<u>ilmedia</u>

Lietz, Henrik; Franzen, M.; Eberhardt, Jörg; Sinzinger, Stefan:

Optimized deep learning algorithms for application with data from PMD cameras

Zuerst erschienen in:DGaO-Proceedings. - Erlangen-Nürnberg : Dt. Gesellschaft für angewandte
Optik. -119 (2018), art. P28, 1 S.Erstveröffentlichung:25.06.2018ISSN:1614-8436URN:urn:nbn:de:0287-2018-P028-5[Gesehen:30.08.2019]

TU Ilmenau | Universitätsbibliothek | ilmedia, 2019 http://www.tu-ilmenau.de/ilmedia

Optimized deep learning algorithms for application with data from PMD cameras

TECHNISCHE UNIVERSITÄT ILMENAU <u>H. Lietz</u>*, M. Franzen*, J. Eberhardt* and S. Sinzinger**

* Faculty T - Technology and Management, University of Applied Sciences Ravensburg-Weingarten

** Department of Mechanical Engineering, Group of Optical Engineering, Ilmenau University of Technology

ENet-PAT

1. Motivation: super-resolution (SR) on inherently related sensor data

Time-of-Flight (ToF) Photonic Mixing Device (PMD) camera

- fast and robust three-dimensional image acquisition
- PMD sensor measures the phase difference between an emitted and its reflected amplitude modulated IR signal in real time

Problem

- large pixel sizes limit lateral resolution
- existing depth map SR fusion approaches

			4. Results	S			
4.1 SISR res	<u>sults on in</u>	tensity images					
Slant	ed edge	Art	PMDtec PicoFlexx				
				SISR results on <i>Slanted edge</i> target	MTF50 [c/p]	PSNR [dB]	RMSE [a.u.]
			Ground truth	0.632	Infinite	0	
				Bicubic interpolation	0.105	34.37528	4.87277
				ENet-PAT SR result ¹	0.497	41.46295	2.15473
Ground truth			Spatial frequency res	sponse on sla	anted edge 1	target	
			A REAL PROPERTY.	1		– – – Grou	nd truth
				0,9		Bicub	na internolation
				0,8	``.		
Bicubic				0,7	<u>``</u>		I-PAI
Internolation				tse 0,5		<u>``</u> `.	
				to 0,4	\	<u>```</u> ```	
			A REAL PROPERTY OF THE REAL PROPERTY OF	0,3		``	

require a further sensor's additional highresolution (HR) intensity image

> Amplitude and distance images from PMDtec's miniaturized PMD camera PicoFlexx.

Goal

- SR strategy for self-sufficient resolution enhancement on ToF camera's output images
- amplitude image and
- depth map
- using data accquired with only a single 3D PMD sensor.

2. State-of-the-art: dependence on additional HR intensity data

- and a ground truth image

Optimization-	2005, MRF [8]	2011, Park et al. [9]	2013, Ferstl et al. [10]	2017, Jung et al. [11]
based:	[RMSE = 2.24]	[RMSE = 1.82]	[RMSE = 1.29]	[RMSE = 1.26]

COL LEVA	9

University of Applied Sciences

Intensity image	Synthetic:	Real data:				
[PSNR in dB / RMSE a.u.]	Art	Books	Moebius	PMDtec PicoFlexx		
Nearest neighbor interp.	23.78783 / 16.48726	24.05217 / 15.99306	26.39474 / 12.21247	25.50144 / 13.53532		
Bicubic interpolation	25.32300 / 13.81626	25.48541 / 13.56031	27.82000 / 10.36430	26.90039 / 11.52181		
ENet-PAT SR result ¹	26.63320 / 11.88174	26.57402 / 11.96297	28.10751 / 10.02685	29.52067 / 8.52131		
¹ Pre-trained reference implementation of ENet-PAT [6] for magnification ratio of 4						

