statistical model establishment and evaluation

To avoid an overfitting of the statistical model, the dimen-
sionality of the data was reduced. A dimension reduction
was obtained via a principal component analysis (PCA). The
dimensionality of the retaining data set was optimized based
on a leave-batch-out-cross-validation of the training data set.
The parameter intervals checked for the feature extraction was
1 to 20 for orders, while repetition was chosen maximal. The
score dimension of the PCA was evaluated from 1 to 20.
For each parameter set the model performance was estimated
based on the mean sensitivity. These values are summarized
in plot Fig 3. The maximal sensitivity is marked on the
plot with an arrow. This parameter set defines the optimal
combination of input variables (3 principal components, based
on PZ-moments up to 5th order). The model trained with these
parameters was further analyzed and visualized. In table I a
confusion table of training data cross-validation is given. In
Fig. 4 a histogram of its probability scores, which represents
SVM decision values rescaled to the unit range, is plotted.

F. Blind prediction

Model validation was performed by applying the estab-
lished model to the independent data, which contained 163
microscopic images of stained WBCs. All preprocessing and
feature extracting steps were performed on these unlabeled
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Fig. 4. Histogram for SVM posterior probabilities calculated by a leave-batch-
out-cross-validation of the training data with the optimal number of variables
are shown. Classification was performed between lymphocytes (gray bars)
and neutrophils (green bars). The overlap of the groups is indicated within
the histogram by dark green bins.

images in the same way as for the training data. In order
to avoid the influence of the operator’s subjectivity, a double
blind prediction was carried out. Images were classified in
manual mode by an experienced pathologist independently
from the automated prediction. Subsequently, the statistical
predictions were compared with the manual classification
results. A summary of the results is visualized by a confusion
table (see table II). Another representation of the classification
performance is shown by means of a ROC curve in Fig 5. This
curve, built for the threshold of the SVM decision values of
the test data prediction, illustrates the high performance of
the prediction. Moreover, the area under ROC curve (AUC) is
about 0.984, which indicates an almost perfect classification. A
perfect binary classification is characterized by an AUC equal
to 1. Among 155 cells, which were classified as lymphocytes
or neutrophils in manual mode, three images were wrongly
identified by the statistical model. Such a low misclassification
rate of independent test data corresponds to a high accuracy
of the 2-class prediction. This accuracy was higher as 97%.
Additionally, cells of the subtypes, which were not included in
the training set, were present in the test data. These cells (five
eosinophils and two monocytes), were predicted within the
same class as neutrophils. This behavior was expected, since
they feature a similar morphology as neutrophils compared
to lymphocytes. Additionally, neutrophils, eosinophils, and
monocytes feature a higher biological similarity and higher
subjective similarity of the images. These classification results
of the eosinophils and monocytes indicate that an extension
of the presented model may be possible. A hierarchic layout
of the classification seems optimal to incorporate eosinophils
and monocytes.

IV. CONCLUSION

In this work, we presented an algorithm for a highly efficient
classification between two dominant subtypes of leukocytes.
The special feature of the proposed method is that by means

TABLE II
CONFUSION TABLE FOR THE PREDICTION OF THE UNLABELED TESTING

DATA. CORRECT PREDICTED CELLS ARE SPECIFIED ONLY WITH THE
QUANTITY OF THE IDENTIFIED CELLS. ALL INCORRECTLY PREDICTED

CELLS AND CELLS, THAT RELATE TO OTHER SUBTYPES, WHICH WERE NOT
INCLUDED IN THE TRAINING DATA, ARE SHOWN IN THE TABLE AS

UNTREATED MICROSCOPIC (UPPER ROWS) AND PREPROCESSED (BOTTOM
ROWS) IMAGES.

Predicted (assorted by statistical model)
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Fig. 5. The ROC curve and area under the curve (AUC) illustrate the high
performance of the SVM prediction of the binary classification model between
two WBC subtypes (lymphocytes and neutrophils) for independent unlabeled
testing data.
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of PZ-invariants the cell morphology is represented as a quan-
titative marker for the cell subtypes. Therefore, a combination
of such common statistical methods as principal component
analysis and support vector machine classification was applied
to build the classification model. This approach showed a
high stability against patient to patient and sample to sample
variations. Moreover, an advanced image preprocessing made
a further contribution to the robustness of the model. The
standardization of the images decreased deviations, which
occur between samples due to the sample preparation routine.
Additionally, the automated framing and centering of the
analyzed images of cells led to the replacement of the double
numerical integration, performed for PZ-moment calculation,
with a matrix product. This simplification of the calculation
procedure resulted in the reduction of computation time and
allowed the analysis to be performed in real-time. The clas-
sification results showed that WBCs subtypes as monocytes
and eosinophils (which were not included in the model due to
their low quantity in the training data) were predicted within
the same class. Due to this fact, it can be assumed that the
classification can be improved and extended to other cell types
by a multilevel model. However, that requires a statistically
significant amount of microscopic images for each leukocyte
subtype in the training data set. The described approach can be
applied for microscopy images taken of other staining types.
Only important is that the images display the cell morphology.
The method presented here may be also applied to images
obtained with techniques such as fluorescence, dark field, or
phase contrast microscopy.
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The Raman effect was predicted by Schmekal1 in 1923 and
independently discovered in 1928 by two Indian

physicists, Raman and Krishna.2,3 In principle, monochromatic
light is inelastically scattered at a quantified structure like the
vibrational states of a molecule. The occurring energy shifts are
an indirect representation of the vibrational states of the
molecule and, thus, are molecule specific. If this principle is
spectroscopically used, an ensemble of molecules is measured
and the result is called a Stokes-Raman spectrum, or shorter a
Raman spectrum. The Stokes-Raman spectrum is the part of
inelastically scattered light, which is shifted to lower energies.4,5

This is the dominant effect at room temperatures, which is the
reason for skipping the attribute. Because of the ensemble
mixing, the Raman spectrum is not representing the vibrational
states of one molecule but of a mixture of molecules. Thus, the
Raman spectrum is a superposition of Raman spectra of
substances within the excitation focus. Because the unmixing of

this superposition is only possible for limited cases, the Raman
spectrum is used as a vibrational fingerprint. This fingerprint is
either interpreted with a certain set of reference Raman spectra
or evaluated by means of statistical methods. The latter
procedure is often applied, if heterogonous mixtures like cells
or tissues are investigated, while the former method is used, if
pure substances or easy mixtures are studied. As investigations
on biological samples, like cells or tissue are the topic of the
review, we will focus on biological samples in the following.
Therefore, a Raman spectrum is used as vibrational fingerprint.
In the same manner like for the human fingerprint, databases

are essential in order to carry out the interpretation. In contrast
to the specific human fingerprint, the specificity of the Raman
fingerprint is reduced due to the ensemble mixing and other
corrupting effects. These both factors complicate the creation
of Raman spectroscopic databases for biological samples. In
order to deal with corrupting effects, advanced computational
methods can be applied, which correct for the influence of the
measurement device or background contributions within the
Raman spectra.4 After, these corrections are carried out, the
databases are not constructed directly but with the help of
multivariate statistical methods6 or other chemometrical
techniques.7 These computational methods showed better
performance compared with a pure database search.
Beside the positive properties of the Raman effect, like the

discussed molecule specificity, the linearity with the concen-
tration and laser power and the insensitivity to water, it took
almost 50 years that Raman spectroscopy was applied to
biological questions. The reason for this long time is that the
Raman effect is a rather weak effect, which had to be
compensated by a development of the Raman spectroscopic
instrumentation and analysis software. In order to apply Raman
spectroscopy for real world application, like analysis of cells and
tissue, the most important of these developments are the laser
(light amplification by stimulated emission of radiation),8 which
provided high excitation intensities, the charge-coupled-device
(CCD),9,10 which allowed a simultaneous detection of a certain
wavenumber region, the personal computer (PC), which
allowed for the analysis of larger data sets, and the development
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of interference filters11,12 to suppress the Rayleigh scattered
light.
Around 1970, these developments allowed the scientists to

apply Raman spectroscopy in order to investigate biomolecules
like proteins, lipids, and nucleic acids. Since these first
investigations, a subdiscipline was created, which deals with
the application of Raman spectroscopy for biological or medical
tasks. The so-called biomedical Raman spectroscopy is fast
growing and further developing. In 1977, the first review
articles about protein analytic based on Raman spectroscopy
was published.13 In the 80s a first review of the applications of
Raman spectroscopy to biological tasks was published,14 in the
90s biomedical relevant Raman based analytics was carried
out,15 and at the end of this queue of review articles ref 16
showed a large number of publications dealing with Raman
based cancer or cancer cell diagnostics.
Since then the field of biomedical Raman spectroscopy is

further emerging and the current developments are the subject
of this review. Within this review we like to emphasize this
recent development and we will focus on the past 5 years.
Nevertheless, we also included books and older literature,
where we think these publications are an appropriate source of
background information. So this review can be used as an
introduction to the wide field of biomedical Raman spectros-
copy but also as a review of the current development in the
field. Within this contribution we will focus on linear Raman
spectroscopy. Where it make sense, the link to other methods
like coherent Raman techniques is marked and reviews in the
respective field are cited.
This review article is structured as follows. In the beginning

the instrumentation of typical Raman spectroscopic devices is
summarized and the recent developments are set together. In
the next section, the necessary spectral pretreatment and the
used statistical methods are reviewed. Thereafter, a section for
the application of Raman spectroscopy to biomedical tasks
follows. This section is further separated into cell imaging and
diagnostics and tissue imaging and diagnostics. At the end the
article will be summarized and the future developments and
applications are outlined and discussed.

■ INSTRUMENTATION

Raman spectroscopic devices typically share a set of
components because the setup has to deliver light of a certain
wavelength to the sample, the scattered light has to be collected
from the sample after the interaction, and finally, the scattered
light has to be detected. There is a huge variety of instruments
available, starting with commercial systems, home-built
laboratory solutions, as well as integrated systems combining
Raman spectroscopy with other imaging techniques. Depend-
ing on the samples to be analyzed, the Raman spectroscopic
system has to be carefully chosen. In the following, some of the
criteria will be discussed in more detail, providing a brief
overview of available systems with their respective advantages
and disadvantages.
A foremost consideration involves the excitation source,

which in the case of Raman spectroscopy is a highly
monochromatic light source providing sufficient power to
detect the Raman spectrum in a reasonable time frame. The
most common laser types and excitation wavelengths used for
Raman spectroscopy cover the visible and near-infrared range
including Ar+ (e.g., 488 and 514.5 nm), He−Ne (632.8 nm),
Nd:YAG (1064 and 532 nm), as well as diode lasers. The latter
laser type operates in a range of more than 200 nm starting
from about 630 nm.17,18 As mentioned above the sample
dictates the wavelength range for the experiment based on its
fluorescence properties. However, not only the sample might
exhibit fluorescence, the sample matrix or the substrate might
also contribute to the fluorescence background disturbing or
masking the Raman spectrum of the sample. Several approaches
have been introduced to minimize or avoid fluorescence
contributions including excitation in the near-infrared, enhance-
ment of the Raman signal (e.g., resonance Raman, surface or
tip-enhanced Raman scattering19), temporal gating to separate
the Raman signal from the fluorescence, and many others.20,21

In general, continuous-wave and pulsed lasers are used. The
latter are usually implemented in combination with a gated
detection22 or time-resolved investigations.23

Figure 1. Schematic sketch of a dispersive (left gray box) and nondispersive (right gray box) Raman instrument. Monochromatic light is focused
onto a sample, collected via the objective, filtered to exclude the excitation light, and detected. On the left, the light is dispersed using a grating and
detected with a camera. The Raman spectrum is directly obtained. On the right, the light passes a Michelson interferometer and the interferogram is
detected with a camera. The spectrum has to be recalculated from the interferogram using a (fast) Fourier transformation. Copyright 2015, Sandro
Heuke/IPHT.
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The selection of a suitable detection system is another crucial
point in Raman spectroscopy. The spectral resolution achieved
by the whole spectroscopic system depends on spectrometer
parameters such as the focal length of the spectrometer, the
diffraction grating (in dispersive Raman systems), and the pixel
size of the detector.18 A huge step forward has been done with
the invention of the CCD camera in 1970,9 which allowed for
higher sensitivities and faster acquisition times. In principle,
Raman spectrometer can be divided into dispersive and
nondispersive (FT-Raman) systems, which are both schemati-
cally sketched in Figure 1. Both systems require a light source
and a collection system indicated by the microscope objective.
A filter blocks the excitation light, and the Raman signal is
guided to the detection system after interaction with the
sample. In Figure 1, we used fibers to represent the optical
setup. On the left side, a dispersive Raman spectrometer is
shown. The light is dispersed on a grating, and the accordingly
separated wavelengths can be detected.24 Using a multidimen-
sional camera every wavelength can be detected in a separate
pixel/channel, whereas a single detector such as a photo-
multiplier tube or photodiode would require a scanning of the
dispersed light. With this system, the Raman spectrum is
obtained directly. In contrast, on the right side of Figure 1 a
FT-Raman system is illustrated. FT-Raman spectrometers
require an interferometer: in the figure a Michelson
interferometer has been used. This type of interferometer is
equipped with a moving mirror changing the path length
between the two beams and therefore causing constructive and
destructive interference. Suppliers, however, invented a number
of interferometers to minimize the setups and optimize the
performance of their devices. The resulting interferogram is
detected, usually with a camera, and the spectrum is calculated
using a (fast) Fourier transformation. Compared to a dispersive
instrument the frequency can be detected with higher precision.
In addition, FT-Raman spectrometers are preferably used in the
NIR due to the comparably low or completely avoided
fluorescence in that spectral region and the low performance
of the detectors in dispersive instruments when using this
excitation wavelength. Dispersive instruments always force a
trade-off between spectral coverage and resolution with a
varying resolution along the spectrum. In contrast, FT-Raman
spectra provide the full spectral coverage with a constant
resolution. However, this might also be a disadvantage
depending on the measurement task. Concerning SNR,
dispersive instruments show a higher signal-to-noise ratio
compared with nondispersive systems.25−28

By now the excitation source has been discussed as well as
the detection side. In between the light has to be guided to the
sample and from the sample to the detector. A common
concept to achieve this while reducing unwanted signals and at
the same time increasing the axial resolution is Raman
microspectroscopy using confocal microscopes.29 Confocal
setups are characterized by focusing the laser beam onto
basically two small apertures. The first aperture is placed
directly after the light source. This creates a diffraction-limited
light source. The second aperture is placed directly in front of
the detector. The light can then pass the entrance slit of the
detector with minimal loss and can be split into the different
wavelengths to generate the spectrum. To focus the light onto
the sample and collect the backscattered light a high numerical
aperture (NA) objective is used in order to achieve small focal
volumes and on the other hand to collect as much of the
backscattered light as possible. Figure 2 shows a Raman

microspectroscopic setup which has been modified to allow for
in situ studies of Raman active transparent bulk materials, thin
films, or fibers which underwent mechanical deformation.30

The multimode fiber (MMF) acts as the second aperture in
front of the detector. The first aperture is present as a slit (SL).
As this device allowed for the acquisition of point spectra only,
Gerbig and co-workers presented an advancement by coupling
the device with a laser scanning microscope.31 The authors
could follow the evolution of strain fields and were able to
observe changes in the phase distributions of a material while
they performed a compression.
Many technical developments have been made in the

meanwhile, which cannot be discussed in this manuscript.
This includes the developments in sensor elements, e.g., for
time-of-flight experiments,32 which might be adapted in the
near future. Further a miniaturization takes place while
maintaining all functionalities of a large systems.33 Inves-
tigations on the optimization of existing instruments are
ongoing in order to use different wavelengths.34 Also other
setup changes and variations such as a wide-field imaging
possibilities were described recently.35

■ COMPUTATIONAL METHODS
The data pipeline to analyze Raman spectra is sketched in
Figure 3, and the necessary procedures can be grouped into
data pretreatment and analytical modeling. The pretreatment
aims at the correction of certain artifacts and side effects. This
group of methods consists of spike correction, spectrometer
calibration, and preprocessing, like baseline correction,
smoothing, normalization, and dimension reduction. These
methods are described in the subsection Pretreatment
Methods. The analytical model and its evaluation will be
described in the subsection Analysis Techniques.

Pretreatment Methods. After the Raman spectra of
biological samples are measured by Raman spectroscopy
chemometrical steps are required in order to pretreat the
Raman spectra. This is necessary as besides the Raman

Figure 2. Schematic view of the optical part of the Raman instrument
used for Raman microprobing is plotted.30 The system also allows for
white light imaging. Reprinted with permission from Gerbig, Y. B.;
Michaels, C. A.; Forster, A. M.; Hettenhouser, J. W.; Byrd, W. E.;
Morris, D. J.; Cook, R. F. Rev. Sci. Instrum. 2012, 83, 125106 (ref 30).
Copyright 2012, AIP Publishing LLC.
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spectrum other contributions are measured. These contribu-
tions corrupt and often overwhelm the useful Raman
information and a robust analysis is not possible. Thus,
corrections for these contributions have to be carried out. The
most disturbing contributions within Raman spectra originate
from cosmic spikes, the fluorescence background, Gaussian or
Poisson noise, and other contributions caused by experimental
parameters (Figure 4). In order to allow for further statistical
analysis, preprocessing, like spike correction, wavenumber and
intensity calibration, baseline correction, and normalization,
have to be carried out to obtain uncontaminated data.36−39

Like sketched in Figure 3, the pretreatment starts with a
cosmic spike removal. One method often applied for the spike
correction is done by collecting two Raman spectra of the
sample or position during the experiment followed by a pixel-
to-pixel comparison keeping the smaller intensity count.40

Besides this approach, several mathematical methods have been
explored and widely applied.40,41 Filtering, such as polynomial
and median filters, can be used in cases where the spike is
sharper compared with real Raman bands. Particularly, for
Raman spectroscopic imaging, information from unaffected
neighbor pixels can be used. Accordingly, refined nearest
neighbor comparison methods and upper bound spectrum
method have been developed.40,42,43 Principal component
analysis (PCA) and wavelet transform are also used for this
purpose.40,44 Recently developed algorithms determine the

spike position based on the evaluation of the second
derivative.45

The next steps within the pretreatment of Raman spectra are
the wavenumber, wavelength, and spectrometer calibration.
These calibration steps aim to correct for wavenumber shifts

Figure 3. Data pipeline for the analysis of the Raman spectra is sketched. The measured Raman spectra are filtered for cosmic noise, spectrometer
calibration procedures are applied, and the spectra are preprocessed. This preprocessing consists of a baseline correction, smoothing, normalization,
and dimension reduction and reflects the composition of Raman spectra (see Figure 4). With these pretreated spectra, a statistical model is
constructed, which is evaluated and checked for artifacts, before it is used to predict independent data. Copyright 2015, Thomas Bocklitz/Friedrich-
Schiller-University Jena.

Figure 4. Composition of Raman spectra. The measured Raman
spectra are suffering from different side effects, like fluorescence
background, cosmic spikes and white noise. All contributions have to
be rejected prior the analysis. Copyright 2015, Thomas Bocklitz/
FriedrichSchiller-University Jena.
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caused by a drifting excitation wavelength and intensity changes
resulting from environmental influences such as changes in the
devices and temperature.46−48 For wavenumber axis calibration,
both absolute and relative wavenumber calibration can be
applied. In both cases, a standard sample with known Raman
bands or wavelength positions together with the exact
excitation wavelength are required. The calibrated wavenumber
axis is calculated according to the differences between true and
reported Raman bands of the standard sample46,47,49 in the case
of a relative wavenumber calibration. In the case of an absolute
calibration, the differences of true and measured wavelength
positions are recalculated with the excitation wavelength to
receive a calibrated wavenumber axis. In a recent study the
quantum efficiency of the process itself was incorporated.48

Besides these physical related methods, a method based on
evolution theory was proposed for wavenumber alignment.50

For intensity calibration, a standard sample with known
response over wavelength or wavenumber is required. The
intensity response curve of the instrument is computed as the
ratio of measured and reported (Raman) intensity of the
standard sample or calibration lamp. Afterward, the intensity
values of the spectrometer can be recalculated.47,51 This can be
seen as unit transfer from electrons counted to photons
counted. The intensity calibration is not widely used, but
important, if the calculated model has to be applied to data of
another spectrometer. In references 47 and 52, the comparison
of different spectrometer devices have been investigated. It
turned out that a fully set up independent Raman spectrum is
hard to achieve and such a calibration procedure remains the
scope of ongoing research.
Baseline removal is a preprocessing step, which has huge

influence on the further analysis, because the baseline is often a
few orders of magnitude more intense compared to Raman
bands. It may easily hinder further data analysis.53 Quite a
number of mathematical methods exists, all try to estimate a
part of the spectra, which varies slowly as a function of
wavenumber assuming that this is the background contribution.
These methods are implemented using different mathematical
procedures. In references 54 and 55, a wavelet transform is
applied, while in refs 56 and 57, morphological operations are
utilized. Beak et al.58 propose a combination of peak detection
and interpolation to estimate the background contribution.
Other approaches may involve frequency-domain filtering59 or
polynomial fitting.53,60 Recent developments involve asymmet-
ric cost functions for baseline fitting.61,62 However, none of the
procedures or methods work equally well for all data sets. Thus,
all methods should be used with caution and spectroscopic
knowledge is important to verify the baseline estimation result.
As demonstrated by Emry et al., an unreasonable baseline
correction can introduce errors and lead to misidentifications of
substances.63 To tackle this issue, methods for evaluating the
quality of baseline estimations are needed. Emry et al. therefore
proposed a method to judge the quality of a polynomial-based
baseline correction algorithm.63

Smoothing is a step which can be performed before baseline
estimation, after the baseline estimation step or it is implicitly
done within the dimension reduction. If applied before the
baseline estimation, the idea is that the baseline estimation is
not depending on the noise level. For smoothing a lot of
algorithms exist, like Savitzky−Golay filtration, finite impulse
response modeling, wavelet transform, and Fourier transform
based algorithms.64 In reference 65, a new type of algorithm is
developed, which is based on a spectral reconstruction by

Wiener estimation. It is worth to mention that a noise
reduction is also achieved using a factor based dimension
reduction technique.
After the baseline estimation, smoothing is carried out. An

intensity normalization is essential to remove the effect from
different sample preparations and varying collection parame-
ters. This is usually done by dividing each intensity value of the
Raman spectrum by a constant value. Peak and vector
normalization are widely used. In the former the maximal
intensity of a defined peak or the integrated peak area are
utilized as a normalization constant. In vector normalization,
the 2-norm of the Raman spectrum is applied as the
normalization constant.36 Notably, it is demonstrated that
different choices of Raman bands used for peak normalization,
lead to rather different results. No single choice of Raman
bands ensures an optimal result for all applications. Instead,
analysts have to decide, which specific Raman band for
normalization is reasonable for their application. Usually, a
substrate or a solvent peak is used for normalization purposes.66

Finally, it was demonstrated in reference 37 that a high
number of preprocessing combinations lead to a worse
performance of a further analysis compared with doing no
preprocessing. Thus, it is necessary to evaluate the quality of
the preprocessing, which is far from straightforward. The “trial
and error” method and a quality parameter based method are
two possibilities for this purpose.67 The former approach is
often called model based and usually achieved by testing a
subsequent model for its performance. The output of the model
can be its sensitivity, specificity, or accuracy, if a classification
model is tested, or the Root-Means-Squared Error of Prediction
(RMSEP) for a regression model.37 For the quality parameter
based approach, there are several quality parameters existing for
chromatographic, nuclear magnetic resonance (NMR) spec-
troscopy, and near-infrared (NIR) spectroscopy.67,68 To the
author’s best knowledge, there are no such parameters applied
in Raman spectral preprocessing.
At the end of this section, it is worth to mention that analysts

have to be careful about the sequence of these aforementioned
preprocessing steps. Currently, different sequences are being
used depending on the idea a researcher has for the data at
hand. There are no standardized preprocessing protocols, in
order to compare the data output from different laboratories or
devices. However, some sequences are definitely inappropriate,
for example, applying the normalization before a baseline
correction.69 Developing Standard Operating Procedures
(SOP) for Raman spectra of biological samples or for the
Raman spectral analysis of a certain task or type of spectra
should be investigated in the future.

Analysis Techniques. After the pretreatment of Raman
spectra is carried out, statistical models are applied in order to
extract relevant information, like concentrations of substances
or disease markers. These methods try to translate the physical
measured Raman spectra into higher level information, which
can be further used by chemists, biologists, and physicians.
Most of these methods have a statistical background, that is
why they will be called statistical models within this
contribution. The models, which are widely applied, do not
use the spatial arrangement of the spectra. They only analyze
the spectral information. Research about the incorporation of
the spatial distribution within the analysis is in progress but
should not be reviewed here. Instead we like to focus on the
well-established methods.6
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The statistical methods applied for the analysis of Raman
spectra can be grouped according to different properties. Here
we assort them into the groups, which are mostly used in the
analysis of Raman spectra. We will introduce clustering
algorithms, regression and classification models and unmixing
models. From an abstract point of view, this separation is not
consistent: The unmixing models can be seen as a fuzzy version
of the clustering algorithms and some unmixing models share
similarities with regression and classification models. However,
from an application point of view, this separation is appropriate.
In order to understand advanced statistical methods for

image generation and analysis of Raman spectra, we will start
with the description of the easiest possibility to generate an
image from a hyperspectral Raman data cube. To start with the
description of the image generation techniques, the arrange-
ment within a hyperspectral data cube has to be taken into
account. The arrangement is visualized in Figure 5. While the
spatial dimension are represented by the x and y direction, the
wavelength/wavenumber dimension is drawn in the z direction.
With that arrangement, a Raman spectra on position x,y is
represented by the z direction (Figure 5a). A mean spectrum of

a line in y can be generated by calculating the mean in an
upward direction in Figure 5b. A false color image over one
specific intensity values is a z-slice of the data cube. This is the
simplest way to visualize the distribution of a species, where the
intensity value can be attributed to. The visualized value can
also be extracted by a peak fitting of a Raman peak of the
species under investigation or the integration (sum) of a certain
wavenumber region. These easy methodologies feature an
advantage, they are computationally inexpensive and the
interpretation is clear as expert knowledge was used to generate
the model.
All further discussed methods are either statistically or

mathematically motivated, and the computational complexity is
increased compared with the easy univariate models described
above. Nevertheless, also these models extract information, like
group information or pseudoconcentrations, from every Raman
spectrum and using these values for image generation. In the
following, a short introduction together with a review of recent
publications is given.

