
  
 

TU Ilmenau | Universitätsbibliothek | ilmedia, 2019 
http://www.tu-ilmenau.de/ilmedia 

 

Podkurkov, Ivan; Zhang, Jianshu; Nadeev, Adel Firadovich; Haardt, Martin: 

Efficient multidimensional wideband parameter estimation for OFDM based 
joint radar and communication systems 

 
Original published in: IEEE access / Institute of Electrical and Electronics Engineer. - 

New York, NY : IEEE. - 7 (2019), p. 112792-112808. 
Original published: 2019-07-08 
ISSN: 2169-3536 
DOI: 10.1109/ACCESS.2019.2927326 
[Visited: 2019-08-26] 
 

   

This work is licensed under a Creative Commons Attribution 4.0 
International license. To view a copy of this license, visit  
http://creativecommons.org/licenses/BY/4.0/ 

 

http://www.tu-ilmenau.de/ilmedia
https://doi.org/10.1109/ACCESS.2019.2927326
http://creativecommons.org/licenses/BY/4.0/
http://creativecommons.org/licenses/BY/4.0/
http://creativecommons.org/licenses/BY/4.0/


Received May 21, 2019, accepted June 18, 2019, date of publication July 8, 2019, date of current version August 27, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2927326

Efficient Multidimensional Wideband Parameter
Estimation for OFDM Based Joint Radar
and Communication Systems
IVAN PODKURKOV 1, (Student Member, IEEE), JIANSHU ZHANG2, (Member, IEEE),
ADEL FIRADOVICH NADEEV1, AND MARTIN HAARDT 2, (Fellow, IEEE)
1Department of Radioelectronic and Telecommunications Systems, Kazan National Research Technical University named after A. N. Tupolev, 420111 Kazan,
Russia
2Communications Research Laboratory, Technische Universität Ilmenau, 98684 Ilmenau, Germany

Corresponding author: Ivan Podkurkov (podkiva@mail.ru)

This work was supported in part by the German Research Foundation (DFG), and in part by the Open Access Publication Fund of
the TU Ilmenau.

ABSTRACT In this paper, we propose a new pre-processing technique for efficient multidimensional wide-
band parameter estimation. One application is provided by an orthogonal frequency division multiplexing-
(OFDM) based joint radar and communication system, which uses SIMO architecture. In this paper,
the estimated parameters are given by the range (time delay), the relative velocity, and the direction of
arrival (DoA) pairs of the dominant radar targets. Due to the wideband assumption, the received signals
on different subcarriers are incoherent and, therefore, cannot fully exploit the frequency diversity of the
OFDM waveform. To estimate the parameters jointly and coherently on different subcarriers, we propose
an interpolation-based coherent multidimensional parameter estimation framework, where the wideband
measurements are transformed into an equivalent narrowband system. Then, narrowband multidimensional
parameter estimation algorithms can be applied. In particular, a wideband R-D periodogram is introduced
as a benchmark algorithm, and we develop the R-D Wideband Unitary Tensor-ESPRIT algorithm. The sim-
ulations show that the proposed coherent parameter estimation method significantly outperforms the direct
application of narrowband parameter estimation algorithms to the wideband measurements. If the fractional
bandwidth is significant and the SNR is not too low, the estimates provided by the narrowband estimation
algorithms can become inconsistent. Moreover, the interpolation order should be chosen according to
the SNR regime. In the low SNR regime, interpolation with a lower-order (i.e., linear interpolation) is
recommended. For higher SNRs, we propose an interpolation with higher-order polynomials, e.g., fourth-
order (cubic splines) or even higher.

INDEX TERMS ESPRIT, interpolation, joint radar and communication, periodogram, wideband OFDM.

I. INTRODUCTION
A joint radar and communication system can exploit the
available physical resources such as spectrum and hard-
ware components more efficiently compared to a tradi-
tional radar or communication system [2], [3]. To facilitate
the equalization in a frequency selective environment, typi-
cally Orthogonal Frequency Division Multiplexing (OFDM)
waveforms are used [4], [5]. The performance of a block
transmission based joint radar and communication system

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiaolong Chen.

was analyzed in [6], [7]. Automotive radar applications have
attracted much attention, where the radar has become an
important part of driver assistance and autonomous driving
systems. Good overviews of such systems and algorithms can
be found in [8] and [9].

A joint radar and communication system has been recently
studied in [3] and [10] in an application to intelligent trans-
portation systems (ITSs) [11], [12]. Both parts (namely,
the communication part and the radar part) of such an inte-
grated system can benefit from each other. For example,
the locations of the radar targets can serve as a source of
the channel state information (CSI) for the communication
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part, or it can be used to estimate the relay geometry in sys-
tems with spatially random two-hop relaying [13]. In [3] the
sub 6 GHz car-to-car OFDM communication standard IEEE
802.11p is used. The estimation of target distances and veloc-
ities has been studied and a one-dimensional periodogram-
based algorithm has been proposed and analyzed. In [10]
the joint radar and communication system uses the mmWave
WLAN standard IEEE 802.11ad. A time domain correla-
tion based parameter estimation method has been proposed.
In both papers, a narrowband systemmodel is considered and
the proposed parameter estimation methods are search-based
non-parametric methods. However, for critical scenes, high-
resolution estimates are preferred because they can provide
more accurate estimates.Moreover, since the range resolution
of a radar is inversely proportional to the bandwidth, future
joint radar and communication systems are likely to have a
large bandwidth.

In the narrowband case, the estimation of the radar param-
eters, such as range, speed, and directions of arrival (DoAs)
of the dominant radar targets in the joint radar and com-
munication system can be interpreted as a multidimensional
harmonic retrieval problem. But, since a joint radar and
communication system is likely to use a large bandwidth,
we consider the multidimensional wideband parameter esti-
mation problem. There are several wideband extensions of
narrowband DoA estimation algorithms [14]. In general,
wideband parameter estimation algorithms can be divided
into two classes [15], incoherent signal subspace process-
ing and coherent signal subspace processing. In the former
case, the parameter estimation is performed independently
in different frequency bands using narrowband algorithms.
Then the results are combined by averaging over the obtained
estimates [16], [17]. The latter approach [18]–[21], [22], [23]
uses a coherent combination of signal subspaces at different
frequencies. Then the parameters are estimated using this
enhanced combined signal subspace.

For coherent signal subspace processing, the aforemen-
tioned papers use a linear transformation of the data to focus
the spatial steering vectors onto a reference frequency for
some range of interest of harmonic frequencies. They exploit
prior knowledge of the possible range of harmonic frequen-
cies. A similar approach could also be used on the transmitter
side to transform a fixed array geometry to another virtual
array geometry with the required properties, e.g., to obtain
a shift-invariance property required for ESPRIT-type
algorithms [24].

Instead of using a least-squares fit to construct focusing
matrices for a certain range of harmonic frequencies, one
can consider transforming the received data as if it would be
gathered by virtual arrays with frequency-dependent sensor
positions to restore the narrowband manifold. This allows
the coherent combination of data from different frequency
bins. Any prior knowledge of the parameters of interest is not
required. We refer to this approach as the interpolation based
coherent approach because the transformation of the data is
achieved by various interpolation techniques.

Although [15] served as a source of inspiration for our
study, the core idea of the interpolation approach can be
traced back to [25], [26]. A comparison of the interpola-
tion approach to the approach with focusing matrices can
be found in [27], where it has been shown that the latter
in general has a degraded performance due to its intoler-
ance to errors in preliminary angle estimates. The authors
of [25] have used the FFT followed by zero-padding and
the IFFT to interpolate the data, while [26] uses conven-
tional resampling approaches in [28]. In [15], the authors
apply the one-dimensional Shannon-Whittaker interpola-
tion algorithm to a three-dimensional data set, followed by
a 3-D canonical polyadic (CP) decomposition based parame-
ter estimationmethod. The samemethod can also be extended
to our problem. However, the CP decomposition has a sig-
nificantly higher computational complexity compared to the
HOSVD, which will be used in our application. Moreover,
we decompose a real-valued tensor instead of a complex-
valued tensor, which further reduces the computational com-
plexity. It is worth stressing that the OFDM based joint radar
and communication system concept proposed by [4] uses
the prior knowledge of the transmitted signals, which allows
obtaining the Vandermonde structure of the data in time and
frequency. As a consequence, we can utilize it to extend
DoA estimation algorithms to estimate range and Doppler
parameters of the dominant radar targets.

