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Antenna array calibration methods and narrowband direction finding (DF) techniques will be outlined and compared for a uniform
circular array. DF is stated as an inverse problem, which solution requires a parametric model of the array itself. Because real arrays
suffer from mechanical and electrical imperfections, analytic array models are per se not applicable. Mitigation of such disturbances
by a global calibration matrix will be addressed, and methods to estimate this calibration matrix will be recapped from literature.
Also, a novel method will be presented, which circumvents the problem of a changed noise statistic due to calibration. Furthermore,
local calibration, where array calibration measurements are incorporated in the DF algorithm, is considered as well. Common
DF algorithms will be outlined, their assumptions regarding array properties will be addressed, and required preprocessing steps
such as the beam-space transformation will be presented. Also, two novel DF techniques will be proposed, based on the Capon
beamformer, but with reduced computational effort and higher resolution for bearing estimation. Simulations are used to exemplary
compare calibration and DF methods in conjunction with each other. Furthermore, measurements with a single and two coherent
sources are considered. It turns out that global calibration enables computational efficient DF algorithms but causes biased estimates.

Furthermore, resolution of two coherent sources necessitates array calibration.

1. Introduction

Direction finding (DF) is a task which occurs in several
applications of surveillance, reconnaissance, radar, or sonar.
Basically, DF can be defined as estimation of the bearing of
one or multiple signal sources with respect to (w.r.t.) a refer-
ence point in space. Typically, an array of spatially distributed
sensors is placed at this reference point and the array output is
exploited for DE. Hence, DF estimation is an inverse problem.
Solving the inverse problem requires a parametric model
of the array output in terms of the parameters of interest:
azimuth of arrival (AoA) ¢ and elevation of arrival (EoA) 9,
which together define the direction of arrival (DoA).

In order to derive a parametric model of the array
output, a model of the sensor array itself is necessary. The
array model highly depends on the array geometry and
the characteristic of each sensor. Theoretical array models
typically assume omnidirectional sensors and an ideal array
geometry, which cannot be assured for real arrays. Apart
from these assumptions, real arrays suffer from disturbances

as, e.g., mutual coupling between the sensors or the support
structure of the array, unknown sensor gain, and phase or
mechanical imperfections [1]. Consequently, DoA estimation
performance degrades, because the assumed array model
does not coincide with the real array characteristics. Hence,
calibration is necessary to mitigate these imperfections.

All investigations are subject to a uniform circular array
(UCA). UCAs feature a very attractive geometry, because
their aperture covers the whole azimuth range and hence
ambiguous free AoA estimates are ensured, on the con-
trary to, e.g., uniform linear array (ULA). Also, UCAs can
be employed to estimate elevation too, but generally not
unambiguous. For simplification, only AoA estimation and
copolarised sources w.r.t. the array sensors are considered.
For the conducted investigations it is not necessary to con-
sider elevation and arbitrarily polarised sources. However,
neglecting source polarisation and assuming fix elevation
may result in biased estimates in real DF applications [2].

The goal of this paper is to jointly investigate array
calibration methods and narrowband DF techniques. Global
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calibration, where a direction independent calibration matrix
is used, will be considered. Methods to estimate the global
calibration matrix from array calibration measurements are
reviewed and a new method is proposed, which accounts
for the change of the noise statistic due to the application
of the calibration matrix. Also, local calibration, where the
array calibration data are incorporated in the DF method,
is considered. Known DF techniques will be outlined and
two novel DF techniques based on the Capon beamformer
will be proposed, featuring a reduced computational effort
and better resolution in case of multiple sources. Some of
the considered DF techniques take advantage of special array
structures, which are not provided by UCAs. Hence, beam-
space transformation will be briefly recapped. Simulations
and measurements are employed for the investigations. Mea-
surements with two coherent sources, hence sources with a
fix phase relation, will be considered. Resolution of coherent
sources is crucial in DF [3], because of the rank-degeneration
of the spatial covariance matrix. Hence, the coherent source
case will be used as benchmark to justify calibration necessity
and to investigate the DF accuracy.

The reminder of the paper is organised as follows: a
parametric model of the array output is derived in Section 2.
In Section 3 the DF techniques are presented. The beam-
space transformation for UCA is described in Section 4. The
problem of array calibration and its influence on the sensor
characteristic is presented in Section 5. Simulation based
comparison of calibration and DF methods is presented in
Section 6. In Section 7, the DF methods are compared using
measurements with a single source and two coherent sources.
Section 8 concludes the paper.

