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� Begri�e, welche sich bei der Ordnung der Dinge als nützlich erwiesen

haben, erlangen über uns leicht eine solche Autorität, dass wir ihres ir-

dischen Ursprungs vergessen und sie als unabänderliche Gegebenheiten

hinnehmen. Sie werden dann zu 'Denknotwendigkeiten', 'Gegebenen a

priori' usw. gestempelt. Der Weg des wissenschaftlichen Fortschritts

wird durch solche Irrtümer oft für längere Zeit ungangbar gemacht. Es

ist deshalb durchaus keine müÿige Spielerei, wenn wir darin geübt wer-

den, die längst geläu�gen Begri�e zu analysieren und zu zeigen, von

welchen Umständen ihre Berechtigung und Brauchbarkeit abhängt, wie

sie im einzelnen aus den Gegebenheiten der Erfahrung herausgewachsen

sind. Sie werden entfernt, wenn sie sich nicht ordentlich legitimieren

können, korrigiert, wenn ihre Zuordnung zu den gegebenen Dingen allzu

nachlässig war, durch andere ersetzt, wenn sich ein neues System auf-

stellen lässt, das wir aus irgendwelchen Gründen vorziehen.

�

Albert Einstein in einem Nachruf auf Ernst Mach.

Einstein, A.: Ernst Mach. Phys. Z. 18 (1916) 101 - 104
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1. Introduction

This thesis is based in parts on the article [1].

Considerations of astrophysical spinning �uid bodies have a long tradition in the

history of relativity. Already in �Die Grundlage der allgemeinen Relativitätstheo-

rie� [2] (The Foundation of the General Theory of Relativity [3]) Einstein justi�es

the necessity of a generalization of relativity by considering two far apart equal

sized �uid bodies which are spinning in a rigid motion around an axis given by the

imaginary line connecting the bodies. For an observer at rest on one of the bodies

the other body appears rotating. If now the surfaces of the bodies are measured by

observers that are at rest relative to the body and one of the bodies is found to be

a perfect sphere it follows that the other body must be a rotational ellipsoid (due

to �centrifugal forces�). It were these kinds of considerations that led Newton to the

introduction of a preferred �absolute space�, which was in con�ict with Einsteins

special relativity. Dropping the assumption of a preferred �absolute space� there

is then no longer a statable cause for the di�erent shapes of the stars within the

system itself. Einstein concluded that the cause must then lie outside of the system

and is given by the far away masses of the ��xed stars sky� and that a generalized

theory of relativity must include this e�ect. Indeed it can be shown that within

general relativity a rotating mass shell induces a centrifugal force on the bodies

inside it [4].

The �rst non-trivial exact solution was published by Schwarzschild [5] in 1916.
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1. Introduction

His solution included black holes, objects with singularities and event horizons,

which have been controversially discussed at that time. Almost exactly one hun-

dred years after Einsteins presentation of his �nal �eld equations of gravity [6] and

Schwarzschild prediction of black holes the Laser Interferometer Gravitational-Wave

Observatory (LIGO) observed the �rst gravitational wave signal (GW150914) of two

merging black holes [7]. This achievement has been awarded with the Nobel prize in

physics and opened up a new channel for astrophysical observation. This observa-

tion was also another important con�rmation for the existence of gravitational waves

which are predicted by general relativity [8]. Another hint on the existence of grav-

itational waves was already given by observations of the Hulse-Taylor pulsar (PSR

1913+16) [9, 10], which is a binary system of two neutron stars orbiting around each

other and of which one of them is highly magnetized and rapidly rotating around

its own axis causing an emission of a beam of radiation that can be detected on

earth. The change of the system orbital period can be explained to great accuracy

by the emission of gravitational waves and it has been computed that the stars will

merge in about 300 million years. Such a merger has been detected only recently in

2017 for the �rst time through gravitational wave observations (GW170817) [11] by

the LIGO-Virgo collaboration. A lot of properties of the merging neutron stars can

be deduced from the wave form, but alas some properties, like the spin, can not be

constrained by current detectors, because to leading order of the post-Newtonian

expansion the wave form is degenerate for example in the spin and the mass ratio.

All the more the study of spinning binaries remains an import branch of numerical

relativity, since it provides as of new the only way to study the physics of these

systems under su�ciently known conditions.

In theory neutron stars are usually described as perfect �uid bodies under extreme

pressure due to their own gravitation. The physical state in the core of these stars

is still unknown, but it is the hope that one day gravitational wave observations

will help to reveal the true nature of the neutron stars interior. It is predicted

that especially the merger and post-merger phase would reveal a lot of insights
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on the neutron stars equation of state. GW170817 gives already some constraints,

but alas the merger parts frequency was too high to be detected. For the inter-

pretation of the merger and post-merger signal numerical simulations of neutron

star binary mergers will be important to interpret the signal, since post-Newtonian

and e�ective-one-body calculations are not accurate enough in this regime. Fur-

thermore these simulations are highly relevant to learn about the yet unobservable

processes that occur in neutron star collisions. A variety on di�erent numerical rel-

ativity codes exists for this purpose such as the Einstein Toolkit [12], SpEC [13],

BAM [14, 15] and bamps [16, 17], to name just some of them.

This work investigates methods to construct initial data for numerical simulations of

binary neutron star mergers. This requires the solution of elliptic equations which

will be found numerically by application of the hyperbolic relaxation method [1]

that has been recently developed by the author. In Ch. 2 the important �ndings of

the method will be presented. In Ch. 3 the numerical implementation of the method

in the numerical relativity code bamps is discussed and investigated in some test

cases. After that in Ch. 4 the discussion returns to rotating perfect �uids, where

the current methods for the construction of neutron star binary initial data will be

reviewed and improvements towards physically more correct data are proposed. As

it turns out there are additional constraints on the rotational �uid velocity, which

have been neglected in previous works. Further problems in the current initial

data formalism are pointed out and possible solutions are proposed. Furthermore

a new approach is developed, in which the hydrodynamic constraint equations for

neutron star initial data are solved avoiding surface �tted coordinates by extending

the matter variables to the vacuum region.
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2. The Hyperbolic Relaxation

Method

2.1. Solution of Elliptic Equations Through

Hyperbolic Relaxation

2.1.1. Basic Concepts and Ideas of the Hyperbolic Relaxation

Method

The solution of elliptic partial di�erential equations (elliptic PDEs) is an important

problem in many areas of physics. Correspondingly large is the variety of analytic

and numerical methods dealing with the solution of elliptic PDEs. The starting

point for many methods is a discretization and (if required) a linearization, which

for typical problems arising in physics leads to a sparse system of linear equations

for a large but �nite number of degrees of freedom. A key role in the solution

of linear systems is played by iterative methods, e.g. [18, 19]. Among the basic

iterative methods are relaxation methods, in particular Gauss-Seidel and Jacobi

relaxation methods, and the family of Krylov subspace methods. Closely connected

are strategies to accelerate these methods, such as preconditioners and multigrid

methods.
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2. The Hyperbolic Relaxation Method

Motivated by the need to solve elliptic systems as initial data within a time evolution

code hyperbolic equations, the starting point is to study a modi�cation of the

classic Jacobi method, which is closely linked to physical relaxation problems. For

concreteness, consider as a minimal example the Laplace equation,

∆φ = 0, (2.1)

for a function φ(x, y, z) on a regular subset of R3 together with appropriate bound-

ary conditions. The Jacobi relaxation scheme can be obtained by introducing a

pseudo time parameter t and considering instead of (2.1) the parabolic di�usion

equation [20]

∂tφ = ∆φ. (2.2)

As time approaches in�nity, any initial data for φ �relaxes� to a stationary state,

where ∂tφ = 0 and hence Eq. (2.1) is satis�ed as well. The Jacobi iteration method

is obtained by discretizing the di�usion equation (2.2). In essence, a pseudo time

dependence is introduced, which is not part of the original problem, and the solution

to the time-independent problem is obtained by means of a �xed point iteration.

A similar strategy is followed in this work. Instead of embedding the elliptic equa-

tion (2.1) in a parabolic equation (2.2), a hyperbolic wave equation with damping

is considered,

∂2
t φ+ ∂tφ = ∆φ. (2.3)

The relationship between hyperbolic equations and parabolic di�usion equations

has already been investigated in some special cases [21�23]. In particular it can be

shown that for large times t the solution of the hyperbolic equation (2.3) will tend

towards the solution of the parabolic PDE, (2.2). The hyperbolic equation can be

cast in �rst order form by introducing the reduction variables ψ = ∂tφ + φ and
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2.1. Solution of Elliptic Equations Through Hyperbolic Relaxation

ri = ∂iφ, yielding the system

∂tφ = ψ − φ , (2.4)

∂tψ = δij∂irj , (2.5)

∂tri = ∂iψ − ri . (2.6)

The �rst of these equations is an ordinary di�erential equation, and it is directly

evident that φ will tend towards ψ exponentially. Thus one can eliminate (2.4) and

obtain the solution directly from ψ.

Combining time derivatives as in (2.3) adds strong damping to the pure wave equa-

tion while maintaining the hyperbolic character of the PDE. The idea is that de-

viations from the stationary state satisfying ∆φ = 0 are damped to zero or are

propagated away, and furthermore it can be advantageous to perform hyperbolic as

opposed to parabolic evolutions.

In the limit of vanishing damping one obtains the plain wave equation. If a station-

ary state is reached, we again have solved (2.1). This undamped approach has, for

example, been used to solve the Poisson equation in the context of self-gravity [24].

Experimenting with (2.3) however, it has been found that the damping is the main

desirable feature, while propagation of waves o� the grid is far less relevant for the

reduction of the residual of Eq. (2.1).

In [25] the authors analyzed a speci�c hyperbolized version of the Navier-Stokes

equations, that exhibits hyperbolic relaxation. Although the type of equations that

are considered are similar, the perspective in this work is di�erent. Here the elliptic

equation is the fundamental problem and it is embedded in hyperbolic equation

with dampimg to obtain an iterative scheme for the solution of the elliptic equation.

Since there does not seem to be an established name for this idea, the method is

referred to as hyperbolic relaxation for elliptic equations (HypRelax), as opposed to

parabolic relaxation that is at the heart of the Jacobi method.
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2. The Hyperbolic Relaxation Method

With regard to previous literature on hyperbolic relaxation for elliptic equations,

some aspects have been explored in [26] in the context of �gauge drivers� for numer-

ical relativity. In particular, [26] introduced one of the most used gauge conditions

for certain black hole evolutions, the Gamma-driver for the shift vector, which em-

ploys a hyperbolic equation related to the elliptic equation for a minimal distortion

shift. They likewise discussed a similar approach to the lapse in which the associ-

ated elliptic equation corresponds to maximal slicing. Also see [27] on gauge drivers,

where however only parabolic relaxation is considered.

The goal of the present chapter is to develop hyperbolic relaxation given by the

prototype in (2.3) into a method to solve a general class of systems of second

order, non-linear elliptic equations. The problem of immediate interest are the

constraint equations of general relativity together with the constraint equations in

relativistic hydrodynamics, that originate from particle number conservation and

energy-momentum conservation. In Ch. 4 they are solved as a system of non-

linear elliptic equations to obtain initial data for evolution in numerical relativity.

However, the formalism is quite independent of this particular problem.

Considering (2.3), let us collect some basic observations here in order to intro-

duce the main questions we want to address. First of all, we have to address the

well-posedness of the hyperbolic PDEs. Given a self-adjoint, elliptic operator, the

hyperbolicity of equations of type (2.3) should be clear. There exists a rich theo-

retical background regarding well-posedness and numerical stability for hyperbolic

PDEs [28�30], which helps to �nd relaxation schemes that are well suited for nu-

merical applications.

Second, in addition to the boundary conditions of the original elliptic equation

boundary conditions for the hyperbolic equations must be chosen such that they

are compatible with the asymptotic elliptic problem. This choice is not unique,

but of great importance to obtain successful relaxations. In particular, maximally

dissipative boundary conditions are considered.
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2.1. Solution of Elliptic Equations Through Hyperbolic Relaxation

Third, assuming feasibility and stability of hyperbolic relaxation, a key question

concerns the e�ciency of the method. In both parabolic and hyperbolic relaxation

methods the time parameter is unrelated to the elliptic equation, i.e. the time

evolution is of no interest as long as the stationary state is reached e�ciently. This

is the basis for di�erent acceleration strategies. For hyperbolic relaxation, there is

a �nite propagation speed, and in contrast to the di�usion equation it is not clear

how to by-pass that speed to accelerate the method.

As it stands, there are pragmatic considerations that can make hyperbolic relaxation

methods interesting, in particular when solving elliptic equations as part of a larger

project. For example, elliptic PDEs are often solved to provide initial data for

evolution systems that are subject to certain constraint equations, e.g. the Maxwell

equations or the Einstein equations. However, the main work load is the actual

evolution of the data by integrating a hyperbolic PDE. In such a case the hyperbolic

relaxation method does not have to compete with optimized standard methods in

terms of e�ciency as long as solving the elliptic equation is only a small part of the

entire work load. On the other hand, a hyperbolic relaxation method may be easy to

implement using the existing infrastructure of a numerical evolution code, avoiding

the need for and the complications of an external elliptic solver. Using the same

infrastructure also has the advantage that interpolation errors can be avoided by

using the same grid discretization. Considering our research in numerical relativity,

a sophisticated infrastructure for evolutions is indeed available, but we were looking

for alternative elliptic solvers. Hence hyperbolic relaxation is implemented in the

pseudospectral hyperbolic evolution code bamps [16, 31], which only required minor

modi�cations once the formalism itself was established.

Throughout the thesis the Einstein summation convention is used, i.e. it is summed

over indices that occur once as an upper index and once as a lower index, e.g.

siti =
∑

i s
iti. Latin letters i, j, k, ... denote coordinate components and they are

lowered and raised by an arbitrary metric with positive signature. An index s

15



2. The Hyperbolic Relaxation Method

denotes a contraction with a vector si, in particular ∂s = si∂i = si ∂
∂xi

. Greek letter

indices α, β, γ denote components of a �eld and they are lowered and raised by the

Euclidean metric δαβ. Note that later in Ch. 4, conforming with the conventional

notation, Greek letters will denote four dimensional spacetime indices and Latin

lower case letters will denote only spatial coordinate components.

2.1.2. Evolution System

In the following the principal ideas of the hyperbolic relaxation method will be

presented and the equations that follow for the iteration scheme will be derived.

Although it is possible to write down hyperbolic relaxation schemes in second order

form like Eq. (2.3), the focus will be on a �rst order formulation. This is primarily

done because the used evolution code bamps only handles �rst derivatives, but the

the reduction to �rst order also allows considerable freedom in the problem setup.

In this chapter the systems of elliptic equations under consideration are given in

second order form, i.e.

(Lψ)α = a(xk)
ijβ

α∂i∂jψβ + Fα(xk, ψβ, ∂iψβ) = 0 , (2.7)

where the ψα are the N unknown solution variables and F is a continuous function

of the solution variables, their derivatives and theD coordinates xk. In the following

aijβα is taken to be a smooth function of the coordinates and this dependence will

be suppressed in the notation. Every elliptic system will be accompanied by a

set of boundary conditions on the variables ψα and we discuss their treatment in

section 2.1.6. In the following we consider classically elliptic systems [32] only, i.e.

systems with

det(aijβαsisj) 6= 0 ∀s ∈ RD \ {0} , (2.8)

where the determinant is understood to be taken on the indices α and β.
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2.1. Solution of Elliptic Equations Through Hyperbolic Relaxation

To solve the second order equation (2.7) one could employ the Jacobi method, which

can be motivated by evolving the parabolic partial di�erential equation:

∂tψα = (Lψ)α , (2.9)

where t is some parameter that plays the role of time.

For a classically elliptic system with constant coe�cients the Jacobi method can

only converge if ajiβα is positive de�nite on the whole domain, i.e. there exists an

ε > 0

ajiβαtjβt
α
i ≥ εtiαtiα ∀t ∈ RD×N \ {0} , (2.10)

which will be assumed in the rest of this chapter. This condition corresponds to

the notion of strong ellipticity, which de�nes an important subclass of classically

elliptic systems [32]. Note that we have the freedom to multiply the elliptic equation

with an invertible matrix dβα, yielding (L̃ψ)α = dβα(Lψ)β = 0, which has the same

solutions as the original equation. This freedom allows the transformation of some

systems that are classically but not strongly elliptic into strongly elliptic form.