In this paper, an interpolation based coherent parameter
estimation framework is proposed to estimate the range (time
delays), the relative velocities, and the angle of arrival (DoA)
pairs of the dominant radar targets. We discuss several
interpolation techniques that provide a balance between
complexity, robustness, and interpolation errors. We con-
sider piece-wise polynomial interpolation of different orders.
We also compare themwith Shannon-Whittaker interpolation
that has been proposed in [1]. The linear and the cubic spline
interpolation techniques have a residual error in the high SNR
regime. To combat this effect, we also examine a higher-order
(larger than four) spline interpolation techniques in this paper.
Higher-order splines are able to provide smaller interpolation
errors and improve the performance in the high SNR regime.
But the higher-order splines are sensitive to noise distortions,
e.g., in the low SNR regime, their performance is worse
than that of the cubic spline interpolation. Therefore, we add
an additional ‘‘denoising’’ step to our algorithm, aiming at
reducing the influence of the noise when the higher-order
splines are used. If the fractional bandwidth is significant and
the SNR is not too low, the derivedWideband Unitary Tensor-
ESPRIT algorithm provides a significant performance gain
as compared to the direct application of narrowband multidi-
mensional parameter estimation methods in such a wideband
system.

Therefore, the contributions of this paper are summarized
as follows:
• We consider a Joint Radar and Communication system
based onOFDM,where the reflections of the transmitted
signal are received by an antenna array and are used for
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multidimensional parameter estimation. In particular,
we estimate the range, relative velocity and directions
of arrival (DoA) of the dominant radar targets.

• The 4-D Wideband Unitary Tensor-ESPRIT (4-D
Wideband-UTE) algorithm is proposed as an exten-
sion of the 4-D UTE with an interpolation based
pre-processing technique for coherent multidimensional
wideband parameter estimation.

• The simulation results show that a significant
performance gain is achieved as compared to the direct
application of narrowband algorithms to the wideband
system, especially when the SNR is high or the fractional
bandwidth is large.

• In particular, we propose to use linear interpolation for
low SNRs or low fractional bandwidths, an interpolation
based on cubic splines in case of high SNRs or high
fractional bandwidths, and higher order splines in case
of extremely high SNRs. For the latter scenario, we also
develop an additional ‘‘denoising’’ step to enhance esti-
mation accuracy.

The paper is organized as follows. In Section II we
introduce the joint radar and communication system system
concept and describe the system model. In Section III we
propose a pre-processing technique that uses the interpolation
approach to transform the data into an equivalent narrowband
form. Then, in Section IV we derive wideband radar estima-
tion algorithms, namely the 4-D periodogram and the 4-D
Wideband Unitary Tensor-ESPRIT. Section V contains simu-
lation results, and the conclusions are presented in SectionVI.

A. NOTATION
Upper-case and lower-case bold-faced letters denote matri-
ces and vectors, respectively. The expectation, conjugate,
Hermitian transpose, and Moore-Penrose pseudo inverse are
denoted by E{·}, {·}∗, {·}H, and {·}+, respectively. The m× m
identity matrix is Im. Moreover, the m× m exchange matrix
with ones on its antidiagonal and zeros elsewhere is 5m.
Anm× m left-5-real matrixQm satisfies5mQ∗m = Qm. Fur-
thermore, the absolute value is denoted by | · |, the concatena-
tion ofmatrices or tensors along the r-th dimension is denoted
by r (r = 1, 2, 3, 4) [29], and the outer product between
multi-linear vectors is ◦ [29]. The r-mode product between
a tensor and a matrix is ×r [30]. The elements of vectors,
matrices, and tensors are denoted as follows: a(i) denotes i-th
element of a vector a, A(i,j) denotes i, j-th element of a matrix
A, whereas for tensors A(i1,i2,...,iK ) denotes the respective
element of a K -dimensional (K -D) tensorA. Moreover, B(:,i)
and B(j,:) denote the i-th column and the j-th row of a matrix
B. For a 4-dimensional tensor C ∈ CI1×I2×I3×I4 , the tensor
C(:,:,i,:) ∈ CI1×I2×I4 defines a subtensor that contains all ele-
ments with the 3-rd index fixed to i, stacked in proper order.

II. PRELIMINARY
In this section we introduce basic concepts of the joint radar
and communication system in Subsection II-A and present its
system model in Subsection II-B.

FIGURE 1. Two-way communication concept.

A. DESIGN CONCEPT OF THE JOINT RADAR AND
COMMUNICATION SYSTEM
We consider an OFDM based joint radar and communication
system with a co-located single transmit antenna and mul-
tiple receive antennas. The joint radar and communication
system concept, proposed in [4] and described in detail in [3],
assumes simultaneous functioning of both radar and commu-
nication systems. The same OFDM modulated signal is used
for radar estimation and one-way communication.We assume
that the radar and the communication system use the same
RF components [3].

The two-way communication with the communication-
radar device depends on whether it is communicating with
a communication-only device (the one that can only transmit
and receive OFDM signals), or another communication-radar
device. Those possible cases are depicted in Figure 1. When a
communication-radar device transmits to a communication-
only device (‘‘forward-link’’, Figure 1a), the radar receiver
is turned on and is able to process the reflections from the
radar targets. The communication-only device’s receiver is
also turned on and is able to receive and detect the signal
transmitted from the communication-radar device. Thus, two
functions (namely, radar and communication) are performed
using the same frequency and time resources. The trans-
mitter of the communication-only device is shut off during
this period. The transmission from the communication-only
device to the communication-radar device uses orthogonal
time-frequency resources - either different subcarriers or dif-
ferent time slots - ‘‘backward-link’’, as depicted in Figure 1b.
If two communication-radar devices are involved (Figure 1c),
the two transmitters cannot transmit at the same time and on
the same subcarriers. If the simultaneous functioning of both
radars is needed, the radar system of the second device should
use orthogonal time-frequency resources.
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FIGURE 2. Joint radar and communication system design concept. The communication-radar device on the left is able to perform both
communication with the communication receiver on the right and radar sensing of the radar targets in the middle at the same time using one
transmitted OFDM signal.

It should be noted here that the considered system model
is closely related to the two-hop relaying system with a
random geometry described in [13]. If viewed from that
perspective, the communication-radar device can transmit in
the first stage of the relaying process. The results of the
radar processing, namely the estimates of the locations of
the relays (or dominant radar targets) can then be utilized
as CSI to combat multipath effects in the communication
system.

Therefore, for simplicity, we consider a one-way data flow
as depicted in Figure 2. In this paper, we focus on the
radar function, i.e., the estimation of the target parameters
only, since the performance of both functions of the systems,
namely communication and radar, is mainly coupled through
the parametrization of the system. This issue has already been
discussed in the literature, cf. [3], [4], [31], [32].

The communication-radar device transmits the OFDM
data, intended for the communication and/or for the
radar functions. When the radar functions are activated,
the communication-radar device receives and processes the
transmitted signal reflected from the radar targets. Those
targets could be cars, road signs, or road fences, and also
the communication partner itself in the context of automotive
radar. In this example, the communication-radar device is
equipped with a uniform rectangular array (URA) at the
receiver (red dots in Figure 2), which is assumed to be co-
located with the transmitter.

The considered joint radar and communication system uses
the following steps:

1) The communication-radar device transmits the OFDM
modulated communication signal using one transmit
antenna (green dot in Figure 2).

2) The transmitted signal propagates towards the radar
targets and the communication receiver.

3) The transmitted signal is reflected from the radar tar-
gets in all directions. It is also possible that the signal
is reflected from the communication receiver itself (line
of sight (LOS) path) if it has a high enough radar cross
section (RCS).

4) The reflected signals propagate back towards the
communication-radar device and also towards the com-
munication receiver. The transmitted signal propagates
via H dominant paths with range dh and relative veloc-
ity vh, where h = 1, 2, . . . ,H .

5) The reflected signals then impinge on the receive
antenna array (red dots in Figure 2). Since it is assumed
that the communication-radar device transmit antenna
and the receive antenna array are co-located, the direc-
tions of departure (DoDs) and the directions of arrival
(DoAs) are approximately equal. This reduces the
problem to four dimensions and facilitates the estima-
tion of azimuth and elevation angles of the targets.

6) The radar receiver processes the received reflected sig-
nals and estimates the parameters of H dominant radar
targets. Obviously, the radar receiver knows the trans-
mitted communication data. Therefore, it can elim-
inate the transmitted data from the received signal,
as described in [3], [4].