Clustering. Clustering algorithms can be divided into two
major types: hard clustering and fuzzy cluster methods. As

Figure 5. Hyperspectral data cube, which is a typical result of a Raman imaging experiment.70 Such a hypercube can be analyzed in a number of ways.
The easiest are given here. While panel a indicates the location and orientation of a spectrum within the data cube, panel b shows the spectral mean
over a line in the y-direction. Panel c shows the distribution of a single intensity value over the x−y-plane. This procedure is the easiest way to
generate an image from a hyperspectral data cube. Reprinted from Journal of Pharmaceutical and Biomedical Analysis, 101, P.-Y. Sacré, C. De Bleye, P.-
F. Chavez, L. Netchacovitch, Ph. Hubert, E. Ziemons, Data processing of vibrational chemical imaging for pharmaceutical applications, 123−140 (ref
70), Copyright (2014), with permission from Elsevier.
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fuzzy clustering will be discussed in the unmixing section, we
only refer to hard cluster methods within this section. These
hard cluster methods are widely applied in Raman spectroscopy
in order to test if certain groups are reflected within the data or
for imaging purposes. The reason is that these clustering
procedures are simple and reliable methods for spectral
analysis. Especially for imaging purposes, an unsupervised
learning algorithm is ideal to produce an overview. Methods,
which are commonly applied for imaging, are k-means
clustering71−73 and hierarchical clustering.74−76 The first
algorithm starts with a random cluster distribution of k clusters
and then iteratively resorts the spectra according to their
minimal distance to the mean spectra of the clusters. This is
carried out until a stable arrangement is achieved. It is advisible
to run the algorithm 10−100 times and then use the best
cluster distribution. The hierarchical clustering exists in two
versions: agglomerative and divisive clustering. While in the
former, Raman spectra are merged to cluster until only one
cluster exists at the end in the latter cluster are split until every
spectrum is in its own cluster. The drawback of these methods
are that they are not computational efficient and therefore a
high processing power is required.
However, for big Raman spectral data sets, the complexity of

high-dimensional clustering can be avoided by a subsequent
unsupervised dimension reduction. For this purpose all feature
extraction procedures or factor methods can be utilized.6 The
most often applied factor method is the principal component
analysis (PCA),77,78 but also other methods like partial least-
squares regression (PLS) or similar methods are applied for

dimension reduction. Besides these general algorithms, some
algorithms are specifically adapted for large data sets and
spectral clustering,79,80 which includes the dimension reduction
step as well.81

Classification and Regression Methods. If high level
information should be extracted from the data, supervised
machine learning algorithms, like regression or classification
models, have to be applied. Among these, the linear
classification methods and regression procedures are widely
used by virtue of their simplicity and robustness.78,82−85

Despite the efficiency of linear models, in many cases more
powerful tools, like kernel support vector machines (SVMs)
and (deep) artificial neural networks are required. SVMs are
supervised learning models, which are basically linear classifier
and regression models. With various kernels the SVM can be
converted to a nonlinear classification and regression
model.86−93 Another example of powerful classification and
regression algorithms are random forests (RF), which is an
ensemble based method. RFs are based on the idea, which is
related to automatic generated decision trees:94−96 A
predefined number of random decision trees are constructed
and for prediction every tree is allowed to predict. The output
of the whole random forest is generated by a voting procedure
at the end. However, the high dimensionality of spectral data
sets can cause problems due to long computational time and
collinearity of variables. Like for clustering algorithms, these
problems can be avoided by applying a dimension reduction,
like a PCA before training a RF.

Figure 6. MCR-ALS algorithm is sketched.116 The hyperspectral data cube is reoriented into a matrix and this matrix is decomposed into estimated
component spectra and pseudoconcentrations. Additional knowledge can be incorporated by constraints to these matrices. The
pseudoconcentrations can be used to do chemical imaging. Reprinted from Analytica Chimica Acta, 762, Xin Zhang, Roma ́ Tauler, Application
of Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) to remote sensing hyperspectral imaging, 25−38 (ref 116), Copyright
(2013), with permission from Elsevier.

Analytical Chemistry Review

DOI: 10.1021/acs.analchem.5b04665
Anal. Chem. 2016, 88, 133−151

139

82 | Publications



While the SVMs can be used intrinsically as a classification
and regression model, pure regression models have to be
converted to classification models by modeling pseudoconcen-
trations. Often applied regression models are principal
component regression (PCR), which is based on PCA, and
partial least-squares regression.77,92 Despite the fact that these
approaches produce higher errors compared with a SVM or RF,
these models can be applied to avoid an additional step of
dimension reduction and decrease model optimization time.87

Common utilized partial least-squares regression methods are
PLS78,87,97−100 and interval PLS (iPLS), which is a modification
of PLS that does not only decrease the data dimension during
the analysis but also selects specific variables which give better
prediction compared with the usage of all variables.101

Recently published methods for the supervised analysis of
Raman spectra include methods, which combine certain
analysis steps, incorporate preprocessing steps into the
analytical model, or optimize the model in some regard. One
approach is the localized feature selection, which uses an
optimized feature selection for each spatial region of the
sample102 in order to describe the spatial distribution in an
optimal way. Another feature selection based method is related
to the Q-statistics.103 A number of studies incorporate certain
test statistics into the variable selection. In reference 104, the
Kruskal−Wallis and Conover−Inman tests are incorporated
into the feature selection and an optimized regression is carried
out. Dual classification (DuC)105 introduced by Lin et al. is
insensitive to the noise and the presence of outliers in the
training data set. The Constrained Optimization method based
Extreme Learning Machine for Regression (CO-ELM-R)106 is
another method to optimize the result of a regression model.
Besides improving feature selection and insensitivity to noise,
hybridization of well-established methods is another way to
optimize classification or regression models.107

Unmixing: Determining the Mixture Composition. An
important task that cannot be easily covered by the described
clustering, classification, and regression methods is the
determination of mixture compositions, especially if no further
information is available. If an appropriate training data set is
existent, regression models can be applied. Nevertheless, for
biological specimen this is often not the case. For this kind of
analysis task unmixing methods are the ideal tool. One
possibility to carry out unmixing is the application of a fuzzy
version of the above-described clustering methods, for example
c-means-clustering.108 This approach will result in a cluster
membership value for every spectrum, which can be interpreted
together with the mean Raman spectrum of every cluster.
Nevertheless, often a decomposition into pure spectra is
desired. For this task the so-called end-member extraction
methods are developed. They do not extract pure spectra but
the most extreme spectra in a certain sense. Methods, which are
commonly applied for end-member extraction, are N-
FINDR109,110 and Vertex Component Analysis (VCA).109,111

Another technique, which allows the estimation of constituent
spectra and pseudoconcentrations, is the multivariate curve
resolution-alternating least-squares (MCR-ALS) method. This
technique allows the use of additional knowledge and
incorporates this information into the modeling. It estimates
the chemical constituents or species of an unresolved mixture
and then decomposes a spectrum of a mixture with respect to
these estimated component spectra in an iterative man-
ner.82,112−115 In this iterative process constraints on the
estimated component spectra and pseudoconcentrations can

be incorporated. The MCR-ALS method is sketched in Figure
6.

■ APPLICATIONS
After we have reviewed the instrumentation and the analytical
procedures necessary to obtain Raman spectra and Raman
scans of biological specimens, we will focus in the next section
on the application. A full comprehensive review of the
application of Raman spectroscopy goes far beyond the scope
of this review. Therefore, we restricted the topic to cell and
tissue imaging and diagnostics based on Raman spectroscopy.
In the section Cell Imaging and Diagnostics we will review
recent studies on imaging and diagnostics of bacterial and
eukaryotic cells. In the section Tissue Imaging and Diagnostics,
we will focus on tissue based studies. As both topics are
sometimes hard to separate, these sections are not meant to be
a sharp separation.

Tissue Imaging and Diagnostics. Tissues provide
abundant information about diseases and alterations. Therefore,
the study of tissue by means of histological and immune stains
is the basis of pathology and histology. As the application of
Raman spectroscopy to study tissues is straightforward, it was
already envisioned in the 70s and the Raman based analysis of
tissue complement classical histo-pathology. In comparison to
the classical histopathology, Raman spectroscopic tissue
diagnostics uses a different type of information to separate
morphological structures and alterations. While in the classical
histopathology morphological information is employed in
Raman spectroscopic based diagnostics, the biochemical
composition is utilized to characterize abnormalities and tissue
alterations in this case. This is realized with the help of Raman
spectral imaging, either by raster scanning the tissue point by
point or by line illumination. In both cases, a hyperspectral data
cube is constructed. To this data cube the pretreatment and
analytical methods described in the section Computational
Methods are applied. With the help of these computational
methods, maps are created, which allow for chemical imaging.
Depending on the algorithm applied, the spatial distribution
and arrangement of constituents117 or groups reflected in the
measurement can be visualized. Thanks to the development
and optimization of measurement instruments and the increase
of computational power, high spatial and temporal resolution
can be obtained.118−123

Tissue Imaging. Over the past decade, a large number of
tissue types have been studied by Raman spectral imaging
methods, such as bone, breast, brain, tongue, larynx, spinal,
bladder, cervix, and colon tissue. Literately all parts of the body
were studied by Raman spectroscopy. Beside the visualization
of certain compounds or morphological structures in the tissue,
a diagnosis of a disease or diseases is desired. In principle, all
diseases and alterations, which lead to a biochemical change,
can be detected. Nevertheless, almost all Raman spectroscopic
studies involve a cancer detection96,117,124−140 and only a few
studies work on the diagnosis for other types of diseases, like
inflammatory bowel diseases (IBDs)141,142 or bone and skin
diseases. By now, various cancers, including brain, breast, lung,
etc., and other diseases of bone and skins, can be detected by
Raman spectral imaging.96,117,124−140 Recently, a widefield
Raman imaging technique has been reported for detection of
Heterotopic Ossification (HO),136 which means inappropriate
bone growth in soft tissue. Moreover, Raman spectral imaging
has found its great potential to investigate bone tissues,
especially osteoblasts.134,135 In situ detection of osteoblastic

Analytical Chemistry Review

DOI: 10.1021/acs.analchem.5b04665
Anal. Chem. 2016, 88, 133−151

140

Publications | 83



mineralization has been achieved by detecting the hydrox-
yapatite (HA) distribution in bone tissues.126 Great efforts have
been carried out to investigate breast cancer diagnosis. By
measuring a Raman spectrum, a real-time biopsy diagnosis can
be achieved by Raman spectral imaging.117,125,137,139 Brain
abnormality is another topic of Raman spectral imaging, such as
detection of injuries,140 cancer,131 and metastases.130 Further-
more, Raman spectral imaging has been widely employed to
diagnose dysplastic tissue or cancer of other tissues, for
instance, cervical,128 lung,127,129,133 bladder,138 skin,132 and
liver.96

Tissue Diagnostics. In order to compare the Raman based
prediction for tissue diagnostics with standard histopathology, a
special workflow is needed. This workflow is called spectral
histo-pathology (SHP).143,144 The workflow is sketched in
Figure 7 using the study of Bielecki et al.142 as an example. This
workflow starts with the generation of a cluster analysis and the
resulting false-color image is compared with a stained version of
the measured section. A pathologist is conducting a diagnosis
based on the stained image, but without knowing the spectral
falsecolor image, otherwise the study would be biased. By doing
so, every cluster in the false color image can be attributed to a
certain medical related class. In the case of the study presented
in reference 142, which is the basis of image Figure 7, these
medical related groups were blood, epithelial tissue, connective
tissue, mucus, and rest. Either these groups already incorporate
a diagnostic group that, for example, a cancerous tissue or a
defined tissue structure, is used to construct a diagnosis on a
second layer. In the example of reference 142, epithelial tissue is
employed to conduct a further classification into two disease

types (ulcerative colitis and Crohns disease) and healthy
controls. The SHP approach is employed for a large number of
cancerous diseases143,144 and for finding the primary tumor of
brain metastases.145,146 In that case, cancerous tissue on the first
classification layer is further distinguished into groups, which
reflect the location of the primary tumor. In reference 147,
tissue of the oral cavity is investigated but not in an automated
manner.

New Trends and Developments. Tissue imaging and
diagnosis based on Raman spectroscopy features a unique
potential, but the technique is rather slow and the signal
strength is limited. The Raman signal is intrinsically low due to
the small cross sections of the Raman process. Therefore, the
Raman spectrum can be easily masked by fluorescence of the
tissue. A possible solution is to apply high intense radiation or
long-time integration to improve the signal quality, but the
measurement process is enlarged. Additionally, this approach is
limited by the maximum permissible exposure (MPE), and long
measurements are not desired for studying biological tissues
and diagnostics.136 Therefore, a number of concepts have been
introduced, which should speed up the measurement or
increase the signal strength. Three of these concepts are
surface enhanced Raman scattering (SERS), coherent anti-
stokes Raman scattering (CARS), and stimulated Raman
scattering (SRS).
Surface enhanced Raman scattering (SERS) uses metal

surfaces and by choosing the excitation wavelength wisely
together with the substance and manufacturing method of the
metal surfaces, a field enhancement around the metal structures
can be recognized. This is one enhancement mechanism and

Figure 7. Spectral histopathology workflow is sketched. The recorded Raman scans are pretreated and a k-means cluster analysis (k = 10) is carried
out. The corresponding false-color images are subsequently compared with a HE-stained version of the section, on which a pathologist is doing his
diagnosis. On the basis of the comparison, the cluster can be attributed to medically relevant groups, which are in that case blood, epithelial tissue,
connective tissue, mucus, and a rest group. This training set can be used to construct a classification system for the morphology and a certain group
or subset of groups can be utilized to construct a diagnostic classification model. In that case the epithelium of the both diseases Ulcerative colitis and
Crohns disease is distinguished from the epithelium of healthy controls. Reproduced with permission from Christiane Bielecki; Thomas W. Bocklitz;
Michael Schmitt; Christoph Krafft; Claudio Marquardt; Akram Gharbi; Thomas Knsel; Andreas Stallmach and Jrgen Popp, Classification of
inflammatory bowel diseases by means of Raman spectroscopic imaging of epithelium cells, J. Biomed. Opt. 17, 076030 (2012) (ref 142). Copyright
2012 Society of Photo Optical Instrumentation Engineers.
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the generated evanescent field is a way to obtain stronger
Raman scattered light. In the last years, significant progress has
been achieved in the application of SERS for tissue imaging. In
particular, nanoparticles conjugated with specific antibodies are
used as markers for a selectively enhancement of the Raman
intensity of the corresponding antibodies.148,149

Other approaches for signal enhancement are coherent
Raman techniques, like antistokes Raman scattering (CARS) or
stimulated Raman scattering (SRS), which can provide orders
of magnitude stronger signal, with higher temporal and spatial
resolution compared to spontaneous Raman techniques.150

Because of its high sensitivity in detecting lipids, proteins, and
DNA, CARS has become a potential Raman imaging tool for
biological samples.150 For instance, it was employed in ex- and
in vivo imaging of mouse ear, where a strong epi-CARS signal
was obtained due to the backscattering of the intense forward-
propagating CARS radiation in tissue.151 Axonal myelin was
investigated using forward and epi-detected CARS. This study
was performed on spinal cord white matter which was isolated
from guinea pigs.152 Moreover, CARS was demonstrated
feasible to diagnose lung carcinoma.153 Most CARS based
studies use single band approaches, but recently broad band
techniques are applied as well. A high-speed broad band CARS
system has been reported which can image the entire

biologically relevant Raman window from 500 to 3500 cm−1.
With this system, healthy murine liver, pancreas tissue, as well
as interfaces between xenograft brain tumors and the
surrounding healthy brain matter were imaged.154 Also other
tissue types have been investigated using conventional CARS in
combination with further nonlinear imaging modalities,155,156

and those images can readily be used for diagnostic purposes.
Similar to CARS but not disturbed by a nonresonant
background is stimulated Raman scattering (SRS), which has
also been used for studying biological tissues.157 For further
details of CARS and SRS, both technical and application issues,
reviews 150, 158, and 159 are recommended.
Another challenge for Raman spectral imaging of tissues is

the maximum penetration depth, which has been restricted to
surface or near-surface applications. With spatially offset Raman
spectroscopy (SORS), however, the measurement depth in
tissues can be increased to 10−20 mm. This strategy has
successfully been applied for investigation of bone disease,
glucose level,160 urology,161 and soft tissues, for example, breast
tissue.162−164 The current research in the SORS field also
includes investigations on the appropriate analysis procedures
for the resulting SORS data.
Because of the development of fiber-optic Raman probes, a

further miniaturization of Raman spectroscopy based instru-

Figure 8. Raman and fluorescence images of rat lung sections incubated with a fluorescence dye (TxR) labeled ZrO2 nanoparticles (NP) are set
together.175 (A) An overlay of a bright field image and the reddish fluorescence image of TexRed is shown together with a magnified inset. (B) A
false-color image generated by a hierarchical cluster analysis of the Raman mapped region (inset region) is displayed. The colors represent the eight
predefined clusters. (C) By expert knowledge, a marker band integration is carried out and these maker bands are characteristic bands for tissue,
nucleic acids, and ZrO2 colored in green, blue, and red, respectively. The color scale ranges from maximum and minimum value within the image.
(D) The mean Raman spectra of the eight HCA clusters are given and prominent features are marked. Raman maps using calculated sum intensities
of selected wavenumber regions are constructed. (E) Again, an overlay of the bright field image and red fluorescence image is shown. The white
frames in part E are given in parts F and G in a zoomed version, and these regions were Raman mapped. For the inset, the Raman images show again
tissue, nucleic acids, and ZrO2 colored in green, blue, and red. By comparison of the bright field image, the fluorescence image and the corresponding
Raman image are in good agreement and is visible. A. Silge, K. Brutigam, T. Bocklitz, P. Rsch, A. Vennemann, I. Schmitz, J. Popp and M. Wiemann,
Analyst, 2015, 140, 5120 (ref 175). Reproduced by permission of The Royal Society of Chemistry.

Analytical Chemistry Review

DOI: 10.1021/acs.analchem.5b04665
Anal. Chem. 2016, 88, 133−151

142

Publications | 85



ments is possible.165,166 Therefore, measurements of solid
organs can be achieved, for example, lymph nodes, prostate,
and breast.167,168 As shown in reference 169 with a fiber-optic
probe, Raman spectral diagnostics can support decision makers
during cancer surgery.169 Remarkably, several methods have
been explored to obtain high-quality Raman spectra with very
small or even no Raman background signal.170,171 The recently
developed exciting approach applies Raman spectral imaging
for the resection margin localization during cancer surgery.169

This is usually achieved by selective sampling to dramatically
reduce the required acquisition time, where the spatial
information on tissues is obtained by another optical technique
or real-time Raman spectra.120 For example, reference 169
shows a hand-held contact fiber optic probe which is developed
for differentiation of normal and cancerous brain cells during
surgery, which is related to prestudies.146,172−174

Recently, the combination of different analysis methods has
been focused for Raman spectroscopic application in biological
tissues.176,177 Complementary methods, namely, Raman spec-
troscopy and matrix-assisted laser desorption/ionization
(MALDI) mass spectrometric imaging (MSI), were combined
to provide a deeper understanding of biological tissues.178−181

Diffuse optical tomography methods were combined with
Raman spectroscopy to obtain reliable and repeatable localized
Raman signals from micro CT-imaged bones in vivo.118

Another multimodal combination is the combined measure-
ments of optical coherence tomography (OCT) and Raman

spectra.182−184 In this combination OCT acts as overview
technique, while the Raman spectra of certain sites are used to
predict tissue types and disease states. The so-called surface
enhanced spatially offset Raman spectroscopy (SESORS) is
able to measure tissues deep into 20−50 mm with up to four
labeled nanoparticles,185 where SORS and SERS are coupled.
Another possibility to use two approaches for tissue diagnostics
is the application of a dye or labeled structure, like a
nanoparticle. In that respect the design of the labeled structure
or dye in combination with the Raman excitation wavelength is
crucial. In Silge et al.,175 liver tissue was incubated with labeled
nanoparticles and the fluorescence signal and Raman spectra
are analyzed together. The image generation based on Raman
spectroscopic imaging and fluorescence imaging is visualized in
Figure 8. By employing a hierarchical cluster analysis of the
Raman scan the nanoparticles could be localized and its
surrounding tissue could be studied. A band integration model
could be constructed with characteristic bands for tissue,
nucleic acids, and ZrO2, which were colored coded in green,
blue, and red, respectively. Other approaches combining
fluorescence based techniques and Raman spectroscopy are
presented in the articles.186,187 In reference 186, a combined
fiber probe suitable for Raman spectroscopy and fluorescence
lifetime imaging is presented. Another interesting combination
approach is presented by Kong et al.,187 where the
autofluorescence image is used to select regions where a

Figure 9. Different computational imaging methods are visualized on an example cell. A white light image (a) of the cell, an univariate intensity plot
of the 2935 cm−1 Raman band (b), and a fluorescence image tracking mitochondria (c) are given. The images d and e correspond to hard clustering
algorithms for image generation. While image d represents a HCA generated cell image, image e is generated by a KM using eight clusters. The
image f is generated by a thresholded fuzzy cluster (FC) method with five clusters. The images g−i are constructed using a PCA, a VCA algorithm,
and the N-FINDR using three components, which are colored by green, blue, and red. See reference 109 for a biospectroscopic interpretation of the
clusters and the images. With kind permission from Springer Science+Business Media: Theoretical Chemistry Accounts, Spectral unmixing and
clustering algorithms for assessment of single cells by Raman microscopic imaging, 130, 2011, 1249, Martin Hedegaard, Christian Matthaüs, Soeren
Hassing, Christoph Krafft, Max Diem, Jürgen Popp, Figure 1 (ref 109), Copyright Springer-Verlag 2011.

Analytical Chemistry Review

DOI: 10.1021/acs.analchem.5b04665
Anal. Chem. 2016, 88, 133−151

143

86 | Publications



Raman spectrum is measured and thus a faster acquisition of
large areas can be carried out.
Cell Imaging and Diagnostics. Besides the analysis of

tissue, Raman spectroscopy is also employed to study cells,
which are not in a network like in tissue. The application of
Raman spectroscopy to study single cells, their interaction with
the surrounding, and the ongoing cellular processes is an
emerging field, and there are a huge number of publications.
We try to review these publications in a sorted manner.
Therefore, we divided the cell studies in studies on eukaryotic
cells, bacteria, and fungi. Bacteria are usually small, so they can
be covered within the laser focus. Therefore, the inner structure
of bacteria and spores are not easily accessible with Raman
spectroscopy. Thus, most of the Raman based studies on
bacteria are devoted to either classification or identification of
groups of bacteria or to the investigation of the bacterial
response on changes in the surrounding of the bacteria, like
their growth medium. In the later studies, the bacteria are used
as a biosensor. In contrast to that, eukaryotic cells and fungi are
larger than the laser focus and thus the inner structure of cells
can be investigated. Therefore, a huge application field for
Raman spectroscopy is the imaging of cells, their inner
structure, and changes introduced by a drug treatment or
other influencing factors. In this regard often the response to a
cancer drug on cancer cells is studied. Another approach is
cyto-pathology based on Raman spectroscopy. Here, Raman
spectroscopy is employed to differentiate the biochemical
constitution of cancer cells and normal or benign cells. The
biochemical composition, measured by a Raman spectrum, is
then utilized with a pretrained classification model to conduct a
diagnosis of a certain cell. In that regard a single cell based
diagnosis would be possible, which would be highly beneficial
for fine needle biopsies or brush biopsies. Within this section
we will focus on eukaryotic cell studies; for bacterial cell studies,
excellent reviews are available.188,189

Cell Imaging. First we like to focus on the Raman spectral
imaging of eukaryotic cells.191 If the Raman based imaging is
carried out without a label, mathematical methods are used to
generate an image. These statistical and mathematical methods
are summarized in the Computational Methods section. The
methods for image generation of cells typically belong to either
hard clustering, soft clustering, or unmixing procedures. In
order to get an idea of how these algorithms for Raman spectral
imaging of cells work, Figure 9 provides a comparison and
overview of the different methods. In Figure 9, a white light
image of a cell is given. In comparison, panel b shows the
application of a univariate image generation method using the
intensity of the 2935 cm−1 band and panel c is a fluorescence
image tracking mitochondria. The images in panels d and e are
the result of hard clustering algorithms for image generation, a
HCA and a KM using 8 clusters. The image f is generated
utilizing a fuzzy cluster method (FC) with 5 clusters but
thresholded before visualization. The images in panel g−i are
constructed by multivariate unmixing and factor methods.
These methods are a PCA (g), a VCA algorithm (h), and the
N-FINDR (i) using three components, which are colored by
green, blue, and red. In reference 109, these groups and the
mean Raman spectra are interpreted. Further studies not
involving a label for visualization purposes are in references
192−194. In reference 192, significant differences in Raman
spectra of cytosol and nucleus in different cell-lines were
demonstrated. The conclusion is that Raman spectra could
quantify the cell state before and after the induction of

differentiation in neuroblastoma and adipocytes. The article by
Ghita et al.194 demonstrates that Raman spectroscopy can be
used to investigate stem cells. Raman spectroscopy detects the
biochemical composition, which reflects the specialized
function of differentiated cells. The authors claim that Raman
spectroscopy can be utilized for the evaluation of culture
conditions during differentiation, cell quality, and phenotype
heterogeneity of stem cells. The article, reference 193 on the
other hand, warns that a lack of consistency and transparency in
the construction of false-color Raman images may lead to
wrong interpretation and clues. The false-color images should
reflect the biomedical question under investigation.
Beside this direct visualization, a common Raman spectro-

scopic based practice is to label the structure of interest either
with an isotopic compound, like C13 or deuterium, or to use a
SERS active nanoparticle. Such a methodology was applied in
reference 195, where macrophages were studied. With the help
of deuterium labeled fatty acids, the uptake and storage of these
exogenously provided fatty acids could be investigated. Li et
al.196 employ gold nanoflowers as a SERS substrate, and they
investigate the enhancement of gold nanoflowers and they
demonstrate that these SERS substrates result in a strong
Raman signal of living cells. Furthermore, they could show that
nanoflowers feature excellent targeting properties and a high
signal-to-noise ratio for SERS imaging. Panikkanvalappil et
al.197 demonstrate that SERS labeling can be utilized to
distinguish cancer cell DNA from healthy cell DNA. The
authors claim that the measured SERS spectra were highly
reproducible and independent from the human cells and the
highly complex composition of the cells. The same group
demonstrated198 that monitoring the mitosis of cells with
functionalized gold nanocubes and SERS is possible. They
studied the complex biological processes involved in mitosis
within populations of healthy and cancerous cells. The authors
could interpret their results in a way that a high number of
proteins were converted from their helix to a sheet
conformation. Another study involving SERS labels is
presented by Xiao et al.199 Within the study of the expression,
spatial distribution as well as the endocytosis of EGFR, the
Epidermal Growth Factor Receptor, in single breast cancer cells
is investigated using SERS. Schie et al.200 have developed a
compound multiphoton microscopy and Raman spectroscopy
method for label-free fatty acid chromatography of individual
cellular lipid droplets. By comparing the relative amount of
palmitic acid and oleic acid determined with Raman spectros-
copy in individual lipid droplets with gas chromatography (GC)
analysis of several millions of cell, the researchers could show
that Raman spectroscopy performed equally to GC.