To construct the hyperbolic relaxation equations one can reduce the second order

elliptic system to �rst order by introducing the reduction variables riα:

0 = aijβα∂irjβ + Fα(ψβ, riβ) , (2.11)

0 = ∂iψα − riα . (2.12)

In analogy to the Jacobi method (2.9) ψα is evolved by taking Eq. (2.11) as the

right-hand side, yielding

∂tψα = aijβα∂irjβ + Fα(xi, ψβ, riβ) (2.13)

and one proceeds similarly with the equations for the reduction variables ri:

∂triα = bj βi α(∂jψβ − rjβ) , (2.14)
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2. The Hyperbolic Relaxation Method

where bj βi α is arbitrary under the requirement of positive de�niteness, meaning in

analogy to Eq. (2.10)

bj βi αtjβt
iα > εtiαt

iα ∀t ∈ RD×N \ {0} . (2.15)

The system of Eqs. (2.13) and (2.14) forms a �rst order hyperbolic di�erential

equation which will be referred to as the the hyperbolic relaxation system. Clearly

the reduction constraint Eq. (2.12) is not enforced at all times and will indeed be

violated during the relaxation process, however we are only interested in the steady

state, which ful�lls the reduction constraint, because Eq. (2.14) drives the reduction

variable ri towards ∂iψ. This driver concept is a general idea of the method that

will also be used in a generalized approach in Sec. 2.2. To get an idea how this

driver works, let us assume for arguments sake that ∂t∂iψα = 0, which is reasonable

close to the steady state. The solution for riα then has the form

riα(t) =
n∑
l=1

e−λlt
ml∑
kl=0

xklhkliα + ∂iψα , (2.16)

where h is constant and the λl are the n eigenvalues de�ned by the eigenvalue

equation bj βi αt
iα
l = λlt

jβ
l and ml depends on the geometric multiplicity of λl. From

the positive de�niteness of b we know that all the eigenvalues have positive real

part and it follows immediately that riα approaches ∂iψα exponentially. Indeed in

Sec. 2.1.4 it will be shown for a simple case that the modes of the system are always

damped even for ∂t∂iψα 6= 0. It is emphasized however that in some cases, e.g.

if the elliptic system has no solution, ∂iψα can grow faster than riα and thus the

reduction constraints cannot be satis�ed asymptotically in time.

It is obvious that if the hyperbolic relaxation system reaches a steady state we must

have obtained a solution to the �rst order elliptic system Eqs. (2.11) and (2.12),

and hence also of the original elliptic equation (2.7).

A small variation of the relaxation equations can be obtained by a di�erent choice

of the reduction variable. For example the reduction variable could be chosen as

18



2.1. Solution of Elliptic Equations Through Hyperbolic Relaxation

follows

∂iψα − cjirjα , (2.17)

where cji is some positive de�nite matrix. It can then be shown that the evolution

equation

∂triα = bj βi α(∂jψβ − ckj rkβ) , (2.18)

will drive rjα towards (c−1)ij∂iψα. An application for this can be found for example

in numerical relativity applications where it is sometimes advantageous to use a

derivative that has been raised by the spatial metric as reduction variable. This

variant is however not further considered in the course of this thesis.

It is natural to ask here why derivation has been restricted to second order elliptic

systems rather than including also �rst order systems. The reason is that only for

this class of operators it is possible to identify a hyperbolic relaxation scheme which

can be expected to e�ciently settle down to a steady state. The next natural query

is what, if anything, is gained by insisting on taking the relaxation scheme in �rst

order form, beyond the practical requirement that the scheme can be implemented

within the used evolution code. As we have seen, the reduction allows a variety of

choices for bj βi α, which is not directly evident in the second order form. In fact it is

not clear whether a similar second order form relaxation equation like Eq. (2.3) can

be found for generic bj βi α. As will be seen in Sec. 3.1.4 the �rst order formulation

also provides a method to de�ne a re�nement criterion.

2.1.3. Residual Evolution

The residuals of the �rst order system, Eqs. (2.11),(2.12), are given by

Rα = aijβα∂irjβ + Fα(xi, ψβ, riβ) , (2.19)

Riα = bj βi α(∂jψβ − rjβ) . (2.20)
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2. The Hyperbolic Relaxation Method

A simple calculation shows that the residuals will evolve according to

∂tRα = aijβα∂iRjβ +
∂Fα
∂ψβ

Rβ +
∂Fα
∂riβ

Riβ , (2.21)

∂tRiα = bj βi α(∂jRβ −Rjβ) . (2.22)

For a working relaxation scheme, we want the residual evolution system to be stable,

i.e. the �rst order residuals should converge to zero for t→∞, for residuals that are

su�ciently close to zero. Systems of this type and stability conditions are discussed

in detail in [33] and [34]. It is not possible for us to give general results on the

stability of the hyperbolic relaxation scheme, as the multitude of possible systems

is too large to be covered in a closed form, especially for elliptic systems with more

than one variable. A stability analysis must therefore be done individually for the

concrete problem.

2.1.4. Mode Analysis

To shed some light on the behavior of solutions to the hyperbolic relaxation, a

simple mode analysis is performed ignoring the issue of boundary conditions for a

generalization of equation (2.3)

ε∂2
t φ+ η∂tφ = ∆φ, (2.23)

where ε and η are real, non-negative constants. A third constant in front of ∆φ has

been rescaled to one without loss of generality. With ε = η = 1 as in Eq. (2.3) the

unit of time is �xed to be dimensionless (unity since [T 2] = [T ]).

Inserting the plane-wave ansatz

φpw(t, x) = ei(kx−ωt) , (2.24)

with constants k and ω, into the hyperbolic relaxation equation (2.3) we obtain

εω2 + iηω = k2 , (2.25)

ω±(k) = − 1

2ε
(ηi±

√
4εk2 − η2) . (2.26)
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2.1. Solution of Elliptic Equations Through Hyperbolic Relaxation

The wavenumber k is a real number related to the wave length, k = 2π/λ, while ω

may be a complex number. Recall that for the wave equation ω±(k) = ±k, while

for the heat equation ω(k) = −ik2. For hyperbolic relaxation, there is a further

case distinction for the sign under the square root
√

4εk2 − η2. The existence of

a transition at a speci�c length scale λcrit = 2π
kcrit

= 4π
√
ε

η
signals that the chosen

hyperbolic relaxation equation has �xed a scale, that can be adjusted by changing

the parameters η and ε.

For su�ciently large wavenumber,

φpw = e−
η
2ε
tei(kx±

1
2ε

√
4εk2−η2 t) , k ≥ η

2
√
ε
, (2.27)

which is a damped wave with phase velocity v(k) = 1
ε

√
ε− η2

4k2
. The damping is

independent of k (as opposed to the heat equation with e−k
2t). The phase velocity

approaches v = 1/
√
ε for large k, but for k approaching the critical value η

2
√
ε
from

above the phase velocity tends towards v = 0. This has the consequence that the

maximal possible time step scales like ∆t ∼
√
ε∆x for large k (high resolution), but

has a �nite upper bound for small k. Increasing the parameter ε might appear to

be a good idea at �rst, since it allows one to use larger time steps, but at the same

time it reduces the damping by the same factor.

For su�ciently small wavenumber,

φpw = e−
1
2ε

(η±
√
η2−4εk2)teikx, 0 ≤ k ≤ η

2
√
ε
, (2.28)

which is a non-moving wave pro�le eikx times a k-dependent damping factor. For

k = η
2
√
ε
, the damping is e−

η
2ε
t, while for k equal to zero there are two cases,

e0 or e−
η
ε
t. For small k, the worse (more weakly) damped case is exp(− 1

2ε
(η −√

η2 − 4εk2)t) ≈ exp(− 1
η
k2t), which is the same damping as for the basic heat

equation, when we choose η = 1.

Summarizing, the plane-wave mode analysis suggests that solutions to the hyper-

bolic relaxation equation exhibit a mixture of relaxation and wave propagation
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2. The Hyperbolic Relaxation Method
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Figure 2.1.: Damping and propagation speed of basic hyperbolic relaxation with

parameters ε = 1 and η = 1 compared to parabolic relaxation. There

is a transition at kcrit = 1
2
, which can be moved to lower values by

adjusting η. The overall damping is determined by the slowest damping

rate.

phenomena, see Fig. 2.1. For wave numbers larger than a critical value, k ≥ kcrit

with kcrit = η
2
√
ε
, there is wave propagation with simultaneous damping. Noteworthy

is that the damping is independent of k, e−
η
2ε
t. This is a promising feature compared

to parabolic relaxation with e−k
2t for intermediate values of k. For large values of k

parabolic relaxation has much stronger damping, but the overall convergence rate is

dominated by small k. For hyperbolic relaxation, there is no wave propagation for

k ≤ kcrit, but the damping persists. Interestingly, the damping factor asymptotes

towards e−
1
η
k2t for k → 0, and is never worse than parabolic relaxation for small k,

when we choose η = 1.

If the �rst order relaxation equations are mimicked by (2.13) and (2.14) by

∂tψ =
1

η
∂jr

j, ∂tri =
η

ε
(∂iψ − ri), (2.29)

we recover the modes in (2.26) and D − 1 transverse modes that have ψ = 0 and

for which ω(k) = −iη
ε
is purely imaginary.
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2.1. Solution of Elliptic Equations Through Hyperbolic Relaxation

For the choice of η and ε we can take our motivation from the gauge driver con-

struction [26] and set ε = 1, η an arbitrary non-negative constant, and obtain

ω±(k) = −1

2
(iη ±

√
4k2 − η2). (2.30)

A uniform scaling of time, i.e. ε = η2 with arbitrary η, has also been considered.

To avoid small k that drop below (or too far below) kcrit, we can adjust ε or η such

that the length scale of k corresponds to the physical size L of the domain, say

λcrit = 2L. This will decrease the damping for large k, but will also avoid the severe

slow down when the damping approaches that of parabolic relaxation. One could

also think of varying η from one iteration step to another, maybe even adaptively.

This however is beyond the scope of this thesis.

2.1.5. Hyperbolicity Analysis

Before starting the hyperbolicity analysis of the HypRelax system it is convenient

to introduce the following notation for inverse tensors. Whenever an inverse tensor

appears it has to be understood as the inverse of matrices with respect to the �eld

indices. For example the inverse of the tensor cβα is (c−1)αγ and we have

cβα(c−1)αγ = δβγ . (2.31)

For the hyperbolicity analysis the hyperbolic relaxation system is �rst written in

matrix form

∂tu = Pk∂ku + h(xi,u) (2.32)

with

Pk =

 0 akiβα

bk βi α 0

 , u =

ψα
riα

 . (2.33)
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2. The Hyperbolic Relaxation Method

The principal symbol of this system is then given by

Ps = Pksk =

 0 asiβα

bs βi α 0

 , (2.34)

where si is an arbitrary unit vector, sisi = 1. Suppose cβα = asiεαb
s β
i ε has a complete

set of eigenvectors w α
γ with cβαw

α
γ = σαγw

β
α , where σαγ is diagonal. If furthermore

all the eigenvalues, i.e. the diagonal elements of σαγ , are positive then Ps has the

following left eigenvectors

v0
jγ =

(
0, δαγ δ

i
j − bs εj γ(bss

−1)αεs
i
)
, (2.35)

v±γ =
(
w α
γ ,±(ρ−1)δγw

ε
δ a

siα
ε

)
, (2.36)

where ρβγ is the root of σ
β
γ , i.e. it is a positive diagonal tensor with ρ

α
γρ

β
α = σβγ . Note

that of the eigenvectors v0
jγ only (D − 1)N are linearly independent, while the v±γ

are 2N independent vectors. If there exists a constant K, independent of si, such

that ‖V‖2 + ‖V−1‖2 < K, where V is an, in general si-dependent, square matrix

constructed from a linearly independent set of the eigenvectors v, then the system is

strongly hyperbolic [28�30]. The characteristic variables û and their characteristic

speeds λ are thus

û0
jγ = rjγ − bs εj γ(bss

−1)αεs
iriα , λ0

iγ = 0 , (2.37)

û±γ = w α
γ ψα ± (ρ−1)δγw

ε
δ a

siα
εriα , λ±γ = ±ραγeα , (2.38)

where eα denote the Cartesian basis vectors. From this we can recover the evolved

variables in terms of the characteristics:

ψα =
1

2
(w−1) γ

α (û+
γ + û−γ ) , (2.39)

riα = û0
iα + bs εi α(c−1)βε

(
(w−1) δ

β ρ
γ
δ

û+
γ − û−γ

2
− asjγβû

0
jγ

)
. (2.40)

The freedom in the choice of bj βi α can be used to impose certain properties on

the hyperbolic relaxation system. In the following some interesting choices will be
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2.1. Solution of Elliptic Equations Through Hyperbolic Relaxation

discussed, that ful�ll the restriction of positive de�niteness (2.15) that has been set

for b.

1. b is the identity. A very easy and natural choice is bj βi α = δji δ
β
α. With this choice

we have cβα = assβα, which has only eigenvalues with positive real part due to (2.10).

The imaginary part however can be non-vanishing. If however assαγ = ass α
γ , then

c is guaranteed to have a complete set of eigenvectors with purely real eigenvalues

and thus system is strongly hyperbolic. If we have aijαγ = aij α
γ , then the system is

even symmetric hyperbolic with symmetrizer:

H =

δαγ 0

0 aijαγδjl

 . (2.41)

2. b is the transpose of a. One can also make the system trivially symmetric hyper-

bolic by choosing bj βi α = aj β
iα . The principal symbol of this system is symmetric

and thus the system is symmetric hyperbolic.

3. b is the inverse of a. We can choose b to be the inverse of a in the sense

that b ful�lls a iα
k γb

j β
i α = δjkδ

β
γ . This choice is particularly interesting, because we

then have cβα = δβα and thus all the non-zero characteristic speeds have values ±1.

Furthermore the eigenvectors of c become trivial: w α
γ = δαγ . A symmetrizer for this

system is

H =

δαγ 0

0 a iα
m ωa

m ω
lγ

 . (2.42)

The characteristic speeds determine (among other factors) the maximum allowed

time step and therefore it is usually preferable to have all the traveling characteristic

variables propagating with the same speeds, such that all variables are damped with

the maximum rate. Therefore this choice for bj βi α can be considered optimal for

typical cases. A straightforward generalization of this choice allows bj βi α to be scaled

by a constant factor, which will also uniformly scale the characteristic speeds.
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2. The Hyperbolic Relaxation Method

2.1.6. Boundary Conditions

The basic idea to impose boundary conditions in the bamps code is to modify the

right hand side of the hyperbolic relaxation system. The outward pointing unit nor-

mal covector si to the boundary surface is naturally de�ned by taking the gradient

of a scalar �eld which is increasing across, but constant in the boundary, and then

normalizing this gradient to unit magnitude using our arbitrary but �xed metric.

This metric is subsequently used to raise the index and form the outward point-

ing vector si. Restricting the discussion to strongly hyperbolic systems it is made

sure that a regular (si-dependent) similarity transformation matrix Ts exists which

transforms between the evolved variables u and a linearly independent set of the

characteristic variables û given in Eq. (2.37) and (2.38)

u = Tsû . (2.43)

One can then decompose the evolution equations (2.32) as

∂tu = Ps∂su + Pkqik∂iu + h(xi,u) , (2.44)

where qik = δik − sksi is the projector onto the boundary surface. Multiplying by

T−1
s and one obtains

dtû =T−1
s Ps∂su + T−1

s (Pkqik∂iu + h(xi,u))

=T−1
s PsTsT

−1
s ∂su + T−1

s (Pkqik∂iu + h(xi,u))

=Λsdsû + T−1
s (Pkqik∂iu + h(xi,u)) . (2.45)

Here the straight derivative symbol d denotes that the transformation matrix stands

outside of the derivative, i.e. diû ≡ T−1
s ∂iu, and Λs is a diagonal matrix containing

the characteristic speeds. Boundary conditions on the incoming variables, i.e. those

with positive characteristic speeds, can now be imposed by modifying their right

hand sides. After the right hand sides have been modi�ed the system is then

transformed back by multiplying with Ts.
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2.1. Solution of Elliptic Equations Through Hyperbolic Relaxation

Penalty Method

In the penalty method [35�37] the boundary conditions are weakly imposed by modi-

fying the right hand sides of the incoming characteristic variables û+
γ in the following

way

dtû
+
γ =̂Dtû

+
γ + p(û+BC

γ − û+
γ ) , (2.46)

where p is the penalty parameter, u+BC
γ is some given boundary data that we want

û+
γ to approach, Dtû

+
γ is the unmodi�ed right hand side and =̂ denotes equality at

the boundary. The penalty parameter can not be chosen arbitrarily, but must be

carefully chosen. A detailed derivation of the penalty parameters used in bamps can

be found in [16].

Maximally Dissipative Boundary Conditions

Maximally dissipative boundary conditions [28�30, 38] allow to set boundary con-

ditions of the form

si∂iψα|∂Ω = φα(ψβ, ∂iψβ, q
i
j∂i∂kψβ) , (2.47)

where φ is a function that is allowed to depend on the coordinates xi, the �elds

ψα, their derivatives and the transverse projections (qij = δij − sisj) of their second

derivatives. For clarity and brevity dependence on all the arguments is suppressed

in the following.

Enforcing the boundary conditions (2.47) would cause undesirable re�ections from

the outer boundary during the relaxation process. Is is possible however to construct

maximally dissipative boundary conditions such that (2.47) is ful�lled in the steady

state. Maximally dissipative boundary conditions are imposed by requiring

(ρ−1)βγw
α
β ∂tψα + w α

γ ∂sψα = w α
γ φα . (2.48)

This boundary condition is actually di�erent from Eq. (2.47) during the relaxation

process. However, again we are only interested in the steady state at the end of the
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2. The Hyperbolic Relaxation Method

evolution, where ∂tψα = 0 and thus the correct boundary condition will be imposed.