We assume that the direct path interference is handled
either in hardware (e.g., through shielding) or in soft-
ware, or both [3]. Moreover, in case of a non-static scenario
(relative velocities of radar targets are non-zero), the Doppler
shifts from each of the targets introduce inter-carrier interfer-
ence (ICI) for OFDM signal, which then prevents from ideal
elimination of transmitted data from the received signal in (2).
However, for the system parameters of interest, the effect of
such distortions is not critical. Moreover, it can be shown that
even when ICI is introduced into the model the performance
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FIGURE 3. Spectrum, occupied by OFDM signal, where fnf denotes the
frequency of the nf -th subcarrier, and Nf is the total number of
subcarriers. The 1f is the subcarrier spacing.

is improved by using the proposed wideband pre-processing.
The received signal on each subcarrier, in that case, contains
interference from all other subcarriers. Considering that that
interference can be expressed explicitly in terms of param-
eters of interest (distances, relative velocities, and DoAs),
an iterative estimation algorithm can be developed, which
subtracts that interference from each subcarrier using the
initial estimates of the parameters. Those, in turn, can be
obtained either from a previous estimation run or by using
element-wise division as as explained in Subsection II-B and
running the whole estimation algorithm in order to get initial
estimates.

B. SYSTEM MODEL
Let us assume that there is a uniform rectangular array of
Mx × My antennas at the radar receiver. The h-th radar
target (h ∈ {1, · · · ,H}) is parametrized by the time delay
τh =

2dh
c , where dh denotes the distance between the radar

and the h-th target, the relative velocity νh and the DoA pair
(φh, θh), where φh and θh represent the azimuth angle and
the elevation angle, respectively. We have −π ≤ φh < π ,
0 ≤ θh < π/2. The radar estimation is performed over
an OFDM frame consisting of Nt OFDM symbols. Each
OFDM symbol has Nf subcarriers and a FFT of length Nfft
(Nfft ≥ Nf ) is applied to transform it to the time domain.
Hence we assume that the parameters of the scenario (target’s
range, relative velocities and DoAs) do not change over the
Nt OFDM symbols. Let fnf denote the frequency on the
nf -th subcarrier (nf ∈ {0, · · · ,Nf − 1}), which is defined as
fnf = f0 + nf ·1f , where f0 is the carrier frequency at the
lower end of the band and 1f is the subcarrier spacing. Note
that in a narrowband system we assume fnf ≈ f0, as depicted
in Figure 3.
Then the received uniformly sampled discrete-time signal

at the (mx ,my)-th antenna on the nf -th subcarrier in the nt -th
OFDM symbol is written as

ymx ,my,nf [nt ] =
H∑
h=1

k̃hejβh ·

·e−j2πτhnf1f · ej2πnt
fnf T0
c νh · ej2πmx

fnf 1x
c uh ·

·ej2πmy
fnf 1y
c vh · snf [nt ]+ zmx ,my,nf [nt ], (1)

where mx ∈ {0, · · · ,Mx − 1}, my ∈ {0, · · · ,My − 1},

nt ∈ {0, · · · ,Nt − 1}, k̃h =
√

c2σRCS,h
(4π)3d4h f

2
c

is the unknown

attenuation coefficient defined as in [3], σRCS,h denotes
the radar cross-section factor, and c is the speed of
the light. We assume that k̃h does not depend on the
carrier index nf. The OFDM symbol duration is given
by T0 = 1

1f
+ TCP, where TCP is the duration of the

cyclic prefix. A random phase shift is denoted as βh.
The transmitted symbol is snf [nt ] ∈ C, and the transmit
power is restricted such that E{

∑Nfft
nf=1
|snf [nt ]|

2
} = PT, ∀nt .

The term zmx ,my,nf [nt ] denotes the zero-mean noise with
variance E{|zmx ,my,nf [nt ]|2} = σ 2

n , ∀mx ,my, nf , nt , uncor-
related along all measurement dimensions. Furthermore,
we define the direction cosines uh = cos(φh) cos(θh) and
vh = sin(φh) cos(θh), and the antenna spacings are denoted
as 1x and 1y.

The communication signal snf [nt ] is known at the co-
located radar receiver. Therefore, it can be removed from
equation (1) by division and we obtain

r̆mx ,my,nf [nt ]

= ymx ,my,nf [nt ]/snf [nt ]

=

H∑
h=1

k̃hejβh · e−j2πτhnf1f · ej2πnt
fnf T0
c νh

·ej2πmx
fnf 1x
c uh · ej2πmy

fnf 1y
c vh + z̆mx ,my,nf [nt ]. (2)

Note that the harmonic frequencies in (2) depend on
the subcarrier index nf . Therefore we refer to this model
of measurements as the ‘‘wideband’’ model. If the noise
zmx ,my,nf [nt ] is also assumed to be zero mean circularly
symmetric complex Gaussian (ZMCSCG), then the statistics
of z̆mx ,my,nf [nt ] = zmx ,my,nf [nt ]/snf [nt ] remain unchanged if
we assume that snf [nt ] are identically and independently
distributed (i.i.d.) and generated from a constant modulus
modulations, e.g., BPSK or QPSK [3].

It is then natural to stack measurements along all measure-
ment dimensions - frequency, time, and space (x- and y-axes)
into one measurement tensor R̆ that is defined as

R̆ = S̆ + Z̆ ∈ CMx×My×Nf×Nt , (3a)

where the tensors S̆ , Z̆ , and R̆ are defined as

S̆(mx ,my,nf ,nt ) =

H∑
h=1

k̃hejβh · e−j2πτhnf1f

·ej2πnt
fnf T0
c νh · ej2πmx

fnf 1x
c uh · ej2πmy

fnf 1y
c vh .

(3b)

Z̆(mx ,my,nf ,nt ) = z̆mx ,my,nf [nt ] (3c)

R̆(mx ,my,nf ,nt ) = r̆mx ,my,nf [nt ] (3d)

Given R̆, our goal is to coherently estimate the parameters
τh, νh, φh, and θh for each h ∈ {1, · · · ,H}. Although the esti-
mation can be provided simply by using just one subcarrier,
this estimator would not fully exploit the frequency diversity
of the OFDM waveform. Moreover, it will limit the range
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resolution of the radar, which depends on the bandwidth of
the effective waveform. It is our goal to develop coherent
multidimensional parameter estimation methods which use
all the subcarriers jointly.

III. INTERPOLATION BASED COHERENT PARAMETER
ESTIMATION
Our proposed interpolation based coherent parameter esti-
mation concept consists of two steps. In the first step,
the received signals on different subcarriers are preprocessed
by using an interpolation algorithm described in Subsec-
tion III-A such that an equivalent narrowband OFDM system
is obtained, i.e., that has the effective subcarrier frequency
f̃nf = f0, ∀nf . Additionally, the ‘‘denoising’’ pre-processing
described in Subsection III-B might be added to the first
step to improve the estimation performance. In the sec-
ond step, multidimensional parameter estimation schemes
such as the low complexity R-D periodogram described in
Subsection III-C or the high resolution R-D Unitary Tensor-
ESPRIT algorithm described in Subsection III-D are applied
to the equivalent narrowband OFDM signal.

A. PRE-PROCESSING VIA INTERPOLATION
The goal of the pre-processing step is to obtain an equivalent
narrowband model of (2), i.e.,

rmx ,my,nf [nt ]

=

H∑
h=1

k̃hejβhe−j2πτhnf1f · ej2πnt
f0T0
c νh

·ej2πmx
f01x
c uh · ej2πmy

f01y
c vh + zmx ,my,nf [nt ], (4)

where zmx ,my,nf [nt ] is zero-mean uncorrelated noise.
As in (3), we construct a narrowband measurement tensorR
that can be expressed in terms of signal tensor S and noise
tensor Z . The narrowband data model can be written as

R =
H∑
h=1

kh · ah ◦ bh ◦ ch ◦ dh︸ ︷︷ ︸
S

+Z ∈ CMx×My×Nf×Nt , (5)

where kh = k̃hejβh , Z(mx ,my,nf ,nt ) = zmx ,my,nf [nt ], and we
have

ah =
[
1 ej2π

f01x
c uh · · · ej2π (Mx−1)

f01x
c uh

]T
∈ CMx

bh =
[
1 ej2π

f01y
c vh · · · ej2π (My−1)

f01y
c vh

]T
∈ CMy

ch =
[
1 e−j2πτh1f · · · e−j2πτh(Nf−1)1f

]T
∈ CNf

dh =
[
1 ej2π

f0 T0
c νh · · · ej2π (Nf−1)

f0 T0
c νh

]T
∈ CNt

The tensors S , R, and Z can be seen as 4-dimensional
samples of continuous functions s(x, y, f , t), r(x, y, f , t), and
z(x, y, f , t) of four arguments - the spatial coordinates x

and y, the frequency f , and the time t

s(x, y, f , t) =
H∑
h=1

khe−j2πτhf · ej2π
f0
c νht

·ej2π
f0
c uhx · ej2π

f0
c vhy (6a)

r(x, y, f , t) = s(x, y, f , t)+ z(x, y, f , y) (6b)

with the 4-dimensional ‘‘original’’ sampling grid

Go = {(x, y, f , t) : x = mx1x , y = my1y,

f = fnf , t = ntT0} (7)

where z(x, y, f , t) is a realization of a zero-mean complex
additive noise.