Classification of Cells. Another type of cell based Raman
studies investigates the possibility of classifying cells based on
their Raman spectra. The idea behind this approach is that
every cell has its unique Raman spectral fingerprint. The
application of such a Raman based prediction of cell type would
be immense: by a minimal invasive brush biopsy or a fine
needle biopsy cells are taken from a patient and by measuring a
small number of Raman spectra a prediction of the disease state
would be possible. In that way cytopathology might be
revolutionized.
In order to test the feasibility of the approach, a number of

recent studies are carried out. Pijanka et al.201 applied Raman
spectroscopy to differentiate between lung cancer cells and lung
epithelial cells. The authors state that this separation is not
sufficient as both cell types also have to be differentiated from
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lung fibroblasts as well. Another study researches the possibility
of a Raman based fine needle aspiration cytology.202 Within this
contribution, various classification models are constructed and
evaluated by a cross-validation. One model was based on a
SVM and designed to separate six breast cancer cell lines, T47-
D, MT-3, MCF-7, JIMT-1, HCC-1143, and BT-20, from each
other. The classification accuracy was around 99%. In contrast
to the former study, Farhane et al.203 investigate the influence
of the location where spectra are measured on the classification
performance. Normal and cancer cells from lung origin,
adenocarcinoma cell lines, the Calu-1 cell line, and the
BEAS2B normal immortalized bronchial epithelium cell line
were studied. Raman spectra of different subcellular compart-
ments (cytoplasm, nucleus, and nucleolus) were acquired. The
result was that all regions can be utilized to differentiate normal
and cancer cells, but for certain classification tasks only the
nucleolar spectral profiles yielded a good classification perform-
ance. In the presented case, the two cancer cell lines could only
be differentiated by the nucleolar Raman spectra. The
publication by Lyng et al.190 also deals with cell based cancer
diagnosis. The authors demonstrate that Raman spectroscopy
in combination with multivariate statistical analysis is sensitive
to biochemical changes occurring due to cervical cancer. A
good validation employing stains is demonstrated, which is
related to Figure 10. The authors discussed recent advances and
challenges for screening and diagnosis of cervical cancer. The
principle, which is illustrated in Figure 10 applies to all Raman
based cell studies. A number of cells are measured and
compared with the gold standard or a reference method.

In this case a Pap-stained negative Thinprep slide is used to
determine the cell types and conditions of the cells. After back
tracing of the stained image to the corresponding Raman
spectra, the spectra of the groups (parabasal, intermediate and
superficial erythrocytes, and white blood cells) can be
investigated.

Cellular Drug Response. Another application field for cell
based Raman studies is the determination of the cell-drug
response on the single cell level and the investigations of carrier
systems for intracellular drug delivery.204 Bi et al.205 investigate
different breast cancer cell lines and their behavior during
lapatinib treatment. The authors could characterize the
biochemical composition of different cancer cells (BT474,
MCF-10A, HER2+ MCF-10A), which are either lapatinib
resistant or sensitive. The results indicated a different
lipogenesis of resistant cells compared to sensitive cells. In
another study,206 Raman spectroscopy was utilized to
determine the spatial distribution of the drug erlotinib within
cells. The study provided insights into the drug acting
mechanism within the cells in a noninvasive manner. The
authors demonstrate that the drug is colocalized with the EGFR
protein at the membrane and erlotinib is metabolized within
cells to its demethylated derivative. The latter fact was proven
by the change of the Raman spectrum of erlotinib measured in
cells compared to a reference erlotinib spectrum. A similar in
vitro study was carried out by Braütigam et al.207 They
investigated the monitoring of the effectiveness of anticancer
drugs in living colon cancer cells (HT-29). By a number of
Raman scans, morphological as well as biochemical changes

Figure 10. A typical application of Raman spectroscopy for cyto-pathological diagnostics is shown.190 (a) A Pap-stained negative Thinprep slide
shows different cell types or conditions. Here parabasal, intermediate, and superficial cells are marked by a black arrowhead, a solid arrow, and dashed
arrows, respectively. White blood cells are indicated with a red arrowhead. Mean Raman spectra of these types and conditions are visualized below
with a measure of their uncertainty. The color code is as follows: parabasal (light blue), intermediate (blue), superficial erythrocytes and white blood
cells (black). With kind permission from Springer Science+Business Media: Analytical and Bioanalytical Chemistry, Raman spectroscopy for screening
and diagnosis of cervical cancer, 407, 2015, 8279, Fiona M. Lyng, Damien Traynor, In̂es R. M. Ramos, Franck Bonnier, Hugh J. Byrne, Figure 4 (ref
190), Copyright Springer-Verlag Berlin Heidelberg 2015.

Analytical Chemistry Review

DOI: 10.1021/acs.analchem.5b04665
Anal. Chem. 2016, 88, 133−151

145

88 | Publications



could be observed while the cells were treated with the
chemotherapeutic agent docetaxel. A quantification of the
response time could be achieved, which may lead to a
monitoring tool for the effectiveness of an ongoing chemo-
therapy. The authors of reference 208 investigate the molecular
changes induced by drug treatments on cancer cell nuclei for an
improved cancer therapeutic efficiency. In order to understand
the mode of action, surface-enhanced Raman scattering (SERS)
spectroscopy is applied to study Soma Gastric Cancer (SGC-
7901) cells treated with two drugs.
By in situ SERS spectral analysis, the effects of two drugs

(Hoechst33342 and doxorubicin) on biomolecules within the
cell nuclei could be unraveled. In the study by Farhane et al.209

the drug doxorubicin was studied within the cells of the lung
cancer cell line A549. They employed multivariate statistics in
combination with Raman spectroscopic imaging to study the
doxorubicin interaction with cancer cells and induced spectral
variations. The authors could show that Raman spectroscopy
can localize the drug with subcellular resolution and determine
the local biomolecular changes induced by doxorubicin. The
apoptotic effect in the nuclear regions determined by Raman
spectroscopy indicates that the method is capable to monitor
the mechanisms of action and response of the cell on a
molecular level. Schie et al. used line-scanning Raman
microscopy to investigate doxorubicin-induced changes in
leukemia T cells for drug exposure time up to 96 h.210 It was
shown that while spectra from individual cell locations were bad
predictors of drug-induced changes; Raman spectra represent-
ing the total molecular changes in cells were highly reliable. In a
follow-up publication, the researchers investigated doxorubicin-
induced changes for drug-exposure times between 12 h and 24
h and showed that changes in the total molecular content
already occur at 12 h post exposure.211 Moreover, a reliable
mean spectrum, which can be used to describe the total
molecular content of a leukemia T cell, can be established based
on 30 Raman spectra from randomly chosen cellular locations.
Another study on breast cancer cells is carried out by Goel et
al.212 Within the study, the Pentoxifylline treatment induced
spectral changes are elucidated. Beside the interpretation of
these changes as a linear function of the drug dosage, a
classification between a control group and PTX treated group
was carried out indicating again the feasibility of Raman
spectroscopy as a control tool. In the article, reference 213, the
uptake and toxicity of nanoparticles in living cells are
researched. Raman spectroscopy allowed for the localization
of the nanoparticles inside NIH/3T3 fibroblasts and RAW
264.7 macrophages. From the spatial position of the nano-
particles within the cells and the intracellular concentration
with respect to cellular constituents such as proteins and DNA,
the uptake could be studied. Like the former also214 focus on
the potential and limitations of Raman spectroscopy to analyze
living 3D samples. Raman spectroscopy allows for a labelfree
monitoring of metabolic changes with high sensitivity and can
be applied also in 3D cell cultures. They point out that
application oriented and user-friendly systems are needed to
use the unique potential of Raman spectroscopy for monitoring
of cell−drug relationships.
Recent Developments for Cell Studies. Recent approaches

and developments in the field of Raman based imaging and
diagnostics of cells include combination of different method-
ologies, improvement of existing techniques, and methods for a
higher throughput. Higher throughput can be achieved by a
parallelization of the measurement or by methods which feature

a higher quantum yield. A method which results in a stronger
signal is the SERS method but also the mentioned CARS and
SRS technique. A number of the SERS studies are already
reviewed in the sections above. The stimulated Raman
scattering (SRS) is a quite promising technique but is
demanding in terms of lab equipment.159 In the article,
reference 215, SRS is used to monitor deuterated choline
within living mammalian cell lines. They could show that the
subcellular distributions of choline metabolites differed between
cancer cells and benign cells. The isotope-based stimulated
Raman scattering microscopy for studying choline may also be
applied in vivo. As for the conventional Raman spectroscopy
also, advanced image analysis and chemometric procedures are
applied to analyze the SRS data. This is the subject of ongoing
research. For example, in reference 216, a hyperspectral image
analysis methodology for SRS data is presented. The authors
could show that their spectral phasor analysis allows for a fast
and reliable cell segmentation. Other approaches to speed up
the measurement are parallelization methods, like line-scan
Raman microscopy (LSRM),217 taking measurements in
parallel on a filter system218 or perform the measurements in
a microfluidic lab on a chip device.219 A lot of ongoing research
is devoted to the combination of Raman spectroscopy with
other measurement approaches. Two example studies showed
the combination of SERS and fluorescence based techniques208

and Raman spectroscopy with atomic-force microscopy
(AFM).220 These methods try to use the complementary
information within each kind of data in order to get a deeper
insight into the cell morphology or biochemical changes
ongoing via cancer transformation or treatment.

■ SUMMARY AND CONCLUSION
Within this contribution, we reviewed Raman spectroscopy for
biomedical applications. We have put together the state of the
art and new developments. The review was structured into
instrumentation, computational methods, and applications. The
time frame covered in these sections differ: In the
instrumentation and computational methods sections, also
older literature was reviewed, in order to give the reader the
possibility to use the section as a tutorial and to see the
progress made in the respective field. The application section
was divided into cell- and tissue-based studies focusing on
eukaryotic cells. The time frame covered within this section is
the recent years from 2011, with accentuation on the last 2
years.
In every section an outlook was given indicating new trends

and developments. Especially, the application of Raman
spectroscopy to real world problems will become challenging
and exciting. The development of faster imaging and measuring
devices, fiber-based Raman probes, and hand-held Raman
devices will get Raman spectroscopy ready for real world
applications, for example, in clinics. Therefore, Raman
spectroscopy research is moving from research laboratories to
real application laboratories in biological, pharmaceutical, or
clinical departments. The next step Raman spectroscopy has to
take is a good performance in clinical trials to validate the
findings and to translate this technique into clinical practice. To
do so, a larger data basis and the development of SOPs will be
an essential step to move beyond the proof of concept. For
biological applications, the combination of Raman with other
analytical or imaging techniques will be in the focus of further
research. Therefore, Raman spectroscopy in combination with
other techniques will answer the next important questions. To
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sum this contribution up, Raman based molecular imaging and
analytics is a magic bullet for biomedical applications.
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(143) Ergin, A.; Großerüschkamp, F.; Theisen, O.; Gerwert, K.;
Remiszewski, S.; Thompson, C. M.; Diem, M. Analyst 2015, 140,
2465.
(144) Diem, M.; Mazur, A.; Lenau, K.; Schubert, J.; Bird, B.;
Miljkovic,́ M.; Krafft, C.; Popp, J. J. Biophoton. 2013, 6, 855−886.
(145) Fullwood, L. M.; Clemens, G.; Griffiths, D.; Ashton, K.;
Dawson, T. P.; Lea, R. W.; Davis, C.; Bonnier, F.; Byrne, H. J.; Baker,
M. J. Anal. Methods 2014, 6, 3948−3961.
(146) Bergner, N.; Bocklitz, T.; Romeike, B. F.; Reichart, R.; Kalff,
R.; Krafft, C.; Popp, J. Chemom. Intell. Lab. Syst. 2012, 117, 224−232.
(147) Behl, I.; Kukreja, L.; Deshmukh, A.; Singh, S. P.; Mamgain, H.;
Hole, A. R.; Krishna, C. M. J. Biomed. Opt. 2014, 19, 126005.
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S. Chem. Commun. 2011, 47, 4216−4218.
(149) Vendrell, M.; Maiti, K. K.; Dhaliwal, K.; Chang, Y.-T. Trends
Biotechnol. 2013, 31, 249−257.
(150) Cheng, J.-X.; Xie, X. S. J. Phys. Chem. B 2004, 108, 827−840.
(151) Evans, C. L.; Potma, E. O.; Puoris’ haag, M.; Côte, D.; Lin, C.
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Toward food analytics: fast estimation of lycopene
and β-carotene content in tomatoes based on
surface enhanced Raman spectroscopy (SERS)†

Andreea Ioana Radu,a,b Oleg Ryabchykov,a,b Thomas Wilhelm Bocklitz,a,b

Uwe Huebner,b Karina Weber,a,b Dana Cialla-May*a,b and Jürgen Poppa,b

Carotenoids are molecules that play important roles in both plant development and in the well-being of

mammalian organisms. Therefore, various studies have been performed to characterize carotenoids’ pro-

perties, distribution in nature and their health benefits upon ingestion. Nevertheless, there is a gap regard-

ing a fast detection of them at the plant phase. Within this contribution we report the results obtained

regarding the application of surface enhanced Raman spectroscopy (SERS) toward the differentiation of

two carotenoid molecules (namely, lycopene and β-carotene) in tomato samples. To this end, an e-beam

lithography (EBL) SERS-active substrate and a 488 nm excitation source were employed, and a relevant

simulated matrix was prepared (by mixing the two carotenoids in defined percentages) and measured.

Next, carotenoids were extracted from tomato plants and measured as well. Finally, a combination of

principal component analysis and partial least squares regression (PCA-PLSR) was applied to process the

data, and the obtained results were compared with HPLC measurements of the same extracts. A good

agreement was obtained between the HPLC and the SERS results for most of the tomato samples.

Introduction

For the last several centuries, the scientific focus has been
directed toward characterizing the functioning and necessities
of the body. Moreover, currently, the role different molecules
have, their pathway upon ingestion and their daily intake
necessity is being documented. Among others, carotenoids
have attracted much attention because of their large
bioavailability1–4 and their important roles in the mammalian
organism.5–10 Nevertheless, it has been found that only 50 out
of more than 600 different known carotenoids1–4 are actually
present in the human diet, and only 5–6 of them are detectable
in human plasma (α- and β-carotene, β-cryptoxanthin, lyco-
pene, lutein and zeaxanthin).5,11 The functions each of these
carotenoids play in the body range from pro-vitamin A activity
and antioxidant activity to radical scavenging. For instance,
all-trans-β-carotene is the only carotenoid capable of oxidative
cleavage into two all-trans-retinal molecules, and this process
appears to have a feedback regulation property.2,8,11,12 That is,

β-carotene absorption and conversion to retinol partially
depends on the individual’s vitamin A availability. Moreover,
according to different published statistics the necessary intake
of vitamin A based on dietary sources of animal origin (e.g.,
fatty fish, liver and eggs) is often not reached.9–11,13 Further
on, out of the 6 carotenoids detectable in the human plasma,
lycopene was found to have the highest efficiency as an
antioxidant capable of neutralizing reactive oxygen species
(ROS)5,14,15 and reducing both cell-division at the G0–G1 cell
cycle phase and insulin-like growth of mitogens in various
cancer cell lines.5,16,17 There are, however, also negative effects
of excessive carotenoid uptake in combination with smoking
and alcohol drinking.9,18 It is, accordingly, important from a
health point of view to have a balanced dietary regime. Still, to
achieve such a regime, information regarding the quality and
composition of the food is needed.

The golden standard in carotenoid analysis is high per-
formance liquid chromatography (HPLC).19,20 The drawbacks
of this method are high costs and limited specificity (because
of co-elution).21 Thus, there is potential for alternative analyti-
cal methods. Among others, Raman spectroscopy and surface
enhanced Raman spectroscopy (SERS) were tested for analyz-
ing mixtures of carotenoids in various matrices.22–26 However,
previous Raman studies have failed to obtain sufficient differ-
entiation between the two carotenoids at lower concentrations,
with HPLC coupled with UV-VIS or MS detection remaining
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the better option for reliable food analytics.27–29 Here, we
present the first results of using SERS to differentiate between
lycopene and β-carotene in tomatoes at different ripening
stages. However, at this stage of the research, no advantage of
the potential the method has towards being non-invasive was
applied. Instead, a significant, but small amount of the full-
food-batch production sample was taken apart, and an estab-
lished extraction protocol was used to obtain analyte solutions
that were measured by both SERS and HPLC. Regarding the
SERS measurements, we designed a step-by-step experimental
procedure that reaches towards developing a possible protocol
for analyzing carotenoids from tomatoes by employing a rela-
tively simple spectroscopic technique in combination with a
statistical analytical tool. For this, the first step consisted of
the characterization of the pure carotenoids. Next, different
mixtures of β-carotene/lycopene solutions were prepared and
measured to create a database and a statistical model that
could be used for analysis of food extract samples. The avail-
able literature providing information about the amounts of the
two carotenoids present in natural products was consulted to
decide on the actual mixtures. Finally, a tomato extraction pro-
tocol was applied, and the tomato-extracts were measured and
analyzed by applying the already existing statistical model. To
verify the results of the proposed SERS approach, all tomato
samples were also measured by HPLC.

Experimental
Chemicals and reagents

All reagents were of analytical or HPLC reagent grade. Lyco-
pene (≥90% pure), β-carotene (≥95% pure) and 2,6-di-tert-
butyl-4-methylphenol (BHT, ≥99% pure) were purchased from
Sigma Aldrich (Steinheim, Germany). Methanol (≥99.5% pure)
was purchased from Carl Roth (Karlsruhe, Germany). Tetra-
hydrofuran (THF, ≥99.9% pure) was purchased from Merck
KGaA (Darmstadt, Germany).

Cherry tomatoes at different ripening stages were provided
by local producers from the area of Jena, Germany. First, a
series of tomatoes (series A) exhibiting different degrees of
ripeness (yellow to red) were taken from the same tomato
plant. The tomatoes were immediately frozen and stored at
−20 °C until analysis. A second series of four tomatoes (all of
them exhibiting the same degree of ripeness – all yellow) were
gathered from one plant (series B). One tomato from this
batch was frozen immediately. The remaining tomatoes were
illuminated with an 11 W lamp for various periods of time
leading to increasing degrees of ripeness. After illumination
the tomatoes were frozen and stored at −20 °C.

SERS active substrates

For the development of the SERS active substrates e-beam
lithography combined with ion-beam etching were used
according to the protocol described by Huebner et al.30,31

More exactly, a 4″ fused silica wafer was cleaned using a peroxy-
monosulfuric acid solution, and then a thin undercoating

(hexamethyldisilazane – HMDS) and a 260 nm thick positive
tone electron beam resist ‘AR6200.09’ (ALLRESIST GmbH)
were spun on the wafer. Further on, the resist was baked for
3 min at 150 °C on a hotplate, and a 10 nm gold layer was
evaporated on top of the resist. The electron beam exposure,
which was performed by using the unique character projec-
tion-based electron beam technique,31 of the shaped beam
writer SB350OS (from Vistec Electron Beam GmbH) resulted in
the formation of 48 chips per wafer (5 × 10 mm2). Each of the
obtained chips contains 4 gratings with a size of 1 × 1 mm2 for
the SERS investigations. The exposure and the removing of the
gold layer were followed by the development of the resist in an
AR 600-546 developer for 60 s and the IPA rinsing for 30 s.
Next, the etching into the fused silica surface was performed
with a CHF3–SF6–ICP etching process (Inductively Coupled
Plasma – ICP) by using an ICP power of 300 W. The etch depth
of the 2D gratings with a period of 436 nm is approximately
100 nm. Last, the residual resist was removed using an oxygen
plasma, and the wafer was separated into single chips.

Silver films were deposited freshly (at the beginning of
every measurement day) by means of thermal evaporation at
an oil-free background pressure in the lower 10−7 mbar range.
For this, the chips were mounted line of sight to the evapor-
ation boat to let the vapor strike the substrate normal to the
surface. High-purity 99.999% silver granules were used as raw
material. The thickness as well as the deposition rate was con-
trolled in situ using a quartz microbalance. The thickness of
the silver layer was 40 nm. A scanning electron microscopy
(SEM) image of the measuring fields used throughout the
experiments is presented in Fig. 1. The image was obtained
using a JEOL JSM-6700F system.

Sample preparation

For all of the experiments discussed in this study a mixed
solvent of methanol and THF stabilized with 0.1% BHT (1 : 1,
v/v) was used.

For the concentration dependent SERS measurements of
the two analytes, stock solutions of 106 μM β-carotene and
lycopene were prepared by dissolving the appropriate analyte
quantities in MeOH/THF. Measuring solutions were prepared
by dilution in MeOH/THF immediately prior to use. Final con-
centrations of 106, 90, 74, 58, 42, 26, 10, 9, 7.4, 5.8, 4.2, 2.6
and 1 μM were obtained for both analytes. All named solutions
were used for the SERS measurements shortly after prepa-
ration. For each measurement, a new SERS substrate was used.

For the SERS measurements of the β-carotene/lycopene mix-
tures two stock solutions of 100 μM of each analyte were pre-
pared, and the two analytes were mixed to obtain the analyte
percentages shown in Table S1.† Subsequently, the resulting
mixtures were measured. However, recording the full data set
took a couple of hours, and the mixtures were stored at −20 °C
for the needed time. For each mixture a different substrate
was used.

The food samples were homogenized to obtain a puree.
2–5 g of each pure sample were mixed with 30 ml methanol/
THF of a solution (1 : 1, v/v) and 200 mg magnesium
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bicarbonate. The resulting mixture was stirred using an ultra
turrax and filtered with a Buchner funnel. The procedure was
repeated two times. The combined filtrates were evaporated to
dryness and then dissolved in a defined volume of the extract-
ing agent. The resulting sample was measured by both SERS
and HPLC. For the SERS measurements a new substrate was
used for each extract.

Spectroscopic measurements

The extinction spectra of the analytes were recorded using a
Jasco V650 diode-array spectrophotometer.

For the SERS measurements, the substrates were incu-
bated in the analyte solutions for 30 min and then dried in
an Ar stream, which was chosen due to the instability of the
carotenoid molecules under normal lab conditions. SERS
spectra were recorded using a commercially available WITec
confocal Raman system (WITec alpha 300 SR, WITec GmbH,
Ulm, Germany) equipped with a 488 nm laser. The light was
focused onto the sample via a 100× objective (NA 0.9), and
the Raman scattered light was collected with the same micro-
scope objective. An optical grating of 1800 g mm−1 was used
resulting in a spectral resolution of ∼2 cm−1. Scans consist-
ing of 100 point measurements were recorded with an inte-
gration time of 0.5 s per point. The power at the surface of
the sample was adjusted to 20 μW. For each measured
analyte (standard solution or sample extract) 13, scans were
recorded.

Data analysis

All of the presented spectra were analyzed using R (version
3.0.2)32 and plotted using Origin 8.5. For data analysis, spectra
were first averaged over a 50-point measurement. The resulting
spectra were wavenumber calibrated, cut to the relevant spec-
tral range of 500–1700 cm−1, background corrected using the
sensitive nonlinear iterative peak (SNIP) algorithm,33 spike cor-
rected and, for the analysis of the mixtures and food extracts,
normalized for the whole spectral range. For the statistical
analysis, a principal component analysis (PCA)34,35 (using a
different number of components) was performed and followed

by a partial least squares regression (PLSR)34,35 (using a
different number of components) analysis. Two types of cross-
validation were performed. First, to build up the training data
set, all values representing one concentration were removed,
which was repeated for all of the applied concentrations
(further referred to as M1). Second, 1% of the total number of
measurements was randomly taken out for training (further
referred to as M2). The optimal number of principal com-
ponents for PCA and PLS was chosen, and a model was built
using all of the measured data. The obtained model was
applied to the test data to predict the food composition. A PCA
was applied prior to the PLS regression because performing a
regression of high-dimensional data within each repetition of
the cross-validation loop would dramatically increase the pro-
cessing time. On the other side, PCA is an unsupervised
method that can be used for the dimensionality reduction of
the data outside of the cross-validation loop. Consequently,
the PLS regression was performed for low-dimensional data,
so the time required for the model construction and evalu-
ation was significantly decreased.

Limit of detection (LOD) values were defined according to
the IUPAC norms and are equal to the signal of the blank plus
three times the standard deviation of the blank.

HPLC measurements

The HPLC system consisted of a Shimadzu binary gradient
system with a DGU-20A3R degassing unit, SIL-20AC auto-
sampler, CTO-20AC column oven and SPD-20A UV/VIS detec-
tor. The injection volume was 50 µl, and the separation was
performed on a 250 × 4.6 mm S-5 µm YMC 30 HPLC column.
The mobile phase consisted of methanol (solvent A) and ter-
tiary butyl methyl ether (tBME, solvent B). The total flow was
1.3 ml min−1, and the column temperature was adjusted to
29 °C. The gradient started with 90% solvent A and 10%
solvent B. A linear gradient was applied up to 55% solvent A
and 45% solvent B (45 min) followed by another linear gradi-
ent up to 45% solvent A and 55% solvent B (5 min). This ratio
was held constant for 5 min before returning to the starting
conditions (90% solvent A) within 2 min.

Fig. 1 SEM image of the measurement field of the SERS active substrate (grating pitch: 436 nm): a quartz-grating as the template without a silver
film (A) and the quartz-grating covered with 40 nm silver as a SERS-substrate (B).
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The peaks were evaluated at 450 nm and 470 nm. The
quantification was performed by an external calibration with
standard solutions taking into account the internal standard.
The limit of quantification (LOQ) determined by the signal to
noise ratio was 0.03 µg ml−1.