For numerical stability the functions φα must not depend on normal derivatives of

the evolved variables. Therefore in (2.47) in the arguments of φα the replacements

∂iψβ → riβ and qij∂i∂kψβ → qij∂irkβ have to be made.

For the normal derivatives of the incoming characteristic one obtains the relation

dsû
+
γ = w α

γ ∂sψα + (ρ−1)δγw
ε
δ a

siα
ε∂sriα (2.49)

= w α
γ φα − (ρ−1)δγw

α
δ

(
∂tψα − asjεα∂srjε

)
, (2.50)

where in the actual implementation ∂tψα is to be replaced by Eq. (2.13). This

equation is now used to impose the boundary condition by replacing the dsû
+
γ terms

in Eq. (2.45), yielding the modi�ed right hand side

dtû
+
γ =̂Dtû

+
γ − ρβγ(w α

β ∂sψα + (ρ−1)δβw
α
δ ∂tψα − w α

β φα) . (2.51)

With the general expression at hand, is is now possible to discuss choices for φα that

lead in the steady state to standard boundary conditions for elliptic equations.

1. Dirichlet conditions. Dirichlet conditions are of the form ψα|∂Ω = gα, where

the gα are some function de�ned on the domain boundary ∂Ω. To achieve such a

boundary condition in the steady state, φα has to take the form

φα = siriα + eβα(gβ − ψβ) , (2.52)

where e is positive de�nite, i.e. eβαtβt
α > 0. In the steady state we have ∂iψα = riα

and thus Eq. (2.48) becomes 0 = eβα(gβ − ψβ), which is only ful�lled for the re-

quested boundary condition. The positive de�niteness of e is important to guarantee

stability at the boundary. Suppose we have ∂iψα = riα �xed, then Eq. (2.48) has

the form

(ρ−1)βγw
α
β ∂tψα = w α

γ eβα(gβ − ψβ) , (2.53)

which would have solutions not asymptoting to gα if e was not positive de�nite.

Besides positive de�niteness there are no further restrictions apparent on e and
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therefore, it can be chosen to be the identity eβα = δβα, which is the choice used in

all the investigations presented this work.

2. Neumann conditions. Neumann boundary conditions are of the form si∂iψα|∂Ω =

gα. They are straightforwardly implemented by setting φα = gα.

3. Robin conditions. Robin boundary conditions are a mixture of Dirichlet and

Neumann boundary conditions and can be written as si∂iψα|∂Ω = gα + fβαψβ, where

the fβα are functions de�ned on the domain boundary. Their implementation is also

straight forward choosing φα = gα + fβαψβ.

2.2. Hyperbolic Relaxation Method for Elliptic

Equations in Divergence Form

2.2.1. Evolution System

In some cases elliptic equations are better expressed in divergence form, i.e. they

are given by

(Lφ)α = ∂i(A
i
α(xk, ψβ, ∂kψβ)) +Bα(xk, ψβ, ∂kψβ) = 0 , (2.54)

where it is always assumed that the functions Bα and Aiα are continuous and contin-

uous di�erentiable respectively. Of course these equations could always be expressed

in the standard form of Eq. (2.7), but possibly with a lot of terms depending on

the complexity of of Aiα and Bα . In particular the equation might be only quasilin-

ear, posing a challenge to the characteristic analysis of the HypRelax method and

subsequently the construction of boundary conditions.

Given an equation of the form (2.54) the question might arise whether its type is

actually elliptic or not. To prove this it is necessary to reduce the equation to the
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2. The Hyperbolic Relaxation Method

standard form (2.7) and investigate its principal part given in terms of Aiα by

aijβα =
∂

∂(∂jψβ)
Aiα(xk, ψβ, ∂kψβ) . (2.55)

There are some theorems on solutions to elliptic equations that hold speci�cally for

elliptic equations in divergence form, see e.g. [39]. Usually they exploit the simple

applicability of the Gauss theorem. For example for vanishing Bα it follows easily

that solutions only exist if all closed surface integrals over siAiα, si being the nor-

mal vector to the surface, vanish. In the construction of the hyperbolic relaxation

scheme for divergence form equations we will not rely particularly on these special

properties. Instead we will exploit that this form admits the construction of a relax-

ation scheme with an easy to analyze principal part, where the standard method of

Chap. 2 would only allow schemes with probably non-linear, variable principal part

coe�cients. This new type of hyperbolic relaxation scheme will �nd its application

in the computation of initial data as will be outlined in Chap. 4. I will refer to this

method with the abbreviation HypRelaxDiv, distinguishing it from the HypRelax

method of the previous chapter.

The construction of the HypRelaxDiv scheme goes along the same lines as the

standard HypRelax method, i.e. we start by introducing reduction variables riα for

the �rst derivatives of ψα yielding the �rst order system

0 = ∂i(A
i
α(xk, ψβ, rkβ)) +Bα(xk, ψβ, rkβ) (2.56)

0 = ∂iψα − riα . (2.57)

To evaluate the derivative in the �rst of these equations another variable F i
α is

introduced to write the system in the form

0 = ∂i(F
i
α ) +Bα(xk, ψβ, rkβ) (2.58)

0 = ∂iψα − riα (2.59)

0 = Aiα(xk, ψβ, rkβ)− F i
α . (2.60)
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For clarity the dependence on the arguments of Aiα and Bα is suppressed in the

rest of the thesis and it is understood that they do not depend on derivatives of our

variables. The relaxation scheme is obtained if we add pseudo-time derivatives on

the right hand side and obtain

∂tψα = ∂i(F
i
α ) +Bα (2.61)

∂triα = bj βi α(∂jψβ − rjβ) (2.62)

∂tF
i
α = ci βj α(Ajβ − F

j
β ) + di βj α(∂jψβ − rjβ) , (2.63)

where the functions bj βi α, c
i β
j α and di βj α have been introduced to generalize the

scheme. They are analogous to the function bj βi α in the standard HypRelax scheme

and have to ful�ll the positive condition (2.15). Eq. (2.61) and (2.62) can be dis-

cussed in complete analogy to the standard HypRelax method. The new equa-

tion (2.63) works as a driver letting F i
α approach Aiα exponentially, exactly in the

same way as riα approaches ∂iψα. In Eq. (2.63) the reduction constraint (2.59) has

been added to make the system strongly hyperbolic. Without this term the system

would only be weakly hyperbolic.

From the �exibility in the choice of bj βi α, c
i β
j α and di βj α it is directly evident that

we have strong control over the principal part of this relaxation scheme, which is

helpful for the construction of stable relaxation schemes and in particular for the

implementation of boundary conditions.

There are possible variations to the scheme proposed above. For example one could

add the term ∂ir
i
α to (2.61) and subtract di βj αr

j
β from (2.63) making the system

symmetric in the principal part for appropriate choice of the coe�cients. Another

variation would multiply the right-hand side of Eq. (2.61) which allows to control

the rate of change in certain regions on the grid and thus might be a way to stabilize

the relaxation.

Given the equations in divergence form it is also possible to construct a relax-

ation scheme in �ux-balance form without introducing the new variable F i
α , e.g.
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by Galerkin methods. For test purposes a Discontinuous Galerkin method has been

implemented solving the Poisson equation, but it still lacks an application since this

method is relative expensive and provides no direct advantage. Another variation

is found modifying the driver in the same way discussed for Eq. (2.18). In some spe-

cial cases it is also possible to construct methods completely without the reduction

variables riα.

2.2.2. Comparison with Standard Hyperbolic Relaxation

Having analyzed the general properties of both the standard HypRelax scheme

and the one for divergence equations both will now be discussed comparatively. In

Sec. 2.2.1 it has already been discussed, that the divergence form can be algebraically

simpler and thus reduce the computational costs. Furthermore the principal part

can be chosen in inherently simple enabling one to construct viable boundary condi-

tions. Those two points should be the main motivation to chose the divergence form

version. The advantage of the standard method are its lower storage costs, as it

only requires (D+1)N variables instead of (2D+1)N . Furthermore one has to con-

sider the number of derivatives that are needed. For a spectral method computing

derivatives becomes the most costly part for high spectral resolutions. Luckily the

proposed relaxation scheme for divergence equations requires only derivatives of ψα

and F i
α , but not r

i
α and therefore the computational costs due to derivatives is the

same. One has to note however that one of the main aims of the HypRelax method

is to reutilize existing infrastructure, which is often not designed to exclude certain

evolved variables from the derivative computation. So there is a small initial coding

e�ort necessary to make the method for divergence equations equally e�cient.
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2.2.3. Hyperbolicity Analysis

The characteristic variables of the HypRelaxDiv system are very similar to the

characteristic variables of the HypRelax system discussed in Sec. 2.1.5. Therefore

the analysis here will be presented in a condensed form.

The principal symbol of the HypRelaxDiv system is

Ps = Pksk =


0 0 siδ

β
α

bs βi α 0 0

disβα 0 0

 . (2.64)

In contrast to the HypRelax system the matrix cβα is now given by cβα = dssβα and

as for the HypRelax system it is assumed that it has a complete set of eigenvectors

w α
γ with cβαw

α
γ = σαγw

β
α , where σαγ is a positive de�nite diagonal matrix. The left

eigenvectors of Ps are then given by

v±γ =
(
w α
γ , 0,±(ρ−1)δγw

α
δ si

)
, (2.65)

v(F )j
γ =

(
0, 0, δαγ δ

i
j − djsεγ(dss

−1)αεsi
)
, (2.66)

v
(r)
jγ =

(
0, δαγ δ

i
j − bs εj γ(bss

−1)αεs
i, 0
)
, (2.67)

v×γ =
(
0, (bss

−1)αγs
i,−(dss−1)αγsi

)
, (2.68)

where the matrix ρβγ is the root of σβγ . The characteristic variables û and their

characteristic speeds λ are thus

û±γ = w α
γ ψα ± (ρ−1)δγw

α
δ siF

i
α , λ±γ = ±ραγeα , (2.69)

û(F )j
γ = F j

γ − djsεγ(dss
−1)αεsiF

i
α , λ(F )j

γ = 0 , (2.70)

û
(r)
jγ = rjγ − bs εj γ(bss

−1)αεs
iriα , λ

(r)
iγ = 0 , (2.71)

û×γ = (bss
−1)αγs

iriα − (dss−1)αγsiF
i
α , λ×γ = 0 . (2.72)
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From this the evolved variables can be recovered from the characteristics by:

ψα =
1

2
(w−1) γ

α (û+
γ + û−γ ) , (2.73)

F i
α = û(F )i

α + disεα(ρ−1)γε
û+
γ − û−γ

2
(2.74)

riα = û
(r)
iα + bs εi α

(
û×ε + (dss−1)γεsjû

(F )j
γ + (ρ−1)γε

û+
γ − û−γ

2

)
. (2.75)

The most natural choice for di βj α is di βj α = δijδ
β
α for which the characteristic speeds

become ±1 and the eigenvectors of c become trivial: w α
γ = δαγ .

2.2.4. Boundary Conditions

The boundary conditions of the HypRelaxDiv system can be discussed in exactly

the same way as for the HypRelax system. In fact for the outer boundary conditions

one obtains exactly the same expression for the modi�cation of the characteristic

variable right-hand sides, Eq. (2.51). The only di�erence is that w α
γ and ρβγ are

now computed for cβα = dssβα, as it has already been de�ned in the hyperbolicity

analysis above.
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3. Numerical Implementation and

Test Cases

3.1. Numerical Setup

3.1.1. Grid Setup

The HypRelax method is implemented in the pseudospectral hyperbolic evolution

code bamps and the reader referred to [16], for a detailed description of the grid

setup. Here only a short summary of the basic grid setup and numerical method

is given. The grid consists of di�erent coordinate patches, a cube patch in the

center, transition shell patches and outer shell patches. On each patch there is

a mapping between local Cartesian coordinates to global Cartesian coordinates,

where on shell patches we employ the �cubed sphere� construction [40]. The patches

themselves can consist of smaller subpatches, which are the smallest units used for

the parallelization scheme. For a visual impression of the grid see Fig. 4.1, which

depicts the grid in the xy-plane.

On each subpatch the �elds approximate are approximated by a Chebyshev pseu-

dospectral method, i.e. the subpatches are discretized in every direction by the

Gauss-Lobatto collocation points. It is then possible to reconstruct the Cheby-

shev coe�cients from the �elds values at the collocation points. The bamps code is
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3. Numerical Implementation and Test Cases

adapted to evolutions in three dimensions. For axisymmetric and spherically sym-

metric problems the cartoon method is used to reduce the computational domain

to two or one dimensions respectively [16].

3.1.2. Integration Method

The time integration for relaxation methods does not require a high order of error

convergence, since we are only interested in the steady state at the end of the evo-

lution. More important are the e�ciency and stability of the integration algorithm.

For the time integration the method of lines is used. It is known that for linear hy-

perbolic equations the simple forward Euler-method and also explicit second-order

Runge-Kutta methods are, at least without arti�cial dissipation, unstable (see for

example chapter 6.7 of [28]) and thus are not suited for the integration of the hy-

perbolic relaxation equations.

In the applications presented in this work the popular fourth-order Runge-Kutta

scheme (RK4) is employed, which is stable for hyperbolic equations. This method

needs four evaluations of the right-hand side per time step, which appears to be not

very e�cient. After all, it is not really necessary to use very accurate integrator,

since we are only interested in approaching the stationary state. Therefore it is

worthwhile to investigate other classes of integrators, e.g. multistep methods like

the third- or fourth-order Adams schemes [41], which e�ectively only require one or

two evaluations per time step and are usually also stable for hyperbolic PDEs. Some

simple experiments with the Poisson equation indicated, however, that RK4 is more

e�cient than RK3 or a fourth order Adams scheme since RK4 allows comparatively

large time steps.

Contrary to what is described in [16], it is not necessary to use a �lter to assure

stability stability in the hyperbolic relaxation method, since the system usually
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tends towards a stable static or stationary solution automatically. Consequently

the �lter in bamps is switched of to exploit the full spectral resolution.

In the bamps code there are two types of boundaries. On the one hand bound-

aries between di�erent subpatches, and on the other hand the boundaries of the

computational domain, in particular the outer boundaries. To treat boundaries be-

tween subpatches the penalty method described in Sec. 2.1.6 is employed setting

the boundary data to be the outgoing characteristic of the neighboring subpatch.

To treat the outer boundary with this method one has to provide a function gγ

equaling u+BC
γ at the boundary, i.e.

û+BC
γ = w α

γ ψα + (ρ−1)δγw
ε
δ a

siα
εriα = gγ . (3.1)

Here the given data could be generalized to include combinations of the outgoing

characteristic variables at outer boundary. This strategy could be used to implement

a desired boundary condition from the original elliptic PDE, but has the undesirable

side-e�ect of re�ection from the boundary, which may serve as an obstruction to

decay of the residual. On the other hand, a boundary condition of the direct

form (3.1) would be unusual in practice for elliptic equations, as the characteristic

�elds of the relaxation scheme have no special meaning in the original system.

Therefore the penalty method is not best suited for the treatment of the outer

boundaries. Instead, as described in Sec. 2.1.6, the desired boundary conditions

for the elliptic system are embedded inside boundary conditions for the relaxation

scheme that are more likely to absorb outgoing waves.

3.1.3. Initial Guesses

To start the hyperbolic relaxation one has to provide an initial guess to the solution.

A suitable initial guess will always depend on the speci�c form of the problem,

in particular it should be chosen such that in the course of the relaxation the
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variables do not have to cross any points where the equations (e.g. terms in the

non-principal part) become singular. Test have shown that the solver is particularly

well behaved when starting with a guess that is stationary in the interior, but not

at the boundary. The whole solution then starts to relax from the boundary to the

inside. For applications to numerical relativity initial data this means taking the �at

metric everywhere. This leads indeed to stable relaxations, which demonstrates a

remarkably high robustness that can be achieved by the method. For the reduction

variables the initial guess is simply the derivative of the initial guess for the solution

variables, i.e. (ini)riα = ∂i
(ini)ψα.

3.1.4. Re�nement Strategy

To speed up the relaxation process a simple scheme of successive re�nement is used.

It can be assumed that the right-hand side of the solution variables ∂tψα, Eq. (2.13),

is a good approximation to the residual of the elliptic equation (Lψ)α, Eq. (2.7).

This however is only true until a discretization limit is reached below which the

norm of the residual is no longer decreasing. The norm of the ∂tψα will typically

continue decreasing until machine precision is reached. Numerical experiments have

shown that this continued decrease will only be present if no spectral �lter is applied.

