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Abstract

This paper must not be seen as a report on actual investigations
nor as a stroll along stringent analytical mechanics. It is just a re-
vision of a lecture recently given by the author during a seminary of
students, pre- and postdocs in the mechanics departments at Techni-
cal University Ilmenau. Focussing on current research fields it is to
enlighten the general connections of any real object and the hierarchy
of models which form the base for theoretical investigations. There-
fore the paper should primarily be understood as a pragmatic support
of actual scientific meditations and activities by theoretically engaged
young people at TU Ilmenau.

The readers are supposed to have knowledge in elementary analy-
sis and applied mechanics.

MSC[2010]: 70G,74K

1 Introduction

In order to set a frame for the following discussions we start with the state-
ment that, actually and locally, primary research interests lie in the fields
construction elements, mechatronics, and bionics. Then the real objects to

*Institute of Mathematics, Technische Universitat Ilmenau, Weimarer Strafie 25, 98693
Ilmenau, Germany.



be investigated are (parts of ) mechanical or biological devices. Aim of these
(both practical and theoretical) investigations is to learn how these parts
behave during rest or motion under the influence of neighbored bodies. Af-
terwards, the gained knowledge might be used for an improvement of the
device the object was taken from, or - quite obvious in bionics - one recog-
nizes the utilizability of certain inner structures and processes for to create
a mechanical device that mimics the biological paradigm.

As arule, every research needs interdisciplinary work. It is unquestionable
that scientists from different branches come along with different concrete in-
terests for natural objects, their structure, interconnections and interactions,
and they show preferences for different investigation methods. Although
there is one common research object, several scientific branches are present:
material sciences, biology, measuring techniques, mechanics, mathematics.
(Think of a mechanist interested in linking bodies together - why shouldn’t
he cooperate with somebody from zoology?)

Let us take the actual research group ’Tactile Sensors’ as a striking ex-
ample. There is one common general research object - bio-inspired sensors -
and all scientific branches mentioned above are present.

Certainly, it is the business of biologists and zoologists to investigate
natural objects (e.g., animal sensory organs like vibrissae - these ”hairs” in
an animal’s face region, which are not for beauty alone!) in a maximum
of details: geometry, material, behavior under external influences, structure
and mode of operation of the sensing nervous elements in the base domain.
This task blows up due to the multiple forms of vibrissae, distinguished
by their place on the surface of a living organism (mystacial : snout region;
carpal : foot region; as examples) in connection with various purposes (object
perception quite near or afar). General and special questions arise: which
structure (created through evolution) makes the vibrissa optimally fit for its
task? - and which internal processes are the very reason for this fitness?
It may be true that the answers to these questions are primarily sought by
means of both in vivo and in vitro observations and measuring. Their results
then lead to hypotheses and, further on, to theories which are to describe
structure and functioning of a group of natural objects.

On the other hand, co-operating engineering scientists are primarily in-
terested in the principles of structure and functioning with the final aim to
design an artificial object that (under choice aspects) comes close to the live
paragon. For this end they take up the results gained by the life scientists as



the basis of their own work that specifically uses techniques from technology,
physics, and mathematics.

And this is just the Principle of Bionics:

See the nature and adopt evolutionary achievements to technology.

The overwhelming complexity of natural objects excludes, from the very
beginning, the investigation of such objects as a whole, i.e., as they show up
with all their details. Any investigation has to focus on a model of the object,
and this means, take the (possibly incomplete) image of the object presented
by the observing scientists (biologists, zoologists), dissect this image and
take away all pieces of (actual or guessed) non-interest. The rest then forms
a virtual object, which all considerations to come have to be concentrated on.

Next, this virtual object must be described by means of physical terms,
this description represents a physical model of the natural object. Finally,
applying corresponding physical theories, and turning physical terms into
adequate mathematical ones, a mathematical model of the natural object has
appeared. As a rule, this represents itself as a system of (fixed or adjustable)
constants (called system parameters) and variables (maybe, time-dependent),
combined by equations of any kind. Possibly, based on such a model and on
results of its mathematical analysis, engineers could design a hardware model
to be used for demonstration or measuring or even application.

All these steps should strictly follow this
General Guide in Modeling;:

Make the model as simple as possible (to enable a thorough analysis) and as
comprehensive and complicated as necessary (to capture all important items).

Obviously, the extent of performing these claims depends on both objec-
tive necessities and subjective abilities to master the coming steps. (To quote
Albert Einstein: ”FEwverything should be made as simple as possible, but no
simpler”.)

It is not a must to surrender if the results of the model analysis are not
satisfactory though every mathematics in system structure and evaluation is
correct. One should just throw a critical glance at the working hypotheses
which coin the steps in modeling, try some improvements and a new analysis.
Worst case, of course, is to end up with definitely wrong results. The positive
result then is: never this model again!



2 Modeling Slender Bodies

In the following we shall focus our considerations to objects which have to
do with tactile sensors, compliant connecting pieces, straight or curved parts
of frameworks or tensegrity structures, and similar ones. All these things are
members of the general object class “slender bodies’. In daily view the set
of such objects is huge indeed: walking-stick, fishing-rod, hose, power-cable,
rope, human vein, hair, elephant’s trunk, jet of water, vapor-trail, etc., (just
not to forget: anybody’s sweetheart after a successful diet-period). All these
objects are different in origin, dimension, structure, behavior, function, ...,
but they share at least one geometric feature: to occupy in space a close
neighborhood of a curve; this neighborhood is filled with matter of any kind,
which then obviously determines the behavior (being rigid or deformable or
fluid).

