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Summary

1. SUMMARY

Background

Soft tissue tumors, as an important oncology domain, entail different entities and
are challenging regarding diagnosis and therapy. Here, we focused on synovial sarcoma
alongside with other soft tissue tumors and specifically analyzed the expression and
amplification of the gene SOX2 which has the full name SRY (sex determining region
Y)-box2. SOX2 is a transcription factor responsible for the pluripotency of
undifferentiated embryonic stem cells, promoting cellular proliferation and promoting
invasion, migration and metastases in melanoma and other tumors. We also tested Anti-
Histone H3-trimethyl K27 (H3K27me3) expression in SOX2 positive cases in an
attempt to correlate SOX2 gene expression with the posttranslational protein
modification H3K27me3, both of which having been associated with stemness features

of cancer cells.
Methodology

In our study, we included all samples (n=60) of synovial sarcoma at the
Friedrich-Schiller University hospital of Jena (Germany) between January 2013 and
December 2015 in a retrospective observational manner. We excluded cases whose
histopathological material was not available anymore in the institute (n=6) and cases
(n=4) whose paraffin block was not optimal for further investigation.
Clinicopathological and Immunohistochemical analysis were performed by our
institutional pathology team according to standard diagnostic protocols e.g. using
antibodies against EMA, Bcl2, PanCK, CK7, CD34, Ki67 and S100. Molecular
confirmation of the diagnosis was routinely performed by FISH and/or PCR to detect
the t(x;18) translocation. We also employed tissue microarrays of different soft tissue
tumors to compare the expression in synovial sarcoma with other sarcoma entities.

Results were collected, tabulated and statistically analyzed.
Results

About 60 % of all synovial sarcoma cases were positive to Sox2. Meanwhile out
of 343 soft tissue tumors, varying from nodular fasciitis to undifferentiated pleomorphic

sarcoma, only 13 cases (3.8%) were Sox2 positive. Of these, 11 (84.6%) were
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undifferentiated high grade pleomorphic sarcoma. Out of 35 Sox2 positive synovial
sarcoma cases, 25 (71, 4%) were H3K27me3 positive and 10 (28, 6%) were negative.
SOX2 amplification was not detectable in 6 randomly chosen synovial sarcoma cases

showing SOX2 protein expression.
Conclusion

Sox2, a principal stem-cell transcription factor, is evidently involved in the
tumorigenesis of many tumor entities. In soft tissue tumors, however, expression is
largely restricted to synovial sarcoma. Immunohistochemical detection of SOX2 can
thus help in the diagnostic challenge in differentiating synovial sarcoma from other soft
tissue tumors. H3K27me3 was also found to be positive in the majority of Sox2-positive
synovial sarcomas and this correlates with the idea that these tumors might have a
pluripotent cell population as tumor-initiating cells. We think that this finding supports
the hypothesis of synovial sarcoma as product of pluripotent mesenchymal stem cell
populations rather than being derived from mutations in terminally differentiated cells.
The results may add to the diagnostic scheme for synovial sarcoma diagnosis.
Moreover, Sox2 might reveal a molecular approach in cancer treatment, namely by

targeting epigenetic modulators that seems to play a role in SOX2 gene regulation.




Zusammenfassung

Zusammenfassung
Hintergrund der Studie:

Weichteiltumoren, eine wichtige onkologische Domine, setzen sich aus
unterschiedliche Entitditen zusammen und sind diagnostisch und therapeutisch
schwierig. Hier konzentrierten wir uns auf das Synovialsarkom, wie auch andere
Weichteiltumore, und analysierten speziell die Expression und Amplifikation des Gens
SOX2, das mit vollem Namen SRY (sex determining region Y)-Box2 heisst. SOX2 ist
ein Stammzell-Transkriptionsfaktor, der fiir die Pluripotenz undifferenzierter
embryonaler Stammzellen verantwortlich ist und die Zellproliferation, Invasion,
Migration und Metastasen bei Melanomen und anderen Tumoren fordert. Daneben
testeten wir die Anti-Histon-H3-Trimethyl-K27 (H3K27me3)-Expression in den Sox2-
positiven Fallen, um die SOX2 Expression mit der posttranslationalen
Proteinmodifikation H3K27me3 zu Kkorrelieren, beide Marker wurden mit

Stamzellcharakteristika von Krebszellen assoziiert.
Methodik:

In unserer Studie wurden alle Synovialsarkome (n = 60) zwischen Januar 2013
und Dezember 2015 an der Friedrich-Schiller-Universititsklinik in Jena (Deutschland)
retrospektiv betrachtet. Wir schlossen Fille aus, deren histopathologisches Material
nicht mehr im Institut (n = 6) verfiigbar oder deren Paraffinblocke filir eine weitere
Analyse ungeniigend waren (n=4). Klinisch-pathologische und immunhistochemische
Analysen wurden von qualifizierten Mitarbeitern des Institut fiir Pathologie nach
Standard-Diagnoseprotokollen etwa unter Verwendung von Antikorpern gegen EMA,
Bcl2, PanCK, CK7, CD34, Ki67 und S100 durchgefiihrt. Die molekulare Bestdtigung
der Diagnose erfolgte routineméfig durch FISH und/oder PCR-Analyse, um die t(x;18)
Translokation nachzuweisen. Wir haben in dieser Studie auch Gewebe-Microarrays
verschiedener Weichteiltumoren eingesetzt, um die Expression in Synovialsarkomen
und anderen Sarkom-Entititen zu vergleichen. Die Ergebnisse wurden gesammelt,

tabelliert und statistisch untersucht.




Zusammenfassung

Ergebnisse

Etwa 60% aller Fille von Synovialsarkomen waren positiv fiir Sox2. Von 343
Weichteiltumoren, die von der noduldren Fasziitis bis zu undifferenziertem
pleomorphem Sarkom reichten, waren nur 13 Fille (3,8%) Sox2-positiv. Von diesen
waren 11 (84,6%) undifferenzierte hochgradige pleomorphe Sarkome. Von 35 Sox2-
positiven Synovialsarkomen waren 25 (71, 4%) H3K27me3-positiv und 10 (28, 6%)
negativ. Eine SOX2 Amplifikation war nicht nachweisbar in 6 zufillig ausgewihlten

Synovialsarkomen mit SOX2 Expression.
Schlussfolgerungen

Sox2, ein Hauptstammzelltranskriptionsfaktor, ist offensichtlich an der
Tumorigenese vieler Tumorentititen beteiligt. In Weichtumoren ist die Expression
jedoch weitgehend beschrinkt auf Synovialsarkome. Der immunhistochemische SOX2
Nachweis kann  damit hilfreich sein in der bisweilen schwierigen
differenzialdiagnostischen Abgrenzung dieser Entitit von anderen Weichteiltumoren.
H3K27me3 war ebenfalls nachweisbar in den meisten Sox2-positiven
Synovialsarkomtumoren und korreliert damit mit der Vorstellung, dass diese Tumoren
eine pluripotente mesenchymale Stammzell-Population als tumorinitiierende Zellen
aufweisen konnten. Wir denken, dass dieser Befund die Hypothese stiitzt, dass das
Synovialsarkom eher ein Produkt pluripotenter mesenchymaler Stammzellpopulationen
ist und nicht auf die Mutation terminal differenzierter Zellen zurlickgeht. Die
Ergebnisse konnten das diagnostische Schema fiir Synovialsarkome bereichern.
Dartiberhinaus konnte sich SOX2 als ein molekularer Ansatz in der Krebstherapie
entpuppten in dem Sinne einer zielgerichteten Beeinflussung epigenetischer

Modulatoren, die offenbar bei der Genregulation von SOX2 eine wichtige Rolle spielen.
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2. INTRODUCTION

2.1 Stem cells and embryonic stem cells

Stem cells are characterized by unlimited self-renewal and they also have the
capacity to differentiate into virtually all tissue types (Takashi et al. 2007; Takashi and
Yamanaka 2006). Increasing effort is put in the improvement of stem cell
transplantation therapies to revert the damage that is done by diseases such as
Alzheimer’s and Parkinson’s diseases. In other closely related fields like spinal cord
injury, important progress has been made using stem cells to treat patients (Pen et al.

2016).

Embryonic stem (ES) cells are pluripotent stem cells derived from the inner cell
mass of the early stage blastocyst (Yu &Thomson 2008). Self-renewal is crucial to stem
cell function, because it is required to persist for the life-time of the animal. Moreover,
whereas stem cells from different organs may vary in their developmental potential, all
stem cells must self-renew and regulate the relative balance between self-renewal and
differentiation (Tannishtha et al. 2001). ES cells possess the capacity of unlimited self-
renewal while maintaining pluripotency. Their ability to differentiate into all cell types
of the three embryonic germ layers makes them interesting candidates for cell
replacement therapies and has led to the identification of three core transcription factors
that are essential for maintenance of ES cells: Oct4, Sox2 and Nanog (Chen & Daley
2008). Many stem cell-specific transcription factors, including the pluripotency
transcription factors, Oct4, Nanog and Sox2 function in combinatorial complexes to
regulate the expression of loci, which are involved in embryonic stem (ES) cell

pluripotency and cellular differentiation (Kashyap et al. 2009).

Considerable effort has also been invested in attempts to dedifferentiate somatic
cells towards pluripotency, a strategy that could be used for personalized regenerative
medicine. One approach is to virally induce exogenous expression of transcription

factors forming induced pluripotent stem cells (Johansson et al. 2010).

As well as the experimental induction of pluripotency is done by somatic cell

nuclear transfer (Byrne et al. 2007), nuclear programming/cell fusion experiments (Lluis
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et al. 2008), and most recently by retroviral introduction of the four critical genes, now
sometimes referred to as Yamanaka factors: Oct4, Sox2, Klf4 and c-Myc or a
combination of Oct4, Sox2, Nanog and Lin28 (Yu et al. 2007). This technique has
permitted the reprogramming of multiple distinct mouse and human differentiated cell
types to yield induced pluripotent stem (iPS) cells (Yamanaka et al. 2008). These iPS
cells are similar to embryonic stem (ES) cells in morphology, proliferation and capacity

to form teratomas (Takahashi et al. 2006).

A B
Blastocyst Differentiated d
Fibroblast
Yamanaka Thomson
Factors Factors

Innar Cell Mass
Derived
Embryonic Stem Cell ‘r

Epigenetic
Reprogramming
Pluripotant Inducead
Embryonic Pluripatent

Stem Cell Stem Cell

Fig 1: Pluripotent stem cells can be derived from cells isolated from the inner cell mass of early stage
blastocysts (A) or experimentally derived by epigenetic reprogramming of differentiated adult cell types
(B). Greatest reprogramming efficiency is achieved when combinations of 4 factors, OCT4, SOX2, c-
MYC, and KLF4, or OCT4, SOX2, NANOG, and LIN28 genes are introduced into the differentiated cell.
However, OCT4 and SOX2 appear critically required to induce pluripotency (Kashyap et al. 2009).

The highest efficiencies of induced pluripotency are achieved when all four
factors (Yamanaka factors) were utilized; however c-Myc and K1f4 have been shown to
be dispensable for somatic cell reprogramming to pluripotency under specific culture
conditions (Nakagawa et al. 2008). Specifically, the histone deacetylase inhibitor
valproic acid (VPA) both enhances the efficiency of iPS derivation by the combined

four factors and permits the derivation of iPS cells using just Oct4 and Sox2 (Huangfu
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et al. 2008). These studies indicate that Oct4 and Sox2 are critical factors required for
maintaining self-renewal and pluripotency of mouse and human stem cells (Guo G et al.

2009).

Two major studies have demonstrated that Oct4, Nanog and Sox2 share a
substantial fraction of target genes and in fact, co-occupy genes in both mouse and
human ES cells (Boyer et al. 2005). As reported by Boyer and colleagues, these genes
occupy collectively about 10 % of the promoters in the human genome. About half of
the promoter regions bound by Oct4 were also bound by Sox2 and 90% of these doubly
bound genes were in turn bound by Nanog (Boyer et al. 2008). Moreover, the OCT4,
SOX2 and NANOG-binding sites were in close proximity, further confirming that the
proteins work in concert (Loh et al. 2006).