This obersavation makes it possible to construct an indicator signaling when the

discretization limit is reached and thus relaxation should be continued on a higher

resolution grid. In particular the following following criterion has been found to

work well in practice, ∫ N∑
α=1

|∂tψα|dV < c

∫ N∑
α=1

|(Lψ)α|dV , (3.2)

where c is some constant smaller than one. A choice of c = 0.1 will usually work

reasonably well. Depending on the speci�c problem, in particular if the solution is

smooth, also smaller values might be bene�cial. The resolution is increased when

Eq. (3.2) is true and additionally whenever the error of the elliptic equation reaches
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machine precision, i.e. when the norm of (Lψ)α is smaller than 10−13 times the

number of grid points.

The solver starts the relaxation on the coarsest grid and checks every ncheck relax-

ation steps whether to proceed relaxation on a �ner grid based on whether one of

the two criteria mentioned above is ful�lled. The �nal resolution can be determined

by an error bound on the residual of the elliptic equation, or by some predetermined

resolution, which may be required for the evolution of the data. For the re�nement

the resolution on every subpatch is increased by two collocation points in every

direction, which is equivalent to adding two Chebyshev modes in every direction.

The coarse steady state solution is then interpolated to the new subpatches and

the procedure is repeated until the desired resolution is reached. For the reduction

variables it is advisable to use the interpolated values as well instead of taking the

numerical derivative of the solution variables, since the latter introduces new errors,

which costs some extra e�ort to damp.

3.2. Application to Test Cases

3.2.1. Poisson Equation � Finite Di�erencing

To provide a reference point independent of the speci�c pseudospectral methods

of bamps, �rst a minimal implementation using a �nite di�erence method is dis-

cussed solving the Poisson equation. The following hyperbolic relaxation equation

is considered

∂2
t φ+ η∂tφ = ∆φ− ρ, (3.3)

which is implemented as a �rst order in time, second order in space system,

∂tφ = π − ηφ, (3.4)

∂tπ = ∆φ− ρ. (3.5)
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The fully �rst order version of this system is analyzed in Sec. 3.2.2. At the bound-

aries asymptotic Dirichlet conditions analogous to (2.52), ∂tφ = g−φ and ∂tπ = g−π

are used. The parameter ε that has been introduced in the discussion of Sec.2.1.4

is set to 1, since its dominant e�ect would be just a rescaling of the iteration step

size.

A centered, second order accurate �nite di�erences in space is chosen, and the

default time integrator is the classic fourth-order Runge-Kutta method. The nu-

merical domain is an equidistant grid of points in [−L
2
, L

2
]d, dimension d = 1, 2, or

3, with Cartesian coordinates. There are N points in each of up to three directions

with a total of V = Nd points.

Let us discuss some results for vanishing source term, ρ = 0, and vanishing Dirichlet

boundary, g = 0, where the method has to reduce from an initial guess of φ =

1/(1 + xjx
j) and π = 0 at t = 0 to the asymptotic, late-time value φ = π = 0.

Fig. 3.1 shows results for a box of size L = 20, damping parameter η = 1, varying

the number of points and the number of dimensions. The norm is weighted by

the grid spacing ∆x to represent the integral of the residual, |f |2 = (
∑
f 2∆xd)1/2.

The faster convergence for higher dimensions is due to the fact, that the relative

volume near the boundary increases with dimensionality. The convergence is always

exponential in time, with two distinct phases. Inspection of the evolution of φ and π

shows that the initial phase corresponds to the damping of short wavelengths (in this

example until t ≈ 20), after which long wavelengths dominate and the convergence

is slower. The convergence of the (weighted) norm of the residual with time is quite

independent of the resolution. In this example the time-step is ∆t = λ∆x, so the

number of time steps is proportional to the number N of grid points in one direction.

For e�ciency values λ = 1.4, 1.0, 0.8 are chosen for 1D, 2D, and 3D, respectively,

and obtain stable time-stepping with RK4. The work per right-hand-side evaluation

is O(Nd), so the total work to reach a �nal time T is O(Nd+1).
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Figure 3.1.: Poisson equation, FD method. Convergence of the residual with time

for one, two, and three dimensions. Shown is a solid line for N = 101

and markers for a higher resolution given by N = 201 or 401 points. On

the scale of the plot, the convergence rate is independent of resolution

for any given number of dimensions.

A key question is how e�cient hyperbolic relaxation is compared to other methods.

Fig. 3.2 shows a comparison of di�erent methods for a two-dimensional example

with N = 101 points. The methods considered are hyperbolic relaxation as above,

the standard Jacobi iteration [42], and the BiCGSTAB method as an example for

a Krylov subspace method [43]. Also included are two additional variants of hyper-

bolic relaxation. In these examples ∆t = 1.0∆x for RK4 in 2D.

Referring to Fig. 3.2, the Jacobi method shows the slowest convergence. Reducing

the residuum of the 2D Poisson equation by a factor 10−p requires n ≈ 1
2
pN2

iterations on a N ×N grid [42]. For a 2D grid with V = N2 degrees of freedom, the

operation count is therefore O(V 2) = O(N4), compared to O(N3) for optimal SOR
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Figure 3.2.: Poisson equation, FD method. Convergence of the residual with the

number of right-hand-side evaluations. Shown is a comparison between

di�erent methods for N = 101 in two dimensions.

and O(V log V ) for multigrid methods. Hyperbolic relaxation with O(V )×O(N) =

O(N3), as demonstrated in Fig. 3.1, is therefore a reasonable candidate for further

consideration. In the concrete example, the Jacobi method is signi�cantly slower

than hyperbolic relaxation, but the Jacobi method is usually not considered as a

stand-alone method.

For this simple comparison, the BiCGSTAB method is used without a precondi-

tioner, but the Laplace operator leads to a su�ciently well conditioned operator

such that convergence is fast nevertheless, compared to the other methods consid-

ered here. There is an initial phase of relatively slow convergence, but once the trial

solution is su�ciently close to the �nal answer, convergence becomes much faster.

Remarkably, hyperbolic relaxation does about as well as BiCGSTAB during the
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�rst phase. However, convergence slows down after the shorter wavelengths have

been damped and errors due to larger wavelength remain. Three ideas have been

considered to improve the convergence of hyperbolic relaxation for long wavelengths.

Not shown here is the multi-level re�nement strategy which is employed in the bamps

code, see Sec. 3.1.4.

As an immediate application of the mode analysis of Sec. 2.1.4, the damping param-

eter η is introduced, which for the basic experiments so far was set to η = 1. Also

shown in Fig. 3.2 is the result for η = 0.4, which exhibits a constant decay rate that

is slower than η = 1 initially, but faster for later iterations. This e�ect depends on

η and the size L = 20 of the box. With ε = 1, for η = 1 we have λcrit = 4π < L, and

for η = 0.4 we have λcrit = 10π > L. This indicates that for η = 0.4 all wavelengths

�tting into the box fall into the range λ < λcrit, and the expected constant damping

rate is e−
η
2
t for all wavelengths. On the other hand, for η = 1 wavelengths both

smaller and larger than λcrit are present initially, but damping for λ < λcrit is faster

than for λ > λcrit, so after an initial transient the damping rate slows down when

λ > λcrit is the dominant contribution. There is a trade-o� between reducing η in

order to suppress λ < λcrit for a given domain size, and increasing η for a stronger

damping factor e−
η
2
t. In the example of Fig. 3.2 HypRelax with η = 0.4 overtakes

HypRelax with η = 1 at about 900 RHS evaluations. It seems possible to construct

a dynamically adjusted damping η(t).

Similar results hold for the parameter ε in (2.23) as discussed in Sec. 2.1.4. At large

k the velocity of the modes scales with 1/
√
ε but is independent of η, so for optimal

performance the Courant factor has to be adjusted together with ε but can be kept

constant when η is varied.

As a next idea experiments with a �one-step overrelaxation� method (as opposed to

successive overrelaxation) have been carried out. This is based on the observation

that after the initial propagation/damping phase of hyperbolic relaxation, the sec-

ond time derivative of φ becomes signi�cantly smaller than the �rst time derivative,
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∂2
t φ� ∂tφ. Hence it seems promising to attempt a linear extrapolation in time. The

curve labeled �overstep� in Fig. 3.2 is obtained by searching every few iterations for

the time step ∆T = λ∆t that minimizes the global residual of φnew = φ+∆T F (φ),

where F is the update suggested by the time stepping algorithm (e.g. RK4). This is

similar to various other 1D step-size optimizations. For the example considered here

(but also for ρ 6= 0 as below), the late time solution of hyperbolic relaxation is suf-

�ciently regular that indeed an appropriate global ∆T can be found. The overstep

algorithm only accepts the large step ∆T if it decreases the residual by at least a

factor f , say f = 10 (we tried f = 2 to f = 1000). The optimal choice of f depends

on di�erent features of the problem, in particular choosing f too small can make

the method less e�cient. Each overstep introduces new local error modes (since

∆T is a global parameter). As can be seen in Fig. 3.2, the approximate solution

is disturbed, but converges again with the typical speed for shorter wavelengths to

a new regular state. In the optimal case the overall convergence rate seems to ap-

proach that of the fast phase of hyperbolic relaxation. It may be possible to derive a

continuous variant of this method analogous to successive overrelaxation, which we

leave to future research. With the scheduled Jacobi method [44, 45] there has been

a similar idea for a parabolic solver, accelerating the Jacobi method considerably

by a clever schedule of over- and underrelaxation steps.

The main points regarding the convergence rate of hyperbolic relaxation as shown

in Fig. 3.2 are that the method works out-of-the-box and that its performance falls

somewhere between Jacobi and BiCGSTAB. There seems to be quite some potential

for accelerating the convergence rate of hyperbolic relaxation. From the point of

view of solving elliptic equations with a code designed for hyperbolic equations,

note that hyperbolic relaxation is �only� slower by a factor of about 5 (to reach a

residual of 10−9 in this example) than a standard method like BiCGSTAB, which

however may not be readily available.
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3.2.2. Poisson Equation � Pseudospectral Method

To test the hyperbolic relaxation elliptic solver as implemented in bamps the Pois-

son's equation,

∆ψ − ρ = 0 (3.6)

is considered in spherical symmetry, i.e. ρ = ρ(r), r =
√
xixi. To solve this equation

the following hyperbolic relaxation system is chosen

∂tψ = δij∂irj − ρ , (3.7)

∂tri = ∂iψ − ri . (3.8)

For a �rst test ρ is chosen to be smooth, i.e. it is in�nitely often continuously

di�erentiable,

ρ = ρ0

(
−6

R2
+

4r2

R4

)
e−r

2/R2

, (3.9)

where R and ρ0 are non-zero parameters. For this ρ Poisson's equation has the

solution

ψanalytic = ρ0e
−r2/R2

. (3.10)

At the boundary a fallo� in ψ compatible with this solution is obtained by imposing

the Robin boundary condition ∂rψ = si∂iψ = −2rψ/R2.

For the second test a non-smooth ρ is chosen that corresponds to a homogeneously

charged sphere, which is like a toy model for stars. The density ρ is then given by

ρ =

ρ0 if r ≤ R

0 if r > R ,

(3.11)

for which the Poisson equation has the solution

ψanalytic = ρ0


r2

6
− R2

2
if r ≤ R

−R3

3r
if r > R .

(3.12)

Again Robin boundary conditions are imposed according to the fallo� of this solu-

tion, i.e. ∂rψ = si∂iψ = −ψ/r.
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The outer boundary is placed at a radius of 10 and and the grid is divided into a

total of eight subpatches, where the inner �ve extend over the interval [0, 5] and

the outer three, having a coarser resolution, extend over [5, 10]. The parameters

determining ρ are chosen to be R = 5 and ρ0 = 1. For the non-smooth case special

care has to be taken to ensure convergence. In particular the grid is chosen such that

the discontinuity lies at a boundary of subpatch, ensuring second order convergence.

In both test cases the relaxed solution converges with the number of grid points to

the analytical solution. To investigate the convergence it must be made sure that

the solution is completely relaxed on every resolution. This is achieved by choosing

in Eq. (3.2) c = 0.0001. In Fig. 3.3 the absolute di�erence between the analytical

and numerical solution integrated over the outermost subpatch is reported. It is

noted however that the convergence behavior is the same on all other subpatches.

As expected the error of the numerical solution is found to decrease exponentially

with the number of points for the smooth ρ from Eq. (3.9). For the non-smooth ρ of

Eq. (3.11) it is well known that convergence can only be polynomial and indeed the

convergence is approximately of order two, which is the expected convergence order

for discontinuous ρ [41]. Of course this is not very e�cient for a spectral method.

In non-smooth regions it is therefore often preferable to increase the number of

subpatches (h-re�nement) instead of the number of collocation points per subpatch.

In numerical applications one often uses spectral methods even for non-smooth

problems, i.e. in (general relativistic) hydrodynamics, and thus it is still interesting

to investigate the behaviour of the method on grids suited for these simulations.

In Fig. 3.4 the progression of the L1-norm is investigated for di�erent quantities that

can be used to approximate the error. The �rst observation is that the di�erence

to the analytical solution decreases even when the computed residual, given by left-

hand side of Eq. (3.6), is already leveling o�. This is especially remarkable for the

non-smooth case, where the residual itself is not converging at all. For the smooth

case one secondly observes that after re�ning the grid the norm of right-hand side of

Eq. (3.7) practically continues at the same level as before. The norm of the residual
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Figure 3.3.: Convergence of the L1-norm of the di�erence between the analytical

and the numerical solution. Left plot: smooth ρ (Eq. (3.9)). Right plot:

non-smooth ρ (Eq. (3.11)). Note that in the left plot only the error axis

is logarithmic, while in the lower plot both axes are logarithmic.

on the other hand drops quickly after re�ning, reaching the right-hand sides level

until again the discretization limit is reached. These observations suggest that for

problems with smooth solutions it is preferable to relax for longer on the coarse

grid. For problems with non-smooth solutions, however, new error develops during

each re�nement and thus re�ning for longer on the coarse grid is not paying o�.

Furthermore, it is preferable to increase the grid resolution faster.

As a last simple test, the behavior is tested in the case of non-unique solutions. For

this the smooth ρ from Eq. (3.9) has been considered together with the Neumann

boundary condition ∂rψ = 0, for which multiple solutions di�ering only by an

additive constant exist. the result is that after some relaxation the right hand

side of Eq. (3.7) becomes approximately constant in space. From this point on the

solution is no longer improving, since only constant terms, which do not improve

the residual of Eq. (3.6), are added.
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Figure 3.4.: Progression of the L1-norm of di�erent error quantities during the

relaxation process for the Poisson equation. Vertical dashed lines in-

dicate transitions to a �ner grid. The respective error quantities are:

blue solid line: residual, de�ned as left-hand side of Eq. (3.6), orange

dashed line: right-hand side of Eq. (3.7), green dotted line: di�erence

to the analytical solution. Left plot: for smooth ρ (Eq. (3.9)). Right

plot: for non-smooth ρ (Eq. (3.11)).
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Relativistic Neutron Star

Binary Simulations

4.1. Numerical Solution of the Constraint

Equations of General Relativity

4.1.1. Conventions and Fundamental Concepts of Numerical

Relativity

Throughout this chapter the following conventions will be used. All equations are

given in geometric units, i.e. the gravitational constant G = 1 and the speed of light

c = 1. Furthermore indices with lower-case Greek letters denote spacetime indices

0, 1, 2, 3 and indices with lower-case Latin letters denote spatial indices 1, 2, 3.

The subject of numerical relativity is that of �nding a numerical solution to the

Einstein �eld equations [6]

Rµν −
1

2
gµνR = 8πTµν , (4.1)
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which form a system of coupled second order partial di�erential equations for the

spacetime metric gµν . The Ricci tensor Rµν and the Ricci scalar R are given as

contractions of the Riemann tensor Rµµλσ:

Rµ
νλσ = ∂λΓ

µ
νσ − ∂σΓµνλ + ΓµρλΓ

ρ
νσ − ΓµρσΓρνλ , (4.2)

Rµν = Rσ
µσν R = Rµ

µ , (4.3)

where Γµνσ is the Christo�el symbol

Γµνσ =
1

2
gµα(∂σgαν + ∂νgασ − ∂αgνσ) . (4.4)

To solve the Einstein �eld equations numerically they are usually reformulated in

�rst order in time form, so that they can be integrated numerically using the method

of lines. Such a reformulation can be found by foliating the spacetime into spatial

hypersurfaces and expressing the metric in the 3+1 decomposed form

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt) , (4.5)

where the quantities α and βi are called lapse and shift and γij is the induced metric

on the spatial hypersurface. There is a unit timelike normal vector nµ orthogonal

to the spatial hypersurface, which can be expressed in terms of the lapse and shift

by

nµ =

 1/α

−βi/α

 nµ =

−α
0

 . (4.6)

The projection of a tensor onto a spatial hypersurface is accomplished by contracting

every index with the projection operator

γµν := δµν + nµnν . (4.7)

This allows in particular the introduction of the spatial derivative operator D de-

�ned by

DαA
µ1...µn

ν1...νn
:= γα̃αγ

µ1
µ̃1
. . . γµnµ̃nγ

ν̃1
ν1 . . . γ

ν̃n
νn∇α̃A

µ̃1...µ̃n
ν1 .̃..ν̃n

, (4.8)

50



4.1. Numerical Solution of the Constraint Equations of General Relativity

which is compatible with the spatial metric γµν . The extrinsic curvature is de�ned

as the quantity

Kµν := −γαµγβν∇(αnβ) . (4.9)

The historically most notable �rst-order in time formulation is given by the so called

ADM equations [46]. Nowadays other formulations better suited for numerical sim-

ulations have been developed allowing long-term stable evolutions. The most wide

spread evolution formalisms as of today are the BSSN formulation [47, 48], Z4-like

formulations [49�51] and the Generalized Harmonic Gauge (GHG) formulation [52].

