
 

 

 

Analysis of freeform optical systems based on the 

decomposition of the total wave aberration into Zernike 

surface contributions 

 

 

Dissertation 

for the acquisition of the academic title 

doctor rerum naturalium (Dr. rer. nat.) 

 

 

submitted to the Council of the Faculty of Physics and Astronomy 

of the Friedrich-Schiller-Universität Jena 

 

 

by 

MSc. Mateusz Oleszko 

born in Opole, Poland on 10.07.1988 

 

 

 

 

 



2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supervisors: 

Major Supervisor:   Prof. Dr. Herbert Gross 

Associate Supervisor:  Prof. Dr. Norbert Lindlein 

Associate Supervisor:  Prof. Dr. Fabian Duerr 

 

Day of the Disputation: 09.04.2019 

 



3 

 

 

 

 

 

Abstract 

The increasing use of freeform optical surfaces raises the demand for optical design tools 

developed for generalized systems. In the design process, surface-by-surface aberration 

contributions are of special interest. The expansion of the wave aberration function into the 

field- and pupil-dependent coefficients is an analytical method used for that purpose. An 

alternative numerical approach utilizing data from the trace of multiple ray sets is proposed. 

The optical system is divided into segments of the optical path measured along the chief ray. 

Each segment covers one surface and the distance to the subsequent surface. Surface 

contributions represent the change of the wavefront that occurs due to propagation through 

individual segments. Further, the surface contributions are divided with respect to their 

phenomenological origin into intrinsic induced and transfer components. Each component is 

determined from a separate set of rays. The proposed method does not place any constraints on 

the system geometry or the aperture shape. However, in this thesis only plane symmetric 

systems with near-circular apertures are studied. This enabled characterization of the obtained 

aberration components with Zernike fringe polynomials.  

The application of the proposed method in the design process of the freeform systems is 

demonstrated. The analysis of Zernike surface contributions provides valuable insights for 

selecting the starting system with the best potential for correcting aberrations with freeform 

surfaces.  Further, it helps in determining the effective location of a freeform element in a 

system. Consequently, it is possible to design systems corrected for Zernike aberrations of 

order higher than the order of coefficients used for freeform sag contributions, described with 

the same Zernike polynomial set. 
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Chapter 1 Introduction 

Before computers became available, lens designers were concentrated on developing tools to 

design multi-lens optical systems using simple hand calculation. The introduction of Seidel 

sums made the evaluation of primary aberrations of an optical system possible, based only on 

construction parameters and a trace of two paraxial rays. That enabled Petzval to design the 

first photographic lens corrected for all primary aberrations [1]. The Seidel sums method was 

further extended for aberrations of higher orders by Buchdahl [2].  

Since the advent of computers the computational power became less of an issue enabling a 

trace of multiple real rays through a complete system. Thus, the evaluation of the total 

aberration with no limitation to an expansion order has been possible [3]. The lens designers 

have employed local optimization methods [4, 5] in the designing process obtaining well-

corrected complex lens systems. Further, in order to explore the complete solution space of a 

design problem, different global optimization methods have been tested [6-9].  Nevertheless, 

it is still not possible to replace the work of a trained lens designer. Thus in parallel, analytical 

approach of expanding wave aberration function into field and pupil-dependent coefficients 

has been developed, providing valuable insights into potentials and limitations of a particular 

design solution. Currently, surface-by-surface aberration coefficients up to the sixth order are 

derived in the literature [10] for axially symmetric systems. The functionality of the approach 

has been further extended for the analysis of non-axially symmetric optical systems [11-13]. 

The analysis of aberration effects is of crucial importance in assessing the limitations and 

possibilities of various configurations, guiding the optimization process towards the best „as-

built“ solution [14].   

Development of ultraprecision diamond machining technologies enabled the manufacturing of 

surfaces with a varying azimuthal profile, the so-called freeforms. This has opened the 

possibility to build more compact systems with larger apertures and fields of view [15]. In 

order to fully benefit from the application of freeform elements, new mathematical 

representations to simulate freeform surfaces in the optical design software were introduced 

[16]. In the design stage, typically a set of polynomials is used to describe the complete surface. 
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Global surface representations assure convergence during the optimization process. Thus, new 

polynomial sets suitable for different aperture shapes and with different orthogonality 

properties [17-19] were developed. After the design stage, it is necessary to assess the 

performance of the „as-built“ freeform system. In this case local representations such as radial 

basis functions (RBF) appeared to be appropriate to reproduce the manufacturing artifacts [20].  

Application of freeform elements in multi-lens imaging system raises an issue of where to place 

the freeform surface to be used most effectively.  Strategies for placing freeforms to achieve 

significant improvement in the performance of multi-lens systems were therefore investigated 

by Liu in [21]. 

However, freeform surfaces appeared to be beneficial especially when applied in tilted mirror 

systems. Mirror systems typically consist of only a few surfaces and are non-axially symmetric 

in order to avoid central obscuration. Additionally, mirrors generate only monochromatic 

aberrations and therefore the choice of glasses is of no concern. Thus, freeform surfaces can be 

employed to develop compact tilted mirror systems with excellent imaging performance, large 

field of view (FOV) and low F# [15]. However, it is non-trivial to determine which starting 

system to choose and where to place the freeform element to obtain the best design. The 

knowledge of aberration generated in the system is very helpful in answering these questions. 

Thus, design strategies based on aberration theory have been developed in recent years.  

One of the approaches presented in [22] is to iteratively identify the limiting aberration and to 

apply the correct term in the description of the freeform sag contribution. This approach is 

based on modifications to the aberration fields introduced by freeform surfaces derived from 

nodal aberration theory (NAT) [23]. The final image performance is then checked in the exit 

pupil using full field displays (FFDs) of Zernike aberrations obtained from ray-tracing data.  

Another design procedure is to first design an appropriate axially symmetric starting system by 

using Gaussian brackets and Seidel aberration coefficients. Next, to apply tilt angles and derive 

the aberration coefficients of an unobscured system with NAT. In the last step freeform 

elements are introduced to correct the large arising, field-constant aberrations [24].   

