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SUMMARY 

Innate immune cells, such as monocytes, were shown to be able to adapt to different 

inflammatory stimuli in distinct ways to protect the organism against recurrent infections 

by different mechanisms. Endotoxin tolerance can be induced by different 

pathogen-associated molecular pattern (PAMP) such as the lipopolysaccharide (LPS) 

and is characterized by a decreased inflammatory response when challenged with a 

second infection. Thus, endotoxin tolerance protects against a hyperinflammatory 

response and associated tissue damages. In contrast to LPS, the fungal cell wall 

compartment -glucan induces trained immunity to protect cells and organisms through 

an increased pro-inflammatory response upon re-infection. Previous studies reported 

that these adaptation processes involve epigenetic changes based on a metabolic 

switch from oxidative phosphorylation to aerobic glycolysis, the so-called Warburg effect. 

mTORC1 as a key metabolic regulator, balances nutrient supply and energy demand of 

the cell and is therefore thought to play an important role in these adaptation processes. 

However, little is known about the exact underlying mechanisms, as well as the 

interaction of cellular metabolism and innate immune cell adaptation. 

The role of mTORC1 was investigated within the scope of a clinical study comprising 

healthy volunteers as well as patients with Tuberous sclerosis complex (TSC). This 

genetic disorder is characterized by hyperactivation of mTORC1 caused by 

loss-of-function mutations in the main upstream inhibitor complex of mTORC1.  

The present data demonstrate that primary human monocytes are able to adapt to 

inflammatory stressors, but these processes do not depend on mTOR activity. Induction 

of endotoxin tolerance is not affected in cells from TSC patients and not altered by 

chemical inhibition of mTOR signaling, as evidenced by cytokine production. 

Inflammatory priming with LPS or -glucan likewise does not trigger alterations in 

mTORC1 activity or cellular metabolism. Signaling analysis were extended by the 

employment of primary human monocytes from healthy voluntary blood donors allowing 

to further investigate different inflammatory pathways. Examination of LPS primed 

monocytes reveal a distinct cytokine regulation, rather than a complete lack of 

inflammatory response in tolerant cells. Flow cytometric analysis and cytokine 

investigations confirm that induction of tolerance is not mediated by the abundance of 

cell surface receptor or the release of pro-inflammatory cytokines. In addition, adapting 

monocytes do not depend on a particular inflammatory signaling cascade, as examined 

by immunoblotting experiments. However, p38 as well as AKT signaling are 

downregulated and might be important mediators for the suppression of 

pro-inflammatory TNF production in tolerant cells.  
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ZUSAMMENFASSUNG 

Zellen des angeborenen Immunsystems, wie beispielweise Monozyten, sind in der Lage 

sich auf verschiedene Arten an inflammatorische Stimuli anzupassen, um den 

Organismus vor erneuten Infektionen zu schützen. Endotoxin Toleranz kann durch 

verschiedene Pathogen-assoziierte molekulare Strukturen (PAMP), wie 

Lipopolysaccharid (LPS), induziert werden und ist durch die verminderte Immunantwort 

während einer wiederkehrenden Konfrontation gekennzeichnet. Dabei schützt Endotoxin 

Toleranz vor einer gesteigerten Entzündungsreaktion und damit verbundenen 

Gewebeschäden. Im Gegensatz zu LPS induziert -Glucan, ein Bestandteil der Zellwand 

von Pilzen, ein trainiertes Immunsystem, um Zellen und den Organismus über eine 

gesteigerte Entzündungsreaktion vor einer erneuten Infektion zu schützen. Frühere 

Studien zeigen, dass diese Adaptationsprozesse mit epigenetischen Veränderungen auf 

der Basis einer metabolischen Umstellung, von oxidativer Phosphorylierung hin zu 

aerober Glykolyse, dem sogenannten Warburg Effekt, einhergehen. mTORC1 besitzt 

eine Schlüsselfunktion in der Regulierung des Metabolismus, in dem es 

Nährstoffverfügbarkeiten und den Energiebedarf der Zelle im Gleichgewicht hält. Daher 

wird vermutet, dass mTOR eine wichtige Rolle in diesen Adaptationsprozessen 

einnimmt. Es ist jedoch nur wenig über die genauen zugrunde liegenden Mechanismen, 

sowie das Zusammenspiel von zellulärem Metabolismus und Anpassung der 

angeborenen Immunzellen bekannt. 

Die Rolle von mTORC1 wurde in Rahmen einer klinischen Studie mit gesunden 

Probanden und Patienten mit Tuberöser Sklerose (TSC) untersucht. Diese genetische 

Erkrankung wird durch eine Hyperaktivität von mTORC1 gekennzeichnet, welche durch 

eine Funktionsverlustmutation des vorangestellten Hauptinhibitors von mTORC1 

ausgelöst wird. 

Die vorliegenden Ergebnisse zeigen, dass primäre humane Monozyten in der Lage sind 

sich inflammatorischen Stressoren anzupassen, jedoch sind diese Adaptationsprozesse 

nicht abhängig von der Aktivität von mTOR. Die Analyse der Zytokinproduktion beweist, 

dass die Induktion von Endotoxin Toleranz in TSC Patienten nicht beeinflusst ist und 

durch die chemische Inhibierung von mTOR nicht verändert wird. Inflammatorische 

Vorbehandlung durch LPS oder -Glucan führt ebenso zu keinen Änderungen in der 

Aktivität von mTORC1 oder des zellulären Metabolismus. Die Untersuchungen der 

Signalübertragung wurde durch die Verwendung von gesunden, freiwilligen 

Blutspendern erweitert, um weitere inflammatorische Signalwege zu erforschen. Die 

Betrachtung von LPS vorbehandelten Monozyten hat aufgedeckt, dass in toleranten 

Zellen statt eines kompletten Verlustes der Entzündungsantwort, eine gezielte 
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Zytokinregulation zugrunde liegt. Durchflusszytometrische Analysen und die 

Untersuchung der Zytokine bestätigen, dass die Induktion von Toleranz nicht durch die 

Menge an Oberfllächenrezeptor oder inflammatorischen Zytokinen vermittelt wird. Des 

Weiteren sind adaptierende Monozyten nicht von einem bestimmten Signalweg 

abhängig, wie mittels Protein-Immun-Blots festgestellt werden konnte. Allerdings sind 

der p38 und der AKT Signalweg in toleranten Zellen runterreguliert und könnten damit 

wichtige Vermittler in der Unterdrückung der inflammatorischen TNF Produktion 

darstellen. 
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1. INTRODUCTION 

1.1 Immune adaptation processes 

Classically the immune system is divided into innate immune responses, which react 

quick but in a non-specific manner regarding the encountering pathogen, and the 

adaptive immune system, reacting slower but specific as well as able to develop 

immunological memory. However, after first observations in the 1940´s, a memory-like 

state of innate immune cells like monocytes and macrophages has raised increased 

interest within the last decade. This is based on studies of plants and invertebrates, 

which lack an adaptive immune system but still can develop a systemic acquired 

resistance (SAR), protecting plants from recurring infections even by non-related 

pathogens [1]. Innate immunological memory seems to be a possible explanation for 

unspecific protection of a variety of vaccines against infections other than target 

diseases. An increasing body of evidence indicates for adaptation processes of cells of 

the innate immune system against diverse stimuli also in humans. Two of these putative 

protecting adaptation mechanisms are endotoxin tolerance and trained immunity. 

Though both processes trigger opposing immunological responses, after priming with 

distinct Pathogen associated molecular pattern (PAMP), they are reported to be 

protective against otherwise lethal infections with the same or a different PAMPs. 

1.1.1 Endotoxin tolerance and LPS 

Endotoxin tolerance is defined as a temporary hyporesponsiveness characterized by a 

decreased pro-inflammatory response of innate immune cells upon re-stimulation with 

endotoxin, to regulate acute pro-inflammatory response and protect from 

inflammation-induced injury. First observations of endotoxin tolerance were described 

over 70 years ago, when Paul Beeson reported, that humans, which recovered from 

malaria or typhoid fever revealed reduced fever when re-challenged with endotoxin [2]. 

However, the exact molecular mechanism underlying this protective effect of the innate 

immune system are still not fully understood.  

In the classical model this endotoxin is Lipopolysaccharide (LPS), a major compartment 

of the outer membrane of gram-negative bacteria like Escherichia coli. Thereby, LPS 

increases the negative charge of the bacterial cell membrane to protect from chemical 

attacks and stabilizes the membrane structure [3]. It is composed of Lipid A, which 

anchors LPS into the bacterial membrane, a core domain and the so-called O-antigen, a 

polysaccharide chain with diverse compositions, depending on the bacterial strain [4]. 



 

2 

The O-antigen is the very outer part of the bacteria and therefore can be recognized by 

host antibodies[5]. However, lipid A is responsible for the induction of inflammatory 

immune cell response upon receptor binding [6]. 

TLR4 signaling cascade 

LPS can bind to the Toll-like receptor 4 (TLR4) in complex with CD14 (Cluster of 

differentiation 14) and MD2 (Myeloid differentiation factor 2) on different innate immune 

cells like monocytes, macrophages and dendritic cells, triggering intracellular TLR4 

signaling cascades [7-9]. Upon dimerization of the receptor, the cytoplasmic tail of TLR4, 

containing a TIR (toll-interleukin-1 receptor) domain, recruits the adapter proteins 

MyD88, TIRAP, TRIF and TRAM (TRIF-related adapter molecule) (Fig. 4) [10, 11]. 

MyD88 (Myeloid differentiation primary response 88) and TIRAP (TIR domain containing 

adapter protein) subsequently recruit IRAK-1 or IRAK-4 (Interleukin-1 receptor-

associated kinase-1/4), death domain containing kinases, which auto-phosphorylate and 

dissociate from the receptor to bind TRAF6 (TNF receptor-associated factor 6), followed 

by other signaling targets such as IKK (I kappa B kinases), Mitogen-activated protein 

(MAP) kinases or the activator protein-1 (AP-1) [11]. In contrast, recruitment of TRIF 

(TIR-domain-containing adapter inducing IFN-) requires internalization of TLR4 

complex to endosomes, where it activates the transcription factor IRF3 (IFN regulatory 

factor 3) and initiates the transcription of interferon (IFN) and IFN-inducible genes [12, 

13]. Therefore, TLR4 can activate diverse signaling cascades including NFB, the MAP 

kinases ERK (Extracellular signal-related kinase) and p38, c-Jun or AP1 and hence 

initiate pro-inflammatory cytokine production [11].  

With LPS induced TLR4 signaling, immune cells try to counteract the putative bacterial 

infection with gram-negative bacteria by production of pro-inflammatory cytokines and 

mediators. This can result in an uncontrolled immune response and hence an endotoxic 

shock, along with tissue or organ damage. Therefore, the immune system developed 

defense strategies against endotoxic shock or associated high immune responses. One 

of these strategies is endotoxin tolerance. During initial exposure to LPS, cells produce 

an increased amount of TNF (Tumor necrosis factor ), IL-1 (Interleukin 1), IL-6 and 

IL-8, among others [14]. However, macrophages primed with LPS, produce attenuated 

amounts of pro-inflammatory cytokines, such as TNF, IL-6 and IL-12, associated with 

an increase of anti-inflammatory IL-10 secretion and reduced antigen presentation upon 

re-exposure [10, 15]. In addition to prevent exaggerated immune response and 

associated damage, endotoxin tolerance can protect from subsequent lethal infections. 

Mice rendered tolerant with lower amounts of LPS, displayed enhanced survival against 

high, otherwise lethal doses of LPS or induction of sepsis [16, 17]. 
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Fig. 1: Simplified scheme of the TLR4 signaling pathway. 

Signaling cascade of TLR4 after binding of LPS. Oligomerization of the TLR4/MD2 complex 
activates 2 distinct signaling pathways. Binding of MyD88 and TIRAP to the TIR-domain of the 
receptor subsequently recruits IRAK1/4. Autophosphorylation of IRAK1/4 leads to dissociation 
from the receptor and binding to TRAF6. Active TRAF6 can promote the activation of different 

downstream signaling cascades. Phosphorylation of IB leads to the dissociation of the inhibitor 

from the transcription factor NFB, which can subsequently translocate to the nucleus. Activation 
of p38 activates the transcription factor AP1. Together with ERK signaling, these pathways 
activate the expression of cytokines to initiate an immune response. On the other hand, 
internalization of the TLR4 complex into endosomes results in the recruitment of TRIF and TRAM 
and the subsequent activation of the transcription factor IRF3, which promotes interferon 
(IFN)-inducible genes and promotes survival. 

Cross-tolerance 

Tolerance induction is not solely reported for LPS priming and LPS re-stimulation 

(homo-tolerance), but also cross-tolerance (hetero-tolerance) against bacterial or even 

fungal infections have been observed. Mice pre-treated with LPS were shown to have 

increased anti-bacterial activity against subsequent infections of Salmonella enterica and 

improved survival when challenged with Cryptococcus neoformans infection [18, 19]. 

Further, ligands of other TLRs such as PamCysSK4 as well as compounds of 

gram-positive bacteria like LTA (Lipoteichoic acid) were found to induce endotoxin 

tolerance, although much weaker compared to homo-tolerance [20]. 

In addition to tolerance induction by TLR ligands, viral infections were shown to 

decrease LPS-induced mortality via reduction of TNF [21]. TNF is a key inflammatory 

cytokine, which is mainly expressed by monocytes and macrophages, and exaggerated 

TNF production was shown to have lethal effects [22]. TNF is able to coordinate 
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immune response by inducing inflammatory signaling such as NFB and MAPK, as well 

as promoting other pro-inflammatory cytokines [23]. Monocytes and macrophages, 

stimulated with TNF, were confirmed to become tolerant against a subsequent TNF 

stimulation and TNF tolerant mice exhibit decreased mortality against otherwise lethal 

injections of TNF [22, 24, 25]. Moreover, TNF was reported to induce tolerance to 

gram-negative bacteria, LPS and bacteria-derived LPS-containing lipophilic outer 

membrane vesicles [26-28]. Thus, endotoxin, as well as TNF tolerance, are protecting 

mechanisms to prevent deleterious consequences of inflammatory events, such as 

excessive or chronic inflammation. 

Sepsis as clinical model for endotoxin tolerance 

LPS triggers inflammation and promotes immunosuppression, both processes can 

increase disease mortality. Thus, endotoxin tolerance seems to be a diverse, but highly 

regulated, complex process with sepsis as main clinical model. Blood monocytes serve 

as the first line of host defense but their contribution in human sepsis is poorly 

understood. Processing of bacteria within phagocytic immune cells can lead to the 

release of endotoxin to the bloodstream, a condition called endotoxemia, which can 

trigger an uncontrolled immune system activation resulting in septic shock. TLR4 

signaling after LPS binding was demonstrated to play a central role in sepsis induced by 

gram-negative bacteria [29]. Moreover, sepsis is characterized by an initial phase of 

excessive pro-inflammatory response, the systemic inflammatory response syndrome 

(SIRS), which can result in tissue damage and organ failure, followed by a second 

immune-compromised state. This immunosuppression is called compensatory 

anti-inflammatory response syndrome (CARS) and can cause an increased susceptibility 

to secondary infections [29]. During this post-septic immunoparalysis innate immune 

cells are in an endotoxin tolerant-like state [15, 30]. 

Monocytes derived from blood of sepsis patients displayed a decreased production of 

pro-inflammatory cytokines like TNF and IL-6 when re-stimulated with LPS in vitro, 

whereas anti-inflammatory cytokines like IL-10 were increased [15, 31, 32]. Further, 

these monocytes displayed enhanced phagocytic activity and decreased 

antigen-presentation, supporting their protective and anti-inflammatory state [15, 33]. 

Decreased antigen-presentation suppresses T cell proliferation and therefore 

inflammation progress, while enhanced phagocytosis improves immune defense. The 

anti-inflammatory IL-10 was also increased, when cells were challenged with the TLR2 

agonist Pam3CysSK4, indicating for cross-tolerance induction [15]. In addition to the 

immunosuppressive state, monocytes from sepsis patients or LPS pre-treated mice were 
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shown to enhance protective functions such as phagocytosis, anti-microbial activity and 

tissue remodeling [17, 34].  

In addition to monocytes/macrophages, also other cells can be affected by endotoxin 

tolerance such as dendritic cells, neutrophils and T cells [35, 36]. Tolerant dendritic cells 

display a similar cytokine profile as macrophages along with increased endocytosis [35]. 

In contrast, neutrophils, rendered tolerant by endotoxin retain their pro-inflammatory 

cytokine response, however, loose cell surface expression of TLR4 [36]. Though 

endotoxin tolerance was initially described several decades ago, underlying molecular 

mechanisms are not yet fully understood, since its protective effect probably involves 

different parts of the immune system throughout the whole organism. 

1.1.2 Trained immunity 

Endotoxin tolerance mediates its protective effect, by suppression of immune system 

activation to prevent deleterious inflammation-associated tissue damage. Another 

assumedly protective adaptation process of innate immune cells is characterized by 

exactly the opposite. This adaptation process has been called trained immunity or innate 

immune memory and has raised increased interest during the last years. Trained 

immunity is characterized by an increased pro-inflammatory response of especially 

-glucan primed, innate immune cells such as monocytes and macrophages upon 

re-stimulation with different PAMPs [37, 38]. This enhanced immune response was 

reported to protect against otherwise lethal infections with LPS, Candida albicans or 

Staphylococcus aureus in vivo [37, 39, 40]. In addition, different adaptation processes of 

innate immune cells after priming, also with other pathogens or PAMPs, including 

LPS-induced endotoxin tolerance, are meanwhile sometimes referred to as trained 

immunity or innate immune memory. The concept of trained immunity arose, among 

others, from observations of the tuberculosis vaccine BCG (Bacille Calmette-Guérin), 

which showed protective effects against infection-associated mortality beyond protecting 

against tuberculosis [41]. Further in vivo studies showed that priming with BCG 

decreased mortality of mice by a subsequent Candida albicans infection even in the 

absence of T and B cells [42]. Proof-of-principal trials of BCG revealed protecting effects 

against infections in healthy adults as well as new born children [41, 43]. In addition, 

beside the infectious disease malaria, which can trigger a hyperresponsive state, also 

infections with other parasitic or viral pathogens were reported to induce trained 

immunity [44-47]. However, the most prominent training compound is -glucan. 

-1, 3(D)-glucan (-glucan) represents a cell wall compartment of fungi such as Candida 

albicans and can be bound by dectin-1 on phagocytes [48]. Initial stimulation of innate 
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immune cells with -glucan does not trigger elevated pro-inflammatory cytokine 

production. However, priming or training of monocytes with -glucan results in an 

increased pro-inflammatory response upon re-stimulation with PAMPs such as LPS, 

characterized by enhanced pro-inflammatory cytokine levels like TNF and IL-6 even 

after 7 days [43, 49, 50]. During the resting period between -glucan training and 

re-stimulation, monocytes are suggested to evolve metabolic changes mediated by 

underlying transcriptional and epigenetic re-programming, to enable the production of 

increased cytokine amounts, pro-inflammatory mediators and receptors as well as to 

persist in a primed and hyperresponsive state [50]. These epigenetic changes involve 

chromatin organization and accessibility to the transcription machinery as well as histone 

modifications [38, 50]. 

Epigenetic changes in trained immunity 

During the differentiation of monocytes to macrophages, cells undergo epigenetic 

changes such as histone modifications of promotors and distal elements [50]. This is 

supported by other data reporting that macrophages, which are transferred from one 

tissue to another undergo extensive re-programming of enhancers [51]. Priming with 

-glucan alters histone modifications, characteristic of enhancers, such as H3K4me3 

(histone 3 lysine 4 tri-methylation, marks promotors), H3K4me1 (marks distal regulatory 

elements/enhancers) and H3K27ac (marks active promotors and enhancers), with 

acetylation of H3K27 being the most dynamic (Fig. 5) [37, 50]. Further, whole-genome 

epigenetic profiling of trained cells revealed an increase especially in promotors of 

glycolytic genes and compounds of the mTOR pathway, as well as a genetic 

upregulation of hexokinase and pyruvate kinase, genes involved in glycolysis, by RNA 

sequencing in vitro and in vivo [40]. It is suggested that these epigenetic changes are 

also transferred to bone marrow-localized progenitor cells, to enable a longer protecting 

effect, since monocytes display a short half-live in circulation, a process which has 

already been observed for other innate immune cells [52-54]. 

An additional conceivable mediator of trained immunity are microRNAs, which were 

reported to have a long half-life and therefore could facilitate persistence of the trained 

state of innate immune cells, which have just limited proliferative capacity [55]. Additional 

data revealed a role of microRNAs also for the tolerant state of macrophages   [56-58]. 
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Binding of -glucan on dectin-1 triggers epigenetic changes, including histone modifications, and 
metabolic reprogramming of monocytes to induce training effect. Trained monocytes are thought 
to be in a hyperresponsive and protective state to improve survival upon re-challenging of the 
cells. Underlying metabolic re-programming is supposed to be mTOR dependent. Transferred 
with permission from Netea, M.G., et al., Innate immune memory: a paradigm shift in 
understanding host defense. Nat Immunol, 2015. 16(7): p. 675-9 [59]. 