The Einstein �eld equations also give rise to constraint equations to be satis�ed

on every spatial hypersurface, for which several formulations exist as well. Most

of the standard formulations recast the constraints into elliptic equations, e.g. by

the conformal transverse traceless (CTT) or the conformal thin-sandwich (CTS)

decomposition [53]. For the CTS equations it is possible to show uniqueness under

certain conditions [54�56] which is by itself a favorable property when the equations

are applied in a numerical scheme. In practice however the system is often extended

to the extended conformal thin-sandwich (XCTS) equations [46, 57] to �x the value

and time derivative of the trace of the extrinsic curvature. For the XCTS system

uniqueness of the solutions is no longer guaranteed [55, 56, 58], but it is easier to

construct solution well suited as initial data for numerical evolutions. Besides the

constraints on the metric there are also constraints on the matter variables, which

follow for example from the necessity that he energy momentum tensor must al-

ways be divergence free. The constraints on the matter variables will be discussed

in Sec. 4.2.1 for the case of a relativistic perfect �uid.

4.1.2. The Extended Conformal Thin-Sandwich Equations

The XCTS equations are the formulation of choice for the initial data generated in

this work. For the results of this work a slight modi�cation of the equations is solved
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using the HypRelax method. For the construction of the XCTS equations the spatial

metric is decomposed into a conformal factor ψ and a spatial conformal metric γ̄ij

as γij = ψ4γ̄ij. For conformal quantities (denoted by a bar) the conformal spatial

metric γ̄ij lowers and raises indices and for quantities without bar the physical

spatial metric γij is used. In the XCTS framework the constraint equations take

the form

D̄jD̄jψ =
ψ

8
R̄− ψ5

(
2πρ− K2

12
+

1

8
AijA

ij

)
, (4.10)

D̄jD̄jβ
i =− 1

3
D̄iD̄jβ

j − R̄i
jβ

j + 16παψ4J i

+ (D̄iβj + D̄jβi − 2

3
γ̄ijD̄kβ

k)

· D̄j ln(αψ−6)

− αψ−6D̄j(α
−1ψ6∂tγ̄

ij) +
4

3
αD̄iK ,

(4.11)

D̄jD̄j(αψ) =αψ5

(
7

8
AijA

ij +
5

12
K2 + 2π(ρ+ 2J)

)
− ψ5(∂t − βjD̄j)K +

1

8
αψR̄ .

(4.12)

Here D̄i is the covariant derivative compatible with the conformal metric γ̄ij, R̄ij is

the Ricci tensor of γ̄ij and R̄ is the corresponding Ricci scalar. The tensor Aij is the

tracefree part of the extrinsic curvature Kij and K is the trace of Kij. Aij can be

expressed as Aij = −ψ4/(2α)(∂tγ̄ij− (L̄β)ij) with (L̄β)ij = D̄iβj +D̄jβi− 2
3
γijD̄kβ

k.

The matter source terms are de�ned as the following contractions of the energy-

momentum tensor Tαβ: ρ = Tαβn
αnβ, J i = −Tαβγiαnβ and J = γαβTαβ. In the

XCTS equations γ̄ij, ∂tγ̄ij, K and ∂tK are given functions, depending on the type

of initial data one wants to construct.

In Eq. (4.12) the product αψ is taken as one variable. For the computations in this

work this equation is rewritten with the help of Eq. (4.10) as

D̄jD̄jα =− 2

ψ
(D̄jα)(D̄jψ)− ψ4(∂t − βjD̄j)K

+ αψ4

(
AijA

ij +
K2

3
+ 4π(ρ+ J)

)
,

(4.13)
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solving directly for α. The embedding of the XCTS equations within the hyperbolic

relaxation method is discussed in detail in [1].

At the domain boundary it is imposed that the solution falls o� like the Schwarzschild

solution, i.e. ψ = a
r

+ 1 and α = b
r

+ 1. This ansatz gives rise to the following Robin

boundary conditions

∂sψ|∂Ω =
1− ψ
r

, ∂sα|∂Ω =
1− α
r

. (4.14)

For the shift likewise a radial fallo� is imposed by the Robin condition

∂sβ
i|∂Ω = −β

i

r
. (4.15)

As an initial guess always the �at space solution is used, i.e. ψ = 1, α = 1, βi = 0.

Of course an initial guess, that is a good approximation to the solution is always

the preferred start for the relaxation, since it will take less time to relax to the

solution or might not be necessary to relax at all. However the simple initial guess

has been found to work well and demonstrates in a nice way the high robustness of

the hyperbolic relaxation method exhibited in the numerical experiments.

4.2. Numerical Solution of the Hydrodynamical

Constraint Equations

4.2.1. Review and Critique of the Current Construction

Methods for Binary Neutron Star Initial Data

In numerical simulations neutron stars are usually modeled by perfect �uids, i.e.

the energy momentum tensor is given by

Tαβ = (ε+ p)uαuβ + pgαβ , (4.16)
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where ε is the proper energy density, p the �uid pressure and uα the �uid four-

velocity. For the discussion of the �uid properties one often considers two special

observers. The Lagrangian observer is moving with the four-velocity of the �uid uµ,

whereas the Eulerian observer is moving with the coordinates and hence has the

four-velocity nµ.

This chapter will introduce some improvements and advances to the methods used

for the construction of equilibrium initial data for binary neutron star simulations.

All modern codes for binary neutron star initial data [15, 59, 60] use in principle

only variations of the formalism developed by Tichy [61, 62], building on prior

work for irrotational [63�66] and spinning binaries [67, 68] and later being extended

to incorporate also elliptical orbits [15, 69]. For the review in this chapter I will

therefore follow mostly along the lines of [61] and [15] and use the notation therein.

Besides the metric variables which can be determined solving the XCTS equations

outlined in the previous section, there are also constraint equations for the matter

variables that must be solved for the interior of the stars. The �rst set of equations

follows from energy-momentum conservation, ∇µT
µν = 0. The part relevant for

the construction of initial data is obtained by projecting onto the hypersurface

orthogonal to the world line of the Lagrangian observer. Using the projector

Pα
µ := δαµ + uαuµ (4.17)

one obtains, inserting the energy-momentum tensor for a perfect �uid (4.16), the

relativistic Euler equations

0 = Pα
µ∇µT

µν = (ε+ p)(uµ∇µu
α) + Pα

µ∇µp . (4.18)

The constraint following form the projection uν∇µT
µν = 0 becomes only relevant in

an actual evolution of the data. Additionally the baryonic mass must be conserved,

which is ensured by the continuity equation

0 = ∇µ(ρuµ) , (4.19)
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where ρ is the baryonic mass density.

To close the system of equations it is necessary to include a thermal and a caloric

equation of state. For neutron stars the caloric equation is usually �xed by assuming

that the �uid is approximately barotropic, since the temperature is much lower than

the Fermi temperature, EF = ~2
2m

(3π2N
V

)2/3 � kBT , and thus the chemical potential

µ = E0 + EF + O((kBT/EF )2) depends on the baryonic density N/V only. In

this case it is su�cient to specify the thermal equation of state, e.g. by specifying

p(ρ). The thermodynamic quantities can then be expressed in terms of the speci�c

enthalpy

h :=
ε+ p

ρ
. (4.20)

Introducing the enthalpy current ũν := huν , the Euler equations in this case are

conveniently written as

0 = ũµ∇[µũν] . (4.21)

For the construction of initial data for an equilibrium con�guration time derivatives

of the metric and the matter variables have to be chosen in an appropriate way.

Usually one assumes the existence of an approximate Killing vector ξ. Approximate

in this context means that the de�ning equation for a Killing �eld ξ:

Lξgµν = 0 , (4.22)

is satis�ed momentarily on the initial data hypersurface. For the Killing vector the

common choice (see e.g. [15]) is given by

ξµ1,2 = (∂t)
µ + Ω ((x− xF1,2)(∂y)

µ − y(∂x)
µ) , (4.23)

where Ω is the rotational frequency parameter and xF1,2 = xcm + e(xC1,2 − xcm)

are the x-coordinates of the centers of the circular orbits momentarily inscribed by

the motion of each star. The xC1,2 are the positions of the stars centers and e and

xcm are parameters describing the ellipticity and the position of the center of mass

respectively. Here the choice has been made that the neutron stars initially move in
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the xy-plane and the stars centers are initially located on the x-axis. For a helical

Killing vector, e = 0, both stars inscribe motions on a circle and thus their orbit is

approximately circular. For e 6= 0 each star has a di�erent Killing vector and the

resulting orbit is approximately elliptical (helliptical Killing vector).

The enthalpy current ũµ is then decomposed into a part corotating with ξµ and an

internal motion described by the spatial vector V µ, yielding the expression

ũµ = Ũ(ξµ + V µ) , (4.24)

where the scalar Ũ = −ũµnµ/α is the time component of the enthalpy current as

measured by the Eulerian observer. Another possibility [59] is to split uµ into

a part parallel to the timelike normal to the hypersurface plus a remainder as it is

usually done for general relativistic hydrodynamics formulations [70].

To solve the equations (4.18) and (4.19) it is necessary to make choices for the

temporal derivatives of the matter variables. The time derivative of the mass density

is �xed by assuming [61]

Lξ

(
ρŨ

h

)
= 0 (4.25)

momentarily on the initial data hypersurface. To impose time derivatives on the

enthalpy current it is split into a rotational and an irrotational part. An irrotational

�uid is characterized by a vanishing kinematic vorticity tensor [64, 71]

ωαβ :=
1

2
P µ
αP

ν
β (∇µuν −∇νuµ) = 0 , (4.26)

where P µ
α is the projection operator (4.17). For a barotropic �uid this implies that

also the vorticity tensor vanishes: ∇[µũν] = 0. The interpretation of Eq. (4.26) is,

that for the Lagrangian observer the movement of the �uid must appear irrotational.

Introducing ũ
(3)

i = γµi ũµ it can be shown [64] that Eq. (4.26) is equivalent to

Di ũ
(3)

j −Dj ũ
(3)

i = 0 (4.27)
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for a barotropic perfect �uid. The irrotational part can thus be described by the

gradient of a scalar function φ:

ũ(3) i
irr = Diφ , (4.28)

and the decomposition into rotational and irrotational part can be written as

ũµ = ∇µφ+ wµ , (4.29)

where the time component of ∇µφ is determined through the normalization ũµũµ =

−h2. The rotational part will remain in the same rotational movement with respect

to the �far away masses� which de�ne the inertial frame, because the in�uence of

viscosity that would tidally lock the two neutron stars is negligibly small. Hence

the rotational part is not stationary in the corotating frame but in the inertial

frame. The term �inertial frame� is really only well de�ned at spatial in�nity as the

non-rotating frame, i.e. βi = 0. Therefore for the rest of this work the terminology

irrotational frame or ��xed stars� frame is used to distinguish it from the already

established notion of inertial frames. It was now the great insight of Tichy [61] that

in this setup the two parts of the enthalpy current are momentarily Lie dragged by

the vectors ξ and ξ̄ respectively:

γνi Lξ(∇νφ) = 0 , γνi Lξ̄(wν) = 0 , (4.30)

where ξ̄µ = ∇µφ/Ũ . The Lie derivative for wν can be interpreted in the following

way. It is assumed that the other star perturbs the kinematic vorticity in a negligible

way and hence ∇νφ is not rotating with respect to the far away masses. Observers

moving with the irrotational velocity are therefore to a good approximation at rest

in the ��xed stars� frame. Thus it becomes clear that γνi Lξ̄(wν) = 0 indeed describes

the stationarity of wν in the ��xed stars� frame.

For a clean separation of rotational and irrotational part we require the rotational

part wi to be divergence-free:

Diw
i = 0 . (4.31)

57



4. Initial Data for General Relativistic Neutron Star Binary Simulations

A solution to this equation is given in the Eulerian frame by

wi =
∑
j,k

f

(
|xl − xlC |,

∑
l

ωlxl

)
1
√
γ

[ijk]ωj(xk − xkC) , (4.32)

where [ijk] is the antisymmetric symbol, ωi and xiC are constants and f is an ar-

bitrary function of two arguments. Furthermore linear superpositions of solutions

of this type are solutions as well. This solution is a generalization of the solution

proposed by Tichy in [61]. In subsequents works [15, 62] however Tichy uses wi

which are missing the factor
√
γ−1 and thus are no longer divergence free. However

this choice yields initial data with smaller expansion and shear and for this reason

has been adopted subsequently also by other groups [59, 60]. However dropping

the factor
√
γ−1 essentially breaks the clear distinction between purely irrotational

parts and purely rotational ones. Since this clear distinction is the primary moti-

vation for the Lie derivatives chosen in (4.30) it should be maintained if possible.

If minimizing the expansion is of concern one could choose Luρ = 0, which is the

necessary and su�cient condition for the expansion to vanish. This choice however

is in contradiction to Eq. (4.25) and thus the initial data in the current formal-

ism is not expansion free by construction. Indeed it should not be surprising that

conservation of ρŨ
h

in a corotating frame might not be a perfect assumption, since

the rotational part wi and consequently also Ũ is not conserved in that frame. For

future investigations I therefore propose to insist on Luρ = 0 which after a straight

forward calculation leads to the new choice:

Lξ

(
ρŨ

h

)
=

(
ρ ũ

(3)
i ũ(3) i

h2Ũ2
ũ(3) j∂jh+

ρ ũ
(3)

i

hŨ
∂t ũ(3) i − ξi∂i

(
ρŨ

h

)
+

ũ(3) i

h
∂iρ

)
,

(4.33)

where the time derivatives ∂t ũ(3) i are determined through Eqs. (4.30). This partic-

ular choice however is not investigated any further in the course of this work, but

it appears promising to investigate whether this choice also reduces the shear of

the �uid and whether it yields initial data closer to an equilibrium con�guration.

As will be shown in section 4.2.2 wi cannot be chosen as in Eq. (4.32) for other

reasons.
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Having introduced all the required time derivatives and the split of the enthalpy

current, the internal motion of the stars �uid is given by

V i =
Diφ+ wi

Ũ
− (βi + ξi) (4.34)

and the Euler equations and the continuity equation can be written in the form [61]:

0 = −DiC + L(3)

w/Ũ
wi , (4.35)

0 = Di

(ρα
h
ŨV i

)
= Di

(ρα
h

(Diφ+ wi − Ũ(βi + ξi))
)
, (4.36)

where C is given by

C = −h
2

Ũ
− V kDkφ . (4.37)

The speci�c enthalpy is then expressed in terms of the unknowns C and φ and given

quantities in the following way:

h =
√
L2 − (Diφ+ wi)(Diφ+ wi) , (4.38)

with

L = −C − (βi + ξi)Diφ

2α
+

√(
C − (βi + ξi)Diφ

2α

)2

+ wi(Diφ+ wi) .

At last the scalar Ũ is obtained from the normalization of the four-velocity, uµuµ =

−1, yielding

Ũ =

√
h2 + (Diφ+ wi)(Diφ+ wi)

α
. (4.39)

The Euler equation (4.35) has now turned into a set of ordinary di�erential equations

that can be integrated by specifying the value of C at an arbitrary point. In practice

however the Lie derivative in Eq. (4.35) is always neglected, because that term is of

order O(w)2 and the spin (and thus the rotational velocity piece) is assumed to be

small. In this case C is constant throughout the star. The value of C is �xed for

example by evaluating Eq. (4.37) at the center of the star, when the central speci�c

enthalpy is given. Another possibility is to tune C such that the mass of the star has

a given value. The continuity equation is often assumed to be an elliptic equation
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in divergence form for the velocity potential φ. Observing however that h, ρ(h), Ũ

also depend on Diφ it becomes clear that derivatives of these quantities give rise to

terms in the principal part as well. Because of the nonlinear nature of these terms it

is not simple (and maybe not even possible) to prove the de�niteness of the principal

part (2.55) and thus it is in fact not clear whether this equation is elliptic or not.

In the rest of this work however it will be assumed that equation (4.36) is elliptic.

As another complication it must be noted that the equation is not elliptic on the

surface of the star, where ρ = 0 and as a consequence two eigenvalues of the principal

part matrix vanish. This can be cured by dividing the equation with ρ which of

course leaves solutions to the equation unchanged. In this case the principal part

has two �nite non-zero eigenvalues and one unbound eigenvalue going to in�nity on

the stellar surface. This type of elliptic equations is called non-uniformly elliptic

and some theorems on uniqueness and existence of their solutions can be found

in [39]. These theorems usually demand some special properties from the boundary

conditions and thus I will shortly review the commonly used boundary condition.