Later on, our interests will be concentrated on solid slender bodies. Slen-
derness then means ”transverse dimensions are small in comparison to length”,
and "small” remains during deformation. The acceptable rate of slenderness
may depend on the context. It will be seen that the above mentioned curves
play the leading role in investigations. In order to keep these investigations

mathematically on a modest level we confine our considerations to the plane
R2.

2.1 Sketch: Curves in R?

Fixed Cartesian coordinate system {O,x,y} with coordinate frame {e,,e,}

(positive sense of orientation z — ¥), position vector of point P(z,y) : OP =
r =re; + ye, .

A parameterized curve is a map from an interval (a,b) into R?, k-fold
continuously differentiable on the interval,

r(-) € CMa,b), k>2, s r(s) = z(s)e, + y(s)e,.

Tangent vector at s: eq(s) := r'(s), iff scalar product (e; | e;) = 1, then
s is the arc-length parameter of the curve. Then orthonormal (in positive
sense) to e;(s) is the normal vector es(s); the orthonormal pair {ej,es} is
called moving frame (begleitendes Zweibein). It satisfies the Frenet equations



Figure 1: Curve in plane with moving frame.

(Ableitungsgleichungen, ' means < here and further on)

e = K€
e, = —krep

(1)

where x(s) := (e](s) | es(s)) is called curvature at s. Let ¢(s) be the slope
of the curve at s, then

ei(s) = cosp(s)e, +sinyp(s)e,
{ e2(s) = —sin @(S)ch -+ cos gp(s)ey , (2)

and there follows by differentiation
r(s) = ¢(s) . (3)

If k(s) >0, <0, =0 then the curve is turning left, turning right, or flat at
s.

Theorem 1 For any given continuous real-valued function k(s) there exists
a curve in R? which is unique up to translation and rotation and has k(s) =
k(s) as curvature.

When dealing with curves in R? we meet as the central item the
differential initial value problem for a curve:

2'(s) = cosp(s) , x(so) =0,
y'(s) =sinp(s) , y(s0) =10, (4)
¢'(s)=r(s) , »(s0) =0 -

In the differential equation of a concrete problem, x(s) can be given in the
form k(z(s),y(s),v(s)). The common uniqueness theorem for initial value
problems entails the proof of the above theorem.
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2.2 A First Model for General Slender Bodies

For short, a slender body has been visualized above as a curve (normally in
R3) closely surrounded by a cloud of material particles. The cloud exhibits
various local material properties like density of mass, diverse elasticities,
viscosities and conductivities, flow velocities, density of electrical charge,
external forces (e.g., weight), and so on. Now, tempted by the smallness of
cross-sections, one may apply certain summation- and averaging-processes
on each cross-section s, thereby coming to a density p(s) of mass per unit
of length, internal forces and moments resulting from mechanical stresses,
an external force q(s) per unit of length, and further quantities, everyone
associated to the curve point at s. So, e.g., we have a function s — u(s)
with s € (a,b), and this is nothing else but a scalar field on the curve. Same
interpretaton is valid for any quantity of interest, in particular for purely
geometric ones like area A(s) and inertia moments I(s) of the cross-section
or curvature properties of the curve itself.
In this way we have come to a very comprehensive class of models:

Any slender body is modeled as a 1 — dimensional continuum
(i.e. curve in space) that is the support
of geometrical, internal and external physical fields.

If the continuum shows bifurcations then it should be dissected into sep-
arate branches which then represent the body as a set of (geometrically and
physically) coupled slender bodies.

Everything in this model (curve, field) is allowed to depend on time ¢ if
motion problems are to be investigated. Naturally, the fields may be coupled
and vary in time following respective physical laws. For short, one may speak
about this model as 1-dimensional body embedded in space.

Remark 1 In doing analysis we use the following notations:
total derivatives: L f(s) =: f'(s), L f(t) =: f(®):

partial derivatives: a%f(s,t) =: f,s(s,1), %f(s,t) =: [ (s,t);
scalar product: (a|b), vector product: a X b.

We do not use special measuring units as done elsewhere.



3 1-dimensional Solid Bodies in R?

In the following we focus our interest on slender bodies made from solid
material (excluding fluids an gases). For any configuration we suppose the
model curve to be plane and smooth with arc-length s € [0,[] and to be the
geometric locus of the centroids of the cross-sections. The cross-sections are
supposed to be symmetric w.r.t. the plane background R2.

Frequently, one particular configuration is used as a reference configura-
tion (preferably, that one with zero load - the 'original configuration’). Later
on we denote the respective arc-length ¢ (used as a body-fixed parameter).
Note that in general s # £ !

Firstly, we have the geometric fields s — {x(s),e;1(s),ez(s)}. Assume
that there are mechanical stresses on the cross-sections which reduce to the
cut-resultants'

force : F(s) = Fi(s)ei(s) + Fa(s)ea(s), moment: M(s) = M,(s)e..
External loads shall be described by force and moment per unit of length 2:

a(s)=aqi(s)er(s) + ga(s)ea(s),  m(s) =m.(s)e. .

Single external forces and moments could be seen as sharp extrema of q and
m (possibly represented by Dirac’s d -functional), or could be handled by
considering separate open subintervals of the curve which are free of singular
loads (and, after re-connecting the intervals, living with discontinuities of the
cut-resultants).