Results and discussion

Plants naturally produce carotenoids to color their flowers and
fruits, to attract animals, to gather the light needed for photo-
synthesis and to protect chlorophyll from photo-damage.1

According to the available literature1,2,36,37 lycopene and β-car-
otene are two carotene molecules (out of 600 known) that can
be found in the same plants, in different ratios, depending on
the maturity/age of the plant. As depicted in Fig. S1† and
largely presented in the literature,1,2,23,36 in the plant bio-
synthesis, lycopene is first formed, and upon cyclization, it con-
verts to either β-carotene or α-carotene, which further undergo
conversions to other carotenoid molecules. Accordingly, at the
different stages of fruit ripening the amount of lycopene and
β-carotene also differs. Considering this and keeping in mind
the different roles the two carotenoids have in the mammalian
organism, it is important to be able to differentiate which
plants contain high amounts of each of them. On the other
hand, lycopene and β-carotene are very similar from a chemi-
cal and spectroscopic point of view (Fig. 2), making the differ-
entiation rather difficult. Analyzing the extinction profile of
the analytes (see Fig. 2A), a gain from the resonance contri-
bution by using a 488 nm laser as an excitation source is
expected. In a further step, SERRS measurements of the two
analyte solutions having a concentration of 106 μM were per-
formed, and the obtained data are shown in Fig. 2B. By analyz-
ing these spectra, a number of differences in the two analytes
concerning band intensities and band positions are identified.
The ratio of the bands centered at 1526 and 1155 cm−1 and
assigned to CvC in-phase stretching and C–C stretching

vibrations of the polyene chain of the two molecules change
when comparing the case of β-carotene with that of lyco-
pene.38,39 Further on, in the spectral range of 1230–1330 cm−1,
two different small bands can be observed. That is, the band
centered at 1270 cm−1 and assigned to the C–H rocking
vibration (also belonging to the polyene chain), and the one at
1287 cm−1 assigned to the ring methylene twist.38 The ratio of
these two also changes for the different molecules. Addition-
ally, a 5 cm−1 shift of the band centered at approximately
1190 cm−1 (and assigned to the C–C stretching vibration) from
one molecule to the other can be observed.38

As already mentioned, this study is directed towards the
detection of β-carotene and lycopene out of a food matrix. To
do so, different experimental steps were designed and per-
formed. First, different concentrations of the independent
pure analytes were measured before mixing them in different
ratios (see Table S1† for the exact percentages). Upon perform-
ing these measurements and the analysis, a calibration curve
was generated and used for estimating the presence of the two
analytes in the studied tomatoes. The results were then com-
pared with the current gold standard, HPLC.

SERRS spectra of different concentrations of the analytes
ranging from 106 μM to 1 μM were measured to establish an
understanding of the technique’s sensitivity. As observed from
the plots in Fig. S2,† detection down to a concentration of
10 μM and 26 μM were achieved for lycopene and β-carotene,
respectively. Keeping this in mind and considering the already
discussed plant-carotenoid transformation path (see Fig. S1†),
different lycopene/β-carotene mixtures were prepared. Infor-
mation regarding the individual percentages of these two
analytes in each solution and the different individual concen-
trations are included in Table S1,† while Fig. 3 depicts the
obtained SERRS spectra. As already mentioned, a change in
the ratio of the bands centered at 1270 and 1287 cm−1 is
observed in the case of the SERRS spectra of the pure analytes
(Fig. 2B). The same observation is also valid for the spectra in
Fig. 3, where a gradual change of the two bands’ intensities

Fig. 2 Chemical structure and extinction spectra of lycopene, 18.7 nM and β-carotene, 6 μM (A) and SERRS spectra of the two analytes, 100 μM (B).
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occurs with a variation in the amount of the two analytes in
the solution. Additionally, a change in the shapes of the bands
centered at 1190 and 1207 cm−1 as the solution composition

changes is observed. That is, the band centered at 1190 cm−1

becomes more defined with increasing in β-carotene fractions.
To better comprehend and visualize these features and to
show the potential of the SERRS technique in food analytics,
the SERRS data were further analyzed by applying statistical
methods. As mentioned, this consisted of a PCA-PLSR analysis
considering the optimal number of components, selected
from two different cross validation procedures (see Data analy-
sis section of Experimental for further information). Neverthe-
less, before applying the PCA-PLSR analysis, each group of 50
spectra were averaged, resulting in a total number of 30
spectra per mixture that were further used for the statistical
analysis. This step was performed to compensate for the
widely discussed SERRS drawbacks regarding the chemical
binding of the analyte to the substrate and the reproducibility
of the larger scale SERRS measurements.40,41 Additionally,
when analyzing this result, one should consider that β-caro-
tene percentages lower than 26% are lower than the lowest
detectable analyte concentration achieved for measuring the
pure analyte. The same is valid for percentages of lycopene
lower than 10%. This was expected to negatively influence the
root mean square error (RMSE)34 value of the obtained
regression results. The RMSE values obtained for the different
considered PCA-PLS component numbers are depicted in
Fig. 4. When analyzing this data, one realizes that by using
more than 4 PCA components and 2 PLS components a satur-
ation of the RMSE for both cross-validation approaches is
achieved. Accordingly, to avoid overfitting, the chosen PCA-PLS
combination for further analysis was limited to 4 PCA and 2
PLS components, having a RMSE value of 11.7%. The different
cross-validated regression results are depicted in Fig. 5. The
expected accuracy of the proposed SERRS method in predicting

Fig. 3 SERRS spectra of the β-carotene/lycopene mixtures. The spectra
are arranged based on the variation of the two analyte percentages: (i)
0% β-carotene and 100% lycopene (0% βc and 100% lyc), (ii) 8% βc and
92% lyc, (iii) 16% βc and 84% lyc, (iv) 24% βc and 76% lyc, (v) 32% βc and
68% lyc, (vi) 40% βc and 60% lyc, (vii) 48% βc and 52% lyc, (viii) 56% βc
and 44% lyc, (ix) 64% βc and 36% lyc, (x) 72% βc and 28% lyc, (xi) 80% βc
and 20% lyc, (xii) 88% βc and 12% lyc, (xiii) 96% βc and 4% lyc, and (xiv)
100% βc and 0% lyc. The graph on the right side depicts the spectral
range between 1330 and 1160 cm−1 for better visualization.

Fig. 4 RMSE values for various numbers of components used for PCA and for PLS.

Analyst Paper

This journal is © The Royal Society of Chemistry 2016 Analyst, 2016, 141, 4447–4455 | 4451

O
pe

n 
A

cc
es

s A
rti

cl
e.

 P
ub

lis
he

d 
on

 1
2 

M
ay

 2
01

6.
 D

ow
nl

oa
de

d 
on

 2
4/

01
/2

01
8 

11
:5

5:
43

. 
 T

hi
s a

rti
cl

e 
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

Li
ce

nc
e.

View Article Online

100 | Publications



the concentrations of the two investigated carotenoids in food
samples is also around the same level. To assess the potential
of our SERS approach as well as its limitations by employing
real food samples, cherry tomatoes in different ripening stages
were investigated.

To do so, the data already presented was used in an attempt
to analyze two different series of cherry tomatoes differing in
their degree of ripeness. Tomatoes in the A series were picked
from the tomato plant upon reaching the different ripening
stages, and tomatoes from the B series were picked from the
tomato plant at the same early ripening stage (yellow). In the
case of the B series, the different investigated ripening stages
were achieved in simulated lab-ripening conditions consisting
of illuminating the vegetable with an 11 W lamp for the
needed period of time. Upon reaching a different ripening
stage under the lab illumination conditions, one tomato out of
the batch, corresponding to the new ripening stage, was frozen
and stored at −20 °C until the extraction and measurement
were performed. The analysis protocol depicted in Fig. 6 con-
sists of 4 easy steps. First, an HPLC extraction protocol
(described in the Sample preparation section) was performed
individually for each of the tomatoes studied (i) to obtain the

solutions (ii) used for incubating the SERRS substrates for
30 min (iii). Upon incubation, the substrates were dried using
Ar (iv) and measured by applying a 488 nm excitation source.
The obtained SERRS spectra are depicted in Fig. 7 together
with pictures of the 4 different ripening stages considered
throughout this study. As observed, the spectra are similar to
the ones already discussed (see Fig. 2B). Nevertheless, there
are a few differences in the spectral range of 1100–1300 cm−1.
First, a difference in the intensity of the band centered at
1190 cm−1 can be observed in both Fig. 7A and B as the color
of the tomato changes from yellow (spectra A1 and B1) to red
(spectra A4 and B4). The band intensity is higher in the case of
the yellow tomato and comparably lower for the red tomatoes.
By comparing this alone to the spectra in Fig. 2B one would
expect that the red tomato has higher lycopene content than
the yellow one. Further on, the shoulder that can be identified
at approximately 1207 cm−1 in the spectra of the pure analytes
(and that is assigned to the C–C stretching vibration)39 devel-
ops into a well-defined band in the case of the tomato
samples. This can also be observed in the case of the mixed
carotenoid spectra (Fig. 3) and could be a result of the inter-
action of the different carotenoid molecules via the polyene
chain. Additionally, the band centered at 1526 cm−1 in the
case of the pure analytes (Fig. 2B) is blue shifted in the case of
the tomato extracts by 6 cm−1 for the yellow tomatoes and
9 cm−1 for the red tomatoes (Fig. 7A and B). All of the named
spectral changes can be caused by the interaction of the caro-
tenoid molecules among themselves and with the SERRS
active substrate. However, one should keep in mind that in the
case of the tomato extracts the analyzed matrix has a higher
degree of complexity than the one used for creating the analyti-
cal model. More exactly, other carotenoids, such as phytoene,
phytofluene, ζ-carotene, γ-carotene and neurosporene, can
also be found in the tomato fruit matrix and could have spec-
tral contributions.42 Nevertheless, according to the literature,
the predominant molecule in the tomato fruit is lycopene fol-
lowed by β-carotene.26,42

The preprocessing of the tomato SERRS spectra was per-
formed by following the same steps performed in the case of
the studied pure analyte. The value obtained for the RMSE is
approximately 18.9%. The results (in the form of PLS scores
obtained by applying the PCA-PLS regression analysis) are pre-
sented in Table 1 together with the HPLC measurements’

Fig. 5 Cross-validation analysis results obtained for the case of the
4-component PCA and 2-component PLS analysis.

Fig. 6 Schematic representation of the analysis chain. As depicted, the first step consists of the preparation of the analytes to be measured. To this
end, the described extraction protocol was applied (i) and the resulting solutions (ii) were used for incubating the SERRS active substrate (iii). Upon
incubation the substrates were dyed with N2 (iv) and measured by means of SERRS.
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results. For the latter, the exact same extract was measured as
in the case of the SERRS experiments. As observed from the
table, a quite good agreement was obtained for the two analyti-
cal methods. In the case of the samples B1 and B2, however,
the lycopene and β-carotene content predicted by SERRS and
measured by HPLC presented different levels of the two caro-
tenoids. This might be due to miss-assignments of other caro-
tenoids present in the extract (i.e., phytoene, phytofluene,
ζ-carotene, γ-carotene and neurosporene) by SERRS, as at this
ripening stage their presence in the plant is expected. An
improved prediction of the tomato composition is expected
when employing all of the mentioned carotenoids for building
the model. This prediction is, however, beyond the aim of this
study. A further observation that can be made by analyzing
Table 1 is related to the variation in the lycopene composition
in an adult tomato fruit. Upon reaching the red ripening stage,
further storage of the tomato before consumption leads to a
decrease of the lycopene content in favor of other carotenoids.
This is important when deciding on a dietary regime building

towards a health-improving result. A last, interesting obser-
vation, first noted during experimentation, confirms that a
tomato’s lycopene content still increases when the fruit ripen-
ing is achieved in lab/shop conditions. This is important
regarding the transportation time needed from the actual plan-
tations to the commercializing facilities.

Conclusions

The current paper presents the work performed toward analyz-
ing cherry tomato fruits by means of SERRS. To this end, a
rather simple but relevant simulated matrix was prepared.
This matrix consisted of different mixtures of the two most
prevalent carotenoids found in tomatoes, namely, β-carotene
and lycopene. The percentages of the two carotenoids were
varied to simulate possible compositions in vegetables, such
as tomatoes. Upon statistical analysis, a regression curve was
obtained and used to analyze the tomato samples. Further on,

Table 1 Percentage of lycopene and β-carotene estimated to be present in the tomato extracts by means of HPLC and SERRS measurements

SERRS resultsa HPLC results

lyc βc lyc βc lycb βcb

% % μM μM % %

Plant-ripening A1 41.5 ± 12.9 58.5 ± 12.9 10.7 ± 1.1 7.8 ± 0.8 57.9 42.1
A2 70.1 ± 6.4 29.9 ± 6.4 30.0 ± 3.0 10.6 ± 1.1 74.0 26.0
A3 67.2 ± 9.4 32.8 ± 9.4 51.5 ± 5.1 13.4 ± 1.3 79.3 20.7
A4 59.6 ± 15.6 40.4 ± 15.6 20.8 ± 2.1 12.0 ± 1.2 63.4 36.6

Lab-ripening B1 11.3 ± 10.4 88.7 ± 10.4 13.1 ± 1.3 10.7 ± 1.1 55.1 44.9
B2 48.1 ± 9.0 51.9 ± 9.0 27.9 ± 2.8 13.2 ± 1.3 67.9 32.1
B3 86.6 ± 5.7 13.4 ± 5.7 99.7 ± 9.9 14.6 ± 1.5 87.2 12.8
B4 63.9 ± 4.8 36.1 ± 4.8 54.8 ± 5.5 18.0 ± 1.8 75.3 24.7

lyc – lycopene. βc – β-carotene. a PLS score value. b The % calculation was performed by considering that lycopene and β-carotene are the only two
carotenoids present in the extract.

Fig. 7 SERRS spectra of the garden-ripening tomato batch (A) and the lab-ripening tomato batch (B), as well as sample pictures of the colors the
tomatoes had when analyzed.
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two tomato series representative of garden-ripening and lab-
oratory-ripening conditions were considered to test the develo-
ped analytical method and to comparatively access the
lycopene/β-carotene abundance of market-available tomatoes.
Accordingly, upon acquiring the needed tomatoes for the
designed experiments, they were subjected to the same caro-
tenoid-extraction protocol and measured by both SERRS and
HPLC. The SERRS measurements were performed under the
same conditions as the ones employed for the lycopene/β-caro-
tene mixtures. Upon analyzing the data, we were able to esti-
mate the abundance of the two carotenoids investigated in the
tomato samples. Moreover, a good agreement was obtained
between the HPLC and the SERRS results for most of the
tomato samples. Additionally, both measurement methods
registered a gradual increase of the lycopene content indepen-
dent of the tomato ripening conditions investigated.
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Abstract

In this work, Raman spectroscopic cell imaging approaches and a discrimi-
nation between HepG2, nondifferentiated hepatic stem cell line HepaRG, and
differentiated hepatocyte-likeHepaRG cells are presented. Raman spectroscopic
imaging was used to visualize the cell nuclei by means of false color imaging
using a marker band, and a cell segmentation was performed by means of clus-
tering. Furthermore, a 3-class-classification model based on the mean Raman
spectra of individual cells was established for a classification between different
cell types. A high average sensitivity of 96% was achieved by the applied clas-
sification model. Based on the results of clustering and classification, the main
spectral contributions to different cell types and cell segments were analyzed
in detail. Thereby, HepG2, nondifferentiated hepatic stem cell line HepaRG,
and differentiated hepatocyte-like HepaRG cells were Raman spectroscopically
characterized and proven to be significantly different.

KEYWORDS
HepaRG, HepG2, Raman spectroscopic imaging

1 INTRODUCTION

Understanding the interactions between eukaryotic cells
and drugs is of utmost importance to (a)minimize the toxic
impact of pharmaceuticals on the human body in an early
stage of the drug design, (b) to personalizemedicationwith
a drug dosage tailored for an individual patient based on

*Oleg Ryabchykov and Katharina Bräutigam contributed equally to the
presented work.

its own capability to metabolize pharmaceuticals, and (c)
to react adequately to the course of a disease. Therefore,
cell–drug interaction assays are used to study the inter-
actions of drugs and cells. To implement such an assay
towards an understanding of cell–drug interaction on a
cellular and subcellular level, a model system is needed.
The most important organ of drug metabolism is

the liver including their numerous enzyme systems,
for example, the cytochrome P450 system, which is
involved in a number of metabolic pathways. Due to the

J Raman Spectrosc. 2018;49: 935–942. wileyonlinelibrary.com/journal/jrs Copyright © 2018 John Wiley & Sons, Ltd. 935
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hepatotoxicity, several drugs were withdrawn from the
market during the last decades.[1] One reason for this sit-
uation is the failure of animal-based studies as a result of
the weak correlation between the xenobiotic metabolism
and hepatic toxicity between humans and animals.[2] Fur-
thermore, primary human hepatocytes, which are known
as the gold standard model for investigations concerning
metabolism and toxicity, can only be obtained invasively
by surgical operation of patients. Often, the span of life
and activity of primary human hepatocytes are limited and
phenotypical changes occur early in the cell cultivation.[3]
In contrast, hepatocyte-like cell lines derived by tumors or
oncogene immortalizations are easy to access and can be
reproduced easily. One drawback of these hepatocyte-like
cell lines is the loss of liver-specific functions, especially
their enzyme activities.[4] One example of such a cell line
is the often used HepG2 cell line.
The unique human liver HepaRG stem cells were

derived from a differentiated human hepatoma at the
Institut national de la santé et de la recherche médicale
(Inserm) of France.[5] During cultivation, a differentiation
process can be initiated. Thereafter, the HepaRG cells dif-
ferentiate in two cell types: (a) hepatocyte-like and (b)
biliary epithelial-like cells. However, within the frame of
this work, we focus on the spectroscopic investigation of
the cells differentiated into hepatocyte-like cells, as they
are used for screening of treatments against hepatocellu-
lar carcinoma. In contrast to other cultivated liver cells,
these hepatocyte-like cells are capable of exerting a huge
amount of liver-specific functions, including cytochrome
P450 expression.[5] In addition, the cells can be stored by
cryopreservation and their functional activities are quite
stable. Therefore, the HepaRG cell line is well suited for
toxicity and metabolism studies and is a promising alter-
native to primary human hepatocytes with its described
drawbacks.[2] To shed light on the unique character of the
HepaRG cells and to reveal the changes occurring with
the cell differentiation, Raman spectroscopy was applied
as cell characterization tool. Prospectively, the spectro-
scopic monitoring of the differentiation process may allow
ensuring that the drug screening is performed on well
differentiated hepatocyte-like HepaRG cells. Moreover, it
can be used for comparison of the differentiation efficacy
depending on the substrates and laboratory setting.
Raman spectroscopy probes inherent molecular vibra-

tions that provide a highly specific molecular finger-
print of the biochemical composition of biological sam-
ples, such as cells and tissues.[6] As Raman spectroscopy
is a noninvasive vibrational spectroscopy approach and
does not require any labels, it needs minimal sample
preparation. Thus, vibrational spectroscopy was found
suitable for the investigation of stem cells.[7] Particu-
larly, Fourier-transform infrared spectroscopy has been

applied to monitor the differentiation of rat bone mar-
row mesenchymal stem cells,[8] mouse stem cell-derived
hepatocytes,[9] human mesenchymal stem cells,[10] and
also embryonic stem cells of murine[11] and human
origin.[12] On the other side, Raman spectroscopy has been
applied for differentiatingmurine embryonic stem cells[13]
and assessment of human osteoblast-like cells.[14] More-
over, Raman spectra of biological cells are useful to pre-
cisely describe the cellular content[15] and intracellular
response on a treatment.[16] In combination with an opti-
cal microscope, a high spatial resolution can be achieved.
The great potential of this so-called Raman spectroscopic
imaging to retrieve biochemical information from sin-
gle cells,[17] biological tissues,[18, 19] and body liquids[19]
has been demonstrated. Besides these studies, other cell
analytics[20, 21] and classification approaches[22] based on
Raman spectroscopy have been published within the last
years.
In this contribution, we report about the characteriza-

tion of HepaRG cells by means of Raman spectroscopic
imaging. Furthermore, a comparison of the spectral signa-
tures of HepaRG and the often used liver carcinoma cell
line HepG2 is shown. Moreover, an overview of the classi-
fication between two cell lines and a comparison between
differentiated hepatocyte-like and nondifferentiated
HepaRG cells are presented within this article. Overall,
this study shows that a monitoring of the cell differ-
entiation process by means of Raman spectroscopy is
possible. Therefore, it shows an essential prerequisite to
monitor the cancer treatment process of these cells by
means of nondestructive, label-free Raman spectroscopy.
This might improve the understanding of the working
principle of the treatment.

2 EXPERIMENTAL SECTION

2.1 Cell cultivation
The cells were incubated at 5% CO2, at 37 ◦C, in a
humidified atmosphere. HepG2 cells (Cell Lines Service
GmbH) were cultured in DMEM/F12 (Thermo Fisher
Scientific Inc.) supplemented with 10% fetal bovine
serum (Biochrom GmbH). The HepaRG cells (Biopredic
International, Rennes, France; Figure 1) were treated
according to Gripon et al. 2002.[23] Shortly, in order
to achieve cell proliferation, HepaRG cells were cul-
tured in Williams E without Glutamine (Thermo Fisher
Scientific Inc.) supplemented with 10% fetal bovine
serum (BiochromGmbH), 5 𝜇g/ml Insulin (Merck KGaA),
50 𝜇g/mlHydrocortisol-Hemisuccinat (MerckKGaA), and
GlutaMax (Thermo Fisher Scientific Inc.). In order to
achieve differentiation of the HepaRG into hepatocytes
and bile duct epithelial cells, the culture medium was
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FIGURE 1 A bright-field microscopic image of HepaRG cells

prepared as just described and supplemented with 2%
DMSO (Merck KGaA) in addition.

2.2 Sample preparation
For the Raman spectroscopic experiments, cells were har-
vested by trypsinization and seeded on calcium fluoride
slides in a 12-well plate. The same cultivation condi-
tions (5% CO2 at 37 ◦C) and the same medium as men-
tioned above were used. HepaRG cells, differentiated into
hepatocyte-like and biliary epithelial cells, were trans-
ferred to the calcium fluoride slides, where the differenti-
ated cells were cultivated for 5 days. HepG2 and undiffer-
entiated HepaRG cells were cultivated on calcium fluoride
slides up to 3 days under the microscopic control of the
cell density on the slide. At least three slides for each batch
were used. After the cultivation, the cells were fixed in 4%
formaldehyde solution (“Rotifix”, Carl Roth GmbH & Co.
KG) and stored in phosphate buffered saline (PBS) solution
(Biochrom AG) at 4 ◦C until the Raman measurement.

2.3 Ramanmeasurements
For Raman spectroscopic measurements, a commercially
available confocal Ramanmicroscope[24] CRM 300 (WITec
GmbH,Germany)was used. Themicroscopewas equipped
with a diode laser operating at 785 nm with a laser power
between 80 and 100 mW on the sample. Laser light was
focused with a 60×/NA 1.0 water immersion objective on
fixed cells in PBS solution. HepG2, HepaRG, and differ-
entiated hepatocyte-like HepaRG cells were located on
the slides by visual inspection of bright-field microscopic
images. Then, single cells were Raman spectroscopic mea-
sured using the mapping mode by collecting Raman spec-
tra at each point of a grid. A step size of 0.5 𝜇m and an

acquisition time of 2 s per single spectrum were used. In
total, 37 HepG2 cells, 49 hepatocyte-like HepaRG, and 37
nondifferentiated HepaRG were measured. Although the
used growth media were different, we do not expect them
to be present whilemeasuring, because the cells were fixed
and stored in PBS solution prior to Raman measurements.
Therefore, the differences related to the cell type should
featuremuch larger impact on the Raman spectra than the
difference in the growth medium.

2.4 Data analysis
All the described data analysis was done in the statistical
language R.[25] Prior to applying chemometric methods,
the Raman spectra were pretreated. The development of
this preprocessing workflow is important to achieve reli-
able results.[26] Thus, automatic calibration, background
correction,[27] and noise elimination[28] have to be per-
formed within the data preprocessing routine. In particu-
lar, the background was corrected using the sensitive non-
linear iterative peak (SNIP) clipping algorithm with 100
iterations, then the spectra were vector normalized, and
a dimension reduction by means of principal component
analysis (PCA) was applied. The average preprocessed
Raman spectra and the standard deviations for each cell
line are shown in Figure 4. Furthermore, the analysis was
repeated with another baseline correction to verify that
the discovered results are not dependent on the selected
background correction method. In an alternative process-
ing pipeline, the asymmetric least squares (ALS) baseline
correction[29] was used instead of SNIP.
Two different approaches were used for the visualiza-

tion of the cells according to the preprocessed Raman data.
First, the unsupervised k-means clustering (Figure 3a) was
utilized, which allows to segment the Raman spectral scan

FIGURE 2 Leave-one-out-cross-validation of the 3-class LDA.
The leave-one-cell-out-cross-validation accuracy of the LDA
classification between the three cell lines (HepG2, nondifferentiated
HepaRG, and differentiated hepatocyte-like HepaRG) for different
quantity of variables is shown. The bend, or saturation, point
(indicated with a dot) was estimated as an optimum for the number
of PC. LDA = linear discriminant analysis; PC = principal
component
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FIGURE 3 Raman spectroscopic imaging of hepatocyte-like HepaRG cells. The cell visualization with three different imaging approaches
for two different cells is shown: (a) cell morphology by k-means cluster analysis; (b) nucleus visualization using integration of a DNA marker
band at 785cm−1 (O-P-O stretching of DNA backbone); (c) identification of cell Raman spectra applying an integration over characteristic
Raman peaks of cellular components. The scale bar is valid for all images

according to spectral features. Thus, different clusters visu-
alize different cell components and the background. In
contrast to the clustering method, which uses the whole
available range of spectral information, a band integration
approach (Figure 3b,c) uses the peak area to visualize a
single molecular component.
In order to take the analysis from an unsupervised

visualization level to the level of cell classification

among different cell lines, a linear discriminant analy-
sis (LDA)-based classification was carried out. The model
was constructed based on the average Raman spectra of
the cells. An advantage of such a linear method is the
simplicity of the interpretation and its robustness. Thus,
even if the LDA classification is built on the principal
components (PCs) extracted by a PCA, the LDA load-
ings can be analyzed manually after back-projecting into
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spectral intensities using the inverse of PCA rotational
matrix.
However, PCA is often followed by nontrivial issue

of selecting the optimal number of PC components
for model construction. Although the main reason for
applying the dimension reduction is avoiding overfit-
ting, it is also important to keep the key features of
the spectra. Thus, the number of the variables should
not be too small either. To select the optimal number,
a leave-one-cell-out-cross-validation of the classification
between the three cell lines was performed for different
numbers of PCs from two to 20. The optimum has been
selected as a saturation point of the LDA classification
accuracy over the number of components (Figure 2, Figure
S1). Moreover, the contribution to the data variance is less
than 0.5% for each PC with index higher than 10. Thus,
usage of more variables for the analysis was avoided.