Mathematical notation is as follows: scalars are italic
letters. Vectors are in column format and written as boldface,
lower-case, italic letters. Matrices correspond to boldface,
upper-case letters. The matrix operations (.)T, OF O
and (.)" are defined as the transpose, conjugate transpose,
inverse, and Moore-Penrose pseudo inverse of a matrix,
respectively. The Frobenius norm of a matrix is stated as ||.||.
The imaginary unit is defined as j = v~1.

2. Measurement Data Model

DoA estimation requires a parametric model of the measure-
ment data in terms of the DoAs. Consider an array of M
sensors, having its reference point in the origin of a spherical
coordinate system. Directions of impinging waves are defined
w.r.t. this origin in terms of AoA ¢ and EoA 9; see Figure 1.
Consider P plane waves, emerging from far field sources and
impinging at the array. The waves are assumed to impinge in
the azimuth plane, hence 9 = 0" holds. Under narrowband
assumption [1, 4], the array output y(¢) € C™*! in the com-
plex baseband can be approximated as

P
y(®) = Y b(g,) s, () =B(g)-s(t), (1)
p:l

with vector b(g,,) denoting the narrowband array response
wrt the impingement angle ¢,. The narrowband array
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FIGURE 1: Spherical coordinate system and angle definition.

response is commonly denoted as steering vector. The vectors

s(t) = [s:(6)..,5p0]" € C”L @ = [p...o0p] €
R, and matrix B(g) = [b(¢y),....blgp)] € cMxP
contain the complex envelope of the source signals, the
AoAs of all sources, and the steering vectors, respectively.
Measurement noise and uncertainties due to, e.g., model
errors are accounted for by an additive error term n(t). This
error term is modelled as a zero-mean and proper complex
normal distributed random process, which is spatially white
and homogeneous, and uncorrelated with the source signal:
n(t) ~ €4(0,0°1 ). In summary, the model for the observa-
tions y(t) € CM is [1]

y()=B(g)-s(t)+n(t). )

In practice N snapshots are taken from the M sensors.
Accordingly, the model of the array output becomes

Y=B(p)-S+N. (3)

The objective of direction finding is to estimate the AoAs
from the array observations Y € C™*N, hence solving the
inverse problem. The source directions can be uniquely and
ambiguous-freely determined, if this inverse problem is well
posed, e.g., the steering matrix features full column rank. In
the following, the number of sources P is assumed as known,
see, e.g., [5] for a summary of estimation methods.

2.1. UCA Element-Space Model. Consider an uniform circu-
lar array with equiangular spaced omnidirectional sensors,
placed on a circumference of radius R. The array steering
vector entry of the m-th sensor and azimuth only is [6]

by, (¢) = exp (jkRcos (¢ —m - ¢)), (4)

with wave number k = 2n/A, m = 0,...,M — 1, and the
angular spacing of the sensors ¢ = 271/M. In the following,
(4) is referred to as the UCA model in element-space. Prac-
tical UCAs do not follow this model due to, e.g., mechanical
and electrical imperfections. Hence, calibration is necessary
(see Section 5).
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TaBLE 1: Considered narrowband DF techniques, the number of identifiable sources, and the considered structure of the steering vectors.

DF Methods Reference No. sources Steering vector
CML [7,8] <M-1 arbitrary
UML [7, 8] <M-1 arbitrary
MUSIC-1 [9] <M-1 arbitrary
root-MUSIC [10] <M-1 Vandermonde
MUSIC-2 [11] <M-1 arbitrary
ESPRIT [12] <M-1 Vandermonde
MODE [8,13] <M-1 arbitrary
IQML [14] <M-1 Vandermonde
Capon-1 [15] 1 arbitrary
Bartlett [15] 1 arbitrary
root-Capon This work 1 Vandermonde
Capon-2 This work 1 arbitrary