Oct4, Nanog, Sox2 and a number of associated transcription factor proteins
activate and maintain the expression of genes involved in self-renewal, while
simultaneously repressing genes that mediate differentiation (Wu et al. 2006). Thus
Oct4, Nanog and Sox2 form a self-reinforcing and intricately connected network that

preserves ES cell character (Yang et al. 2008).

2.2 Induced pluripotent stem cells and the Yamanaka Factors

In 2006, Shinya Yamanaka was the first to successfully reprogram cells using
four distinct factors, thereby generating induced pluripotent stem cells (iPSCs) from
terminally differentiated fibroblasts. [IPSCs can be established by the over expression of
four key transcription factors: Oct4, KlIf4, Sox2 and c-Myc (OSKM) (Takashi et al.
2007; Takashi and Yamanaka 2006). One of the major advantages of iPSCs is that they
can be made autologous and can provide a sufficient quantity of cells by culturing,

making the use of other stem cell sources unnecessary (Pen et al. 2016).

Reprogramming of any somatic cell type can be achieved by initiating several
synergistic processes. In the process of reprogramming, induced pluripotency elicits
several transcription waves driven by c-Myc/KIf4 and Oct4/Sox2/KI1f4. The expression
levels of distinct pluripotency genes (alkaline phosphatase (AP), stage specific

embryonic antigen (SSEA), Nanog and Oct4) increase step wise (Brambrink et al.
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2008), and upon achieving stable pluripotency levels, their DNA methylation patterns
are changed (Polo et al. 2012). Nonetheless, the exact mechanisms of reprogramming
still remain unclear. Obviously the reprogramming factors reactivate an endogenous
pluripotency circuitry by re-inducing the cells’ capacity for unlimited growth without

inducing genetic alterations, as it is frequently observed in cancer (Polo et al. 2012).

It has been demonstrated that abbreviated reprogramming factor expression
pattern results in dysplasia and tumor formation in vivo, thus suggesting that OKSM has
an impact on epigenetic changes that are substantially involved in the regulation of cell
growth and tumorigenesis (Ohnishi et al. 2014). This observation is corroborated by the
fact that iPSCs form teratomas upon implantation in vivo (Magnuson et al. 1982). Of
note, human iPSCs develop teratomas more efficiently and faster than human

embryonic stem cells (Gutierrez-Aranda et al.2010; Avior et al. 2015).

Teratoma
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Fig 2: In vivo overexpression of the four pluripotency factors OCT4, c-MYC, KLF4 and SOX2 (OSKM)
leads to epigenetic changes resulting in dysplasia. Extension of OSKM overexpression subsequently
drives tumor formation. Both dysplasia and tumor formation result from an incomplete reprogramming
process. Cells derived from these tumors can be fully reprogrammed towards unaltered iPSCs that do not
have tendencies to re-initiate tumorigenesis after blastocyst injection. In case of complete in vivo
reprogramming, teratoma formation becomes apparent. Figure is adapted from Ohnishi et al. (2014).
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Several studies have assigned the OKSM factors to tumorigenesis. Abad et al.
were the first to successfully reprogram in vivo by transiently inducing OSKM,
resulting in teratomas formation, and detection of fully reprogrammed cells in various
tissue types. The presence of the niche in vivo even allowed superior reprogramming to
the totipotent state (Abad et al. 2013). Intriguingly, further studies showed that partial or

incomplete reprogramming induced particular tumor types in vivo (Ohnishi et al. 2014).

More importantly, up regulation of these proteins was associated closely with
tumor metastases and poor prognosis in various human malignancies including prostate
cancer, lung adenocarcinoma, gliomas, rectal cancer, gastric carcinoma and oral

squamous cell carcinoma (Chiou et al. 2010; Guo et al. 2011; Matsuoka et al. 2012).

The mesenchymal phenotypic changes by increased motility and invasiveness of
epithelial tumor cells are known as epithelial-mesenchymal transition (EMT). EMT is
defined by the loss of epithelial morphology and the acquisition of a mesenchymal
phenotype, which is initially found to be a central program in early embryonic

morphogenesis (Lim et al. 2012).

In a few years, evidence has mounted for EMT as the key means through which
cancer cells acquire more highly mobile potentials to migrate and metastasize to distant
sites during tumor progression (Scheel and Weinberg 2011). E-cadherin, a classical
cadherin from the cadherin superfamily, is required for maintaining epithelial cell
plasticity. N-cadherin, known as an important member of the cadherin family that
mediates calcium-dependent adhesion, is normally expressed in mesenchymal cells.
Loss of E-cadherin and increased N-cadherin expression (E/N cadherin switch) is now

defined as a major hallmark of EMT (Nakajima et al. 2004; Werling et al. 2011).

Over the past few years, accumulating data has demonstrated that EMT
correlates closely with the acquisition of stem cells-like properties in cancer cells

(Polyak et al. 2009; Sarkar et al. 2012).

Luo et al. showed that overexpression of Sox2, Oct4 and Nanog were
significantly associated with high expression of N-cadherin, but adversely with low E-

cadherin expression (except SOX2). Additionally, overexpression of these proteins
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correlated strongly with the expression of Snail, a central transcription factor as E-

cadherin repressor (Luo et al. 2013).

In the kidney, OKSM-induced tumors bear features of a Wilm’s tumor, a
common pediatric cancer. Interestingly, these tumors only display epigenetic alterations,

as indicated by global changes in their DNA methylation patterns (Miiller et al. 2016).

Interestingly, reprogramming of OKSM-induced tumors resulted in non-
tumorigenic iPSCs that contributed to regular organ formation upon subsequent
differentiation in vivo. This indicates that reprogramming with the Yamanaka factors
primarily leads to epigenetic alterations, generating a ‘“‘cancer-poised” but not yet

“cancer-committed” state (Ohnishi et al. 2014).

2.3 Cancer and cancer stem cells

Similar to normal tissues, cancer compromise heterogeneous cell populations
with distinct phenotypes, functions and gene expression profiles (Marte 2013). The
phenotypic characteristics of some cancer cells, particularly of poorly differentiated to
undifferentiated tumors have been found to be quite similar to undifferentiated

embryonic cells (Curry et al. 2015).

A tumor can be viewed as an aberrant organ initiated by a tumorigenic cancer
cell that acquired the capacity for indefinite proliferation through accumulated
mutations (Reya et al. 2001). If one views a tumor as an abnormal organ, then the
principles of normal stem cell biology can be applied to understand better how tumors
develop (Kummermehr 2001). Both normal stem cells and tumorigenic cells have
extensive proliferative potential and the ability to give rise to new (normal and
abnormal) tissues. Both tumors and normal tissues are composed of heterogeneous
combinations of cells, with different phenotypic characteristics and different

proliferative potentials (Nowell 1986).

Because most tumors have a clonal origin (Fearon et al. 1987), tumorigenic
cancer cells must give rise to phenotypically diverse progeny, including cancer cells
with indefinite proliferative potential, as well as cancer cells with limited or no

proliferative potential. This suggests that tumorigenic cancer cells undergo processes

10
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that are analogous to the self-renewal and differentiation of normal stem cells (Reya et

al. 2001).

Both normal stem cells and tumorigenic cells give rise to phenotypically
heterogeneous cells that exhibit various degrees of differentiation. Thus, tumorigenic
cells can be thought of as cancer stem cells that undergo an aberrant and poorly
regulated process of organogenesis analogous to what normal stem cells do (Sell et al.

1994)

The cancer stem cell (CSC) hypothesis posits that tumors may be initiated and
maintained by a subset of cells that maintain or acquire stem-cell properties and that
each tumor contains a small subpopulation of cells that have the ability to differentiate
into multiple cell lineages and self-renew (Jordan et al. 2006; Reya et al. 2001). Cancer
stem cells or cancer stem-like cells have been identified in several solid tumor types
such as breast cancer and colon cancer (Al-Hajj et al. 2003) This subpopulation is
closely associated not only with carcinogenesis, but also with recurrence and metastasis

of tumors (Jordan CT et al. 2006).

Small numbers of stem cells are believed to exist in most if not all adult tissues
(Blanpain et al. 2009). Adult stem cells can evade the stringent genetic controls of their
normal pathways of cellular differentiation and proliferation and give rise to cancer.
Cancer stem/initiating cells have been defined as a subset of cancer cells that have the
exclusive ability of self-renewal and cause the heterogeneous lineages of cancer cells

that comprise the tumor (Hill et al. 2007).

These cancer stem cells are implicated in cancer initiation, malignant potential,
metastatic progression, and in the post treatment recurrence of many human cancer
types (Dalerba et al. 2008). Stem cell-specific proteins, including Oct4, Nanog and
Zfp42/Rex1 are implicated in some cancers (Chiou et al. 2008). Histologically poorly
differentiated tumors showed preferential overexpression of genes normally enriched in
ES cells. Activation targets of Nanog, Oct4, Sox2 and c-Myc are more frequently
overexpressed in poorly differentiated tumors than in well-differentiated tumors (Ben-
Porath et al. 2008). It appears that the genes active in both ES cells and cancer stem

cells are controlled by a few master regulatory genes (Wong et al. 2008)

11
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2.4 Sox2

SRY(sex determining region Y)-box2, also known as Sox2, is a transcription
factor that is essential for maintaining self-renewal or pluripotency of undifferentiated
embryonic stem cells and plays a critical role in maintenance of embryonic and neural
stem cells (Rizzino 2009). The Sox2 gene is located on chromosome 3q26.3-q27,
belongs to the SoxB1 group and encodes for a protein consisting of 317 amino acids
(Collignon et al. 1996). Sox2 research thus far has heavily emphasized its crucial role in
stem cell maintenance, lineage fate determinant and as a necessary factor to reprogram

somatic cells back towards pluripotency (Takahshi and Yamanaka 2006).

Varying levels of SOX2 affect embryonic stem cells’ fate of differentiation.
SOX2 inhibits differentiation into mesoderm germ layer and promotes differentiation
into neural ectoderm germ layer (Thomson et al. 2011). A study conducted in Milano,
Italy showed, through the development of a knockout model, that deficiency of SOX2
results in neural malformations and eventually fetal death, further underlying SOX2’s

vital role in embryonic development (Ferri et al. 2004).

In addition to its fundamental role in the maintenance of embryonic stem cells,
SOX2 is important during embryonic development of gastrointestinal organs: it is
expressed in the developing foregut and gastric epithelium. SOX2 co-localizes with p63
in the basal layer of the esophagus and is critical in the maintenance of the stratified
squamous epithelium; however it is down regulated in intestinal metaplasia of the

stomach and esophagus (Long and Hornick. 2009).

In neurogenesis, SOX2 is expressed throughout developing cells in the neural
tube as well as in proliferating central nervous system progenitors (Graham et al. 2003).
Cells expressing SOX2 are capable of both producing cells identical to themselves and

differentiated neural cell types, two necessary hallmarks of stem cells (Suh et al. 2007).

In diseases, SOX2 alterations have been associated with developmental
maladies, such as anophthalmia-esophageal-genital (AEG) syndrome which occurs
when there is a heterozygous mutation of Sox2 that leads to abnormal development of

ectodermal and endodermal tissues (Williamson et al. 2006).

12
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Cancer is a disease characterized by determined hallmarks, some of which are:
sustained proliferative signaling, activation of invasion and metastases, and evasion of
cell death (Hanahan and Weinberg, 2011). The orchestration of tumor initiation and
maintenance has been shown in some cancers to be driven by cancer stem cells (CSCs).
These cells may acquire tumor-initiating and self-renewal properties through similar

molecular mechanisms governing cellular reprogramming (Vazquez-Martin et al. 2013).

Sussman and colleagues discovered that the ubiquitin-specific protease 22
(USP22) is responsible for controlling the cellular transition from stemness towards
differentiation (Sussman et al. 2013). Moreover they found USP22 represses the SOX2
promoter in order to control the embryonic stem cell transition from self-renewal to
differentiation (Sussman et al. 2013). Therefore, not only is Sox2 an essential stem cell
marker but its suppression is mandatory for cellular differentiation. For these reasons,
Sox2 has been heavily investigated in CSCs in several cancer types (Weina and Utikal

2014)

SOX2 amplification has been found in several cancer types including
glioblastoma, small-cell lung cancer (SCLC) and many forms of squamous cell

carcinoma (SCC) (Rudin et al. 2012).