3 RESULTS AND DISCUSSION

3.1 Investigation of differentiated
hepatocyte-like HepaRG cells
For the characterization of the differentiated HepaRG
cells, the Raman spectra of 49 hepatocyte-like cells were
measured using the imaging mode. In detail, on every
point of a predefined grid covering the cell area and its sur-
rounding, a Raman spectrum was recorded. The step size
was set to 0.5 𝜇m. To handle this huge amount of spectra,
different chemometric methods were applied. The result
obtained from these analytical methods is visualized in
Figure 3 for two examples of differentiated hepatocyte-like
HepaRG cells. First of all, themultivariate k-means cluster
analysis was carried out to visualize the different cell com-
partments (Figure 3a). Furthermore, the assignment of the
nucleus was verified by the univariate method of band
integration over the Raman peak at 785 cm−1 assigned to

the vibration of the sugar-phosphate backbone of the DNA
and RNA.[30] An integration over this band visualizes the
position and the shape of the cell nucleus (Figure 3b). The
non-cell area of the scan is indicated by black pixels. This
background area was determined by setting a threshold
and applying it to the false-color image shown in Figure 3c,
which was obtained by an integration of three prominent
Raman bands of biological substances.[22] The first band in
the range from 905 to 1, 010 cm−1 features contributions of
the C-C stretching vibration[30] at 936 cm−1 and symmet-
ric ring breathingmode[30] of phenylalanine at 1, 002 cm−1.
The other two bands: 1, 431 − 1, 467 cm−1 and 1, 637 −
1, 679 cm−1 are affiliated to CH2 deformation mode[30] at
1, 149 cm−1 and Amid I[30] at 1, 658 cm−1. All the men-
tioned bands and a fewother prominent peaks are depicted
in Figure 4 and Figure S2 (for an alternative preprocess-
ing). The additionally highlighted bands can be affiliated
to CH2 deformationmode[30] at 1, 301 cm−1, Amid III[31, 32]
at 1, 262 cm−1, and C-C stretching mode at 1, 128 cm−1.
Furthermore, we performed a pairwise comparison of

cytoplasm and cell nucleus differences between the cell
types. To do so, we performed clustering on 12 selected
cells (four cells per class), which featured clear distinc-
tion between nuclei and cytoplasm. The clustering results
(Figure S4) and pairwise differences of spectra from sub-
cellular regions, which are related to nuclei (Figure S5)
and cytoplasm (Figure S6), are shown in the Supporting
Information. In summary, it could be shown that the cell
nucleus region shows the largest differences between the
cell types.
The Raman spectroscopic imaging results allowed no

further insights about the properties of the HepaRG cell
line. Therefore, the comparison between differentiated
hepatocyte-like and nondifferentiated HepaRG cells was
shifted into the focus and was investigated subsequently.
Additionally, a comparison of the spectral signature of
HepaRG cells with the spectral signature of the often used
liver carcinoma cell line HepG2 was carried out.
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3.2 Discrimination between
differentiated hepatocyte-like HepaRG
cells, nondifferentiated HepaRG cells,
and HepG2 cells

In addition to the visualization of the cell morphology
of the HepaRG cells, a LDA was applied to discriminate
between differentiated hepatocyte-likeHepaRG cells, non-
differentiatedHepaRG cells, andHepG2 cells, respectively.
The result of the construction and evaluation of the LDA

FIGURE 5 LDA classification scores and scaling vectors. Every
point represents the LD scores of a mean Raman spectrum of a cell.
The points of HepG2 cells (circles), nondifferentiated HepaRG cells
(triangles), and differentiated hepatocyte-like HepaRG cells
(squares) form distinct clouds. Additionally, the ellipses outline
confidence ellipses on a level of 95% for the scores of each cell line.
The LD scaling vectors related to the LD scores are shown on the
right and the upper side of the image. These vectors represent the
separation of the groups and characterize them according to their
Raman spectroscopic signatures. See text for further details.
LDA = linear discriminant analysis

is presented in Figure 5, where the LD values of the mean
Raman spectrumof eachmeasured cell is visualized. Three
clearly separated point clouds show that the three cell
types are distinguishable. In detail, the point cloud of the
standard HepG2 cell line and the point cloud of the non-
differentiated HepaRG cells are much closer to each other
compared with the differentiated HepaRG cells. This find-
ing is supported by visualizing the 95% confidence inter-
vals of the LDA score values by ellipses (Figure 5). Thus,
the differentiation of the HepaRG cells during cultiva-
tion has an important impact on the Raman spectroscopic
signature of the liver cells and has a significant contribu-
tion to the discrimination of the cells. The result, that the
nondifferentiated HepaRG cells and the HepG2 cells have
a much more similar Raman spectroscopic signatures in
comparison with the differentiated HepaRG cells corre-
lates with the knowledge, that HepG2 cells and nondif-
ferentiated HepaRG cells have less liver-specific functions
and a lower enzyme activity compared with the differenti-
ated hepatocyte-like HepaRG cells.[2]
Table 1 shows the corresponding confusion matrix

for the classification with the above described LDA
model: Each mean Raman spectrum of the differentiated
hepatocyte-like HepaRG cells was correctly classified; 34
out of 37 mean Raman spectra of the standard HepG2
cells and 35 out of 37 Raman mean spectra of nondif-
ferentiated HepaRG cells were correctly classified. As a
result, the accuracy accounts to 96%. In addition, three
of the false classified cells showed a stressed or apop-
totic cell morphology in the visual analysis.[33] This could
be a reason for the misclassification. As a result, the
applied LDAmodel was well suited to distinguish between
the HepG2, the nondifferentiated HepaRG, and the dif-
ferentiated hepatocyte-like HepaRG cells. In particular,
the differentiated hepatocyte-like HepaRG cells showed a
higher dissimilarity from the other two investigated groups
(HepG2 and nondifferentiated HepaRG cells). To ensure
that the discovered findings do not originate from the
choice of the baseline correction method, we repeated
the analysis with ALS baseline correction and verified
the similarity of the results (see Figures S1–S3). To avoid

TABLE 1 Confusion matrix of the LDA

True labels
HepaRG HepaRG

Predicted labels HepG2 hepatocyte-like nondifferentiated

HepG2 34 0 2
HepaRG hepatocyte-like 1 49 0
HepaRG nondifferentiated 2 0 35

Note. The leave-one-cell-out-cross-validation shows high performance of classification
between differentiated hepatocyte-like HepaRG cells, nondifferentiated HepaRG cells,
and HepG2 cells. The diagonal elements of the confusion matrix refer to the correct
predictions and are shown bold in the table. The accuracy was around 96%.
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the introduction of a bias by manual parameter selection,
we performed ALS baseline correction with the default
parameters (𝜆 = 6, p = 0.05, maxit = 20).[34] The resulting
classification accuracy differed slightly from the prepro-
cessing pipeline using the SNIP background correction.
However, the general outcome of the analysis had the same
trend. Thus, the alternative model (Figure S3) had similar
loadings and scores (but reversed).
The analysis of the mean Raman spectra of the HepG2,

the nondifferentiated HepaRG, and the differentiated
hepatocyte-like HepaRG cells (Figure 4) identified spec-
tral signatures of the cells lines. However, the investiga-
tion of the LD scaling vectors (Figure 5) did not identify
marker bands, which are responsible for the good classifi-
cation. Nevertheless, the sum of minor differences within
the Raman spectroscopic signatures of the three cell types
enabled the reliable classification. To validate the signifi-
cance of peak contributions in the loadings, we compared
pairwise the difference spectra of subcellular areas for dif-
ferent cell types for SNIP (Figure S8) and ALS (Figure S9)
baseline correction. This validation revealed that the main
differences occur in the nuclei regions, but there are no sig-
nificant differences present below 600 cm−1. Furthermore,
both baseline estimations led to similar difference spectra.
The LD1 scaling vector in Figure 5 represents separa-

tion of differentiated HepaRG cells from HepG2 cells and
undifferentiated HepaRG cells. This LD1 vector shows a
change in the ratio between Amid I and Amid III[31, 32]
(1, 627 and 1, 260 cm−1) and a change of the deforma-
tion modes[31] of CH and CH2 (1, 303 and 1, 460 cm−1).
Moreover, the scaling vector LD1 shows a decrease of
O-P-O stretching vibrations of the sugar-phosphate back-
bone of DNA[31] (780 cm−1). Furthermore, the LD1 shows
an increase of amino acid related bands[31, 32] (1, 006 cm−1)
and of the C-C stretching band[30] (1, 128 cm−1). On
another side, the LD2 scaling vector, which separates
HepG2 and undifferentiated HepaRG, shows a decrease
of CH and CH2 deformation modes and C-C ring twist of
phenylalanine[30] (617 cm−1). Additionally, an increase of
the other mentioned peaks is visible in LD2 scaling vector.
Among the peaks found in the LDs, the difference spectra
clearly feature the sugar-phosphate backbone vibration of
DNA at 780 cm−1 and the amino acid related vibration
at 1, 006 cm−1. However, other peaks in the difference
spectra are not strongly influencing the classification. We
assume that these peaks reflect the Raman band variation
in general, rather than being specific to the cell type.

4 CONCLUSION

In the present study, the Raman spectroscopic signature
of the differentiated hepatocyte-like liver cells HepaRG

was characterized by comparing it with the Raman
spectroscopic signature of undifferentiated HepaRG cells
and the well-established liver carcinoma cell line HepG2.
By utilizing an LDA, the three cell types were success-
fully classified with an accuracy of 96%. Thereby, the
Raman spectroscopic signature of the promising differen-
tiated hepatocyte-like HepaRG cells is distinct from the
undifferentiated HepaRG and HepG2 cells, whose Raman
spectroscopic signatures were closer to each other. In sum-
mary, the differences in chemical composition of the cell
lines were shown by Raman spectroscopic characteriza-
tion. Prospectively, the great potential of Raman imaging
to retrieve biochemical information from single cells may
be used to study the interaction betweenHepaRG cells and
several drugs as well as enzyme activity assays. Further
studies will check out multiple anticancer drug tests using
the HepG2, nondifferentiated stemHepaRG, and differen-
tiated hepatocyte-like HepaRG cells. Additionally, a study
proving the reliability and stability of the Raman spectro-
scopic prediction of the cell differentiation based on larger
sample sizes might be performed.
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Despite of a large number of imaging techniques for the characterization of biological

samples, no universal one has been reported yet. In this work, a data fusion approach

was investigated for combining Raman spectroscopic data with matrix-assisted laser

desorption/ionization (MALDI) mass spectrometric data. It betters the image analysis

of biological samples because Raman and MALDI information can be complementary

to each other. While MALDI spectrometry yields detailed information regarding the lipid

content, Raman spectroscopy provides valuable information about the overall chemical

composition of the sample. The combination of Raman spectroscopic and MALDI

spectrometric imaging data helps distinguishing different regions within the sample with a

higher precision than would be possible by using either technique. We demonstrate that

a data weighting step within the data fusion is necessary to reveal additional spectral

features. The selected weighting approach was evaluated by examining the proportions

of variance within the data explained by the first principal components of a principal

component analysis (PCA) and visualizing the PCA results for each data type and

combined data. In summary, the presented data fusion approach provides a concrete

guideline on how to combine Raman spectroscopic and MALDI spectrometric imaging

data for biological analysis.

Keywords: MALDI-TOF, Raman imaging, data combination, data fusion, normalization, PCA

INTRODUCTION

Different analytical methods could be utilized for biomedical analysis (e.g., cells, and tissues,
etc.) to highlight a certain aspect of the sample e.g., morphological microstructure, distribution
of electronic chromophores, molecule classes, or special proteins. Among the label-free imaging
approaches, matrix-assisted laser desorption/ionization (MALDI) spectrometry, and Raman
microscopy are certainly among the most powerful imaging techniques for the investigation
of biomedical samples. Raman spectroscopy is a non-destructive spectroscopic method, which
provides complex molecular information about the general chemical composition of the sample
with a rather high spatial resolution (Abbe limit) to highlight subcellular features (Kong
et al., 2015). The drawback of Raman imaging lies in its weak scattering efficiency that
makes sampling time rather long for large area imaging. Raman spectroscopic imaging has
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demonstrated its potential for biomedical diagnosis in numerous
cancer-related studies (Tolstik et al., 2014), biological material
analysis (Butler et al., 2016), cell characterization studies (Ramoji
et al., 2012), and many other biomedical applications (Matousek
and Stone, 2013; Ember et al., 2017).

On the other side, MALDI mass spectrometry provides
information on specific substances, such as lipids or proteins
(Fitzgerald et al., 1993). MALDI is a soft ionization technique
utilized for mass-spectrometric imaging (Gessel et al., 2014) to
determine large organic molecules and biomolecules undetected
by conventional ionization techniques. This technique was
employed in clinical parasitology (Singhal et al., 2016), microbial
identification (Urwyler and Glaubitz, 2016), and cancer tissue
investigation (Hinsch et al., 2017).

Raman spectroscopic and MALDI mass spectrometric
imaging both offer a high molecular sensitivity. Moreover,
Raman spectroscopy has been sequentially applied together with
different mass spectrometric techniques to address a variety of
biological tasks such as characterization of succinylated collagen
(Kumar et al., 2011), investigation of microbial cells (Wagner,
2009), identification of fungal strains (Verwer et al., 2014) and
characterization of lipid extracts from brain tissue (Köhler et al.,
2009). In all the aforementioned studies, the Raman and mass
spectrometric data are analyzed separately, and then summarized
or compared to each other (Masyuko et al., 2014; Bocklitz et al.,
2015; Muhamadali et al., 2016). To significantly increase the
information content, Raman spectroscopic and MALDI mass
spectrometric imaging data have to be co-registered (Bocklitz
et al., 2013) followed by a high-level (distributed) data fusion. It
means that each data type is analyzed separately to obtain the
respective scores, which are then fused together. Alternatively,
spectroscopic imaging can be used for mapping an area that
is suitable for further investigation by means of MALDI
spectrometric imaging (Fagerer et al., 2013) or a certain mass
peak is used to define an area, from which the Raman spectra
are analyzed (Bocklitz et al., 2013). Such a hierarchical pipeline
corresponds to a decentralized data fusion approach.

In the present work, we introduced an analytical method
to perform a low-level (centralized) fusion of Raman and
MALDI imaging data. Because the experimental implementation
of correlated imaging is challenging in many aspects (Masyuko
et al., 2013), we utilized a computational approach to combine
imaging data obtained by MALDI spectrometry and Raman
spectroscopy. The correlation of Raman spectroscopy with mass
spectrometric imaging techniques such as MALDI (Ahlf et al.,
2014) or secondary ion mass spectrometry (SIMS) (Lanni et al.,
2014) have proved its usefulness for biological applications.
Moreover, a combination of MALDI imaging data with optical
microscopy could attenuate instrumental effects (Van De Plas
et al., 2015), and a joint analysis of vibrational and MALDI mass
spectra could provide valuable information on brain tissue (Van
De Plas et al., 2015; Lasch and Noda, 2017). Nevertheless, even if
Raman and MALDI spectra are obtained by correlated imaging,
each type of spectra shows its own specific features and should
be preprocessed separately. Because the measurement techniques
are based on different physical effects, the difference in data
dimensionality and dynamic range can affect the contribution

of each datatype in the analysis. Therefore, a weighting
coefficient that balances the influence of Raman spectroscopic
and MALDI spectrometric data in the data fusion center is
required.

MATERIALS AND METHODS

Experimental Details
We demonstrated the data fusion on an example dataset
of MALDI spectrometric and Raman spectroscopic scans
obtained from the same mouse brain sample (Mus musculus)
of 10µm cryosection. The sample was cut on a cryostat, and
then dried on a precooled conductive ITO-coated glass slide.
Subsequently, Raman spectra were obtained using a confocal
Raman microscope CRM-alpha300R (WITec, Ulm, Germany)
and excited with a 633 nm HeNe laser (Melles Griot). The laser
irradiation was adjusted in order to have about 10mW power.
The laser was coupled through an optical fiber into a Zeiss
microscope. A spectral map was obtained by a raster scan with
a 25µm grid with a dwell time of 2 s and a pre-bleaching time of
1 s.

After the Raman scan, MALDI mass spectrometric imaging
was performed with a common matrix alpha-cyano 4-hydroxy
cinnamic acid (5 mg/mL) in 50% acetonitrile and 0.2%
trifluoracetic acid. The ImagePrep station (Bruker Daltonics)
was used to prepare and apply the matrix on the sample. The
MALDI-time-of-flight (MALDI-TOF) spectrometric map was
obtained on a Ultraflex III MALDI-TOF/TOFmass spectrometer
(Bruker Daltonics, Bremen, Germany). A “smartbeam” laser
(λ = 355 nm, repetition rate 200Hz) was used. The spectrometer
was calibrated with an external standard, a peptide calibration
mixture (Bruker Daltonics). The measurements were performed
in the positive reflectron mode with 500 shots per spectrum and
spatial resolution of 75µm.

Further experimental details for both data types and an
example of a hierarchical data fusion implementation can be
found in the report by Bocklitz et al. (2013). Nevertheless,
in the context of a further discussion, it is important to
highlight that in MALDI mass spectrometric imaging a
matrix suitable for the analysis of the lipid content was
applied.

Preprocessing of Raman Spectroscopic
Data
The influence of corrupting effects (e.g., cosmic spikes,
fluorescence) on Raman spectra cannot be avoided completely.
Thus, the development of complex preprocessing routines
(Bocklitz et al., 2011) is required. To allow further analysis
of the Raman spectra obtained with different calibrations, all
spectra need to be interpolated to the same wavenumber axis
(Dörfer et al., 2011). Moreover, keeping all the spectra in a
single data matrix simplifies a further processing routine, so it is
advantageous to perform the calibration as one of the first steps of
the preprocessing workflow (Figure 1). Besides the wavenumber
calibration, intensity calibration should be performed for the
comparison of the measurements obtained with different devices
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FIGURE 1 | A general pipeline for Raman data preprocessing. The workflow shows the main steps of the preprocessing routine necessary for robust Raman spectral

analysis. Although some steps should be defined while planning the experiment, subsequent preprocessing methods (highlighted in gray area) and their parameters

can be optimized for extracting the required information from the data.

or in the case where some changes in the measurement device
have occurred (Dörfer et al., 2011).

The calibration is always needed for a reliable analysis,
especially if the measurements were performed over a large
time period, or settings of the device were changed between
the measurements. In contrast, the following step within the
preprocessing workflow (i.e., noise removal) is an optional step.
However, among smoothing methods, only the running median
with a relatively large window is applicable for cosmic ray
noise removal. Unfortunately, filtering with a large window may
corrupt the Raman bands themselves. Alternatively, 2–3 spectra
per point can be acquired to eliminate the spikes that are not
present in each spectrum. Nevertheless, this approach increases
the measurement time dramatically. Therefore, this approach is
not suitable for Raman imaging when a large number of spectra
are recorded. Thus, specialized spike correction approaches
like wavelet transform (Ehrentreich and Summchen, 2001),
correlation methods (Cappel et al., 2010), calculation of the
Laplacian of the spectral data matrix (Schulze and Turner, 2014;
Ryabchykov et al., 2016), or a difference between the original and
a smoothed spectrum (Zhang and Henson, 2007) must be used
for spike removal.

The next step in the preprocessing workflow for Raman
spectra is fluorescence background removal. In this work, the
sensitive nonlinear iterative peak (SNIP) clipping algorithm
(Ryan et al., 1988) was used for baseline estimation. The SNIP
algorithm can be utilized for background estimation for a
number of spectral measurements, like X-ray and mass spectra.

After baseline correction, the Raman spectra must be
normalized (Afseth et al., 2006) to complete the basic
preprocessing. There are several normalization approaches
(e.g., vector normalization, normalization to integrated spectral
intensity, or a single peak intensity value) that enhance the
stability of the spectral data. In this work, we used vector
normalization and l1-normalization (Horn and Johnson, 1990)
for Raman spectra. The difference between normalization
to integrated spectral intensity and l1-normalization is that
the latter utilized absolute intensity values. As a result, the
difference between both normalization approaches becomes
more significant when negative values appear in the baseline
corrected spectra due to noise or baseline correction artifacts.

Preprocessing of MALDI Spectrometric
Data
Although the measurement techniques themselves differ
dramatically for Raman andMALDI mass spectroscopic imaging
data, the preprocessing of these data has a lot in common. The
m/z values are set according to an internal calibration and may
“float” slightly from one measurement to another. Therefore, a
phase correction along the m/z axis must be performed within
the preprocessing workflow (Figure 2) to ensure that the spectra
obtained in different measurements are comparable. For this
purpose, it is advisable to use the stable intense peaks within the
phase correction routine (Gu et al., 2006).

From a theoretical point of view, MALDI spectra should not
feature a spectral background. Nevertheless, inmeasuredMALDI
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FIGURE 2 | A general pipeline for MALDI data preprocessing. The workflow shows the main steps of the preprocessing routine necessary for robust MALDI spectral

data analysis and the main differences as compared to the Raman data preprocessing routine, described in Figure 1.

spectra a background is present. In literature, a background
present in MALDI mass spectra is also known as “chemical noise
background” (Krutchinsky and Chait, 2002). This type of noise
results from matrix impurities and unstable ion clusters created
during the sample scanning.

Similarly to Raman spectral preprocessing, the SNIP
algorithm (Ryan et al., 1988) can be used to eliminate the
background from mass spectra. Another complication in the

analysis of MALDI spectra results from the fact that even
after the phase correction, peak positions vary insignificantly
among different spectra. An interpolation procedure, which
is applied in Raman data preprocessing, would corrupt the

sharp peaks found in MALDI spectra and is therefore not

applied. To enable a direct comparison of the spectra, a
binning procedure is applied. This procedure is based on
the equalization of the m/z-values of peak positions within a
certain range. Since the average peak width along the m/z axis
increases with increased mass, the binning range is set with

a so-called tolerance relative to the mass values. In contrast
to Raman spectroscopy, intensity calibration for MALDI
mass spectrometric imaging is not required. Nevertheless,
normalization may be applied. Various types of normalization
are used for MALDI mass spectroscopic imaging data: total
ion count (TIC), vector norm (RMS), median, square root,
logarithmic, and normalization to a noise level. In contrast to
the Raman spectral data, MALDI mass spectra do not feature
negative values. Thus, TIC normalization and normalization
to l1-norm, which is a sum of absolute values, are equal for
MALDI spectra. If the significance level of the data is high,

the normalization may be not necessary for the subsequent
analysis.

Computational Details
For MALDI data acquisition and calibration, a flexImaging
software version 3.0 (Bruker Daltonics) was used. The
data processing was also performed in R (R Core Team,
2017) using packages akima (Gebhardt)1, Peaks (Morhac)2,
readBrukerFlexData (Gibb)3, rsvd (Erichson)4, spatstat
(Baddeley and Turner, 2005), and Spikes (Ryabchykov et al.,
2016).

Prior to the data preprocessing and data fusion, the MALDI
and Raman spectra were interpolated to the same (spatial) grid
by utilizing a co-registration framework. Based on the false
color images of Raman spectroscopic and MALDI spectrometric
scans, 6 points clearly representing the same positions on every
scan were manually selected. The coordinates of the Raman
spectroscopic map were then transformed to the coordinate
system of the MALDI mass spectrometric map. Subsequently,
the Raman spectra were interpolated to the grid of the MALDI
mass spectral map. To perform this interpolation, every point
within the Raman grid was assigned to the nearest point
within the MALDI grid. After that, the average of the Raman
spectra, assigned to the same point within the MALDI grid, was

1Gebhardt, H. A. “akima: Interpolation of Irregularly and Regularly Spaced Data.”
2Morhac, M. “Peaks: Peaks.”
3Gibb, S. “readBrukerFlexData: Reads Mass Spectrometry Data in Bruker ∗flex

Format.”
4Erichson, N. B. “rsvd: Randomized Singular Value Decomposition.”

Frontiers in Chemistry | www.frontiersin.org 4 July 2018 | Volume 6 | Article 257

Publications | 119



Ryabchykov et al. Fusion of Spectral Data

calculated. Two spectral maps were thus obtained and aligned in
a point-wise manner.

After the alignment, the Raman spectroscopic and MALDI
mass spectrometric imaging data were preprocessed. During
the preprocessing, the wavenumber calibration of the Raman
spectra and the phase correction of MALDI spectra were
performed. The MALDI mass spectrometric imaging data
were subsequently subjected to noise removal, background
correction, and TIC normalization. The Raman spectra were
corrected for fluorescence background and vector normalized.
The SNIP algorithm was used for background estimation in both
cases.

After the preprocessing, Raman and MALDI mass spectral
data differed in their dimensionality and in dynamic range. Data
with different dynamic ranges would contribute unequally in
a further analysis and consequently the spectral matrices have
to be additionally weighed before performing the PCA. The
weighting coefficient was selected as a ratio between the l1-
norms of the matrices, which are sums over the absolute values
in the matrix. After the weighting, the data were combined
in a single matrix and analyzed with a PCA. To illustrate
the benefit of data fusion and weighting, we also analyzed
the un-weighted data in a combined manner and each data
type separately. We also investigated the case, where the same
normalization approach was applied to both data types and no
additional weighting is required. When the Raman spectra were
normalized to the total spectral intensity, which is equivalent to
TIC normalization of mass spectra, the data matrices had equal
l1-norms.

RESULTS AND DISCUSSION

Both Raman spectroscopic and MALDI mass spectrometric
imaging data provide different insights into the chemical
composition of the sample. Information on a broad range
of molecules can be obtained from the Raman spectra. This
information can be complemented by detailed information on
lipid content, obtained from the MALDI data. To utilize both
types of information together, a data fusion must be applied.
This data fusion may be performed during different stages of
the analysis workflow. Therefore, the architecture of the data
processing workflow is dependent on the selected data fusion
approach. These approaches can be divided into the following
types (Castanedo, 2013):

• Centralized architecture (Figure 3A). The preprocessed data
from different sources are combined in the data fusion center
and are analyzed together.

• Decentralized architecture (Figure 3B). This scheme does not
have a single data fusion center. The processing workflows
are interacting at different processing stages. This architecture
may provide multiple outputs or be represented as a
hierarchical structure.

• Distributed architecture (Figure 3C). Each data type is
preprocessed and analyzed separately. Subsequently, the
output values are evaluated and combined to obtain a single
result.

The decentralized and distributed architecture already showed
their effectiveness for biomedical investigations (Bocklitz et al.,
2013; Ahlf et al., 2014). The current work focuses on
the centralized data fusion approach, also called low-level
data fusion. In contrast to decentralized and distributed
architectures, the centralized architecture shows a simpler
workflow (Figure 3A). The data are combined in early steps of
the analysis, directly after the preprocessing and even before
the dimension reduction. At the data fusion center, where the
different types of data are combined, an additional normalization
or scaling of the data may be required to weight the influence
of the different data types on the global model. The need
for this weighting step arises from the differences in the data
dimensionality, measurement units and dynamic ranges of
the different measurement techniques. It is worth mentioning
that the weighting is not a major issue in high-level data
fusion approaches, which usually deal with standardized low-
dimensional outputs of preliminary analysis in the data fusion
center. However, a low-level data fusion (such as the applied
centralized data fusion model) deals directly with preprocessed
spectra of different types. Thus, the data scaling may dramatically
influence extraction efficiency of the features.