3. Narrowband Direction Finding Techniques

Several DF techniques are known from literature; see [1, 15]
for an overview of the most famous ones. The considered
DF methods, the number of sources they are able to resolve,
and their assumptions regarding the steering vector struc-
ture are summarised in Table 1. The Bartlett and Capon
methods are considered to resolve a single source only,
because their resolution depends on the array aperture [15].
Hence, the sources have to be well separated in order to
resolve them. According to this restriction, the beamformers
are not high-resolution estimators and hence not generally
applicable for the resolution of multiple sources. However,
the beamformers will be used to resolve multiple sources
to show the improved estimation capability by calibration.
The DF methods constrained maximum-likelihood (CML),
unconstrained maximum-likelihood (UML), and Method of
Direction Estimation (MODE) require the optimisation of
a multidimensional, nonconvex cost function [15]. Opti-
misation of nonconvex cost functions requires iterative or
heuristic methods, which are computational cumbersome
and may end up in local optima. The Multiple Signal
Classification (MUSIC)-1, Bartlett, and Capon-1 are spectral
methods, which require a 1D peak search for DE. The peak
search is complicated, if multiple peaks have to be detected to
resolve multiple sources. The iterative quadratic maximum-
likelihood (IQML), root-MUSIC, MUSIC-2, root-Capon,
Capon-2, and Estimation of Signal Parameters via Rotational
Invariance Technique (ESPRIT) require polynomial rooting
or Eigenvalue decomposition, such that these methods are
computationally more efficient. However, some DF methods
require a special steering vector structure, which is not
tulfilled by an UCA and therefore beam-space transformation
is necessary; see Section 4.

3.1. Novel Capon Beamformer Estimators. Generally, the
Capon beamformer attempts to minimise the power con-
tribution from interferer directions, while maintaining the
gain in the direction of interest. The estimator is given by
maximising a 1D spatial spectrum [15]

arg max (b(p)" Ryt -b(g)] 5)

Subsequently, two estimators are proposed, which employ
polynomial rooting instead of a 1D peak search to estimate
the AoAs from the Capon spectrum. The rooting is compu-
tational more efficient, especially if multiple sources shall be
resolved and also has a better resolution compared to spectral
methods [10].

3.1.1 Root-Capon. Restating cost function (5) as a minimisa-
tion problem gives
inb H 5-1 b
argminb (¢)” - Ryy - b(g). (6)
If the steering vectors b(¢) feature Vandermonde structure,
minimisation is accomplished by estimating the P roots
closest to the unit circle.

3.1.2. Capon-2. Another DF estimator based on the Capon
beamformer is derived by exploiting array manifold separa-
tion [11]. In manifold separation the array steering vector is
decomposed in the product of a vector d(¢) € C***! and
an array specific sampling matrix G

b(p)=G-d(e). ?)

Vector d(¢) = [exp(— J1Le), ..., exp( ]L<p)]T features Vander-
monde structure and depends on the direction only.

Considering the cost function (6) and plugging in the
manifold separation (7) gives

argmind (g)” - G" - Ry - G-d(9). ®)

Again, minimisation is accomplished by estimating the P
roots closest to the unit circle.

4. Beam-Space Transformation

The ESPRIT, IQML, root-Capon, and root-MUSIC algorithm
are naturally applicable for DF with ULAs. Hence, they
necessitate steering vectors with Vandermonde structure.
According to (4), the steering vectors of an UCA do not



feature a Vandermonde structure in element-space. Utilising
the concept of phase mode excitation [21, 22], the element-
space steering vectors are transformed to the beam-space,
where the steering vectors feature Vandermonde structure.
Phase mode excitation exploits the Jacobi-Anger expansion,
which is for the steering vector entry of the m-th sensor

exp (JkR cos (¢ — m¢))

o ©)
= Y 1", (kR) - exp (jng) - exp (-ym¢),

n=—090

with J,, being the Bessel function of first kind and #-th order.
Approximating the infinite series by a finite one yields

exp (JkR cos (¢ — m¢))
M/

= Y 1" Ju(kR) - exp (jng) - exp (~jnm¢)  (10)

= d(me)" - V-a(y),

with M’ = (M - 1)/2] [3] and

d(m¢) = [exp (—]M'rm/)) yerrr€XP (]M'qu)]T (11a)
V =diag {[;M] ,p kR),..., M s (R)]}  (11b)

a(ep) = [exp (—]M'(p),...,exp (]M'(p)]T_ (11¢c)