The aim of this thesis was to develop a new numerical method for determining surface-by-

surface contributions to the total wave aberration that can be used to assist the design of 

freeform optical systems.  This thesis is divided into three parts. In chapter 2, an overview of 
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the field of wave aberration theory is given. Both analytical and ray-tracing methods to 

determine wave aberrations are introduced. In chapter 3, the new numerical approach to 

determine wave aberrations utilizing data from the trace of multiple ray sets is described. The 

total wave aberration is divided into surface contributions and further decomposed into 

intrinsic, induced and transfer components. Each component is determined from a separate set 

of rays and characterized by Zernike fringe coefficients. In chapter 4, Zernike aberration 

coefficients are used to analyze the aberrations of freeform optical systems. The design strategy 

based on the proposed method for tilted three-mirror systems is introduced. The potentials to 

determine the most effective initial system and the location of the freeform element are 

demonstrated. Further, functionalities of the tool in assisting the design of multi-lens systems 

are shown. 
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Chapter 2 Theory 

2.1 Wave aberrations determined analytically 

This section serves as a brief introduction to the theory of aberrations of optical systems with 

circular apertures, based on the expansion of the wave aberration function. It is the established 

method for classifying aberrations with respect to the symmetry of the optical system. Further, 

the expansion of the wave aberration function allows distinguishing contributions from 

individual surfaces to the total wave aberration. The total wave aberration quantifies the 

deviation from first-order imagery, which can be modeled with respect to a selected convention 

of references. Notation employed in this section corresponds to the one used by Sasian in [25]. 

2.1.1 Ray aberrations 

On top of the diffraction effect resulting from a finite aperture, the resolution of an optical 

system is limited due to the deviation from the ideal geometric imagery. The geometric 

transformation of a point between object and image planes is typically described with the 

Gaussian model. In this model each ray originating from the object plane passes through the 

entrance and exit pupil planes, which represent the transformation performed by an optical 

system, and intersects the image plane at the scaled coordinates. Thus, each ray can be 

described using vectors in two planes, namely the field vector and the pupil vector. In this 

approach, the normalized field vector (𝐻⃗⃗ ) is located on the object plane and defines the point 

source from which the ray set originates. The normalized pupil vector (𝜌 ) defines the 

coordinates of the point in which a particular ray intersects the exit pupil. In the first-order 

approximation, rays intersect the image plane and the entrance pupil plane at the equivalent 

coordinates. However, the real imagery of an optical system deviates from ideal geometric 
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transformation. Consequently, transverse aberrations in the image (𝛥𝐻⃗⃗ ) and the entrance pupil 

(𝛥𝜌 )  planes occur; see Figure 2-1.  

 

Figure 2-1. A first-order ray illustrated with the dotted line travels with no transverse error. A real ray, shown 

with the solid line, usually travels on a path that deviates from the first-order ray [25]. 

Here only transverse aberrations of third and fifth order are considered.   

2.1.2 The total wave aberration  

In the approximation of the first order, each ray originating from a point in the object arrives 

at a scaled point in the image, travelling an optical path of the same length measured in the exit 

pupil. Nevertheless, if transverse aberrations are added, the optical path for each ray arriving 

on the exit pupil differs. Thus, deviation from the ideal imagery can be also expressed in terms 

of the error in optical path length (OPL). The OPL is given by integrating the trajectory of a 

ray (s) traversing arbitrary points P0 and P1 in a medium with refractive index (n): 

𝑂𝑃𝐿 =  ∫ 𝑛𝑑𝑠
𝑃1

𝑃0
.  (2-1) 

The surface of equal OPL’s is a wavefront. Thus, to determine the wavefront, one needs to 

trace an arbitrary set of rays originating from a single point in the object plane. 

 An ideal wavefront propagates along first-order rays and is a spherical or plane surface that 

converges to a point or infinity in the image space. An aberrated wavefront deviates from the 

ideal shape. The measure of this deviation in the image space is the total wave aberration. 

Further, the wavefront can be well-defined only if the boundary of the beam is unambiguously 

determined. This is possible in the mechanical aperture of the optical system. Analogously, the 

boundary of the beam is also unblurred in the entrance pupil plane and the exit pupil plane, 
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which are the images of the aperture in object and image space, respectively. Thus, the total 

wave aberration is defined in the exit pupil as a function of the normalized field and pupil 

vectors (𝑊(𝐻⃗⃗ , 𝜌 )). It quantifies the difference in the shape of the real wavefront and the 

corresponding ideal wavefront, represented by the reference sphere. This difference is 

calculated from the reference sphere to the wavefront along a real ray; see Figure 2-2.  

 

Figure 2-2. The total wave aberration function 𝑊(𝐻⃗⃗ , 𝜌 ) defined as a difference in the shape of the real 

wavefront and the corresponding ideal wavefront measured along the real ray in the exit pupil plane.  

In analogy, the wave aberration can be defined after each surface in the intermediate exit pupil, 

which is an image of the stop in intermediate image space. In this way an optical system is 

divided into subsystems each bounded by an associated entrance and exit pupil. Thus, 

contributions to the total wave aberration are defined in the exit pupils of individual surfaces. 

2.1.3 The expansion of the wave aberration function 

Any differentiable function can be approximated by series of coefficients assigned to power 

combinations of its variables, known as Taylor series. In principle an unknown function defined 

around a certain point in variable space is first approximated to be constant, then a linear 

combination, then squared, and so on. For a function 𝑓 of a single variable 𝑥 expanded around 

point 𝑥0, one can write: 

𝑓(𝑥) = 𝑓(𝑥0) + 𝑓′(𝑥0)(𝑥 − 𝑥0) + 
𝑓′′(𝑥0)(𝑥−𝑥0)2

2
+ 

𝑓′′′(𝑥0)(𝑥−𝑥0)3

2∙3
,  (2-2) 

which for 𝑥0 = 0 can be noted as power series to the 𝑁𝑡ℎ order of approximation: 
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𝑓(𝑥) =  ∑ 𝑎𝑛𝑥𝑛𝑁
𝑛 .  (2-3) 

The power series expansion is also employed to approximate the value of the wave aberration 

function 𝑊(𝐻⃗⃗ , 𝜌 ), which is a scalar function of four variables, 𝜌𝑥, 𝜌𝑦 in the exit pupil and 