SOX2 has been shown to promote cellular proliferation in breast, prostate,
pancreatic and cervical cancers (Herreros-Villanueva et al. 2013), evade apoptotic
signals in prostate, gastric cancer and non-small cell lung carcinoma (Herreros-
Villanueva et al. 2013; Chen et al. 2013) and promote invasion, migration and
metastases in melanoma, colorectal glioma, gastric, ovarian cancer and hepatocellular

carcinoma (Sun et al. 2013; Lou et al. 2013).

Cellular proliferation is tightly regulated by Sox2 in many cancer types. Sox2
knockdown in pancreatic cancer cells resulted in cell growth inhibition through cell
cycle arrest, not apoptosis (Herreros-Villanueva et al. 2013). When Sox2 was over
expressed, cell proliferation was promoted through cyclinD3 (Herreros-Villanueva et al.

2013).

13
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Additionally, Fang and colleagues found in lung small cell carcinoma (LSCC),
SOX2-silencing inhibited cellular proliferation via the up regulation of BMP4 (Fang et
al. 2014). After performing chromatin immunoprecipitation and luciferase experiments,
SOX2 was found to transcriptionally repress the BMP4 promoter. The authors therefore
suggest that BMP4 is playing a tumor suppressor role in LSCC, while SOX2 repression
of BMP4 transcription causes cell growth (Fang et al. 2014). It’s also important to note
that the involvement of SOX2 in cell proliferation has been controversially discussed in

colorectal and gastric cancer (Liu H et al. 2013).

SOX2 also plays an important role in evading apoptotic signals. In prostate
cancer, in vitro and in vivo xenograft experiments using DU145 Sox2-overexpressing
cells in NOD/SCID mice revealed that SOX2 caused an increase in apoptotic resistance
by decreasing store-operated calcium entry (Jia et al. 2011). Equivalently, upon
silencing of SOX2 in non-small cell lung carcinoma (NSCLC) cell lines, apoptosis was

induced (Chen et al. 2013)

Research has indicated that SOX2 is a novel regulator of cell invasion, migration
and metastasis. For example, in melanoma, SOX2 knockdown in A2058 cells resulted
in a 4.5 fold decrease in invasion in vitro (Girouard et al. 2012). Likewise in colorectal
cells, SOX2 was involved in cellular migration and invasion in vitro (Han et al. 2012).
This invasive phenotype was also confirmed in malignant glioma, since siRNA-
mediated down regulation of SOX2 resulted in a significant decrease in migration and

invasion capabilities (Alonso et al. 2011).

2.5 Soft Tissue Tumors

2.5.1 Epidemiology

The incidence of soft tissue tumors, especially the frequency of benign tumors
relative to malignant ones, is nearly impossible to determine accurately. Benign soft
tissue tumors outnumber malignant tumors by a wide margin (Goldblum et al. 2014).
However, according to an analysis of the Surveillance, Epidemiology and End Results
(SEER) database, the incidence changes with age; for children younger than 10 years of
age, the annual incidence was 0.9/100,000 in children but rose to 18.2/100,000 in adults

14
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over the age of 70 years. The most dramatic increases occurred at 30 and 70 years of

age (Ferrari et al. 2011).

Soft tissue sarcomas are rare tumors, representing less than one percent of all malignant
neoplasms (Katenkamp and Katenkamp 2009). Adult soft tissue tumors are not
represented in the figures of the Robert Koch Institute reporting of 427 000 individuals
in Germany being diagnosed with cancer in 2006 (Bertz et al. 2010). Assuming that
mesenchymal malignancies constitute about one-hundredth of all cancer diagnoses
(Fletcher et al. 2006), an estimated number of 4500 Germans annually develop a

sarcoma.
2.5.2 Classification

Soft tissue tumors constitute a large and heterogeneous group of neoplasms
(Fletcher et al. 2006). Traditionally, soft tissue sarcomas have been classified according
to a histogenetic concept (e.g., fibrosarcoma as a tumor arising from fibroblasts,
osteosarcoma as a tumor arising from osteoblasts, and so on). However morphologic,
immunohistochemical and data from experimental animals suggest that most if not all
sarcomas arise from primitive multipotential mesenchymal cells, which in the course of
neoplastic transformation undergo differentiation in one or more lines (Mills et al.

1995).

The acceptance of this alternative scheme does not require a change in
terminology: a liposarcoma remains as such but is now viewed not as a tumor arising
from a lipoblast but as a tumor exhibiting lipoblastic differentiation (Fletcher et al.

20006).
2.5.3 Pathogenesis

The large majority of soft tissue sarcomas arise de novo rather than from
malignant degeneration of preexisting benign tumors. Although the latter phenomenon
may occur (as in neurofibromas), in most cases in which a given benign tumor is said to
have become malignant, review of the original material showed that it was malignant

from its inception (Laskin et al. 1988).
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2.5.4 Environmental factors

Trauma is frequently implicated in the development of sarcomas. Much has been
written in the medical and legal literature on the possible relationship between trauma
and soft tissue sarcoma, but no convincing evidence has been provided for a definite
cause-effect relationship between the two (Monkman et al.1974). Rare soft tissue
sarcomas have been reported as arising in scar tissue following surgical procedures or
thermal or acid burns, at fracture sites, and in the vicinity of plastic or metal implants,

usually after a latent period of several years (Piscitelli et al. 2011).

Worth noting is that trauma, whether etiologically related to a tumor or proven
to be indulged in tumor-emergence by causing specific genetic alterations, should be
regarded as more than just a random co-incidence. The emergence of mutations, for
example, may be favored in the proliferative state that occurs within fibroblasts in the

setting of a trauma (Petersen 2017).

Phenoxyacetic acid herbicides, chlorophenols and their contaminants such as 2,
3, 7, 8-tetrachlorodibenzo-para-dioxin (dioxin) have been linked to sarcomagenesis
(Zambon et al. 2007; Collins et al. 2009). A series of case-control studies from Sweden
from 1979 to 1990 reported an up to six fold increased risk of soft tissue sarcoma
associated with exposure to phenoxyacetic acids or chlorophenols in individuals
exposed to these herbicides in agricultural or forestry work (Hardell et al. 1998). Similar
reports of an increased risk of sarcoma associated with these herbicides were reported

from Italy (Bertazzi et al. 2001), Great Britain and New Zealand.

The possibility of an increased incidence of sarcomas was claimed for some of
the two million soldiers stationed in Vietnam between 1965 and 1970 who were
exposed to Agent Orange, a defoliant that contained dioxin as a contaminant
(Kramarova et al. 1998). Vinyl chloride exposure is clearly associated with the

development of hepatic angiosarcoma (Sahmel et al. 2009; Sherman M et al. 2009).

Radiation exposure has been related to the development of sarcomas, but
considering the frequency of radiotherapy, radiation-induced soft tissue sarcomas are

quite uncommon. The incidence of post-radiation sarcoma is difficult to estimate, but
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reports generally range from 0.03% to 0.8% (Mark et al. 1996; Inoue et al. 2000).
Nearly all post-radiation sarcomas occur in adults, and women develop these tumors
more frequently, an observation which reflects the common use of radiation for the

treatment of breast and gynecologic malignancies (Weaver et al. 2009).

Although the incidence of radiation associated angiosarcoma (RAAS) is low, the
number of cases reported is increasing as a function of the improved likelihood of
surviving early stage breast carcinoma. Furthermore, with increased use of external
beam radiation in the management of breast cancer patients, the incidence of post-
radiation sarcomas may increase in the future. Long-term follow-up is needed for early

disease detection (Torres et al. 2013).

Unfortunately most post radiation sarcomas are high-grade lesions and are
detected at a relatively higher stage than their sporadic counterparts (Billings et al.
2004). Patients with radiation-induced sarcoma of the extremities have the best survival
(approximately 30% at 5 years), whereas those with lesions arising in the vertebral
column, pelvis and shoulder girdle generally have survival rates of less than 5% at 5

years (Fang et al. 2004).
2.5.5 Oncogenic Viruses

The role of oncogenic viruses in the evolution of soft tissue sarcomas is still
poorly understood, although there is strong evidence that the human herpesvirus 8
(HV®) is the causative agent of Kaposi’s sarcoma (Mesri et al. 2010). In addition, there
is a large body of literature supporting the role of the Epstein-Barr virus in the
pathogenesis of smooth muscle tumors in patients with immunodeficiency syndrome or

following therapeutic immunosuppression in the transplant setting (Deyrup et al. 2006).
2.5.6 Immunologic factors

Acquired immunodeficiency, or loss of immune surveillance, may lay a central
role in the development of the relatively rare angiosarcomas that arise in the setting of
chronic lymphedema (Shon et al. 2011), secondary to radical mastectomy (Stewart-

Treves syndrome) (Dawlatly et al. 2011) or congenital or infectious conditions (Roy et

al. 2004).
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2.5.7 Genetic factors

A number of genetic diseases are associated with the development of soft tissue
tumors, and the list will undoubtedly lengthen as we begin to understand the molecular
underpinnings of mesenchymal neoplasia. Neurofibromatosis type 1, neurofibromatosis
type 2 and familial adenomatous polyposis (FAP)/Gardner syndrome are classic

examples of genetic diseases associated with soft tissue tumors (Goldblum et al. 2014)
2.5.8 Clinical Features

A definite relationship exists between soft tissue tumor type and the age of
presentation (Rydholm et al. 1984). For instance, embryonal rhabdomyosarcoma is
typically a tumor of infants and children, synovial sarcoma typically affects adolescents
and young adults, liposarcomas and undifferentiated pleomorphic sarcomas are usually
seen in middle-aged and elderly patients. It is interesting that congenital soft tissue

tumors rarely behave in a malignant fashion (Kauffman et al. 1965).

Most soft tissue sarcomas are solitary. Synchronous or metachronous multiple
sarcomas represent only 0.2% of all cases. Liposarcomas account for a high percentage

of these cases (Grobmyer et al. 2004).
2.5.9 Diagnosis

Appropriate diagnoses are of great importance to the patient to obtain the
adequate therapy. Since misdiagnoses are not uncommon, specialist centers provide
valuable resources for the verification of suspected malignant mesenchymal tumors

(Lehnhardt et al. 2009; Petersen et al. 2011).

For any large soft tissue tumor in which the possibility of malignancy exists, the
proper initial diagnostic procedure is to obtain material through incisional biopsy or fine
needle aspiration. The latter technique is being used with increased frequency in the
United States, with rates of accuracy equivalent to those obtainable with frozen section

(Layfield et al. 1986).

Light microscopic evaluation of hematoxylin-eosin-stained sections remains the

standard technique for the initial diagnostic approach to these tumors and is sufficient in
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the majority of the cases (Enjoji et al. 1984). However, there are special techniques that
have been successfully applied to increase diagnostic accuracy and which sometimes
are indispensable, this development applying both to adult and pediatric tumors
(Iwasaki et al. 2009). These techniques include conventional special stains, electron
microscopy, immunohistochemistry and molecular genetic methods (Rosai and

Ackerman 2011).

Immunohistochemistry for tissue-related markers has proved to be of great value
and is now extensively used to accurately classify these neoplasms: the specificity,
sensitivity and applicability of this technique to routinely processed material clearly
render it the method of choice in most circumstances (Heim-Hall et al. 2008). The

number of available markers is very large and continues to grow (Ordoéfiez et al. 1998).

The systemic use of cytogenetics has shown the existence of nonrandom
chromosomal alterations (mainly translocations) in association with many types of soft

tissue tumor (Sandberg AA et al. 2002).

Gene fusions have been described in approximately one-third of soft tissue
tumors (STT); of the 142 different fusions that have been reported, more than half are
recurrent in the same histologic subtype. These gene fusions constitute pivotal driver
mutations, and detailed studies of their cellular effects have provided important

knowledge about pathogenetic mechanisms in STT (Mertens et al. 2016).

The findings have validated the morphologic approach to classification of soft
tissue tumors, helped to refine the boundaries of some entities and offered insight into
the genesis of the tumors. Furthermore, the molecular alterations (gene fusions) that
result from the chromosomal translocations can now be readily demonstrated in routine
paraffin-embedded tissues by reverse transcriptase polymerase chain reaction (RT-PCR)
or fluorescent in situ hybridization (FISH), and such studies can be extremely helpful in
the diagnosis of these tumors especially in small biopsies, tumors with unusual

morphology, or tumors in unusual sites (Antonescu et al. 2006).