To investigate the impact of data weighting, we searched for
a marker that would allow an objective comparison of different
data fusion and normalization approaches. This weighting
scheme is designed for biological samples (i.e., a complex
chemical composition), of which a large number of independent
features have to be identified for appropriate description. By
applying a PCA for dimension reduction, a large portion of the
data variance is expected to be spread among multiple principal
components (PCs) and the optimal approach should correspond
to the slowest raise of the cumulative proportion of variance with
a number of PCs.

The variances of the data explained by PCA are shown in
the Figure 4 where the normalization and fusion approaches
(described in section Computational Details) are shown.
Unfortunately, a direct comparison between cumulative
proportions of variance obtained from Raman and MALDI
mass spectral data, and their combined data is not suitable
due to the different number of variables. However, different
trends in the observed variance by the PCs in data with the
same dimensionality can be interpreted. The left side of Figure 4
shows that the variance of vector normalized Raman data is
spread among a larger number of PCs than that of the total area
normalized Raman data. This finding indicates that the vector
normalization allows extracting a larger number of significant
features from Raman data. Because the Raman spectra were
vector normalized and the MALDI spectra were TIC normalized,
the Raman data contribute more to the overall data variance
than the MALDI data. Consequently, the PCA will focus on the
variations in the Raman data and the variations in the MALDI
data will have only a small influence. Alternatively, two datasets
can be balanced by normalizing spectra of both types to their
l1-norms. By definition, this norm is a sum of absolute values. It
takes dimensionality and scaling of the data into account, so no
additional weighting is required. TIC normalization performed
on MALDI data is already equal to l1-normalization because
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FIGURE 3 | Various data fusion architectures: centralized (A), decentralized (B), and distributed (C) architectures.

FIGURE 4 | Influence of weighting in the data fusion center on the PCA. The left side of the figure shows cumulative proportion of data variance explained by first 20

PCs for Raman data (normalized in two different ways) and for MALDI data. On the right side of the figure, a slower raise of cumulative proportion of weighted data

variance in comparison to the non-weighted case is shown. This trend reflects that more independent features can be extracted from the data by applying weighting

prior to the data fusion. As it is also shown in the plot on the right side, a similar effect can be reached by applying the same type of normalization for both data types.

there are no negative values present in the mass spectra. The
right side of Figure 4 clearly shows that there is a marked
difference between the approach not taking the data scaling into
account and the approaches based on weighting or identical
normalization. However, no significant benefit was observed
when comparing the weighting to identical normalization
approach.

To further investigate the influence of weighting on data
fusion, the weighting coefficient was varied in a range from
1 to 20 and a PCA utilized for every case. The extracted
curves of the cumulative proportion of the variance were
organized as a surface plot (Figure 5). Tomake the interpretation
easier, the curves, which correspond to the data combination
without weighting and with weighting based on the ratio of l1-
norms, are additionally highlighted in Figure 5. Although no

single weighting coefficient is globally the best, the proposed
weighting coefficient lies close to the area where the data variance
is spread between multiple PCs. Thus, fusing data in this
manner enables the PCA to extract a larger number of reliable
features.

Although an optimal data fusion has been achieved as above-
mentioned, a direct comparison of cumulative proportions
of variance explained by the PCA for data with different
dimensionalities may be misleading. Hence, the results obtained
from the combined approach and separated data analysis
(Figure 6) were checked by means of inspecting the PCA
loadings and scores. The first three PCs were visualized separately
for the MALDI spectrometric imaging data (Figures 6A,C),
Raman spectroscopic imaging data (Figures 6B,D), and their
combination (Figures 6E–G).
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The comparison of the PCA scores in Figure 6 shows that
the image of the MALDI-Raman combination (Figure 6G)
depicts clearer spatial features of the sample (compared to
Figures 6C,D). The corresponding false-color score composite
(Figure 6G) is less noisy, and looks subjectively better than the
images obtained separately from the MALDI mass spectrometric
(Figure 6C) and Raman spectroscopic data (Figure 6D).
Moreover, the loading vector of the third PC of the MALDI
spectra (shown in blue color in Figure 6A) has positive and
negative values related to isotopes of the same molecules. It
means that it represents mostly noise and variations in the
signal to noise ratio. On the other hand, the MALDI part of the
loadings of the third PC in the combined analysis (shown in blue
color in Figure 6E) reflects a joint behavior for the isotopes of
the same ions. Moreover, the Raman part of this PC contains
the peaks associated with lipids (Notingher and Hench, 2006),
namely the C = C stretching region (1,655–1,680 cm−1), and
CH deformation band (1,420–1,480 cm−1). Although these two
peaks may also be associated with Amide I and CH deformations
of proteins, there is a decrease in the protein-associated range
(Notingher and Hench, 2006) in the wavenumber region
1,128–1,284 cm−1. Furthermore, there are notable changes in the
CH-stretching region (2,800–3,100 cm−1). Thus, the third PC
of the combined data represents the actual diversity in the lipid
composition of the sample. The relationship of the CH stretching
region of the Raman spectra to the changes in the lipid content
can also be observed by a high correlation of the Raman spectral
region with MALDI mass spectra (Figure 7).

Since both data types simultaneously reflect variations in
lipid content, the specific changes in the correlation profiles
(Figure 7) of the Raman and MALDI data are observed in
the areas related to lipid bands in Raman spectra. Besides the
contributions of lipids, which are found in the third PC, the
fingerprint region of Raman spectra contains numerous peaks
related to proteins and DNA. These Raman bands correlate
with MALDI peaks both positively and negatively (Figure 7).
The correlation of a certain MALDI peak with the Raman data
shows a similar structure, but with an opposite sign. This sign
change reflects changes in the contribution of specific lipids
with respect to the overall increase of lipid content in the
sample.

One of the non-lipid compounds, which feature strong Raman
bands, is phenylalanine. Its symmetrical ring breathing mode
and C-H in-plane mode are visible in the first two PCs at 1,004
and 1,030 cm−1. Another peak related to phenylalanine can be
found in the first two PCs at 1,104 cm−1 (Movasaghi et al., 2007).
Aside of that, the first PC contains contributions of tryptophan
at 760 cm−1 (Bonifacio et al., 2010). The protein backbone C-Cα

stretching of collagen is present in the second PC at 936 cm−1

and the ν(C–C) protein backbone is located in the first two PCs
at 816 cm−1 (Bonifacio et al., 2010). Also, prominent collagen-
associated bands like Amide I and Amide III can be seen in
the first PC at 1,655–1,680 and 1,220–1,284 cm−1, respectively
(Krafft et al., 2005; Notingher and Hench, 2006). Moreover, the
peak at 1,647 cm−1 is associated with the random coil structure
of proteins in general (Movasaghi et al., 2007). This peak is also
present in the first two PCs.

FIGURE 5 | Dependence of the variance explained by PCA using the

weighting scheme. The surface plot covers the first 20 PCs and weighting

coefficients between 1 and 20. The cumulative proportions of variance for the

weighted and non-weighted cases are shown as blue and green lines,

respectively (please refer to the online version for colors). Furthermore, the

lowest variance is highlighted for each number of PCs with a dot. These dots

represent an optimal unmixing for the related number of PCs. Although this

optimum changes with respect to PC numbers, the used weighting coefficient

based on l1-norms clearly lies near the minimum of cumulative proportion of

variance for a given number of PCs.

The main contribution to the first PC is the ratio between
the fingerprint region of Raman spectra and C-H stretching
region. On the other side, the fingerprint region of the second PC
contains both positive and negative peaks, reflecting the changes
in protein content. Along with the protein content, valuable
information about DNA is obtained from the first two PCs of
the Raman spectra. The peak at 1,180 cm−1 represents cytosine
and guanine. Another DNA peak is located at 1,263 cm−1 and
represents adenine and thymine (Movasaghi et al., 2007). All
Raman spectral features provide a complex overview of the
chemical composition of the mouse brain section. The MALDI
data, on the other hand, extends the overview of the distribution
of biomolecules based on Raman spectroscopy with detailed
information about the lipid content composition.

CONCLUSION

In this paper, a data fusion scheme was investigated to analyze
Raman spectroscopic and MALDI mass spectrometric imaging
data together. We described the most significant corrupting
effects influencing the analysis of Raman spectroscopic and
MALDI mass spectrometric imaging data. The preprocessing
workflows were shown for the suppression of these corrupting
effects by means of calibration, noise reduction, background
correction, and normalization for both data types. After the
pretreatment steps, the importance of data weighting prior
to data fusion is highlighted, especially when the data are
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FIGURE 6 | PCA analysis: first three PCs calculated for MALDI spectra (A), Raman spectra (B), combined Raman-MALDI data (E,F) and their false-color score

composites (C,D,G). Red, green, and blue colors indicate the first, second and third PCs, respectively. Separate plots for the loadings and false color images can be

found as Supplementary Material. The PCs composite image of the combined data (G) shows a smoother appearance, and the loadings after data fusion (E,F) are

easier to interpret. See text for further details.

FIGURE 7 | Correlation between Raman spectroscopic and MALDI mass spectrometric data. Correlation of two data types after being preprocessed is depicted in

yellow (positive values), red (zero), and violet (negative values) colors. Average preprocessed MALDI spectrum (on the top of the figure) and Raman spectrum (on the

right side of the figure) are plotted for easier interpretation.

obtained from different sources and have different scales and
dimensionalities. As there is no universal way of balancing
the influence of data types on the analysis, optimization, and
validation of weighting approaches should be done according
to the specific data. In order to allow a judgment of the

quality of a weighting, we proposed an approach that allows
estimating the goodness of data weighting. This approach is
based on analyzing proportions of data variance explained by
PCs and we applied this approach by examining the cumulative
variance. It was shown that the weighting, based on the ratio
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of l1-norms of the data matrices, allows optimal unmixing of
the example data set into features. Besides the comparison
of different weighting schemes, the proposed method can be
used for the comparison of normalization approaches. It was
found that vector normalization allows better unmixing of the
example Raman data as compared to the normalization to the
integrated spectral intensity (l1-norm). Besides the establishment
of a weighting approach, we discovered that a nearly optimal
result compared to the weighting is achieved if the spectra of both
types are normalized to the same norm. We could demonstrate
this by normalizing both types of spectra of an example dataset to
the same norm. This was the l1-norm in our example. However,
it is important to keep in mind that this method of comparing the
cumulative proportions of variance should be used only when a
researcher is interested in maximizing the number of extracted
independent features.

The revealing of additional meaningful features by means of

optimal data fusion was demonstrated for the combination of
Raman spectroscopic and MALDI mass spectrometric imaging
data. We showed this by comparing the third PC extracted from
each type of data separately and from the combined data. The

MALDI-related part of the third combined component showed

a clearer interpretation in comparison to the third loading
obtained from the MALDI data alone. Moreover, the Raman-
related part of the combined component reflected variations in
lipid to protein ratio. This PC depicts a decrease in a protein-
associated range that occurs along with an increase of bands

related to the CH deformation and C=C stretching in lipids,
which can be found in the regions 1,128–1,284, 1,420–1,480, and
1,655–1,680 cm−1, respectively. Therefore, changes in the lipid to
protein ratio and changes in lipid content itself can be observed
simultaneously through the data fusion of Raman spectroscopic
and MALDI mass spectrometric imaging data.

Finally, the advantage of the combined analysis was illustrated
by a comparison of the PCA results visualized as false-color
RGB images. These images were obtained separately for the
preprocessed Raman and MALDI imaging data and for the

combined data. Visual investigation of the images showed that
the combined approach provides a sharper image with less noise
contributions. This allows the conclusion that the data fusion
increases reliability not only for the spectral but also for the
spatial features present in the data.
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ABSTRACT: Fungal spores are one of several environmental
factors responsible for causing respiratory diseases like asthma,
chronic obstructive pulmonary disease (COPD), and aspergil-
losis. These spores also are able to trigger exacerbations during
chronic forms of disease. Different fungal spores may contain
different allergens and mycotoxins, therefore the health hazards
are varying between the species. Thus, it is highly important
quickly to identify the composition of fungal spores in the air. In
this study, UV-Raman spectroscopy with an excitation wave-
length of 244 nm was applied to investigate eight different fungal
species implicated in respiratory diseases worldwide. Here, we
demonstrate that darkly colored spores can be directly
examined, and UV-Raman spectroscopy provides the information sufficient for classifying fungal spores. Classification models
on the genus, species, and strain levels were built using a combination of principal component analysis and linear discriminant
analysis followed by evaluation with leave-one-batch-out-cross-validation. At the genus level an accuracy of 97.5% was achieved,
whereas on the species level four different Aspergillus species were classified with 100% accuracy. Finally, classifying three strains
of Aspergillus fumigatus an accuracy of 89.4% was reached. These results demonstrate that UV-Raman spectroscopy in
combination with innovative chemometrics allows for fast identification of fungal spores and can be a potential alternative to
currently used time-consuming cultivation.

Hundreds of millions of people of all ages suffer every day
from chronic respiratory diseases. According to the latest

WHO estimates (2004), which are considered conservative,
>300 million people are afflicted with asthma, 210 million
people suffer from chronic obstructive pulmonary disease
(COPD), while >400 million suffer from some other form of
respiratory disease.1 These diseases all have a negative impact
on the quality of life of those affected and in many instances
can be life threatening, especially in cases of acute
exacerbation. Exacerbations of allergic respiratory disease
occur frequently in COPD and asthma patients, likely triggered
by exposure to environmental stimuli. Although debated, these
exacerbations are generally characterized by increased airway
inflammation, mucus production, and impaired lung function.

Outdoor fungal spores are one of several environmental
factors responsible not only for causing respiratory diseases in
humans,2−4 but also for triggering exacerbations during
chronic forms of lung diseases such as asthma and COPD.
For example, it was reported that asthma hospitalization cases
increase during thunderstorms due to the increased aerosoliza-
tion of fungal spores.5 Since different fungi may produce
different allergens and mycotoxins, the severity of asthma
exacerbation may vary between spores of different fungal taxa,6

e.g., some patients have hypersensitivity only to Aspergillus
spec., which can lead to allergic bronchopulmonary aspergillosis
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(ABPA) or other complications in patients suffering from
asthma, cystic fibrosis, or COPD.7 Therefore, it would be
beneficial to identify and eliminate fungal spores before they
trigger respiratory disease or exacerbations in patients with
chronic respiratory diseases.
Currently the “gold standard” for fungal identification is the

cultivation of sampled organisms coupled with careful
observation and measurement of macroscopic and microscopic
morphological characteristics of the organism of interest,
including reproductive structures like spores. However, this
method is laborious and requires highly trained and
experienced personnel. Additional difficulties in fungal
identification include the presence of a wide range of
nonculturable organisms and/or contamination of fungal
cultures with fast-growing bacteria, as these factors make the
analysis of morphological information complicated.8 A fast,
highly automated method, which can identify fungal spores via
pattern recognition, would exclude the human factor from the
identification process and would improve turn-around times
for spore identification. As an alternative approach to the more
classic culture methods, polymerase chain reaction (PCR)-
based detection methods for fungal spore identification have
been reported.8−11 PCR methods require expensive reagents
and design of target-specific primers and tend to produce false-
positive results. Another possibility is offered by vibrational
spectroscopy, a technique which utilizes molecular vibrations
to provide information about the molecular composition,
structure and behavior within a sample.
Among the vibrational spectroscopic methods, Raman

spectroscopy is a very promising tool for the characterization
of microorganisms.12,13 This method offers specific molecular
information about the chemical species in the samples in a
noninvasive and label-free manner. The abilities of Raman
spectroscopy for investigation and characterization of airborne
allergens, such as individual pollen grains, has been
demonstrated by various groups.14−16 The characterization of
fungal spores using Raman spectroscopy with visible excitation
wavelengths has been previously also reported. However, in
these studies, the excitation wavelengths utilized could only be
applied to white or light-colored spores.17,18 Several different
microfungi spores relevant to indoor contamination were
successfully characterized and identified with Raman spectros-
copy, describing the biochemical composition of a single
spore.19 A study of C. Wang et al. reported measurements of
Raman spectra in 1600−3400 cm−1 spectral range from
individual pollen particles and Bermuda grass smut spores held
in a photophoretic trap. Due to the small size of spores the
spectrum had high background and only three Raman bands
were visible.20 Raman spectroscopy with visible excitation
wavelengths was also used to discriminate Aspergillus lentulus
from Aspergillus fumigatus with an accuracy of only 78%.17 K.
De Gussem et al. combined Raman spectroscopy with linear
discriminant analysis (LDA) and reached around 90% accuracy
in assigning the spectra of spores to the correct genus,18 while
identification on the species level was not possible. Instead of
applying visible Raman excitation wavelengths various studies
on mammalian cells,21,22 bacteria,23−25 and pollen26 showed
that utilizing electronically resonant excitation wavelengths in
the UV region can be beneficial for the identification of
microorganisms due to a selective resonant enhancement of
the Raman signals of taxonomically important macromolecules,
e.g., DNA/RNA bases and aromatic amino acids. Furthermore,
the fluorescence background in UV resonance Raman spectra

is negligible for excitation wavelengths below 260 nm, which
lead to Raman spectra with high signal-to-noise ratio.27−31

In the present study, for the first time the UV-Raman
spectroscopic identification of fungal spores is demonstrated.
Eight different filamentous fungal species, implicated to a
varied extent in respiratory diseases worldwide, were examined:
Aspergillus fumigatus, Aspergillus niger, Aspergillus nidulans,
Aspergillus calidoustus, Cladosporium herbarum, Alternaria
alternata, Penicillium rubens, and Lichtheimia corymbifera.
Except for the mucoralean fungus Lichtheimia corymbifera, a
basal fungal lineage, all other species belong to the division
Ascomycota. In contrast to previous studies,17,18 highly
pigmented spores were successfully investigated. The identi-
fication of spores was based on a combination of principal
component analysis (PCA) and LDA of the UV resonance
Raman spectral data and was applied at a genus, species, and
strain level. The performance of the models was evaluated with
leave-one batch-out cross-validation. The presented results
highlight the possibility of UV-Raman spectroscopy as a
promising method for the automated identification of fungal
spores.

■ MATERIALS AND METHODS
Fungal Spores. For this study 11 fungal strains from 8

different species were utilized, namely A. fumigatus, P. rubens,
A. niger, C. herbarum, A. alternata, A. nidulans, A. calidoustus,
and L. corymbifera (Table S-1 of the Supporting Information,
SI). The A. fumigatus pksP mutant has been described
previously.32,33 The fungi were grown for 7 days, in the dark,
on 10 cm agar plates at room temperature (∼22 °C). Growth
was conducted on Aspergillus minimal media (AMM; 6.0 g/L
NaNO3, 0.52 g/L KCl, 1.52 g/L KH2PO4, 0.52 g/L MgSO4·
7H2O, 1% (wt/vol) glucose, and 1 mL of trace element
solution [1 g/L FeSO4·7H2O, 8.8 g/L ZnSO4·7H2O, 0.4 g/L
CuSO4·5H2O, 0.15 g/L MnSO4·4H2O, 0.1 g/L Na2B4O7·
10H2O, 0.05 g/L (NH4)6Mo7O24·4H2O] per liter),

34 malt agar
(MA) (Sigma-Aldrich), or modified SUP agar plates (4.1 g/L
KH2PO4, 1.1 g/L NH4Cl, 0.9 g/L K2HPO4, 0.1 g/L MgSO4,
1% (wt/vol) glucose, and 0.5% (wt/vol) yeast extract).35

AMM was supplemented with 0.06 mg/L biotin and 5 mM
arginine for growth of A. nidulans A89. Conidia (asexually
produced spores) from each strain were collected in 10 mL of
water and separated from hyphae through a 40 μm pore filter.
After centrifugation for 10 min at 1800 × g, conidia were
resuspended in 3% (v/v) formaldehyde and incubated for 1 h
for inactivation. Following formaldehyde-inactivation, each
conidial-mixture was washed with water to remove any
contaminating formaldehyde. The inactivation of the spores
was confirmed by the lack of growth on appropriate media.
Each growth condition was tested in triplicate, on three
separate days. For the UV-Raman measurements 10 μL of
spore suspensions was spread on a fused-silica surface and
allowed to dry at room temperature.

Spectroscopic Instrumentation. Raman measurements
were performed using a LabRam HR 800 spectrometer from
Horiba Jobin-Yvon (Bensheim, Germany) with a 2400 lines/
mm grating. As excitation wavelength, a frequency doubled
argon-ion laser (Coherent Innova 300, MotoFReD, Coherent,
Dieburg, Germany) operating at 244 nm was applied. The
samples were illuminated via a microscope (Olympus BX 41)
equipped with a 20× magnification antireflection coated UV
objective (LMU UVB) with a numerical aperture of 0.4. The
laser power at the laser head was ca. 10.5 mW and on the
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sample ca. 0.8 mW at a spot diameter of ∼1 μm, corresponding
to ∼105 W/cm2 irradiance. The entrance slit was set to 300
μm. The Raman scattered light was detected by a nitrogen-
cooled CCD camera with an integration time of 20 s with 2
accumulations. The samples were rotated with a speed 60
rotations/min and moved in the x,y direction after each
rotation to obtain an average spectrum over a large sample area
to minimize possible photodegradation by UV radiation. Ten
spectra were collected per sample. Measurements were
performed by two independent operators.
Data Analysis. Data processing was performed using an in-

house developed script in the programming language R.36 First,
the spectra were wavenumber calibrated by using the Teflon
Raman spectrum measured prior to each sample measurement
as reference. Next, the Raman spectra were background
corrected using the sensitive nonlinear iterative peak (SNIP)
clipping algorithm37 with a second-order clipping filter. Finally,
all spectra were vector normalized and used as input for PCA,
which was performed to reduce the dimensionality of the data
while retaining the most significant information for classi-
fication. PCA was followed by LDA. The performance of the
created LDA model for classification of fungal spores was
estimated using the leave-one batch-out-cross-validation
(LBOCV) approach.38 In this method, one batch was held
out from the data set, and the LDA model was redeveloped
using the remaining spectra. The resultant model was then
used to classify the removed batch. This process was repeated
with every batch until all spectra were classified. In this manner
LBOCV of the PCA-LDA model was utilized for all number of
principle components (PCs). Then, an optimal number of PCs
was chosen by finding a saturation point of the accuracy as a
function of the number of PCs. For spectral comparison across
the groups, mean Raman spectra for each fungal species were
calculated using preprocessed, vector-normalized spectra of all
batches.

■ RESULTS AND DISCUSSION
The primary goal of this study was to determine the feasibility
of UV-Raman spectroscopy for the identification of melanised
fungal spores. The selected fungal spores were all highly
pigmented: black for A. alternata and A. niger, dark green for A.
fumigatus strains and P. rubens, brown for A. calidoustus and C.
herbarum and light gray for L. corymbifera and A. nidulans
(Figure S-1). The difficulties of recording Raman spectra using
visible excitation wavelengths from such dark conidia were
previously reported; the dark pigments result in a strong
interfering fluorescent signal, which masks the original
spectrum.17 Therefore, initially, the possibility of obtaining
good quality spectra with UV-Raman from deeply colored,
highly absorbing samples was investigated. For this purpose,
wild-type A. fumigatus conidia were compared to non-
pigmented conidia of a strain with a mutation in the pksP
gene, essential for the formation of the gray-green spores con-
taining dihydroxynaphthalene (DHN)-melanin.32 The UV-
Raman spectra of these samples are depicted in Figure 1.
During the measurements, the samples were continuously

rotated; however, this rotation was insufficient to completely
eliminate the laser-induced degradation of spore proteins into
polymeric hydrogenated amorphous carbon. Thus, a carbon
background manifesting itself by the two broad bands at
approximately 1360 and 1610 cm−1 is observed.39−41 For the
nonpigmented pksP mutant strain, the graphitization level was
lower, and therefore the bands originating from the spores in

the region of 1500−1700 cm−1 are more prominent. However,
the general shape of the spectra and the peak positions are the
same for both samples. In the pigmented wild-type spores of A.
fumigatus, the unique spore-related spectral features necessary
for the spore identification process are still easily visible.
Hence, it can be concluded that UV-Raman can be used for the
measurement of highly pigmented spores.
To compare a diverse range of allergenic fungi, we had to

cultivate these organisms on several different media to
promote sporulation due to different nutrient requirements.
To test the variability induced by different culture media, we
cultivated P. rubens strain ATCC 28089 and A. fumigatus strain
ATCC 46645 on both MA and AMM medium for direct
comparison. The mean UV-Raman spectra of the collected
spores are presented in Figure S-2. The influence of the culture
medium on the spectra was visible and can be best seen in the
1250−1700 cm−1 wavenumber region. In the case of A.
fumigatus grown on MA medium, the signal at 1365 cm−1 is
more intense, whereas for P. rubens the peak at 1648 cm−1 is
more prominent. Despite this observation, all strains grown on
different agars were included into the classification model,
proving that the differences from cultivation conditions are
smaller than the differences due to species affiliation.
The representative preprocessed mean Raman spectra of the

studied fungal spores are depicted in Figure 2.
For all species, primary bands were observed in the

wavenumber region between 750 and 1700 cm−1, which is
typically associated with various nucleic acids and protein
subunits in UV-Raman spectroscopy. The band positions are in
good agreement with previously published UV-Raman
spectroscopic studies of microorganisms.24,23,42 The signal at
1648 cm−1 can be assigned to thymine and the one at 1612
cm−1 to the aromatic amino acids tyrosine and tryptophan.
Guanine and adenine exhibit peaks at 1574 and 1479 cm−1;
they also contribute to the signal at 1335 cm−1. The latter band
(at 1333 cm−1) also contains information from tyrosine. The
signal at 1526 cm−1 can be assigned to cytosine. Thymine and

Figure 1. Mean UV-Raman spectra and their double standard
deviation of the pigmented A. fumigatus ATCC 46645 strain and the
nonpigmented pksP mutant strain.
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adenine exhibit a band at 1365 cm−1. The peak at 1171 cm−1

can be assigned to tyrosine. Tryptophan exhibits characteristic
bands at 758 and 1008 cm−1. In this study, measurements were
performed on the bulk sample under continuous rotation; so
several spores contribute to one spectrum. Therefore, one
spectrum already comprises metabolic and developmental
diversity within the spore population. The reproducibility of
these spectra was tested by measuring the Raman spectra from
three independent batches.
It is evident from Figure 2 that the fungal spores belonging

to different genera display distinct Raman spectral signatures
and are easily distinguishable based on their spectra. The peak
positions for all analyzed spores are the same, however the
relative intensities for the bands in the region of 1250 and
1750 cm−1 differ. For the C. herbarum and A. alternata
measurements, three Raman modes at 1574, 1612, and 1648
cm−1 are strongly convoluted due to a higher carbonization

background. In addition to a visual comparison, a PCA/LDA
model was applied and verified using the leave-one batch-out-
cross-validation. Three different models on genus, species, and
strain level were established (see Figure 3). Health hazards
related to fungal spores may differ across genera and species
due to the difference between allergenicity and types of
mycotoxins produced. It is known for example that the severity
of asthma exacerbation may vary between spores of different
taxa.6 To prevent exacerbations, it is important to define the
composition of spores in the air on the genus level. Thus, the
classification model was first trained to distinguish spores on
the genus level. Prior to LDA, the data size was reduced by
PCA. The optimal number of PCs was chosen by finding a
saturation point of the accuracy as a function of the number of
PCs; in this case, 6 PCs were selected (Figure S-3). The LDA
model was trained with 2 batches of spores and then tested
with one independent batch of the same strain. This allowed
for three different batch permutations for validation and gave a
reliable unbiased classification model. The sensitivity, specific-
ity, and accuracy of the LDA model in each run were calculated
and averaged. Table 1 shows the number of spectra that were
classified correctly for each species of the fungi and also
summarizes sensitivity and specificity.
Out of 1079 spectra, 27 were misclassified; this resulted in

97.5% accuracy. In Figure 4, the LDA score plot of the
classification model is depicted, whereby each dot represents
one spectrum and the ellipsoids correspond to confidence
regions for the scores on a level of 95% of the spectral data for
each class. The biggest amount of errors appeared to be due to
the misclassification of Aspergillus species to the closely related
genus Penicillium. The LDA score plot also nicely reflects the
phylogenetic relationship between the different genera: A.
alternata and C. herbarium belong to the same class of
Dothideomycetes, while the closely related genera Penicillium
and Aspergillus are grouped into the class Eurotiomycetes. The
species L. corymbifera belongs to a lower group of fungi, the
phylum Zygomycota that diverged early in the evolution of
true fungi.43

In the second step, the model distinguishes between four
different Aspergillus species. Several Aspergillus species are able
to cause infections like invasive pulmonary aspergillosis or
allergic reactions like ABPA, while others are nearly non-
pathogenic.44 In addition, antifungal drug susceptibility is
wide-ranging among even quite similar organisms.45 Thus, the

Figure 2. Mean UV-Raman spectra of the all batches from different
fungal spores plotted together with double standard deviation (gray
area). For the A. fumigatus the mean spectrum represents all
investigated strains.