Vector a(¢) denotes the Vandermonde structured steering
vector in beam-space. The truncated Jacobi-Anger expansion
for the array steering vector according to (4) is

b(p)=D"-V-a(gp), (12)

with matrix D = [d(0¢), ..., d((M — 1)¢)] € C*M "M peing
the Discrete Fourier Transform (DFT) matrix. The phase
mode excitation or beam-space transformation is now given

by
(D" V) - b(g) =a(9). (13)

In order to yield the array output in beam-space yg(t), the
transformation is applied to the array output y()

Yas (£) = (DT : V)T (). (14)

The truncated Jacobi-Anger expansion introduces a system-
atic error, which depends on the actual AoA and causes an
estimation bias or increased estimation variance [23]. Fur-
thermore, beam-space transformation changes the second-
order statistic of the noise, which is no longer homogeneous
over the array channels.

The beam-space transformation assumes an UCA, which
follows the element-space model (4). This model does not
apply for real arrays, such that calibration of the array is
necessary.
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5. Sensor Array Calibration

5.1 Global vs. Local Array Calibration

5.L1 Global Calibration. In global calibration, the disturbed
array output is mapped onto a reference array output, whereas
the disturbances are assumed as independent on the direc-
tion of impingement. In the following, a linear relationship
between disturbed and reference array output is assumed.
Then, global array calibration is done by a calibration matrix
C ¢ CM™M mapping the reference array output m(¢) onto
the disturbed one m(¢)

c':m () — m (). (15)
Accordingly, calibration of the array is given by
V. () =C-y (), (16)

with the vector y,(t) of calibrated array outputs. Note that
applying the calibration matrix changes the second-order
statistics of the noise, which becomes 0*CC". In the simula-
tion and measurement section it will not be accounted for the
changed noise statistics, in order to investigate the influence
of global calibration on the estimator performance.

The calibration matrix is derived from array calibration
measurements, which are conducted on a test range or in
an anechoic chamber. These measurements are a set of array
outputs for known directions of impingement and comprise
the array characteristics as well as the disturbances. Introduce
the matrices

B () = [bmf (@1),.... b (SDV)] e CM (17a)

B(¢)=[b(g)),.-..b(py)] e

A(p)=[algr),....alpy)] € cM, (17¢)

(17b)

whereas B™' comprises the steering vectors from the cali-
bration measurements, and B and A comprise the steering
vectors from the sampled element- and beam-space array
model, respectively. The calibration matrix can be calculated
in element- and beam-space. Considering the array model
in element-space, the calibration matrix is calculated in
element-space.

Cus : B (9) — B (p) 18)

Application of matrix Cgg to the array output yields the
calibrated array output in element-space. Hence, subsequent
transformation to beam-space may be necessary depending
on the AoA estimator. Considering the array model in beam-
space, the calibration matrix is calculated in beam-space.

Cps : B (9) — A(g) (19)

Application of matrix Cgg to the array output yields the
calibrated array output in beam-space.
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TaBLE 2: Considered methods to estimate calibration matrix C.

Method Reference Estimation space
Wax [3] element- and beam-space
Sommerkorn [16] element- and beam-space
Kortke [17] element- and beam-space
Friedlander [18] element-space

Ng [19] element-space

See [20] element- and beam-space
Haefner This work element- and beam-space

5.1.2. Local Calibration. In local calibration, the array dis-
turbances are considered as depending on the direction
of impingement. Consideration of direction dependent dis-
turbances is accomplished by using the array calibration
measurements Bref((p) as the reference steering vectors in
the DF algorithms [2, 24]. Consequently, the estimators
ESPRIT, IQML, root-MUSIC, and root-Capon are not appli-
cable under local calibration, because these methods cannot
incorporate arbitrary or measured steering vectors [15].

Because the calibration measurements describe the array
for discrete angles only, whereas DF algorithms require a
continuous description, interpolation is required. Here, the
EADF [25] is used to interpolate the calibration measure-
ments.

5.2. Estimation of Global Calibration Matrix. Table 2 sum-
marises the considered methods to estimate the global cal-
ibration matrix. Depending on the considered array model
and the estimation method, the calibration matrix can be
estimated in element- or beam-space.