Now a coupling of the fields comes into play by the following

Working hypothesis: (stiffness principle, Erstarrungsprinzip [1])
In every state the model satisfies all rigid-body-equilibrium™) conditions.

For both rigid or deformable bodies *) means: a) during rest every dissected
part under action of the impressed forces and the cut-reactions is governed
by the rigid-body equilibrium conditions; b) the same holds during motion
for every dissected part in any fized (frozen) state if regarding the inertia
forces.

!Common German notation: F; = N (Lingskraft), F, = Q (Querkraft); z: vertical to
R2.
2Common notation also q; = ¢; (tangent), g2 = g, (normal).
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Figure 2: Load and reactions at differential part of a curve in plane.

Figure 2 shows the cut out differential part (s, s+ds) with all mechanical
actions and (cut-) reactions (where @, m mean any intermediate values).
Then equilibrium holds if

4F(s) +q(s) = 0, M= (s) + Q(s) + ma(s) =0,

more explicitly, in components, these are called
Equations by Kirchhoff and Clebsch?:

%N_FGQ"‘%:O,
LQ+ KN +q, =0, (5)
LM, +Q+m, =0.

These differential equations for (N, @, M., ), together with boundary con-
ditions at s = 0 and s = [ are the equilibrium conditions for the model
of solid bodies with any material properties. Note that x means the ac-
tual curvature; if using, in case of deformability, the original curvature, then
the equations represent a first approximation of the equilibrium conditions.
Featuring an observed particular behavior or regarding a particular original
inner structure or material property can be realized with the help of supple-
menting working hypotheses (constitutive laws, e.g., Hooke’s law). This shall
be shown by some simple examples next and later in some more extension.

Remark 2 Intuitively connecting N with stretching and {Q, M.} with bend-
ing we observe in the Kirchhoff-Clebsch equations a coupling of both (trends
of ) deformation via the curvature k (being original or actual). This becomes

3Kirchhoff, Clebsch, about 1860.



more impressive after elimination of Q:

N'+ kM. + km, + ¢ =0,
M! — kN — g, +m/, = 0.

If there is an interest, QQ afterwards comes up as Q = —M' —m,,.

On the other hand, if the loads q; and q, are handable functions, the first two
lines in (5) together with boundary conditions yield N and Q, the rest remains
%MZ — @ = 0. Thereby the Kirchhoff-Clebsch equations are exhausted - no

result concerning Kk and the curve!

3.1 The Thread

By daily observation of a thread we state about its behavior under external
influences: there is no resistance under transverse forces or moments or under
pressing longitudinal force, but there is some under pulling logitudinal force
('no thread fits as a walking stick, at most it is good for hangmen’s use’).
This leads (for the model of threads) to the working hypothesis:

A thread is characterized by the constitutive law

M,=0, Q=0, N>0.
The Kirchhoff-Clebsch equations for the thread then are

N/+Qt:07
/{N—"anoa
m, = 0.

Example 3.1.1: Let a thread of length [ be totally wound around a circular
cylinder of radius a (everyday scenario). Then take x = 1/a (mind: only
approximative if [ > 2ma because forming a coil!). The equations yield

a(b/z =t -

Case 1: all surfaces (thread and cylinder) are smooth, i.e., ¢ = 0. This
entails ¢/, = 0, N’ = 0, hence

N(s)=N(0):=Ny (>01), ¢, =—No/a .

Case 2: contacting surfaces with Coulomb stiction (coefficient py), i.e., ¢ =
—fto¢n- This entails N' = g, = —£2N, and we get

N(s) = N(0) exp(—%s).
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Figure 3: Thread contacting a wheel. Figure 4: Oscillating string.

Finally, there holds N(I) = N(0)exp(—£2l) < N(0) - a pleasant result
for fasten boats on to the quay. (Criticism: result still correct if taking a
real rope instead of a real thread?).

Example 3.1.2: String under tension, oscillating (crude simplification!):

M,=0,Q=0, N=Ny>0, Ny prescribed.

Resting without external loads: straight along the z-axis; under external
excitement: small deformation, state at time t: © ~ s, y = v(x,t) , K = V4,
inertial load (x =mass per unit of length) ¢, = —puv,; . Then we get the
motion equation (wave equation)

i
ze — Ut =0 .
v, NOU tt
Example 3.1.3: The catenary curve (thread, end points fixed, under dead
weight):
Let the mass density per unit of length be p, then we have q = — pge,,
and we get

@ = (qle)=—pgsing, g, =(qle)=—pgcosy,
and the equilibrium equations now are
N' — pgsinp = 0,
@'N — pgcosp =0,
x' = cos p,
Yy = sin .
The first two equations yield in turn

dN
N/ = T = Ntany, N(p)= Ny/cosp,
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¢ = ]/vif_i cos® ¢, ©(s) = arctan(yv—gos).

Finally, the last two equations describe the well-known curve shape by

No 1y
y(x) " cos.h(N0 ).

Criticism: Practical usefulness? - In practice one has to do with power-
cables of a more complex internal structure than any real thread has; thereby
also the interconnection of Ny, I, 3(0), and the coordinates of the suspensions
(where [ and N(I) take their values during setting-up) need to be considered.
External influences like ice or warm-up may then qualitatively change every-
thing.