The wideband tensors R̆, S̆ and Z̆ can be expressed in the
same fashion as

s̆(x, y, f , t) =
H∑
h=1

kh e−j2πτhf · ej2π
f
c νht

·ej2π
f
c uhx · ej2π

f
c vhy (8a)

r̆(x, y, f , t) = s̆(x, y, f , t)+ z̆(x, y, f , y) (8b)

having the same sampling grid as in (7), where z̆(x, y, f , t)
is also another realization of a zero-mean complex additive
noise.

The narrowband model assumes that the measurements are
obtained by a discretization of (6b) using the sampling gridGo
defined in (7). The measurements, in this case, are modeled
by (5). On the contrary, in the wideband model, the measure-
ments are obtained by a discretization of (8b) using the same
sampling grid Go. In this case, the measurements are modeled
by (3).

The main idea of interpolation pre-processing is to
compute an equivalent narrowband approximation of the
wideband measurements in (2). Then, multidimensional nar-
rowband high-resolution parameter estimation algorithms
can be applied. To this end, we define a new sampling grid
for the wideband model

Gi = {(x, y, f , t) : x = mx
f0
fnf
1x , y = my

f0
fnf
1y,

f = fnf , t = nt
f0
fnf
T0} (9)

such that the sampling intervals become smaller as the
frequency increases. Consequently, the ratios between har-
monics frequencies and sampling frequencies (inverses
ofsampling intervals 1x , 1y and T0) stay constant along
subcarriers and are equal to those in the narrowband model
in (5).

It is evident that perfect sampling according to (9) is not
possible due to practical limitations. Therefore, we resort
to multidimensional interpolation techniques, which provide
an approximation of (5) based on (3) using a mapping
function g

R̃i
= g

(
R̆
)
≈ R (10a)
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g : CMx×My×Nf×Nt → CMx×My×Nf×Nt (10b)

To this end, we use different sampling intervals on each
subcarrier nf . For a given subcarrier index nf , we can see from
(9) that we have a 3-dimensional sampling rate conversion,
where the sampling intervals have to be changed from 1x ,
1y, and T0 to

f0
fnf
1x ,

f0
fnf
1y, and

f0
fnf
T0, respectively.We define

the interpolation pre-processing step for subcarrier nf as

R̃i
nf = gnf

(
R̆nf

)
∈ CMx×My×Nt ,

∀nf ∈ {0, . . . ,Nf − 1} (11)

where R̆nf = R̆(:,:,nf ,:) and R̃i
nf = R̃i

(:,:,nf ,:)
are the subten-

sors of the measurements and the interpolated tensor obtained
on the nf -th subcarrier, respectively, and gnf (·) is an interpo-
lating function for subcarrier nf .

In this paper, we consider piece-wise polynomial inter-
polation techniques, that include linear interpolation (2-nd
order spline), cubic spline interpolation with not-a-knot end
conditions (4-th order spline), and also higher-order spline
interpolation techniques [33]. If the spline interpolation tech-
nique uses polynomials of degree n, then it is referred to as
an (n+ 1)-th order spline. For example, the cubic spline is a
fourth order spline since it uses polynomials of degree 3 (the
highest power of such polynomials is equal to n). Linear and
cubic spline interpolation techniques are essentially linear in
the data. In the 1-dimensional case, they can be expressed as
a linear transformation of the data samples. The extension to
3-dimensional interpolation is a simple sequential application
of 1-dimensional interpolation in each dimension, leading to
a trilinear transformation of R̆nf . The interpolation prepro-
cessing can be expressed as

gLnf
(
R̆nf

)
= R̆nf ×1 L1nf ,Mx ×2 L1nf ,My ×3 L1nf ,Nt

(12a)

for the linear interpolation and

gSnf
(
R̆nf

)
= R̆nf ×1 S1nf ,Mx ×2 S1nf ,My ×3 S1nf ,Nt

(12b)

for the cubic spline interpolation, where 1nf =
f0
fnf

is the

sample rate conversion factor (equal for all measurement
dimensions), gLnf and gSnf denote the linear and spline inter-
polation functions and L1,N , S1,N ∈ RN×N are the inter-
polation matrices, that depend on the conversion factor and
the number of samples in the respective dimension. The
detailed description of the applied interpolation techniques
and the derivation of the L1,N and S1,N matrices are found in
Appendices A and B.

It should bementioned that under ideal conditions a perfect
resampling is provided by the Shannon-Whittaker interpo-
lation [34], which is also used in [15]. However, in prac-
tice, the Shannon-Whittaker interpolation cannot provide
perfect reconstruction for a time-limited signal and it has
high computational complexity. Therefore, this motivates us
to study piece-wise polynomial interpolation methods that
have a much lower computational cost. In Section IV, we also
compare their performance to that of Shannon-Whittaker
interpolation.

B. DENOISING VIA TRUNCATED HOSVD FOR EACH
SUBCARRIER
The subtensors R̆nf , defined in (11), follow a noise corrupted
low-rank model

R̆nf =

H∑
h=1

khe−j2πτhnf1f · a
nf
h ◦ b

nf
h ◦ d

nf
h + Z̆nf , (13)

where

a
nf
h =

[
1 ej2π

fnf 1x
c uh · · · ej2π (Mx−1)

fnf 1x
c uh

]T
∈ CMx

b
nf
h =

[
1 ej2π

fnf 1y
c vh · · · ej2π (My−1)

fnf 1y
c vh

]T
∈ CMy

d
nf
h =

[
1 ej2π

fnf T0
c νh · · · ej2π (Nt−1)

fnf T0
c νh

]T
∈ CNt

This fact motivates us to consider one more addi-
tional preprocessing step for R̆nf , low-rank approximation
using the truncated Higher Order SVD (HOSVD) for each
nf ∈ {0, . . . ,Nf − 1}. This step reduces the noise influence
and is beneficial in some scenarios, where higher-order spline
interpolation techniques are used. We further refer to it as the
‘‘denoising’’ step.

Define the HOSVD of R̆nf as (following equation (18)
of [29])

R̆nf = S ×1 U t
nf ×2 Ux

nf ×3 Uy
nf (14)

where U t
nf ∈ CNt×Nt , Ux

nf ∈ CMx×Mx , Uy
nf ∈ CMy×My , and

S ∈ CNt×Mx×My . Then, the truncatedHOSVDof R̆nf of order
H is given as

R̆d
nf = S[s]

×1 U t,[s]
nf ×2 Ux,[s]

nf ×3 Uy,[s]
nf (15)

where pt = min(Nt ,H ), px = min(Mx ,H ), py = min(My,H ),
U t,[s]
nf ∈ CNt×pt , Ux,[s]

nf ∈ CMx×px , Uy,[s]
nf ∈ CMy×py , and

S ∈ Cpt×px×py . Note that in our application H is the number
of targets that can be obtained by using an appropriate model
order selection algorithm, as explained in [35]. In this paper
H is assumed to be known.

The new tensor R̆d
nf is then used instead of R̆nf in

(12a) or (12b).

C. 4-D PERIODOGRAM
After obtaining the equivalent narrowband signal model
in (10a) we can use the multidimensional parameter estima-
tionmethods to estimate τh, νh, φh, and θh. The first algorithm
we introduce is the 4-D periodogram as an extension of
the 2-D periodogram described in [3]. A one-dimensional
periodogram is the easiest way for spectral estimation, i.e., for
a given sequence ofN discrete samples a(k) we compute [36]

S(f ) =
1
N

∣∣∣∣∣
N−1∑
k=0

a(k)ej2π fk
∣∣∣∣∣
2

.