5.2.1. Haefner-Method. As pointed out, the second-order
statistic of the noise is changed by applying the calibration
matrix. This can deteriorate the performance of some DF
methods, because they assume the noise covariance matrix
to be diagonal. Introducing the constrain CC™ = I regarding
the estimation of the calibration matrix, the noise statistic
will not change after calibration. Applying this constraint to
the method of Wax results in novel method to estimate the
calibration matrix.

arg min “C B () -M ((p)“i ,
¢ (20)

st. CcCl =1

Hence, the objective is to minimise the cost function subject
to the constraint that the resulting matrix is unitary [26].

5.3. Impact of Global Calibration on Array Characteristics.
In order to investigate the effect of calibration on the array
characteristic, a real array will be considered. The array
under consideration is the Poynting DF-A0046 UCA (see
Figure 2), which operates at 305 MHz centre frequency. The
array features 5 vertically polarised dipoles and 5 horizontally
polarised monopoles, whereas the dipoles will be considered
only.

FIGURE 2: Poynting DF-A0046 UCA (dashed box) featuring 5
vertically polarised dipoles and 5 horizontally polarised monopoles.
Only the dipoles will be considered in this paper.

First, the influence of global calibration on the array
geometry is investigated. As stated previously, practical arrays
suffer from mechanical imperfections, such that the assumed
circular geometry is not assured. The estimated and assumed
sensor positions are shown in Figure 3. It becomes obvi-
ous that the real array does not feature UCA properties
as, e.g., equiangular spaced sensors. After calibration the
sensor positions are slightly corrected. Hence, geometrical
imperfections can be corrected to some extent by global
calibration.

Furthermore, the effect of calibration on the sensor
characteristics is investigated. Magnitude and phase of the
model and the sensor response before and after calibration
are shown in Figures 4(a) and 4(b), respectively. From
Figure 4(a) it becomes obvious that the vertical dipole is
shadowed by the array mast, resulting in an attenuation
of up to 10 dB. After calibration, this strong attenuation is
corrected, resulting in a more omnidirectional characteristic
of the sensor. Also, the direction cosine of the phase becomes
much closer to the model after calibration; see Figure 4(b).

6. Simulation Based Studies

In order to compare the various calibration matrix estima-
tors and the DF techniques, Monte-Carlo simulations with
varying signal to noise ratio (SNR) are carried out. Data are
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FIGURE 3: Normalised sensor positions in the x-y-plane (array
top view) as assumed by the model, and before and after global
calibration. The sensor positions are normalised to the centre
wavelength A_.

TABLE 3: Parameters of the simulations.

Parameter Value

Transmit signal zero-mean, circularly normal distributed
Centre frequency 305 MHz

Receive array Poynting DF-A0046

SNR -10 dB to 40 dB

No. snapshots 50

AoAs uniformly distributed

generated according to (3), whereas a single source is consid-
ered. The simulation parameters are summarised in Table 3.
As receive array the Poynting DF-A0046 UCA is used, and
calibration data of the array are used as steering vectors for
the generation of the data. Figure of merit for comparison
is the root mean-square error (RMSE) of AoA estimates.
The estimation error is defined as the orthodromic angular
distance { between the given AoA ¢ and the estimated AoA

¢
{ =arccos(cos (|p - @|)). (21)

The RMSE is calculated by averaging the squared estimation
error over 1000 Monte-Carlo runs, whereas each run features
fix SNR and random AoA. The derived RMSEs are compared
to the stochastic Cramér-Rao lower bound (CRLB) [27],
indicating the lowest achievable RMSE for an unbiased
estimator.

6.1. Comparison of Calibration Matrix Estimators. The esti-
mated global calibration matrices are applied to the gen-
erated array outputs and DF is conducted afterwards. The
ESPRIT estimator and the MUSIC-1 estimator are exemplary
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utilised for AoA estimation in beam-space and element-
space, respectively. For the ESPRIT estimator, calibration
according to the array model in beam- and element-space
with subsequent beam-space transformation is applied. The
resulting RMSEs are shown in Figures 5(b) and 5(a). The
RMSEs for MUSIC-1 based estimation are shown in Figure 6.