Epigenetic changes in adapting innate immune cells have also been described for 

endotoxin tolerance induction [60]. Cells rendered tolerant by LPS displayed 

gene-specific chromatin modifications associated with the silencing of genes, especially 

for inflammatory molecules [60, 61]. Further, it was reported that on a translational level, 

proteome remodeling is the underlying mechanism of LPS induced metabolic adaptation 

in macrophages [62]. However, -glucan was reported to reverse an endotoxin tolerant 

state induced by LPS in human volunteers. Subsequent in vitro incubation of isolated 

monocytes with -glucan triggers the reversal of epigenetic alterations along with the 

decreased cytokine production in tolerant cells. -glucan treated cells return to a 

responsive state including transcriptional reactivation of unresponsive genes and histone 

modification alterations [61]. Hence, trained immunity could be a helpful tool for the 

treatment of different kinds of diseases such as impaired host defense in post-septic 

immune paralysis or cancer, as well as exaggerated immune responses in 

Fig. 2: Epigenetic and metabolic re-programming after -glucan training. 
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autoinflammatory diseases and could contribute to new generation vaccines. However, 

the exact underlying mechanisms leading to these adaptational changes are still not 

known. 

1.1.4 The Warburg effect in adapting monocytes 

Normal cells produce energy by mitochondrial oxidative phosphorylation, since it 

represents the best yield of adenosine triphosphate (ATP). However, many cancer cells 

produce their energy predominantly by glycolysis and the resulting amounts of pyruvate 

are not completely oxidized but reduced to lactate even in the presence of abundant 

oxygen, a process which is called aerobic glycolysis. This metabolic switch from 

oxidative phosphorylation towards increased glycolysis is called Warburg effect and was 

first described by Otto Warburg in the beginning of the last century for neoplastic cells 

[63].  

However, further studies revealed that also immune cells such as T cells increase 

glycolysis upon activation [64, 65]. Activated or proliferating immune cells exhibit an 

increased demand of nutrients and hence increase glucose uptake and glycolysis [66]. 

More than 50 years ago, activated monocytes were described to increase aerobic 

glycolysis [67]. Upon activation, innate immune cells like monocytes, migrate to 

inflammatory sites which comprises enhanced actin assembly and thus, high ATP 

consumption. Although being less efficient, in regard to ATP generation, glycolysis can 

be upregulated multiple folds, resulting in a faster production of ATP than oxidative 

phosphorylation [68]. Aerobic glycolysis further enables immune cells to migrate into 

deep wounds, where oxygen is lacking. A metabolic switch from oxidative 

phosphorylation to glycolysis has already been observed in activated macrophages, 

dendritic cells and effector T helper lymphocytes and seems to be important for rapid 

immune response [69-71]. Moreover, stimulation with TLR ligands also induces 

enhanced glycolysis and, in most conditions, Warburg metabolism [69]. However, other 

data suggest that priming with LPS triggers an acute but transient increase in glycolysis, 

followed by a switch to oxidative phosphorylation or fatty acid oxidation [72]. Recent 

data, including a transcriptional and metabolic profiling of sepsis patients, revealed a 

shift from oxidative phosphorylation to aerobic glycolysis as an important component for 

the initial activation of host defense in leukocytes [73]. However, isolated leukocytes of 

sepsis patients as well as leukocytes rendered tolerant in vitro, displayed a generalized 

metabolic defect in glycolysis as well as oxidative metabolism [73].  

Monocytes trained with -glucan exhibit enhanced glycolytic activity along with increased 

glucose consumption and lactate production, as well as increased NAD+/NADH ratio and 

reduced oxygen consumption [40]. This process is suggested to be the underlying 
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mechanism of trained immunity and the protective immunological effects triggered by 

-glucan (Fig. 6), as blocking metabolic pathways increased mortality to a systemic 

fungal infection in mice [40, 73]. Since mTOR is a major regulator of cellular metabolism, 

including glycolysis, different studies suggest an important role for mTOR signaling in 

this metabolic switch by activating the transcription factor hypoxia-induced factor 1 

(HIF-1) [40, 50]. Moreover, mouse bone marrow-derived dendritic cells display an initial 

increase of glycolysis after TLR stimulation in an mTOR-independent manner, followed 

by an mTOR/HIF1-dependent metabolic switch from oxidative phosphorylation to 

increased glycolysis [74-77]. However, whether epigenetic changes promote metabolic 

re-programming of the cells or metabolic adaptations produces metabolites, which could 

function as cofactors for enzymes involved in epigenetic modulation has still to be 

unveiled. 

Naive immune cells like monocytes rely their cellular metabolism on oxidative phosphorylation to 
achieve the maximal yield of ATP from every molecule of glucose. However, upon stimulation 

with Candida albicans or Candida albicans-derived -glucan and its binding to the surface 
receptor Dectin-1, downstream signaling cascades including AKT, the metabolic key regulator 

mTOR and the Hypoxia-inducible factor 1 (HIF-1) are activated, promoting the induction of 
Warburg metabolism, followed by enhanced glycolysis characterized by increased lactate 
production. This metabolic switch in trained monocytes is supposed to protect mice against 
subsequent sepsis induction by Staphylococcus aureus, which is otherwise lethal to mice with 
naive monocytes. Transferred with permission from Saeed, S., et al., Epigenetic programming of 
monocyte-to-macrophage differentiation and trained innate immunity. Science, 2014. 345(6204): 
p. 1251086. [50].

Fig. 3: Induction of Warburg metabolism in ß-glucan trained mice revealed a 
protective effect against re-infection. 
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1.2 mTOR signaling 

1.2.1 mTOR complexes, signaling and functions 

The mechanistic/mammalian target of rapamycin (mTOR) is an evolutionarily highly 

conserved serine/threonine kinase and belongs to the family of phosphatidylinositol 

3-kinase (PI3K)-related kinases. As its name implies, it was discovered as the target

molecule of rapamycin, an anti-fungal macrolide produced by the bacterium 

Streptomyces hygroscopicus and originally isolated from the soil of Easter Island in the 

1970´s [78]. mTOR is an important signaling node within the cell, controlling cellular 

metabolism, survival, growth, protein and lipid synthesis as well as autophagy. 

Therefore, dysregulated mTOR activity is associated with diverse human diseases such 

as cancers, proliferative disorders, autism spectrum disorder and type 2 diabetes [79-

81]. In addition, there is rising evidence that mTOR is also an important regulator of 

aging processes and age-related diseases [82, 83]. mTOR can be found in two 

functionally distinct multiprotein complexes mTOR complex 1 (mTORC1) and mTOR 

complex 2 (mTORC2), containing both unique and shared components [84]. 

mTOR complex 1 

Besides mTOR as catalytic subunit, mTORC1 is composed of the scaffold protein 

regulatory-associated protein of mTOR (Raptor), the proline-rich AKT substrate 40 kDa 

(PRAS40), the mammalian lethal with Sec13 protein 8 (mLST8) and the regulatory 

protein DEP-domain-containing mTOR interacting protein (DEPTOR) (Fig. 1) and can 

further be found as a dimer [85-89]. Complex assembly enables mTORC1 to 

phosphorylate and activate downstream targets such as the eukaryotic initiation factor 

4E binding protein 1 (4E-BP1) or the p70 ribosomal S6 kinase (S6K) [90]. The latter 

regulates protein translation, cell size and cell proliferation by regulation of different 

substrates such as the ribosomal protein S6 (S6P), a component of the 40S ribosomal 

subunit [91]. Under growth-promoting conditions, S6P gets phosphorylated by S6K 

causing increased protein synthesis, while phosphorylation of 4E-BP1 by mTORC1 

leads to dissociation of eukaryotic initiation factor 4E (eIF4E) and thereby protein 

translation [91-93]. 

mTORC1 integrates diverse upstream signals including amino acids, growth factors as 

well as genotoxic stress, oxygen levels and energy status of the cell [79, 94]. Thereby it 

balances anabolic and catabolic processes. Hence, mTOR signals whether intra- and 

extra-cellular conditions are favorable for anabolic processes such as cell growth, cell 

cycle progression and cell proliferation, and induces appropriate cellular responses. 
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mTORC1 can regulate metabolic pathways on transcriptional, translational and 

post-translational levels, and transgenic mice lacking S6K1 or 4E-BP1 exhibit severe 

metabolic phenotypes [95-100]. 

Fig. 4: Overview scheme of mTOR complex 1 and mTOR complex 2. 

mTOR complex 1 and 2 are functionally distinct multiprotein complexes with shared and separate 
compounds. mTORC1 senses multiple environmental signals such as the cellular energy supply 
to balance energy-demanding processed like protein synthesis or cell growth through different 
downstream pathways. Functions of mTORC2 are not yet fully understood, but it was associated 
to the regulation cytoskeleton organization and promotion of survival. While mTORC1 is highly 
sensitive to rapamycin, mTORC2 functions seem to be impaired only with chronic exposure. 
Transferred with permission from Li, J., S.G. Kim, and J. Blenis, Rapamycin: one drug, many 
effects. Cell Metab, 2014. 19(3): p. 373-9. [101]. 

A main function of mTORC1 is sensing the availability of especially branched-chain 

amino acids (BCAAs). Therefore, mTORC1 needs to be localized at the lysosomes, 

which serve as a platform, bringing amino acid recycling and mTORC1 in close 

proximity. A lack of amino acids results in dephosphorylation of S6K1 and 4E-BP1, since 

mTOR is not localized at the lysosomal membrane [102]. Sensing of amino acids, as 

well as the subcellular localization of mTOR can be mediated by raptor or 

Ras-related (Rag)-GTPases, depending on the specific amino acid [103, 104]. PRAS40 

and DEPTOR display negative regulator of mTORC1 [89, 105]. In mammals, the small 

Rag-GTPases consist of RagA, RagB, RagC and RagD, with RagA/RagB GTP-bound 

and RagC/RagD GDP-bound representing the active complex, which anchors mTORC1 

to the lysosome, where it is activated by the Ras homolog enriched in brain (Rheb) 
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[104]. Activated mTORC1 is able to directly phosphorylate PRAS40 and DEPTOR and 

therefore suppressing their physical interaction with mTORC1, resulting in an auto 

suppression [89, 105]. Moreover, PRAS40 dissociates from mTORC1 upon insulin 

stimulation, revealing its negative effect [87]. In addition, mTORC1 is mainly regulated 

and suppressed by the TSC1/TSC2 tumor suppressor complex (Fig. 5) [106]. Thereby, 

TSC1/2 (Tuberous sclerosis complex 1/2) is binding to and inhibiting Rheb, which is 

necessary to activate mTORC1 [107]. 

Fig. 5: Simplified scheme of mTOR signaling. 

The mTOR complex 1 (mTORC1) mainly signals through the PI3K/AKT-pathway. AKT inhibits the 
main upstream inhibitor of mTORC1, the TSC1/2 tumor suppressor complex. Upon activation, 
TSC1/2 acts as a GAP to convert the small Ras-related GTPase Rheb from its inactive 
GDP-bound form to the active GTP-bound state, which subsequently activates mTORC1. In 
addition to AKT, other signaling pathways, such as ERK or AMPK regulate mTORC1 activity by 
an activating or inhibiting modulation of TSC1/2. Main downstream targets of mTOR are the 
S6 kinase (S6K), which subsequently phosphorylates S6 protein (S6P), a component of the 40S 
ribosomal subunit, or the 4E binding protein 1 (4E-BP1), which activates the eukaryotic 
initiation factor-4E (eIF-4E). Both pathways are used to activate protein biosynthesis and thus cell 
growth. 

Sensing of growth factors like insulin by mTOR is mediated via the PI3K-AKT signaling 

pathway [108]. The serine/threonine kinase AKT phosphorylates and inactivates TSC2 

leading to mTORC1 activation [108, 109]. Energy or oxygen levels of the cell are 

perceived by mTOR via the AMP-activated protein kinase (AMPK), which either also 

phosphorylates TSC2 to block mTORC1 activity or directly phosphorylates raptor [110-
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113]. Thus, if energy levels are high, mTORC1 gets activated, whereas low energy 

levels result in mTORC1 inactivation. AMPK is a key metabolic regulator itself, making it 

a direct opponent of mTOR also in response to other cellular signals like genotoxic 

stress [114]. 

Further, mTOR signaling is associated with metabolically mediated extension of lifespan 

and delay of age-related diseases. Rapamycin treatment of old mice leads to an 

increased lifespan, restored self-renewal of hematopoietic stem cells and can delay the 

onset of age-related diseases such as cancer and Alzheimer´s disease [115-119]. On 

the other hand, mTORC1 signaling has been found to be hyperactive in many 

age-related diseases like cancer, and maybe also the Hutchinson-Gilford progeria 

syndrome (HGPS) [120].  

mTOR complex 2 

mTOR complex 2 comprises mLST8 and DEPTOR as well and additionally, the scaffold 

protein rapamycin-insensitive companion of mTOR (Rictor) the mammalian 

stress-activated protein kinase interacting protein (mSIN1) and the protein observed with 

rictor-1 (Protor-1) (Fig. 4) [121-123]. In mice, deletion of mTORC2 components leads to 

early embryonic lethality [124]. mTORC2 is primarily characterized as a downstream 

target of the insulin/IGF-1 signaling pathway and can be activated by phosphorylation of 

Serine 2481, regulating metabolism, proliferation, cytoskeletal organization and cell 

survival [125, 126]. It can also phosphorylate members of the Protein kinase C (PKC) 

family and thereby regulates cell proliferation, differentiation, apoptosis and telomere 

activities [127, 128]. Another main downstream target of mTORC2 is AKT, since 

phosphorylation of AKT at Serine 473 by mTORC2 is required for its full activation [129]. 

It is suggested that this activation proceeds via TSC1 and TSC2, linking mTORC2 

activity to the regulation of mTORC1, because AKT directly controls mTORC1 activity 

through PRAS40 or the inhibitory phosphorylation of TSC1 and TSC2 [130-132]. 

Furthermore, the mTORC1 substrate S6K has been demonstrated to phosphorylate 

Rictor, revealing another way of cross-talk between both complexes [133]. 

1.2.2 mTOR inhibitors 

Since a long time, it is known that mTORC1 is largely rapamycin sensitive which is used 

to treat solid tumors, organ rejection after transplantation, rheumatoid arthritis or 

coronary restenosis. Moreover, it enables intensive studies on functions of mTORC1 

signaling within the cell. Rapamycin inhibits mTORC1 by binding to the FK506-binding 

protein of 12 kDa (FKBP12) to form a gain-of-function complex and interacts with the 

FKBP12-rapamycin binding domain (FRB) of mTOR as an allosteric inhibitor [134, 135]. 
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It´s a matter of common knowledge, that rapamycin exclusively inhibits mTORC1, while 

mTORC2 is rapamycin-insensitive. The reasons for rapamycin-insensitivity of mTORC2 

still remain elusive, as its molecular structure is still poorly understood. In yeast, it was 

reported that in its homologous TORC2, the Rictor homolog AVO3 masks the 

rapamycin-interacting domain of TOR [136]. Nevertheless, recent findings indicate, that 

mTORC2 can also be inhibited by chronic administration of rapamycin in vivo in diverse 

tissues, also by binding of rapamycin to FKBP12 and therefore inhibiting complex 

assembly of mTORC2 [137, 138].  

Rapamycin is used in the clinics for decades, particularly because of its 

immunosuppressive functions, including treatment to prevent organ rejection after 

transplantations [139, 140]. Together, rapamycin and its analogs (rapalogs) have been 

approved for the treatment of various types of cancer, because of their anti-proliferative 

properties, including advanced renal cancer carcinoma, advanced neuroendocrine 

carcinoma or advanced or recurrent endometrial cancer [101]. However, as rapamycin 

has more cytostatic than cytotoxic properties, several studies showed that 

rapamycin-associated improvements lasted just as long as treatment [141-144]. In 

addition, prolonged rapamycin administration has been linked to diverse side effects, 

especially because of its immunosuppressive function, which can lead to the 

development of life-threatening viral or fungal infections, thrombocytopenia, 

hyperlipidemia, impaired wound healing, nephrotoxicity or altered insulin sensitivity [141, 

145-147]. Further, rapamycin treatment has achieved only modest effects in the clinics,

most likely because of the large number of mTORC1-regulated negative feedback loops 

[143, 144, 148].  

Therefore, there is a need for additional mTOR inhibitors, such as the ATP-competitive 

mTOR inhibitor Torin1, which has been shown to inhibit both mTOR complexes, while 

not affecting their stability. Besides being highly specific, it is more capable to inhibit 

rapamycin-sensitive functions like protein synthesis or induction of autophagy than 

rapamycin. Further, it has the capability to additionally inhibit rapamycin-resistant 

functions of mTORC1 [149]. Therefore, ATP-competitive inhibitors as Torin1 are 

promising compounds for further clinical studies. 

1.2.3 Tuberous Sclerosis Complex (TSC) 

As stated above, mTORC1 is mainly inhibited by the TSC1/TSC2 tumor suppressor 

complex. A loss-of-function mutation of either TSC1 (also known as hamartin) or TSC2 

(tuberin) is cause of Tuberous sclerosis complex (TSC), an autosomal dominant genetic 

disorder [150]. However, two-thirds of TSC mutations appear to occur de novo [151]. 

TSC is characterized by the formation of hamartomas, benign and non-invasive 
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tumor-like lesions in various important organ systems such as brain, heart, skin, kidney, 

lung and liver. The estimated birth incidence of TSC is approximately 1 in 6000 [150, 

152].  

TSC displays a variety of disease manifestations including facial angiofibromas and 

hypomelanotic macules, renal cysts or angiomyolipomas (RAL), pulmonary 

lymphangioleiomyomatosis (LAM), cardiac rhabdomyomas, retinal hamartomas and 

hepatic angiomas [150]. However, most severe manifestations of TSC comprise the 

central nervous system, 85 – 90 % of TSC patients exhibit neurological comorbidities. 

These include epilepsy in up to 90 % as well as subependymal nodules (90 – 100 %) 

and subependymal giant cell astrocytomas (SEGA) [114]. Among these, although 

SEGAs, slow growing tumors of mixed cellular lineage, affect solely 5 – 20 % of TSC 

patients, they display a significant cause of morbidity and mortality of the disease, 

because of the risk of sudden death caused by acute hydrocephalus [153]. Further, 

mental delay affects about 44 – 64 % of TSC patients with comprehensive impairment in 

about 30 % [150]. Thereby, the severity is associated among others with epilepsy and 

seizures as well as certain mutations in TSC2. 

Tuberous sclerosis complex (TSC) comprises the formation of hamartomas. These benign 
malformations can affect all organs except from spinal cord, peripheral nervous system and 
skeletal muscles. Common disorder manifestations are angiofibroma of the skin, renal 
angiomyolipoma (RAL), subependymal giant cell astrocytomas (SEGA) or 
Lymphangioleiomyomatosis (LAM) of the lung. Translated and modified with permission from 
TSC Deutschland eV (www.tsdev.org). 

Fig. 6: Variety of different TSC-associated symptoms. 
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Moreover, heterozygous mutations of TSC1 or TSC2 are associated to Autism spectrum 

disorder and epilepsy, possibly because TSC1 and TSC2 were shown to be important 

for axon formation and growth in mice [154]. Additionally, mice heterozygous for TSC2 

mutations exhibited learning and memory defects, which partly could be reversed by 

rapamycin treatment, indicating to an mTORC1 dependent phenotype [155]. 

TSC1 and TSC2 form the tuberous sclerosis complex (TSC), together with TBC1D7 

[156]. Thereby, TSC1 acts as a scaffold protein and stabilizes TSC2, which hast catalytic 

activity [157]. Binding of TSC1 to TSC2 prevents its ubiquitination and thereby 

degradation [158]. A loss of TSC1 or TSC2, as well as hyperactive growth factor 

signaling, leads to inappropriate mTORC1 activity, which causes several diseases in 

addition to TSC, including cancer, neuronal dysfunction or cardiac hypertrophy [79, 159]. 

Upon phosphorylation of TSC, its repressive function is reversible [107]. As a result, the 

TSC complex functions as a GTPase-activating protein (GAP), converting the small 

Ras-related GTPase Rheb from its inactive GDP-bound state to the active GTP-bound 

form, which in turn activates mTORC1 [106, 160]. Therefore, it was shown that TSC, like 

mTORC1, is also present at the lysosomal surface and dissociates in response to insulin 

and AKT-dependent phosphorylation of TSC2 [161]. Thus, Rheb-GTP activates 

mTORC1. Beside AKT, different other kinases such as ERK, AMPK or GSK3 (Glycogen 

synthase kinase 3) are able to phosphorylate TSC1 or TSC2 at distinct residues [110, 

162-164]. Moreover, TSC2 was found to physically interact with mTORC2, suggesting

that the TSC complex could regulate both mTOR complexes [130]. 

In patients with TSC, rapamycin analogs are approved for the treatment of 

subependymal giant cell astrocytoma (SEGA) and under investigation as therapeutics 

for angiomyolipomas (AML) and renal angiomyolipomas (RAL) as well as 

lymphangiomyomatosis (LAM) [101, 143, 144]. However, long-term administration of 

rapamycin or rapalogs could benefit other TSC-associated disease manifestations and 

elicits severe side effects. 

1.2.4 Role of mTOR in innate immunity 

mTORC1 has been reported to regulate the function of diverse immune cells including 

dendritic cells, macrophages, neutrophils, mast cells and natural killer cells, as well as T 

and B cells [158, 165-167]. Thereby mTORC1 has inhibitory and stimulatory functions. 

mTOR was shown to play a crucial role in T cell homeostasis, survival and quiescence 

and inhibition of mTORC1 by rapamycin impairs maturation of dendritic cells and inhibits 

clonal T cell expansion and T cell proliferation [142, 158, 168, 169]. Additionally, it was 

reported that deletion of Rheb, which activates mTORC1, inhibits the transition of 

monocytes to macrophages [170]. Inhibition of mTORC1 by rapamycin protects mice 
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against an otherwise lethal infection with Listeria monocytogenes [171]. Dysregulation of 

mTORC1 is associated with several types of cancer as well as autoimmune diseases 

and sepsis, further supporting its immunological function [172, 173]. 