𝐻𝑥, 𝐻𝑦 in the object space. This is further simplified when invariance upon rotation around an  

optical axis is taken into account. There exist three combinations which are rotation invariant 

namely; 𝐻𝑥
2 + 𝐻𝑦

2,  𝜌𝑥𝐻𝑥 + 𝜌𝑦𝐻𝑦 ,  𝜌𝑥
2 + 𝜌𝑦

2. Further, due to the symmetry, the orientation 

with respect to the optical axis can be neglected. This is best performed by changing to polar 

coordinates and replacing the mixed term with the cosine of an angle 𝜙, between vectors 𝐻⃗⃗  

and 𝜌 .  Thus, one can write the wave aberration function as an expansion with three variables: 

𝑊(𝐻⃗⃗ , 𝜌 ) = 𝑊(𝐻2, 𝑟2, 𝐻𝑟 cos 𝜙) =   ∑ ∑ 𝑊𝑘,𝑙,𝑚𝐻𝑘𝑟𝑙 cos 𝜙𝑚
𝑘,𝑙,𝑚

𝑁
𝑠=1 = 𝑊000 +

(𝑊200𝐻
2 + 𝑊111𝐻𝑟 𝑐𝑜𝑠𝜙 + 𝑊020𝑟

2)2𝑛𝑑𝑜𝑟𝑑𝑒𝑟 + (𝑊400𝐻
4 + 𝑊311𝐻

3𝑟 𝑐𝑜𝑠 𝜙 + 𝑊220𝐻
2𝑟2 +

 𝑊222𝐻
2𝑟2𝑐𝑜𝑠2𝜙 + 𝑊131𝐻𝑟3 𝑐𝑜𝑠𝜙 + 𝑊040𝑟

4)4𝑡ℎ𝑜𝑟𝑑𝑒𝑟 + (𝑊600𝐻
6 + 𝑊511𝐻

5𝑟 𝑐𝑜𝑠 𝜙 +

 𝑊420𝐻
4𝑟2 + 𝑊422𝐻

4𝑟2𝑐𝑜𝑠2𝜙 + 𝑊331𝐻
3𝑟3 𝑐𝑜𝑠 𝜙 + 𝑊333𝐻

3𝑟3𝑐𝑜𝑠3𝜙 + 𝑊240𝐻
2𝑟4 +

 𝑊242𝐻
2𝑟4𝑐𝑜𝑠2𝜙 + 𝑊151𝐻𝑟5 𝑐𝑜𝑠 𝜙 + 𝑊060𝑟

6)6𝑡ℎ𝑜𝑟𝑑𝑒𝑟 ,  (2-4) 

where 𝑠 is a number of a surface, indices 𝑘, 𝑙, 𝑚 represent powers of 𝐻, 𝑟 and 𝐻𝑟 cos𝜙 

respectively and coefficients are grouped according to the total order 𝑘 + 𝑙.  

The expansion into wave aberration coefficients allows for the investigation of types of 

aberrations that may occur in axially symmetric optical systems [26]. Since the wave aberration 

function is derived from an integral of ray trajectories, its coefficients are of one degree higher 

than the corresponding transverse aberration coefficients. If the second-order coefficients of 

wave aberration function are equal to zero, the wave aberration describes the deviation from 

the ideal wavefront, centered upon a Gaussian image point. In this way a relation to the first-

order approximation in terms of transverse aberration, is established. Further, wave aberration 

coefficients of order higher than the second can be divided into point-imaging aberrations 

(causing a loss in resolution) and image-shape aberrations (not influencing the resolution but 

deforming the shape of an image).  

Since wave aberration function is analyzed in the exit pupil, only the dependency on the pupil 

term 𝑟𝑛 together with the mixed term 𝑐𝑜𝑠𝑚𝜙 are explicitly revealed in its shape. This allows 
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for deliberate analysis of point-imaging aberrations, whereas image-shape aberrations are 

expressed only through the tilt and decenter with respect to the reference sphere. If azimuthal 

order (𝑚) of the pupil dependent coefficient is zero it represents the spherical-like aberration, 

which is completely symmetrical about the center of the pupil. In case the index 𝑚 of the 

coefficient is equal to one, the aberration has a symmetry about the tangential plane and is 

called coma-like. If the aberration has two planes of symmetry (𝑚 is equal to two) it is 

classified as astigmatic.  

As mentioned, the total wave aberration is a function of two vectors and the sum of 

contributions obtained in intermediate exit pupils after each surface. Thus, for sake of 

simplicity of analytical derivations introduced in following sections, it is alternatively written 

with vector notation: 

𝑊(𝐻⃗⃗ , 𝜌 ) =  ∑ ∑ 𝑊𝑘,𝑙,𝑚(𝐻⃗⃗ ∙  𝐻⃗⃗ )
𝑗
∙ (𝐻⃗⃗ ∙  𝜌 )

𝑚
∙ (𝜌 ∙  𝜌 )𝑛𝑗,𝑚,𝑛

𝑁
𝑠=1 ,   (2-5) 

where 𝑠 is a number of a surface, indices 𝑗,𝑚, 𝑛 represent integer numbers related to indices 

𝑘, 𝑙,𝑚 of Equation (2-4): 

𝑗 =  
𝑘−𝑚

2
, 𝑚 = 𝑚, 𝑛 =

𝑙−𝑚

2
 . (2-6) 

 This notation is attributed to Roland Shack.  

2.1.4 Wave aberration coefficients in terms of Seidel sums 

In practice the coefficients of the wave aberration function are derived from structural system 

parameters (refractive indices and radii of curvature) and first-order ray tracing data. Table 2-1 

presents quantities necessary to derive the group of five, fourth-order aberration coefficients 

from Equation (2-4).    

Table 2-1. Quantities derived from structural system parameters and first-order ray tracing data utilized in 

deriving the fourth-order wave aberration coefficients [25]. 

Refraction invariant 

marginal ray 

Refraction invariant 

chief ray 

Lagrange invariant Surface 

curvature 

Petzval sum 

term 

𝐴 = 𝑛𝑖 = 𝑛𝑢 + 𝑛ℎ𝑐 𝐴̅ = 𝑛𝑖̅ = 𝑛𝑢̅ + 𝑛ℎ̅𝑐 Ж = 𝑛𝑢̅ℎ − 𝑛𝑢ℎ̅
=  𝐴̅ℎ − 𝐴ℎ̅ 

𝑐 =
1

𝑟
 𝑃 = 𝑐 ∙ ∆ (

1

𝑛
) 
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Where 𝑛 is a refractive index, 𝑟 is a radius of curvature, 𝑖 is an incidence angle, 𝑢 is a 

convergence angle and ℎ is an incidence height at the surface. The dashed symbols refer to the 

first-order chief ray and the ones without dash to the first-order marginal ray.   