4 The Bending Rod in R?

The elastic bending rod plays a central role in the research domains focussed
here. This is the reason for giving it a separate section. Our aim is to
point out several steps of modeling with increasing precision for different
applications - certainly a way not usual in common teaching.

Preliminary note. In all that follows we use the slopes ¢ (original) and
® (actual) of the axis as central configuration variable. This is because we
want to capture, e.g., sensor hairs as objects with pre-curvature and under-
going large deformations. The final relations, in case of small deformations,
can then be transformed into an approximate linear theory (for straight rods
or beams the common x — v—scheme).

At the present level of our considerations the state of the corresponding
model is given by the Kirchhoff-Clebsch equations together with the differ-
ential equations of the axis geometry. Two simple examples may give a hint
to necessary enhancements of the model. Consider a horizontal cantilever
under external load at the tip:

a) a positive moment (couple of forces),

b) a vertical upward force.

Under either load the axis is expected (or observed) to become curved upward
in some way. The shape of this curve certainly depends on both the load and
the rod’s "flexibility’ which may depend on the geometry and material struc-
ture of the rod, and may vary along the axis (imagine a cantilever originally
either cylindrical or conically tapered).
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Now we look for the outcome of the Kirchhoff-Clebsch model. In both
cases we are given (¢, ¢,, m,) = 0 ; after the cut resultants (N, Q, M,) are
determined via equilibrium of the cut-off right part of the (deformed!) axis
we check the Kirchhoff-Clebsch equations to be satisfied. There is no infor-
mation about x and the actual arc-length, i.e., the actual shape of the rod
is kept unknown, the model shows up to be unsufficient for a comprehensive
description of the body’s behavior, (no wonder, since the Kirchhoff-Clebsch
equations describe the equilibrium in any 1-dimensional body).

In order to find suitable supplementary working hypotheses which then
allow to capture also the shape of our model, we must decide about the
subclass of objects of proper interest. As a rule, bending rods are made
from mostly homogeneous (sometimes layered) material like metal, plastics,
rubber or something organic, their cross-sections are mainly circular or rect-
angular, and they may have axes which are originally pre-curved and could
be stretched under load. The following working hypotheses are commonly
named Bernoulli-Euler hypothesis, they describe a well-defined internal be-
havior under deformation and, together with our up-to-now model, match
our goals.*

Working hypothesis (Bernoulli-Euler)
(B1) The axis deforms into a smooth R2-curve.
(B2) Cross-sections accomplish a rigid motion.
(B3) Cross-sections remain orthogonal to the axis.
(B4) Cross-sections do not rotate about the axis-tangent.
(B5) Homogeneous isotropical Hooke material.

The next figure shall visualize the contents of (B1),..,(B4). Note that we
allow for change of arc-length during deformation! Therefore we introduce
once for all the following
Agreement: the arc-length in the original (undeformed) state is named &
(serves throughout as body-fized coordinate); s then means the arc-length in
the considered actual state.

4Naturally, the theory of bending rods has been established by Johann Bernoulli (about
1690) and Daniel Bernoulli and Leonhard Euler (about 1740) in a totally different way
than one is going today [3]. Also our composition of the hypothesis may differ from others.
This is because we move in our frame of modeling and use notions (like stress and strain)
from modern times.

12



‘ s+ ds
e

Figure 5: Differential part of bending rod, original and actual.

The local azis strain at point £ then is called g¢(£). Mind that & keeps its
character as body-fixed coordinate though it is not the arc-length anymore
ifeg#0!

If originally the axis is not a straight line, we denote the pre-curvature
by ko(§). The cross-section at £ will be equipped with the coordinate system
{C;n, ¢} where C is the centroid, 1 in normal direction, ¢ normal to R

We put together a list of events during deformation (—):

(2(£), y(€), »(€)) — (X(§),Y(8),2(6))

dg = —L=dyp —  ds=(1+ 50(5))055 = ﬁ(lg dd
Ko(€) = Jep(€) — K& =50 = g ®(©)
&) = (1 —nro(§))ds  —  dsy = (1 —nn(§))ds .

From the list we get the strain of the fiber n at &, (£, n) := (ds,, — d&,;) /d&,:

ee(6n) = @ eo(&) — e ae(26) — »(8)) - (6)

We emphasize that this is a purely geometric relation resulting from the rigid
relative motion of the cross-sections at £ and & + d€. No strains in further
directions appear.

13



Working hypothesis (B5) now adjoins stresses in axial direction,

o¢(&,n) = Eee(€§,m), E = const,

distributed over the cross-section &; the distribution is non-linear iff ko (§) #
0. By means of integrations we get the corresponding resultants in depen-
dence of the kinematical quantities azxis-strain and change of curvature (mind
that, due to (B2), neither area A(§) nor n have changed),

Mozéw%@mmzm®:4@ﬂm@mm, (7)

and finally, we have the
constitutive law of the Bernoulli-Euler bending rod,

M.(€) = —Eun(€)20(€) + Epna() (8(6) - #(6)), ®)

N(E) = Euo(f)eo(f)—Eul(ﬁ)%(@(ﬁ)—w(ﬁ)),
I3

where ,
7

pi(§) : /A(g) 1—77/<60(§)da7 1=0,1,2.

These three quantities have to be seen as geometric fields & — p;(§) on
the axis, determined by the shape of the cross-sections and the pre-curvature
of the axis, see [2]. An originally straight rod carries the fields

po(§) = A(§), m(&) =0, ua(§) = I(6),

S0, o, fo modify the classical stiffnesses EA(§) (stretching) and EI,(&)
(bending) if the rod is pre-curved, whereas pu; causes a (kinematic!) cou-
pling of N and M, in that case.’