In addition to immune system-specific organs, cells of the immune system have to be 

present in different tissues throughout the body. Thus, these cells need to adjust to a 

variety of different environments. Furthermore, many immune cells are able to exist in a 

resting state and can shift to an activated state upon stimulation. Especially activated 

immune cells produce large amounts of cytokines, chemokine and lipid mediators, 

accomplish drastic morphologic changes and migrate into tissues. These metabolically 

challenging processes require a certain flexibility of cellular metabolism. In addition, it is 

suggested that innate immune cells, as adaptive immune cells, can actively control their 

metabolic processes linking the availability of nutrients to their metabolic needs [69]. 

mTOR, as metabolic signaling node, is integrating extracellular signals like growth 

factors and hormones as well as intracellular cues such as nutrient supply and therefore 

plays an important role in regulating these processes. 

Monocytes and macrophages, as part of the innate immune system, are mononuclear 

phagocytes and occupy important fundamental functions such as inflammatory cytokine 

production, pathogen clearance and tissue repair. In contrast to adaptive immune cells, 

innate immune cells do not express antigen-specific receptors, but cytokine receptors 

and pattern recognition receptors (PRR). The latter recognize pathogens, PAMPs and 

damage-associated molecular pattern (DAMP) and can induce the production of 

pro-inflammatory cytokines like TNF, IL-6 or IL-12, as well as anti-inflammatory 

cytokines such as IL-10. Induction of cytokines can be mediated at the transcriptional 

and translational level. Since cytokines are highly controlled and have to be upregulated 

fast after pathogen recognition, they are likely to be regulated on a translational level. 

mTORC1 and its downstream targets S6P and 4E-BP1 thereby are strong regulator of 

protein biosynthesis.  

LPS binding was demonstrated to trigger mTORC1 activity via ERK or PI3K and TLR4 

signaling through MyD88, IRAK4 and the PI3K/mTORC1 pathway was shown to induce 

tolerance [163, 174]. The PI3K/AKT/mTORC1 pathway was reported to promote the 

expression of immunosuppressive proteins like IL-10 or Arginase 1, upon LPS 

stimulation and mTOR also limits the production of pro-inflammatory cytokines by 

inhibiting the transcription factor NFB [171, 175]. Inhibition of the pathway, otherwise, 

increases the phosphorylation of IB kinase  (IKK) and thereby NFB activity [175]. 

Toll-like receptor (TLR) antagonists can activate mTORC1 and mTORC2 in dendritic 

cells and neutrophils, as well as monocytes and macrophages of human and mice [162, 

171, 176]. In addition, genetic or pharmacological inhibition of mTORC1 reduces the 
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production of the anti-inflammatory IL-10 in human and murine dendritic cells and 

monocytes and loss of TSC2 function was found to increase IL-10 production in 

monocyte-derived macrophages [171, 177, 178]. Moreover, also the production of 

inflammation-associated TNF can activate IKK, which can interact with and inactivate 

TSC1, resulting in an activation of mTORC1 as negative feedback regulation [179]. On 

the other hand, TSC1 deletion in bone marrow-derived macrophages enhances 

inflammatory activation induced by LPS through constitutive active mTORC1 and NFB 

activation [148, 180]. Thus, mTORC1 can promote or inhibit inflammation. 

1.2.5 Role of mTOR in trained immunity 

mTOR has been revealed as the major regulator of glycolysis in activated lymphocytes 

[181, 182]. Further, RNA sequencing analysis revealed alterations in the mTORC1 

pathway also in adapting monocytes as underlying mechanism [40]. It is suggested that 

adapting monocytes switch to Warburg metabolism upon induction of trained immunity in 

an mTORC1-dependent manner. Training of monocytes with -glucan was reported to 

induce AKT phosphorylation, which is dependent on the dectin-1 receptor, as phospho-

AKT levels are lost in cells derived from dectin-1 deficient patients [40]. Additionally, the 

training effect of -glucan on TNF cytokine levels is blocked by the PI3K/AKT inhibitor 

wortmannin. Since the PI3K/AKT pathway is an upstream regulator of mTORC1, also 

activation of mTORC1, induced by -glucan stimulation, was diminished in dectin-1 

deficient cells, along with decreased TNF cytokine production [40]. Furthermore, 

rapamycin treatment leads to a dose-dependent inhibition of the training effect by 

-glucan stimulation regarding TNF levels [171].  

An increasing line of evidence suggest that mTORC1 activates the transcription factor 

HIF-1, which senses oxygen levels in the cell and can promote induction of glycolysis, 

as well as glycolytic enzymes [40, 183]. Induction of trained immunity results in an 

upregulation of the mTOR/HIF-1 pathway as the suggested key signaling path to 

increase glycolysis, also in the presence of oxygen. Activation of HIF-1 was enhanced 

in -glucan trained monocytes in an mTORC1-dependent manner, since it was 

suppressed by mTORC1 inhibition through rapamycin [40]. Induction of HIF-1 has also 

been associated with high glycolytic activity and Warburg metabolism in cancer as well 

as functional re-programming of monocytes during sepsis [34, 184]. Disruption of these 

pathways on a genetic basis or by chemical inhibition leads to impaired training induction 

by -glucan [40]. The HIF-1 inhibitor ascorbate blocks trained immunity in a 

dose-dependent manner with regard to TNF levels and the protective effect of -glucan 

training of mice subsequently infected with Staphylococcus aureus is lost in HIF-1 
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deficient mice [40, 185]. In addition, HIF-1 was shown to activate TSC and in turn 

mTORC1 [186]. These data indicate a role of the mTOR/HIF-1 signaling pathway in 

adapting monocytes by regulating cellular metabolism. 
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2. OBJECTIVES

Adaptation processes of innate immune cells display a potential target for therapies 

against different kinds of diseases such as augmented inflammatory response and 

septic shock as well as post-septic immunoparalysis, autoimmune deficiency and 

autoimmune disorders, together with different types of cancer. Understanding the 

underlying molecular mechanisms could reveal possible targets for disease therapy. 

Accumulating evidence hint towards an important role for underlying metabolic changes 

in adapting innate immune cells. Induction of trained immunity by -glucan increases the 

glycolytic activity of human monocytes, resulting in increased glucose consumption and 

enhanced lactate production. With mTORC1 being a major metabolic regulator, RNA 

sequencing revealed an upregulation of mTORC1 signaling along with HIF-1 and other 

glycolytic enzymes in -glucan stimulated cells. Chemical or genetic inhibition of either 

one pathway results in impaired training induction. Further, also the immune activation in 

response to LPS was shown to be dependent on metabolic changes within the cells. 

These data suggest a central role of mTORC1 signaling in the regulation of underlying 

metabolic changes to enable an appropriate immune response and immunological 

memory-like functions such as endotoxin tolerance or trained immunity in innate immune 

cells such as monocytes. 

The aim of this study was to investigate the role of mTORC1 signaling in different 

adaptation processes such as endotoxin tolerance and -glucan training, as well as in 

the underlying metabolic changes in adapting primary human monocytes. For these 

investigations, in addition to chemical inhibition of mTOR with rapamycin and torin, cells 

from patients with Tuberous sclerosis complex (TSC), displaying a genetic 

hyperactivation of mTORC1, should be analyzed for adaptation capacity. Further, 

molecular mechanisms of innate immune adaptation in concern to mTOR signaling 

should be revealed using healthy voluntary blood donors. 

To achieve these aims, the following main objectives were addressed in this thesis. 

 To investigate the effects of altered mTORC1 activity, cells from healthy donors

and patients with TSC were challenged with LPS and -glucan in the presence

and absence of mTOR inhibitors.

 For studying mTORC1 signaling, upstream and downstream targets were

investigated. Inhibitors against mTOR and common inflammatory-associated

signaling molecules were used to determine altered immune adaptation.
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 Investigations of endotoxin tolerance induction, including analysis of TLR4

surface availability and the effect of pro-inflammatory cytokines on the induction

of tolerance were performed.
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3. MATERIAL AND METHODS

3.1 MATERIAL 

3.1.1 Chemicals and reagents 

Accutase Capricorn Scientific 

Acetic acid Carl Roth GmbH & Co. KG  

Ammonium persulfate (APS) SERVA Electrophoresis GmbH 

Acrylamide/Bis-acrylamide  Carl Roth GmbH & Co. KG 

(Rothiphorese Gel 30)  

-glucan kindly provided by Prof. David L. 

Williams, ETSU 

-mercaptoethanol Fluka Biochemika 

Bromophenol blue Carl Roth GmbH & Co. KG 

Bovine serum albumin (BSA, endotoxin free) Carl Roth GmbH & Co. KG 

Brefeldin A Sigma-Aldrich Chemie GmbH 

Cytofix BD Biosciences 

Ethylenediaminetetraacetic acid (EDTA) Carl Roth GmbH & Co. KG 

Ethylene glycol-bis(β-aminoethyl ether)- Carl Roth GmbH & Co. KG 

N,N,N',N'-tetraacetic acid (EGTA) 

Gentamicin Sigma-Aldrich Chemie GmbH 

GlutaMax Thermo Fisher Scientific Inc. 

Human serum  Sigma-Aldrich Chemie GmbH 

rhIL-8  Immunotools 

Leupeptin-hemisulphate AppliChem GmbH 

LPS (O55:B5, #L2880) Sigma-Aldrich Chemie GmbH 

LY294002 Enzo Life Science GmbH 

Methanol  Carl Roth GmbH & Co. KG 

PBS w/ Mg2+/Ca2+ LONZA 

PBS w/o Mg2+/Ca2+  LONZA 

Pefabloc SC  AppliChem GmbH 

Pepstatin A AppliChem GmbH 

Phosflow Perm Buffer III BD Biosciences 

Phosphatase Inhibitor cocktail Sigma-Aldrich Chemie GmbH 

Prestained Page Ruler Thermo Fisher Scientific Inc. 

Rapamycin Calbiochem 

RPMI 1640 Dutch Modification Sigma-Aldrich Chemie GmbH 
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SB202190  Sigma-Aldrich Chemie GmbH 

Sodium dodecyl sulphate (SDS) Sigma-Aldrich Chemie GmbH 

Sodium pyruvate Sigma-Aldrich Chemie GmbH 

N,N,N’,N’-Tetramethylethylenediamine SERVA Electrophoresis GmbH 

(TEMED) 

Torin  Tocris 

Tris ultrapure  AppliChem GmbH 

Tween 20 SERVA Electrophoresis GmbH 

UO126  Enzo Life Science GmbH 

3.1.2 Kits 

Micro BCA Protein Assay Kit  Thermo Fisher Scientific Inc. 

ELISA Standard TNF Biolegend Inc. 

CBA Flex Set  BD Biosciences 

Proteome Profiler Human Cytokine Array Kit R&D Systems  

3.1.3 Antibodies 

Table 1: Antibodies for Western blot analysis 

name clone species dilution serial number company 

S6Kinase rabbit 1:1 000 9202 Cell Signaling 

Phospho-S6Kinase rabbit 1:1 000 9205 Cell Signaling 

S6-Protein 5G10 rabbit 1:1 000 2217 Cell Signaling 

Phospho-S6-Protein rabbit 1:1 000 2211 Cell Signaling 

4EBP1 rabbit 1:1 000 9452 Cell Signaling 

Phospho-4EBP1 T70 rabbit 1:1 000 9455 Cell Signaling 

AKT rabbit 1:1 000 9272 Cell Signaling 

Phospho-AKT D9E rabbit 1:1 000 4060 Cell Signaling 

ERK 137F5 rabbit 1:2 000 4695 Cell Signaling 

Phospho-ERK E10 rabbit 1:1 000 9106 Cell Signaling 

p38 mouse 1:1 000 51-9002050 BD Transduction 

Phospho-p38 rabbit 1:1 000 51-9002043 Cell Signaling 

TSC1/Hamartin D43E2 rabbit 1:1 000 6935 Cell Signaling 

TSC2/Tuberin rabbit 1:1 000 3612 Cell Signaling 

HRP anti-mouse goat 1:10 000 5210-0183 KPL 

HRP anti-rabbit goat 1:10 000 5220-0336 KPL 
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Table 2: Antibodies for flow cytometry 

name clone fluorophore dilution 
serial 
number 

company 

Anti-human CD3 APC 1:10 21850036 Immunotools 

anti-human CD14 61D3 Pacific blue 1:20 48-0149-42 eBioscience 

Anti-human CD14 FITC 1:10 21620143 Immunotools 

Anti-human pS6 Cupk43K APC 1:20 17-9007-42 eBioscience 

Anti-human TLR4 HTA125 Alexa fluor 488 1:10 53-9917-42 eBioscience 

Anti-human TLR4 HTA125 APC 1:10 17-9917-42 eBioscience 

Anti-human TNFa PE 1:10 21453014 Immunotools 

3.1.4 Buffers 

Table 3: Buffers for Isolation and cell culture 

Culture Media 

RPMI 1640 Dutch modification 

1 % Gentamicin 

1 % sodium pyruvate 

1 % GlutaMax 

Isolation Buffer 

PBS w/o Mg2+/Ca2+   

1 % BSA 

2 mM EDTA 

Table 4: Buffers for SDS Page/Western blotting 

Blocking Buffer 1 % BSA in 1 x TBS-Tween 

10x SDS PAGE Running Buffer 

250 mM Tris 

2 M Glycine 

35 mM SDS 

RIPA Buffer 

50 mM HEPES (pH 7,5) 

150 mM NaCl 

5 mM MgCl 

100 mM EGTA 

1 % Nonidet P-40 

0.5 % Deoxycholate 

0.1 % SDS 

5 x Sample Buffer 

0.25 M Tris 

50 % Glycine 

10 % SDS 

10 % -mercaptoethanol 

0.25 % Bromophenol blue  
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10% Separation Gel 

2 M Tris (pH 8.8) 

10 % acrylamide 

0.01 % SDS  

0.01 % APS 

0.04 % TEMED 

5% Stacking Gel 

0.5 M Tris (pH 6.8) 

5 % acrylamide 

0.01 % SDS 

0.01 % ammonium persulfate 

0.1 % TEMED 

Stripping Buffer (pH 6,7) 

100 mM -mercaptoethanol 

62.5 mM Tris 

2 % SDS 

10 x TBS-Tween (pH 7,6) 

0.1 M Tris 

1 M NaCl 

1 % Tween20 

Transfer Buffer (pH 10) 

48 mM Tris 

39 mM Glycine  

0.037 % SDS 

15 % Methanol 

Table 5: Buffers for ELISA and Flow cytometry 

ELISA Stop Solution 2 N H2SO4 

ELISA Wash Buffer 

1x PBS 

1 % BSA 

1 % Tween20 

FACS Buffer 

1 x PBS 

1 % BSA 

2 mM EDTA 

10 x PBS (pH 7.5) 

1,37 M NaCl 

27 mM KCl 

100 mM Na2HPO4 

18 mM KH2PO4 
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Solutions for stimulation 

Lipopolysaccharide (LPS) from Escherichia coli (strain O55:B5) was solved in sterile 

water at a stock concentration of 1 mg/ml, aliquoted and stored at -20 °C. A fresh aliquot 

was thawed for each stimulation and pre-diluted in culture media. -glucan was kindly 

provides by Professor David L. Williams from the East Tennessee State University as 

5 mg/ml solution and stored at 4 °C. Rapamycin and torin were solved in DMSO at stock 

concentrations of 20 µM and 10 µM, respectively, aliquoted and stored at -20 °C.  
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3.2 METHODS 

3.2.1 Design of the study 

This clinical study was a prospective, explorative association study in cooperation with 

the Children´s Hospital of the University Hospital Jena. 19 patients, with diagnosed TSC, 

and 25 healthy volunteers with matched age and sex were included after written 

informed consent of participants or their legal representatives. A study protocol was 

developed in cooperation with the Center for clinical studies of the University hospital 

Jena. Before the study started a positive ethical vote from the central ethical board of 

Thuringia was available. A sample of peripheral blood was drawn with volumes being 

adapted according to the age of the participant (2.0 – 27.0 ml). Controls (with no clinical 

hint for TSC) were age and sex matched whenever possible. Patient and control 

samples were masked by an ID on site, transported to the laboratory within 4 h and 

processed immediately. According to the study protocol all participants were free of 

acute infectious disease as evidenced by CrP (C-reactive protein) levels under 10 mg/l 

and did not receive immunosuppressants others than everolimus.  

3.2.2 Isolation of primary human monocytes from whole blood 

For the isolation of primary human monocytes, blood samples from TSC patients and 

age and sex matched controls were drawn in the Children´s Hospital in Jena. 

Respectively 9 – 18 ml whole EDTA blood was diluted in isolation buffer to a final 

volume of 30 ml. The diluted blood was then carefully layered upon 15 ml of 

Histopaque-1077 and centrifuged for 20 min at 800 g, without brake. The layer of 

Peripheral blood mononuclear cells (PBMCs) was harvested and washed two times with 

cold isolation buffer. Purified PBMCs were seeded at a concentration of 5 x 106 /ml in 

culture media and set for 1 h at 37 °C. After monocytes attached to the surface, 

non-adherent cells were washed out 3 times with warm PBS. Afterwards, culture media 

supplemented with 10 % human serum was added. Purity of preparations was verified 

via flow cytometry using a CD14 surface marker.  

3.2.3 Isolation of primary human monocytes from Buffy Coats 

To yield more cells for signaling analysis, Buffy Coats from the Institute for Transfusion 

medicine of the University Hospital Jena were purchased. Isolation of PBMCs was 

achieved as described for TSC patients and controls. Every 6 ml of Buffy Coat were 

diluted in 24 ml of Isolation buffer and layered onto 15 ml Histopaque-1077. After 

centrifugation at 800 g for 20 min without break, the PBMCs were harvested and washed 
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additional two times with cold isolation buffer. Purified PBMCs were seeded at a 

concentration of 5 – 10 x 106 /ml and incubated for 1 h at 37 °C for attachment. 

Non-adherent cells were washed out 3 times with warm PBS and culture media 

supplemented with 10 % human serum was added. 

3.2.4 Stimulation of primary human monocytes 

To investigate adaptation processes of primary human monocytes, isolated cells were 

stimulated with two subsequent stressors. Unless otherwise stated, cells were first 

primed with either 100 ng/ml LPS or 3 µg/ml -glucan for 24 h. To study the direct effect 

of mTOR inhibition, cells were additionally treated with 20 ng/ml rapamycin and 10 ng/ml 

torin for 30 min prior to and during the first 24 h of LPS or -glucan treatment. 

Afterwards, supernatants were harvested, and cells were washed with warm PBS 

followed by re-stimulation with 10 ng/ml LPS for additional 24 h. Control cells were either 

treated with cell culture media or 10 ng/ml LPS alone in the absence of the priming step, 

at the same time as re-stimulation of primed cells. Media exchange and washing steps 

were performed exactly like with pre-treated cells. 

For analysis of different inflammatory pathways cells were additionally treated with 

different inhibitors for 1 h prior to and during 24 h of LPS priming. Rapamycin and torin, 

for mTOR inhibition, were used in the same concentrations as stated above, SB202190 

for inhibition of the p38 pathway was used at a concentration of 10 µM, UO126 for ERK 

inhibition at 50 µM and LY294002 for PI3K at 10 µM. Subsequently, cells were 

re-stimulated with 10 ng/ml LPS for additional 24 h in the absence of inhibitors. 

To investigate paracrine inflammatory factors, cells were treated with conditioned media 

from monocytes to. Therefore, isolated monocytes were stimulated with 100 ng/ml LPS 

for 1 h, washed with warm PBS to remove the majority of remaining LPS and fresh 

culture media, supplemented with 10 % human serum, was added and cells were 

incubated for additional 23 h at 37 °C. Afterwards conditioned media, containing 

secreted cytokines, was harvested and centrifuged for 10 min at 10 000 g to pellet cells 

and cell debris. The media was further used to prime cells as described above with LPS 

for 24 h at 37 °C followed by a washing step and subsequent re-stimulation with 

10 ng/ml LPS for additional 24 h at 37 °C. 

3.2.5 Surface staining for flow cytometry 

Isolated monocytes were harvested by Accutase-detachment and scraping, washed with 

FACS buffer and centrifuged at 600 g for 10 min at 4°C. Supernatant was removed, and 

cells were stained in 50 µl FACS buffer with the indicated antibody concentrations for 
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20 – 30 min on ice and in the dark. Afterwards, cells were washed with 500 µl FACS 

buffer, centrifuged and suspended in 300 µl FACS buffer. Cells were analyzed using a 

FACSCanto II (BD Biosciences) and Flow Jo software (TreeStar Inc.). 

3.2.6 Intracellular staining for flow cytometry 

To stain intracellular proteins following surface staining, cells were again centrifuged and 

fixed in 350 µl warm Cytofix Buffer (BD Biosciences) for 15 min in the dark. For 

analysis of intracellular cytokine production after LPS or -glucan treatment, cells were 

additionally treated with 10 µg/ml Brefeldin A to block secretion of proteins. Cells were 

washed again and subsequently permeabilized with 350 µl ice-cold Phosflow Perm 

Buffer III (BD Biosciences), added dropwise, for 30 min on ice in the dark. Samples were 

washed two times with 1 ml FACS buffer and suspended in 50 µl FACS buffer with the 

indicated antibody concentrations and incubated for 30 min on ice and in the dark for 

intracellular staining. Afterwards cells were washed with FACS buffer, centrifuged and 

re-suspended in 300 µl FACS buffer. Analysis of the samples were performed using an 

LSRFortessa (BD Biosciences) and Flow Jo software (TreeStar Inc.). 