Then the spectral components are obtained by searching the
peaks in S(f ). Furthermore, a digital domain periodogram
is realized using a T -length FFT of the discrete samples.
Therefore the resolution is proportional to T . In our case,
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a four-dimensional periodogram is required of length p1, p2,
p3, and p4, respectively. To this end we perform the FFTs over
four dimensions sequentially. Let R̀ ∈ Cp1×p2×p3×p4 denote
a tensor, whose r-th dimension (r ∈ {1, 2, 3, 4}) is obtained
by truncating the slices along the r-th dimension of R̃i if pr
is smaller than the length of the r-th dimension of R̃i, or by
padding zero slices along the r-th dimension of R̃i if pr is not
less than the length of the r-th dimension of R̃i. Let us also
define the ratios between the original number of measure-
ments to the dimensions of R̀ as kx = p1/Mx , ky = p2/My,
kf = p3/Nf , and kt = p1/Nt . Then we compute

P = R̀×1 Dp1 ×2 Dp2 ×3 DH
p3 ×4 Dp4 , (16)

where Dpr is the pr × pr DFT matrix. The 4-D periodogram
is obtained as

S(i1, i2, i3, i4) =
1

MxMyNf Nt
|Pi1,i2,i3,i4 |

2, (17)

where Pi1,i2,i3,i4 is the (i1, i2, i3, i4)-th element of P and
we have i1 ∈ {1, · · · , p1}, i2 ∈ {1, · · · , p2}, i3 ∈ {1, · · · , p3},
and i4 ∈ {1, · · · , p4}. Finally, the computational complex-
ity of the 4-D periodogram is dominated by equation (16),
which is given by O(p1 p2 p3 p4(p1 + p2 + p3 + p4)). Note
that an adaptive implementation of (16) introduced in
Section 3.3.2 of [3] can further reduce the overall computa-
tional complexity.

D. 4-D WIDEBAND UNITARY TENSOR-ESPRIT
In this section we introduce a closed-form multidimen-
sional high-resolution parameter estimation method, which is
based on the R-D Unitary Tensor-ESPRIT algorithm in [29].
4-D Unitary Tensor-ESPRIT is a real-valued Tensor-ESPRIT
algorithm that has a lower computationally complexity and
a better performance compared to Standard Tensor-ESPRIT
that is based on a complex-valued tensor decomposition [29],
[37]. Next, we briefly describe how to extend the R-D Unitary
Tensor-ESPRIT algorithm to our wideband problem.

First, define f̄1 = −2τh1f and f̄2 = 2 f0T0c νh. Assume that
f̄1 ∈ (−2, 0] and f̄2 ∈ (−1, 1]. Thenwe can interpret the expo-
nential terms as a function of time delays τh and relative
velocities νh as virtual uniform linear arrays (ULAs) with
spatial frequencies f̄1 and f̄2, respectively.

Since ESPRIT-type algorithms requiremore than one snap-
shot, we apply 4-D smoothing and create a fifth dimen-
sion. We rearrange the measurements R̃i in (10a) (and that,
strictly speaking, corresponds to one large snapshot) in such
a way that distinct parts of the measurements are treated
as different snapshots. First, let us define L = L1 L2 L3 L4
and Mr = Z − Lr + 1, where Z ∈ {Mx ,My,Nf ,Nt }. Then,
we perform 4-D smoothing that can be expressed as(

R̃ss
)
(:,:,:,:,`1L2L3L4+`2L3L4+`3L4+`4)

= R̃i
(`1:`1+M1,`2:`2+M2,`3:`3+M3,`4:`4+M4),

∀`r ∈ {0, . . . ,Lr − 1} (18)

where the notation x : y in the index denotes the selection of
elements with indices between x and y (Matlab-like notation).

As a result, a tensor R̃ss of size M1 ×M2 ×M3 ×M4 × L
is obtained by stacking the L tensors in (18) along the
5-th dimension. Alternatively, the 4-D smoothing operation
can be defined in terms of selection matrices, cf. Section VI
of [29].

Next, we define the forward-backward averaged version of
the tensor R̃ss as

F =
[
R̃ss 5R̃5

ss

]
, where

R̃5
ss =

[
R̃ss ×1 5M1 ×2 5M2 ×3 5M3 ×4 5M4 ×5 5L

]
Then the tensor F ∈ CM1×M2×M3×M4×L is a centro-
Hermitian tensor. The proof is straightforward according to
Lemma 3 in [29].

Therefore we can map the centro-Hermitian tensor F into
a real-valued tensor Fr by computing [29]

Fr = F ×1 QM1
×2 QM2

×3 QM3
×4 QM4

×5 Q2L , (19)

where the matrix Qm is assumed to be left-5-real. According
to [29], the rest of the 4-DWideband Unitary Tensor-ESPRIT
algorithm consists of three steps, i.e., estimating the real-
valued signal subspace, solving the linear 4-D shift invariance
equations using, for example, least squares (LS), and com-
puting the simultaneous Schur decomposition (SSD) or joint
eigenvalue decomposition (JEVD) to obtain automatically
paired frequencies uh, vh, f̄1, and f̄2. Except for the tensor-
based signal subspace estimation step, the implementation of
4-DWideband Unitary Tensor-ESPRIT is the same as in [29].
To avoid the computation of the truncated core tensor of the
HOSVD of the real-valued tensor Fr , we use the following
relationship between the SVD-based and the HOSVD-based
subspace estimates [38], [39],[
Ûs

]T
(5)
=

(
(Ûs,1Û

H
s,1)⊗ (Ûs,2Û

H
s,2)

⊗(Ûs,3Û
H
s,3)⊗ (Ûs,4Û

H
s,4)
)
· Ûs, (20)

where Ûs ∈ RM1×M2×M3×M4×H and Ûs ∈ RM1 M2 M3 M4×H

represent the tensor-based and the matrix-based signal sub-
space estimate, respectively. The matrices Ûs,r ∈ RMr×H

and Ûs consist of the first H left singular vectors of the
r-mode unfolding [Fr](r) (r ∈ {1, 2, 3, 4}) and [Fr]T(5),
respectively. Therefore, these matrices can be obtained by
computing the truncated SVDs of the corresponding unfold-
ings, each of which yield a computational complexity of order
O(M1M2M3 M4 LH ). Hence, the computational complexity
of our proposed 4-D Wideband Unitary Tensor-ESPRIT is
dominated by computing equation (20), which has the order
of O(M2

1M
2
2 M

2
3 M

2
4 H ).

To summarize, the proposed interpolation based coherent
parameter estimation framework is described in Algorithm 1.

It should be noted here that, in general, the interpo-
lation errors of piece-wise polynomial interpolation tech-
niques increase if the harmonic frequencies are increased
with respect to the sampling frequencies in the respective
dimension (in other words, if the relative digital frequencies
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Algorithm 1 4-D Wideband Coherent Parameter Estimation
Framework
1: Input: ymx ,my,nf [nt ], snf [nt ], ∀mx ,my, nf , nt . If the 4-D

periodogram is used, set p1, p2, p3, and p4. If 4-D Unitary
Tensor-ESPRIT is used, set L1, L2, L3, and L4.

2: Main step:
3: Obtain R̃i via piece-wise polynomial interpolation meth-

ods using (10a) and (12a) or (12b).
4: if 4-D periodogram then
5: Compute (16) and (17).
6: else if 4-D Wideband Unitary Tensor-ESPRIT then
7: Obtain R̃ss using (18)
8: Estimate the tensor-based signal subspace Ûs using

(20)
9: Compute the LS solution of the shift invariance equa-

tion as in [29]
10: Compute the SSD to obtain automatically paired spa-

tial frequencies uh, vh, f̄1, and f̄2 as in [29]
11: end if
12: Output: τh, νh, φh, and θh, ∀h.

in the respective dimensions are high). To avoid these errors,
one could use oversampling such that these frequencies are
kept small for any possible values of the parameters of interest
(relative velocity and DoAs). Windowing can also decrease
interpolation errors, especially for the Shannon-Whittaker
interpolation. But it cannot be used when ESPRIT-type algo-
rithms are applied, because it will destroy the shift invariant
structure of the measurements.