As an example, a break-apart FISH probe against the EWS (also known as
EWSR1) gene is particularly helpful since this gene is implicated in many different soft
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tissue tumor types, including Ewing sarcoma/PNET, angiomatoid fibrous histiocytoma,
extraskeletal myxoid chondrosarcoma, myxoid liposarcoma, clear cell sarcoma of

tendons and aponeurosis and desmoplastic small cell tumor (Chang et al. 2003).
2.5.10 Grading and Staging

Some degree of microscopic grading of soft tissue is already built into the
conventional microscopic classification of these tumors. The number of grades has
varied in the different systems: two (low-grade and high-grade), three (I, II and III or
low-grade, intermediate-grade and high-grade) and four (I, II, III and IV) grades have
been recognized (Deyrup et al. 2006).

The criteria used have included degree of cellularity, pleomorphism, mitotic
activity and necrosis and have been found to be of definite prognostic value for both
adult and pediatric soft tissue tumors (Coindre et al. 1988), however it is misleading to
over-emphasize grading that is independent of the specific microscopic type of the
sarcoma and the circumstances in which it occurs, such as the patient’s age or the depth

and size of the tumor (Deyrup et al. 2006).

The two grading schemes that have been most widely applied are those of the
French Federation of Cancer Centers Sarcoma Groups and the National Cancer Institute
(Coindre et al. 2001). The WHO meanwhile propagates the “Fédération Nationale des
Centres de Lutte Contre le Cancer”; FNCLCC system (Fletcher et al. 2013)

French federation of Cancer Centers Sarcoma Group (Fédération

Nationale des Centres de Lutte Contre le Cancer”; FNCLCC system) grading system
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Tumor Differentiation

Sarcomas closely resembling normal adult mesenchymal tissue.

Score 1 Examples: well-differentiated liposarcomas and well-differentiated
fibrosarcoma.
Sarcomas for which the histologic typing is certain. Examples:
Score 2 biphasic synovial sarcoma, alveolar soft-part sarcoma, myxoid
liposarcoma

Embryonal sarcomas, undifferentiated sarcomas and sarcomas of

Score 3 doubtful tumor type

Mitosis count

Score 1 0-9 mitoses per 10 high power fields

Score 2 10-19 mitoses per 10 high power fields

Score 3 More than 20 mitoses per 10 high power fields

Tumor necrosis

Score 0 No necrosis on any examined slides

Score 1 Less than 50% tumor necrosis for all the examined tumor surface
Score 2 Tumor necrosis on more than half of the examined tumor surface

The three grade system is set-up as follows: Grade I is defined as a total of 2 or 3
when summing the scores obtained for each of the three histologic criteria; grade II

represents a total of 4 or 5; grade III represents a total of 6, 7 or 8.

Two main staging systems for soft tissue sarcoma have been proposed. The one
exposed by the American Joint Committee (AJC) is largely based on the TNM system,
in that it uses the size of the primary tumor (T), the status of lymph nodes (N), the
presence of distant metastases (M), and the tumor’s histological grade (G) (Behars et al.

1992).
2.5.11 Prognosis

Prognosis of soft tissue tumors depends on a variety of parameters, many of

which are interrelated.

» Tumor size: there is a definite relationship between tumor size and outcome. This is
true for practically all tumor types in which this parameter has been analyzed
(Rooser et al. 1988).

=  Depth: Superficially located tumors (dermis and subcutaneous tissue) have a much

better prognosis than deep-seated ones (intermuscular or intramuscular,
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retroperitoneal) of similar microscopic type (Gerrand et al. 2003). Along similar
lines, soft tissue sarcomas featuring histologic evidence of bone invasion have a
poorer prognosis (Ferguson et al. 2006).

Location: Tumors of the retroperitoneum do much worse than microscopically
similar lesions located in the extremities. Among the latter, local recurrence has
been found to be more frequent with sarcomas of the upper extremity than those of
the lower extremity (Gerrand et al. 2003).

Microscopic type: Some soft tissue neoplasms (such as atypical lipomatous tumors)

are low-grade lesions with no capacity to metastasize, whereas other neoplasms of
similar cell type (such as pleomorphic liposarcoma) are highly aggressive and prone
to spread distantly (Rosai and Ackerman 2011).

Vascular invasion: This has been shown to be the strongest predictor of distant

metastases in several series (Engellau et al. 2005).

Surgical margins: Not surprisingly, adequacy of surgical margins is statistically

associated with low relapse (Stojadinovic et al. 2002).

Microscopic grade: A relationship has been found between various microscopic
grading systems and outcome, which in some cases is directly related to the
histotype but in others it is applied within a given histotype (Rosai and Ackerman
2011).

Clinical stage: this determination, which incorporates several of the previously

mentioned parameters, as well as the presence or absence of metastases, is the most
powerful prognostic determinator (Rosai J and Ackerman LV. 2011).

DNA ploidy: Several flow cytometric studies performed in soft tissue sarcomas of
various microscopic types have shown that DNA ploidy correlates with a higher
microscopic grade, a higher rate of cell proliferation and decreased survival rates
(Kroese MC et al. 1990).

Cell proliferation: Mitotic activity is incorporated in most grading schemes.

Evaluation of proliferation markers such as MIB-1 and pl105 has been shown to
correlate with prognosis (Hasegawa et al. 2007)

Genetic alterations: It has been shown that soft tissue tumors exhibiting mutations of

TP53 or altered expression of retinoblastoma gene behave more aggressively than

those lacking these changes (Kawai A et al. 1994). Claims have been made of a
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relationship between the type of gene fusion in the sarcomas associated with
chromosomal translocations and prognosis (as in alveolar rhabdomyosarcoma and

synovial sarcoma) (Rosai and Ackerman 2011).

2.6 Synovial Sarcoma

Synovial sarcoma is a rare and aggressive soft tissue tumor that accounts for
approximately 10% of soft tissue sarcomas and classically occurs in the extremities of
young adults (Amary et al. 2007; Terry et al. 2007). It occurs at any age but the peak
incidence is between the ages of 10 and 35 years; with a slight male predominance. The
anatomic distribution is wide, but more than 60% arise in the lower limb (Bergh et al.
1999). A small but significant proportion of cases arise on the trunk, especially in the
abdominal wall (Fetsch et al. 1993) in the neck (Roth et al. 1975), in the head
(Shmookler et al. 1982), in the mediastinum (Suster et al. 2005) and even in the
abdominal cavity (Fisher et al. 2004).

Overall 5-year survival probability is about 60-65% but falls to only around 30%
at 10 years. In general, small tumor size (<5 cm), early clinical stage, early age at
presentation (<10 years) and lower histologic grade (as defined by mitotic activity and

necrosis) are signs of a better prognosis (Lewis et al, 2000).

Synovial sarcoma falls into two main groups, monophasic composed entirely of
spindle cells and biphasic showing both epithelial and spindle cell components. The
monophasic variant is more common, depending on sampling (Fletcher et al. 2002).
Approximately 5-10% of cases have a poorly differentiated appearance, most often
characterized by undifferentiated round cell morphology. These appear to be relatively

more frequent in elderly patients with synovial sarcoma (Chan et al. 2003).

Immunohistochemically, in addition to positive staining in the obviously
epithelial component, in almost all cases the spindle cell element also shows at least
focal positivity for epithelial membrane antigen (EMA) and keratin; this, combined with
morphologic clues, is generally the best way to distinguish monophasic lesions from

malignant peripheral nerve sheath tumor (MPNST) or fibrosarcoma (Pelmus M et al.
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2002). Around 30% of cases of synovial sarcoma are S-100 protein positive, similarly at

least two thirds of synovial sarcomas stain positively for CD99 (Pelmus et al. 2002).

Cytogenetically, both biphasic and monophasic forms (as well as poorly-
differentiated lesions) share a reproducible tumor-specific chromosome translocation,
t(X;18)(p11.2;q11.2), which results in the production of one or other of two prinipal
fusion genes, SYT-SSX1 and SYT-SSX2 (Sanberg et al. 2002).

2.7 BAF_(Brg/Brahama-associated factors) complex and genetic

mutations

Studies over the years involving drugs such as histone deacetylase and histone
methyl transferase inhibitors, hydroxamic acid, sirtuins and others have suggested the
important role of epigenetic modulation in cancer-indeed, nearly all cancers display
epigenetic changes, and most cancer mutations, in either a direct or indirect manner,

affect the epigenome (Dawson et al. 2012).

Among the most frequent mutations uncovered in human cancer sequencing
efforts were mutations in genes encoding the subunits of adenosine triphosphate (ATP)-
dependent chromatin remodeling complexes, most notably the mammalian SWI/SNF or
BAF(Brg/Brahma-associated factors) complexes (Kadoch et al. 2013). Evidence
indicating that polycomb complexes are an important primary target of mammalian
SWI/SNF or BAF complexes has emerged in more recent years from the observation
that mutation of the ATPase Brgl of BAF complexes leads to H3K27Me3 accumulation

and repression of many genes in embryonic stem (ES) cells (Ho et al. 2011).

The advent of exome sequencing across a diverse range of human cancers has
led to the realization that BAF complexes are one of the most significant tumor
suppressors in humans, with a cumulative incidence of mutation of more than 20 % of
human cancers sequenced to date (Kadoch et al. 2013). Many cancers (if not most)
bearing BAF subunit mutations have a mutation in only one allele of the affected
subunit, making them dominant tumor suppressors, rather than recessive (Kadoch et al.

2013).
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The most commonly affected BAF subunit in cancer is ARIDIA (BAF250A)
which has been found to be mutated in a variety of tumors including endometrial, colon
and rectal carcinomas (Kandoth et al. 2013). BAF 170 is mutated in gastric and
colorectal cancers with microsatellite instability. The homologous subunit of BAF155 is

mutated in about 10% of small cell lung cancers (Kadoch C et al. 2013).

In certain tumors, specific genes are mutated in 100% of the cancers in 100% of
the cells, which provides definitive evidence that these mutations cause the development
and maintenance of the tumor. An example is human synovial sarcoma which has
provided ground for the discovery of a mechanism underpinning perturbation to the
SS18 subnuit of BAF complexes by the t(X;18) translocation hallmark to human
synovial sarcoma (Naka et al. 2010).

The t(X;18)chromosomal translocation, as illustrated in synovial sarcoma,
results in the direct fusion of 78 amino acids of C-terminus of SSX to the SS18 terminus
giving a fusion protein that evicts wild-type SS18 and causes displacement of BAF47.
The SSX-SS18 containing complexes are then retargeted to oncogenic loci such as
SOX2 and PAX6, activating these genes by displacement of PRC2 complexes and their
H3K27me3 repressive marks (Kadoch and Crabtree 2013).

This oncogenic eviction of polycomb can be reversed by stoichiometrically
altering the balance of SS18-SSX versus wild-type SS18 within BAF complexes
thereby reversing the complex to an induced wild-type bearing normal subunit
composition and hence an exciting therapeutic opportunity emerges from these findings

(Kadoch and Crabtree 2013).
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3. AIM OF WORK

The transcription factor SOX2 was proved to be amplified in different types of
tumors including small cell lung cancer and many other forms of carcinomas, the aim of
our study is to examine SOX2 expression in synovial sarcoma and compare the
expression in this specific soft tissue tumor to other soft tissue tumor entitites including
fibrosarcoma, rhabdomyosarcoma, liposarcoma and undifferentiated pleomorphic

sarcoma.

We are also interested in testing and trying to analyze the Sox2 gene status, in

positive cases, through further fluorescence in situ hybridization technique.

Our study also aims to further investigate a SOX2- H3K27me3 relationship if

present.

The study attained an approval from the ethics committee of Friedrich-Schiller

University of Jena, Faculty of medicine; approval number 5318-10/17.
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ARTICLEINFO ABSTRACT
Keywords: Background: SOX2 has gained considerable interest as a pluripotency inducing gene. Co-transfection of SOX2
S0X2 together with NANOG, KLF4 and ¢-MYC into adult fibroblasts was able to generate pluripotent stem cells. SOX2
H3K27me3 has been reported to be expressed in synovial sarcoma, a tumor being characterized by the SS18-S5X gene fusion
Synovial sarcoma forming part of the SWI/SNF chromatin remodeling complex that affects histone methylation. The role of SOX2

Soft tissue tumors in this tumor type as well as other soft tissue tumor entities however is still poorly characterized. We analyzed

SOX2 protein expression in soft tissue tumors. Alongside we tested Histone H3 expression (H3K27me3) in SOX2
positive cases to investigate this epigenetic mark and its correlation with the SOX2 status and clinicopathological
parameters.