3.2.7 Enzyme-linked Immunosorbent Assay (ELISA) 

Analysis of cytokine levels in the cell culture supernatants was done using an TNF 

ELISA Kit (Biolegend Inc.) following manufacturer´s instructions. Therefore, 

supernatants were harvested and centrifuged for 10 min at 10 000 g to clear from cells 

and cell debris. Antibodies against cytokines were immobilized on a 96-well plate before 

samples were added and bound. Afterwards antibodies against the specific cytokine and 

Horse-reddish peroxidase (HRP) were bound and HRP enzyme substrate was added. 

Depending on the concentration of cytokines bound and consequent amounts of HRP, 

substrate solution was metabolized indicated by color change of the substrate. Cytokine 

concentrations were calculated using a known TNF standard cytokine range measured. 

Capture antibodies were incubated over night at 4 °C on a shaker. Afterwards plates 

were washed 4 times with 300 µl wash buffer, blocked with 1x Assay Diluent for 1 h 

while shaking at room temperature (RT) and washed again 4 times. Cleared 

supernatants were diluted 1:7 in Assay diluent and 100 µl of sample or standard were 

added in duplicate to the plate and incubated for 2 h on a shaker. After 4 additional wash 

steps, 100 µl detection antibody were added and incubated for 1 h while shaking 

followed by washing steps. Avidin-HRP solution was added, incubated for 30 min and 

washed 5 times. Finally, 100 µl HRP substrate solution were added, incubated for 



30 

15 min without shaking and reaction was stopped by adding 100 µl of Stop solution. 

Color change was measured by absorbance at 450 nm using a Micro Plate reader 

(VersaMax) and was analyzed using SOFTmax Pro software (Molecular Devices).  

3.2.8 Cytometric Bead Array (CBA) 

To determine content of multiple cytokines simultaneously from cell culture supernatants 

the Cytometric bead array (BD Biosciences) was performed following manufacturer´s 

instructions. To enable the measurement of up to 30 cytokines at once, samples are 

mixed with a composite of beads coated with a capture antibody to one specific cytokine 

and a unique florescence intensity. Thereby each bead population, representing one 

cytokine, can be identified by a specific position in a grid of two fluorescent dyes. To 

assess the cytokine concentrations a mix of detection antibodies coupled to a reporter 

molecule (PE) is added to each sample (Fig. 7). 

Fig. 7: Assay principle of the Cytometric bead array. 

For the cytometric beads array a mixture of beads coupled to two distinct flow cytometric dyes 
with specific coupled antibodies against different cytokines are incubated with cleared cell culture 
supernatants to bind to cytokines. Detector antibodies against the same cytokines, coupled to 
another flow cytometric dye (PE), are added afterwards to bind the bead-cytokine complexes, 
followed by washing and analyzing using a flow cytometer. Distinct proportion of the two dyes 
coupled to the beads define its position and identification within a grid of up to 30 different bead 
populations. Afterwards every bead population, representing one specific cytokine, is analyzed for 
its mean fluorescent intensity (MFI) of PE to verify its concentration by use of a known standard 
mix and calculated standard curves. Transferred with permission from BDbiosciences.de. 

Cell culture supernatants for cytokine measurements were centrifuged for 10 min at 

10.000 g to pellet cells and cell debris and were stored at -20 °C until use, for short time 

storage. To bind cytokines 0,5 µl of each cytokine bead solution were mixed and diluted 

in capture bead diluent buffer to a final volume of 50 µl per sample and added to 50 µl 

cleared cell culture supernatant. Samples were carefully mixed and incubated for 1 h at 

RT. In parallel, 0,5 µl of each PE detection antibody was diluted in PE detection diluent 

to a final volume of 50 µl per sample. 50 µl of PE mix were added to the samples, mixed 

carefully and incubated for 2 h at RT in the dark. Afterwards, 1 ml of wash buffer was 
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added to each sample and centrifuged for 5 min at 200 g. Supernatant was aspirated 

and beads were suspended in 300 µl wash buffer. Recombinant standards with known 

concentrations were used to quantify the PE intensity of each sample. Beads were 

analyzed using a FACSCanto II (BD Biosciences) and Flow Jo software (TreeStar 

Inc.). Calculated cytokine concentrations were further normalized by protein content or 

cell count. 

3.2.9 Proteome Profiler Human Cytokine Array 

An overview of 36 different inflammatory cytokines, including those measured with CBA, 

were analyzed using the Proteome profiler human cytokine array (R&D systems). 

Thereby antibodies against 36 different cytokines are immobilized in duplicates on a 

small nitrocellulose membrane (Fig. 8). Following manufacturer´s instructions, up to 

1,5 ml cleared cell culture supernatant were incubated with 15 µl secondary antibody mix 

for 1 h at room temperature, while membranes were blocked with included assay buffer 

4 for 1 h, shaking at RT. Afterwards membranes were incubated with supernatants 

including secondary antibodies against all measured cytokines overnight at 4 °C on a 

shaker. Membranes were washed 3 times with 20 ml of included wash buffer for 10 min 

each and subsequently incubated with 2 ml of diluted Streptavidin-HRP solution per 

membrane for 30 min at RT shaking. After 3 additional washing steps, membranes were 

placed into a plastic sheet protector and 1 ml of mixed Chemi reagent mix per 

membrane were added. After 1 min incubation in the dark excess Chemi reagent mix 

was gently smoothed out of the plastic sheet protector and membranes were placed into 

an autoradiography cassette, x-ray films were placed on top of the membranes and 

incubated for different times as indicated.  

Template for evaluation of the Proteome profiler human cytokine array membranes (left) and a 
representative analyzed membrane (right) with 4 visible proven cytokines and additionally positive 
controls at the positions A1-A2, A19-A20 and E1-E2, as well as a negative control at E19-E20. 
Transferred and modified with permission from R&D Systems. 

Fig. 8: Proteome Profiler Human Cytokine Array. 
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3.2.10 Bicinchoninic Acid Protein Quantification Assay (BCA) 

Protein concentration of whole cell RIPA buffer lysates was measured using the Pierce 

Micro BCA Protein Assay Kit following manufacturer´s instructions. In short, 5 – 50 µl of 

each sample (containing a pre-estimated amount in the range of the standard curve) 

were diluted in water to a final volume of 300 µl. 150 µl of each sample was added in 

duplicate to a 96 well plate and 150 µl of BCA reagent was added per well. Samples 

were incubated for 2 hours at 37 °C and analyzed using a plate reader Infinite 200 

(TECAN) and i-control (METTLER TOLEDO) software to measure absorption rate at 

570 nm. For quantification of the samples a known standard BSA concentration range 

was used. 

3.2.11 Preparation of protein lysates 

Preparation of protein lysates for protein content analysis or SDS Page was performed 

using RIPA lysis buffer on ice. After addition of lysis buffer, cells were scraped, 

incubated for 10 min on ice and then centrifuged for 30 min at 10 000 g and 4 °C to clear 

the lysates from cell debris. Supernatant was transferred to a new vial and the cell pellet 

was discarded. For protein analysis via Western blotting, lysates were mixed with 

appropriate amounts of 5x sample buffer and boiled at 96 °C for 5 min.  

3.2.12 SDS PAGE and Western blotting 

Sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis (PAGE) was 

performed using 7.5 or 10 % polyacrylamide gels, depending on expected molecular 

sizes. Proteins were separated by size at a constant current of 35 mA per gel. 

To transfer proteins from the gel to a PVDF membrane a Trans-Blot Cell Tank system 

(Bio-RadTM) for wet blotting was used. Proteins were transferred onto a 0.2 or 0.45 µm 

pore-size PVDF membrane, depending on protein size. Membranes were pre-activated 

by short term methanol incubation, followed by washing with distilled water and 

equilibration in TBS-Tween for 10 min. Proteins were blotted by constant current of 

1.5 A in a cooled Tank system. Subsequently, membranes were blocked for 1 hour at 

room temperature in blocking buffer. Blots were incubated with primary antibodies 

overnight at 4 °C under continuously shaking. Afterwards membranes were washed 

3 times with TBS-Tween and incubated with secondary antibodies for 45 min shaking at 

RT. Following 3 further washing steps, membranes were covered with Western Lightning 

Enhanced Chemiluminescent (ECL) Substrate for 1 min before analyzing bioluminescent 

signals using a LAS-2000 (Fujifilm) and Multi Gauge (PLX Devices) software.  
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3.2.13 Measuring metabolic parameters 

Cell culture supernatant concentration of glucose and lactate were analyzed by the 

Institute for Clinical Chemistry of the University Hospital Jena. 150 µl of cleared 

supernatant were aliquoted, frozen and stored at - 80 °C until analysis. 

3.2.14 Statistical analysis 

GraphPad Prism 5 and 6 were used for statistical analysis. A Mann-Whitney test was 

performed to determine significances between different treatments within one 

experimental group. The Two-way ANOVA with Bonferroni post-test was used to 

determine significances between two experimental groups. * p ≤ 0.05, ** p ≤ 0.01, 

***p ≤ 0.001, ****p ≤ 0.0001 
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4. RESULTS

4.1 Clinical study with TSC patients 

4.1.1 Patient cohort 

For this study in cooperation with the Children’s Hospital Jena, 19 patients with 

diagnosed TSC who matched the inclusion criteria were enrolled after written consent. 

Patients comprised 13 male and 6 female individuals from 0 to 38 years of age. Within 

this cohort 4 TSC patients were analyzed two or more times in a distance of 

6 - 16 months. In the following these measurements were included as individual 

experiments. Controls were age and sex matched whenever possible and handled in 

parallel. All participants met inclusion criteria.   

Table 6: Patient cohort of clinical study 

Male  13 

Female 6 

Age (mean and median) 12 

Everolimus treatment 7 

TSC1 mutation 1 

TSC2 mutation 11 

Mutation unknown 7 

4.1.2 Establishment of monocyte adaptation 

Trained immunity has raised increased interest in recent years and different fields of 

research and was supposed to be part of this study since it is suggested to be mediated 

by mTOR signaling. Therefore, verification of training effects of -glucan in primary 

human monocytes showed by the research group of Mihai Netea was attempted [37, 40, 

49, 50]. Since it was not possible to reproduce the training effect after a 7 days training 

period, different experimental conditions were adapted according to latest publications 

[61, 187]. Among this, different isolation protocols were used with or without subsequent 

Percoll purification of PBMCs isolated with Histopaque-1077, distinct cell counts were 

seeded and also the time points of -glucan stimulation were adjusted. In addition, 

different -glucans were used to induce training effects. Moreover, different serums, 

commercially available as well as donor specific serum, were tested to increase viability 

of the cells during long incubation times and the re-stimulation concentration of LPS was 
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reduced from 100 ng/ml to 10 ng/ml to ensure that strong LPS-induced cytokine 

induction does not mask a training effect. Further, additionally to the reported stimulation 

period of 7 days, including 5 days of resting between -glucan priming and LPS 

re-stimulation, subsequent LPS re-stimulation was performed. 

Induction of endotoxin tolerance with LPS, at the level of TNF production, was stably 

induced in the all tested conditions. However, a reproducible training effect of -glucan 

priming could not be observed after the 7 days stimulation period, irrespectively of the 

tested conditions (Fig. 9). Although cytokine measurements of TNF by ELISA seemed 

to be increased in -glucan primed cells after 7 days, this effect was lost after 

normalization of measurements to protein amount or cell count. Nevertheless, when 

cells were subsequently re-stimulated with LPS there was a training effect of -glucan 

even after normalization, despite not reaching statistical significance. Thus, a 

subsequent stimulation protocol was used for further experiments. 

Fig. 9: Training effect of -glucan is not reproducible after 7 days but present with 
subsequent stimulation. 

Primary human monocytes of healthy controls (circle) and TSC patients (triangle) were primed 

with 100 ng/ml LPS (LPS prime) or 3 µg/ml -glucan (G prime) in the absence or presence of 
mTOR inhibitors rapamycin and torin (Rap + Tor) for 24 h. Afterwards cells were either 
(A) subsequently or (B) after a resting period of 5 days re-stimulated with 10 ng/ml LPS
(LPS stim). Data-sets represent mean values of 2 – 9 independent experiments. Error bars are
standard error of the mean (SEM). Mann-Whitney test (group comparison) and two-way ANOVA
(pair-wise comparison) were used for statistical analysis.
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4.1.3 Important pro and anti-inflammatory cytokines in this study 

Innate immune cells like monocytes are the first line of host defense. Therefore, 

monocytes secrete a variety of pro- and anti-inflammatory cytokines, such as interleukins 

or chemokines and other mediators for autocrine, paracrine or endocrine communication 

and to recruit other immune cells for initiation and maintenance of a balanced 

inflammatory response. To cover a broad spectrum of cytokines a subset of pro- and 

anti-inflammatory cytokines was used to profile the response of monocytes at basal 

level, as well as after stimulation with LPS or -glucan (Table 7). Among these, TNF 

and Interleukin 6 (IL-6) display classical pro-inflammatory mediators of acute phase 

response. Together with IL-1, TNF and IL-6 represent endogenous pyrogens, which 

can induce fever as response to inflammation, as well as important mediators in 

inflammatory diseases such as sepsis. IL-1 was reported to enhance antigen-driven 

responses of T cells and can trigger the expression of IL-6 [188, 189]. IL-8, also known 

as neutrophil chemotactic factor, is an important mediator of neutrophil phagocytosis and 

migration and was shown to promote LPS-induced inflammation by IL-1 and IL-6 [190]. 

In addition to IL-8, the Monocyte chemoattractant protein 1 (MCP-1) recruits monocytes, 

but also other immune cells to inflammatory sites. MCP-1, the Macrophage inflammatory 

protein 1/ (MIP-1/) and RANTES (regulated on activation, normal T cell expressed 

and secreted) belong to the CC chemokine family, which is involved in acute 

inflammatory phase and recruitment of granulocytes such as neutrophils. In addition, 

MIP-1 and MIP-1 can recruit monocytes and natural killer cells to inflammatory sites, 

induce fever and are known to interact with each other [191]. Moreover, the chemokine 

RANTES, in cooperation with T cells, triggers proliferation and activation of specific 

natural killer (NK) cells, CC chemokine-activated killer (CHAK) cells [192]. Further, 

RANTES and the relative chemokines MIP-1/ have been identified as natural HIV-

suppressive factor secreted by different immune cells [193]. 

Among the investigated cytokines, IL-10, also known as cytokine synthesis inhibitory 

factor (CSIF), is an anti-inflammatory cytokine, which was found to predominantly inhibit 

pro-inflammatory cytokines produced by LPS stimulation such as TNF, IL-1 and IL-6 

among with IL-8, MCP-1, MIP-1 and MIP-1 [194-197]. In addition, IL-10 inhibits 

proliferation and cytokine production of T cells, hence, limiting pro-inflammatory 

response and therefore was reported to protect against endotoxic shock in mice [196, 

198-200]. Thus, IL-10 is an important mediator of immunoregulation and inflammation

limitation. 
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Table 7: Important pro-inflammatory cytokines measured using CBA 

 name classification pro-/anti-inflammatory function 

TNF 
Tumor 

necrosis factor 
pro-inflammatory 

 promotes phagocytosis

 chemoattractant for

neutrophils

IL-1 interleukin pro-inflammatory  leukocytic pyrogen

IL-6 interleukin pro-inflammatory  triggers neutrophil production

IL-8 (CXCL8) interleukin pro-inflammatory 

 neutrophil chemotactic factor

 promotes phagocytosis and

migration

IL-10 interleukin anti-inflammatory 

 counteracts pro-inflammatory

cytokines

 inhibits T cell proliferation

MCP-1 (CCL2) chemokine pro-inflammatory 
 recruits monocytes, dendritic

cells and memory T cells

MIP-1 (CCL3) chemokine pro-inflammatory 

 chemoattractant for

monocytes and granulocytes

 promote pro-inflammatory

cytokines as IL-1, IL-6, TNF

MIP-1 (CCL4) chemokine pro-inflammatory 
 chemoattractant for natural

killer cells and monocytes

RANTES 

(CCL5) 
chemokine pro-inflammatory 

 chemoattractant for T cells,

eosinophils and basophils

4.1.3 LPS induces pro-inflammatory cytokine release 

Lipopolysaccharide (LPS) as bacterial cell wall compartment is a strong 

Pathogen-associated molecular pattern (PAMP) resulting in a high inflammatory immune 

response upon detection by innate immune cells like monocytes in the blood stream. 

-glucan, another cell wall compartment, but from fungi, is not reported to trigger such a 

strong immunological response by cells of the innate immune system, but instead 

promoting an intracellular re-programming. 

Thus, to verify the inflammatory state of isolated monocytes after stimulation with LPS or 

-glucan, secreted cytokines were measured with the cytometric bead array (CBA), as 

well as a proteome profiling array, which displays the analysis of 36 different 

inflammatory cytokines. Stimulation of monocytes from healthy volunteers with 100 ng/ml 

LPS for 24 h significantly altered all cytokines measured by CBA (Fig. 10 A). While 

TNF, IL-1, IL-6, IL-10, MCP-1, MIP-1, MIP-1 and RANTES were significantly 

increased, only levels of IL-8 showed a significant decrease by LPS. Cytokine proteome 

profiling confirmed the increase of TNF, IL-1, IL-6, IL-10, MIP-1/ and RANTES and 

further revealed the induction of other pro-inflammatory cytokines such as Granulocyte 
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colony-stimulating factor (G-CSF), Granulocyte-macrophage colony-stimulating factor 

(GM-CSF) or CCL1 (CC chemokine ligand 1) (Fig. 10 B). 
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Fig. 10: LPS and -glucan stimulation display distinct cytokine profiles. 

Primary human monocytes were stimulated with either 100 ng/ml LPS or 3 µg/ml -glucan or cell 
culture media for 24 h. Supernatants were collected and used for (A) cytometric bead array 
analysis or (B) a cytokine proteome profiling. Representative X-ray films of short-term exposure 
(2 min, left) and long-term exposure (30 min, right) as well as (C) a table with all cytokines 
identifiable and their specific position are depicted. For reasons of clarity, some important 

cytokines are color-coded. LPS (LPS 100 ng/ml) and -glucan stimulation (-glucan 3 µg/m) 
displayed distinct cytokine profiles. Stimulation with LPS induced secretion of a variety of 10 

different inflammatory cytokines, while -glucan stimulation was similar to untreated control. 

On the other hand, stimulation with 3 µg/ml -glucan did not induce increased cytokine 

production of TNF, IL-1, IL-6, IL-10, MIP-1, or RANTES, but slightly increased 

MCP-1 and MIP-1, and significantly enhanced IL-8, measured by CBA. In addition, 

cytokine profiling displayed similar cytokines produced by -glucan stimulated cells as 

compared to untreated control cells. Only a slight increase MIP-1/ could be observed, 

which confirmed CBA measurements. 

4.1.3 TSC cells produce more pro-inflammatory cytokines upon LPS 

stimulation 

To investigate the role of mTOR in the different adaptation processes and the adaptation 

capacity of primary monocytes from TSC patients and healthy controls to inflammatory 

stimuli, isolated cells were also primed with either 100 ng/ml LPS or 3 µg/ml -glucan in 

the absence or presence of the mTOR inhibitors rapamycin and torin for 24 h. 

Afterwards cell culture supernatants were harvested, and different cytokines were 

measured using CBA and ELISA to verify the inflammatory state of the cells. 

By analyzing 9 different cytokines (Table 7) it could be shown that primary human 

monocytes secrete various pro and anti-inflammatory cytokines after priming with LPS. 

The secretion levels of TNF, IL-1 , IL-6, IL-10, MCP-1, MIP-1, MIP-1 and RANTES 

were significantly increased after LPS treatment, both in control and TSC cells (Fig. 11, 

LPS prime). Only IL-8 displayed significantly decreased levels after LPS priming in the 

presence as well as absence of mTOR inhibitors compared to untreated controls also in 

cells from TSC patients. On the other hand, as seen for control cells, IL-8 was the only 

cytokine, which was significantly increased during -glucan priming (G prime) among 

with slight increases in MIP-1 and MIP-1 in TSC cells as well. All other cytokines were 

not affected by -glucan. The anti-inflammatory cytokine IL-10 and the pro-inflammatory 

MCP-1 showed significantly decreased secretion levels upon mTOR inhibition with 

rapamycin and torin (Rap + Tor), while MIP-1 was significantly increased, giving a hint 

towards a dependency on mTOR activity.   
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Fig. 11: LPS but not -glucan induces more cytokine production. 

CBA-based analysis of cytokine secretion of control cells (circle) or TSC cells (triangle) after 24 h 

of priming with 100 ng/ml LPS (LPS prime) or 3 µg/ml -glucan (G prime) in the absence or 
presence of mTOR inhibitors rapamycin and torin (Rap + Tor). For reasons of clarity 2 groups of 
untreated cells are depicted, as one will be in the following the only LPS stimulated (LPS stim) 
control (Fig. 12). Most cytokines were significantly increased after LPS priming compared to 
untreated control cells (*). Other cytokines showed significant reduction of secretion levels when 
primed in the presence of mTOR inhibitors compared to cells primed in the absence of inhibitors 

(§). Only IL-1 and RANTES displayed significant differences in cytokine production between
control cells and TSC cells as indicated by brackets. Data-sets represent mean values of 13 – 20
control and 22 – 25 patient samples. Error bars are standard error of the mean (SEM).
Mann-Whitney test (group comparison) and two-way ANOVA (pair-wise comparison) were used
for statistical analysis. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001

Moreover, it could be demonstrated that monocytes from TSC patients, with hyperactive 

mTOR, produce more pro-inflammatory cytokines with respect to TNF, IL-1 and also 

RANTES after priming with LPS independent of treatment with mTOR inhibitors. 