Taking the limit ρ→ +0 of the continuity equation (4.36) yields uµ∇µρ = 0, i.e. at

the stellar surface the �uid is expansion free. Together with the choice (4.25) this

requires

0 = ŨV iDiρ = (Diφ+ wi − Ũ(βi + ξi))Diρ . (4.40)

Here Diρ yields a vector that is orthogonal to the surface of the neutron star. Thus

on the surface of the star the �internal� �ow V i of the star must be tangential to

the stellar surface. Eq. (4.40) is usually viewed as a Robin boundary condition

on the velocity potential φ. This view however is problematic since the equation

is derived from the elliptic itself and thus does not impose anything new; instead

the equation is a regularity condition that has to hold on the boundary. Further

problems become evident recalling that ρ itself depends on derivatives of φ. Due to

the nonlinear dependence of ρ on Diφ there might be more than one solution for

Diφ. Furthermore the derivatives Diρ lead to second derivatives of φ and thus the

equation does not fall into the class of Robin boundary condition. The question
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how to choose a good boundary condition on the stellar surface thus remains open.

It must be noted however that imposing Eq. (4.40) like a Robin boundary condition

still leads to stable numerical schemes and sensible initial data. The process of

imposing the boundary conditions also has to deal with the fact that the domain

of the problem is variable since the size of the star is not known beforehand. This

issue is handled by �tting the coordinates [72�74] to the domain in every iteration

step [62] which however is numerically expensive. From the above observations

however it appears possible that the system of equations (4.35) and (4.36) does not

have a unique solution and thus di�erent implementations could lead to di�ering

solutions.

Related to the problem of boundary conditions is the fact that the system of equa-

tions (4.35)+(4.36) depends on derivatives of the velocity potential φ, but not on

φ itself. Thus the solution to φ is in any case undetermined up to an additive con-

stant which could be �xed by imposing a Dirichlet condition. It is however possible

that the solutions are non-unique even beyond this additive constant. The general

assumption that the regularity condition is su�cient for uniqueness seems to come

historically from an argument in [75], where the authors consider a similar equation

in one dimension. A rigorous proof however seems to be still missing.

The regularity condition (4.40) will be problematic in the case where Diρ = 0 at

the stellar surface, which happens for example for polytropes with polytropic index

n > 1 (See Eq. (4.56)). In that case it might be better to consider the same condition

as in [66], where the derivative on ρ is replaced by a derivative in h:

0 = ŨV iDiρ = (Diφ+ wi − Ũ(βi + ξi))Dih . (4.41)

Since ρ is a function of h, Eq. (4.40) is ful�lled whenever Eq. (4.41) is satis�ed. As a

side remark it is interesting to observe, that if we assume that the star is expansion

free, Luρ = 0, throughout the star, the necessity for the regularity condition will

actually vanish.
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The review of the current construction methods is concluded with a remark on

the used algorithm. In prior works the metric and matter equations are always

solved iterating sequentially, i.e. �rst the constraint equations for the metric are

solved with static matter terms, followed by solving the matter constraint with

static metric terms and so forth. This sequential approach can be problematic if

there exists a �metastable� approximate solution, i.e. in a con�guration that does

not admit solutions there might be an approximate solution that barely changes in

every iteration step. Because one part of the equations is held �xed the other part

cannot move away from the metastable state and thus the approximation seems

to converge. In this work the hyperbolic relaxation method is used solving all the

constraint equations concurrently. With this method it has been found that the

head-on collision case brie�y discussed in [69] does actually not admit solutions in

the constant three-velocity approximation.

The review above revealed some problems and di�culties in the currently used

initial data construction formalism, therefore improvements and potential �xes are

investigated in the following sections. It must be noted however that the current

state is already successfully applied in a multitude of simulations.

4.2.2. Constraints from the Euler Equations on the

Rotational Part

In Sec. 4.2.1 it has been discussed that the Euler equations (4.35) are only solved in

an approximate manner, since the spatial Lie derivative is neglected. The following

investigations will be dedicated to the �rst computations solving the Euler equations

exactly.

To start with, one has to ask the question under which conditions the equations

actually do possess a solution. Inspecting the equations one observes that there
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can only be a solution if L(3)

w/Ũ
wi can be expressed as the gradient of a scalar, i.e.

L(3)

w/Ũ
wi must be curl-free:

0
!

= Di L(3)

w/Ũ
wj −Dj L(3)

w/Ũ
wi . (4.42)

This gives rise to constraints on the possible spin velocities wi which have been

completely neglected in the past. Indeed one could have wondered why the three

Euler equations only �x the single variable C. It is exactly the constraints on

components of wi that were missing in the calculation. Evaluating Eq. (4.42) yields

the expression

0 = Di

(
1

Ũ

)
(wkDkwj − wkDjwk)−Dj

(
1

Ũ

)
(wkDkwi − wkDiwk)

+
1

Ũ
(Di(w

kDkwj)−Dj(w
kDkwi)) .

(4.43)

The expression for Ũ depends on a multitude of variable and it appears unlikely

that a completely general solution for arbitrary Ũ can be found. Instead it is more

promising to �nd solution for which the factors containing wi vanish. A natural

ansatz is to choose solutions that satisfy

0 = wkDkwi − wkDiwk = 2wkD[iwk] = wkεjkiε
jmnDmwn = εjkiw

k(curlw)j , (4.44)

for which the �rst two terms in Eq. (4.43) obviously cancel. It follows easily that

this condition is also su�cient for the last term to vanish. After using Eq. (4.44) to

replace wkDkwi by wkDiwk and expanding the derivatives the result follows from

an easy calculation.

It is interesting to observe that Eq. (4.44) has the same structure as Eq. (4.21), i.e.

for the rotational spatial part of the enthalpy current the structure of the enthalpy

current four-vector reemerges. The meaning of Eq. (4.44) is that the curl of wi is

in the same direction as the �eld wi itself:

εjmnDmwn = λwj , (4.45)
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where λ is an arbitrary function which is called abnormality of wi in mathematical

contexts [76]. Additional to this equation wi must also be divergence-free, Eq. (4.31).

Divergence-free �elds obeying (4.45) appear in the context of �uid dynamics and

magnetohydrodynamics and are known as Beltrami �elds or force free magnetic

�elds respectively. These equations still admit a variety of possible solutions, but

they do not admit solutions with a planar or axisymmetric �ow. Instead typical

solutions describe �ows moving on a helix-like curve. From this fact it is immediately

clear that Tichys choice (4.32) is incompatible with the Euler equations. In fact

Tichys choice is quite the opposite of what is required. In �at space Eq. (4.32)

becomes a complex lamellar �eld, i.e. the �eld is orthogonal to its own curl.

Some general properties of and basic examples for Beltrami �elds are discussed

in [76]. Historically notable solutions to Eq. (4.45) for constant λ are the Trkal-

Berker solution [77] and the Chandrasekhar-Kendall functions [78]. These solutions

however are maybe not the best approximation to the rotational velocity �eld.

To understand why, the following criteria for a physically reasonable solution are

assumed.

1. There is some notion of a spin axis and the solution is approximately axisym-

metric around this spin axis.

2. There is little di�erential rotation inside the star and the star is rotating

approximately uniformly.

The Trkal-Berker solution changes the direction of rotation periodically with dis-

tance from the rotation axis, so it is not rotating uniformly and there is a lot

of di�erential rotation, which excludes this solution. The Chandrasekhar-Kendall

functions are a wide class of solutions, but typically they fall o� towards zero with

growing distance from the rotation axis and thus the star is not rotating uniformly,

which also excludes this class of solutions.
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General relativistic approaches to force free magnetic �elds also exist [79�82], but for

the investigations in this work I will restrict to results derived for a �at spacetime,

for which wi can be expressed analytically and which is su�cient for a �rst study

of the e�ects. To construct solutions satisfying above criteria one can make the

ansatz:

wi = (−ω(y − yC), ω(x− xC), w3) , (4.46)

which describes a rotation around an axis in z-direction through the point (xC , yC , 0)

with an angular frequency ω. The toroidal component of the enthalpy current has

the magnitude√
(w1)2 + (w2)2 = ω

√
(x− xC)2 + (y − yC)2, which grows linearly with distance

from the spin-axis and thus describes a uniformly rotating enthalpy �ow. The

poloidal component w3 is still undetermined, but it is already clear that it is

not identically zero, since planar �ow is forbidden. Inserting the ansatz (4.46) in

Eq. (4.45) and Eq. (4.31) yields three �rst order di�erential equations from which it

is easily found that for spin in z-direction the ansatz (4.46) admits only the following

solutions:

wi = ω

(
yC − y, x− xC ,±2

√
c2 − (x− xC)2 + (y − yC)2

2

)
, (4.47)

where c is a constant and the λ in Eq. (4.45) is given by λ = ±(c2 − ((x − xC)2 +

(y − yC)2)/2)−1/2. This solution has some remarkable properties:

1. There is a maximum distance from the rotation axis, (x− xC)2 + (y− yC)2 ≤

2c2 = d2
max, which is determined by the constant c. In other words, if R is the

radius of the star, c must be chosen c > R/
√

2.

2. The poloidal component is monotonically decreasing with distance from the

rotation axis. This means that the helix that is curved by the �ow lines is

winding up/down faster in the center than at the surface. At the maximum

distance the poloidal velocity component is exactly zero and the �ow lines be-

come planar. At the center the poloidal component is the only non-vanishing
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one and its value is w3 = 2ωc. Thus for given angular frequency ω there is a

lower bound on this axial current that is determined by the stars radius R:

|w3|d=0 >
√

2ωR, which is even bigger than the angular velocity at the stellar

surface. The consequences of the helix motion and the axial current in par-

ticular are not entirely clear, but there might be an impact on jet generation

and the magnetic �eld con�guration in pulsars like the famous Hulse-Taylor

binary (PSR 1913+16) [9, 10]. It will be interesting to investigate the e�ect

in future numerical simulations.

3. There are two branches of solutions with opposite chirality. In one case the

axial current is aligned with the spin, in the other case the axial current is

exactly anti-aligned.

The choice of the constant c is only constrained through the radius of the neutron

star, which alas is not known in advance. For the construction of the initial data it

will however be safe to set c larger then some estimated maximum size of the star,

e.g. larger than 20 km. It is however desirable to constraint c further, eventually by

�nding the solution with minimal shear.

Having discussed the properties of the solution one has to keep in mind that these

only hold for the purely rotational part of the enthalpy current. The gradient

part will actually counteract most of the axial current as will be seen later in the

investigation of the full numerical solution. Whether the new form for wi actually

contributes to the formation of jets must be investigated through full numerical

simulations. Relativistic jet formation through purely hydrodynamic processes is

nothing new and several models for it exist [70, 83]. It is therefore not too far-

fetched to assume that also this new form for wi might actually contribute to jet

formation. It is clear however that jets cannot be consistent with an equilibrium

situation. Eventually even more important could be the impact on the magnetic

�elds. Even if the axial current is counteracted by the gradient part, the result

could be a convective �ow that acts as a dynamo for the magnetic �eld.
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The solution to Eq. (4.45) for arbitrary spin is given by:

wi = εijkωj(xk − xCk)± 2ωi

√
c2 − δij(xi − xiC)(xj − xjC)

2
+
δij(ωj(xi − xiC))2

2δklωlωk
,

(4.48)

where ωi is a spin vector, in which the angular frequency ω and the spin direction

have been subsumed, and the xi are the spatial coordinates. Here the spin vector

is chosen such that the �rst term coincides with the choice of Tichy. Alas the

generalization to curved space is not straight forward, but could eventually be found

numerically following the formalisms in [81, 82]. As a �rst approximation wicurved =

1√
γ
wiflat at least yields a divergence-free wi, but it is not exactly orthogonal to its

curl. For the numerical applications in this work wicurved will be used as the most

accurate analytical expression at hand.

In the following I will shortly discuss some possible variations to the ansatz (4.46).

In the ansatz above uniform rotation has been de�ned by the toroidal components of

the rotational part of the enthalpy current increasing proportionally to the distance

from the rotation axis. Uniform rotation might be better de�ned by in terms of the

actual three-velocity �eld, i.e.√
(w1)2 + (w2)2 =

√
(Ũv 1

rot )2 + (Ũv 2
rot )2 = ωŨ

√
x2 + y2 (4.49)

where v i
rot := wi/(Ũ) indicates the purely rotational component of the three-

velocity �eld vi. In this case however the solution is harder to �nd and in particular

will depend on the speci�c enthalpy h and thus has to be computed anew in every

iteration step. Another variation might be found by choosing the abnormality λ

of Eq. (4.45) as a function of the speci�c enthalpy h. By taking the divergence

of Eq. (4.45) it is easily found that in this case wi is orthogonal to Dih, i.e. the

rotational enthalpy �ow moves on surface of constant h. In particular the rotational

velocity on the surface will be tangential to the stellar surface, which would be the

expected behaviour. It must be noted however that the internal motion described

by V i is automatically tangential to the surface by virtue of the regularity condi-

tion (4.41). Since for the solution (4.47) the absolute value of λ is increasing towards
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the surface one can infer that this should also be true here. Thus a possible choice

might be λ(h) = ±1/h. Yet another variant can be motivated by the di�erential

rotation found in stars like the sun. At the equator they show a higher rotational

frequency than near the poles. Transferring this naively to Eq. (4.48) would lead to

a smaller axial current at the poles, which might be a positive outcome. However,

the rotational frequency in stars does not vanish at the poles, so at least following

this simple heuristics the axial part of wi does not vanish at the surface.

Since solutions for isolated neutron stars do not require this special type of solutions

one has to ask why these constraints should occur for binary neutron stars. Tracing

back its origin in the derivation one arrives at the choice of the time derivatives of

the �uid, i.e. Eqs. (4.30), as the root cause. In isolated neutron stars the gradient

part and the divergence-free part are typically Lie dragged by the same vector,

which is not the case here. The spin direction of the neutron stars does not change

due to their inertia, but the stars force each other to move on an orbit which is

described by the Lie derivative with respect to ξµ. As such it should be the tidal

forces between the neutron stars which can be seen as the cause of the helix-like �uid

motion. However even at in�nite separation, where the stars should be behaving

like isolated objects, the formalism still only allows Beltrami �elds as solutions,

which is a �rst hint that there is a deeper lying problem. Concluding this section

it is noteworthy that instead of enforcing the Lie derivative for the divergence-free

part in Eq. (4.30) and deriving a solution for wi, the Lie derivative could also be

changed such that a given choice for wi is compatible with the Euler equations.

However, since the choices for the Lie derivatives in Eqs. (4.30) appear natural and

reasonable there is no indication that they should be changed at this point.
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4.2.3. Exact Integration of the Euler Equations

Up to now the necessity to solve the Euler equations was ignored since it has been

assumed that the spin of the neutron stars is small and thus also the divergence-

free part of the enthalpy current wi must be small. As has been shown in the

previous section however there is a non negligible axial component in wi which

can be chosen very large (by chosing a large c in Eq. (4.47)) without changing the

angular frequency. Thus for the choices of wi discussed in the previous section it

is no longer implied that small spin corresponds to small wi. This is an additional

motivation to solve the Euler equations (4.35) in a numerically exact manner.

To solve the Euler equations the Lie derivative is reformulated

L(3)

w/Ũ
wi =

wj

Ũ
Djwi + wjDi

(
wj

Ũ

)
(4.50)

=
wj

Ũ
Djwi +Di

(
wjw

j

Ũ

)
− wj

Ũ
Diwj , (4.51)

and since wi is chosen as a Beltrami �eld, Eq. (4.44), the Lie derivative simpli�es

to

L(3)

w/Ũ
wi = Di

(
wjw

j

Ũ

)
,

and the Euler equations (4.35) become

0 = Di(−Cw) = Di

(
h2

Ũ
+ V kDkφ+

wjw
j

Ũ

)
, (4.52)

where Cw is now the new (and exact) constant of integration

Cw = −
(
h2

Ũ
+ V kDkφ+

wjw
j

Ũ

)
. (4.53)

The speci�c enthalpy is now expressed in terms of Cw by

h =
√
L2
w − (Diφ+ wi)(Diφ+ wi) , (4.54)

with

Lw = −Cw − (βi + ξi)Diφ

2α
+

√(
Cw − (βi + ξi)Diφ

2α

)2

+ wiDiφ . (4.55)

The equation for Ũ remains in the form (4.39).
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4.2.4. Extension of the Continuity Equation to Vacuum

To solve the problem of imposing the regularity condition (4.41) on the stellar

surface usually the coordinates are �tted such that the stellar surface coincides

with the domain boundary of a spectral element. This process is computationally

expensive and thus alternative approaches are worth investigating.