IV. SIMULATION RESULTS
In this section, the proposed interpolation based coherent
parameter estimation framework is evaluated using Monte
Carlo simulations. During our simulations, the following
assumptions are made: 1) the radar targets are considered as
point scatterers; 2) we use a free space path loss model; 3)
there is no clutter in the system. For simplicity, the simula-
tions are carried out directly using the models in (2), denoted
as ‘‘Wideband’’ (‘‘Wbd.’’), and (4), denoted as ‘‘Narrow-
band’’ (‘‘Nbd.’’) model, respectively. By using those models
we assume that there is no inter-carrier interference due to
the non-zero Doppler shift of the targets. This provides better
insights into the performance of the interpolation algorithms.

The carrier frequency fc = f0 +
Nf−1
2 1f , as depicted

in Figure 3, varies across simulations in order to unveil
the influence of the fractional bandwidth Bfr = B

fc
=

Nf1f
fc

.

Three scenarios are simulated with fc = 30 GHz,
3 GHz and 0.3 GHz. The OFDM symbol duration is set
to T0 = 2.7 µs. The FFT size is Nfft = 64 and we set
Nf = Nfft. The system bandwidth is B = 86.4 MHz for
1f = 1.35 MHz and B = 83.2 MHz for1f = 1.3 MHz. The
physical antenna spacing is chosen as 1x = 1y =

c
8fNf −1

,

which results in oversampling in the spatial domains.
Each training period consists of Nt = 10 OFDM symbols.

The URA is of sizeMx ×My = 10× 10. The transmit power
is equal to Pt = 40 dBm.When the R-D periodogram is used,
we set kx = ky = kf = kt = 5. When R-DWideband Unitary
Tensor-ESPRIT is used, we set L1 = L2 = 1, L3 = 55 and
L4 = 3, which leads to R̃ss ∈ C10×8×10×10×165. In all sim-
ulations, additive zero-mean circularly symmetric complex
Gaussian (ZMCSCG) noise is used. The simulation results
are averaged over 1000 realizations.

To avoid separate plots for range, relative velocity,
azimuth, and elevation we use a performance evaluation met-
ric defined as a joint RMSE for all estimated parameters. This
weighted RMSEtot takes into account errors in all estimated
parameters:

RMSEtot =

√√√√ 4∑
r=1

w2
(r)

1
H
E

{
H∑
h=1

(x(r)h − x̂
(r)
h )2

}

=

√√√√ 4∑
r=1

w2
(r)

1
H

K∑
k=1

H∑
h=1

(x(r)h − x̂
(r,k)
h )2. (21)

where x(r)h ∈ {dh, νh, uh, vh} and x̂
(r,k)
h is an estimate of x(r)h

in the k-th trial (1 ≤ k ≤ K ). Since the estimated parameters
have different units and orders of magnitude, we define the
weighting coefficients w(r) = [10−4 1/m, 10−5 s/m, 1 ,1].
These coefficients have been chosen empirically based on
the particular values of the averaged errors obtained during
our simulations to balance the contribution from all four esti-
mated parameters into the joint performance metric RMSEtot.

In the first simulation, we have two targets, i.e., H = 2,
and our goal is to study the spatial resolution pro-
vided by the proposed algorithms. We set φ1 = φ2 = 135◦

and θ1 = θ2 = 65◦, and velocities νx,1 = νx,2 = 40 m/s,
νy,1 = νy,2 = νz,1 = νz,2 = 0 m/s, where νx,h, νy,h and νz,h
are projections of the absolute speed on Euclidean coordi-
nates. The distance between the radar and the first target
is d1 = 50 m while the distance between the radar and
the second target d2 varies from 30 m to 70 m during the sim-
ulation. Let ‘‘Per.’’ and ‘‘UTE’’ denote the 4-D periodogram
and the 4-D Unitary Tensor-ESPRIT algorithm, respectively.
Let ‘‘linear’’ and ‘‘spline’’ represent the linear and spline
interpolation, ‘‘SW’’ represents Shannon-Whittaker interpo-
lation, while ‘‘s7’’ and ‘‘s10’’ refer to the higher-order spline
interpolation with an order equal to 7 or 10, respectively.
Finally, ‘‘D’’ denotes the use of the additional ‘‘denoising’’
pre-processing step, described in Subsection III-B.
Since the fractional bandwidth is varied by changing the

carrier frequency, the received SNR, defined in (22), also
changes. The received SNR for the first target is defined as

SNRRx,1 = 10 log10
( PTxL1
FkBTB

)
, (22)

where PTx is the transmitted power in Watts (10 Watts), kB
is the Boltzmann constant, T = 290 K is the receiver tem-
perature, B is the bandwidth and L1 = k̃21 is the free space
pathloss coefficient of the first target, where k̃h was defined
in Section II.
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FIGURE 4. Total RMSEtot vs. the distance to the second target. The distance to the second target d2 is varied from 30 to 70 meters,
while the distance to the first target d1 is held fixed to 50 meters. Fractional bandwidth Bfr ≈ 28 % and SNRRx ≈ 70 dB.

FIGURE 5. Total RMSEtot vs. the distance to the second target. The
distance to the second target d2 is varied from 30 to 70 meters, while the
distance to the first target d1 is held fixed to 50 meters. Fractional
bandwidth Bfr ≈ 2.8 % and SNRRx ≈ 50 dB.

To compensate those changes, we use different noise
figures F in different simulations, resulting in different
SNRRx,1 at a distance of 50 meters. In Figure 4 we
get SNRRx,1 ≈ 70 dB, in Figure 5 SNRRx,1 ≈ 50 dB, and
in Figure 6 we get SNRRx,1 ≈ 50 dB.

From Figures 4, 5, and 6 it is observed that distortions
caused by the wideband data model (red curve) cause some
performance degradation when the target separation is small.
The difference in performance between the narrowband data
model (blue curve) and the wideband data model (red curve)
increases with Bfr (Figures 4 and 5) or SNRRx,1 (Figure 4).
The best choice for this setup is cubic spline interpola-
tion (green curve), which uses polynomials of degree 3 for

FIGURE 6. Total RMSEtot vs. the distance to the second target. The
distance to the second target d2 is varied from 30 to 70 meters, while the
distance to the first target d1 is held fixed to 50 meters. Fractional
bandwidth Bfr ≈ 0.28 % and SNRRx ≈ 50 dB.

the interpolation. But the performance for the splines with
higher-order (light-blue and black curves) is worse, which
shows that they are sensitive to additive noise. Although
it could be improved via the ‘‘denoising’’ pre-processing
step described in Subsection III-B (dash-dotted light-blue
curve and dash-dotted black curve, respectively), cubic spline
interpolation still outperforms them in this scenario. The
performance of the linear interpolation (pink curve) shows
that choosing a low interpolation order results in a poorer
performance due to a larger interpolation error.

Additionally, from Figures 4, 5, and 6 we observe how
high-resolution 4-D Unitary Tensor-ESPRIT outperforms
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FIGURE 7. Total RMSEtot vs. received SNR. The received SNR (computed for the first target, (22)) is varied from −10 dB to 170 dB.
Fractional bandwidth Bfr ≈ 28 %.

FIGURE 8. Total RMSEtot vs. received SNR. The received SNR (computed
for the first target, (22)) is varied from −10 dB to 170 dB. Fractional
bandwidth Bfr ≈ 2.8 %.

4-D periodogram in terms of the resolution, even if the nar-
rowband data model is used for the periodogram.