Secretion of IL-1 and RANTES were even significantly increased after priming with LPS 

alone in comparison to healthy control cells. An increase in TNF production by TSC 

cells was also observed using ELISA measurements (data not shown). 

4.1.4 Induction of endotoxin tolerance is not dependent on mTOR 

activity 

Endotoxin tolerance is described as the lack of pro-inflammatory response to a second 

infection or appearance of LPS or other bacterial components. On the other hand, also 

-glucan was reported to provoke an immunological memory-like response in cells of the 

innate immune system by training or priming the cells but resulting in an increased 

pro-inflammatory response upon re-exposure to LPS. 

Stimulation of cells with of 10 ng/ml LPS alone (LPS stim) as a control, again displayed 

significantly increased levels of all addressed cytokines. Re-stimulation of LPS primed 

cells (LPS prime) revealed that monocytes developed a tolerant state as evidenced by 

the significantly decreased secretion of pro-inflammatory cytokines like TNF, MIP-1 

and RANTES, compared to control cells stimulated only once with LPS (LPS stim) 

(Fig. 12). Previous ELISA measurements additionally revealed induction of LPS 

tolerance with respect to TNF levels (Fig. 9). The induction of tolerance on cytokine 

level was not altered by mTOR inhibitors.  

Further the anti-inflammatory IL-10 displayed slightly decreased secretion levels in 

primed cells, while IL-1 was even significantly increased expressed by LPS primed cells 

compared to only LPS stimulated cells. -glucan priming (G prime) exclusively 

increased the secretion of TNF to a significant level in control cells, which was 
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abolished by pre-treatment with mTOR inhibitors. Besides that, IL-10 and MCP-1 again 

showed significantly decreased secretion levels with mTOR inhibitor treatment and thus, 

a clear dependency on mTOR activity.  
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Fig. 12: LPS and -glucan priming induce opposing adaptation processes in control and 
TSC cells. 

CBA-based cytokine secretion of control cells (circle) or TSC cells (triangle) after 24 h of 
re-stimulation with 10 ng/ml LPS (LPS stim). Most cytokines were significantly increased after 
LPS stimulation compared to untreated control cells (*). Significant differences in cytokine 

secretion through LPS or -glucan priming compared to only LPS stimulated cells are indicated 
(#), as well as significant alterations of secretion levels when primed in the presence of mTOR 
inhibitors compared to cells primed in the absence of inhibitors (§). For reasons of clarity only 
relevant significances are depicted. Data-sets represent mean values of 13 – 20 control and 22 –
25 patient samples. Error bars are standard error of the mean (SEM). Mann-Whitney test (group 
comparison) and two-way ANOVA (pair-wise comparison) were used for statistical analysis. 
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001

Other cytokines like IL-6, MIP-1 and IL-8 were not affected by priming of the cells. 

Furthermore, decreased IL-8 production after LPS priming could not be observed in the 

only LPS stimulated cells (LPS stim) compared to untreated controls. Also opposing IL-8 

levels in the supernatants of LPS or -glucan primed cells after the first 24 h period, 

seemed not to be crucial for IL-8 response to re-stimulation with LPS.  

Additionally, monocytes from TSC patients did not exhibit different cytokine secretion 

profiles than control cells from healthy individuals. Upon re-stimulation with LPS, TNF 

seemed to be the only cytokine which was still produced slightly more in TSC cells, like 

already observed upon priming with LPS. However, the induction of endotoxin tolerance 

by LPS at the level of TNF and other cytokines was not affected, neither by different 

cytokine secretion levels during priming, nor by increased mTOR activity in TSC cells or 

mTOR inhibition by rapamycin and torin. 

4.1.5 mTORC1 does not affect inflammatory priming 

To further investigate the role of mTOR signaling in the different adaptation processes of 

endotoxin tolerance and -glucan training, downstream targets of mTORC1 were 

determined. As blood amounts and thus, cell yield of TSC patients and matched controls 

were limited, signaling analysis via Western blotting was not possible. Therefore, one 

main downstream target of mTORC1, the S6 protein (S6P) was studied by intracellular 

staining for flow cytometry. Activated mTORC1 phosphorylates and activates the S6 

protein kinase (S6K), which subsequently phosphorylates S6P. Phosphorylated S6P 

(pS6P) levels were measured by geometric mean fluorescence index (MFI) in CD14 

positive monocytes. The effect of unspecific antibody binding due to the Fc region was 

verified using FcR blocking agents and was determined to have no effect on CD14 

staining. 

It was observed that single stimulation with LPS (LPS stim) lead to a significant increase 

of pS6P compared to untreated control cells (Fig. 13 B). Priming with LPS or -glucan 
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further increased the amount of pS6P in control cells, though only significantly in control 

cells primed with -glucan (G prime). In TSC monocytes activation of S6P was almost 

constant compared to cells stimulated with only LPS. However, in both priming 

conditions pre-treatment with mTOR inhibitors rapamycin and torin resulted in a 

predominantly significant decrease of pS6P. Nevertheless, there were no significant 

differences between cells from TSC patients and healthy controls. 

Fig. 13: Intracellular flow cytometric analysis of phosphorylated S6 protein reveals 

mTORC1 activation by LPS. 

Monocytes from healthy controls (circle) or TSC patients (triangle) were primed with 100 ng/ml 

LPS (LPS prime) or 3 µg/ml -glucan (G prime) for 24 h and subsequently re-stimulated with 
10 ng/ml LPS (LPS stim). mTOR inhibitors were added 30 min before and throughout 24 h of 
priming wherever indicated (Rap + Tor). Phosphorylation of S6 protein (pS6P) was analyzed by 
intracellular staining after 24 h of re-stimulation with LPS via geometric mean fluorescence index 
(MFI) in CD14 positive gated monocytes. Results are shown as (A) representative histogram of 
pS6P intensity and (B) quantitative analysis of pS6P. Activation of S6P was significantly 
increased after LPS stimulation alone as well as after both priming conditions in comparison to 
untreated cells (*). mTOR inhibition lead to a significant reduction in pS6P compared to cells 
primed without inhibitors wherever indicated by brackets (§). For reasons of clarity only relevant 
significances are depicted. Data-sets represent mean values of 14 control and 19 patient 
samples. Error bars are standard error of the mean (SEM). Mann-Whitney test (group 
comparison) and two-way ANOVA (pair-wise comparison) were used for statistical analysis. 
* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001
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4.1.6 The metabolic state of primary human monocytes is not affected 

by inflammatory priming 

Increased lactate production after inflammatory stimulation of primary monocytes 

It is thought that priming with -glucan is depending on a metabolic reprogramming from 

oxidative phosphorylation to increased glycolysis which would result in increased 

glucose consumption rates and lactate production. mTOR, as important cellular regulator 

of metabolic pathways, was reported to play an important role in the metabolic 

reprogramming of -glucan primed monocytes. To investigate whether LPS or -glucan 

primed cells undergo a change in their metabolic state, production of lactate was 

measured in the same cell culture supernatants used for cytokine analysis. This was 

done by the Institute for Clinical Chemistry of the University Hospital Jena.  

In line with former results concerning cytokine release (Fig. 10), LPS priming lead to 

significantly increased lactate production with even more increase in cells from TSC 

patients compared to untreated control cells (Fig. 14, upper left panel). In comparison to 

LPS priming alone, pre-treatment with mTOR inhibitors rapamycin and torin displayed a 

decline of these effects. Both proofing that mTOR activation is involved in these 

metabolic changes. -glucan treatment caused almost no differences ln lactate 

concentration neither in the presence nor absence of mTOR inhibitors. 

A significant increase in lactate production was also detected when cells were stimulated 

with LPS alone (LPS stim) at the time of re-stimulation (Fig. 14, upper right panel). 

Pre-treatment with LPS and -glucan lead to an additional increase in lactate 

concentrations, however, these were revoked by rapamycin and torin pre-treatment. 

Taken together lactate levels in cell culture supernatants increased when mTOR is 

active as seen by intracellular flow cytometry of phosphorylated S6 protein (Fig. 13) as 

well as in cells from TSC patients, with hyperactive mTOR. 
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Fig. 14: Inflammatory priming does not alter the metabolic state of primary monocytes. 

Analysis of lactate and glucose concentrations in cell culture supernatants of control (circle) or 

TSC (triangle) cells after (A) 24h of priming with 100 ng/ml LPS (LPS prime) or 3 µg/ml -glucan 

(G prime) in the absence or presence of mTOR inhibitors (Rap + Tor) or (B) 24 h of subsequent 
re-stimulation with 10 ng/ml LPS. LPS significantly increased lactate production compared to 
control cells (*). Data-sets represent mean values of 20 control and 25 patient samples. Error 
bars are standard error of the mean (SEM). Mann-Whitney test (group comparison) and two-way 
ANOVA (pair-wise comparison) were used for statistical analysis. * p ≤ 0.05, ** p ≤ 0.01, 
*** p ≤ 0.001 

Increased glucose consumption of primary monocytes after inflammatory stimulation 

As lactate is one main product of glycolysis, lactate production correlates with an 

increase in glucose consumption and therefore, decreased levels of glucose 

concentration in the cell culture supernatants should be detectable. 

Upon priming of cells with LPS, glucose levels decreased, with more effect on TSC cells 

than healthy controls (Fig. 14, lower left panel). Pre-treatment with mTOR inhibitors, also 

demonstrated decreased lactate production, despite only reaching statistical significance 

in TSC cells. Additionally, -glucan priming did not increase glucose consumption. As 

already observed for lactate production, glucose concentrations showed no alterations to 

the control and no differences between TSC cells and control cells. In contrast to 

-glucan priming alone, additional pre-treatment with rapamycin and torin displayed 

increased glucose consumption with higher effects in control cells than in TSC cells.  
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Upon re-stimulation with LPS only (LPS stim), a decrease of glucose concentration and 

therefore an increase in glucose consumption could be observed (Fig. 14, lower right 

panel). This was further increased by cells primed with LPS or -glucan. Pre-treatment 

with mTOR inhibitors slightly decreased glucose consumption upon LPS priming but did 

not have an impact on glucose consumption in -glucan primed cells. Moreover, there 

were no significant differences between cells from TSC patients and healthy controls. 

4.2 Buffy coats from healthy voluntary blood donors 

TSC patients are mostly diagnosed in early childhood and can have a shortened 

expectancy of life depending on the degree of severity of the disease and comorbidities. 

In most cases patients reaching adulthood display a milder form of the disease and do 

not rely on constant medical check-ups. Therefore, this study was a cooperation with the 

Children´s Hospital of the University Hospital Jena, as most TSC patients are attended 

in the Children´s Hospital. For that reason, 84 % of enrolled patients were under the age 

of 18. Since the amount of blood drawn from patients and controls was in relation to the 

age of the individuals, yield of cells was limited. Hence, to complement the results 

obtained from TSC patients and matched controls, buffy coats from healthy voluntary 

blood donors, purchased from the Institute for Transfusion Medicine of the University 

Hospital Jena, were used to perform additional assays which required more cells than 

achieved from TSC patients. 

4.2.1 LPS and -glucan trigger distinct cytokine profiles 

As performed for cells derived from TSC patients and matched controls, monocytes from 

healthy voluntary blood donors were primed with LPS and -glucan, as described above, 

and then subsequently re-stimulated with LPS to verify their inflammatory state. 

Therefore, results from the proteome profiler array obtained during priming (Fig. 10) 

were complemented with the cytokine profile from re-stimulated cells. Thereby, 

comparison of cytokine profiles of cells stimulated with 100 ng/ml during priming and 

10 ng/ml as LPS re-stimulation alone revealed that the induction of CCL1, IL-1, G-CSF, 

GM-CSF, TNF and RANTES were dose-dependent (Fig.  15, LPS 10 ng/ml vs. LPS 

100 ng/ml). Re-stimulation of LPS primed cells further proofed, that tolerant cells do not 

completely block entire pro-inflammatory response but reduce distinct cytokines (Fig 15). 

According to previous cytokine measurements with TSC and control cells, secretion of 

TNF and additionally CXCL10 were completely abolished, along with reduced levels of 

RANTES and MIP-1/. On the other hand, cells primed with -glucan featured almost 
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the same cytokine profile as cells only re-stimulated with LPS. An increase in 

pro-inflammatory cytokines such as TNF or IL-6 could not be observed. 
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Fig. 15: LPS and -glucan stimulation display distinct cytokine profiles during priming and 
LPS re-stimulation. 

Primary human monocytes were primed with either 100 ng/ml LPS or 3 µg/ml -glucan or cell 
culture media for 24 h (transferred from Fig. 10) and were subsequently re-stimulated with 10 
ng/ml LPS for additional 24 h. Supernatants were collected and used for a cytokine proteome 
profiling. Representative X-ray films of (A) short-term exposure (2 min) and (B) long-term 
exposure (30 min) are depicted. (C) Cytokines produced by monocytes stimulated with media 

(untreated), LPS or -glucan. For reasons of clarity, some important cytokines are color-coded. 

LPS (LPS 100 ng/ml) and -glucan priming (-glucan 3 µg/m) displayed distinct cytokine profiles. 
Stimulation with LPS induced secretion of a variety of 9 different inflammatory cytokines, while 

-glucan stimulation was similar to untreated control. Re-stimulation with 10 ng/ml LPS of 

untreated (LPS stim 10 ng/ml), LPS primed (LPS prime + LPS stim) or -glucan primed (-glucan 

prime + LPS stim) cells exhibited again distinct cytokine profiles. Cells primed with -glucan did 
not display a different profile compared to only LPS stimulated cells, whereas LPS primed cells, 

diversely expressed a range of cytokines. While IL-1 and GM-CSF were increased, TNF, 

MIP-1/, CXCL10 and RANTES were either reduced or completely blocked in tolerant cells. 

4.2.2 mTORC1 signaling pathway is not altered by LPS priming 

To analyze the impact of LPS or -glucan priming on mTORC1 signaling, important 

downstream targets, particularly S6K and S6P, were analyzed using immunoblotting. 

Stimulation of monocytes with LPS lead to a slight increase in S6K phosphorylation 

(pS6K) at the lower 70 kDa band within 30 and 60 min (LPS stim), which was lost after 

24 h of stimulation (LPS prime) (Fig. 16 A). Re-stimulation with LPS after LPS priming 

caused similar activation of S6K, which was reduced when cells were primed in the 

presence of rapamycin and torin. Short time stimulation or priming with -glucan likewise 

increased pS6K levels but -glucan priming followed by LPS re-stimulation increased 

pS6K the most. 

Phosphorylation of S6P displayed a similar pattern (Fig. 16 B), which is reasonable since 

S6P is the direct target of S6K. Short term LPS stimulation increased S6P 

phosphorylation, though is lost after 24 h. Priming with LPS did not affect S6P activation 

but treatment with mTOR inhibitors reduced S6P phosphorylation induced by LPS 

stimulation even after 24 h. Further, pS6P was slightly increased after short term 

-glucan stimulation which decreased upon 24 h of priming. However, priming with 

-glucan did not alter S6P phosphorylation by LPS re-stimulation, but decreased by 

combinatorial treatment with rapamycin and torin as well. 
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Fig. 16: Inflammatory priming does not affect mTORC1 signaling upon LPS re-stimulation. 

Monocytes from healthy voluntary blood donors were primed with 100 ng/ml LPS (LPS prime) or 

3 µg/ml -glucan (G prime) in the absence or presence of mTOR inhibitors (Rap + Tor) for 24 h 
or left untreated and were either re-stimulated with 10 ng/ml LPS (LPS stim) or stimulated with 

LPS or -glucan alone (G stim) for indicated times. Representative western blot of (A) 
phosphorylated (pS6K) an un-phosphorylated S6 kinase (S6K) (n=3) or (B) phosphorylated 
(pS6P) and un-phosphorylated S6 protein (S6P) (n=6). Graphs represent densitometric data and 
fold change versus un-phosphorylated controls. For S6K the lower band at 70 kDa was analyzed, 
while the upper band of S6P was used for quantification. Inhibition with mTOR inhibitors revealed 
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specificity of the signal. mTOR activity induced by LPS stimulation was not significantly changed 

by inflammatory priming with LPS or -glucan. Data-sets represent mean values and error bars 
are standard error of the mean (SEM). Mann-Whitney test was used for statistical analysis. 

4.2.3 Intracellular cytokine production of TNF displays distinct 

cellular adaptation processes 

Results from TSC patients and controls, as well as previous cytokine overview 

experiments, revealed that primary human monocytes developed different adaptation 

processes when primed with different immunological stressors. Priming with LPS 

induced a tolerant state characterized by the loss of pro-inflammatory cytokine release 

like TNF, while -glucan priming further increased TNF levels in the supernatants. To 

exclude that differences in secreted TNF levels are a consequence of alterations in the 

secretion process or related factors instead of altered cytokine production, intracellular 

TNF levels were analyzed. Therefore, cells either primed or not with LPS or -glucan 

for 24 h were subsequently treated with Brefeldin A, a secretion inhibitor that blocks 

transport of the cytokine to cellular membrane and its subsequent release, for 30 min 

before and during followed stimulation with LPS or -glucan for 6 h to cover the time 

frame of maximum TNF production.  

As already seen for cytokine release to the supernatant, stimulation of cells with the 

priming dose of LPS resulted in a significant increase in intracellular TNF production 

(LPS prime) (Fig. 17 B). When cells were primed with LPS and subsequently 

re-stimulated with LPS in the presence of Brefeldin A (LPS prime + LPS stim), there was 

no intracellular cytokine production compared to untreated control cells and a significant 

difference to only LPS primed cells. Thus, it can be conducted, that primed tolerant 

monocytes did not produce TNF when challenged with a second appearance of LPS. 

-glucan priming resulted in slightly increased intracellular cytokine production compared 

to untreated control cells, despite not reaching statistical significance. If -glucan primed 

cells were re-stimulated with LPS there was an enhanced increase in intracellular TNF 

production compared to LPS priming alone and a significant increase in comparison to 

untreated control cells. Hence, both distinct adaptation processes could also be 

observed by analyzing intracellular cytokine production rather than just cytokine release 

to cell culture supernatant. 
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Fig. 17: LPS and -glucan trigger opposing effects on intracellular TNF levels. 

For intracellular flow cytometry, cells were primed with 100 ng/ml LPS (LPS prime) or 3 µg/ml 

-glucan (G prime) for 24 h and were re-stimulated with 10 ng/ml LPS (LPS stim) in the 

presence of the secretion inhibitor Brefeldin A for 6 h to block TNF release to cell culture 
supernatant. Cytokine production was analyzed by intracellular staining for flow cytometry. Cells 

were gated for CD14 and geometric mean fluorescence index (MFI) of TNF was measured. (A) 

Representative histogram of intracellular TNF staining. (B) Quantitative analysis of intracellular 

TNF staining. LPS stimulation induced significant increased TNF production compared to 
control cells (*) but was significantly blocked in comparison to LPS primed cells (#), whereas 

-glucan did not trigger TNF production upon priming alone but increased it after re-stimulation. 
Data-set represents mean values of 4 independent experiments and error bars are standard error 
of the mean (SEM). Mann-Whitney test was used for statistical analysis. * p ≤ 0.05, ** p ≤ 0.01 

4.2.4 TLR4 is internalized after LPS and -glucan stimulation 

In mammalian cells, LPS is recognized and bound to the cells by the Toll-like receptor 4 

(TLR4). Further it was shown that binding of LPS to TLR4 leads to an induction of 

internalization of the receptor-complex to activate distinct signaling cascades as well as 

a decrease of receptor surface density. To investigate, whether a loss of surface 

receptors after increased internalization caused by priming of the cells is responsible for 

the decreased response during a second stimulation with LPS, TLR4 internalization was 

measured during LPS priming for up to 24 h. Additionally receptor internalization after 

-glucan priming was monitored, as it was reported that -glucan priming causes an 

increase in receptor surface density to increase the cellular response upon 

re-stimulation. 

Priming of the cells with LPS did lead to an increase of receptor internalization starting at 

1 h after stimulation (Fig. 18). Further, there was a continuous decrease of receptor 

surface density to a significant degree from 3 to 24 h of stimulation compared 0 min of 

stimulation. At this point, more than 50% of receptors were internalized. -glucan priming 

did not increase surface abundance of TLR4 but rather decreased it. 
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Fig. 18: Inflammatory priming triggers TLR4 internalization within 24 h. 

Flow cytometric analysis of TLR4 surface staining after stimulation with (A) LPS or (B) -glucan 
for indicated times. TLR4 cell surface abundance was significantly decreased during treatment 
with LPS compared to 0 min of stimulation (*). Data-set represents mean values of geometric 
mean fluorescence index (MFI) of 4 independent experiments and error bars are standard error of 
the mean (SEM). Mann-Whitney test was used for statistical analysis. * p ≤ 0.05, ** p ≤ 0.01, 
*** p ≤ 0.001 

4.2.5 Endotoxin tolerance is not mediated by ERK, PI3K or p38 

signaling 

Hyperactive mTOR in TSC cells and mTOR inhibition by rapamycin and torin did not 

affect tolerance induction and priming with LPS or -glucan did not alter mTOR activity. 

Thus, other important inflammatory pathways, which were reported to be involved in 

immune cell signaling and related to mTOR, such as PI3K and the MAPK ERK and p38, 

were analyzed.  