Historically, the fourth-order wave aberration coefficients in the exit pupil are derived from the 

so-called Seidel sums. Seidel sums are a group of formulas utilizing quantities introduced in 

Table 2-1 to first derive the aberration contributions of each surface and then to sum it over the 

complete system. The relation between Seidel sums and the fourth-order wave aberration 

coefficients is given in Table 2-2.   

Table 2-2. The fourth-order wave aberration coefficients in terms of Seidel sums. 

Aberration Wave aberration coefficient Seidel sum 

Spherical aberration 
𝑊040 =

1

8
𝑆𝐼 𝑆𝐼 = −∑(𝐴2ℎ∆ (

𝑢

𝑛
))

𝑠

𝑁

𝑠=1

 

Coma 
𝑊131 =

1

2
𝑆𝐼𝐼 𝑆𝐼𝐼 = −∑(𝐴𝐴̅ℎ∆(

𝑢

𝑛
))

𝑠

𝑁

𝑠=1

 

Astigmatism 
𝑊222 =

1

2
𝑆𝐼𝐼𝐼 𝑆𝐼𝐼𝐼 == −∑ (𝐴̅2ℎ∆ (

𝑢

𝑛
))

𝑠

𝑁

𝑠=1

 

Field curvature 

(sagittal) 
𝑊220 =

1

4
(𝑆𝐼𝑉 + 𝑆𝐼𝐼𝐼) 

𝑆𝐼𝑉 = −Ж2 ∑𝑃𝑠

𝑁

𝑠=1

 

Distortion 
𝑊311 =

1

2
𝑆𝑉 

𝑆𝑉 = −∑(
𝐴̅

𝐴
[Ж2𝑃 + 𝐴̅2ℎ∆ (

𝑢

𝑛
)])

𝑠

𝑁

𝑠=1

 

 

2.1.5 Sixth-order wave aberration coefficients 

The wave aberration coefficients of the fourth order do not depend on a choice of the references 

and can be unambiguously assigned to the refraction on each surface [3] utilizing formulas 

from Subsection 2.1.4. They are in this way directly related to the third-order transverse error 

in intermediate image planes ∆𝐻⃗⃗ ⃗⃗  ⃗(3). However, if higher-order aberrations are considered, the 
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accuracy of the approximation is increased and the transverse error of the pupil vector has to 

be taken into account.  

In [27] Sasian discusses the strategy for correction of fourth- and sixth-order spherical 

aberration introduced by a single element.  He concludes, that the higher-order aberrations can 

be controlled by a corrector lens system with a known ratio between intersection heights of the 

first-order marginal ray and a real, refracted marginal ray, through selecting an appropriate 

fourth-order contribution. This ratio is in other words a metric of the transverse pupil aberration 

on the corrector lens system introduced by an element under correction.  

Consequently, by adding the sixth-order wave aberration coefficients, the third-order 

transverse pupil aberration ∆𝜌⃗⃗⃗⃗  ⃗(3) is included.  The transverse pupil aberration provides the 

mapping error between the entrance pupil and the exit pupil of each surface. This mapping 

error arises due to two effects, the refraction on the surface and the incoming aberrated 

wavefront.  

If the transverse aberration is evaluated at the entrance pupil of each surface, it is possible to 

distinguish between these two effects. Thus, the sixth-order aberration coefficients can be 

divided into two categories namely, intrinsic and induced. This division was first mentioned 

by Hoffman [28] and further developed in [29]. 

2.1.5.1 Intrinsic aberrations 

The intrinsic wave aberration is a deformation of an ideal wavefront after refraction on a 

surface evaluated independently on the rest of the system. In this way the sixth-order intrinsic 

aberration coefficients are an extension to the fourth-order coefficients taking into account the 

transverse pupil aberration introduced by individual surfaces. As an example, the formula for 

the sixth-order intrinsic spherical aberration of a single surface is considered [25]: 

𝑊060𝐼 = 𝑊040 [
1

2

ℎ2

𝑟2 −
1

2
𝐴 (

𝑢′

𝑛′
+

𝑢

𝑛
) + 2

ℎ

𝑟
𝑢′],  (2-7) 

where the impact on transverse pupil aberration for the pupil vector located on the exit pupil is 

present through the slope of an outgoing marginal ray in the last term 2
ℎ

𝑟
𝑢′.  
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Further, for a surface inside the complete system, a term arising upon propagation to the 

intermediate exit pupil, which is proportional to the chief ray height 
ℎ̅

ℎ
  [25], needs to be added. 

Thus, the complete expression is written as: 

  𝑊060𝐼 = 𝑊040 [
1

2

ℎ2

𝑟2 −
1

2
𝐴(

𝑢′

𝑛′
+

𝑢

𝑛
) + 2

ℎ

𝑟
𝑢′] − 

8

Ж
𝑊040𝑊040

ℎ̅

ℎ
.  (2-8) 

The sixth-order intrinsic coefficients are therefore products of other aberration coefficients and 

the first-order ray properties. Table 2-3 shows formulas for all four, sixth-order intrinsic 

aberration coefficients with extended pupil dependency.  

Table 2-3. The sixth-order, intrinsic aberration coefficients with extended pupil dependency, derived from the 

fourth-order coefficients and the first-order ray properties.  