It is easy to verify the recursions p; = Koo, pto = A+ k2ps, and det(p) =
Apo # 0: the constitutive equations can be solved for 7 and d%(@(é“) —(&)).

The constitutive law (8) says the following: the kinematics and the ma-
terial property postulated by (B1),..,(B4), and (B5) require that the cut

5Obviously, the deviation from the classical stiffnesses becomes remarkable if the inte-
grands come close to zero, i.e., if  comes close to the curvature radius. This could happen
in fat strongly curved rods like crane hooks, whereas in common bending problems ef-
fects were shown to be negligible. But: whether relevant effects could appear in vibration
problems - seemingly, nobody knows yet.

14



resultants (N, M,) which are ruling the equilibrium have to match with the
resultants given by (8). Equivalently: to ensure the postulated local kine-
matics (B1),..,(B4) during deformation the constitutive law is a necessary
condition. Thereby the axis geometry (up to now as s and x implicit to the
Kirchhoff-Clebsch equations) enters these equations (and so does the original
rod geometry, e.g., A(§), 1,(£), too) via the unknowns N and M, , and feeds
the hope to find the actual axis shape through further calculations.

We note the constitutive law for two important particular cases:
Originally straight rod:

N(E) = BA©) 20(&),  M.(€) = BL(E)£0(S) . (9)

Originally straight, and unstretchable rod:

M.(€) = EL(€)40(¢) . (10)

In all cases with g = 0, i.e. £ = s, N is simply the reaction force to this
constraint. The shear force () does not appear at all in the constitutive laws,
it simply acts as reaction force to the constraints (B2), (B3).

The most beloved - and indeed important - bending rod in teaching comes
along as straight (kg =0, @(&) = @9 = const), as, say, cylindrical (constant
A(€) = Ao, L(§) = Iy), and with ¢ = 0 (pragmatic assumption, looks
reasonable for, e.g., stiff beams or levers of very small deformations; but
what about very sensible joints or sensors?). The latter assumption brings
in some comfort, s =&, Kk = d%(I), and yields the well-known classical bend-

ing equation Kk = ELIOMZ, where M, commonly follows from cut methods.
Introducing this x to the curve equations (4) marks the origin of the curve
as mechanics.

A standard example is given in the next subsection.

Before, let us state some
Criticisms:
a)The postulated rigidity of the cross-sections entails zero n- and (-strains,
this implies that the rod’s elastic matter is with Poisson number v = 0 (else
one must have also transversal strains ¢, = e, = —veg(§,n) # 0).
b) The common assumption ¢y = 0 contradicts (B5): one had to accept
E = oo along the n = 0 fiber whereas else E is finite (no homogeneity!).

6Things become comparatively trivial in case of small deformation: | ® — g |< 1, 2’ =
2
cosPr1l:xrs, kry” finally M,(z) = Eloj?y(:r).

15



4.1 Bending Rod With Tip-Load

Let us consider a Bernoulli rod that is originally straight (ko = 0) and with
fixed shape and area of cross-sections (A(), I.(£) constant for £ € [0,1]). Let
the end & = 0 be supported (clamp or pivoting) at the fixed point (xg,yo),
and let a constant force f = f (sina e, —cos e, act upon the rod’s tip £ = [.
Suppose ¢y = 0, thus £ = s in every configuration. An actual configuration
is sketched in figure 6, just for comfort we prefer here and in the following
the symbols x,y, @, s instead of the capitals used above.

Figure 6: Bending rod, deformed under tip-load.

4.1.1 Problem formulation 1 (common use)

The geometry of the elastic line is governed by the differential equations
¥ =cosp, Yy =sinp, ¢ =k

of any curve, but now, to capture that special curve ’elastic line’, physics
comes in through the corresponding constitutive law, which we steal from
our room-mate: M, = El.x, and M, has to be learned by cut method as

M.(s) = f[(z(s) — z1) cosa+ (y(s) — y1) sin a].

16



Finally we end up with a problem like this (we abbreviate f/FE I, =: g):

Find z(s), y(s) such that, with s € (0,)
x'(s) =cosp(s), z(0)=x, x(l) = x4, (1)
y'(s) =sinp(s), y(0) =yo, y(l) = w1,
'(s) = gl(x(s) —x1) cosa + (y(s) —y1) sinal.

Look at the structure of this system: Three differential equations each of
first order for the unknown functions x,y, ¢ with given values xg, 3o, ¢o (the
latter in case of clamp) at s = 0 - so far a harmless initial value problem
if - alas! - there were not the unknown tip coordinates xi,%y; within. So,
hopefully, some shooting procedure on the computer could be tried.

A reasonable trick helps: enlarge the order of the system by introducing
the curvature x as a supplementing unknown, and see the problem separated
into two subproblems:

SOI =k, SO(O) = %o,

(k) { K = g cos(p — ), (1) = 0 (12
¥ =cosp, x(0) =z,

) { y =sing,  y(0) = o (13)

The first part (u) represents all the mechanics of the full problem and it
is a two-point boundary value problem, whereas the second part () is a
simple initial value problem that solves through integration after (u) has
been solved. Finally, also the tip coordinates appear as z1 = x(l), y1 = y(I).