To investigate the impact of other inflammatory pathways, inhibitors against key 

molecules were used. Cells were pre-stimulated with rapamycin and torin for mTOR 

inhibition, SB202190 for inhibition of p38 MAPK (p38) signaling, UO126 for ERK 

signaling inhibition or LY294002 for PI3K inhibition for 1 h before and during 24 h of 

priming with LPS, followed by re-stimulation with LPS. In line with previous results, 

mTOR inhibition did not alter cytokine production after LPS priming except from IL-10 

and MCP-1 (Fig. 19). Inhibition of p38 with SB202190 caused a decrease of 

pro-inflammatory cytokine production of TNF, IL-1, IL-6 and RANTES but also of the 

anti-inflammatory IL-10, reaching significance in TNF, IL-1 and IL-10. MCP-1, IL-8, 

MIP-1 and RANTES were not affected. Treatment with the ERK inhibitor UO126 also 

inhibited the secretion of pro-inflammatory cytokines such as TNF, IL-1, IL-6 and 

MCP-1, partly to a significant level, while MIP-1 and RANTES were not altered and IL-8 

was even increased compared to only LPS primed cells.  
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Fig. 19: Cytokine production upon LPS priming is depending on different inflammatory 
pathways. 

Cells were primed with 100 ng/ml LPS (LPS prime) for 24 h in the presence of different inhibitors 
against key proteins of distinct inflammatory pathways. mTOR inhibitors (Rap + Tor), p38 inhibitor 
(SB202190), ERK1/2 inhibitor (UO126) and PI3K inhibitor (LY294002) were added 1 h before and 
during priming with LPS. Cytokine levels were analyzed using CBA. Significant increases 
compared to untreated control cells (*) or only LPS primed cells (§) are indicated. For reasons of 
clarity 2 groups of untreated cells are depicted as one will be in the following the only LPS 
stimulated (LPS stim) control (Fig. 20). Only relevant significances are shown. Data-sets 
represent mean values of 8 independent experiments and error bars are standard error of the 
mean (SEM). Mann-Whitney test was used for statistical analysis. * p≤0.05, ** p≤0.01, 
***p≤0.001, ****p≤0.0001 
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Further, UO126 was the only signaling inhibitor, which did not inhibit IL-10 secretion. 

Blocking the activity of PI3K also caused a decrease of TNF, but was not significantly 

reduced in comparison to cells stimulated with LPS alone. In addition, IL-6, IL-10, MCP-1 

and RANTES levels were decreased with PI3K inhibition, with IL-10 reaching 

significance. Furthermore, LY294002 increased the pro-inflammatory cytokine IL-1, 

while IL-8 and MIP-1 were not affected. 

When cells were re-stimulated with LPS, LPS primed cells were rendered tolerant in 

case of TNF evidenced by significantly reduced secretion compared to only LPS 

stimulated cells, irrespectively whether they were treated additionally with mTOR or PI3K 

inhibitors (Fig. 20). However, inhibition of p38 and ERK signaling during priming also 

reduced TNF levels upon re-stimulation, despite not reaching statistical significance. 

The significant increase of RANTES induced by LPS stimulation was lost in all primed 

cells, independent of the inhibitor treatment. The p38 inhibitor SB202190 impaired the 

extent of TNF tolerance induction the most and increased IL-6 secretion compared to 

only LPS primed cells. However, all other cytokines measured are unaffected by the 

inhibition of p38 signaling. TNF levels were also slightly increased through ERK 

inhibition with UO126, whereas other pro-inflammatory cytokines such as IL-1, IL-6, 

IL-8, MCP-1 and MIP-1 were decreased in comparison to only LPS primed cells. 

Thereby reduction of IL-6 reached significance, along with a significant suppression of 

IL-10 compared to LPS stimulated cells. PI3K inhibitor LY294002 increased IL-1 among 

with IL-8 but also IL-10 in comparison to only LPS priming. Further, MCP-1 was 

decreased, while IL-6 and MIP-1 were not affected. 

Due to these results it can be speculated that every signaling pathway is important for a 

different assembly of cytokines, but all distinct cytokine profiles of primed cells resulted 

to a greater or lesser extent in endotoxin tolerance induction by LPS on the level of 

TNF. Therefore, as already seen for mTOR, the tested signaling pathways are not 

responsible for tolerance induction in monocytes. 
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Fig. 20: Induction of endotoxin tolerance is not affected by inhibition of different 
inflammatory pathways. 

Primed cells were re-stimulated with 10 ng/ml LPS for additional 24 h. Cytokine levels in cell 
culture supernatants were measured using CBA. LPS stimulation alone (LPS stim) triggered 
cytokine production of all cytokines measured, partly significantly (*). Inhibitors against p38 
(SB202190), ERK (UO126) or PI3K (LY294002) were used. Every cytokine displayed distinct 

signaling pathway dependencies and not all primed cells evolved tolerance with respect to TNF, 
evidenced by significantly decreased secretion compared to only LPS stimulated cells (#). 
Secretion of IL-6 was the only cytokine significantly decreased by UO126 in comparison to only 
LPS primed cells (§).  For reasons of clarity only relevant significances are depicted. Data-sets 
represent mean values and error bars are standard error of the mean (SEM). Mann-Whitney test 
was used for statistical analysis. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 
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In addition to cytokine profiles, intracellular signaling pathways were investigated using 

immunoblotting (Fig. 21 A). Similar to S6K phosphorylation levels (Fig. 16), ERK was 

activated by short-term stimulation with LPS (LPS stim) and -glucan (G stim). But 

priming did not alter ERK activation induced by LPS stimulation and ERK 

phosphorylation was further unaffected by mTOR inhibitors (Rap + Tor). Phosphorylation 

of p38 (p-p38) was increased upon short-term LPS stimulation (Fig. 21 B). Priming with 

LPS resulted in a decrease of p-p38 levels, irrespectively of mTOR inhibition. Thus, a 

slight induction of tolerance against the subsequent LPS stimulation was demonstrated. 

Short-term -glucan stimulation did not activate p-p38, but -glucan priming followed by 

LPS re-stimulation further elevated p-p38 compared to LPS stimulation alone. Hence, 

the p38 signaling pathway mirrored the effects of inflammatory priming seen for TNF 

secretion. In addition to p38, short-term stimulation with LPS and -glucan triggered also 

the induction of AKT phosphorylation (Fig. 21 C). But while -glucan priming did not alter 

AKT activation, priming with LPS resulted in decreased pAKT levels, suggesting that 

AKT signaling is suppressed in tolerant cells. 
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Fig. 21: Inflammatory priming does not affect ERK but inhibits p38 and AKT signaling in 
LPS tolerant cells. 

Monocytes from healthy voluntary blood donors were primed with 100 ng/ml LPS (LPS prime) or 

3 µg/ml -glucan (G prime) in the absence or presence of mTOR inhibitors (Rap + Tor) for 24 h 
or left untreated and were either additionally re-stimulated with 10 ng/ml LPS (LPS stim) or 

stimulated only with LPS or -glucan (G stim) for the indicated time. Representative western blot 
of (A) phosphorylated (pERK) and un-phosphorylated ERK (ERK) (n=7) or (B) phosphorylated 
(p-p38) and un-phosphorylated p38 (p38) (n=4) (C) phosphorylated AKT (pAKT) and 
un-phosphorylated AKT (AKT) (n=4) and quantitative analysis. Graphs represent densitometric 
data and fold change versus un-phosphorylated controls. ERK activity induced by LPS stimulation 

was not changed by inflammatory priming with LPS or -glucan or by mTOR inhibitor treatment. 
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p38 and AKT displayed reduced phosphorylation in LPS primed cells. Data-sets represent mean 
values and error bars are standard error of the mean (SEM). Mann-Whitney test was used for 
statistical analysis.  

4.2.6 Inhibition of p38 pathway does not alter LPS-induced TLR4 

surface density 

The p38 signaling pathway might be involved in the induction of endotoxin tolerance, as 

it got activated upon LPS stimulation but became tolerant in LPS primed cells. 

Furthermore, the inhibition of p38 determined almost a complete reduction of TNF 

secretion during LPS priming and a decline of tolerance induction compared to LPS 

priming alone (Fig. 19). Therefore, it was investigated whether inhibition of p38 via 

SB202190 has an impact on the internalization of TLR4 after LPS priming. After 24 h of 

priming in the presence or absence of SB202190, internalization of TLR4 was not 

altered compared to only LPS treated cells (Fig. 22). 

Fig. 22: p38 inhibition does not alter TLR4 internalization. 

Monocytes from healthy voluntary blood donors were primed with 100 ng/ml LPS (LPS prime) in 
the presence or absence of p38 inhibitor SB202190 for 24 h. Cells were stained for TLR4 on cell 
surface and analyzed via flow cytometry. After pre-gating on CD14 for monocytes, geometric 
mean fluorescence index (MFI) of TLR4 staining was analyzed. (A) Representative histogram of 
surface TLR4 compared to unstained control (light grey) and (B) the quantitative analysis of 
3 different experiments. Data-sets represent mean values and error bars are standard error of the 
mean (SEM). Mann-Whitney test was used for statistical analysis. 
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4.2.7 Cytokine production does not trigger endotoxin tolerance 

Effects of LPS tolerance were most prominent in case of TNF, which is established as 

a key readout. This pro-inflammatory cytokine was further described to induce tolerance 

itself, inhibiting pro-inflammatory gene expression induced by re-stimulation with TNF 

(reviewed in [201]). Therefore, the question arose whether especially pro-inflammatory 

cytokines, produced during LPS priming, are mediating the tolerant state of monocytes. 

To exclude the effect of LPS signaling, cells were primed with conditioned media, 

comprising secreted cytokines induced by 1 h of LPS stimulation, as described in the 

method section. This conditioned media comprised similar cytokine amounts as 

produced by 24 h of LPS stimulation (Fig. 23). Concentration levels of TNF, IL-6, IL-8, 

IL-10, MCP-1 and RANTES were comparable to 24 h stimulation. Only IL-1 was 

significantly increased in conditioned media than in supernatants of cells stimulated with 

LPS for 24 h, while MIP-1 was significantly decreased. Thus, 1 h LPS treatment 

triggers similar cytokine secretion as 24 h of stimulation. 

Fig. 23: 1 h LPS stimulation triggers a similar cytokine profile as 24 h of stimulation. 

Conditioned media was produced by cells stimulated with 100 ng/ml LPS for 1 h followed by a 
subsequent media change and further 23 h of incubation without LPS. Conditioned media 
(media), comprising the secreted cytokines of 23 h of incubation, displayed a similar cytokine 
profile as produced during 24 h of LPS stimulation (LPS). Both LPS incubation periods 

significantly increased most cytokines compared to untreated control cells (*). Solely IL-1 and 

MIP-1 were significantly altered in conditioned media compared to 24 h of LPS stimulation (§). 
Data-sets represent mean values of 6 independent experiments and error bars are standard error 
of the mean (SEM). Mann-Whitney test was used for statistical analysis. * p ≤ 0.05, ** p ≤ 0.01, 
*** p ≤ 0.001 
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Monocytes primed with conditioned media, comprising different inflammatory cytokines 

(Fig. 23), produced related amounts of cytokines compared to cells primed with LPS 

(Fig. 24). Concentration levels of TNF, IL-8, MCP-1, MIP-1 and RANTES were similar 

to LPS priming, while IL-6 and the anti-inflammatory IL-10 were increased, when cells 

were primed with conditioned media. Only the secretion of IL-1 was significantly 

increased by cells primed with conditioned media compared to cells primed with LPS. 

Fig. 24: Priming with conditioned media provokes an altered cytokine profile. 

Cells were either primed with conditioned media or LPS for 24 h and secreted cytokine levels 
were measured using CBA. Both priming conditions lead to, partly significant, increases in 
cytokine secretion compared to unstimulated control cells (*). Priming with conditioned media 

resulted in similar cytokine levels compared to LPS priming, only IL-1 was significantly 
increased (#). For reasons of clarity 2 groups of untreated cells are depicted as one will be in the 
following the only LPS stimulated (LPS stim) control (Fig. 25). Data-sets represent mean values 
of 8 independent experiments and error bars are standard error of the mean (SEM). 
Mann-Whitney test was used for statistical analysis. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 

Subsequent re-stimulation of LPS or media primed monocytes was used to investigate 

the induction of tolerance (Fig. 25). In regard to TNF, LPS primed cells were rendered 

tolerant, as evidenced by significant decreased TNF levels compared to only LPS 

stimulated cells. Though, TNF levels of conditioned media primed cells were not 

diminished. Other cytokines such as IL-6 and MIP-1 were increased in supernatants of 

cells primed with conditioned media compared to LPS priming, despite not reaching 

statistical significance. Both priming conditions further significantly increased IL-1, while 

IL-10 was significantly decreased. RANTES was also decreased by both priming 

conditions but did not reach significance. IL-8 and MCP-1 were not altered by priming of 

the cells. Thus, it seemed that presence of LPS during priming is necessary to induce 

endotoxin tolerance. 
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Fig. 25: Pro-inflammatory priming does not induce endotoxin tolerance. 

Upon re-stimulation with 10 ng/ml LPS, cells primed with conditioned media displayed an altered 
cytokine profile by CBA analysis. Stimulation with LPS increased cytokine production significantly 
compared to unstimulated control cells (*). Priming with LPS triggered endotoxin tolerance as 

evidenced by significantly decreased TNF secretion compared to only LPS stimulated cells (#). 

Conditioned media did not induce endotoxin tolerance in regard to TNF. Data-sets represent 
mean values of 8 independent experiments and error bars are standard error of the mean (SEM). 
Mann-Whitney test was used for statistical analysis. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001 

4.2.8  IL-8 partly mimics -glucan priming 

Previous experiments with TSC patients and controls as well as Buffy Coats introduced 

IL-8 as the only cytokine which was increasingly produced by -glucan training and even 

decreased through LPS priming. So far, the underlying molecular mechanisms of 

-glucan priming or training are still not completely understood. To get a better 

knowledge, it was investigated whether priming with IL-8 exhibits same effects as 

-glucan. 

Monocytes primed with -glucan increased the secretion of all cytokines measured, with 

a significant increase of TNF, IL-8, MCP-1 and MIP-1 (Fig. 26). In contrast to 

-glucan, cells primed with IL-8 did not secrete more cytokines than untreated control 

cells. 
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Fig. 26: IL-8 priming does not trigger cytokine production. 

Purified monocytes were either left untreated or primed with 3 µg/ml -glucan or 150 ng/ml IL-8 

for 24 h. In contrast to -glucan primed cells, priming with IL-8 did not provoke significantly 
increased cytokine production compared to untreated cells (*). For reasons of clarity 2 groups of 
untreated cells are depicted as one will be in the following the only LPS stimulated (LPS stim) 
control (Fig. 27). Data-sets represent mean values of 9 independent experiments and error bars 
are standard error of the mean (SEM). Mann-Whitney test was used for statistical analysis. * p ≤ 
0.05, ** p ≤ 0.01 

Furthermore, when cells were re-stimulated with LPS, IL-8 primed cells displayed similar 

results then cells primed with -glucan concerning IL-6, IL-8, IL-10, MCP-1, MIP-1 and 

RANTES (Fig. 27). Levels of TNF and IL-1 were slightly reduced compared to 

-glucan primed cells. However, both priming conditions did not exhibit significant 

alterations of pro-inflammatory cytokines in comparison to LPS stimulation alone. 

Fig. 27: -glucan training is partly mimicked by IL-8 priming. 

Re-stimulation of -glucan or IL-8 primed cells with 10 ng/ml LPS for 24 h showed that some 
cytokines are equally secreted while others are distinct between both priming conditions. 
Significant increases in cytokine levels compared to an untreated control are indicated (*). For 
reasons of clarity only relevant significances are depicted. Data-sets represent mean values of 9 
independent experiments and error bars are standard error of the mean (SEM). Mann-Whitney 
test was used for statistical analysis. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001, **** p ≤ 0.0001 
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5. DISCUSSION

5.1 Adaptation of primary human monocytes is not 

dependent on mTOR activity 

Innate immune cells such as monocytes or macrophages represent the first line immune 

response by sensing microbial infections or tissue damage and subsequently the 

production of key inflammatory cytokines, which coordinate inflammatory response as 

well as adaptive immune cell activation. The adaptation of innate immune cells to 

pathogens or PAMPs is evolutionary conserved from plants and invertebrates to 

humans. Thereby cells and tissues can be protected against recurrent infections. 

However, among innate immune cell adaptation, different opposing processes are 

described. Endotoxin tolerance was first described in the 1940´s but is still part of 

extensive research. Tolerance is defined by hyposensitivity of cells or tissues towards a 

repeated stimulation or infection with the same or different stressor. LPS, the 

outer-membrane compartment of gram-negative bacteria, represents the prototypic 

inducer of endotoxin tolerance. A tolerant state is believed to protect cells against an 

overwhelming immune response and associated detrimental tissue damage, which 

potentially results in endotoxic or septic shock. However, LPS-induced enhanced 

inflammatory response as well as sepsis can promote immunological anergy, or 

immunoparalysis. This immune compromised state is characterized by endotoxin 

tolerance and predisposes patients for life-threatening secondary infections. 

More recent data defined an opposing adaptation process, induced by fungal cell wall 

compartments [202]. This process was called innate immune memory or trained 

immunity and was initially described for the tuberculosis vaccine BCG [203]. Further 

studies demonstrated also a protective effect of pre-stimulation with -glucan against 

otherwise lethal injections of LPS or Staphylococcus aureus in a murine sepsis model 

[50]. In contrast to endotoxin tolerance this protective effect is mediated by increased 

pro-inflammatory response. In the clinics, 50% of ICU (intensive care unit) patients 

develop a systemic inflammatory response syndrome (SIRS) and 25% of patients 

develop infectious complications after major surgery [204, 205]. Pre-treatment with the 

-glucan PCG (Poly- (1-6)-B-D-glucopyranosyl-(1-3)-B-D-glucopyranose) has been 

demonstrated to significantly reduce these surgery-associated complications [206].  

In the mentioned adaptation processes, cytokines are the major regulators of innate 

immune response. Thereby TNF acts as a pro-inflammatory master cytokine. Its rapid 

induction is fundamental for the required immune response [207]. Further, it activates 
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important inflammatory signaling cascades such as NFB and MAP kinase (MAPK) 

signaling and promotes the production of other pro-inflammatory cytokines like IL-6 [23, 

208]. -glucan trained monocytes were reported to enhance secretion of TNF and IL-6, 

whereas endotoxin tolerant cells block the expression of these cytokines [28, 50]. 

Cytokines are highly regulated proteins, which have to be quickly upregulated. 

Therefore, they are often controlled at the translational level. The serine/threonine 

kinase mTORC1 is a major regulator of protein biosynthesis by phosphorylation of its 

main downstream targets S6 kinase and 4E-BP1. In addition, activation of immune cells 

as well as migration and phagocytosis largely increase the demand of energy and 

require a certain metabolic flexibility. Beside its translational regulatory functions, 

mTORC1 is also a key regulator of cellular metabolism by sensing nutrient abundance to 

balance anabolic and catabolic processes. In -glucan trained monocytes, mTORC1 was 

shown to be important in the regulation of a metabolic re-programming by activation of 

HIF-1 [40]. This metabolic switch from oxidative phosphorylation towards aerobic 

glycolysis is called Warburg effect and has been well characterized for cancer cells and 

activated immune cells [63, 64, 209]. Enhanced glycolysis provides fast energy for 

immune cells for a rapid immune response and elevated cytokine production.  

mTORC1 comprise signals of different pathways, but its main upstream inhibitor is the 

TSC1/TSC2 tumor suppressor complex. Patients with tuberous sclerosis complex (TSC) 

are characterized by loss-of-function mutations in either TSC1 or TSC2, which causes 

hyperactivation of mTORC1 signaling. Thus, cells from TSC patients represent a unique 

genetic model of hyperactive mTORC1. Most investigations concerning functions of 

mTOR were performed by chemical or genetic inhibition or by deletion of Raptor and 

Rictor, essential elements of the distinct complexes, associated with structural changes. 

LPS induces pro-inflammatory cytokine production 

Stimulation of primary human monocytes from TSC patients and controls revealed that 

monocytes exhibit opposing adaptation processes determined by the used PAMP 

(Fig. 12). LPS induced the secretion of almost all cytokines measured by a cytometric 

bead array of TSC patients and matched controls (Fig. 11). This is consistent with 

previous reports, that LPS triggers pro-inflammatory cytokine production to initiate 

immunological response [210]. Among these, TNF represents the prototypical 

pro-inflammatory cytokine of the acute phase reaction. TNF is mainly produced by 

activated monocytes and macrophages, along with other immune cells such as 

neutrophils, NK cells and CD4+ T cells. TNF is an endogenous pyrogen, thus, able to 

induce fever, apoptosis and cell death and was identified as the key mediator of lethal 

endotoxemia and septic shock [211-213]. In addition, prolonged TNF production can 
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induce a damaging pro-inflammatory response which can lead to mortality, chronic 

inflammation and diseases [22]. Injection of TNF alone was sufficient to induce 

symptoms as seen in sepsis and septic shock [214]. However, anti-TNF antibody 

treatment for sepsis just demonstrated poor results in clinical studies [215, 216]. As an 

immunological regulator, TNF can promote the secretion of other acute phase 

cytokines such as IL-6, which is also associated with the induction of the potentially 

harmful cytokine storm and immune paralysis in sepsis. Blockade of IL-6 signaling was 

reported to improve survival in two murine sepsis models [217, 218]. High IL-6 serum 

levels are also associated with poor outcome in sepsis and other inflammatory diseases 

[219, 220]. In addition, IL-6 inhibition has been proven to be highly effective in the 

treatment of chronic inflammatory diseases such as rheumatoid arthritis or Crohn´s 

disease [221]. However, IL-6 also exhibits anti-inflammatory properties by promoting 

other anti-inflammatory cytokines and is able to block TNF and IL-1 mediated immune 

response, acting as a negative feedback loop [222-225]. 