Figure 3. 3-Level PCA/LDA classification model of fungal spores cultured in three independent batches (the percentage represents the accuracies
of the model achieved by LBOCV).
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knowledge of the species identity may influence the choice of
appropriate antifungal therapy. The visual differentiation of the
spectra from A. fumigatus, A. nidulans, A. calidoustus, and A.
niger is already not as obvious as it was for different genera
(Figure 2). For building the identification model on the species
level, the number of PCs was set to 7 (Figure S-4). All 629
spectra were assigned correctly resulting in 100% accuracy.
The differentiation was based mostly on the different amount
of DNA in the spores, mainly resulting in the intensity
differences for the peaks at 1365, 1479, and 1648 cm−1 (Figure
S-5). The achieved accuracy was higher than the one reported
by P.E.B. Verwer et al., where the discrimination of Aspergillus
lentulus from Aspergillus fumigatus with VIS-Raman spectros-
copy was correct for 78% of spectra.17

Finally, the model was trained to classify three different
strains of A. fumigatus, since diversity in virulence among
different A. fumigatus strains is also well-documented.46 The
UV-Raman spectra of the three investigated A. fumigatus
strains are presented in Figure 5. By comparing the spectra, it is
clear that the main spectral characteristics of the investigated
strains were the same, as a consequence of their close
phylogenetic relationship. The LDA model was built with 10
PCs (Figure S-6), and the classification was correct for 89.4%
of spectra. The results of this classification model are
summarized in Table 2. The misclassification occurred mostly
between the ATCC 46445 and D141 strains. The identification
of fungal spores on the strain level using Raman spectroscopy
was not previously reported.

■ CONCLUSIONS
In the case of respiratory fungal infections, identification of the
fungal agent is often incredibly challenging due to a diverse
array of potential organisms and relatively poor diagnostic
possibilities. Thus, the development of sensitive and automated
methods for the identification of fungal spores is of particular
medical interest. In this study, a combination of UV resonance

Table 1. Identification Results for Different Fungal Spores on the Genus Level

Figure 4. LDA score plots for the classification model on the genus
level.

Figure 5. Mean UV-Raman spectra of three A. fumigatus strains.

Table 2. Results of the Identification of A. fumigatus Strains
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Raman spectroscopy and chemometrical methods allowed for a
highly accurate identification of fungal spores on a genus,
species, and even strain level. In all analyzed classification
models, strains grown on different agars were included. The
promising results presented here indicate that the differ-
entiation of spectra is not determined by the cultivation
conditions, but instead based on the differences in the amounts
of DNA, RNA, and protein aromatic amino acid units in spores
of each species. Moreover, it has been demonstrated that
darkly colored spores can be directly examined with UV-
Raman spectroscopy, and the contribution of amorphous
carbon in the spectra does not inhibit the correct identification
of the spores. The obtained classification ratios in the range
between 89% and 100% demonstrate that UV resonance
Raman spectroscopy represents a powerful tool for fungal
spore identification and should be considered for further
investigations.

■ ASSOCIATED CONTENT

*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.anal-
chem.8b01038.

Table S-1: Strains used in the study; Figure S-1: Images
of dried spore biomass from the studied fungal species
on the fused silica substrate; Figure S-2: Mean UV-
Raman spectra and their double standard deviation of
the A. fumigatus (A) and P. rubens (B) strains cultured
on different media; Figure S-3: Accuracy as a function of
the number of PCs for the genus level; Figure S-4:
Accuracy as a function of the number of PCs for the
species level; Figure S-5: Loading vectors for the species
level model; and Figure S-6: Accuracy as a function of
the number of PCs for the strain level (PDF)

■ AUTHOR INFORMATION

Corresponding Author
*Phone: +49 (0)3641-206309. Fax: +49 (0)3641-206399. E-
mail: karina.weber@leibniz-ipht.de (K.W.).

ORCID
Olaf Kniemeyer: 0000-0002-9493-6402
Axel A. Brakhage: 0000-0002-8814-4193
Thomas W. Bocklitz: 0000-0003-2778-6624
Karina Weber: 0000-0003-4907-8645
Jürgen Popp: 0000-0003-4257-593X
Author Contributions
The manuscript was written through contributions of all
authors. All authors have given approval to the final version of
the manuscript.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We gratefully acknowledge the Federal Ministry of Education
and Research, Germany (BMBF) for the continued support for
the InfectoGnostics (13GW0096F) and EXASENS
(13N13856 and 13N13861) grants.

■ REFERENCES
(1) WHO. Global Surveillance, Prevention and Control of Chronic
Respiratory Diseases. A Comprehensive Approach; WHO: Switzerland,
2007.
(2) Kohler, J. R., Casadevall, A., Perfect, J. Cold Spring Harbor
Perspect. Med. 2015, 5, a019273
(3) Sorenson, W. G. Environ. Health Perspect 1999, 107, 469−472.
(4) Wilson, L. S.; Reyes, C. M.; Stolpman, M.; Speckman, J.; Allen,
K.; Beney, J. Value Health 2002, 5, 26−34.
(5) Dales, R. E.; Cakmak, S.; Judek, S.; Dann, T.; Coates, F.; Brook,
J. R.; Burnett, R. T. Chest 2003, 123, 745−750.
(6) Atkinson, R. W.; Strachan, D. P.; Anderson, H. R.; Hajat, S.;
Emberlin, J. Occup. Environ. Med. 2006, 63, 580−590.
(7) Agarwal, R.; Hazarika, B.; Gupta, D.; Aggarwal, A. N.;
Chakrabarti, A.; Jindal, S. K. Med. Mycol. 2010, 48, 988−994.
(8) Dean, T. R.; Betancourt, D.; Menetrez, M. Y. J. Microbiol.
Methods 2004, 56, 431−434.
(9) Hernandez, A.; Martinez, J. L.; Mellado, R. P. World J. Microbiol.
Biotechnol. 1999, 15, 33−36.
(10) Ward, E. Methods Mol. Biol. 2009, 508, 147−159.
(11) Williams, R. H.; Ward, E.; McCartney, H. A. Appl. Environ.
Microbiol. 2001, 67, 2453−2459.
(12) Stockel, S.; Kirchhoff, J.; Neugebauer, U.; Rosch, P.; Popp, J. J.
Raman Spectrosc. 2016, 47, 89−109.
(13) Muhamadali, H.; Subaihi, A.; Mohammadtaheri, M.; Xu, Y.;
Ellis, D. I.; Ramanathan, R.; Bansal, V.; Goodacre, R. Analyst 2016,
141, 5127−5136.
(14) Guedes, A.; Ribeiro, H.; Fernandez-Gonzalez, M.; Aira, M. J.;
Abreu, I. Talanta 2014, 119, 473−478.
(15) Ivleva, N. P.; Niessner, R.; Panne, U. Anal. Bioanal. Chem.
2005, 381, 261−267.
(16) Schulte, F.; Lingott, J.; Panne, U.; Kneipp, J. Anal. Chem. 2008,
80, 9551−9556.
(17) Verwer, P. E. B.; Leeuwen, W. B.; Girard, V.; Monnin, V.;
Belkum, A.; Staab, J. F.; Verbrugh, H. A.; Bakker-Woudenberg, I.;
Sande, W. W. J. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 245−251.
(18) De Gussem, K.; Vandenabeele, P.; Verbeken, A.; Moens, L.
Anal. Bioanal. Chem. 2007, 387, 2823−2832.
(19) Ghosal, S.; Macher, J. M.; Ahmed, K. Environ. Sci. Technol.
2012, 46, 6088−6095.
(20) Wang, C. J.; Pan, Y. L.; Hill, S. C.; Redding, B. J. Quant.
Spectrosc. Radiat. Transfer 2015, 153, 4−12.
(21) Ashton, L.; Hogwood, C. E. M.; Tait, A. S.; Kuligowski, J.;
Smales, C. M.; Bracewell, D. G.; Dickson, A. J.; Goodacre, R. J. Chem.
Technol. Biotechnol. 2015, 90, 237−243.
(22) Yazdi, Y.; Ramanujam, N.; Lotan, R.; Mitchell, M. F.;
Hittelman, W.; Richards-Kortum, R. Appl. Spectrosc. 1999, 53, 82−85.
(23) Gaus, K.; Rosch, P.; Petry, R.; Peschke, K. D.; Ronneberger, O.;
Burkhardt, H.; Baumann, K.; Popp, J. Biopolymers 2006, 82, 286−290.
(24) Lopez-Diez, E. C.; Goodacre, R. Anal. Chem. 2004, 76, 585−
591.
(25) Walter, A.; Schumacher, W.; Bocklitz, T.; Reinicke, M.; Rosch,
P.; Kothe, E.; Popp, J. Appl. Spectrosc. 2011, 65, 1116−1125.
(26) Manoharan, R.; Ghiamati, E.; Britton, K. A.; Nelson, W. H.;
Sperry, J. F. Appl. Spectrosc. 1991, 45, 307−311.
(27) Domes, C.; Domes, R.; Popp, J.; Pletz, M. W.; Frosch, T. Anal.
Chem. 2017, 89, 9997−10003.
(28) Frosch, T.; Schmitt, M.; Noll, T.; Bringmann, G.; Schenzel, K.;
Popp, J. Anal. Chem. 2007, 79, 986−993.
(29) Harz, M.; Krause, M.; Bartels, T.; Cramer, K.; Rosch, P.; Popp,
J. Anal. Chem. 2008, 80, 1080−1086.
(30) Neugebauer, U.; Schmid, U.; Baumann, K.; Holzgrabe, U.;
Ziebuhr, W.; Kozitskaya, S.; Kiefer, W.; Schmitt, M.; Popp, J.
Biopolymers 2006, 82, 306−311.
(31) Petry, R.; Mastalerz, R.; Zahn, S.; Mayerhofer, T. G.; Volksch,
G.; Viereck-Gotte, L.; Kreher-Hartmann, B.; Holz, L.; Lankers, M.;
Popp, J. ChemPhysChem 2006, 7, 414−420.
(32) Jahn, B.; Koch, A.; Schmidt, A.; Wanner, G.; Gehringer, H.;
Bhakdi, S.; Brakhage, A. A. Infect. Immun. 1997, 65, 5110−5117.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.8b01038
Anal. Chem. XXXX, XXX, XXX−XXX

F

Publications | 133



(33) Langfelder, K.; Jahn, B.; Gehringer, H.; Schmidt, A.; Wanner,
G.; Brakhage, A. A. Med. Microbiol. Immunol. 1998, 187, 79−89.
(34) Brakhage, A. A.; Vandenbrulle, J. J. Bacteriol. 1995, 177, 2781−
2788.
(35) Schwartze, V. U.; Hoffmann, K.; Nyilasi, I.; Papp, T.; Vagvolgyi,
C.; de Hoog, S.; Voigt, K.; Jacobsen, I. D. PLoS One 2012, 7, 11.
(36) R. D. C Team. R; R Foundation for Statistical Computing:
Vienna, Austria, 2011.
(37) Ryan, C. G.; Clayton, E.; Griffin, W. L.; Sie, S. H.; Cousens, D.
R. Nucl. Instrum. Methods Phys. Res., Sect. B 1988, 34, 396−402.
(38) Guo, S. X.; Bocklitz, T.; Neugebauer, U.; Popp, J. Anal. Methods
2017, 9, 4410−4417.
(39) Ferrari, A. C.; Robertson, J. Phys. Rev. B: Condens. Matter Mater.
Phys. 2001, 64, 13.
(40) Harz, M.; Claus, R. A.; Bockmeyer, C. L.; Baum, M.; Rosch, P.;
Kentouche, K.; Deigner, H. P.; Popp, J. Biopolymers 2006, 82, 317−
324.
(41) Kumamoto, Y.; Taguchi, A.; Smith, N. I.; Kawata, S. Biomed.
Opt. Express 2011, 2, 927−936.
(42) Wu, Q.; Hamilton, T.; Nelson, W. H.; Elliott, S.; Sperry, J. F.;
Wu, M. Anal. Chem. 2001, 73, 3432−3440.
(43) Blackwell, M.; Vilgalys, R.; James, T. Y.; Taylor, J. W. Fungi.
Eumycota: mushrooms, sac fungi, yeast, molds, rusts, smuts, etc.,
2012. http://tolweb.org/.
(44) Brakhage, A. A. Curr. Drug Targets 2005, 6, 875−886.
(45) Van Der Linden, J. W. M.; Warris, A.; Verweij, P. E. Med.
Mycol. 2011, 49, S82−S89.
(46) Mondon, P.; De Champs, C.; Donadille, A.; Ambroise-Thomas,
P.; Grillot, R. J. Med. Microbiol. 1996, 45, 186−191.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.8b01038
Anal. Chem. XXXX, XXX, XXX−XXX

G

134 | Publications



Publications | 135 

 

[P8] Surface enhanced Raman spectroscopy‐detection of the 

uptake of mannose‐modified nanoparticles by macrophages 

in vitro: A model for detection of vulnerable atherosclerotic 

plaques 

 

Copyright 2018 Wiley. Reprinted with kind permission from [Dugandžić, V., 

Drikermann, D., Ryabchykov, O., Undisz, A., Vilotijević, I., Lorkowski, S., Bock-

litz, T.W., Matthäus, C., Weber, K., Cialla‐May, D. and Popp, J., 2018. Surface 

enhanced Raman spectroscopy‐detection of the uptake of mannose‐modified na-

noparticles by macrophages in vitro: A model for detection of vulnerable athero-

sclerotic plaques. Journal of Biophotonics, p.e201800013. doi: 

10.1002/jbio.201800013] 

Erklärungen zu den Eigenanteilen des Promovenden sowie der weiteren Dokto-

randen/Doktorandinnen als Koautoren an der Publikation. 

1Dugandžić, V., 2Drikermann D., 3Ryabchykov, O., 4Undisz, A., 5Vilotijević I., 

6Lorkowski, S., 7Bocklitz, T.W., 8Matthäus, C., 9Weber, K., 10Cialla‐May, D., 

11Popp, J. 2018. Surface enhanced Raman spectroscopy‐detection of the uptake of 

mannose‐modified nanoparticles by macrophages in vitro: A model for detection 

of vulnerable atherosclerotic plaques. Journal of Biophotonics, e201800013, 

doi: 10.1002/jbio.201800013 

Beteiligt an (Zutreffendes ankreuzen) 

 1 2 3 4 5 6 7 8 9 10 11 

Konzeption des 

Forschungsansatzes 

X    X X  X X X X 

Planung der Untersuchungen X X X  X X X X X X X 

Datenerhebung X X  X        

Datenanalyse und Interpretation X X X  X  X     

Schreiben des Manuskripts X  X  X X X  X X X 

Vorschlag Anrechnung 

Publikationsäquivalent 

 0.5 0.25         



F UL L ART I C L E

Surface enhanced Raman spectroscopy-detection of the uptake
of mannose-modified nanoparticles by macrophages in vitro:
A model for detection of vulnerable atherosclerotic plaques

Vera Dugandžić1,2,3 | Denis Drikermann4 | Oleg Ryabchykov1,2,3 | Andreas Undisz5 |

Ivan Vilotijević4 | Stefan Lorkowski3,6,7,8 | Thomas W. Bocklitz1,2,3 | Christian Matthäus1,2,3 |

Karina Weber1,2,8 | Dana Cialla-May1,2,3* | Jürgen Popp1,2,3,8

1Institute of Physical Chemistry, Friedrich-Schiller
University Jena, Jena, Germany
2Leibniz Institute of Photonic Technology, Jena,
Germany
3Abbe Center of Photonics, Friedrich Schiller
University Jena, Jena, Germany
4Institute for Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, Jena, Germany
5Otto Schott Institute of Materials Research,
Friedrich Schiller University Jena, Jena, Germany
6Institute of Nutrition, Friedrich Schiller
University Jena, Jena, Germany
7Competence Cluster for Nutrition and
Cardiovascular Health (nutriCARD), Halle-Jena-
Leipzig, Germany
8Jena Centre for Soft Matter, (JCSM), Friedrich
Schiller University Jena, Jena, Germany

*Correspondence
Dana Cialla-May, Institute of Physical Chemistry,
Friedrich-Schiller University Jena, Helmholtzweg
4, 07743 Jena, Germany.
Email: dana.cialla-may@leibniz-ipht.de

Funding information
Bundesministerium für Bildung und Forschung,
Grant/Award Numbers: 03IPT513Y, 13N13856;
Carl-Zeiss-Stiftung

Atherosclerosis is a process of thicken-
ing and stiffening of the arterial walls
through the accumulation of lipids and
fibrotic material, as a consequence of
aging and unhealthy life style. How-
ever, not all arterial plaques lead to
complications, which can lead to life-
threatening events such as stroke and
myocardial infarction. Diagnosis of the
disease in early stages and identification of unstable atherosclerotic plaques are still
challenging. It has been shown that the development of atherosclerotic plaques is
an inflammatory process, where the accumulation of macrophages in the arterial
walls is immanent in the early as well as late stages of the disease. We present a
novel surface enhanced Raman spectroscopy (SERS)-based strategy for the detec-
tion of early stage atherosclerosis, based on the uptake of tagged gold nanoparticles
by macrophages and subsequent detection by means of SERS. The results pre-
sented here provide a basis for future in vivo studies in animal models.
The workflow of tracing the SERS-active nanoparticle uptake by macrophages
employing confocal Raman imaging.

KEYWORDS

atherosclerosis, gold nanoparticles, macrophages, mannose, SERS, silica coating

1 | INTRODUCTION

Cardiovascular diseases are the leading cause of death
worldwide [1, 2]. Atherosclerosis, as a phenomenon of
hardening and narrowing of arteries, is a major cause of
cardiovascular diseases. Atherosclerosis is characterized by
the formation of lesions in arterial walls, which contain
inflammatory cells and smooth muscle cells, and are hall-
marked by calcification, fibrosis and intracellular as well as

extracellular accumulation of lipids [3]. The development
of atherosclerotic plaques is a slow process which, to some
extent, affects almost all people. Not all arterial plaques
present danger and lead to sudden events such as stroke and
myocardial infarction. Those that do not are denoted as sta-
ble plaques [4]. In the study conducted by van der Wal
et al it was shown that an inflammatory process is involved
in the rupture or erosion of atherosclerotic plaques, irre-
spective of the plaque morphology [5]. In simple terms, all
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vulnerable arterial plaques are characterized by the presence
of macrophages [6].

The reliable diagnosis of vulnerable atherosclerotic
lesions in the early stages of their development is a major
challenge for modern medicine. Since there is no single indi-
cator pointing toward the development of atherosclerotic
lesions, health organizations have developed guidelines
which help health practitioners to assess the risk of cardio-
vascular diseases including atherosclerosis [7]. The current
state of the art in diagnosis of arterial plaques includes vari-
ous blood tests, including LDL cholesterol levels [8] and
inflammation biomarkers such as the high-sensitive
C-reactive protein (hs-CRP) [9]. Various methods are avail-
able for the imaging of atherosclerotic plaques, such as mag-
netic resonance imaging (MRI) [10], computed tomography
(CT) [11, 12], optical coherent tomography (OCT) [13] and
intravascular ultrasound [14]. These methods require highly
trained medical professionals for interpretation of results and
while they shed light on morphological features of the ath-
erosclerotic plaques, they fail to assess the vulnerability of
the plaques. MRI and CT require employment of the suitable
contrast agents, most often gadolinium based, which exhibit
toxic effect and can lead to allergic reactions and kidney fail-
ure [15]. OCT is generally obstructed by blood and faces
severe difficulties with imaging the aortic ostial lesions [16].
Therefore, there is a clear need for novel diagnostic methods
which will allow the assessment of the vulnerability of
plaques.

The last two decades have seen extensive research on the
application of optical spectroscopic techniques for the detec-
tion and characterization of atherosclerotic plaques. Com-
bined with OCT, fluorescence spectroscopy was applied to
detect lipid-rich lesions stained by the lipid soluble dye indo-
cyanine green [17]. Time-resolved laser-induced fluores-
cence spectroscopy is another powerful tool for the detection
of prone-to-rupture atherosclerotic plaques in histopathologi-
cal samples [18] and in vivo [19]. Infrared spectroscopy has
been applied for the detection of atherosclerosis from dried
blood samples in combination with an artificial neural net-
work statistical approach [20]. Combined with vascular
ultrasound, near-infrared spectroscopy has been employed to
study the morphology of atherosclerotic plaques [21].

The high specificity of Raman spectroscopy and the pos-
sibility to directly measure biological samples have moti-
vated the intense pursuit for the application of Raman
spectroscopy in biomedical research. The development of a
fiber probe-based Raman clinical setup, capable of intra-
arterial probing, was first reported two decades ago [22], but
these systems never made their way into routine application
in clinics. Various groups have used Raman spectroscopy
for the characterization of atherosclerotic lesions, contribut-
ing to the overall knowledge of the chemical composition
and structural features of atherosclerotic plaques [23–28].
This includes reports on in vivo catheter-based Raman probe

detection and characterization of plaques employing chemo-
metric aproaches [29, 30]. A more fundamental study was
performed by Stiebing et al, in which confocal Raman
micro-spectroscopy was used to study the distribution and
uptake dynamics of fatty acids and cholesterol by human
macrophages [31–33].

To the best of our knowledge surface enhanced Raman
spectroscopy (SERS) has not yet been employed for the
detection of atherosclerosis. This fact is especially surprising
in the light of the recent advances in nanoparticle synthesis.
Plasmonic nanoparticles as SERS tags can be specifically
designed to have excellent brightness allowing for simple
signal readout, while specific targeting can be achieved
through surface modification with specific molecules or anti-
bodies. A similar approach has been employed for the detec-
tion of microscopic ovarian cancer using nano-probe based
SERS [34]. The employment of SERS for the detection and
risk assessment of atherosclerosis together with the use of
specifically targeted SERS active nanoparticles would pro-
vide an easy and simple readout, independent of the interpre-
tation by a trained medical professional. Furthermore, the
direct readout relieves the SERS-based strategies from the
need for applying statistical models. Due to the excellent
sensitivity of SERS, the required amount of nanoparticles
for the detection is minimal and the signal stability elimi-
nates any signal bleaching issues. The only application of
plasmonic nanoparticles for atherosclerosis detection is
reported by Ankri et al [35], where gold nanorods were
employed for the diffusion reflection measurement-based
detection of atherosclerosis.

Since macrophages are abundant in prone-to-rupture ath-
erosclerotic plaques, the ability to detect macrophages within
the plaque would enable detection and early diagnosis of the
vulnerable plaques. Herein, we report a novel strategy for
the detection of dangerous atherosclerotic plaques based on
SERS, which is applied for the detection in macrophage
in vitro model. Our approach is based on the use of
mannose-modified SERS-active gold nanoparticles tagged
with a suitable reporter for targeting macrophages. The
uptake of the nanoparticles by macrophages was traced by
confocal Raman micro-spectroscopy in vitro and the results
encourage further research into applications of SERS for
both detection and characterization of vulnerable atheroscle-
rotic plaques.

2 | EXPERIMENTAL

2.1 | Chemicals and instrumentation

Hydrogen tetrachloroaurate(III) hydrate (99.999%), (3-mer-
captopropyl) trimethoxysilane (MTPMS) and succinic anhy-
dride from Alfa Aesar and Trisodium citrate dihydrate,
ammonium hydroxide (32%) and ethanol (99.8%) from Carl
Roth were used. Polyvinylpyrrolidone with an average
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relative molecular weight of 55 000 (PVP K-55), tetraethy-
lorthosilicate, 1,4-phenylene diisocyanide (PDI) and hydra-
zine hydrate were purchased from Sigma Aldrich. Extra dry
dimethylformamide (DMF) and extra dry ethanol were sup-
plied by ACROS organics and (3-aminopropyl) trimethoxy-
silane was supplied by abcr. All chemicals were used as
received. Milli-Q grade water was used for nanoparticle
preparation.