Aberration Wave aberration coefficient 

sixth-order spherical 

aberration 𝑊060𝐼 = 𝑊040 [
1

2

ℎ2

𝑟2 −
1

2
𝐴 (

𝑢′

𝑛′
+

𝑢

𝑛
) + 2

ℎ

𝑟
𝑢′] − 

8

Ж
𝑊040𝑊040

ℎ̅

ℎ
 

sixth-order aperture 

coma 𝑊151 = 6
𝐴̅

𝐴
𝑊060𝐼 + 𝑊131𝑢

′2 + 𝑊151𝐶𝐶 

oblique spherical 

aberration (tangential) 𝑊242𝐼 = 12(
𝐴̅

𝐴
)

2

𝑊060𝐼 +
7

2
𝑊222𝑢

′2 − 3𝑊131𝑢
′𝑢̅′ + 𝑊242𝐶𝐶  

un-nammed 
𝑊333𝐼 = 8(

𝐴̅

𝐴
)

3

𝑊060𝐼 + 4(
𝐴̅

𝐴
)

2

𝑊151𝐶𝐶 + 3
𝐴̅

𝐴
𝑊222𝑢

′2 + 2
𝐴̅

𝐴
𝑊242𝐶𝐶

+ 2𝑊222𝑢
′𝑢̅′ 

 

2.1.5.2 Induced aberrations 

The induced wave aberration arises due to incoming aberrations, accumulated from preceding 

surfaces, and the transverse pupil aberration measured at the entrance pupil of a surface. If the 

system of two surfaces is considered, with the pupil vector located at the exit pupil (see Figure 

2-3), one can write the wave aberration function as the sum of surface contributions: 
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𝑊(𝐻⃗⃗ , 𝜌 ) = 𝑊1(𝐻⃗⃗ , 𝜌 + ∆𝜌⃗⃗⃗⃗  ⃗) + 𝑊2(𝐻⃗⃗ , 𝜌 ) . (2-9)  

Due to lack of an incoming aberration the contribution from the first surface is of purely 

intrinsic type, therefore to the sixth order one can write [29]: 

𝑊(𝐻⃗⃗ , 𝜌 ) = 𝑊1
(4)(𝐻⃗⃗ , 𝜌 + ∆𝜌⃗⃗⃗⃗  ⃗(3)) + 𝑊1

(6𝐼)(𝐻⃗⃗ , 𝜌 ) + 𝑊2
(4)(𝐻⃗⃗ , 𝜌 ) + 𝑊2

(6𝐼)(𝐻⃗⃗ , 𝜌 ).  (2-10)  

The sixth-order induced terms 𝑊2
(6𝐸)(𝐻⃗⃗ , 𝜌 ) are obtained as an effect of the third-order 

transverse aberration on the entrance pupil of the second surface ∆𝜌⃗⃗⃗⃗  ⃗(3) and the incoming fourth-

order wave aberrations. Consequently, terms 𝑊1
(4)(𝐻⃗⃗ , 𝜌 + ∆𝜌⃗⃗⃗⃗  ⃗(3)) to the sixth order can be 

alternatively noted as:   

𝑊1
(4)(𝐻⃗⃗ , 𝜌 + ∆𝜌⃗⃗⃗⃗  ⃗(3)) =  𝑊1

(4)(𝐻⃗⃗ , 𝜌 + ∆𝜌⃗⃗⃗⃗  ⃗(3)) − 𝑊1
(4)

(𝐻⃗⃗ , 𝜌 ) + 𝑊1
(4)

(𝐻⃗⃗ , 𝜌 ) = ∇𝑊1
(4)

(𝐻⃗⃗ , 𝜌 ) ∙

∆𝜌⃗⃗⃗⃗  ⃗(3) + 𝑊1
(4)

(𝐻⃗⃗ , 𝜌 ) =  𝑊2
(6𝐸)(𝐻⃗⃗ , 𝜌 ) + 𝑊1

(4)
(𝐻⃗⃗ , 𝜌 ).  (2-11)  

Thus, the aberration function with the pupil vector located on the exit pupil, to the sixth order 

is expressed as follows: 

𝑊(𝐻⃗⃗ , 𝜌 ) = 𝑊1
(4)(𝐻⃗⃗ , 𝜌 ) +  𝑊1

(6𝐼)(𝐻⃗⃗ , 𝜌 ) + 𝑊2
(4)(𝐻⃗⃗ , 𝜌 ) + 𝑊2

(6𝐼)(𝐻⃗⃗ , 𝜌 ) + 𝑊2
(6𝐸)(𝐻⃗⃗ , 𝜌 ). (2-12) 

 

Figure 2-3. Scheme of an optical system consisting of two surfaces. Pupil vector is located at the exit pupil plane 

causing the transverse pupil aberration ∆𝜌⃗⃗⃗⃗  ⃗ at the intermediate pupil plane (e.g. stop). 

2.1.6 The wave aberration function in non-rotationally symmetric systems  

2.1.6.1 Nodal aberration theory 

In previous sections, the wave aberration function was considered under the assumption of a 

rotational symmetry of an optical system.  However, the aberration coefficients can be also 
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derived for non-symmetric systems. One approach is to use the assumption proved by 

Buchroeder [30], that each surface generates a conventional, rotationally symmetric aberration 

field, centered along the local optical axis (LOA), which is a line connecting the center of the 

intermediate pupil with the center of curvature of the surface. Further, the aberration field in 

the image plane is the sum of contributions from all surfaces, referred to the optical axis ray.  

The optical axis ray (OAR) is a ray connecting the center of the field with the centers of all 

intermediate pupils. To refer aberration fields of individual surfaces to the common OAR, the 

vector 𝜎  is introduced in the image plane; see Figure 2-4.  

 

Figure 2-4. The vector 𝜎⃗  is defined for each surface to refer the individual aberration fields, centered along the 

local optical axis (LOA), to the common optical axis ray (OAR) in the final image plane. 

Thus, the Equation (2-5) for non-symmetric systems is written as: 

𝑊(𝐻⃗⃗ , 𝜌 ) =  ∑ ∑ 𝑊𝑘,𝑙,𝑚((𝐻⃗⃗ − 𝜎 𝑠) ∙  (𝐻⃗⃗ − 𝜎 𝑠))
𝑗
∙ ((𝐻⃗⃗ − 𝜎 𝑠) ∙  𝜌 )

𝑚
(𝜌 ∙  𝜌 )𝑛.𝑗,𝑚,𝑛

𝑁
𝑠=1       (2-13) 

The most important benefit, resulting from employing this form of the wave aberration 

function, is that by breaking the system’s axial symmetry no new aberration types are 

introduced. The only consequence is that all the field dependent aberration coefficients vanish 

in different locations in the image plane, called nodes. This nodal behavior discovered by Shack 

and explored by Thompson in his works [12, 31], provides valuable insights for correction of 

non-symmetric optical systems.  
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2.1.6.2 Aberration fields of plane symmetric systems 

There exist another approach for describing aberrations of non-axially symmetric systems with 

the wave aberration function. Instead of introducing the vector 𝜎  that represents the decenter 

of  the OAR introduced by each surface, the incident angle 𝐼 of the OAR at the intersection 

point with a given surface is accounted [11]. This introduces the field constant aberration 

coefficients other than spherical aberration, such as field constant coma and field constant 

astigmatism. By comparing coefficients of different field dependencies, nodes in the field of 

specified aberration type can be found. Additionally, the inclination of image and object planes 

with respect to the OAR is considered through the angles 𝜃 and 𝜃’; see Figure 2-5. 