Within this study a strong induction of TNF and IL-6 induced by LPS were observed in 

cells of TSC patients and matched controls (Fig. 11), as well as in cells of healthy 

voluntary donors (Fig. 10 & 15). Thereby LPS in priming concentration (100 ng/ml) as 

well as LPS re-stimulation concentration (10 ng/ml) induced a range of 9 different 

pro-inflammatory cytokines, including IL-6, MIP-1/, CCL1 or CXCL12 and in a 

dose-dependent manner, TNF, IL-1, RANTES, G-CSF and GM-CSF. These results 

were consistent with measured pro-inflammatory cytokines of TSC patients and controls. 

LPS induces also anti-inflammatory cytokine production 

In addition, the anti-inflammatory IL-10 was also upregulated after LPS treatment in cells 

from TSC patients and matched controls (Fig. 11). In general, IL-10 is a suppressive 

cytokine, acting as a paracrine feedback loop in macrophages by inhibiting the 

differentiation of neighboring cells [226]. IL-10 was originally described as secreted 

cytokine synthesis inhibitory factor (CSIF) and is reported to counteract especially 

pro-inflammatory cytokines induced by LPS, such as TNF or IL-1, by inhibiting their 

synthesis, but also IL-6 and IL-8 as well as the pro-inflammatory CC chemokines MCP-1, 

MIP-1 and MIP-1 and is able to mediate enhanced degradation of pro-inflammatory 

cytokine transcripts [194, 197, 227-229]. This process is thought to limit pro-inflammatory 

activation to prevent exaggerated immune response. Further, IL-10 was reported to 

regulate the TNF converting enzyme as well as being able to block NFB and therefore 

directly balancing pro-inflammatory response as autoregulatory factor [230]. Moreover, 

IL-10 deficient mice are highly sensitive to LPS, thus IL-10 is a key mediator to 

overcome endotoxic shock, including sensitization to LPS [231]. Other data reported that 
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LPS-induced IL-10 secretion was mediated by the PI3K/AKT/mTOR pathway and a loss 

of TSC2 results in increased IL-10 levels [175, 177]. IL-10 additionally revealed 

protecting effects in murine sepsis models and IL-10 producing bacteria were shown to 

counteract hyperactive immune response in a murine model of Crohn´s disease [232-

235]. However, in humans, IL-10 additionally exhibits undesired pro-inflammatory 

effects, as described for endotoxemia, by enhancing the activity of NK cells and 

cytotoxic T cells [227]. IL-10 expression has its peak at later time points compared for 

instance to TNF, which has an intracellular concentration peak within 2 h [236]. 

Therefore, the produced amounts of IL-10, which accumulated during the first 24 h 

priming period, could represent the first reaction of the cells to adapt to high LPS 

concentrations and the initial pro-inflammatory cytokine response towards endotoxin 

tolerance induction, including an anti-inflammatory phenotype.  

LPS and -glucan priming show opposing effects on IL-8 

In contrast to all other investigated cytokines, IL-8 was decreased upon LPS stimulation 

and therefore seemed to be actively taken up or degraded by the cells. This was 

confirmed by cytokine profiling of healthy voluntary donors (Fig. 15). IL-8 is also known 

as the neutrophil chemotactic factor, as its main function is inducing chemotaxis in target 

cells. Once arrived at inflammatory sites, IL-8 can further promote phagocytosis. 

Moreover, IL-8 is able to regulate the secretion of pro-inflammatory cytokines like TNF, 

IL-1 and IL-6 by NFB and ERK signaling [190, 237]. Thus, decreased levels of IL-8 

could also represent an anti-inflammatory phenotype initiation. -glucan, on the other 

hand, did not trigger pro-inflammatory cytokine production which is in line with previous 

studies [61]. Nevertheless, only IL-8 was significantly enhanced by -glucan in TSC and 

control cells (Fig. 10). For the first time, our results could show, that -glucan initiates 

IL-8 production, which therefore could act as a possible mediator of -glucan training. 

However, increased IL-8 released upon -glucan was not observed by cytokine profiling 

of a healthy voluntary blood donor (Fig. 15) but was significantly increased by cytometric 

bead analysis of other healthy voluntary donors (Fig. 26). This observation might be 

caused by distinct sensitivity of these different methods or individual variances in cellular 

response, since cytokine profiling by proteome profiling array could be performed with 

only one donor.  

Rapamycin inhibits the secretion of distinct cytokines 

The inhibition of mTOR activity with rapamycin and torin did not affect cytokine 

production in general, but rather only specific cytokines. Most cytokines measured were 

not affected upon mTOR inhibition, however, MCP-1, IL-10 and MIP-1 were 



68 

significantly altered (Fig. 11). While IL-10 and MCP-1 secretion was significantly 

decreased, mTOR inhibition even increased levels of MIP-1. This suggests a 

dependency of MCP-1, IL-10 and MIP-1 on mTOR signaling. A decrease of IL-10 

production following rapamycin treatment has already been reported, but in part 

associated with decreased TNF or IL-6 levels, which could not be confirmed here 

(Fig. 11) [171, 210, 238]. This could be due to the fact that in the present study 

rapamycin and torin were used in combination to inhibit whole mTOR signaling instead 

of rapamycin treatment alone. Moreover, there is contrary data on the effect of 

rapamycin on the expression of TNF and IL-6 [180, 210]. The rapamycin analog 

sirolimus was shown to attenuate IL-10 production in human whole blood [239]. Further, 

TSC2 negative mouse embryonic fibroblast (MEF) cells, with consequential hyperactive 

mTORC1, produce more IL-10 mediated by mTORC1 and NFB [177]. In consistence, 

rapamycin-induced mTORC1 suppression blocks NFB and subsequent 

pro-inflammatory response in murine macrophages [171]. However, if mTOR inhibition 

decreased levels of IL-10 and MCP-1, cytokine production should be enhanced in cells 

of TSC patients with hyperactive mTOR, whereas MIP-1 should be decreased 

compared to control cells. Instead, MCP-1 levels were even decreased, while IL-10 and 

MIP-1 secretion was not affected by hyperactivation of mTOR in TSC cells (Fig. 11).  

Monocytes from TSC patients increase pro-inflammatory cytokine release 

The pro-inflammatory cytokines TNF, IL-1 and RANTES were strongly upregulated 

with LPS stimulation in TSC cells, with significant alterations of IL-1 and RANTES 

compared to healthy control cells (Fig. 11). This finding is consistent with previous 

studies and might be attributed to increased protein biosynthesis in cells with 

hyperactive mTORC1 signaling. Mice lacking the upstream inhibitor TSC1 show an 

increased pro-inflammatory response when challenged with LPS [178, 180]. Induction of 

the PI3K/AKT/mTOR pathway is commonly assumed to promote an anti-inflammatory 

phenotype, however, loss of TSC1 was shown to enhance LPS-induced pro-

inflammatory cytokine response in murine macrophages [178]. In addition, a previous 

study with cells from TSC patients reported an increase of the pro-inflammatory 

cytokines IL-1 and IL-6, but also the anti-inflammatory IL-10 in TSC cells compared to 

healthy controls, although not reaching statistical significance [240]. This is consistent 

with the suggested contrary effect of rapamycin and mTORC1 hyperactivation in TSC 

cells in regard to IL-10. However, an increase in IL-6 as well as IL-10 expression could 

not be confirmed in this study. Differences, in the achieved results, could be explained 

by different LPS concentrations and stimulation times, as well as the fact that in the 

present study secreted cytokines were profiled, instead of RNA expression analysis.  
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-glucan priming did not induce a distinct training effect 

When primed cells were re-exposed to LPS, opposing adaptation processes could be 

observed. As it was already seen in pre-experiments with ELISA measurements (Fig. 9), 

priming with LPS induced a tolerant state in regard to TNF and further MIP-1 and 

RANTES, while -glucan pre-treatment enhanced TNF secretion (Fig. 12). In addition, 

hyperactivation of mTOR in TSC cells again displayed increased TNF production upon 

LPS stimulation alone (LPS stim) compared to control cells, despite not reaching 

statistical significance, perhaps because of declined LPS concentration for 

re-stimulation. However, enhanced TNF secretion by -glucan training reached 

significance solely in healthy control cells and was lost with mTOR inhibition, which 

correlates with previous studies [37, 40, 49]. TNF production was also not altered in 

cytokine profiling of healthy voluntary blood donors challenged with -glucan (Fig. 15). 

This might confirm only weak effects of -glucan on pro-inflammatory cytokine response. 

However, since cytometric bead analysis demonstrated enhanced TNF levels, cytokine 

profiling with X-ray films might not be sensible enough to detect induced differences. In 

contrast to previous reports, other pro-inflammatory cytokines measured, such as IL-6, 

were not affected by priming with -glucan [37, 50, 61]. In conclusion, only weak and 

inconsistent training effects could be observed in this study. Since initially monocyte 

stimulation with the originally recommended training protocol of 7 days did not exhibit a 

trained pro-inflammatory response, the stimulation protocol had to be adjusted. 

However, training effects poorly reached a significant level after normalization to cell 

count or protein amount. This might be accounted for -glucan induced morphological 

changes or elevated monocyte to macrophage differentiation as reported by others, 

leading to increased cell size as well as enhanced attachment to the surface and 

improved survival compared to untreated control cells [49, 241]. These normalization 

steps are missing in some previous studies, eventually explaining differences in the 

results obtained [37, 49]. On the other hand, the number of healthy individuals and TSC 

patients included might not be sufficient to see a clear statistical effect as individual 

inflammatory response can vary widely. Since immune response is a complex system 

and till date it is not known which aspects could affect -glucan training, there are 

presumably individuals which respond to a greater or lesser extent, described as 

responder or non-responder, which might explain distinct results of the present study 

compared to other data. Further, included individuals displayed a broad age difference, 

which can affect immunological response, since the immune system evolves during 

lifetime. In contrast to previous studies, which analyzed adult voluntary blood donors, the 

majority of TSC patients and controls in the present study were under the age of 18. 
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LPS-induced tolerant cells suppress specific pro-inflammatory cytokines 

In general, upon re-stimulation of LPS primed monocytes, measured cytokines could be 

categorized in three different patterns. First, cytokines rendered tolerant such as TNF, 

MIP-1 and RANTES, second, IL-10 and MCP-1, cytokines which were sensitive to 

mTOR inhibition and third, cytokines which were not affected by priming of the cells, 

such as IL-1, IL-6, IL-8 and MIP-1 (Fig. 28). 

Fig. 28: Cytokines produced by LPS tolerant cells can be classified in 3 groups. 
Cytokines secreted by cells rendered tolerant with LPS displayed distinct pattern and therefore 

can be divided into 3 different groups. The pro-inflammatory cytokines TNF, MIP-1 and 
RANTES became tolerant, since their expression was suppressed or completely blocked in 
tolerant cells. The anti-inflammatory IL-10 and the pro-inflammatory MCP-1 showed a high 
dependency on mTOR activity, proofed by expression suppression through the mTOR inhibitors 

rapamycin and torin. And finally, other cytokines such as IL-1, IL-6, IL-8 or MIP-1 were not 
altered in tolerant cells, approving that tolerance is not characterized by a switch from pro-
inflammatory cytokine expression to an anti-inflammatory phenotype. 

Induction of endotoxin tolerance by LPS significantly decreased secretion of TNF, 

MIP-1 and RANTES upon re-stimulation in cells from TSC patients and matched 

controls (Fig. 12). A reduction of RANTES as well as MIP-1/ was also observed with 

the cytokine profiler assay of healthy voluntary blood donors, along with a complete 

block of TNF and CXCL10 (Fig. 15). CXCL10, also known as Interferon-induced 

protein-10 (IP-10), acts as a chemokine to promote inflammation. It has been reported to 

be induced upon LPS stimulation but suppressed in tolerant cells, mediated by TRIF and 

IRF3 signaling, which is consistent with present data [242]. 
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TNF represents the key readout in endotoxin tolerance and was shown to be greatly 

decreased in several studies [15, 30, 60, 242]. As discussed above TNF is a strong 

trigger for inflammatory immune response and is able to induce sepsis like symptoms by 

itself [214]. Further, pre-treatment with TNF can cause tolerance to subsequent, 

otherwise lethal doses of either TNF or LPS in vivo, thus, defining TNF as a robust 

readout for the occurrence of endotoxin tolerance [25, 28, 201, 243, 244]. On the other 

hand, prolonged TNF secretion is also associated to chronic inflammatory diseases 

such as rheumatoid arthritis, indicating for the importance of a tightly regulated and 

restricted expression [245]. 

However, induction of tolerance was not affected neither by mTOR inhibitors, nor altered 

in TSC cells (Fig. 12). This does not support a role of mTOR in the process of endotoxin 

tolerance. In addition, other pro-inflammatory cytokines, such as IL-6, along with MCP-1 

and MIP-1, were not affected by LPS priming. In other studies, IL-6 was reported to be 

decreased in tolerant cells exactly like TNF, which could not be confirmed here [24, 

50]. IL-1 can trigger the release of IL-6 wherefore IL-6 expression might be caused by 

prolonged IL-1 secretion in tolerant cells [188]. Apart from that, since IL-6 also has 

anti-inflammatory properties, prolonged IL-6 secretion could represent an 

anti-inflammatory phenotype. Thus, endotoxin tolerance seems not to be a simple switch 

from pro-inflammatory towards anti-inflammatory response, but a selectively regulated 

process. 

As seen for LPS and -glucan priming, IL-10 and MCP-1 showed a repeated 

dependency on mTOR signaling, as combinatorial treatment with rapamycin and torin 

during priming still inhibited cytokine secretion upon LPS re-stimulation in the absence of 

inhibitors, partly to a significant level (Fig. 12). However, different cytokine levels upon 

priming did not affect tolerance induction in these cells, suggesting that IL-10 as well as 

MCP-1 levels were not important for induction of endotoxin tolerance. Moreover, IL-10 

levels were higher in LPS re-stimulated cells compared to primed cells. This indicates, 

that a lack of TNF production in tolerant cells, could inhibit induction of IL-10, which is 

contrary to other data claiming that high IL-10 levels are essential for tolerance induction 

[26]. However, the authors additionally state that rapamycin, as inhibitor of IL-10 

secretion, prevents tolerance induction, which could also not be confirmed in the present 

study. Differing results might be explained by the use of Porphyromonas gingivalis 

instead of LPS for tolerance induction and re-stimulation or the usage of IL-10 

neutralizing antibodies for a complete block of IL-10 signaling, as well as the application 

of rapamycin alone for mTOR inhibition. Furthermore, although mTOR inhibition alters 

cytokine levels, as already seen during priming of the cells, there are no significant 
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differences between TSC cells and healthy controls in regard to IL-10 and MCP-1 

production. In addition, inhibition of mTOR did not completely block cytokine secretion, 

suggesting that there are also other signaling pathways important for these cytokines or 

at least able to compensate mTOR inhibition. This also demonstrates a complex 

regulation of cytokine production in tolerant innate immune cells. 

mTORC1 activity is not altered in LPS or -glucan primed cells 

Flow cytometric analysis was performed to investigate mTORC1 activation by measuring 

phosphorylation levels of its downstream target S6 protein (S6P) in CD14 positive 

monocytes after re-stimulation of primed cells with LPS for 24 h (Fig. 13). Stimulation 

with LPS significantly induced S6P phosphorylation and consequently mTORC1 activity, 

which is consistent with previous findings [210]. Both priming conditions further 

increased pS6P in control cells, but not TSC cells, which could point towards negative 

feedback loops counteracting high mTORC1 activation in TSC patients on basal level as 

well as during stimulation. Inhibition with rapamycin and torin lead to a predominantly 

significant reduction of mTORC1 activity even after 48 h of incubation including 24 h 

without inhibitors. Hence, mTORC1 inhibition with rapamycin and torin was both efficient 

and long-lasting as well as specific, proofing that at the time of re-stimulation with LPS, 

mTORC1 activity was still suppressed. However, the obtained results also revealed that 

mTORC1 is active in tolerant cells but blocked by rapamycin and torin, though both 

conditions resulted in same cytokine levels, except from IL-10 and MCP-1 (Fig. 12). 

Especially TNF levels were not altered in tolerant cells by mTOR inhibition. Therefore, 

mTORC1 activity seems not to be involved in induction or maintenance of a tolerant 

state, which has already been assumed before. 

Moreover, there were no significant or pronounced differences in cytokine secretion 

between healthy control cells and cells from TSC patients (Fig. 12). This could imply 

that, although some cytokines are dependent on mTORC1 signaling, mTORC1 is not 

important in the overall adaptation of primary human monocytes in vitro. This is in 

accordance to a lack of general differences between cells treated in the presence or 

absence of mTOR inhibitors. Otherwise, it is possible that cells from TSC patients 

already adapted to some degree to increased mTORC1 activity by negative feedback 

loops, to diminish associated negative effects. As for instance the mTORC1 downstream 

target S6K has been demonstrated to directly inhibit growth factor-induced PI3K/AKT 

signaling via IRS1 (insulin receptor substrate 1), the molecular intermediate between 

insulin receptor and PI3K [148]. In addition to S6K, mTORC1 itself is also able to 

suppress IRS1 as well as PRAS40 or DEPTOR, compartments of its own complex, and 

also AKT, an upstream regulator [89, 105, 246, 247]. Inhibition of mTOR by rapamycin 
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can also induce the Ras/ERK signaling kinase [248]. In consistence with that, cells from 

TSC patients seemed to be less sensitive to further mTOR inhibition by rapamycin and 

torin and TSC patients are not considered to be immunologically affected in general. 

5.2 Adaptation of primary human monocytes is not 

dependent on the metabolic status 

Activation of immune cells and cytokine production increases energy demand of the 

cells. -glucan trained as well as LPS tolerant cells are thought to undergo metabolic 

re-programming, as the basis for immune cell adaptation [40, 73]. Thereby the metabolic 

switch from oxidative phosphorylation to aerobic glycolysis, called Warburg effect, is 

suggested to rapidly provide required energy for immune response. This enhanced 

glycolysis is characterized by an increase in lactate production and glucose 

consumption. As key metabolic regulator, mTORC1 was reported to play an important 

role in this metabolic-reprogramming [40]. 

As seen for mTORC1 activity, LPS also significantly increased lactate production as well 

as partly glucose consumption and thus, glycolytic activity of stimulated cells (Fig. 14, 

upper panel), which is consistent with previous studies [209, 214]. Increased metabolic 

activity could be caused by enhanced activation levels and increased pro-inflammatory 

cytokine production, observed in LPS treated cells. Lactate production was significantly 

increased in both, controls and TSC cells, but to a higher degree in cells of TSC 

patients, associated with a significant reduction in glucose concentration. It can be 

assumed that increased glucose consumption rates in TSC patients, which indicate for 

enhanced metabolic activity, could be caused by hyperactive mTORC1. Increased 

mTORC1 activity, induced by the loss of TSC2, was demonstrated to increase aerobic 

glycolysis mediated by enhanced NFB activity and GLUT-3 (glucose transporter type-3) 

expression in MEF cells [249]. Nevertheless, a lack of significant differences in glucose 

consumption of control cells could be based on high glucose concentrations in cell 

culture media masking otherwise pronounced alterations. In contrast to LPS, lactate 

levels were not significantly increased by -glucan priming and just slightly altered. It is 

suggested, that -glucan training of monocytes increases metabolic activity and induces 

Warburg metabolism to promote epigenetic changes and a constitutively active state 

[40]. This metabolic switch could not be observed in control cells as well as cells from 

TSC patients. However, most studies refer to the 7 days stimulation period to induce 

Warburg metabolism [38, 40, 73]. Nevertheless, -glucan trained cells displayed 

significantly increased TNF production in healthy control cells also upon subsequent 
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LPS stimulation, indicating for a trained state, though cells did not switch to increased 

glycolysis before. It can be concluded that metabolic re-programming may not be 

important in trained cells. Instead the increase in glycolysis represents the enhanced 

activation state of the cells.  

LPS and -glucan primed monocytes did not alter metabolic activity 

Re-stimulation of the cells with LPS again significantly increased lactate production in 

non-primed cells, although to a slighter extent than during LPS priming, which could be 

caused by decreased LPS concentration for re-stimulation compared to LPS priming 

(Fig. 14, lower panel). This may also constitute to less differences between TSC cells 

and controls. Priming of cells with either LPS or -glucan further increased lactate 

production and glucose consumption but did not cause significant alterations. These 

effects were reversed by rapamycin and torin treatment during priming. This further 

confirms, that suppressed mTOR activation affects cellular metabolism, even after 

additional 24 h without inhibition. However, production of lactate was not completely 

abolished by mTOR inhibitors, demonstrating for a complex cellular regulation and 

mTOR-independent pathways, which may counteract decreased mTOR activity. 

Moreover, increased lactate levels also in tolerant cells, illustrates that less metabolic 

activity is not the basis of decreased pro-inflammatory cytokine production in endotoxin 

tolerant cells. As seen in CBA measurements of TSC cells and controls, as well as with 

cytokine proteome profiling analysis of healthy voluntary blood donors, instead of a 

complete suppression of all produced cytokines, tolerant cells block only specific 

pro-inflammatory cytokines such as TNF or RANTES. Other inflammatory cytokines 

like IL-1 or GM-CSF are still increasingly secreted, which consequently involves 

metabolic activity and in turn sustained lactate production (Fig. 15). 