Remark 3 [t is obvious that the representation of bending problems used in
this paper - main state function is the azis slope p(s) - diverges considerably
from that one commonly used in teaching and practice. The reason for this
fact: many applications need a theory which allows for large deformations
(e.g., biologically inspired tactile sensors, see later), whereas small deforma-
tions (important, e.g., for sensible connecting pieces) can be captured by the
supposition | p(s)—p(0) | 1. Thenz' =~ 1,ie sz, Yy = ¢, kxy'(z)~
ELIZMZ@), and equilibrium considerations can approzimately be done in the
original state. Therefore everything needed in the approximate x — y—theory
has a predecessor in the above s — p—theory.

Now we might feel satisfied that the preceding considerations ended up
in differential equations and boundary conditions which then yield a solution
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of the problem bending rod with tip load by means of pertinent analytical or
computational methods. Indeed, we do so because this is the common famil-
iar successful way. But in fact this is a short-cut of the way our cautiously
developed theory has opened and which is always in the background. The
following re-consideration of the bending problem is to enlighten that fact.

4.1.2 Problem formulation 2 (commonly not in use)

Remind that the Kirchhoff-Clebsch equations match any solid 1-dimensional
body (what kind of material and original geometry ever). At the tip let s =1
(actual length), slope ¢(I) = 1 . Then we are given the following facts:
- there are no distributed loads,
¢t =qn =0, m, =0.
- at the tip s = [ (actual length) there acts the force f = f (sinave, —cosae,)
with components
N(l) = —f sin(p1 — ), Q) = —f cos(¢p1 — @),
and the moment
M,(1) = 0.

- the foot is clamped,

p(0) = 3.
The Kirchhoff-Clebsch equations,

N — k@ =0,
Q +~xrN =0,
M +Q =0,
¢ =K,

(14)

appear as differential equations for the unknowns N(s), Q(s), M,(s), ¢(s), s €
(0,1), and corresponding boundary conditions are the preceding relations.

Now the first two equations yield NN’ 4+ QQ’ = 0, hence by integration
and obeying the boundary values at s = [ there follows

1 1

—(N? + Q?) = const = = f2.

2 2
So N and @) are structured

N(s) = f sin(f(s)), Q(s) = f cos(f(s))
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with some still unknown function S. But the first and the fourth equation
entail

fcosBB —fcosf=0, ie., =¢.
Therefore 3(s) = ¢(s) 4+, N(s) = f sin(p(s)+-y), where v is any constant.
At s =1 we get —f sin(p; —a) = f sin(p; +) which gives y = —a+ 7, and

N(S) = _f Sin(@(s) - a)? (15)
Q(s) = —f cos(p(s) — ).
(Of course, the same follows by considering the equilibrium of the cut-off
part [s,(].)
Finally, the last differential equation writes:

M:(s) = f cos(gp(s) — ). (16)
This looks a bit tempting, but ¢(s), which is the base for finding the elas-
tic line, remains unknown! A fact that was already mentioned before the
Bernoulli hypotheses: all the preceding results hold for any geometry (straight
or pre-curved, cylindrical or tapered), and any material featuring the con-
crete rod that undergoes modeling. At this stage a constitutive law is un-
avoidable. That means, a kind of ingenious stunt is to establish a function
(geometry, kinematics) — M, which matches all relevant features of the
concrete rod under investigation and turns (16) to a differential equation for
©(s). One could think about

MZ(S) = M(S7 QO(S), K(S)v Hl($)7 )
as a general structure.
Remind the foregoing section. A careful analysis of the Bernoulli hy-
potheses had led us to the relation M, = Fl.x (via (10) for the simplest

case: straight and unstretchable). So, if we introduce (with some constant
stiffness” B)

M.(s) := Bk(s), (17)
the last step to the elastic line is the well-known boundary value problem
f s
P(5) = w(s), W(s) = L cos(pls) — ), (0) =3, w(1) =0.

In this simple classical case both formulations of the problem come out with
the same end. That means, the common law (17), also in use with non-
constant bending stiffness B, does the job. And, in section 4.1.1, the jump
from (11) to (12), (13) by differentiation is indeed not so tricky, but immanent
to the problem itself.
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4.1.3 Analytical solution of the problem (sketch)

The core of the problem is (p) in (12),(13). The differential equation is
autonomous if the system parameter g does not depend on s (enhancement
in next section). This implies the existence of a first integral. First, let (¢, k)
be any solution of the differential equation then there holds

kK =g cos(p — ) = (g sin(p —a)),
and by integration we get

1
§I<d2(8) — g sin(p(s) — a) = const .
So the function F : (¢, k) — k% — 2g sin(p — «) takes a constant value along
every solution (¢(s),x(s)). To be more specific we go to s = [, there we
know k(1) = 0; if we denote p(I) =: 1 , then we get const = —g sin(p; — ).

(Equivalently, we could take s = 0, ¢(0) = ¢o, k(0) =: kg, then const =

1kE — g sin(po — a) ).