 

Figure 2-5 Incident angles 𝐼𝑠, the OAR makes with each surface in a common plane of symmetry are accounted. 

Additionally inclinations of object and image planes with respect to the OAR is considered through angles 𝜃, 𝜃′ 

respectively.   

The vectors 𝐻⃗⃗  and 𝜌  similar as in nodal aberration theory (NAT) are defined perpendicular to 

the OAR, however the rotation angle with respect to the plane of incidence needs to be 

considered. This is realized by introducing the symmetry unit vector 𝑖 . Thus, three resulting 

angles each vector makes with one another in the plane looking down the OAR are defined; 

see Figure 2-6.  
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Figure 2-6. The field vector 𝐻⃗⃗ , the pupil vector 𝜌,⃗⃗  and the unit symmetry vector 𝑖,  looking down the OAR [11]. 

This leads to additional terms in the expansion of the wave aberration function: 

 𝑊(𝐻⃗⃗ , 𝜌 , 𝑖 ) =  ∑ ∑ 𝑊2𝑘+𝑛+𝑝,2𝑚+𝑛+𝑞,𝑛,𝑝,𝑞(𝐻⃗⃗ ∙  𝐻⃗⃗ )
𝑘
∙ (𝜌 ∙  𝜌 )𝑚 ∙ (𝐻⃗⃗ ∙  𝜌 )

𝑛

𝑘,𝑚,𝑛,𝑝,𝑞
𝑁
𝑠=1 ∙

(𝐻⃗⃗ ∙  𝑖 )
𝑝
∙ (𝜌 ∙ 𝑖 )𝑞,   (2-14) 

where 𝑊2𝑘+𝑛+𝑝,2𝑚+𝑛+𝑞,𝑛,𝑝,𝑞 represents the coefficient of a particular aberration form defined 

by the integers 𝑘,𝑚, 𝑛, 𝑝 and 𝑞.  

In this approach the first-order properties of a system are defined with paraxial rays in a sagittal 

plane. The sagittal plane is not physically a plane but a set of planes oriented according to the 

OAR. However, optically the OAR is considered a straight line and the first-order properties 

of a system are defined in analogy to axially symmetric systems.  

The introduction of the vector 𝑖   assumes a common plane of incidence of the OAR which 

limits the applicability of the approach to single plane symmetric systems. However, a general 

system can be treated as a concatenation of plane symmetric systems. In this case the wave 

aberration function is represented with respect to the multiple vectors 𝑖  defined perpendicular 

to the common OAR [32].  

2.1.7 Pupil coordinates 

As mentioned in Section 2.1.1, according to Gaussian model, the pupil and the field vectors 

are located on planes. Modeling the first-order imagery in this way assures the common set of 

coordinates in the field and the pupil.  However, ideal wavefront with finite conjugates 

propagates in a spherical shape and the wave aberration function is defined as a deviation from 

that sphere in the exit pupil. Thus, one of the requirements for the aberration-free imagery to 

occur, is the fulfilment of sine condition, formulated by Abbe as: 
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sin𝑈

𝑢
= 

sin𝑈′

𝑢′
,   (2-15) 

where 𝑈 and 𝑈′ are slope angles of real rays before and after refraction, and 𝑢 and 𝑢′ are slopes 

of paraxial rays [33]. Paraxial rays are rays close to the optical axis, so the law of refraction 

can be approximated with the first-order term in Taylor expansion, which yields that sine 

function is expressed as:  

sin 𝑢 = 𝑢.  (2-16) 

Consequently, mapping pupil coordinates onto a plane is not compatible with modeling the 

fulfilment of the sine condition for real rays outside the near axis regime. Alternatively, the 

first-order imagery can be modeled with the pupil vector located on the pupil sphere and 

sampled according to the sine of the angle. Comparison of both possibilities for locating the 

pupil vector is shown in Figure 2-7.   

 

Figure 2-7 Locating the coordinate system of the pupil vector (a) on the pupil plane and (b) on the pupil sphere 

oriented perpendicularly to the chief ray 

In case of the Gaussian model, called also tangent ideal, transverse pupil coordinates (ρ𝑥, ρ𝑦) 

are related to the slope angle of the first-order ray 𝑢 by: 

|𝜌1⃗⃗ ⃗⃗  |

𝑙
= tan 𝑢1,  (2-17) 

where 𝑙 is a distance between pupil and image planes, and |𝜌1⃗⃗⃗⃗ | is the length of the pupil vector 

measured in transverse coordinates. In the latter case, the point of the same transverse 

coordinates is placed on the pupil sphere oriented perpendicularly to the chief ray, therefore: 

|𝜌2⃗⃗ ⃗⃗  |

𝑅
= sin 𝑢2,  (2-18) 

where 𝑅 is the distance between pupil and image planes and |𝜌2⃗⃗⃗⃗ | is the length of the pupil 

vector measured in transverse coordinates. In this way in the lack of the transverse pupil 
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aberrations 𝛥𝜌  the ideal imagery can be fulfilled also for real rays with large slope angles, if 

this occurs optical system is called isoplanatic. Choosing pupil spheres as the reference for the 

pupil transverse coordinates is also suitable for calculations of diffraction image theory [34].   

However, mapping of an object plane onto an image plane by the way of pupil spheres 

introduces ambiguity that each field point is assigned a reference sphere with a different radius 

of curvature. This can be avoided by employing an ideal imagery model in which the field 

vector is also located on a sphere in object and image spaces, termed the sine ideal [35]. Lens 

designers are nevertheless more interested in properties of systems imaging onto plane sensor 

surfaces. Thus, similarly as in [28] the “hybrid” model with object and image planes and pupil 

spheres is selected further in this thesis.   