Taken together, results from cells isolated from patients with TSC, which are suggested 

to have hyperactive mTORC1 signaling because of loss-of-function mutations of 

upstream inhibitors, as well as healthy controls, did not indicate for a role of mTORC1 in 

different adaptation processes of innate immune cells like monocytes. Neither 

hyperactivity of mTORC1 in TSC patients, nor the inhibition of mTOR by a combination 

of rapamycin and torin during priming of control or TSC cells did affect induction of 

endotoxin tolerance or -glucan training, as evidenced by cytokine secretion. In addition, 

inhibition of mTORC1, which has been demonstrated via flow cytometric analysis of the 

downstream target S6 protein, also inhibited glycolytic activity. However, tolerant as well 

as trained cells displayed the same mTORC1 and glycolytic activity, though different 

cytokine profiles. Thus, mTORC1 signaling as well as the metabolic state of the cells do 

not seem to be important in adaptation processes of innate immune cells. 
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5.3 Endotoxin tolerance is not mediated via receptor 

internalization or pro-inflammatory cytokine release 

Previous results demonstrate that cytokine release is a tightly controlled process. The 

LPS-induced release of important cytokines such as TNF or IL-6, was shown to be 

regulated on the translational level, with IL-6 in a mTOR-dependent manner [210, 250]. 

Inhibition of mTORC1 with rapamycin was shown to reduce IL-6 secretion but did not 

alter mRNA levels [210]. Thereby, LPS induces activation of mTORC1 and subsequent 

phosphorylation of the downstream target 4E-BP1 [210, 251]. Upon phosphorylation, 

4E-BP1 dissociates from the eukaryotic initiation factor 4E (eIF-4E) and thus, enables 

protein synthesis. In addition to IL-6, IL-10 was also reported to be translationally 

regulated by mTORC1, whereas TNF was not altered by mTOR inhibition [210]. This 

selective regulation of LPS-induced cytokine expression could be confirmed in the 

present study. For further analysis of mTORC1 signaling, the activation of other 

downstream targets was examined. The second direct downstream target of mTORC1 is 

S6K which in turn activates S6P. S6P is part of the 40S ribosomal subunit and therefore 

also controlling protein translation. 

mTORC1 signaling is not altered in primed monocytes 

Western blot analysis of healthy voluntary blood donors confirmed intracellular flow 

cytometric measurements of downstream mTORC1 signaling with regard to 

phosphorylated S6P. Monocyte stimulation with LPS induced phosphorylation of S6K 

(pS6K) and subsequently S6 protein (pS6P) (Fig. 16). mTORC1 was activated within 

30 min and slightly increased after 1 h but decreased again within 24 h, to almost basal 

level with regard to S6K. S6P was still activated after 24 h, suggesting that activation of 

S6P is more enduring or stable than pS6K, which is consistent with flow cytometric 

analysis of pS6P in TSC and control cells, where S6P phosphorylation was still 

significantly increased after 24 h. At the same time, stimulation with -glucan also slightly 

activated S6K phosphorylation within 1 h and even lasted up to 24 h of incubation, 

whereas S6P was less activated by short-time -glucan stimulation and decreased to 

almost control level in 24 h. These contrary activation levels indicate for a tightly 

regulated response to different PAMPs within downstream signaling cascades, instead 

of flipping a switch for mTOR activation.  

Pre-treatment with LPS or -glucan before re-stimulation slightly increase pS6K levels, 

which were markedly decreased by mTOR inhibition within the first 24 h of priming. 

When monocytes were primed with -glucan, activation levels of S6K were increased 

most, however, along with higher variances. Increased variations of measurements, 
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between different individuals primed with -glucan, were also observed in other 

experiments as secretion levels of some cytokines and also with intracellular flow 

cytometric TNF measurements (Fig. 17). As stated above, an enhanced variety from 

one individual to another could indicate for widely individual differences in the response 

to inflammatory stimuli such as -glucan, including responder and non-responder. Since 

this study has several limitations and the relatively small number of healthy volunteers 

included, especially for immunoblotting experiments (3-7), might not be enough to exhibit 

clear statistical effects. This would increase the importance of donor selection, along 

with the need for increased individual numbers, to discriminate different responding 

groups as well as reaching significant differences to control conditions. 

Further, activation of S6P by -glucan was more short-lived than S6K and almost on 

control level after 24h. In contrast to S6K, no further activation of S6P through priming 

could be observed. Thus, higher activation of S6K is not forwarded to downstream S6P. 

Moreover, it could be possible that S6P may reached maximal activity measurable by 

western blotting, as flow cytometric analysis in TSC and control cells displayed slightly 

increased S6P activation by priming with LPS and -glucan (Fig. 13). mTOR inhibition 

with rapamycin and torin during priming reduced both signals to almost control level. 

These findings are consistent with pS6P analysis by flow cytometry, confirming the 

specific effect of these two inhibitors to mTORC1, proofing, that inhibition of IL-10 and 

MCP-1 secretion upon stimulation is mTORC1 dependent.  

However, as confirmed by flow cytometric analysis, there was no induction of mTORC1 

inhibition in tolerant cells, meaning that mTORC1 signaling is still active in endotoxin 

tolerant cells. Thus, either mTORC1 signaling is not associated with induction and 

maintenance of a tolerant state or mTORC1 signaling is continuously regulated and 

thereby not important for distinct inflammatory cytokine production, but maybe 

intracellular re-programming. This might also explain less differences between cells from 

patients with TSC and healthy controls. 

LPS tolerant monocytes do not lack surface abundance of TLR4 

In parallel to mTOR signaling, other possible factors of endotoxin tolerance induction 

were investigated. It is reported, that binding of LPS to TLR4 forces internalization of the 

receptor within a few minutes. However, internalization was only followed for up to 

90 min [12]. Tolerant neutrophils were shown to lose surface abundance of the receptor 

[36]. In addition, there are contrary data published, with some data indicating no 

differences in cell surface abundance of TLR4 after LPS stimulation, while further 

studies even suggested an increase in TLR4 after 48 h of LPS incubation [252-254]. 

However, none of the mentioned studies was investigating primary human monocytes. 
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Furthermore, receptor internalization is still suggested to be a mediator of endotoxin 

tolerance, but there is no data about receptor surface abundance after 24 h of LPS 

stimulation. In the present study, it has been shown that in fact, LPS induces 

internalization of TLR4 in primary human monocytes, reaching significant reduction after 

3 h (Fig. 18). These results slightly deviate from previous studies of murine 

macrophages, which could be accounted for, besides using different species, by high 

variances during the first hour of stimulation in this study. These variances might be 

initiated by increased stress for the cells, caused by short resting periods between media 

change for stimulation and harvesting of the cells. However, TLR4 is continuously 

internalized reaching minimal surface abundance of approximately 40% after 24 h. At 

this time point, cells were normally re-stimulated with LPS resulting in a complete block 

of TNF secretion. Thus, the complete lack of TNF production, seen in cytometric 

analysis of intracellular TNF (Fig. 17) cannot be explained by the loss of surface 

receptors and abolished LPS binding. Further, not all pro-inflammatory cytokines were 

blocked by tolerance induction with LPS such as IL-1, MCP-1 or MIP-1 (Fig. 12). 

Hence, regulation of endotoxin tolerance and associated cytokine expression seems to 

be a tightly controlled process mediated by downstream signaling of TLR4, rather than 

by loss of the receptor on the cellular surface to inhibit ligand binding. 

Different inflammatory pathways mediate cytokine production 

Nevertheless, mTORC1 signaling was not affected in tolerant cells, suggesting that 

mTORC1 is not a direct downstream target of TLR4 or its activation is strictly regulated 

in regard to specific cytokine productions. Therefore, other pro-inflammatory pathways, 

reported to be associated with TLR4 signaling such as PI3K and the MAP kinases ERK 

and p38 were analyzed [255]. By chemical inhibition of the key molecules, it could be 

demonstrated, that every cytokine depends either on more than 2 different inflammatory 

pathways or was completely unaffected as seen for MIP-1 (Fig. 19). This finding 

indicates for the contribution of several signaling pathways to trigger the secretion of 

distinct cytokines and complex regulated processes. In addition to mTOR, IL-10 

secretion was even more dependent on p38 and PI3K signaling, while inhibition of ERK 

did not have any effect. The PI3K/AKT pathway is a direct upstream inhibitor of mTOR 

thus, decreased levels of IL-10, as well as MCP-1, by LY204002 could, at least partly, be 

mediated by subsequent downstream inhibition of mTOR. In addition, LY294002 was 

shown to inhibit LPS-induced phosphorylation of mTOR as well as its downstream target 

4E-BP1 [210]. However, since the suppressive effect of PI3K inhibition was elevated in 

comparison to mTOR inhibition, the secretion of IL-10 and MCP-1 has to be additionally 

regulated by another downstream signaling path of PI3K, except from mTOR. In 
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addition, p38 has been reported to regulate the transcript stability of LPS-induced IL-10 

by its downstream target MK2 (MAPK-activated kinase 2) in macrophages [256]. A 

dependency of IL-10 on p38 signaling could also be confirmed in the present study by 

the usage of the p38 inhibitor SB202190 (Fig. 19). On the other hand, IL-10 was 

reported to mediate the inhibition of p38 in an MK2-dependent manner as a negative 

feedback loop [257, 258]. 

Secretion of TNF was diminished by all inhibitors, except from rapamycin and torin, 

which is in line with cytokine measurements of TSC and control cells and consistent with 

other studies [210]. Inhibition of ERK, and even more p38, reduced TNF to a significant 

level compared to LPS stimulation alone, indicating that TNF production is highly 

dependent on these pathways. Indeed, ERK signaling has been reported to be important 

for the nuclear transport of TNF and therefore essential for the LPS-induced production 

of the cytokine [259]. p38 is also described as a critical factor in the regulation of 

inflammatory mediators such as TNF in monocytes and macrophages in vivo, mainly 

by its -isoform [260, 261]. Thereby p38 was shown to regulate TNF production on the 

translational level [250]. Further, mice with p38-deficient macrophages were 

demonstrated to have impaired pro-inflammatory cytokine production, particularly in 

regard to TNF, associated with being largely protected against an otherwise lethal LPS 

injection [262]. This pro-inflammatory effect is presumably mediated by the p38 

downstream target MK2, since MK2-deficient mice are also largely resistant to lethal 

challenges with LPS, caused by an almost complete suppression of LPS-induced TNF 

production [263]. In addition, also the production of other pro-inflammatory cytokines 

such as IL-6 or IL- seem to be MK2-dependent in murine spleen cells [263]. These 

findings could be confirmed in the present study, with TNF, IL-1 and IL-10 being 

significantly reduced by p38 inhibition. 

All used inhibitors lead to a different cytokine profile and none was similar to LPS 

treatment alone, suggesting a contribution of all tested pathways in the induction of 

LPS-induced immune response. However, although all treatment conditions initiated a 

distinct cytokine profile, TNF as well as RANTES production was diminished upon 

re-stimulation with LPS by all primed cells, despite not reaching statistical significance in 

all conditions (Fig. 20). Inhibition of p38 and ERK signaling, which caused significant 

decreased pro-inflammatory cytokine production during priming, did not induce 

significant endotoxin tolerance, as evidenced by TNF levels, upon re-stimulation. 

Furthermore, IL-10 secretion was not affected by ERK inhibition during priming, but 

significantly decreased during re-stimulation. Since IL-10 was not directly dependent on 

ERK signaling, its expression might be abolished, because of significantly decreased 
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pro-inflammatory cytokine levels during LPS priming, such as TNF, IL-1 or IL-6. This 

effect is consistent with previous studies claiming that IL-10 secretion is a direct 

consequence of pro-inflammatory cytokine production. p38 inhibition likewise decreased 

these cytokines during LPS priming and diminished IL-10 secretion upon re-stimulation, 

despite not significantly. These results indicate a role of produced pro-inflammatory 

cytokines, induced by LPS priming, for the induction of endotoxin tolerance. Thus, this 

hypothesis was tested in further experiments as discussed below. Although all pathways 

investigated seem to be crucial for distinct cytokines, the results demonstrated that not 

a particular pathway is responsible for TLR4 induced immune response, but rather 

a complex signaling network mediates an appropriate immune cell activation. 

Further analysis of the impact of 38 on TLR4 internalization revealed that inhibition of 

p38 signaling with SB202190 did not affect internalization of TLR4 after 24 h of LPS 

stimulation (Fig. 22). Upon p38 inhibition receptor internalization was not altered, 

however, almost no TNF was secreted in those cells (Fig. 19). Thus, supporting a role 

of p38 downstream of TLR4, consistent with previous results suggesting that enhanced 

receptor internalization alone cannot trigger the complete lack of TNF production. 

Hence, intracellular signaling of p38 and other inflammatory pathways were investigated.  

Tolerant monocytes suppress p38 and AKT signaling 

Immunoblotting experiments revealed that phosphorylation of ERK displayed a similar 

pattern as the mTOR downstream target pS6P (Fig. 21). LPS induced short-term 

activation of ERK within 1 h but decreased again during 24 h of stimulation, which could 

also be observed by -glucan treatment. In contrast to mTOR, rapamycin and torin 

treatment did not affect ERK activation, proofing specificity of both inhibitors to mTOR. 

However, priming of the cells neither resulted in increased EKR phosphorylation in 

-glucan trained cells, nor diminished pERK levels in tolerant cells, suggesting that, 

similar to mTOR, ERK signaling was still active in tolerant cells. On the other hand, p38 

and AKT signaling were also temporarily activated by LPS, and to a lesser extent by 

-glucan, but phosphorylation was lost after 24 h of incubation. However, p38 and AKT 

were less active in LPS tolerant cells. Along with fewest TNF production upon inhibition 

of p38 during priming, this also indicates for a role of p38 in the downstream cascade of 

TLR4-induced TNF production. In addition to these findings, p38 also seemed to be 

important in endotoxin tolerant cells, since p38 inhibition diminished tolerance induction 

in regard to significantly decreased TNF levels (Fig. 20). p38 and AKT signaling were 

found to be less active and thus, the only pathways affected in tolerant cells. 

Nevertheless, p38 inhibition neither completely blocked TNF during LPS priming, which 

was additionally shown to be dependent also on other pathways such as PI3K and ERK, 
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nor further inhibited TNF secretion upon LPS re-stimulation. These findings indicate for 

the activation of other TNF-inducing pathways during prolonged p38 inhibition or after 

tolerance induction, such as ERK signaling (Fig. 29).  

Additionally, a lesser extent of tolerance induction observed upon SB202190 (p38) as 

well as UO126 (ERK) treatment (Fig. 20) might be explained by the significant lack of 

pro-inflammatory cytokines such as TNF and IL-1 during LPS priming. In contrast to 

this assumption, LY294002 (PI3K) treatment also decreased TNF production upon 

priming, despite not significant, but displayed the strongest tolerance induction. 

However, PI3K inhibition instead caused an increased secretion of another 

pro-inflammatory cytokine, IL-1, additionally indicating for a role of expressed 

pro-inflammatory cytokines in the induction of tolerance.  

Fig. 29: TLR4 signaling in LPS stimulated monocytes in regard to TNF production. 

LPS-induced TNF production seems to be highly dependent on p38 signaling but is also 
triggered by PI3K and ERK signaling in human monocytes. TLR4 downstream signaling cascades 
probably initiate the induction of endotoxin tolerance. When p38 is inhibited by SB202190, 

monocytes produce less TNF when challenged with LPS and also exhibited a less pronounced 

LPS tolerance in regard to TNF expression. This suggests that p38-induced TNF secretion or 
other downstream targets of p38 are important in mediating a tolerant state after LPS stimulation. 
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Pro-inflammatory cytokines are not sufficient to induce endotoxin tolerance 

The impact of secreted pro-inflammatory cytokines in the induction of endotoxin 

tolerance was examined using conditioned media from LPS-treated cells. Thereby, it 

could be shown, that stimulation of monocytes with LPS for 1 h secreted almost same 

amounts of cytokines as cells treated for 24 h (Fig. 23). Only MIP-1 was significantly 

decreased compared to 24 h stimulated cells, which could be caused by the withdrawal 

of already produced cytokines through media exchange after 1 h to eliminate remaining 

LPS. In contrast, IL-1 was the only cytokine significantly increased, which could be 

explained by an increased resumption rate or enhanced degradation during prolonged 

LPS treatment to promote an anti-inflammatory phenotype. This suggests, that 1 h LPS 

treatment is enough to induce pro-inflammatory immune response. Consistent with that, 

stimulation of monocytes with LPS for 1 h was demonstrated to be sufficient to induce 

endotoxin tolerance [15]. 

Further, cells primed with conditioned media secreted almost same amounts of cytokines 

than cells stimulated with LPS for 24 h, again except from IL-1 (Fig. 24). Since all 

cytokine levels were either the same or less compared to media contents before priming 

(Fig. 23), it is likely, that stimulation with conditioned media did not trigger any further 

cytokine secretion but rather displayed LPS-induced cytokine levels triggered by 1 h of 

LPS stimulation. This might also be the reason for repeated higher IL-1 levels upon 

media priming compared to LPS priming. Moreover, re-stimulation with LPS revealed 

that cells primed with conditioned media were not rendered tolerant, as evidenced by 

unchanged LPS-induced TNF levels (Fig. 25). However, media-primed cells neither 

displayed the same cytokine profile than only LPS stimulated cells, nor the same as LPS 

primed cells. In addition to TNF, levels of IL-1 and MIP-1 were similar to LPS 

stimulated cells, while IL-10 and RANTES were equal compared to tolerant cells. This 

suggests, that priming with cytokines did alter inflammatory cellular response, 

nevertheless, did not induce endotoxin tolerance. Therefore, presence of 

pro-inflammatory cytokines such as TNF is not sufficient to trigger endotoxin tolerance 

in primary human monocytes. This is also supported by other experiments, as inhibition 

of different inflammatory pathways showed, that several distinct cytokine profiles can 

induce tolerance, also in the absence of secreted TNF, despite not all reaching 

statistical significance. Further, mice injected with IL-1, IL-6 or TNF instead of LPS, 

also just partly displayed a tolerant-like state when re-challenged with LPS [16]. The 

authors suggested, that rather than cytokine production, surface receptor abundance or 

soluble binding proteins are responsible for endotoxin induction. In the present study, the 

loss of TLR4 on the cell surface of human monocytes could be excluded in charge of the 
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induction of endotoxin tolerance. However, other studies, investigating whole organisms, 

showed a protecting effect of TNF pre-treatment towards endotoxemia and sepsis [27]. 

Thus, tolerance has to be regulated on the signaling level upstream and downstream of 

pro- and anti-inflammatory cytokine expression. This might explain the weak results of 

anti-TNF antibody treatment in clinical trials of sepsis in the 1990´s. Since the immune 

response of monocytes and macrophages is more complex than the response to 

inflammatory cytokines, followed by a switch towards an anti-inflammatory phenotype, 

more insights in the exact contributing signaling cascades are needed for a better 

understanding and benefit from this protecting adaptation mechanism.  
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6. CONCLUSIONS

Innate immune memory, as an adaptation processes of innate immune cells such as 

monocytes and macrophages, could bear promising therapeutic targets of a variety of 

diseases, including hyperinflammation and sepsis, as well as immunoparalysis, chronic 

inflammation and autoimmune disorders. Understanding the underlying molecular 

mechanisms of endotoxin tolerance and -glucan training will help improving therapies 

against exaggerated inflammation as well as immunosuppression and new-generation 

vaccines.  

The present study suggests, that constitutive mTORC1 activity in monocytes from TSC 

patients, as well as the chemical inhibition of mTOR in control or TSC cells, does not 

alter immune cell adaptation capability. Monocytes with hyperactive mTORC1, together 

with cells subjected to mTOR inhibition, are not impaired in inducing endotoxin 

tolerance, whereas -glucan training displays inconsistent results. Reproducible training 

effects with -glucan priming could not be achieved and also enhanced glycolysis of 

trained cells was not detectable. Nevertheless, LPS induces the activation of mTORC1 

signaling along with increased pro-inflammatory cytokine release and enhanced 

glycolytic activity, followed by an endotoxin tolerant state in healthy monocytes as well 

as cells from TSC patients. However, induction of tolerance is neither dependent on 

mTORC1 activity, nor on metabolic capacity, since tolerant cells still display mTORC1 

signaling as well as enhanced glycolysis. Inhibition of mTORC1 with rapamycin and 

torin, verified by different signaling analysis, furthermore does not impair initiation of 

tolerance. In addition, endotoxin tolerance has to be mediated downstream of TLR4, 

since receptor internalization does not explain the complete block of TNF expression 

seen by cytokine measurements of cell culture supernatants, as well as intracellular flow 

cytometry. The p38 MAPK signaling cascade seems to be an important mediator of 

LPS-induced TNF release, since p38 inhibition reduced the induction of tolerance. 

However, also other inflammatory pathways are involved in the secretion of LPS-induced 

cytokines including, ERK, PI3K and mTORC1, although there is not a particular signaling 

cascade responsible for mediating tolerance induction. The release of pro-inflammatory 

cytokines such as TNF are not sufficient to induce an endotoxin tolerant state, though 

triggering adaptation processes. These findings confirm endotoxin tolerance as a highly 

regulated, complex adaptation process involving different intracellular pathways for 

mediating an appropriate immune response. A better understanding of adaptational and 

memory-like functions of innate immune cells, like monocytes, could help modulating 

overwhelming inflammatory responses, as well as immunoparalysis, providing access to 

new therapeutic strategies. 
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