Having an eye to a configuration sketched in figure 7, where x < 0, then
we have

k(s) = |¢'(s) = —v2g4/sin(p(s) — a) — sin(p; — a) |. (18)

This was the most important step in proceeding towards a formal analytic
solution. Firstly, (u) has been reduced to one differential equation for only
one unknown, ¢(s). (Indeed, under punishment by appearing a new unknown
constant, ¢;.) But mind that ¢’ is of fixed (negative) sign, so s — ¢(s) is

monotonic, and ¢ can serve as an axis parameter. Then () in (12),(13) can
dzx dp

be rewritten, using % = dode . as
(2_; — _é cos ¢ [S‘in(SO —a) — S‘in(gol — a)]—ll/j, (o) = o,
ﬁ = — 5 sing [sin(p — a) —sin(p; — @)]7V2, y(vo) = o -

Proceeding from here, it is trivial matter to write the functions x and y
in form of integrals, e.g., z(p) — zy = —ﬁ sfo cosT [...]7Y2dr. After some
transformations in the integrands, integrals like this one can be expressed by

means of the elliptic integrals of first and second kind, with module k < 1

e . - 1. . rz 1
elliptic integral of 1st kind: F(z, k) := [, NVIEENV TR 19)

elliptic integral of 2nd kind: ~ E(z,k) == [; V&g dt .
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As a rule, these integrals are standard functions in computer software (to be
activated like sin and cos), accordingly it is possible to define frequently called
functions like the above x(y) as ’custom standards’ in a current software.

At first place we have to find the still unknown parameter ,: from above
we have ¢ = —/2g[...]'/2, then j—; = —\/szg[...]*l/z, and by integration we
get the equation

V29l = — /W[sin(T — a) —sin(p; — a)]7Y2dr

0

to be solved (numerically) for ;. Further evaluations are done in turn on
the computer by solving finite equations (see [6]).

4.2 This and That Towards the End

In the following we sketch some applications and enlargements of the items
given in the foregoing sections.

4.2.1 Scanning object contours

In sections 4.1.1 and 4.1.3 we considered a vertically clamped straight bending
rod acted on by a given tip force f =f (sinave, — cosae,). Investigating the
boundary value resp. initial value problems (12) and (13) we found the
elastic line (x(s), y(s), ¢(s)) which then in particular gave us the coordinates
(x1,y1,01) = (x(1),y(1), (1)) of the tip, that point where the force f acts -
no matter 'who’ this force applies. Furthermore we got the clamp reactions
(rg,ry,72) = —f- (sina, —cosa, (xrg—x1)cosa+ (yo — y1)sina ).

0.8}
> 0.6f

Figure 7: Scanning an object by means of a tactile sensor.

21



Now think of the following practical scenario in the x — y—plane: Given
a strictly convex smooth curve (contour of an object) which is swept by an
originally straight flexible tactile sensor, see figure.

We model the sensor as a Bernoulli bending rod with vertically clamped
foot at (xg,yo) where yq is fixed below the minimum of the contour, and
runs (slow or step by step) to the left side. During a certain interval the rod
touches the contour, gets bent by a contact force which causes corresponding
clamp reactions, the latter can be measured. If we assume ideal contact (no
friction) then the force is orthogonal to the contour, it appears exactly in
the form used above, where a equals the slope of the contour at the contact
point.

Scanning the contour means: Exploiting the above scenario by means of
measurements in order to find sufficiently many contour points. This task
will be done by solving the inverse problem to that one in section 4.1:

e measured: Zo, Yo, Tz, Ty, - ; implies: f2 =72 + 7‘2 ,tan a = —ry, /1y ;

e wanted: x1, y;1, o1 (contact point and slope of rod there).

Now solve the bending equations from (11), but use M, = r, +xr, —yr, and
the initial conditions z(0) = o, ¥(0) = yo, ¢(0) = 5. Contact then is at
(x1,11) = (z(s1),y(s1)), where s; is the least axis point with k(s;) = 0. If
s1 < [ then there is tangential contact (¢1 = «), and on (sy,[) the elastica
remains a straight line (see [6]).

4.2.2 Surface texture detection

In a way, the following problem is a counterpart to the one above. In order
to explore the shape of an object we used a tactile sensor which tenderly
slides along the object contour, whereas for to detect the contour roughness
we let the sensor tip scratch along the surface (as we do in daily life, too).
We consider a plane surface.

Figure 8: Detection of surface texture by means of a tactile sensor.
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Figure 8 shows the scenario: A straight rod of length [, vertically clamped
at (xo,0) is bent to the right under a horizontal plane of altitude h < [. At
the contact point we assume a reaction force f = —fe,, f > 0. Now
let the clamp be in slow motion to the right side. If the contact was ideal
then for every xy we have the same vertical reaction force at a displaced
contact point. Now assume that the rough surface can be described by
Coulomb stiction, then at each position xgof the clamp there acts also a
horizontal reaction of the form —u fe, , whith 0 < u < pg, where the
friction coefficient o characterizes the grade of roughness. Indeed, it is just
this pg the investigations aim at. It is obvious that the model is the same as
in the section before, a bending rod under tip load

f=f(sihae, —cosae,) where tana = —pu.

So, measuring the clamp reactions while xq is increasing, we get for every xg
the coefficient p = r, /1, . If preaches pg then the horizontal reaction breaks
down, some ’bang’ is observed and the last measured value p is the wanted
1o characterizing the roughness of the surface at the tip coordinate x; which
can be observed or calculated. After a pause the process can be continued.
If 2y increases continuously then a characteristic stick-slip sound is observed.

If the theory is needed for certain details (e.g., to find x; corresponding
to xy) one has to accept that possibly the curvature x changes its sign - in
contrast to the fixed sign in (18). For theory see [4].