Methodology: In total, 60 samples of synovial sarcomas from the reference center for soft tissue tumors at the
institute of pathology of the Jena University hospital were included into the study along with 343 other tissue
tumors. Protein analysis was done by immunohistochemistry of tissue microarrays. All synovial sarcoma cases
were confirmed by molecular testing using §518 FISH break apart probes.

Results: SOX2 reactivity was detectable in 35 synovial sarcoma cases (58.3%) while 25 (41.7%) were negative.
Only 13 cases of the other 343 soft tissue tumors, varying from nodular fasciitis to undifferentiated pleomorphic
sarcoma, revealed a SOX2 expression, 12 out of these were undifferentiated high grade sarcoma. There was no
obvious correlation with the clinicopathological data, H3K27me3 immunohistochemistry of the synovial sar-
coma cases revealed a high statistically significant correlation between SOX2 and H3K27me3 expression
(p < 0,0005, Chi square test). Similar to SOX2, there was no correlation between H3K27me3 expression and
tumor grade. Six SOX2 positive synovial sarcoma cases were analyzed by FISH using a SOX2/CEN3 dual color
FISH probe. None of these cases revealed an amplification of the SOX2 gene.

Conclusion: The data confirms previous studies reporting SOX2 and H3K27me3 expression in synovial sarcoma
and reveals that both biomarkers are related to each other. It strengthens the notion that the tumor type is driven
by epigenetic processes similar to those that are operating in pluripotent stem cells. The relevance of these
parameters in the pathway pathology of synovial sarcoma, i.e. the timing and dosing of SOX2 and H3K27me3
expression initiated by the 5518-SSX driver mutation together with the interplay of these events with other
signaling pathways, cellular mechanisms and additional mutations in tumor progression, will require further
studies.

1. Introduction
1.1. Soft tissue tumors and synovial sarcoma

Soft tissue tumors constitute a large and heterogeneous group of
neoplasms [1]. Traditionally, soft tissue sarcomas have been classified
according to a histogenic concept (e.g., fibrosarcoma as a tumor arising
from fibroblasts, osteosarcoma as a tumor arising from osteoblasts, and
so on). However morphologic, immunohistochemical and data from
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https://doi.org/10.1016/j.prp.2018.05.004
Received 17 March 2018; Received in revised form 1 May 2018; Accepted 2 May 2018
0344-0338/ © 2018 Published by Elsevier GmbH.

experimental animals suggest that most if not all sarcomas arise from
primitive pluripotent mesenchymal cells, which in the course of neo-
plastic transformation undergo differentiation in one or more lines [2].
Correct diagnosis is of great importance to the patient to obtain the
adequate therapy. Since misdiagnoses are not uncommon, specialist
centers provide valuable resources for the verification of suspected
malignant mesenchymal tumors [3,4].

Synovial sarcoma is a rare and aggressive soft tissue tumor that
accounts for approximately 10% of soft tissue sarcomas and classically

Strasse des Friedens 122, D-07548 Gera, Germany.
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occurs in the extremities of young adults [5,6]. It cccurs at any age but
the peak incidence is between the ages of 10 and 35 years; with a slight
male predominance. The anatomic distribution is wide, but more than
60% arise in the lower limb [7]. A small but significant proportion of
cases arise on the trunk, especially in the abdominal wall [8], in the
neck [9] in the head [10], in the mediastinum [11] and even in the
abdominal cavity [12]. In addition, many other localization have been
reported, the largest cohort in this regard has been reported by our
aroup [13].

Qverall 5-year survival probability is about 60-65% but falls to only
around 3046 at 10 years. In general, small tumor size { < 5cm), early
clinical stage, early age at presentation {< 10 years) and lower histo-
logic grade (as defined by mitotic activity and necrosis) are signs of a
better prognosis [14]. Synovial sarcoma falls into two main groups,
monophasic composed entirely of spindle cells and biphasic showing
both epithelial and spindle cell components. The monophasic variant is
more common [1]. Approximately 5-109% of cases have a poorly dif-
ferentiated appearance, most often characterized by undifferentiated
round cell morphology. These appear to be relatively more frequent in
elderly patients with synovial sarcoma [15].

Immunohistochemically, in addition to positive staining in obvious
epithelial components, in almost all cases the spindle cell element also
shows at least focal positivity for epithelial membrane antigen (EMA)
and keratin; this, combined with morphological clues, is penerally the
best way to distinguish monophasic lesions from malignant peripheral
nerve sheath tumor {MPNST) or fibrosarcoma. Around 30% of cases of
synovial sarcoma are S100 protein positive, similarly at least two thirds
of synovial sarcomas stain positively for CD99 [16].

Cytogenetically, both biphasic and monophasic forms as well as
poorly-differentiated tumors share a reproducible tumor-specific chro-
mosome translocation, t(X;18) (p11.2; q11.2). This translocation cre-
ates an in-frame fusion and the production of one or the other of two
principal fusion genes, SYT-S5X1 and SYT-S5X2 [17,18]. The ab-
breviation of the SYT gene was later changed to $518. The translocation
and gene fusion is demonstrable in virtually all synovial sarcoma cases
but not found in any other human neoplasms. Whereas 5518, through
its interactions with the SWI/SNF complex, might be expected to have a
role in transcriptional activation, its fusion partner 55X associates with
the polycomb repressor complex, which has opposing effects. An early
observation was that $818-S8X localizes at discrete nuclear foci within
BMI1-labeled polycomb bodies [19]. More recently chromatin im-
munaprecipitation sequencing (ChIPSeq) results from HA-FLAG-tagged
5518-55X, expressed in transfected C2C12 mouse myoblasts [20],
correlated SS18-SSX binding with polycomb-marked nucleosomes
{trimethylated histone H3K27) at a subset of genomic H3K27me3 sites.

1.2, Stem cells, induced pluripotent stem cells and SOX2

While cancer is defined by DNA mutations, differentiation and de-
velopment of normal cells and tissues are governed by epigenetic
maodifications. In 2006, Shinya Yamanaka was the first to successfully
reprogram cells using four distinet factors, thereby generating induced
pluripotent stem cells (iPSCs) from terminally differentiated fibroblasts.
IPSCs can be established by the over-expression of four key transcrip-
tion factors, OSKM: Octd, SOX2, KIf4 and c-Myc [21]. One of the major
advantages of iPSCs is that they can be made autologously and can
provide a sufficient quantity of cells by culturing, making the use of
other stem cell sources unnecessary [22]. It has been demonstrated that
reprogramming factor expression results in dysplasia and tumar for-
mation in vive, thus suggesting that OSKM has an impact on epigenetic
changes that are substantially involved in the regulation of cell growth
and tumorigenesis [23]. This observation is corroborated by the fact
that pluripotent embryonic stem cells form teratomas upon implanta-
tion in vivo [24]. Of note, human iPSCs develop teratomas more effi-
ciently and faster than human embryonic stem cells [25].

SRY {sex determining region Y)-box2, also known as SOX2 and
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being located on chromosome 3q26.33, is a transcription factor that is
essential for maintaining self-renewal or pluripotency of un-
differentiated embryonic stem cells and plays a critical role in main-
tenance of embryonic and neural stem cells [26,27]. S0X2 amplifica-
tion has been found in several cancer types including slioblastoma,
small-cell lung cancer (SCLC) and many forms of squamous cell carci-
noma [28-30]. SOX2 has been shown to promote cellular proliferation
in breast, prostate, pancreatic, cervical cancers as well as synovial
sarcoma [31,32], evade apoplotic signals in prostate, gastric cancer and
non-small cell lung carcinoma and promote invasion, migration and
metastases in melanoma, colorectal glioma, gastric, ovarian cancer and
hepatocellular carcinoma [332,34].

The aim of the present study was to evaluate the status of SOX2 in
soft tissue tumors and in particular synovial sarcoma given the fact that
expression has been observed in this entity [32,35].

2. Materials and methods
2.1. Tumor samples

Tissue samples of all synovial sarcoma cases between January 2013
and December 2015 were selected. Both internal patients of Friedrich-
Schiller University hospital of Jena, as well as referred cases to the
Institute of Pathology from other hospitals or pathology institutes were
included. The Instimute of Pathology of the University hospital of Jena
became a national consultation and reference center afler the German
reunification in 1989, Not only German but also Austrian pathology
institutes submit difficult cases to confirm previous diagnoses or to
evaluate the suspicion of a soft tissue tumor, STT [4].

All the specimens (n = 60), excluding some referred cases whose
histopathological material was not anymore available in the institute
{n = 6) and cases {n = 4) whose paraffin block was not optimal for
appropriate further material retrieval, were employed in this study. The
clinicopathological analysis was conducted by highly specialized soft
tissue  tumors expert pathologists in  the referral center.
Immunochistochemical analysis was performed according to standard
procedures to confirm the diagnosis (EMA, Bel2, PanCK, CK7, CD34,
Ki67 and 5100). Molecular confirmation was performed by FISH to
confirm the t{X;18) translocation {Fig. 1).

Tissue Microarrays (TMA) of variable soft tissue mimors were also
prepared in the institute and employed in this study [36]. For the
construction of these, a morphologically representative region of the
“donor”-paraffin blocks with soft tissue tumor was selected. From this
representative region two core biopsies (diameter, 0.6 mm; height
3-4mm) from the invading front were taken and arrayed into a new
“recipient” paraffin block using a custom-built instrument [37]. After
the block production was finished, 4.0-pum sections of the resulting
umor TMA block were cut for further analysis as recently described
[36]. Tissue microarrays constructed included 343 soft tissue tumors
{Table 2).

2.2, Immunohistochemistry

SOX2 and Histone HEK27me3 immunchistochemical staining was
performed according to standard procedures using monoclonal anti-
bodies {Anti-Human SOX2 Monoclonal Antibody, 1:100, clone SP76,
Zytomed Systems; H3K27me3 antibody, mAbcam 6002, 1:200) and the
recommendations of the manufacturer. SOX2 immunohistochemistry
was evaluared in two cores per tumor. The average percentage was
taken for staristical analysis.

Extranuclear SOX2 staining was regarded to be negative or un-
specific. Staining intensity (SI) was assessed to be negative (- ), weak
(1+), moderate (2+) or strong staining (3+ ). Reactivity (R) was de-
termined by the percentage of positive tumor cells (PP) and scored as
follows: negative (), 1-10% positive cells (1), 11-30% (2), 31-50%
(3), 51-80% (4) and > 80% positive cells {5). Intense/Reactivity score
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Fig. 1, SOX2 and H3K27me3 in soft tissue tumors.
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A~ 8518 FISH analysis of 2 synovial sarcoma illustrating split red and green signals in $2% of cells indicative for a ((X;18) translocation. B - Tissue microarray with

one negative (left) and one positive (right)
SArcoms

synov ial sarcoma.

{IRS) was calculated by multiplying PP with 81 {minimum 0/maximum
15). High expression was defined as =8 according to the median IRS of
positive stained cells.

SOX2 positive cases were further investigated for Anti-Histone H3
reactivity (H3K27me3 antibody, mAbcam 6002, 1:200). This was
scored semi quantitatively as — negative; 1+ weak; 2+ moderate; 3 +
strong positive.

2.3, Molecular confirmation of synovial sarcoma and SOX2-positive
.T}".I’I(}me‘ Sarcomda cases

The t{%;18) translocation hallmark of synovial sarcoma was verified
by dual color fluorescence in situ hybridization (de FISH). For this,
either interphase nuclei were isolated from paraffin-embedded tumor
tissue and prepared as described or lissue sections were used [38,13
The deFISH was performed using SPEC SS18 (18q11.2) Dual Color
Break Apart Probe (Zytovision, Germany) applying the protocol pro-
vided by manufacturer. Fifty nuclei were analyzed for chromosomal
rearrangements of the SYT gene region located on chromosome 18
using a laser scanning microscope LSM510 {Zeiss, Jena, Germany).