 

2.2 Wave aberrations determined numerically 

The wave aberration function can be also determined directly from the ray tracing data by 

evaluating OPL values for each ray in the exit pupil. In contrary to the analytical approach 

presented in the previous section, this approach does not employ any approximations. Thus, no 

limitations are imposed on the level of accuracy of the obtained wave aberration, except for 

discretization. Moreover, suitable references can be selected without complicated derivations 

resulting from any discrepancy from a first-order imagery model.  

2.2.1 The optical path difference (OPD) formula 

A wavefront is defined as a surface of equal OPL’s measured along rays originating from a 

single field point. In order to determine the direction of propagation, the reference ray is 

needed. The wavefront error is then defined as a deviation from the shape of an ideal spherical 

wavefront, centered along the reference ray. To evaluate the total wave aberration, first the 

reference sphere is constructed in the exit pupil and the OPL for each ray is determined.  Further 

the optical path difference (OPD) with the OPL of the reference ray is calculated: 
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𝑂𝑃𝐷 = 𝑂𝑃𝐿𝑟𝑒𝑓 − 𝑂𝑃𝐿𝑟𝑎𝑦 (2-19) 

The OPD map is created based on the intersection coordinates of each ray (𝜌 ) at the selected 

pupil. 

 To establish a relation with the ideal imagery model, the first-order chief ray is selected as the 

reference ray. It intersects the image plane and the object plane at the same normalized 

coordinates, determined with the field vector 𝐻⃗⃗ . Thus, the field dependency is included in each 

calculated OPD, and after scaling the OPD map with the wavelength, one can write: 

𝑊𝑡𝑜𝑡(𝐻⃗⃗ , 𝜌 ) =  
𝑂𝑃𝐷(𝜌⃗⃗ )

𝜆
.  (2-20) 

In the Gaussian imagery model a common exit pupil plane is defined and all reference spheres 

are located at the similar point on the optical axis. However, in real systems with a large field 

of view and prominent pupil aberrations, the real chief rays intersect the optical axis often in a 

considerable distance from the common pupil plane. Thus, in order to provide lens designer 

with point-imaging properties of the system, the real chief ray is selected as a reference ray and 

the individual locations of the exit pupil reference spheres are assigned to each field point; see 

Figure 2-8. 

 

Figure 2-8. The construction of the exit pupil reference sphere based on the real chief ray (RCR) and on the 

first-order chief ray (FCR). 

Equation (2-19) requires subtraction of two terms, each with the order of magnitude similar to 

the length of the optical system (typically hundreds of mm), to obtain the wavefront error, 

which is measured with the multiple of the wavelength. Thus, in the past formulas reducing the 

demand on the numerical precision were developed [3]. However, these are not necessary with 

the currently available numerical precision of 15 digits. 
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2.2.2 Alternative definition of surface contributions 

In the Gaussian model each surface has an associated entrance and exit pupil plane centered 

upon the optical axis (OA). In this way the exit pupil of one surface is at the same time the 

entrance pupil of the subsequent surface. Thus, surface contributions are defined as the change 

of the wavefront resulting from refraction on the surface and propagation between the 

corresponding pupil planes. This overlap is however only possible to define for axially 

symmetric systems. As mentioned in Section 2.2.1, the real chief ray (RCR) typically intersects 

the optical axis in a considerable distance from the first-order chief ray intersection point, so 

the position of the common pupil plane cannot be unambiguously defined for all field points.   

The numerical approach allows for the simple implementation of an alternative definition of 

surface contributions that omits the concept of intermediate pupils. Instead of dividing the 

system into subsystems with individual entrance and exit pupils, the separation into segments 

of the optical path measured along the RCR is applied. In this way the surface contribution is 

defined as an aberration effect of refraction on the surface of interest and the propagation 

distance until the subsequent surface [36]; see Figure 2-9.  

 

Figure 2-9. An alternative definition of surface contributions to the total wave aberration. Instead of dividing the 

system into subsystems bounded by intermediate pupils (entrance pupil, stop, exit pupil) (blue color), surface 

contributions are defined as segments of the optical path measured along the chief ray from the surface of 

interest until the subsequent surface (red color). 

In order to find the effect of refraction, the geometrical construction used to derive Seidel 

coefficients is employed; see Figure 2-10.  
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Figure 2-10. The geometry for deriving the OPD resulting from refraction on the surface of an ideal incoming 

wavefront. 

Thus, OPD accumulated along the real ray (RR) as a result of refraction is obtained as the 

deviation from the spherical wavefront: 

𝑂𝑃𝐷𝑅𝑅 = 𝑛´𝑃𝐵´̅̅ ̅̅ ̅ − 𝑛´𝑃𝐴´̅̅ ̅̅ ̅ =  𝑛´𝑃𝐵´̅̅ ̅̅ ̅ −  𝑛𝑃𝐵̅̅ ̅̅ .  (2-21) 

The distances 𝑃𝐵´̅̅ ̅̅ ̅ and 𝑃𝐵̅̅ ̅̅  are directly accessible from ray-tracing data, therefore no further 

simplification is required. The residual OPD arising upon propagation in free space is directly 

obtained from Equation (2-19). The similar definition of surface contributions was presented 

by Gross [37]. 

Locating reference spheres at the surfaces, leads to ambiguity in case the surface of interest is 

located near a strong caustic region. However, this only concerns intermediate results. The total 

wave aberration is evaluated at the exit pupil reference sphere of the system as described in 

Section 2.2.1.   

2.2.3 First-order ray tracing 

As mentioned previously aberrations are defined as a deviation from the ideal imagery. Thus, 

in order to evaluate aberrations from ray-tracing data a set of references is necessary. In case 

of axially symmetric systems it is possible to define the first-order properties from the trace of 

rays close to the optical axis, termed paraxial rays. This idea can be expanded to study rays that 

travel in a close proximity to an arbitrary base ray, termed parabasal rays [38]. The parabasal 

rays serve to define references in general systems where the concept of the optical axis is 

replaced with the optical axis ray (OAR), introduced in Subsection 2.1.6.  
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2.2.3.1 Grid distortion 

Distortion is the image shape aberration that describes varying magnification over the image 

height. As explained in Subsection 2.2.1, distortion is not taken into account if wavefront errors 

are defined in reference to the real chief ray (RCR). Instead distortion is analyzed separately, 

as a deviation from the grid of points [39]. The percentage of distortion is calculated from the 

difference in height between the real and the first-order chief ray in the image plane. The 

reference heights of the first-order chief rays are found by scaling intersection points of the 

parabasal field rays to respective normalized field coordinates. An anamorphic scaling for the 

general case of astigmatic systems is applied; see Figure 2-11. 