Obviously, the RMSE curves for all calibration methods
converge to a certain value, indicating biasedness. Further-
more, the ESPRIT estimates never attain the CRLB, because
the beam-space transformation introduces errors resulting
in an increased variance of the estimates. Furthermore, the
RMSEs of the ESPRIT estimates indicate that calibration
w.r.t. the array model in element-space slightly outperforms
the calibration w.r.t. the array model in beam-space. An
explanation can be given by the global calibration matrix
itself. Basically, the matrix describes disturbances due to cou-
pling or electrical and mechanical imperfections. Therefore,
the calibration matrix has a clear physical meaning in the
element-space. Calibration matrix estimation w.r.t. to the
beam-space model assumes a virtual array, such that the
calibration matrix has no longer a clear physical meaning.
Hence, the disturbances are not described properly and the
calibration becomes less powerful. The proposed estimation
method performs comparably worse, which can be related to
the constraint of a Hermitian calibration matrix causing a less
powerful calibration. Hence, variation of the noise statistic
is not as a crucial for the bearing estimation as remaining
calibration errors. Comparison of the RMSEs of the ESPRIT
and MUSIC-1 estimator indicates that the MUSIC-1 estimator
attains the CRLB for SNRs around 0dB, but the ESPRIT
estimator slightly outperforms the MUSIC-1 estimator in
terms of minimal achievable RMSE. Overall, the estimation
method by Sommerkorn in conjunction with the ESPRIT
performs best.

6.2. Comparison of DF Techniques. First, the considered
DF techniques in conjunction with global calibration will
be compared. The global calibration matrix is estimated in
element-space by the method of Sommerkorn. The calculated
RMSEs are shown in Figure 7(a). All estimators saturate to
a certain RMSE for high SNRs, such that the estimators in
conjunction with the global calibration are not considerable
as unbiased. Because of, e.g., the erroneous sensor positions
due to mechanical imperfections, array disturbances are
direction dependent. However, global calibration attempts
to correct the array disturbances according to an average
disturbance over the whole range of impingement directions.
Hence, some model errors remain after calibration, such
that the estimators cannot be unbiased. The CML, UML,
MODE, MUSIC-1, MUSIC-2, and Bartlett beamformer attain
the CRLB for SNRs from -5 dB to 5 dB. Hence, remaining
model errors are hidden by the noise in that region, such
that model errors are only severe for high SNRs. Overall,
the ESPRIT estimator shows the best performance. Hence,
the errors due to beam-space transformation are not so
severe as the remaining errors from the global calibration.
The proposed root-Capon and Capon-2 and the literature
based Capon-1 estimator perform comparably worse. Since
all Capon methods employ the inverse of the covariance of
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and the sensor response after calibration with the calibration matrix estimated by the method of Wax. The plots show the (a) magnitude and

(b) phase of the response.
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FIGURE 5: RMSE of AoA estimates with the ESPRIT algorithm and calibration w.r.t. (a) the element-space model and subsequent beam-space
transformation and (b) the beam-space model. The CRLB is plotted as red dashed line.

the measurements and the calibration matrix influences this
covariance, a deteriorated estimation performance seems to
be caused by calibration.

In order to verify the explanation of biased estimates
due to global calibration, the RMSE for local calibration
will be investigated. Note that the beam-space estimators are
excluded, because they cannot be applied under local cali-
bration. The calculated RMSEs are depicted in Figure 7(b).
The estimators do not saturate to a certain RMSE and hence
are considerable as unbiased. Furthermore, the CRLB is

attained by all DF methods for SNRs above 0dB. Hence,
the DF methods are considerable as statistically efficient [15].
Comparing Figures 7(b) and 7(a) it can be concluded that a
SNR above 10 dB is sufficient to outperform global calibration
by local calibration.

7. Measurement Based Studies

Calibration and experimental measurements were performed
on a test range in Paardefontein, South Africa, using the
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TABLE 4: Setup for the test measurements.

Parameter Value

Transmit signal multi-sine

Centre frequency 305 MHz

Bandwidth 10 MHz

Transmit antennas
Transmit polarisation
SNR

Receive array
Receive polarisation
AoAs

logarithmic periodic dipole antenna
vertical
approx. 25 dB
uniform circular array with 5 dipols
vertical
25%25° & —-30% 8" & —10°

RMSE [degree]

SNR [dB]
- uncalibrated —A— Sommerkorn
—s#k— Haefner See
—@- Wax Kortke
—— Ng —— Friedlander

FIGURE 6: RMSE of AoA estimates with the MUSIC-1 algorithm and
calibration w.r.t. the element-space model. The CRLB is plotted as
red dashed line.