In the second simulation, we consider five fixed targets,
i.e., H = 5, and the estimation error is plotted as a function
of the received SNRRx,1 of the first target at a distance d1 =
80 m, which is altered via changing the noise figure F .
The five targets are chosen to be close to each other:

dh ∈ {80, 85, 90, 95, 100} m, φh ∈ {82◦, 86◦, 90◦, 94◦, 98◦},
θh ∈ {60◦, 63◦, 66◦, 69◦, 72◦} with νy,h = 40 m/s and
νx,h = νz,h = 0 m/s for all h ∈ {1, · · · , 5}. Although
the absolute velocities of the targets are the same, their
velocities relative to the receiver are different and equal
to νh ∈ {−19.8,−18.1,−16.3,−14.3,−12.2} m/s. The
total RMSE in (21) is computed using estimates of the

FIGURE 9. Total RMSEtot vs. received SNR. The received SNR (computed
for the first target, (22)) is varied from −10 dB to 170 dB. Fractional
bandwidth Bfr ≈ 0.28 %.

directional cosines uh and vh. In this scenario they are
as follows: uh ∈ {0.07, 0.032, 0,−0.025,−0.043}, vh ∈
{0.5, 0.453, 0.407, 0.358, 0.306}.
Figures 7, 8, and 9 depict the results of the second simu-

lation. The grey horizontal line refers to errors that are equal
to half of the target separation, which is computed using the
definition of the total RMSE, where half of the target separa-
tions are used instead of the parameter errors in equation (21).
Periodogram based solutions fail to resolve such closely
spaced targets. For a low fractional bandwidth (Figure 9),
the gain from the use of interpolation pre-processing appears
only in the high SNR regimes, e.g., for SNRRx,1 > 65 dB,
and linear interpolation is even worse than not using any
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FIGURE 10. Total RMSEtot vs. the fractional bandwidth Bfr. Fractional bandwidth Bfr is varied from 0.1 % to 50 %. This variation is achieved by changing
the carrier frequency fc .

interpolation at all (red curve), since it introduces high inter-
polation errors. Since there are always residual interpolation
errors, error floors exist for all algorithms in case of the
wideband model (1) even when the received SNRRx,1 is
large. The higher-order spline interpolation allows to reduce
interpolation errors, although it is less robust, which can be
observed from Figures 7 and 8. The proposed 4-D Wideband
Unitary Tensor-ESPRIT combined with interpolation pre-
processing is able to restore the performance of narrowband
algorithms even in such an extreme scenario with Bfr = 28 %
(Figure 7). If no interpolation pre-processing is used (red
curve), the algorithm fails to resolve the targets, providing
an error that is higher than the target separation. Therefore,
the interpolation order allows a trade-off between the per-
formance in the high and the low SNR regimes. The perfor-
mance for the higher-order splines can be improved by using
the additional ‘‘denoising’’ pre-processing step described in
Subsection III-B. As already mentioned, this step allows to
reduce the influence of the noise on the system, except for
cases with high SNRs, but its effect is only seen in case of
interpolation with splines of a higher order. This is due to the
vulnerability of those techniques to perturbations, which is
also observed in the simulation results. It is worth mentioning
that there is no benefit to choose interpolation orders larger
than the number of samples in the respective dimension [33].
The best performance in this setup is achieved by using
an interpolation order of 7 with the additional ‘‘denoising’’
step.

The last simulation investigates the RMSE performance
versus the fractional bandwidth Bfr, which is varied by chang-
ing the carrier frequency fc. It should be noted that the

SNR will also change along with the fractional bandwidth,
i.e. SNRRx,1 will change from 21.5 dB at fc = 57.6 GHz to
72 dB at fc = 172.8 MHz. To make the comparison clearer,
we fix the received SNR of the first target SNRRx,1 = 45 dB
by recomputing the noise figureF for each value of the carrier
frequency fc:

F = 10 log10(
PTxL1

SNRRx,1kBTB
) (23)

For this simulation, we use slightly different target parame-
ters. Again, five targets are chosen to be close to each other:
dh ∈ {60, 65, 70, 75, 80} m, φh ∈ {42◦, 46◦, 50◦, 54◦, 58◦},
θh ∈ {60◦, 63◦, 66◦, 69◦, 72◦} with νy,h = 40 m/s and νx,h =
νz,h = 0 m/s for all h ∈ {1, · · · , 5}. The results are pre-
sented in Figure 10. It can be observed how the performance
gain from interpolation pre-processing increases when a high
fractional bandwidth is present and the SNR increases. For
the chosen SNR, when the fractional bandwidth increases
beyond 1%, the targets are not resolved without interpolation
preprocessing. Since the SNR is kept constant the perfor-
mance in the narrowband system is constant as well, but
the performance in wideband system degrades very rapidly
and exceeds the target separation soon after the fractional
bandwidth becomes larger than 1 %. It can also be observed
that linear interpolation is effective only up to 2 % fractional
bandwidth and fails to resolve targets beyond that limit, while
the best performance is achieved with 7-th order spline inter-
polation. The worse performance of the 10-th order spline can
be explained by its vulnerability to additive noise, while the
cubic spline lacks degrees of freedom to precisely approxi-
mate the signal samples.
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V. CONCLUSION
In this paper, we have studied a wideband OFDM
based joint radar and communication system. The wide-
band assumption results in incoherent signals on differ-
ent subcarriers. To reduce the incoherence we propose
an interpolation based coherent parameter estimation
framework.

First, the wideband system model is converted into an
approximately equivalent narrowband model by using piece-
wise polynomial interpolation methods of different orders.
Linear interpolation is chosen due to its lowest computational
complexity, while cubic spline interpolation is used due to its
low interpolation error. Splines with higher-orders have also
been investigated.

Then the multidimensional parameter estimation algo-
rithms, i.e., a benchmark algorithm based on the 4-D
periodogram and the proposed 4-D Wideband Unitary
Tensor-ESPRIT, are applied to provide accurate estimates
of the parameters of the dominant radar targets. The simu-
lation results show that interpolation based coherent signal
subspace estimation is able to enhance the wideband signal
subspace estimate, which, in turn, improves the estimation
accuracy. This method allows the application of multidi-
mensional narrowband parameter estimation techniques in
wideband systems.

It can be observed that the gain obtained by using the
interpolation based coherent estimation approach depends
on the scenario, the signal-to-noise ratio, and the frac-
tional bandwidth. It is shown that the Shannon-Whittaker
interpolation does not perform well for signals with a few
samples, resulting in high interpolation errors. In the low
SNR regime, the interpolation preprocessing is not needed
since the estimation error is dominated by additive noise
distortions.

When the fractional bandwidth is small and the SNR is
high, the cubic spline interpolation and interpolation with
higher-order polynomials provide a gain when compared
to the direct application of the narrowband algorithm as
well as linear interpolation. As the fractional bandwidth
increases, narrowband algorithms fail to resolve closely
spaced targets, and interpolation becomes necessary. If the
SNR is very high (more than 70 dB for the given sim-
ulation parameters and scenarios), it also becomes prof-
itable to increase the order of the interpolating polynomials,
which will improve the estimation accuracy. An additional
‘‘denoising’’ step can improve the performance for the
higher-order spline interpolation techniques. In general,
we recommend to use interpolation pre-processing tech-
niques to resolve closely spaced targets in the high SNR
regime, or when the fractional bandwidth is larger than
20-30 %. A brief summary of the recommendations on using
interpolation pre-processing is presented in Table 1. Note
that the interpolation pre-processing step can also be used
in other applications with a large fractional bandwidth, such
as, for example, audio source localization with microphone
arrays.

TABLE 1. Recommendations on using interpolation pre-processing.

APPENDIX A
LINEAR INTERPOLATION MATRICES
In the appendices we show that both linear and spline
interpolation can be expressed as a simple multi-linear
transformation along each mode of the measurement tensor,
as shown in equations (12a) and (12b).

Piecewise linear interpolation, or often called linear inter-
polation, belongs to the family of piecewise polynomial
interpolation techniques. It uses interpolating polynomials of
degree 1, or, in other words, straight lines.

To simplify the notation, we define y(n) to be a sampled
sequence of size N , i.e., n ∈ {0, . . . ,N − 1}. This sequence
is then stacked into the vector y ∈ CN . For example, this
could be any n-mode vector of the tensor R̆nf (defined in
Subsection III-A) corresponding to time or one of the spatial
measurement dimensions, for example:

ytmx ,my =
(
R̆nf

)
(:,mx ,my)

yxnt ,mx =
(
R̆nf

)
(nt ,mx ,:)

yynt ,my =
(
R̆nf

)
(nt ,:,my)

(25)

In any of those cases, the sequence y has the original
sampling interval. In case of time, it is T0, and in case of
spatial sampling, it is 1x or 1y. We denote this original
sampling interval as X0, where X0 ∈ {T0,1x ,1y} and the
corresponding continuous argument as x. This means that y
contains samples of a continuous function y(x) with sampling
interval X0, and the first sampling point is located at x = 0.