The idea pursued in this work is to extend the solution of the velocity potential

φ to the vacuum region, instead of stopping at the stellar surface. Since all of

the analytical expressions appearing in the continuity equation (4.36) can be easily

extended to regions with speci�c enthalpy smaller than one, there seems to be no

immediate reason to not extend the solution. The only question is whether the

equation of state (EOS), relating mass density ρ and speci�c enthalpy h, can also

be extended. For a polytropic equation of state we have

ρ = κ−n
(
h− 1

n+ 1

)n
, (4.56)

with polytropic constant κ and polytropic index n = 1
Γ−1

, where Γ is the adiabatic

index. This equation can be easily extended to h < 1 for all integers n ∈ N. For

non-integer n > 1 the continuation can not be directly extended, but it is possible

to set ρ = 0 in the h < 1 region. For 0 < n < 1 the derivative ∂ρ/∂h is unde�ned

at the stellar surface and thus we are unavoidably left with a function ρ(h) that is

not continuously di�erentiable at the domain boundary. Many realistic equations of

state for neutron stars can be approximated with a n < 1 polytrope, which would

then pose a problem for the continuous continuation to vacuum. However n < 1

holds only in the interior of the star, but not for the crust where the actual transition

to vacuum happens. There is general agreement that the crust is well described by

the Sly EOS [84] which is approximated by n > 1 polytropes [85]. Thus for the

continuation to vacuum the case n < 1 can be ignored in all physically meaningful

situations. A similar discussion holds for other types of analytically given EOS and

tabulated EOS can be extended through extrapolation.
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For a �rst discussion let us restrict to the simple case n = 1, for which the density ρ

can be easily extended to vacuum. It is then a natural ansatz to solve the exact same

equation in the interior region (h > 1) and the vacuum region (h < 1). The �rst

problem occurring with this ansatz is that ρ becomes negative, thus the equation

is no longer strongly elliptic (Eq. (2.10)) and therefore the hyperbolic relaxation

method can not converge to a steady state. This can be �xed by multiplying the

equation with (−1) in the vacuum region, which of course leaves the solutions to

the equation una�ected. Usually elliptic operators lead to solutions that are as

smoothed out as possible, but at the surface the operator is non-elliptic and loses

a lot of its smoothing properties, hence slowing down extremely the convergence to

the solution. Consequently the solution will barely adapt to ful�ll the regularity

condition (4.41) and the interior and the exterior solution will practically relax

independently from each other.

The observation that the interior solution relaxes practically independently from

the vacuum region seems to suggest that we can choose any �good� elliptic equation

in the vacuum region, without a�ecting the interior solution. The vacuum elliptic

equation will be �good� if it smoothes out the solution and if it is compatible with

the regularity condition (4.41). To smooth out the solution in fact every uniformly

elliptic equation with smooth coe�cients will su�ce, so the main problem is to

satisfy the regularity condition. The next ansatz is thus to extend elliptic equation

for the continuity equation (4.36) with a simple Laplacian equation:

0 = DiA
i =

Di

(
ρα
ρch

(Diφ+ wi − Ũ(βi + ξi))
)

if h ≥ 1

DiD
iφ if h < 1

, (4.57)

where Ai plays the same role as in the discussion of the HypRelaxDiv method, see

e.g. Eq. (2.54). Note that the equation for h ≥ 0 has been scaled with ρc, the

central mass density of the respective neutron star, to yield a principal part of the

elliptic equation with eigenvalues . 1.
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This equation alone however is not su�cient to obtain solutions that ful�ll the regu-

larity conditions (4.41) if hyperbolic relaxation is used. First, the outer (physically

irrelevant) boundary conditions must be chosen such that they actually permit such

a solution. Second, the parameters determining the Killing vector ξµ change in every

relaxation step. Since the principal part of the elliptic equation (almost) vanishes

close to the boundary the relaxation becomes slow close to the stellar surface and

therefore the solution cannot adapt fast enough to the changes of the Killing vector,

which is determined by the solution in the center of the neutron star. These prob-

lems can be leveraged after making the following observation. For an irrotational

star the internal velocity �eld V i describes a circular �ow around the center of the

star [86]. Therefore Diφ must be such that in the center of the star

Diφ ≈ Ũ(βi + ξi)− wi , (4.58)

i.e. V i approximately vanishes in the center of the star. Since the three velocity

is almost constant throughout the star [69] it is natural to split o� this constant

velocity part Diφ0, which is given by

Diφ0 = (Ũ(βi + ξi)− wi)|x=xC = const. , (4.59)

where φ0 is a scalar. The velocity potential is then split into

φ = xiDiφ0 + σ , (4.60)

where σ is the potential of the residual velocity which then becomes the new po-

tential that has to be solved for. This split is the most important part in ful�lling

the regularity condition, since without it it was not possible to �nd appropriate

boundary conditions that admit solution that satisfy the regularity conditions.

Since the parameters, like the constant from the Euler equation Cw, the approximate

Killing vector ξµ or the choice of the rotational enthalpy current part wi, can di�er

for both stars the transition between the (extended) numerical domains of the stars

will be smooth only on special cases. Eq. (4.57) is therefore solved on two separated
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domains which both have an outer boundary on the yz-plane, see Fig. 4.1. For the

metric equations however the domain will remain connected across the yz-plane.

Since σ is a residual quantity it should �uctuate around zero and hence its boundary

condition is set to

σ = 0 , (4.61)

along the yz-plane. For the outer shell boundaries the conditions must be compatible

with the condition imposed on the yz-plane. A compatible Dirichlet condition could

be found by simply applying the same condition (4.61). A compatible Neumann

condition is given by:

δijsi∂jσ = 0 , (4.62)

where si is the normal vector to domain boundary. This is also the condition that is

used to obtain all the results that presented in Sec. 4.3. It has to be remarked that

even with the introduction of the split (4.60) with the �rst naive ansatz discussed

in this section, extending the continuity equation with the interior expression, it

was not possible to obtain solutions that perfectly satis�ed the regularity condi-

tion (4.41). In particular for the �helix� choice of the rotational velocity piece (4.48)

solutions with this ansatz would describe a situation in which the �uid leaves the

star at the poles.

Since the solution will start relaxing from a simple initial guess the expression for

wi (Eq. (4.48)) (multiplied with 1√
γ
) must also be changed which is already clear

from the fact that there is a maximum radius for which it is de�ned. The modi�ed

expression is

wi =
1
√
γ
εijkωj(xk−xCk)±2

1
√
γ
ωi

√
c2 − fc|xj − xCj|2

2
+
δij(ωj(xi − xiC))2

2δklωlωk
(4.63)

where fc is a function falling o� to zero given by

fc =

1 if |xi − xiC | ≤ c

exp(−16(c− |xi − xiC |)2/c2) if |xi − xiC | > c .

(4.64)
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The fallo� in fc sets in at a distance c from the center of the star and hence c must

now be chosen larger than the stars radius. Since the exact radius is not known a

priori, it must be estimated in advance. Typically neutron stars have radii between

�fteen and ten kilometers [87], so choosing c larger then 15 km should work in most

applications. However, since this is a coordinate length it is possible to construct

coordinates such that the neutron star exceeds this radius.

4.3. Numerical Results

4.3.1. Implementation Details

To solve for the initial data Eqs. (4.10), (4.11), (4.13) and (4.57) are solved con-

currently using hyperbolic relaxation, where for the speci�c enthalpy h Eqs. (4.54)

and (4.63) are used. At the outer boundary Robin boundary conditions are speci�ed

for the metric variables as given in (4.14) and (4.15).

Some adjustments have to be made in comparison to the standard implementation

of an evolution project in bamps. These adjustments, some of which have already

been stated in text, are collected in the following list.

1. After every full Runge-Kutta step the data is interpolated to the centers of

the stars to determine the necessary parameters. The parameter Cw is

determined for each star by evaluating Eq. (4.53) and the parameters xcm and

Ω are chosen such that the derivative of the speci�c enthalpy, Eq. (4.54), along

the x-axis is zero at the stars centers. To compute the parameters a root �nder

estimates the minimum of |D3h| at x1,2 in the intervals 0 < Ω < 1/|x1,2−xc1,2|

and x1 < xcm < x2, where the notation of Eq. (4.23) has been used.

74



4.3. Numerical Results

-200 -150 -100 -50 0 50 100 150 200

X Axis

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

Y Axis

-200 -150 -100 -50 0 50 100 150 200

X Axis

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

Y Axis

-200 -150 -100 -50 0 50 100 150 200

X Axis

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

Y Axis

-200 -150 -100 -50 0 50 100 150 200

X Axis

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

140

160

180

200

Y Axis

Star 1 Star 2

Figure 4.1.: Grid structure of bamps. The �gure shows a cut through the xz-

plane (z = 0). The numerical domain is divided into subpatches and

their borders are visualized in the �gure. Thick lines denote the outer

boundaries for the numerical domain. For the solution of the matter

system the domain is decomposed into two domains and the additional

domain boundary is indicated by the thick blue line along the y-axis.

The dark gray spots indicate the position of the neutron stars.
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2. For the matter equations the subpatch boundary communication is switched

o� along the yz-plane, which separates the numerical domains of the individ-

ual stars. This is done to avoid Gibbs' phenomenon which would otherwise

occur due to the sudden jump in the divergence-free part of the enthalpy cur-

rent wi, the value of Cw (Eq. (4.53)) and the approximate Killing vector ξν .

Instead the boundary condition (4.61) is enforced on the yz-plane which re-

quires boundaries of subpatches everywhere on the yz-plane (cmp. Fig. 4.1).

On the outer boundary (4.62) is imposed for compatibility.

3. The spin frequency and the values of the central speci�c enthalpy are increased

slowly to their �nal values. This is a well known technique called continuation

method, see e.g. [88]. To be precise the parameters are linearly increased over

a time span ten times as long as the slowest characteristic variable needs to

travel once through the whole grid. In all relaxations considers in this work

the diameter of the numerical grid is 400, so the number of iteration steps for

this initial phase is tcontinuation = 4000/∆t.

4. Initially the metric is solved with the energy-momentum tensor given in the

constant three-velocity approximation [69], to generate a su�ciently good

initial guess for the metric. Only after that the equations are solved completely

consistently.

For irrotational neutron star binaries the problem is symmetric under re�ection on

the orbital plane, which is exploited to reduce the numerical costs by 50 % solving

only in the upper half sphere.

For the following computations a polytropic EOS, Eq. (4.56), is used with the

following parameters which have been used before in numerical tests [15, 69]

κ = 123.6489 n = 1 .
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The choice of κ basically �xes the length scale of the problem. In this case the

choice is made such that all length units are in kilometers if masses are given in

solar masses.

4.3.2. Initial Data through Hyperbolic Relaxation

This work studies initial data that is solved with the hyperbolic relaxation method.

Since the continuity equation (4.36) is expressed in divergence form and its principal

part is solution dependent, it is naturally solved with the HypRelax for elliptic

equations in divergence form discussed in Sec. 2.2. The described relaxation method

on its own is not stable enough to start from a trivial initial guess. Therefore the

initial guess for the metric variables is constructed in the constant three-velocity

approximation following the scheme of [69]. In contrast to the method of Ref. [69]

the results of this work are not obtained by starting with superposed (boosted)

TOV solutions, but instead starting with a �at metric ψ = 1, α = 1, βi = 0, as

discussed at the end of Sec. 4.1.2. The metric constraints are solved taking the

energy-momentum tensor in the constant three-velocity approximation as input. At

the same time the Eqs. (4.36) and (4.35) are solved for the matter variables with

the metric variables as input. After this scheme has found an approximate solution

all equations are solved simultaneously, now taking the correct energy-momentum

tensor computed from the solution of the matter variables. As has been discussed

in the previous section this method of concurrent solution of the constraints has the

advantage of avoiding �metastable� solutions.

The constant three-velocity approximation is used as a �rst test for the solver. Initial

data is constructed for an equal mass neutron star binary with a speci�c enthalpy

of h = 1.01 in each of their centers and a separation of 80. For the equation of state

a polytrope, Eq. (4.56), is chosen with κ = 123.6489 and n = 1. The stars' centers

are located at the x-axis and their velocities are parallel to the y-axis. The initial
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data is constructed for irrotational stars on a quasicircular orbit. In Fig. 4.2 results

are presented for the conformal factor, lapse, the y-component of the shift and the

residual of the conformal factor equation.

4.3.3. Ful�llment of the Regularity Condition

It will be veri�ed that the continuation to the vacuum indeed yields data for the

velocity potential that satis�es the regularity condition (4.41). This can be done

by visually investigating the direction of the V i �eld which should be tangential to

the star surface. For this test a rotating binary with rotational velocity piece given

by the �old� equation (4.32) is used. The factor is chosen by f = 1 and the spin

parameter is chosen as ωi = (0, 0, 0.005), i.e. the spin axis is aligned with the spin

axis. The second stars spin is anti-aligned with the same magnitude. The neutron

stars are chosen to have equal mass, given through a central enthalpy of hC = 1.16,

moving on a quasi-circular orbit. The results are shown in Fig. (4.3) con�rming

that the regularity condition is satis�ed.

4.3.4. Convergence of the Solution

To discuss the convergence of solution with increasing resolution the convergence

of the Chebyshev coe�cients against the coe�cients of a high resolution solution

is investigated. Fig. 4.4 shows the convergence behavior of the lowest Chebyshev

mode C(0, 0, 0) against its value at a resolution of 21 collocation points for the

solution of the velocity potential for a binary with non-spinning neutron stars.

Because the solution for the metric variables is not smooth at the stellar surface the

convergence is not perfectly exponential. In particular in subpatches containing the

stellar surface the method converges only in an averaged sense. In tests with a single

neutron star in spherical symmetry (Tolmann-Oppenheimer-Volko� star) the same
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Figure 4.2.: Steady state at a resolution of 11 collocation points per subpatch for

the initial data of a binary neutron star system in the constant three-

velocity approximation. The �gure shows the data along the positive

x-axis. The values on the negative axis are symmetric (anti-symmetric

for the shift component βy). Solid line: conformal factor. Orange

dashed line with markers: lapse. Purple dotted line: y-component of

the shift, shown here with an o�set of one for clarity. Green dash-dotted

line: absolute value of the residual for the conformal factor, as given by

the right-hand side of Eq. (4.10). Vertical dashed line: location of the

stellar surface.
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Figure 4.3.: Internal velocity �eld V i on a section through the xy-plane. The

spin axis is orthogonal to the xy-plane and the spin parameter ωi =

(0, 0, 0.005). Black arrows represent the direction of V i. The color

shows the pro�le of the speci�c enthalpy h.

behaviour is known and empirically it has been found that the upper limit for the

error converges linearly, whereas the lower limit seems to decrease exponentially.

Only with surface �tted coordinates was it possible to obtain a clean (but slow)

exponential convergence [1]. Although this may be a disadvantage for studies of

initial data per se, the situation changes if the goal is evolution of the data. Since in

an actual evolution of this data surface-�tted coordinates are normally not retained,

the high accuracy of initial data with surface-�tted coordinates will be lost relatively

quickly anyway. On the other hand, methods like [74] require expensive iterations

to determine the surface �tting coordinates as part of the solution process.

4.3.5. In�uence of the New Rotational Velocity Choice

The e�ects of the �helix� rotational velocity proposed in Eq. (4.63) are now discussed

comparatively to the �planar� choice (4.32). For this comparison the spins are chosen

to be anti-aligned and orthogonal to the orbital plane. The speci�c choice for the
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Figure 4.4.: Convergence of the lowest Chebyshev coe�cient C(0, 0, 0) of the veloc-

ity potential for non-spinning stars for two representative subpatches

Dots: subpatch containing parts of the neutron star surface. Crosses:

subpatch without neutron star surface. The system is relaxed for dif-

ferent numbers of collocation points. The plot shows the absolute value

of the di�erence between the Chebyshev coe�cient at the highest reso-

lution (21 collocation points) and its value for n collocation points per

subpatch. The central cube grid was divided into eight subpatches in

each dimension.
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Figure 4.5.: Internal velocity �eld V i for two neutron stars moving in the xy-plane.

The spins are anti-aligned with spin parameters ωi1 = (0, 0, 0.005) and

ωi2 = (0, 0,−0.005). Upper �gure: planar �ow rotational current,

Eq. (4.32). Lower �gure: helix �ow rotational current, Eq. (4.63).

Both stars have the same mass. The second star in the background

appears smaller due to the perspective. Arrows indicate the direction

of the �ow. The color shows the magnitude of V i computed according

to Magnitude(V i) = V iV jδij. The opaque spheres indicate the stellar

surfaces.
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Figure 4.6.: Residuals of the Euler equation on a section through the orbital plane

showing both neutron stars. Shown is the z-component, which is in the

direction of the spin axis. Upper row: planar �ow rotational current,

Eq. (4.32). Lower row: helix �ow rotational current, Eq. (4.63). The

error magnitude in the planar case are almost not perceivable compared

to the helix case.
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spin parameter is

ωi1 = (0, 0, 0.005) ωi2 = (0, 0,−0.005) . (4.65)

For the constant c a value of
√

2 · 10 is chosen, which is su�ciently large for the

parameters assumed here. In both cases Eq. (4.53) is used to integrate the Euler

equations, but note that with the choice (4.32) the Euler equations are not curl free

and hence there is no chance of converging to completely solved equations.