5 vertically polarised dipoles of the Poynting DF-A0046
UCA as receive array. First, a single source has been placed
at 25 azimuth angle and approx. 102m apart from the
receiving array. Afterwards, a second source has been placed
at —30° azimuth angle and approx. 72m apart from the
receiving array. The second source is driven by the same
signal as the first one, such that the phase difference between
both sources remains fixed (coherent source case). To cope
with the presence of coherent sources, spatial smoothing in
conjunction with forward-backward averaging is applied as
a preprocessing step [28] for the ESPRIT and root-MUSIC
estimator. Last, two coherent sources were placed at —10° and
8” azimuth angle and 91 m and 61 m apart from the receiver,
respectively. The elevation angles in all measurements were
approx. 0°. Some details of the measurement setup can be
found in [24]. Source antennas were vertically polarised
logarithmic periodic dipole antenna (LPDA). Transmit sig-
nal was a multi-sine signal with 10 MHz bandwidth at a
carrier frequency of 305 MHz. The measurement setup is
summarised in Table 4.

To show the difference between global and local calibra-
tion, the spectrum of the Bartlett, Capon-1, and MUSIC-
1 method is calculated for both calibration schemes. The
respective spectra for the measurement with the single source
are shown in Figure 8. Obviously, local calibration results in
more sharpened peaks in the Capon spectrum and reduced
side lobes in the Bartlett spectrum.

First, the estimators are applied to the measurements
without previous calibration. The estimation results for
the single and dual source measurement are shown in
Table 5. The maximum-likelihood estimators (CML, UML,
and MODE), the MUSIC type estimators (MUSIC-1; MUSIC-
2), and the Bartlett beamformer are able to resolve the single
source, whereas the Capon beamformers (Capon-1; Capon-
2) and the beam-space estimators (ESPRIT, IQML, root-
MUSIC, and root-Capon) show poor results. However, all
DF methods fail to properly estimate the AoAs in case of
two coherent sources. Hence, estimating the directions of two
coherent sources requires array calibration.

The method by Sommerkorn is utilised to estimate the
global calibration matrix in element-space. Estimated AoAs
for the single and dual source case are shown in Table 6. In
the single source case, all estimators show good estimation
results for global as well as local calibration. In the dual
source case, the maximum-likelihood and MUSIC estimators
show the best accuracy for global calibration. The Capon and
Bartlett methods fail to resolve the sources. Facing the beam-
space estimators, only the ESPRIT shows considerable good
results. An explanation is the beam-space transformation and
the few number of sensors, which causes biased estimates
[23]. In case of local calibration, all applied estimators show
good estimation results for the dual source case. Note that
the Capon beamformers properly resolve both sources under
local calibration, whereas the Bartlett beamformer fails. An
explanation is the reduced leakage of the Capon beamformer
compared to the Bartlett [15].

Last, the scenario with the closer located sources is con-
sidered. The estimation results are shown in Table 7. Obvi-
ously, the beam-space estimators fail. Comparing the esti-
mates for global and local calibration indicates an improved
accuracy by local calibration. Furthermore, the proposed
Capon-2 method is able to slightly resolve both sources,
whereas the Bartlett and Capon-1 method fails.
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FIGURE 7: RMSE of AoA estimation with several DF techniques for (a) global calibration using the method of Sommerkorn to estimate the
calibration matrix and (b) local calibration using the EADF as array model. The CRLB is plotted as red dashed line.
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FIGURE 8: Spectra of Bartlett beamformer, Capon-1 beamformer,
and MUSIC-1 for global and local calibration. The global calibration
matrix has been calculated by the method of Sommerkorn. Mea-
surement data with a single source at 25° are used to calculate the
spectra.

In summary, calibration is not necessary in the single
source case, because some estimators can tackle the array
disturbances. However, calibration is required in case of

two coherent sources. Furthermore, beam-space methods are
quite sensitive due to the beam-space transformation and the
few number of sensors, such that these methods are not able
to resolve two closely spaced sources. Overall, DF methods in
conjunction with local calibration show the best estimation
accuracy.