Next, we want to interpolate the signal or resample it to
obtain the same number of samples N of y(x) but using a
smaller sampling interval Xi < X0, or a larger sampling
frequency f si > f s0 .
Let us denote the interpolated sequence of values as yl(m),

where m ∈ {0, . . . ,N − 1}, and assume that the first sample
of the new sequence is also made for x = 0. Then we get

yl(m) = y(n)
(n+1)X0 − mXi

X0
+y(n+ 1)

mXi − nX0
X0

, (26)

where mXi ∈ (nX0, (n + 1)X0], or by using the conversion
factor 1 = Xi

X0

yi(m) = y(n)
(
n+ 1− m1

)
+ y(n+ 1)

(
m1− n

)
, (27)

where m1 ∈ (n, n + 1]. If the common sampling point is in
the middle of the overall sampling interval, i.e., the sampling
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yi(m) =
[
0 . . . 0 1− {m1} {m1} 0 . . . 0

]︸ ︷︷ ︸
lTm,1



y(0)
...

y(n)
y(n+ 1)

...

y(N − 1)


= lTm,1 · y (24)

sequences are aligned such that the point x = (N−1)X0
2 is in

the middle of both of them, then mXi should be replaced by
mXi −

(N−1)
2 (X0 − Xi) in (26) or m1 should be replaced by

m1 − (N−1)
2 (1 − 1) in (27). This also applies to the other

equations. In the sequel, we assume x = 0 as the common
sampling point for notational simplicity.

It is easy to show that since m1 ∈ (n, n+ 1] we get

n = bm1c, n+ 1 = dm1e (28)

where bac and dae denote the floor and the ceiling operations,
respectively.

If we insert the definition in (28) into (27), we get

yi(m) = y(n)
(
1−

{
m1

})
+ y(n+ 1)

({
m1

})
, (29)

where mXi ∈ (nX0, (n+ 1)X0] and {a} denotes the fractional
part of a. From this equation, we can observe that the interpo-
lated value depends on the index m and the conversion factor
1, and it is linear in the data (or in y(n)).
Next, we can express equation (29) as a scalar product

between the vector lm,1 ∈ RN and the vector y, as indicated
in equation (24), as shown at the top of this page, where
the vector lm,1 ∈ RN depends on sample index m and the
conversion factor 1.
We stack all lm,1 into one linear interpolation matrix L1,N

L1,N =



lT0,1
...

lTm,1
...

lTN−1,1

 ∈ RN×N (30)

such that we finally obtain

yl = L1,N · y (31)

where the samples yl(m) are stacked into yl , where
m ∈ {0, . . . ,N − 1}. Thus, the L1,N is fully determined by
the conversion factor 1, the number of samples N , and the
common data point (for this example it is x = 0). The matrix
L1,N is used in (12a).

APPENDIX B
SPLINE INTERPOLATION MATRICES
As in the previous appendix, we show that spline interpolation
can also be expressed as a simple multi-linear transformation

along each mode of the measurement tensor, as shown in
equations (12a) and (12b).

Cubic spline interpolation also belongs to the family of
piecewise polynomial interpolation techniques that use poly-
nomials of degree 3 (or fourth-order splines).

Following the same notation as in Appendix A, we first
define the slopes of the interpolation polynomial

d(n) =
dys(x)
dx

∣∣∣∣
x=nX0

(34)

where n ∈ {0, . . . ,N − 1}, or in vector form

d =
[
d(0) d(1) . . . d(N − 1)

]T
∈ CN (35)

where ys(x) denotes the continuous interpolating func-
tion which produces a resampled sequence ys(m) (m ∈

{0, . . . ,N − 1}) using the sampling interval Xi.
The interpolating piece-wise polynomial function is

defined as

yi(x) = y(n)
X3
0 − 3X0(x − nX0)2 + 2(x − nX0)3

X3
0

+y(n+ 1)
3X0(x − nX0)2 − 2(x − nX0)3

X3
0

+d(n)
(x − nX0)(x − (n+ 1)X0)2

X2
0

+d(n+ 1)
(x − nX0)2(x − (n+ 1)X0)

X2
0

,

for x ∈ (nX0, (n+ 1)X0] (36)

Again, assuming x = 0 as the common sampling point,
the resampled sequence is then expressed in equation (32), as
shown at the top of the next page, or by using the conversion
factor 1

yi(m) = y(n)
(
1− 3(m1− n)2 + 2(m1− n)3

)
+y(n+ 1)

(
3(m1− n)2 − 2(m1− n)3

)
+d(n)X0(m1− n)(m1− n− 1)2

+d(n+ 1)X0(m1− n)2(m1− n− 1),

for m1 ∈ (n, n+ 1] (37)

and using m1− n = {m1} (fractional part), we get

yi(m) = y(n)
(
1− 3{m1}2 + 2{m1}3

)
+y(n+ 1)

(
3{m1}2 − 2{m1}3

)
+d(n)X0{m1}({m1} − 1)2

+d(n+ 1)X0{m1}2({m1} − 1) (38)
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yi(m) = y(n)
X3
0 − 3X0(mXi − nX0)2 + 2(mXi − nX0)3

X3
0

+ y(n+ 1)
3X0(mXi − nX0)2 − 2(mXi − nX0)3

X3
0

+d(n)
(mXi − nX0)(mXi − (n+ 1)X0)2

X2
0

+ d(n+ 1)
(mXi − nX0)2(mXi − (n+ 1)X0)

X2
0

,

for mXi ∈ (nX0, (n+ 1)X0] (32)

yi(m) =
[
0 . . . 0 1− 3{m1}2 + 2{m1}3 3{m1}2 − 2{m1}3 0 . . . 0

]︸ ︷︷ ︸
s(1)m,1

T

y

+X0
[
0 . . . 0 {m1}({m1} − 1)2 {m1}2({m1} − 1) 0 . . . 0

]︸ ︷︷ ︸
s(2)m,1

T

d

=

(
s(1)m,1

)T
· y+ X0

(
s(2)m,1

)T
· d (33)



1 2
1 4 1

1 4 1
. . .

. . .
. . .

1 4 1
2 1


︸ ︷︷ ︸

A∈RN×N



d(0)
d(1)
d(2)
...

d(N − 2)
d(N − 1)


︸ ︷︷ ︸

d

=
3
X0



−5/6 4/6 1/6
−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1
−1/6 −4/6 5/6


︸ ︷︷ ︸

B∈RN×N



y(0)
y(1)
y(2)
...

y(N − 2)
y(N − 1)


︸ ︷︷ ︸

y

(44)

which can be rewritten as the sum of two scalar products
as shown in equation (33), as shown at the top of this
page.

As before, we stack all s(1)m,1 and s(2)m,1 into two linear
matrices S(1)1,N and S(2)1,N

S(1)1,N =
[
s(1)0,1 . . . s(1)N−1,1

]T
∈ RN×N

S(2)1,N =
[
s(2)0,1 . . . s(2)N−1,1

]T
∈ RN×N (39)

such that we obtain

yi = S(1)1,N · y+ X0S
(2)
1,N · d (40)

There are several ways to compute the slopes in d . In the
case of cubic splines, they are defined through a set of linear
equations which assumes that the second-order derivative of
yi(x) is continuous

d2yi(x)
dx2

∣∣∣∣
x=nX0−

=
d2yi(x)
dx2

∣∣∣∣
x=nX0+

(41)

or

−6 y(n)−y(n−1)X0
+ 4d(n)+ 2d(n− 1)

X0

=
6 y(n+1)−y(n)X0

− 2d(n+ 1)− 4d(n)

X0
(42)

and rearranging we get

d(n− 1)+ 4d(n)+ d(n+ 1)

= 3
y(n+ 1)− y(n− 1)

X0
, (43)

for each n = [1, . . . ,N − 2], which is a set of N − 2 linear
equations for N unknowns d(n).
To have a full set of N equations we add two more

equations from the end conditions called ‘‘not-a-knot’’
conditions [33]

d(0)+ 2d(1) =
−5y(0)+ 4y(1)+ y(2)

2X0
(45)

2d(N − 2)+ d(N − 1)

=
−y(N − 3)− 4y(N − 2)+ 5y(N − 1)

2X0
(46)

These equations can be rewritten in matrix form, as shown in
equation (44), as shown at the top of this page, or shortly as

d =
3
X0
A−1By (47)

Inserting this result in (40) we finally obtain

yi = S(1)1,N · y+ X0S
(2)
1,N ·

3
X0
A−1By

=
(
S(1)1,N + 3S(2)1,NA

−1B
)︸ ︷︷ ︸

S1,N

y (48)
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Thus, the matrix S1,N is fully determined by the conver-
sion factor 1 and the number of samples N assuming that
the common data point is x = 0. The matrix S1,N is used
in (12b).
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