1002

S0OX2 high grade pleomorphie sarcoma. C - Synovial sarcoma showing strong SOX2 expression (34 ). D - Synovial
showing moderate SOX2 expression {2+ ). E- Synovial sarcoma showing weak SOX2 expression (1 + ). F - Histone H3K27me3 expression in 2 SOX2-positive

DeFISH was assessed positive if at least 10% of the nuclei showed a
translocation specific hybridization pattern [39].

SOX2 amplificarion was examined in some S0X2 positive synovial
sarcoma cases, using SPEC SOX2/CEN3 Dual color Probe {Zytovision,
Germany) following the protocol of the manufacturer.

2.4. Statistical methods

Data management and statistical analysis were performed using the
Statistical Package for Social Sciences (SPSS) version 21. Numerical
data were summarized using means and standard deviations or medians
and ranges. Caregorical data were summarized as percentages.
Comparisons between the 2 groups with respect to normally distributed
numeric variables were done using the f-test. For categorical variables,
differences were analyzed with % (chi square) test and Fisher’s exact
test when appropriate. All p-values are two-sided. P-values < 0.05 were
considered sigmificant.
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Table 1
SOX2 expression in synovial sarcoma.
S0OX2 P value
Negative {n = 25} Posltive in = 35)
No. o No. Y
Age (yrs.) Mean = SD 46.1 = 110 389 = 185 0.066
Gender Female 14 46.7 16 533 0,432
Male 11 36.7 19 633
Grade 1 0 0.0 2 100.0 0.465
n 19 44.2 25 E5.&
m 6 429 8 57.1
Site Extremities 13 394 20 6.6 0.693
Others 12 44.4 15 E5.6
Kis7 Low Activity 1s 444 20 55.6 0.59%
Moderate-High 9 375 15 625
Translocation (%) Mean + SD 73.7 = 21.7 77.9 + 185 0.388

3. Results
3.1, Immunohistochemistry

Expression of SOX2 was investigated in 60 synovial sarcoma cases of
which 2 where grade 1, 44 grade 2 and 14 grade 3. The SOX2 reacrivity
was positive in 35 cases (58.3%) and negative in 25 {41.79%). The S0X2
status (positive versus negative) as well as the percentage of positive
cells revealed no significant correlations with clinicopathological
parameters. Examples of the immunchistochemical assessment of SOX2
staining in synovial sarcoma are shown in Fig. 1. The results are sum-
marized in Table 1. All grade 1 cases were positive (2/2), 57% of grade
2 were positive {25/44) and 57% of grade 3 as well were positive {8/
14). The proliferative activity of the synovial sarcoma tumors, por-
trayed through Ki67 activity, indicated that 56% of the mumors ex-
hibiting low proliferative activity were SOX2 positive {20/36) while
63% of the tumors with moderate to high proliferation revealed S0X2
positivity {15/24).

In addition, 343 soft tissue tumors, varying from nodular fasc

Table 2
SOX2 expression in other soft tissue tumor types (non-synovial sarcoma).

Diagnose SOX2
Negative Positive
Number % Number %

Adult fibrosarcoma 1 03 0 0.0
Alvenlar rhabdomyosarcoma 1 03 0 oo
Alvenlar soft part sarcoma 3 09 0 oo
Dedifferentiated liposarcoma 3 09 0 0.0
Endometrial stromal sarcoma, low grade 2 0.6 1] oo
Epithelioid sarcoma 2 06 0 0.0
Extraskeletal myxold chondrosarcoma 1 03 0 0.0
Inflammatory myofibrablastic tumour 1 0.3 1 .3
Ischaemic fasciitls 3 0.9 a 0.0
Low grade fibromyxoid sarcoma 10 a0 0 0o
Low grade myofibroblastic sarcoma a2 9.7 [i] oo
MPNST 1 0.3 [i] 0.0
Myositis ossificans 4 120 0o
Myxoinflammatory fibroblastic sarcoma 3 09 0 0o
Nodular fasciitis 66 200 0 0.0
Proliferative fasciitis 9 27 o 0o
Undifferentiated high grade pleomorphic 179 542 11 Bae

SArCOma
Undifferentiated pleamorphic sarcoma with 7 21 1 7.7

glant cells
Undifferentiated pleomorphic sarcoma with 2 060 0o

prominent inflammation
Non-synovial sarcoma soft tissue tumors 330 (96.2%} 13 (3.8%)

undifferentiated pleomorphic sarcoma, were analyzed in this study and
revealed minimal SOX2 expression. Only 13 cases (3.8%) were positive,
12 (92.3%) out of these were undifferentiated high grade sarcoma
{Table 2). The twelve patients of undifferentiated high grade pleo-
morphic sarcoma ranged in age from 29 to 79 years with female pre-
dominance {females = 8, males = 4). Analyzing the clinical data, there
were no obvious correlations with clinicopathological data: 6 cases
were from the lower extremity, 4 from the trunk, 1 form the head and
neck region {(occipital) and 1 other tumor was located in the skin. Stll,
itis interesting that all SOX2 positive tumors were high grade sarcomas.

The positive and negative synovial sarcoma cases were further
subjected to Anti-Histone H3K27me3 immunchistochemistry. The ex-
pression data was related to the SOX2 reactivity as illustrated in
Table 3. The statisrical analysis revealed a high statistically significant
correlation between SOX2 and H3K27me3 expression (p < 0.0005,
Chi square test). Out of 35 SOX2 positive synovial sarcoma cases, 25
{71, 4%) were H3K27me3 positive and 10 (28, 6%) were negative.
Concurrently, out of 25 SOX2 negative cases, only 3 (12%) were
H3K27me3 positive and 22 (88%) were negative. Similar to SOX2,
there was no correlation between H3K27me3 expression and tumor
grade in synovial sarcoma. An example of the immunohistochemical
assessment of Histone (H3K27me3) in a SOX2-positive synovial sar-
coma is shown in Fig. 1.

3.2, FISH analysis of synovial sarcoma cases

Fluorescence in situ hybridization (FISH) detection of t{X;18)
translocation of synovial sarcoma was carried out in all the 60 cases. All
samples showed a split apart signal using a $518/SYT dual color probe
{Fig. 1). The percentage of positive cells varied from 44% to 96%. OF
the immunohistochemically SOX2 positive synovial sarcoma cases, six
were randomly selected and analyzed by FISH using a SOX2/CEN3 dual
color FISH probe. None of these cases, revealed an amplification of the
SOX2 gene.

Table 3
Histone H3K27me3 expression in correlation with SOX2 reactivity in synovial
sarcomas.

S0XZ Total
Negative Positive
H3K27me3 Negative Count 22 10 32
% of Total 36.7% 16.7% 53.3%
Posltive Count 3 25 28
% of Total 5.0% 41.7% 46.7%
Total Count 25 35 a0
% of Total 11.7% 58.3% 100.0%

30



Publication

H. Zayed, 1. Petersen

4. Discussion
4.1. Role of SOX2 in synovial sarcoma and other cancer fypes

Synovial sarcoma is classified as a soft tissue tumor of uncertain
cellular origin [1]. It may be derived from primitive mesenchymal cells
that can undergo differentiation and has been characterized as a stem
cell malignancy [40,41]. In the last decades, a major change has taken
place in cancer biology in emphasizing the importance of cancer stem
cells and their relationship to embryonic stem (ES) cells whose biology
is governed by stem cell transcription factors like SOX2. Embryonic
stem cells proliferate without apparent limit, they can readily be pro-
pagated clonally and are not subject to contact inhibition or anchorage
dependence. These are typical features of transformed cells and, indeed,
ES cells are tumorigenic. Thus ES cells can be considered as conditional
tumor cells [42]. The accumulated understanding of the mechanisms
underlying pluripotency in ES cells led to attempts to revert somatic
cells into a pluripotent state using the Oct3/4, SOX2, KIf4 and e-Myc
reprogramming factors. SOX2 is an essential transcription factor, which
not only has a role during neurogenesis and embryonic foregut devel-
opment, but also allows reprogramming of adult cells to pluripotent
stem cells [43]. Evidence has recently been accumulating to support the
hypothesis that solid tumors contain a small subpopulation of cells
called cancer stem-like cells, which exhibit self-renewing capacities and
are responsible for mmor maintenance and metastases [44]. S0X2 has
been suggested as a marker for cancer stem cells in various tumor types
[45,30].

The objective in our study was (1) to examine SOX2 expression in
synovial sarcoma, (2) to compare the expression in synovial sarcoma to
that in other soft tissue tumors and (3) to analyze mechanisms with
impact on SOX2 expression like SOX2 gene status and H3K27me3 ex-
pression in synovial sarcoma. The study was carried out on 60 cases of
synovial sarcoma and 343 cases of different other soft tissue tumors that
were referred (o the Jena consultation and reference center of soft tissue
tumors. A wide panel of biomarkers was used to analyze and confirm
the diagnosis of all included soft tissue tumors. Standard, full-sized
lissue sections were used to construct tissue microarrays (TMAs) for
analyzing SOX2 and other biomarkers.

Ahout 609 of all synovial sarcoma cases were positive to SOX2. All
grade 1 cases were positive {2/2) while less than 60% of grade 2 and
grade 3 cases revealed SOX2 expression. Similarly, there was only a
minor difference of SOX2 positivity in the low proliferative group
{56%) versus moderately to highly proliferating tumors {639%).
Together with the fact that the majority of undifferentiated sarcomas
were SOX2 negative, this suggests that SOX2 does not seem to be es-
sential for tumor progression, but may play an essential role in tumor
initiation.

The relationship between SOX2 expression and tumor behavior is
highly controversial. It is intrigning that some studies reported better
tumor behavior with SOX2 expression. Ziillig and colleagues were able
to study the process of early lymphatic metastases in squamous cell
carcinoma {SCC) of the oral cavity and demonstrated a significant as-
sociation between high cancer cell-expressed SOX2 protein and sig-
nificant lower risk of lymph node metastases [46]. According to them,
this result is consistent with findings in lung SCC, reporting high SOX2
protein expression levels and SOX2 amplification to be correlated with
better overall survival [47]. This is consistent with earlier data from the
group of Perner on lung SCC, they reported that SOX2 amplification and
overexpression was associated with better outcome [48]. In contrast,
Neumann et al. correlated elevated SOX2 expression with lymph-node
metastasis and distant spread of right-sided colon cancer in a marched
pair collection of 57 carcinomas with distant spread and 57 cases
without metastasis. Overall high S0X2 expression was reported in
21.1% of cases. Surprisingly, absence of SOX2 was associated with
advanced T-category, T3/T4 [49]. In our study, SOX2 reactivity did also
not correlate with higher umor grades.
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SOX2 amplification is quite characteristic for SCC pathogenesis and
this can be correlated with the fact that lung SCC similar to SCC from
ather organs typically has a 3q overrepresentation/amplification. In
contrast, adenocarcinomas of the lung harbor much less SOX2 ampli-
fications [28]. It should be noted thart alterations of chromosome 3, in
particular 3p deletions being frequently associated with 3q gains, are
considered early events in head and neck as well as lung carcinogenesis
[50,51]. Interestingly, it has been shown that SOX2 and PIK3CA, both
located at 3q26-q28 and generally coamplified in lung SCC, cooperate
in the transition of lung dysplasia into cancer [52].

In SCLC, SOX2 amplifications were reported in 27% of cases being
correlated with SOX2 expression. Inhibition of SOX2 protein expression
by transfection of short hairpin RNA in SCLC cell lines with SOX ex-
pression resulted in reduced cell proliferation. It was hypothesized that
S0X2 may represent a putative lineage-survival oncogene in SCLC. In
addirion, it was mentioned that induction of SOX2 in lung epithelial
cells increased the number of neural progenitor cells [29],

Generally, SOX2 protein expression is widespread and was proven
in the majority of primary SCC as well as breast cancer [53], testicular
agerm cell tumors [54], gastric [55] and pancreatic adenocarcinoma
[56].

4.2, SOX2 regulation and its interplay with SSX-S518, H3K27me3 and
signaling pathways

In squamous lung and esophageal cancers, aberrant SOX2 expres-
sion was linked to the genomic amplification of its chromosomal lo-
cation on chromosome 3q26.33. Chromosome 3q copy number gains
are a common event in breast cancers and have been implicated as an
independent predictor of poor prognosis in node-negative breast can-
cers |57]. Therefore some of the positive SOX2 synovial sarcoma cases
were further subjected to a molecular study via FISH to detect ampli-
fication on the genetic level, but all were negative. None of the positive
cases revealed an amplification, thus gene copy number alterations do
not seem to play a role in SOX2 upregulation in this tumor entity.