8. Conclusion

Calibration of and direction finding with uniform circular
arrays has been investigates in this paper. Several assump-
tions have been drawn for the conducted investigations.
First, source signals are assumed to imping in the azimuth
plane. Second, cross-polar sensor characteristics have been
neglected, because the sources are assumed to be copolar.
Global and local calibration of the UCA have been
investigated. As shown by simulations, DF in conjunction
with global calibration results in biased estimates due to
remaining model errors, which are especially severe for
high SNRs. On the contrary, DF in conjunction with local
calibration results in unbiased estimates. Also, it was shown
that local calibration is superior to global calibration in terms
of the achievable root mean-square error for SNR above
10 dB. Furthermore, test measurements with a single and
two coherent sources have been considered. In case of a
single source, array calibration is not necessary for several
estimation methods. However, calibration was found to be
required in order to resolve coherent sources. Also, local
calibration was found to outperform global calibration in
case of closely spaced coherent sources. Comparison of the
DF techniques based on simulations and test measurements
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TABLE 5: Estimated AoAs without array calibration. The setup is a single source (25°) and a coherent dual source (-30°, 25°) scenario.

Estimator Single Source Dual Source

AoA [’] AoA [] AoA [°]
ESPRIT 29.82 -61.17 5291
root-MUSIC 2222 -50.01 44.05
IQML 26.38 —24.03 79.29
root-Capon 29.41 -39.36 38.82
Capon-1 28.42 -39.99 35.64
Bartlett 25.04 -135.28 16.06
MUSIC-1 25.04 -33.98 28.82
CML 25.04 -33.25 22.4
UML 25.04 -178.18 102.63
MODE 25.04 —34.24 22.08
Capon-2 28.42 —40.69 35.82
MUSIC-2 25 -35.12 29.8

TABLE 6: Estimated AoAs under global and local array calibration. The setup is a single source (25°) and a coherent dual source (-30°, 25°)
scenario.

Estimator Calibration Single Source Dual Source
AoA [°] AoA [] AoA [°]

ESPRIT global 25.17 -31.18 25.39
root-MUSIC global 25.66 -27.5 23.26
IQML global 25.19 =27.7 26.04
root-Capon global 25.82 -26.3 24.42
Capon-1 global 24.4 —23.81 20.17
Bartlett global 25.15 -138.18 15.93
MUSIC-1 global 25.15 —30.42 25.46
CML global 25.15 -30.2 25.8
UML global 25.15 -30.2 25.8
MODE global 25.15 -30.2 25.8
Capon-2 global 24.39 -23.55 20.09
MUSIC-2 global 25.14 -30.45 25.48
Capon-1 local 2531 -30.1 25.13
Bartlett local 25.37 -134.48 15.4
MUSIC-1 local 25.37 -30.09 25.56
CML local 25.37 -30.17 25.89
UML local 25.37 -30.17 25.89
MODE local 25.37 -30.17 25.89
Capon-2 local 25.31 -30.12 25.18
MUSIC-2 local 25.37 -30.11 25.59

indicates that maximum-likelihood estimators (CML, UML, ~ Data Availability
and MODE) and MUSIC type estimators (MUSIC-1 and
MUSIC-2) show better estimation accuracies than beam- The used data have not been made available due to confiden-
space estimators (ESPRIT, IQML, and root-MUSIC). tiality agreements with research collaborators.
In summary, choosing the appropriate DF technique
and calibration method is an application specific trade-  Conflicts of Interest
off between required estimation accuracy, computational
complexity, and also calibration measurement effort. The authors declare that they have no conflicts of interest.
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TABLE 7: Estimated AoAs under global and local array calibration.
The setup is a coherent dual source (-10°, 8°) scenario.

Dual Source

Estimator Calibration

AoA [°] AoA [°]
ESPRIT global -22.27 19.86
root-MUSIC global -17.78 13.62
IQML global -22.73 19.72
root-Capon global -161.45 -7.61
Capon-1 global -16.88 15.62
Bartlett global 2.5 177.67
MUSIC-1 global -10.69 9.78
CML global -10.69 9.72
UML global -10.69 9.72
MODE global -10.69 9.72
Capon-2 global -16.91 15.66
MUSIC-2 global -11.23 10.18
Capon-1 local -10.03 6.87
Bartlett local 2.61 177.86
MUSIC-1 local -9.79 8.44
CML local —-9.81 8.83
UML local -9.81 8.83
MODE local -9.81 8.83
Capon-2 local -10.61 9.7
MUSIC-2 local -10.34 9.46
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