4.2.3 About small bending vibrations (sketch)

At last we take up the bending rod from the last sections again, but now
we want to describe a model for its vibrations. In order not to overload the
formalism we restrict our considerations to some simple case.
Suppose first that the deformations are without stretching, ¢y = 0, and,
focussing on a linear theory, the deformations are of small amplitude.
This means in detail
- original: (z,y, ¢, k0)(£), £ € (0,1); (z,y,9)(0) =(0,0,3),
moving frame: e; = c¢(§)e, + s(§)e,, e = —s(€)e, —|— c({)ey,
abbreviations: ¢(§) := cos(p(§)), (&, p) := cos(¢(&) — ¢(p)), etc.
- actual: (X,Y,®,k)({ 1), D(& 1) = (&) +x(& 1), Ix], e | <17

"This smallness shall be handled by neglecting all terms at least quadratic in y and x’.
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because of 5 = 0 we may use the body-fixed coordinate £ and we have

X'(&,t) = cos ®(€) ~ cos p(§) — x(&, 1) sinp(§), (20)
Y'(€,t) = sin ®(§) ~ sinp(§) + x(§,1) cosp(§) .

displacement: u =uze, +uye, , u, = X —x, .;

13 13
ual6.1) = — / (o D) s(p) dpy uy(E,t) = / x(p. ) () dp,

3
u(€. )= / x(p.t) ex(p) dp.

To come up with some differential equation for the vibrations we use the
Kirchhoff-Clebsch equations under consideration of all inertia forces; doing
so, we accept the following approximations:

- using the equations along the original axis (due to small amplitudes),

- drop the moment load m, (rotational inertia of small cross-sections).

So we get

#F(& 1) +a& 1) =0, M) +Q(E,1) =0
with inertia force per unity of length (u: mass per unit of length)

Letting the external tip force depend on the time ¢ via (f(¢), «(t)), integration
yields

13
F@@—F@ﬂ—wzﬁ@ﬁmpo.

Keeping an eye on M, we need the shear force Q(&,t) = (F(&,t) 1 e2(f)),
and we get

§ o
Q(E.1) = — £(t) cos((€) — a(t) — / / $(o.t) c(€.0) dodp

From the constitutive law (8) we have M, (&,t) = E ps(§) %X(f, t). Therefore
the last Kirchhoff-Clebsch equation yields the vibration equation in the form

Eua(§) X' (&) = [(t) cos(p(€) —a(t) — p [} J3 ¥(o,t) e(€, 0) do dp
(21)
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of a linear partial integro-differential equation (the exploitation of which is
still waiting for activities).

Particular case: ps(§) = I, = const, kg = const . Let % =: By. Four
times differentiating w.r.t. £ we get a linear partial differential equation of
order 6 in ¢ and order 2 in ¢ :

Bo[x"' (&, 1) + 265 X" (€, 1) + s X"(§,1)] = =X"(&, 1) + X (&,8)  (22)

(mind that a mixed derivative has occured; f has gone to the backstage, but
comes in again via boundary condition).

Particular case: (&) = I, = const, kg = 0, p(§) = 5, a = § .
Differentiating twice w.r.t. £, there remains the well-known equation

o 0? 1
BogerX(6:0) + gx(&:1) = /(1) (23)

which is commonly written for a displacement u instead for our preferred
slope deviation Y.

In each case the necessary boundary conditions must be found from the
respective equations after the different steps of differentiation.

Excitation of vibrations could be achieved, e.g., through f(¢) (modeling
some contact as in foregoing sections) or xo(t) := x(0,¢). Both scenarios
match the activity of an animal vibrissa, whose foot is supported in the so
called follicle sinus complex (FSC) which serves for both driving oscillations
and sensing external perturbations as nervous impulses to be transmitted
to the central nervous system (which in our model are the measured clamp
reactions).

5 Conclusion

Well, so far. Paper fini. Cui bono?

The aim of the paper, as told at the very beginning, was not to serve as a
little textbook or as a research report. It was to remember a young theoret-
ical researcher what he is actually doing while investigating any object. In
everyday work the modus operandi (often under pressure) is a bit crude: for
instance, knowing that the object under consideration deforms by bending
then one usually takes the bending equations from memory or from a book
or (better?) calls it on the PC by pushing a button - and then : away with
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it to the computer! The latter then replies with numbers or curves which are
taken as a description of the object’s behavior.

If a check by comparison with measurement results shows some quan-
titative deviations then this might be overcome by refined measuring. If,
however, the deviations are of qualitative nature, then, suddenly, we again
become aware that these computer results in fact describe the behavior of a
model of the object (which we do not keep in mind with all its details). Last
hope: back to the roots, look at the evolution of the model, find an improved
model, and start again!

To bring this scenario back to the minds of those people who slightly
forgot it, or giving them an engaging evening - this was the aim of the paper.

Of course, there are (practically important) slender bodies of more com-
plex structure which are not captured by the modeling scheme used here.
Such objects are, e.g., a hose with internally streaming fluid, a piezo-electrical
strip, a tube-like elastic rod filled with some fluid of controllable pressure.
Already the aim of investigation and, then, the way of modeling might be
different from ours. This becomes obvious by the last cited example, which
could be related to a medical vein dilation; here, the primary interest does
not lie on bending but on the pressure-caused extension of the tube radius
(see [5]).

If there are criticisms of any kind with respect to this all, or somebody
finds an error, then, please, give a hint.

Thanks are to Lukas Merker for his kind help in finishing the paper.
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