This seems to be similar in some carcinoma subtypes. Claudia
Lengerke and colleagues analyzed lymph node metastases of breast
cancer to explore whether aberrant SOX2 expression is a result of gene
amplification as reported in other carcinomas. Surprisingly, with the
exception of one case of low level amplification in a score 3 primary
tumor, the majority of analyzed samples did not show S0X2 gene am-
plifications, suggesting that at least in breast carcinomas expressing
SOX2, the aberrant gene expression is mostly driven by other me-
chanisms |58].

Which other mechanisms have influence on S0X2 expression? A
highly relevant study with respect to the interplay herween the $518-
SSX fusion, histone modification and SOX2 expression was published in
2013 [32]. Kadoch and Crabiree reported that the $518-85X fusion
protein of synovial sarcoma leads to alterarions in the human SWI/SNF
chromatin remodeling complex. Similar to S518, the fusion protein
incorporates into the SWI/SNF complex resulting in the exclusion of
tumor suppressor gene BAF47 {(also known as INI1 and SMARCB1},
another component of the complex, resulting in its inactivation. The
SWI/SNF complex antagonizes the activity of the Polycomb repressive
complex 2 {(PRC2) being responsible for rrimethylation of lysine 27 of
histone H3 {HeK27me3) by the methyltransferase EZH2 forming an
essential component of the PRC2 complex and being considered a re-
pressive mark for gene transcription [32,59]. This was acmally the
reason why we analyzed global H3K27me3 expression in our study.

Interestingly, we found that SOX2 expression was correlated with
alobal H3K27me3 expression in synovial sarcoma. In contrast, Kadoch
and Crabtree reported that the altered SWI/SNF complex in synovial
sarcoma binds to SOX2 gene locus resulting in SOX2 activation by a
local decrease in H3K27me3 [32]. This situation may be similar to
seminoma in which a repressive H3K27me3 mark at the S0X2 locus is
responsible for SOX2 repression while there seems to be H3K27me3
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expression at least in a subset of neoplasms of this entity [60.61].

As mentioned, methylation of Histone H3 at the lysine 27 residue is
mediated by the histone methyltransferase EZH2. Enhancer of zeste
homologue 2 (EZH2) showed high expression in cells possessing em-
bryonic gene expression signature, while its amount declines with tissue
maturation and differentiation [62]. Abnormal overexpression of EZH2
has been reported in a wide variety of tumaor types including carci-
nomas, lymphomas, cutaneous melanoma, and soft tissue sarcomas
[63].

Studies have revealed a complicated interaction between SOX2 and
the WNT signaling pathway. It was reported that SOX2 antagonized
WNT signaling to inhibit the differentiation of adult stem cells and
osteoblast lineage, it enhanced tumorigenesis and self-renewal property
of osteosarcomas by promoting the transcription of negative regulators
of WNT signaling [64]. Other pathways apart from Wnt/B-catenin
signaling that have heen associated with S0X2 are Hippo/YAP, Sur-
vivin/MAP4K4, EGFR/FOXQ6, PI3K/Akt, Hedgehog and JAK/STAT
[30,65]. Tt seems that SOX2 itself, like other SOX genes, does not pos-
sess sufficient affinity for DNA binding and that for transcription ac-
tivity the recruitment of other protein partners like Nanog, OCT4 and
Sall4 is required [30].

Kimura and colleagues recently explored specific markers and dis-
covered that synovial sarcoma cell lines possessed heterogeneity by
way of containing a sphere-forming subpopulation highly expressing
Nanog, Oct4 and SOX2. By expression microarray analysis, CXCR4 was
identified to be highly expressed in the sphere subpopulation and cor-
related with stem-cell associated markers [35]. According to their
study, stem-cell associated markers including SOX2 and 5518/55X were
highly expressed in the sphere/forming population of synovial sarcoma,
hence S518/58X and its sphere-specific binding proteins might regulate
tumor-initiating cells via epigenetic and/or transcriptional deregula-
tion,

4.3, Tumor progression of synovial sarcoma

High expression of EZH2 is generally associated with advanced
stages of tumor progression, aggressive tumor behavior, and dismal
clinical outcome [66]. In synovial sarcoma, endogenous EZH2 expres-
sion correlated with H3K27me3 at PeG target genes. It has been re-
ported that high expression of EZH2 and H3K27me3 helps to distin-
guish poorly differentiated synovial sarcoma from monophasic and
biphasic subtypes and is associated with unfavorable clinical outcome
[41,67]. Our study does not provide such evidence, but it is important
to mention the limitation of our mmor collective lacking data on me-
tastatic spread and survival. Generally, the impact of H3K27me27 ex-
pression on cancer prognosis seems to be complex as there are also
many studies reporting a better outcome in tumors with high expres-
sion, e.g. in colorectal and breast cancer [68,69].

Regarding synovial sarcoma, metastasis and tumor progression
seem to be driven not only by epigenetic modifications like histone
methylation but also additional chromosomal changes apart from the
defining t{X;18){(p11.2;q11.2) translocation and the activation of ather
genes and pathways distinet from the $518-SSX gene fusion event
[6,70]. The CINSARC signature of 67 genes correlating with chromo-
somal instability and prognosis in undifferentiated sarcoma was also
highly significant in stratifying synovial sarcoma with respect to me-
tastatic outcome [71]. Specific microRNAs being detectable in the
blood have been correlated with clinical outcome. And apart from
EZH2, IGFBP7, specific matrix metalloproteases, Secernin-1, NY-ESO-1,
the CXCR4 pathway as well as PI3K/AKT/mTOR and RAS/MAPK sig-
naling have been associated with metastatic risk [70]. Furthermore, it is
important to note that synovial sarcoma is characterized by a recurrent
pattern of DNA methylation that can be used to separate and diagnose
this entity against 50 other soft tissue tumor types using genome-wide
methylation analysis and bioinformatical classification algorithms. The
methylome analysis provides in addition a global gene copy profile
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which may help to establish prognostic subgroups of this entity [72,73].
In summary, our study confirms the importance of the $S18-55X
gene fusion and its downstream targets SOX2 and H3K27me3 in sy-
novial sarcoma. The entity provides a paradigm of a tumor that is
primarily driven by alterations in the epigenome. The strength of the
S5518-55X alteration lies in the fact that the fusion gene has influence on
wo major players in epigenetic regulation. On one hand it leads to the
inactivation of tumor suppressive functions of the SWI/SNF nucleosome
remodeling complex and on the other hand it changes Histone chro-
matin marks that leads to the activation of the cancer stem cell tran-
seription factor SOX2 and other genes that are normally suppressed by
the polycomb repressive complexes 1 and 2 [6,4]1,74]. The under-
standing of the pathway pathology of synovial sarcoma has advanced
substantially in recent years and it is foreseeable that this will help in
establishing effective therapy of this potentially lethal disease.
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Discussion

S. DISCUSSION

Soft tissue sarcomas are rare and represent less than 1% of all cancer types. In
recent years between 3500 and 3750 new cases were registered in Germany each year.
They can roughly be subdivided into two groups: entities with single, well-characterized

driver mutations and sarcomas with a complex genotype (Petersen 2017).

Synovial sarcoma is classified as a soft tissue tumor of uncertain cellular origin
(Fletcher et al. 2013). It gets its name from its microscopic similarity and proximity to
the synovium, but in reality the development of tumor cells is not necessarily of
synovial origin. While it is a soft tissue tumor typically found in the arms or legs and
usually close to tendon sheaths and joint capsules, it can also occur in other locations,
such as the heart, brain, and prostate. Synovial Sarcoma accounts for 5%—10% of all
STS (Spurrell et al. 2005) and 10%-20% of STS in adolescents and young adults
(Nielsen et al. 2015).

Although its cellular origin is unclear, Synovial sarcoma (SS) is generally
divided into two main histological subtypes: monophasic and biphasic. Monophasic SS
is characterized by the presence of spindle cells and the absence or near-absence of
glandular epithelial cells, whereas biphasic SS has equal presence of both spindle cells
and glandular epithelial cells (Spurrell et al. 2005). In addition, monophasic SS displays
fibrous and sarcomatous cells that are relatively uniform and small and form sheets. In
contrast, biphasic SS presents with an epithelial appearance. Another characteristic of
SS is the unique chromosomal translocation (t X;18), which results in fusion of the SYT

gene to the SSX7, SSX2, or, on rare occasions, the SSX4 gene (Nielsen et al. 2015).

Recently, major changes took place in the understanding of cancer biology,
emphasizing the importance of cancer stem cells, and supporting the suggested theory

that tumors arise from these cells rather than terminally differentiated cells.

Embryonic cells, whose biology is governed by stem cell transcription factors
like SOX2, and cancer stem cells, are thought to be closely related. The Embryonic

stem cells proliferate without apparent limit; they can be propagated clonally and are
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not subject to contact inhibition or anchorage dependence. These are typical features of
transformed or tumor cells and this is why embryonic stem cells can be considered as
conditional tumor cells (Smith 2001). Evidence has recently been accumulating to
support the hypothesis that solid tumors contain a small population of cancer-stem like
cells, which exhibit self-renewing capacities and are responsible for tumor maintenance

and metastases (Visvader and Lindeman 2008).
The aim of our study was to:
(1) Examine SOX2 expression in synovial sarcoma.

Transcription factor SOX2 was proved to be amplified in different types of
tumors including small cell lung cancer and many forms of squamous cell carcinoma

(Karachaliou et al. 2013)

(2) Compare the expression of SOX2 in synovial sarcoma to other soft tissue

tumors.

To fulfill this aim, we analzyed tissue microarrays that were prepared in the
institute of Pathology, Jena University and included a wide variety of soft tissue tumors
ranging from Fibrosarcoma, Rhabdomyosarcoma, dedifferentiated Liposarcoma,

undifferentiated pleomorphic sarcoma and many more.
(3) Analyze mechanisms that may affect SOX2 expression.

This included an analysis to understand the SOX2 gene status utilizing
fluorescence in situ hybridization (FISH) technique and studying the H3K27me3 in

synovial sarcoma.

Role of SOX2 in synovial sarcoma and other cancer types

The study was carried out on 60 cases of synovial sarcoma and 343 cases of the
different other soft tissue tumors that were referred to the Jena consultation and
reference center of soft tissue tumors. All the tumors were intensively histologically

studied via at least two soft tissue tumors experts and were further subjected to a wide
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panel of biomarkers to direct and confirm the histological diagnosis. All the synovial

sarcoma cases were subjected to FISH to analyze the characteristic t(x;18) translocation.

The other 343 cases of various soft tissue tumor entities were employed in the

production of the tissue microarrays.

Out of the above mentioned 60 synovial sarcomas, 35 (60%) were SOX2
positive and 25 (40%) were negative. The expression was variable but worth noticing
was the fact that all the grade 1 tumors were positive while less than 60% of grade 2 and
grade 3 revealed a positive staining. Similarly, there was a minor difference of SOX2
positivity in the low proliferative group (56%) versus moderately to highly proliferating
tumors (63%). This suggests that SOX2 does not seem to be essential for tumor

progression, but may play a role in the tumor initiation itself (Zayed & Petersen 2018).

This is also supported by the fact that the majority of the undifferentiated
sarcomas were SOX2 negative in first place, again hinting that the transcription factor

Sox2 is probably not essential in the tumor progression phase.

This was also stated by Abd El-Magsoud et al. (2014) who identified Sox2
expression in ductal carcinoma in situ (DCIS) cases with a higher expression rate than
seen in invasive carcinomas, suggesting a role of Sox2 in the initial stages of breast
carcinogenesis. In this study, Sox2 expression was significantly associated with comedo
type, negative hormone receptor status, and the triple-negative phenotype. However a

positive association of Sox2 expression with high-grade DCIS was not reached.

