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4. Results 

2. State-of-the-art: dependence on additional HR intensity data 

3. Contribution: independence from further sensor data 

Texture matching loss 

Single image super-resolution (SISR) 
- currently, artificial intelligence learning-based algorithms reach the highest image quality in SISR results 
- Convolutional Neural Networks (CNNs) learn either a per-pixel loss or a perceptual loss between its output 

and a ground truth image 

Guided depth map super-resolution (GDMSR) 
- state-of-the-art methods for GDMSR are mostly optimization-based or learning-based algorithms 
- GDMSR requires an additional high-resolution intensity image for guidance 

2014, SRCNN [1] 
[30.49 dB] 

Shallow Deep 

2016, Perc. Loss [3] 
[27.09 dB] 

2017, ENet  [6] 
[31.74 dB] 

2017, SRGAN/SRResNet [4]  
[29.4 dB/ 32.05 dB] 

2017, DRRN  [2] 
[31.68 dB] 

2017, MDSR/EDSR  [5] 
[32.6 dB/ 32.62 dB] 

[dB]: ⌀ PSNR on Set5 [7] @ 4x-scaling 
Map on CNN based  
SISR methods (excerpt). 

1Pre-trained reference implementation of ENet-PAT [6] for magnification ratio of 4 

5. Conclusions & Outlook 

SISR results on Slanted edge target MTF50 [c/p] PSNR [dB] RMSE [a.u.] 

Ground truth 0.632 Infinite 0 

Bicubic interpolation 0.105 34.37528 4.87277 

ENet-PAT SR result1 0.497 41.46295  2.15473 

SISR 
- good performance on simple slanted edge target 

 SR result reaches nearly 78 % of ground truth’s MTF50-value 
 ENet-PAT’s PSNR value is around 1.2 times higher than bicubic interpolation ones 

- less image quality on Art and PMDtec PicoFlexx images 
 fine details are missing 
 ENet-PAT’s PSNR is only 1.05 times and 1.1 times higher than bicubic interpolation ones for Art 
and PMDtec PicoFlexx, respectivley 
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1. Motivation: super-resolution (SR) on inherently related sensor data 

Goal 
SR strategy for self-sufficient resolution enhancement on ToF camera‘s output images 
- amplitude image and  
- depth map  using data accquired with only a single 3D PMD sensor. 

Time-of-Flight (ToF) Photonic Mixing Device (PMD) camera 
- fast and robust three-dimensional image acquisition 
- PMD sensor measures the phase difference between an emitted and its reflected amplitude modulated  

IR signal in real time 

Problem 
- large pixel sizes limit lateral resolution 
- existing depth map SR fusion approaches 

require a further sensor’s additional high-
resolution (HR) intensity image 

Source: pmdtechnologies ag 

Amplitude and distance images from PMDtec‘s miniaturized 
PMD camera PicoFlexx. 

Step 2: Superresolve LR depth map using an intensity guided SR algorithm [11] with the SISR 
results from step 1 

 controls L0 gradient regularization term to preserve edges and remove edge blurring and texture 
copying artifacts 

GDMSR 
- image quality is nearly the same for ground truth guided and SISR guided SR depth map results 
- moderate overall performance 

 even the ground truth guided SR results on noise-free LR inputs look blurry 
 image quality is worse for real data and noisy synthetic images 

Edge-aware weight 

 combines the original L0 gradient minimization and the magnitude function WID,p 

Weighted L0 gradient minimization 

Step 1: Superresolve PMD sensor’s low-resolution (LR) intensity image using ENet-PAT [6] CNN 

Perceptual loss 

 Euclidean loss optimization on feature maps 

Adversarial training 

 discriminative network trains mapping from LR images to HR images 

 enforces locally similar textures between SR result and HR ground truth 

Depth image [PSNR in dB / RMSE a.u.] 
Synthetic: Middlebury 2005 dataset [12, 13] Real data: 

Art Books Moebius PMDtec PicoFlexx 
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Ground truth guided  29.12408 / 8.91941   28.93634 / 9.11429   30.11049 / 7.96188  

Nearest neighbor guided  27.85658 / 10.32075   28.49669 / 9.58751   29.37705 / 8.66339  

Bicubic guided  28.99904 / 9.04874   28.75584 / 9.30568   29.76623 / 8.28378  

ENet-PAT guided  29.11472 / 8.92903   28.97976 / 9.06884   30.04139 / 8.02547  
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d

ep
th

 m
ap

s Ground truth guided  28.92745 / 9.12363   28.90592 / 9.14627   30.00915 / 8.05532   18.17230 / 31.47205  

Nearest neighbor guided  27.88768 / 10.28387   28.56610 / 9.51120   29.39432 / 8.64617   17.85728 / 32.63442  

Bicubic guided  28.78891 / 9.27032   28.74017 / 9.32249   29.82468 / 8.22822   18.10915 / 31.70173  

ENet-PAT guided  28.78996 / 9.26920   28.95732 / 9.09230   29.91369 / 8.14434   18.16454 / 31.50019  

Intensity image  
[PSNR in dB / RMSE a.u.] 

Synthetic: Middlebury 2005 dataset [12, 13] Real data: 
Art Books Moebius PMDtec PicoFlexx 

Nearest neighbor interp. 23.78783 / 16.48726 24.05217 / 15.99306 26.39474 / 12.21247 25.50144 / 13.53532 

Bicubic interpolation 25.32300 / 13.81626 25.48541 / 13.56031 27.82000 / 10.36430 26.90039 / 11.52181 

ENet-PAT SR result1 26.63320 / 11.88174 26.57402 / 11.96297 28.10751 / 10.02685 29.52067 / 8.52131 

Map on GDMSR methods (excerpt). 

2005, MRF [8] 
[RMSE = 2.24] 

2011, Park et al. [9] 
[RMSE = 1.82] 

2013, Ferstl et al. [10] 
[RMSE = 1.29] 

2017, Jung et al. [11] 
[RMSE = 1.26] 

Optimization-
based: 

Learning-
based: 

RMSE on Middlebury 2005 Art disparity map [12, 13] @ 4x-scaling 

2016, FCN-PDN [14] 
Deep CNN + variational optimization 

2016, Song et al. [15] 
Deep CNN + depth statistics 
and color-depth correlation 

2016, MSG-Net [16] 
Multi-Scale Guided CNN 

Ground truth 

Bicubic 
Interpolation 

ENet-PAT 

Slanted edge Art PMDtec PicoFlexx 

4.1 SISR results on intensity images 

4.2 GDMSR results on depth maps 

Bicubic guided 

Art 
(noise-free) 

Art 
(noisy2) 

ENet-PAT guided Ground truth guided 

Real data: 
PMDtec PicoFlexx 

Ground truth depth 
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Frequency [cycles/pixel] 

Spatial frequency response on slanted edge target 

Ground truth

Bicubic Interpolation

SRNet-PAT

Spatial frequency response is measured with MTFMapper [17]. 

2Synthetic images are imposed by additive white Gaussian noise with variance σ² = 0.001 
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Outlook  
- increase image quality of SISR results by using own training data 
- enhance real depth map’s image quality by inpainting invalid pixel regions before applying the SR method 
- investigate further (learning-based) GDMSR algorithms 
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