Glassware was washed with aqua regia and thoroughly
rinsed with Milli-Q grade water. Nanoparticle synthesis and
modifications were performed at room temperature. Centri-
fugation steps were performed at 5724g for 8 minutes if not
indicated otherwise. Nanoparticle pellets were re-dispersed
by ultrasonication. UV-Vis spectra were acquired applying a
Jasco V-670 spectrophotometer. Malvern Nano-ZS Zetasizer
was employed for DLS and Zeta potential measurements.
The samples for DLS and Zeta potential measurements were
prepared by diluting 10 μL of nanoparticle solution to 1 mL
with Milly-Q water. TEM (Transmission electron micros-
copy) images were acquired using a JEOL JEM-3010
(300 keV). Raman measurements were performed on a
WITec confocal Raman Microscope Alpha300 R coupled
with a 785 nm CW diode laser. A Nikon water immersion
objective with 60x magnification and numerical aperture
(NA) of 1.00 was used. Raman spectra were detected with a
cooled thermo-electric CCD. With the total laser power of
60 mW and a 1.00 NA water objective we estimate the peak
intensity on the sample to be 240 mW/μm2.

2.2 | Culture and differentiation of THP-1 cells

Human THP-1 macrophages were differentiated from THP-1
monocytes obtained from ATCC (Manassas, Virginia).

Differentiation was induced by adding phorbol-12-myris-
tate-13-acetate (0.1 mg/mL) and β-mercaptoethanol (50 μM)
in L-glutamine supplemented RPMI 1640 medium for
96 hours under 5% CO2 atmosphere at 37 �C [36, 37]. For
Raman micro-spectroscopy, the macrophages were grown
on calcium fluoride slides with partial confluency.

2.3 | SERS-active gold nanoparticle synthesis

Branched gold nanoparticles were synthesized by reduction
of tetrachloroauric acid with hydrazine hydrate in the pres-
ence of PVP K-55 and trisodium citrate as previously
reported [38]. The solution containing 0.25 mM tetrachlor-
oauric acid, 1.875 mM trisodium citrate and 0.3125 g/L
PVP K-55 was prepared by adding up appropriate amount of
stock solutions, respectively, with intense magnetic stirring.
Three minutes after addition of PVP K-55, 0.25 mL of
60 mM hydrazine hydrate solution have been added into
9.75 mL of the above prepared solution under intensive
magnetic stirring. Upon the addition of hydrazine hydrate,
the color of the solution changed immediately to intensive
blue. The prepared nanoparticles were characterized by UV-
Vis spectrophotometry and TEM microscopy.

The SERS reporter PDI was added to the nanoparticles
by mixing 50 μL of 0.01 mM solution of PDI in ethanol
with 1 mL of the nanoparticle solution (Step a, Figure 1).
This sample was denoted as AuNP@PDI.

2.4 | Silica encapsulation

Silica deposition was performed by a modified Stöber proce-
dure by hydrolyzing tetraethylorthosilicate in a mixed water/
ethanol solution in the presence of ammonia (Step b,
Figure 1) [39]. Ten milliliter of the gold nanoparticle

FIGURE 1 Schematic representation of the nanoparticle modification steps: (A) Addition of Raman reporter, PDI; (B) silica encapsulation;
(C) functionalization of the silica surface with carboxyl groups; D) mannose binding to the nanoparticle surface via an EDC/NHS coupling reaction
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suspension was concentrated to the volume of 1 mL by cen-
trifugation and re-dispersion of the nanoparticles in 1 mL of
the supernatant. The nanoparticles were then diluted with
3 mL of dry ethanol under magnetic stirring, followed by the
addition of 450 μL of 0.01 mM (3-Mercaptopropyl) tri-
methoxysilane (MPTMS) in dry ethanol and 300 μL of
1 mM PDI in dry ethanol, respectively. The mixture was stir-
red for several minutes followed by addition of 3.33 mL of
10% (v/v) ammonium hydroxide solution in dry ethanol.
The silica encapsulation was achieved by slow addition of
10% (v/v) tetraethoxysilane (TEOS) in dry ethanol over a
total of 8 hours at a flowrate of 1.07 nL/s, having 1 hour
break after every 30 minutes of the addition of TEOS. Addi-
tion of TEOS was precisely controlled by a neMESYS
syringe pump system (Cetoni GmbH). After the reaction
was completed, one third of the silanization mixture was
removed from the reaction vessel, washed several times with
water by centrifugation and re-dispersed in water. This sam-
ple was denoted as AuNP@PDI@silica. The remaining two
thirds of the silanization mixture were used for further modi-
fication with mannose.

2.5 | Surface functionalization with mannose

Mannose functionalization of the silica surface was achieved
via EDC (1-Ethyl-3-(3-dimethylaminopropyl)-carbodii-
mide)/NHS (N-Hydroxysuccinimide) promoted amide cou-
pling starting from carboxyl functionalized silica coated gold
nanoparticles and mannose bearing an amino-functionalized
linker. The required mannose derivative was prepared in five
steps via a modification of a previously reported procedure
[40] from mannose and 5-aminopentanol. In order to bind
amino functionalized mannose to the surface of silica, the
nanoparticle surface was functionalized with carboxyl
groups as described elsewhere (Step c, Figure 1) [41].
Briefly, 15.5 μL of (3-aminopropyl)triethoxysilane was
mixed with an equimolar amount of succinic anhydride in
0.5 mL of dry DMF and left to react overnight with gentle
stirring. The mixture was subsequently dissolved in 1 mL of
dry ethanol and 22.1 μL of the resulting solution was added
directly to the silanization mixture, followed by stirring for
90 minutes. The prepared carboxyl functionalized silica
coated gold nanoparticles were centrifuged, washed twice
with water and re-dispersed in 120 μL of water. Carboxyl
modified nanoparticles were diluted with 130 μL of 30 mM
MES (2-(N-morpholino)ethanesulfonic acid) buffer (pH 5.5).
The obtained nanoparticle solution was mixed with 250 μL
of freshly prepared solution containing 30 mg/mL EDC and
30 mg/mL NHS in 30 mM MES buffer (pH 5.5) and reacted
for 10 minutes followed by addition of 250 μL of 5 mg/mL
of amino modified mannose solution in water (Step d,
Figure 1). The reaction could proceed overnight at room
temperature with mixing. Nanoparticles were subsequently
centrifuged at 3220 g for 6 minutes, washed with water and

re-dispersed in 1 mL of water. This sample was denoted as
AuNP@PDI@silica-man.

2.6 | Incubation of the nanoparticles with
macrophages and Raman measurements

Mature macrophages were incubated with the prepared
nanoparticle samples AuNP@PDI, AuNP@PDI@silica and
AuNP@PDI@silica-man for 30 minutes as well as 2 hours.
Prior to incubation, the samples were diluted to achieve
equal optical density. After the incubation, the mature cells
were washed with PBS buffer and fixed with 4% paraformal-
dehyde (PFA) solution for 20 minutes at room temperature.

The sample was located on a piezoelectrically driven
microscope scanning stage and scanned through the laser
focus in a raster pattern. Raman images were taken with a
step size of 0.5 μm with an integration time of 0.1 second
per step. The grating of 300 grooves/mm gave a spectral res-
olution of ~6 cm−1. The cells were mapped with setting the
laser focus in the middle of the cell respective to the vertical
axis. Per sample, 10 to 14 cells were randomly chosen and
imaged employing Raman microscopy.

2.7 | Data analysis

Data analysis was conducted using an in-house developed
script in the programming language R [42] with use of the
packages “imager” [43], “Peaks” [44] and “tiff” [45].

First, all spectra were background corrected using the
SNIP (sensitive nonlinear iterative peak-clipping) algo-
rithm [46], then the spikes were detected by the Laplacian
operator and removed [47]. Subsequently, a Gaussian
smoothing was applied. Unfortunately, within the spectra of
high-fluorescence intensity, Raman signatures were not
well-distinguishable, because large Poisson noise contribu-
tions decreased the signal-to-noise ratio of the Raman signal.
Therefore the spectra that had the value of SD 20 times
greater than the median value were excluded from further
analysis. Furthermore, to obtain the visualization of the mac-
rophages and estimate their area, the peak area in the range
1400 to 1500 cm−1, originating from CH2 scissoring of
lipids, was used. In particular, the cell areas were estimated
by k-means clustering with subsequent morphological clos-
ing and opening operations. However, in cases where the
cell area was not estimated correctly, the fragments of other
cells were present within the scan, or other artifacts appeared
the cell area was selected manually. This manual procedure
was done for 12 cells.

The presence of the nanoparticles in the cells was charac-
terized by a peak in the range 2100 to 2200 cm−1, which is
attributed to the isocyano group of PDI. To detect the nano-
particles within the cells, the spectral range 2100 to
2200 cm−1 was integrated and an automated k-means-based
threshold, which was adjusted for a high cut-off, was
applied. In addition to the thresholding, an automated
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verification of the peak presence was performed by checking
if the first derivative of a smoothed spectrum was changing
the sign within the range 2120 to 2180 cm−1. Only if the
peak was found within the cell area and its integrated inten-
sity was higher than the threshold, the pixel was marked and
kept for further analysis.

To produce the false color images the peak around 1400
to 1500 cm−1 and the verified peaks in the range 2100 to
2200 cm−1 were clamped to the range from zero to the dou-
bled value of 80th percentile and plotted in blue and red
colors respectively. Technically, two separate images were
created, one presenting the cell and the other one presenting
the distribution of nanoparticles. These two images were fur-
ther overlaid to give final images.

Subsequently, the total Raman intensity of the red chan-
nel as well as total number of the red pixels in each false
color image of human THP-1 macrophages was calculated.
These values were normalized by the size of the cell and
used for the assessment of the abundance of the nanoparti-
cles in each sample, raising the possibility to compare the
uptake of each type of nanoparticles by human THP-1 mac-
rophages. The Mann-Whitney U test was used to examine
between-group differences. The Mann-Whitney U test is a
nonparametric test used to determine whether the values
from two samples have the same distribution which does not
assume the distribution to be normal, what makes it more
suitable than t test for non-normal or unknown distributions.

3 | RESULTS AND DISCUSSION

The concept for applying SERS and Raman spectroscopy
for the detection and characterization of atherosclerotic pla-
ques has been examined in a macrophage in vitro model,
since macrophages are abundant in vulnerable atheroscle-
rotic plaques. The branched gold nanoparticles were synthe-
sized and modified with silica and mannose in a stepwise
procedure. Branched nanoparticles were selected due to their
well-documented efficient SERS activity without particle
aggregation [38]. The prepared gold nanoparticles had an
average size of 79 � 18 nm, as estimated from TEM
images. DLS measurements indicated a high polydispersity
of the sample. However, the obtained hydrodynamic radii
differ greatly from the values obtained from TEM. The mea-
sured Zeta potential was found to be −24.43 � 0.25 mV.
An appropriate reporter molecule was required for the nano-
particle uptake test traced by SERS and 1,4-phenylene diiso-
cyanide appeared to be the best suited reporter molecule.
PDI easily binds to gold surfaces and features isocyanide
groups with strong signal in the Raman silent region of
2100 to 2200 cm−1, allowing for the Raman detection
within a complex matrix such as cells or tissue. The
branched gold nanoparticles synthesized in the presence of
PVP proved to be particularly suitable for functionalization
with PDI since no agglomeration was observed. When

round gold nanoparticles were used, extensive agglomera-
tion was found due to the bidentate character of the PDI
molecule. Silica encapsulation was carried out to prevent
the gold nanoparticle from adsorbing matrix molecules and
to allow for chemical modification of the particle surface
[48]. The silica encapsulation resulted in a tremendous
change of the zeta potential compared to the “naked” gold
cores. The zeta potential of the silica coated nanoparticles
was found to be 23.37 � 0.17 mV. Subsequently, silaniza-
tion with carboxy functionalized triethoxysilane (product of
the reaction of (3-aminopropyl)triethoxysilane with succinic
anhydride) was performed in order to further facilitating
chemical modification of the surface of the particles by
introducing carboxylic functional groups. Finally, mannose
was bound to the SERS tag surface via an EDC/NHS pro-
moted amide coupling reaction to produce the mannose-
modified SERS tag particles. The binding of mannose was
accompanied by a change of the zeta potential to the value
of 27.2 � 0.54 mV, indicating the successful binding.

A representative TEM image of the nanostructures modi-
fied with the reporter molecule PDI is shown in
Figure 2A. The spiky structural features assured a high
SERS intensity without agglomeration of these particles. To
achieve better biocompatibility, the synthesized nanoparti-
cles were coated with a silica shell (TEM image, Figure 2B).
Silica encapsulation of gold nanoparticles is a widely used

FIGURE 2 TEM image of (A) noncoated and (B) silica coated gold
nanoparticles; (C) comparative UV-Vis spectrum of the gold nanoparticles
before and after silica encapsulation; (D) Raman spectrum of PDI powder
and SERS spectrum of a 1 × 10−5 M solution of PDI
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method for achieving stability and biocompatibility of nano-
particles. Even though several publications report successful
coating of round nanoparticles with silica [49, 50], coating
of branched and star-shaped nanoparticles is rather demand-
ing and hard to achieve. Slow addition of the siloxane pre-
cursor and priming of the gold surface appeared to be crucial
for the successful silica encapsulation of the branched nano-
particles, avoiding the formation of empty silica nanoparti-
cles. The addition of a small amount of (3-mercaptopropyl)
trimethoxysilane before the silanization primed the surface
and allowed for successful coating of the nanoparticles with
silica; providing necessary hydroxyl groups on the gold sur-
face. Further condensation of hydrolyzed TEOS was possi-
ble at this stage. The slow addition of the siloxane precursor
assured a slower rate of polymerization of orthosilicic acid
compared to the rate of the hydrolysis of the siloxane precur-
sor, preventing nucleation of new silica nanoparticles. Con-
sequently, the small shift of the localized surface plasmon
resonance peak observed in the UV-Vis spectrum
(Figure 2C) is due to the increase in the local refractive
index around the particles [50]. The Raman spectrum of the
reporter molecule PDI shows an intense peak at 2121 cm−1,
originating from the isocyanide (Figure 2D). In the SERS
spectrum this peak is shifted to 2168 cm−1 indicating coordi-
nation of the isocyanide in PDI to the gold surface [51].

The appearance of the peak in a spectral window where
no Raman features of cells are present is crucial for simple
and rapid data processing and simplifies differentiation of
the SERS signal of the nanoparticles from the Raman signals
of the cells.

The abundance of macrophages in vulnerable atheroscle-
rotic plaques makes them a perfect target for the uptake of
our fabricated SERS nanoparticles, in particular due to their
phagocytic character. Since mature macrophages express a
mannose-specific C-type lectin receptor CD206 [52, 53],
silica-coated gold nanoparticles whose surface is functiona-
lized with mannose reduce the time needed for their uptake.
A comprehensive investigation was conducted to assess the
uptake of the prepared nanoparticles by macrophages. Mature
macrophages were incubated with gold nanoparticles bearing
only PDI reporter (AuNP@PDI), silica-coated gold nanopar-
ticles (AuNP@PDI@silica) and mannose-modified silica-
coated gold nanoparticles (AuNP@PSI@silica-man) for
30 minutes and for 2 hours, respectively. After incubation,
macrophages were washed with PBS at room temperature to
remove any physically deposited nanoparticles and fixed
with 4% (w/v) PFA. Raman imaging was performed employ-
ing an integration time as short as 0.1 second, but still keep-
ing the quality of the acquired spectra at a satisfactory level
for subsequent data processing. All cell data was processed
applying the same conditions using an in-house developed
algorithm as described in the data analysis section. Since the
cell figures are plotted using scaled intensities in desired
regions, a peak recognition parameter was applied using a

derivative approach to confirm that the reporter signal indeed
originates from the PDI peak in the region of 2120 to
2180 cm−1. The signal was considered positive only when
the first derivative of the spectrum had a zero value at the
spectral range where the reporter peak is expected. Applying
this approach, false-positives arising from the background
signal from the cells in which no reporter was found, were
successfully eliminated. Corresponding reporter spectra from
each red point in the Raman cell image are presented together
with the Raman image for each investigated cell.

Figure 3 shows the Raman images of macrophages incu-
bated for 30 minutes with gold nanoparticles bearing only
the SERS reporter (AuNP@PDI). The corresponding Raman
spectra of single pixels were plotted. The reporter signal was
observed in only 3 out of 14 imaged cells (Figure 3A-C). In
most cases, no specific signal of the Raman reporter was
found; here, the spectra are dominated by the contributions
of the cellular Raman signals (Figure 3D-N). The Raman
measurement showed that gold nanoparticles without silica
encapsulation were not taken up to a significant amount by
macrophages after 30 minutes of incubation. Furthermore,
no improvement of the particle uptake was observed even
after 2 hours of incubation (Figure S1 in File S1, Supporting
Information). An additional explanation of the observed low
uptake of this type of nanoparticles could be derived taking
into account the possibility that the SERS reporter—PDI—
could have been desorbed from the nanoparticles' surface
and replaced by competing molecules found in cells, result-
ing in an inability to detect the presence of the nanoparticles
in cells by SERS.

In the next step, the silica-coated nanoparticles
AuNP@PDI@silica were used for the incubation of macro-
phages. As shown in Figure 4, the Raman images as well as
the corresponding spectra showing a specific signal assigned
to the Raman reporter molecule are depicted for an incuba-
tion time of 30 minutes. As illustrated by these images, a
specific signal of the SERS reporter was found in all ran-
domly chosen and inspected cells, indicating that silica-
coated nanoparticles were taken up by the macrophages to a
higher extent than the non-coated AuNP@PDI particles.

It is evident that the uptake is not evenly distributed and
varies from cell to cell. However, it is rational to expect that
the uptake of nanoparticles will be proportional to the size of
cells. The highest load of nanoparticles is observed in two
cells depicted in Figure 4E and Figure 4J. It is, however,
obvious that the size of these two cells is much bigger com-
pared to other eight cells in the sample.

The improved uptake after silica encapsulation might be
a result of an increased size of the nanoparticles upon silica
encapsulation or/and different properties of the particle sur-
face. However, no significant difference in the uptake was
observed after 2 hours of incubation (Figure S2 in File S1)
indicating that the maximum load was achieved already after
30 minutes of incubation.
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Finally, THP-1 macrophages were incubated for
30 minutes with the mannose-modified nanoparticles
AuNP@PDI@silica-man. The Raman images as well as the

corresponding pixel Raman spectra showing a contribution
by the marker mode of the reporter molecule PDI are illus-
trated in Figure 5. The mannose modification further

FIGURE 3 Raman images of human THP-1 macrophages incubated with AuNP@PDI for 30 minutes. (A-C) Raman images of macrophages together with
corresponding point spectra, in which the signal of the Raman reporter was found (marker mode labeled with red). White circles indicate the location of red
points in images for improved visibility; (D-N) Raman images of the macrophages, in which the signal of the Raman reporter was not found. The
corresponding spectra present a Raman spectrum in a single pixel of a microphage image. The scale bar represents 10 μm
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improved the uptake of the nanoparticles leading to higher
abundance of the reporter signal observed presumably due to
the specific recognition of the mannose on nanoparticles by
the mannose receptor on the macrophage surface. In the case
of the mannose-modified nanoparticles, the uptake increased
over time, leading to a significantly higher load of the nano-
particles in the macrophages after 2 hours of incubation
(Figure S3 in File S1).

Evidently, the presence of mannose at the nanoparticles'
surface facilitates their uptake, resulting in increased
amounts of nanoparticle uptake over time as well as a signif-
icantly higher uptake of the nanoparticles after 30 minutes
compared to the non-functionalized AuNP@PDI@silica par-
ticles. This is in accordance with the literature reports where
mannose coating was utilized for the targeted delivery of
nanoparticles to macrophages [52, 54].

In an attempt to compare the abundance of the nanoparti-
cles in the cells incubated with different types of nanoparti-
cles for 30 minutes and 2 hours, two semi-quantitative
approaches have been employed. In a first approach, the
total Raman intensity of the red channel (related to the num-
ber of nanoparticles taken up by the macrophages) in has
been normalized by the total cell area in the image expressed
in pixels and the average value has been calculated for all
imaged cells in a sample. The obtained values are shown in
the Figure 6A.

The lowest uptake was observed in the case of the nano-
particles bearing only SERS reporter (PDI), while the
highest uptake was observed when the mannose-coated
nanoparticles were used. Furthermore, no significant differ-
ence in uptake was observed for the samples AuNP@PDI
and AuNP@PDI@silica with the increase of the incubation

FIGURE 4 Raman images of human THP-1 macrophages incubated with AuNP@PDI@silica for 30 minutes together with corresponding point spectra
extracted from each red point in the Raman image. The specific signal of the Raman reporter was found in all inspected cells (marker mode labeled with red).
White circles indicate the location of red points in images for improved visibility. The scale bar represents 10 μm. *Cell E contained more than 10 red points.
For clarity, only 10 randomly chosen spectra were plotted
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time, while in the case of the mannose-coated nanoparticles,
the uptake rises dramatically with increased incubation time.
The second approach was based on the total number of

pixels in the image where the reporter signal was found. This
number was normalized by the cell size expressed in pixels
to obtain values which can serve as a semi-quantitative

FIGURE 5 Raman images of human THP-1 macrophages incubated with AuNP@PDI@silica-man for 30 minutes together with the corresponding point
spectra extracted from each red point in the Raman image. The specific signal of the Raman reporter was found in all inspected cells (marker mode labeled
with red). The scale bar represents 10 μm. *Cell E contained more than 10 red points. For clarity, only 10 randomly chosen spectra were plotted. White circles
indicate the location of red points in images for improved visibility
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indication of the nanoparticle abundance in cells. Average
values are calculated for all the samples and the obtained
values are shown in Figure 6B. Again, the lowest uptake
was found in the case of the nanoparticles bearing only the
SERS reporter and the highest uptake was found for the
mannose-coated nanoparticles with no significant change in
the uptake for samples AuNP@PDI and AuNP@PDI@silica
and a significant increase in the case of mannose-coated
nanoparticles with the increase of the incubation time. Even
though none of these parameters is fully quantitative, the
same tendency present in both approaches serves as a strong
indicator of the reliability of the applied strategy.

4 | CONCLUSION

In the present study we examined the possibility of applying
SERS spectroscopy for the detection and characterization of
vulnerable atherosclerotic plaques, by targeting macrophages
as highly abundant cells in these lesions. Branched gold
nanoparticles exhibiting SERS activity without particle
agglomeration were synthesized and successfully surface-
modified. The nanoparticles were first silica encapsulated to
enhance their biocompatibility and to diminish potential tox-
icity. A successful silica encapsulation was achieved by slow
addition of TEOS to the reaction mixture containing nano-
particles primed with MPTMS. Specific targeting of the
macrophages was achieved by modification of the core shell
Au-silica nanoparticles with mannose to allow specific bind-
ing to mannose receptors which are abundantly expressed on
the surface of mature macrophages. Our results indicate that
branched nanoparticles bearing only the SERS reporter are

not suitable for the detection of macrophages due to the low
uptake even after 2 hours of incubation. This low uptake of
the branched nanoparticles could be a consequence of the
spiky structure of the nanoparticles. Simple silica encapsula-
tion already enhanced the uptake of the nanoparticles by
macrophages, with a significant increase of uptake observed
already after 30 minutes of incubation. Silica encapsulation
is a widely used strategy to improve the biocompatibility of
nanomaterials used for the application in biological systems,
due to the high-chemical inertness of silica. The increase in
the uptake of the silica-coated nanoparticles may also be a
consequence of the increased size of the nanoparticles com-
pared to the non-coated nanoparticles. As expected, the
modification of the core-shell gold-silica nanoparticles with
mannose led to the highest uptake of the nanoparticles
within the short time frame of 30 minutes. Although a sig-
nificant increase of the uptake of mannose-modified nano-
particles was observed after 2 hours, we deemed that
incubation time of 30 minutes could be adequate for a clini-
cal application. The described branched nanoparticles
exhibit sufficient SERS activity without aggregation and
allow for a better control of the size of the nanoparticles
compared to methods based on SERS active nanoparticle
agglomerates. A sensible choice of the SERS reporter, show-
ing a signal in a spectral range where tissues and cells do not
show Raman features (CN and CC triple bonds) is of utmost
importance for in vivo applications. This allows for a simple
and direct readout, avoiding the need for complex statistic
posttreatment of the obtained datasets. With our results,
in vivo studies in animal models appear promising. The
uptake of mannose-modified nanoparticles by macrophages

FIGURE 6 A comparison of the nanoparticle abundance in human THP-1 macrophages incubated with three types of nanoparticles (AuNP@PDI,
AuNP@PDI@silica and AuNP@PDI@silica-man) for 30 minutes and 2 hours, respectively: (A) expressed as an average value of the total SERS intensity of
the characteristic PDI band appearing in the Raman image normalized by cell size (Normalized integrated intensity); (B) expressed as an average value of the
total number of pixels in which the PDI signal appears in a Raman image normalized by cell size (Normalized pixel count). Error bars represent the SE of the
mean. Statistically significantly difference (P < 0.05) was found for all comparisons of mean values, except for those connected by a black bar and labeled
with not significant (N.S.)
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located in atherosclerotic plaques should be studied in more
detail, paving the way for the future application of SERS for
the detection and characterization of vulnerable atheroscle-
rotic plaques in humans, for example using catheter Raman
probes.
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Figure S1 Raman images of human THP-1 macrophages
incubated with AuNP@PDI for 2 hours. (A-D) Raman images
of macrophages together with corresponding point spectra, in
which the signal of the Raman reporter was found (marker
mode labeled with red). White circles indicate the location of
red points in images for improved visibility; (E-K) Raman
images of human THP-1 macrophages, in which the signal of
the Raman reporter was not found. The corresponding spectra
present a Raman spectrum in a single pixel of a microphage
image. The scale bar represents 10 μm
Figure S2 Raman images of human THP-1 macrophages
incubated with AuNP@PDI@Silica for 2 hours. (A-I)
Raman images of macrophages together with corresponding
point spectra, in which the signal of the Raman reporter was
found (marker mode labeled with red). White circles indicate
the location of red points in images for improved visibility;
(J) Raman image of a human THP-1 macrophage, in which
the signal of the Raman reporter was not found. The corre-
sponding spectra present a Raman spectrum in a single pixel
of a microphage image. The scale bar represents 10 μm

Figure S3 Raman images of human THP-1 macrophages
incubated with AuNP@PDI@Silica-man for 2 hours
together with corresponding point spectra extracted from
each red point in the Raman image. The specific signal of
the Raman reporter was found in all inspected cells (marker
mode labeled with red). White circles indicate the location
of red points in images for improved visibility. The scale bar
represents 10 μm. *Only 10 randomly chosen spectra were
plotted in the cases of the cells where number of red points
exceeded 10.
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