The relationship between SOX2 expression and tumor behavior is highly
controversial. The fact that some studies reported even better tumor behavior with
SOX2 expression is to be highlighted. For example, in a study conducted by Ziillig and
colleagues, they managed to investigate and analyze the process of early lymphatic
metastasisis in squamous cell carcinoma of the oral cavity and demonstrated a
significant association between cancer cells that strongly expressed SOX2 and a lower
risk of lymph node metastases. Lu, (2010) and colleagues also reported that patients
with squamous tumors with expression of SOX2 mRNA above the median enjoyed a

better prognosis than those with lower levels of expression.
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This is also consistent with Wilbertz and colleagues who reported in squamous
cell lung carcinoma that their data clearly demonstrate an association between elevated
SOX2 expression and indicators of better patient outcome, most importantly prolonged
overall survival. Furthermore, increased levels of SOX2 amplification indicate a better

histological differentiation grade and a trend to improved patient survival.

Consistently, Bass et al.‘s (2009) findings, indicated that patients with lung
squamous cell carcinomas harboring an embryonic stem cell-like gene expression
signature, including SOX2 expression, exhibited significant better survival than patients

with tumors lacking this signature.

On the contrary, Neumann et al. demonstrated that increased expression of either
SOX2 or nuclear B-catenin was associated with distant metastasis in right-sided colon
cancer. Additionally, SOX2 was also associated with lymph-node metastases.
According to them, this data underlined the importance of stemness-associated markers

for the identification of colon cancer with a high risk for distant spread.

According to Russo et al., SOX2 overexpression upregulated pluripotency and
epithelial-mesenchymal transition (EMT) transcription factors, along with growth,
angiogenic and lymphangiogenic factors, and promoted prostate cancer cell

invasiveness.

In our study, SOX2 reactivity did also not correlate with higher tumor grades.
There was also no detectable relation with tumor proliferative activity which was

assessed by Ki67 immunostaining.

SOX?2 amplification

Sox2 amplification is characteristic for squamous cell carcinoma (SCC)
pathogenesis and this can be correlated with the fact that lung SCC, similar to SCC
from other organs, typically has a 3q overrepresentation/amplification. In contrast,
adenocarcinomas of the lung harbor much less SOX2 amplifications (Karachaliou
2013). It should also be noted that alterations of chromosome 3, in particular 3p
deletions being frequently associated with 3q gains, are considered early events in head

and neck as well as lung carcinogenesis (Bockmiihl et al. 1996 ; Petersen et al. 1997).
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Interestingly, it has been shown that SOX2 and PIK3CA, both located at 3q26-
g28 and generally coamplified in lung SCC; cooperate in the transition of lung

dysplasia into cancer (Kim et al. 2016).

It was also reported that SOX2 regulates cell cycle-related genes positively or
negatively. CDKNI1A, which induces Gl arrest, is repressed by SOX2 in lung
carcinoma cells, pancreatic cancer cells (Chen et al., 2012) and gastric cancer cells
(Otsubo et al. 2008). CDKN1B, which also induces G1 arrest, is repressed by SOX2 in
pancreatic cancer cells and gastric cancer cells. CCNDI1, which accelerates the cell
cycle, is activated by SOX2 in gastric cancer cells and MCF7 breast cancer cells (Chen
et al. 2008) SOX2 represses cell cycle inhibitors and activates cell cycle accelerators;

however, the pattern of gene regulation is not universal in different cancer cell types.

In squamous cell lung carcinoma, SOX2 amplifications were reported in 27% of
cases being correlated with SOX2 expression. Inhibition of SOX2 protein expression by
transfection of short hairpin RNA in SCLC cell lines with SOX2 expression resulted in
reduced cell proliferation. In addition, it was mentioned that induction of SOX2 in lung

epithelial cells increased the number of neural progenitor cells (Rudin et al. 2012).

According to a study carried out by Gut et al. (2018) based on 55 squamous cell
carcinomas of the vulva, SOX2 amplification was found in 20.8%; 27.3% of vulvar
carcinomas showed SOX2 protein overexpression. SOX2 amplification was correlated
with SOX2 overexpression in their data set (P<0.01). Amplification of the SOX2 locus
was associated with high tumor grade (P<0.05) and human papillomavirus (HPV)
positivity (P<0.01). SOX2-amplified tumors showed more frequently a basaloid
phenotype than nonamplified carcinomas. SOX2 protein overexpression was also

correlated with basaloid phenotype and positive HPV status of vulvar carcinomas.

SOX2 regulation and its interplay with SSX-SS18., H3K27me3 and signaling
pathways

In squamous lung and esophageal cancers, aberrant SOX2 expression was linked
to the genomic amplification of its chromosomal location on chromosome 3q26.33.

Chromosome 3q copy number gains are a common event in breast cancers and have
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been implicated as an independent predictor of poor prognosis in node-negative breast

cancers (Janssen et al. 2003)

Therefore some of the positive SOX2 synovial sarcoma cases were further
subjected to a molecular study via FISH to detect amplification on the genetic level, but
all were negative. None of the positive cases revealed an amplification, thus gene copy
number alterations do not seem to play a role in SOX2 upregulation in this tumor entity

(Zayed and Petersen 2018).

Our results were consistent with Lengerke and colleagues (2011) who analyzed
lymph node metastases of breast cancer to explore whether aberrant SOX2 expression is
a result of gene amplification as reported in other carcinomas. With the exception of one
case of low level amplification in a score 3 primary tumor, the majority of analyzed
samples did not show SOX2 gene amplifications, suggesting that at least in breast
carcinomas expressing SOX2, the aberrant gene expression is mostly driven by other

mechanisms.

Different studies were conducted in attempt to understand the SOX2
overexpression mechanism and associated genetic alterations. In 2013, the interplay
between SS18-SSX fusion, histone modification and SOX2 expression was highlighted
by Kadoch and Crabtree (2013). They reported that the SS18-SSX fusion protein of
synovial sarcoma leads to alterations in the human SWI/SNF chromatin remodeling
complex. Similar to SS18, the fusion protein incorporates into the SWI/SNF complex
resulting in the exclusion of the tumor suppressor gene BAF47 (also known as INI1 and
SMARCBI), another component of the complex, resulting in its inactivation. The
SWI/SNF complex antagonizes the activity of the Polycomb repressive complex 2
(PRC2) being responsible for trimethylation of lysine 27 of histone H3 (HeK27me3) by
the methyltransferase EZH2 forming an essential component of the PRC2 complex and
being considered a repressive mark for gene transcription (Kadoch et al. 2016). This
was actually the reason why we considered analyzing global HeK27me3 expression in

our synovial sarcoma cases.

The statistical analysis revealed a high statistically significant correlation

between SOX2 and H3K27me3 expression (p<0.0005, Chi square test). Out of 35
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SOX2 positive synovial sarcoma cases, 25 (71, 4%) were HeK27me3 positive and 10
(28, 6%) were negative (Zayed and Petersen 2018). Kadoch and Crabtree also reported
that the altered SWI/SNF complex in synovial sarcoma binds to SOX2 gene locus
resulting in SOX2 activation by a local decrease in H3K27me3. This situation may be
similar to seminoma in which a repressive H3K27me3 mark at the SOX2 locus is
responsible for SOX2 repression while there seems to be H3K27me3 expression at least

in a subset of neoplasms of this entity (Kushwaha et al. 2016; Kristensen et al. 2012).

Surface and colleagues (2010) reported that methylation of Histone H3 at the
lysine 27 residue is mediated by the histone methyltransferase EZH2. Enhancer of zeste
homologue 2 (EZH2) showed high expression in cells possessing embryonic gene
expression signature, while its amount declines with tissue maturation and
differentiation. Abnormal overexpression of EZH2 has been reported in a wide variety
of tumor types including carcinomas, lymphomas, cutaneous melanoma, and soft tissue

sarcomas (Chang and Hung 2012).

Kimura and colleagues (2016) also explored specific markers and discovered
that synovial sarcoma cell lines possessed heterogeneity by way of containing a sphere-
forming subpopulation highly expressing Nanog, Oct4 and SOX2. By expression
microarray analysis, CXCR4 was identified to be highly expressed in the sphere
subpopulation and correlated with stem-cell associated markers. According to their
study, stem-cell associated markers including SOX2 and SS18/SSX were highly
expressed in the sphere/forming population of synovial sarcoma, hence SS18/SSX and
its sphere-specific binding proteins might regulate tumor-initiating cells via epigenetic

and/or transcriptional deregulation.

Generally, the impact of H3K27me27 expression on cancer prognosis seems to
be complex as there are also many studies reporting a better outcome in tumors with
high expression, e.g. in colorectal and breast cancer (Bae et al. 2014; Benard et al.

2014).
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Tumor progression of synovial sarcoma

In synovial sarcoma, endogenous EZH2 expression correlated with H3K27me3
at PcG target genes. It has been reported that high expression of EZH2 and H3K27me3
helps to distinguish poorly differentiated synovial sarcoma from monophasic and
biphasic subtypes and is associated with unfavorable clinical outcome (Changchien et
al. 2012). However our study does not provide such evidence, but it is important to
mention the limitation of our tumor collective lacking data on metastatic spread and

survival.

Metastasis and tumor progression in synovial sarcoma seem to be driven not
only by epigenetic modifications like histone methylation but also additional
chromosomal changes apart from the defining t(X;18)(p11.2;q11.2) translocation and
the activation of other genes and pathways distinct from the SS18-SSX gene fusion
event (de Necochea-Campion et al. 2017). The CINSARC signature of 67 genes
correlating with chromosomal instability and prognosis in undifferentiated sarcoma was
also highly significant in stratifying synovial sarcoma with respect to metastatic

outcome (Lagarde et al. 2013).

Future sarcoma diagnostics

Recent studies assure the inevitable importance of understanding tumors’
specific genetic mutations and utilizing this aspect in diagnostic measures as well as
future elaborated gene based therapeutic regimes. For example in our study we clearly
demonstrated the importance of the SS18-SSX gene fusion and its downstream targets
SOX2 and H3K27me3 in synovial sarcoma. The entity provides a paradigm of a tumor
that is primarily driven by alterations in the epigenome. The strength of the SS18-SSX
alteration lies in the fact that the fusion gene has influence on two major players in
epigenetic regulation. This leads to the inactivation of tumor suppressive functions of
the SWI/SNF nucleosome remodeling complex and changes Histone chromatin marks
that leads to the activation of the cancer stem cell transcription factor SOX2 as well as
other genes that are normally suppressed by the polycomb repressive complexes 1 and 2

(Banito et al. 2018).
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In a study conducted by Koelsche and colleagues (2018) they stated that
undifferentiated solid tumors with small blue round cell histology and expression of
CD99 mostly resemble Ewing sarcoma; however, this group of smal round cell tumors
may also include other tumors such as mesenchymal chondrosarcoma, synovial
sarcoma, or small cell osteosarcoma. They assured that definitive classification usually
requires detection of entity-specific mutations. Hence they generated genome-wide
DNA-methylation profiles of 30 small blue round cell tumors not otherwise specified:
14 (47%) assigned to Ewing sarcoma, 6 (20%) to small blue round cell tumors with
CIC alteration, 4 (13%) to small blue round cell tumors with BCOR alteration, which is
a methylation group composed of small blue round cell tumors with BCOR-CCNB3
fusion and clear cell sarcoma of the kidney with BCOR internal tandem duplication,
two (7%) to synovial sarcomas, two (7%) to malignant rhabdoid tumors, and one (3%)
to mesenchymal chondrosarcomas.They also assured that genetic analyses validated the

predicted sarcoma subtypes in most cases.

It is important to note that synovial sarcoma is characterized by a recurrent
pattern of DNA methylation that can be used to separate and diagnose this entity against
50 other soft tissue tumor types using genome-wide methylation analysis and
bioinformatical classification algorithms. The methylome analysis provides in addition
a global gene copy profile which may help to establish prognostic subgroups of this
entity (Petersen 2017; Koelsche et al. 2015).
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6. CONCLUSION

Our study proved a significant SOX2-expression in about 60% of the 60
synovial sarcoma cases investigated, whereas other soft tissue tumor entities showed

very sporadic insignificant expression in only 13 out of 343 variable tumors.

Alongside our findings support other studies reporting SOX2 and H3K27me3
expression in synovial sarcoma which reveals that both biomarkers are related to each

other.

This fact strengthens the notion that the tumor type is driven by epigenetic
processes similar to those that are operating in pluripotent stem cells. The relevance of
these parameters in the pathway pathology of synovial sarcoma, i.e. the timing and
dosing of SOX2 and H3K27me3 expression initiated by the SS18-SSX driver mutation
together with the interplay of these events with other signaling pathways, cellular

mechanisms and additional mutations in tumor progression, will require further studies.
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