In Fig. 4.5 the stream lines of the internal velocity �eld V i are shown for both

choices of wi. For the generation of the stream lines the Stream Tracer �lter of

the visualization program Paraview 5.4.0 [89] is used which employs a �fth order

Runge-Kutta integrator with adaptive step size control. The calculations were car-

ried out on a grid with nine collocation points in every dimension in every subpatch

and the central cube of the bamps grid (Fig. 4.1) was divided into eight subpatches

in every dimension. The stream lines reveal that for the planar wi the resulting

�ow of V i is also approximately planar. The helix wi likewise leaves its imprint in

V i, which exhibits a clear helix like form, in the perspective projection of Fig. 4.5

appearing like an S-shape. From the �gure it is visible that there are three distinct

regions of small internal velocity; one in the center and one at each of the two poles.

For the planar case in contrast the low velocity region is found everywhere along

the spin axis.

Fig. 4.6 shows the residual of the Euler equations (4.35). Shown is the z-component

of the equations, where di�erences between the two choices for wi are clearly visible.

For the other components the residuals look almost identical. Fig. 4.6 shows that

the residual is actually worse using the new choice (4.63), but keep in mind, that

with the old choice the Euler equations can actually not be integrated and thus they

can not converge. The errors for the �helix� choice stem mostly from the boundary

region which indicates that for this choice the solution for the velocity potential φ

close to the boundary is more demanding for the elliptic solver in this case and more
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resolution would be required to see the �helix� choice overtaking the �planar� one.

In the �helix� case there are also some stream lines that end at the stellar surface

which indicates that the regularity condition is actually not perfectly maintained for

this solution, which is another con�rmation that this solution is more demanding

for the solver.

Having now investigated the in�uence of the new choice of the rotational veloc-

ity piece, it will be interesting to investigate the e�ects in a numerical evolution.

There is however a conceptional problem with the formalism, that should be visible

when the data is evolved. The derivative of the velocity potential φ cancels the

axial current at the initial data hypersurface. The time derivatives of ∇µφ and wµ

however are chosen such that the axial current and the canceling part from ∇µφ

are stationary in di�erent frames. The rotational axis of the rotational part would

keep its orientation with respect to the irrotational frame, whereas the orientation

of the canceling current would rotate in this frame instead keeping its orientation in

the corotating frame. This has the consequence that if the data would be evolved

the two parts would no longer cancel and there would be some mass leaving the

neutron star soon after. One might consider this then as a hydrodynamical ejecta

mechanism, but this situation is then still unsatisfactory, because the initial data

hypersurface should not represent a special situation where the star stopped eject-

ing material for a brief moment. Discarding the idea of ejecta there is a need for

alternatives, which could for example be provided by another choice of wi, with

vanishing axial current at the stellar surface. It is however not clear whether such

a solution could be constructed in a physically meaningful way.

The second alternative are changes in the time derivatives of ∇µφ and wµ. From

the result that they have to cancel partially it seems obvious that the velocity parts

should be split in another way. In the rationale for his choice of time derivatives,

Eq. (4.30), Tichy assumed that ∇µφ is parallel to the movement of the stars center.

With the axial current being canceled by ∇µφ this is certainly no longer true.
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The principal idea of the rotational frame being stationary in the irrotional frame,

however, seems still reasonable, but could be re�ned by actually not choosing the

rotational enthalpy current to be stationary in the ��xed stars� frame, but instead

making this choice for the rotational part of the actual four-velocity, i.e.

γνi L∇φ/Ũ
wν
h

= 0 , (4.66)

which will di�er from (4.30), because the h is not stationary in the same frame.

There is however yet something else that possibly spoils the Lie derivatives. As

will be shown next, the current formalism does actually not split the velocity in an

irrotational and purely rotational part, which might in the end be the true reason

for this oddity of the solution.

4.4. Sketch of an Improved Approach to Initial

Data for Neutron Star Binaries with Spin

4.4.1. Identi�cation of the Problems in the Previous

Approach

The �ndings of Sec. 4.3.5 suggest that there might be an inconsistency in the sep-

aration of the irrotational and rotational part. One possible problem is the fact

that the Lie derivatives in (4.30) are applied on the enthalpy current instead of the

four-velocities. Since by making the choice (4.25) the speci�c enthalpy is neither sta-

tionary in the corotating nor in the irrotational frame, this means that neither will

the irrotational velocity be stationary in the corotating frame nor will the rotational

velocity piece be stationary in the irrotational frame.

Another problem becomes apparent noticing that the irrotational velocity ∇µφ
h

is

not normalized to −1, but the time component is instead chosen such that the total
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velocity is normalized to −1. The normalization to −1 however is a crucial ingre-

dient to show the equivalence of Eq. (4.26) and (4.27) in the irrotational case [64].

Since the normalization of the irrotational velocity piece changes for spinning neu-

tron stars, Eq. (4.27) can in this case no longer be used to de�ne the irrotational

part and consequently ∇
µφ
h

will also contain rotational parts.

4.4.2. Split Into Irrotational and Rotational Part

Since it is now clear that the formalism of Tichy does in fact not perfectly separate

the irrotational and rotational part of the �uid, a re�ned version of the existing

approach must be found. As a starting point the ansatz is to split the four-velocity

into its irrotational and its rotational part:

uµ = t(uµirr + uµrot) (4.67)

where uµirr is normalized such that uµirruirrµ = −1. The scalar t is �xed by the nor-

malization constraint uµuµ = −1, which reduces to t = 1 in the purely irrotational

case uµrot = 0. One can then de�ne the projection operator onto the frame of the

irrotational observer

P ν
irrµ = δνµ + uνirruirrµ . (4.68)

The irrotational part must then have vanishing kinematic vorticity (cmp. Eq. (4.26))

0 =
1

2
P µ

irrαP
ν
irrβ(∇µuirrν −∇νuirrµ) (4.69)

=
1

2
(∇αuirrβ −∇βuirrα + uirrαu

ν
irr∇νuirrβ − uirrβu

ν
irr∇νuirrα) . (4.70)

For the purely irrotational case this has been further reduced using the Euler equa-

tions (4.21). For spinning neutron stars however one should not assume that the

irrotational part alone also satis�es the Euler equation. The Euler equations hold

for the total four-velocity, but not for arbitrarily split o� components. Besides the

problem that the irrotational part was not normalized to −1, this seems to be a
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further possible problem in the previous formalism, where this has always implicitly

been assumed. Although this is actually a free choice, it might be physically not

the best one.

Instead let us proceed assuming there is a non-zero scalar X such that

0 = uµirr∇µ(Xuirrν) +∇νX (4.71)

= Xuµirr∇µuirrν + P µ
irrν∇µX . (4.72)

Then Eq. (4.70) can be reformulated to

0 = ∇α(Xuirrβ)−∇β(Xuirrα) . (4.73)

In the irrotational case the new variableX should coincide with the speci�c enthalpy

h not only on the spatial slice, but also their Lie derivatives should agree.

A solution to Eq. (4.73) is given by

uirri =
1

X
Diσ , (4.74)

where σ is now the new velocity potential. It is trivial to show that this solution

indeed ful�lls the spatial projection of (4.73)

0 = Di(Xuirrj)−Dj(Xuirri) . (4.75)

The projection on nαnβ is also trivially satis�ed. The constraint that also the

projection on nαγβi should vanish, �xes the choice of the time derivative of Xuirrµ.

The necessary supplementary requirement for irrotation is then:

γµi LnXuirrµ = Di(nµXu
µ
irr) = −Di(αXu

t
irr) = 0 . (4.76)

For example making the speci�c choice

γµi Lξ (Xuirrµ) = 0 (4.77)
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can be shown to satisfy the irrotation conditions in a complete analogy to the

calculation given in [64], with the Euler equations replaced by (4.71) and the �uid

four-velocity uµ replaced by uµirr. Furthermore after introducing the split

uµirr = utirr(ξ
µ + V µ

irr) (4.78)

the following relations are also derived analogously

utirr := − uµirrnµ
α

=

√
1 +X−2DiσDiσ

α
, (4.79)

V i
irr =

Diσ

utirrX
− ξi − βi , (4.80)

X =
√
L2

irr −DiσDiσ , (4.81)

Lirr =
(βi + ξi)Diσ − Cirr

α
, (4.82)

Cirr = − X

utirr
− V j

irrDjσ = const. . (4.83)

Equations (4.79) and (4.80) hold in the general case, whereas the last three equations

hold for the speci�c choice (4.77). The solution for X is given by (4.81) in terms

of Diσ, Cirr and given quantities. σ must be computed by solving the continuity

equation and Cirr is a yet undetermined constant that must be chosen such that the

Euler equations are satis�ed.

The rotational part can be expressed as

uµrot =
wµ

X
, (4.84)

where again wµ is chosen to be spatial, wµnµ = 0, and divergence free, Diw
i = 0.

The four-velocity can now be written as

uµ =
t

X
(∇µσ + wµ) = t

(
utirr(ξ

µ + V µ
irr) +

wµ

X

)
. (4.85)

Inserting (4.85) in the Euler equations (4.21) using (4.73) yields

0 = huµ(∇µ(huν)−∇ν(huµ)) (4.86)

=
hX

t
(δµν + uµuν)∇µ

ht

X
+
h2t

X
uµ(∇µwν −∇νwµ) | · γ

ν
i

h2
(4.87)

0 = γνi (δµν + uµuν)∇µ ln

(
ht

X

)
+

t

X
uµγνi (∇µwν −∇νwµ) . (4.88)
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The second term can be expressed as

t

X
uµγνi (∇µwν −∇νwµ) =

t

X
Xuµirrγ

ν
i (∇µwν −∇νwµ) +

t

X
wµγνi (∇µwν −∇νwµ)

(4.89)

= tutirrγ
ν
i Luirr/utirrwν − tu

t
irrγ

ν
i

(
wµ∇ν

uµirr
utirr

+
uµirr
utirr
∇νwµ

)
+

t

X
wj(Djwi −Diwj)

(4.90)

= tutirrγ
ν
i Luirr/utirrwν − tu

t
irrDi

uµirr
utirr

wµ

+
t

X
wj(Djwi −Diwj)

(4.91)

Interestingly the last term is the same as in the expression for the de�ning equation

of a Beltrami �eld (4.44).

4.4.3. Choice of the Time Derivatives

Investigating Eq. (4.91) it is tempting and seems natural to choose the following

time derivative for wi:

γµi Luirr/utirr(Xurotµ) = γµi Lξ+Virrwµ = 0 . (4.92)

It is however not clear how to motivate this choice physically. Why should the �eld

X, that is used to de�ne the irrotational part, appear in the time derivative of the

rotational part? A more physically motivated choice would actually be stationarity

of the rotational part in the irrotational frame:

γµi Luirr/utirrurotµ = γµi Lξµ+V µirr

wµ
X

= 0 . (4.93)

Enforcing both (4.92) and (4.93) would require

Luirr/utirrX = 0 , (4.94)
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which also does not have a direct physical justi�cation. In the irrotational case

however, where X = h, this choice corresponds then to an expansion free �uid.

Eventually more justi�ed might be the case where X is stationary in the corotating

frame, i.e. in the frame in which also uirr is stationary. After all Eq. (4.71) should

hold at least for an in�nitesimal time span, which should be ful�lled in this case.

This choice, expressed by

LξX = 0 , (4.95)

together with (4.93) results in

γµi Luirr/utirr(Xurotµ) = γµi urotµLξ+VirrX =
wi
X
V j

irrDjX . (4.96)

The second term of Eq. (4.88) is now completely expressed in terms of variables

given on the spatial slice, except for the new velocity potential σ and Cirr. The

�rst term of (4.88) still contains a time derivative, which is �xed by the choosing

the time derivative of h. Note that t is given completely in terms of uirr and urot

and thus its time derivative is determined by the time derivative of these quantities.

The Euler equations are then expressed completely by quantities on the spatial slice

and can be integrated for h, given that the expression is actually curl free. It is

not yet clear whether the constraints on wi that were present in Tichys formalism

actually remain or whether the choice of wi is now absorbed for example in the

value of Cirr. Another question is, under which requirements on the Lie derivatives

a rotational part with planar �ow is permissive. If it turns out that a planar �ow

is still prohibitive, then the irrotational part should at least turn out such that the

axial velocity in the center of the helix decreases with distance from the stars center

and eventually vanishing on the boundary. Otherwise the irrotational part still has

to cancel parts of the rotational part and the choices that were proposed for the

Lie derivatives (4.77) and (4.93) would be still problematic for the same reasons

discussed at the end of Sec. 4.3.5.

The last missing piece to complete the formalism for initial data construction is

to actually solve for the velocity potential σ. This quantity will be obtained by
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inserting all expressions in the the continuity equation (4.19) which should yield a

presumably elliptic equation for σ. To close the discussion the formalism is investi-

gated in the irrotational case. Setting wµ = 0 and t = 1 Eq. (4.88) becomes

0 = Di ln
h

X
+ u

(3)
iu
µ∇µ ln

h

X
. (4.97)

Clearly the equations are solved if h and X and their time derivatives coincide. In

this case the solution for h is given for example by (4.81). Next it is also interesting

to investigate the case where the time derivatives do not coincide. Let us take as

an example

LξX = 0 Luh = 0 , (4.98)

i.e. the �uid is expansion free. In this case the Euler equations become

0 = Di ln
h

X
− u

(3)
iu
µ∇µ lnX (4.99)

= Di ln
h

X
−X(Diσ)V j

irrDj lnX = Di ln
h

X
− (Diσ)V j

irrDjX . (4.100)

The equations can then still be solved for h if V jDjX = const.. It seems unlikely

that (4.81) provides such a solution, however Eq. (4.81) has been obtained under

the assumption (4.77) and the Euler equations actually do not directly depend on

it. Hence it is also possible to choose X and the Lie derivative for Xuirrµ follows

from (4.76). Concluding, it actually seems possible to construct purely irrotational

solutions where X and h do not coincide. How physically reasonable the resulting

time derivatives are however, remains another question.
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A �rst result of this thesis is that hyperbolic relaxation can be formulated not only

for simple problems like the Poisson equations, but also for non-trivial equations.

The HypRelax method has been successfully applied to the extended conformal-

thin-sandwich equations and after developing a variation, the HypRelaxDiv method,

also to the continuity equation for a neutron star binary.

Beyond the intrinsic interest in a new method, we have to ask whether hyperbolic

relaxation, after some signi�cant further development that is beyond the scope of

this thesis, might become an interesting alternative to the highly developed standard

methods. For example, Jacobi relaxation is a fundamental building block of many

advanced methods, but it is essentially never used on its own because of its slow

convergence (for long wavelengths). However, multigrid methods with parabolic

relaxation as smoother (for short wave lengths) are highly e�cient, reducing the

computational complexity from O(n2) to O(n log(n)). The solver could also pro�t

from adaptive-mesh re�nement techniques which are often present in modern evo-

lution codes. It remains to be seen how e�cient hyperbolic relaxation can be, with

and without acceleration methods.

Applying the HypRelaxDiv formalism to the continuity equation an approach avoid-

ing the necessity of surface-�tted coordinates has been explored. To achieve this

the equation for the velocity potential has been extended to vacuum by the Poisson

equation. Since the relaxation at the surface of the star is very slow it has been
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found di�cult to satisfy the regularity conditions on the stellar surface, because

certain parts like the Killing vector change on a very short time scale the velocity

potential φ cannot adapt to. It was possible to achieve regularity satisfying solu-

tions by introducing a splitting of the constant part of the irrotational enthalpy

current. The bottom line is however that this relaxation scheme is not optimal for

this type of equation. Either direct solvers should be used or the method should in

some way be accelerated near the stellar surface.

For the matter equations the Euler equations have been solved for a binary neutron

star system with spinning stars solving the Euler equations without any simpli�ca-

tions. This has revealed that previous choices for the rotational enthalpy current

were actually incompatible with the Euler equations. It was shown that the ro-

tational part of the enthalpy current cannot be a planar �ow, but instead must

be divergence-free Beltrami �eld, in which case the Euler equations can be easily

integrated using an analytic formula. A rotational part that is divergence-free Bel-

trami �eld has been derived for a rigidly rotating neutron star, which as a new

feature exhibits an additional component along the direction of the spin axis. This

new �nding might have consequences in evolutions of the data in particular for the

magnetic �eld of these neutron stars.

These �ndings however also revealed a conceptional problem in the formalism. The

irrotational part has to cancel the new axial component of the rotational velocity

piece. The time derivatives of the irrotational and rotational part however are

chosen such that the cancellation is not conserved when the data is evolved. This

indicates that the choice of the time derivatives is actually �awed. Furthermore it

has been shown that the current formalism does actually not separate irrotational

and rotational velocity piece correctly. A new rigorous split into irrotational and

rotational velocity piece has been proposed and the solution of the Euler equations

has been discussed in this new split has been discussed. For an application to

neutron star initial data the approach must be completed by writing down the
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equations for the continuity equation in this new formalism, which remains a task

for the future. Whether this formalism also resolves the described problem with the

axial current and whether this formalism would also allow planar rotational velocity

pieces remains yet to be investigated.
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