4.2 GDMSR results on depth maps

 $f(W_I) = constant$ for magnitude image W_I , balances W_{ID} for different cases of W_I $\alpha, \beta, \varepsilon = positive \ constants$ $T_{I}, T_{D} = pre - defined thresholds$ $p = for \ a \ pixel$

 \rightarrow controls L₀ gradient regularization term to preserve edges and remove edge blurring and texture copying artifacts

Weighted L_o gradient minimization

 $D_H = HR$ depth reconstruction D = HR depth estimation $\nabla D_{H,p} = gradient \ of \ D_H \ for \ a \ pixel \ p = for \ a \ pixel$ $H(\nabla D_{H,p}) = binary function$ $\lambda = positiv constant$

 \rightarrow combines the original L₀ gradient minimization and the magnitude function $W_{ID,n}$

[3] J. Johnson, A. Alahi, and L. Fei-Fei, "Perceptual Losses for Real-Time Style Transfer and Super-Resolution", in 14th European Conference on Computer Vision (ECCV), (2016) [4] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunnignham, A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, and W. Shi, "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network", in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2017)

[5] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee, "Enhanced Deep Residual Networks for Single Image Super-Resolution", in IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), (2017)

[6] M.S.M. Sajjadi, B. Schölkopf, and M. Hirsch, "EnhanceNet: Single Image Super-Resolution through Automated Texture Synthesis" in International Conference on Computer Vision, (2017) [7] M. Bevilacqua, A. Roumy, C. Guillemot, and M.L. Alberi-Morel, "Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding", in British Machine Vision Conference (BMVC), (2012)

[8] J. Diebel, and S. Thrun, "An Application of Markov Random Fields to Range Sensing", in Proceedings of Conference on Neural Information Processing Systems (NIPS), (2005) [9] J. Park, H. Kim, Y.W. Tai, M.S. Brown, and I. Kweon, "High Quality Depth Map Upsampling for 3D-TOF Cameras", in International Conference on Computer Vision (ICCV), (2011) [10] D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, and H. Bischof, "Image Guided Depth Upsampling using Anisotropic Total Generalized Variation", in IEEE International Conference on Computer Vision (ICCV), (2013)

[11] C. Jung, S. Yu, and J. Kim, "Intensity-guided edge-preserving depth upsampling through weighted L₀ gradient minimization", in J. Vis. Commun. Image R. 42, (2017) [12] H. Hirschmüller, and D. Scharstein, "Evaluation of Cost Functions for Stereo Matching", in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2007) [13] D. Scharstein, and C. Pal, "Learning Conditional Random Fields for Stereo", in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2007) [14] G. Riegler, D. Ferstl, M. Rüther, and H. Bischof, "A Deep Primal-Dual Network for Guided Depth Super-Resolution", in Proceedings of the British Machine Vision Conference (BMVC), (2016) [15] X. Song, Y. Dai, and X. Qin, "Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network", in 13th Asian Conference on Computer Vision (ACCV), (2016)

[16] T.W. Hui, C.C. Loy, and X. Tang, "Depth Map Super-Resolution by Deep Multi-Scale Guidance", in 14th European Conference on Computer Vision (ECCV), (2016) [17] F. van den Bergh, "Deferred slanted-edge analysis: a unified approach to spatial frequency response measurement on distorted images and color filter array subsets", in Journal of the Optical Society of America A 35 (3), (2018)

University of Applied Sciences Ravensburg-Weingarten Faculty T – Technology and Management Doggenriedstraße 88250 Weingarten, Germany

Laboratory for 3D Camera Technology and Technical Optics Henrik Lietz, +49 (0) 751/501-9283 henrik.lietz@hs-weingarten.de

DGaO-Proceedings 2018 - http://www.dgao-proceedings.de - ISSN: 1614-8436 - urn:nbn:de:0287-2018-P028-5 eingegangen: 22.05.2018 veröffentlicht: 25.06.2018