 

Figure 2-11. The parabasal field rays (PFR) traced to find reference heights for evaluation of distortion grid. 

Thus, normalized perpendicular components of the transverse aberration in the image plane 

(distortion) are evaluated according to the formula: 

∆𝐻⃗⃗ 𝐶𝑅𝑥 = 
|𝑥 𝑅𝐶𝑅|−|𝑥 𝑟𝑒𝑓|

|𝑥 𝑟𝑒𝑓|
,    ∆𝐻⃗⃗ 𝐶𝑅𝑦 = 

|𝑦⃗ 𝑅𝐶𝑅|−|𝑦⃗ 𝑟𝑒𝑓|

|𝑦⃗ 𝑟𝑒𝑓|
 ,  (2-22) 

where 𝑥  and 𝑦  are perpendicular vectors in the image plane.  

For optical systems using angles of chief rays as a definition of the field, reference heights in 

the image plane are scaled according to tangents of the field angles.  

2.2.3.2 Exit pupil shape 

For systems with circular apertures in the Gaussian imagery model the shape of the exit pupil 

sphere is also perfectly circular. However, as mentioned in Subsection 2.2.1 in case of systems 
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with large FOV or tilted mirror systems, the exit pupil reference sphere is constructed upon the 

RCR to specify point-imaging properties more accurately. In addition to dislocation of the exit 

pupil sphere it is also important to consider that propagating wavefronts are astigmatic. Thus, 

due to both; intermediate primary astigmatism and long propagation distances, the boundary 

shape of the propagating set of rays changes from initially circular to elliptical in the exit pupil. 

To the first-order the change of boundary shape is modeled with parabasal aperture rays. Thus, 

two orthogonally oriented pairs of rays are traced in the tangential and sagittal plane, 

respectively. Intersection coordinates are then scaled to the full size of the normalized pupil 

and the complete cross-section is covered; see Figure 2-12. 

 

Figure 2-12. The elliptical shape of the cross-section of the exit pupil in an unobscured mirror system. The semi-

major and the semi-minor axes of the beam footprint are defined with tangential (MRtan) and sagittal (MRsag) 

marginal rays.  

2.2.4 Pupil distortion – ray aiming 

In the analytical approach presented in this thesis, the pupil vector is chosen to be located on 

the exit pupil. This selection is justified in Subsection 2.1.5 as the most physically meaningful 

choice. In ray-tracing programs, a ray bundle launched into the system is by default assigned 

to a uniform grid on the entrance pupil, forming a distorted grid on the exit pupil. However, 

specifications for the location and the shape of the exit pupil reference sphere allow switching 

the position of a uniform grid to the exit pupil. This is possible thanks to an iterative ray tracing 

algorithm that finds rays at the object that intersect the stop surface creating a uniform, 

Cartesian grid [40]. In order to numerically realize switch of the location of the pupil vector, 

stop surface is selected at the position of the exit pupil reference sphere; see Figure 2-13.  
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Figure 2-13. (a) The distorted grid on the exit pupil reference sphere, this situation occurs if a set of rays defined 

at the uniform grid at the entrance pupil is lunched to the system. (b) The uniform grid on the exit pupil 

reference sphere obtained with ray aiming. 

2.3 Decomposition of the total wave aberration into Zernike 

fringe coefficients 

As mentioned in Subsection 2.1.3, the wave aberration function allows for the deliberate 

analysis of the pupil-dependent aberrations. In scalar form the pupil dependency in polar 

coordinates is expressed as 𝑟𝑛 and the aberration coefficients are classified according to the 

radial order (𝑛). The mixed dependency is expressed as the cosine of an angle between two 

vectors (𝑐𝑜𝑠𝑚 𝜙) and characterized with the azimuthal order (𝑚). There exist a set of 

polynomials orthogonal over a circular pupil with the unit radius that is also described as a 

power series in polar coordinates, namely Zernike fringe polynomials:  

𝑍𝑛
𝑚(𝑟, 𝜙) =  𝑅𝑛

𝑚(𝑟) ∙ {

cos(𝑚𝜙) 𝑓𝑜𝑟 𝑚 > 0

sin(𝑚𝜙) 𝑓𝑜𝑟 𝑚 < 0 
1 𝑓𝑜𝑟 𝑚 = 0

  (2-23) 

The sorting of Zernike fringe terms corresponds to the sum of radial and azimuthal orders, 

which corresponds to the ordering of wave aberration coefficients; see Figure 2-14. 
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Figure 2-14. Scalar Zernike fringe polynomials and their corresponding symmetry class, based on [41]. 

The analytical method for converting the field dependent wave aberration coefficients to 

Zernike fringe coefficients was introduced by Agurok in [42]. The direct relation is 

nevertheless cumbersome, because Zernike coefficients represent balanced classical 

aberrations. This means that lower order terms are inherently built into a Zernike coefficient of 

higher orders to minimize the root mean square (RMS) of the resulting aberration polynomial 

over the aperture. For example, classical coma (𝑊131) contains contributions from Zernike 

coma (Z7/8) and Zernike tilt (Z2/3), so for 𝑚 > 0 one can write: 

𝑊131𝑟
3 cos 𝜙 =  𝑐7(3𝑟

3 − 2𝑟) cos 𝜙 + 𝑐2𝑟 cos 𝜙 . (2-24) 

Due to mentioned similarities with wave aberration coefficients, the Zernike fringe set of 

polynomials together with the fitting routine is a preferred method to classify numerically 

acquired wavefront errors of systems with circular pupils. Optical design programs typically 

offer analysis tool in which Zernike coefficients are obtained from least square fitting of the 

total wavefront error. The OPD values for each ray are summed up to the exit pupil and are by 

default referred to an equidistant Cartesian grid in the entrance pupil plane. Otherwise, by 

employing ray aiming, reference grid can be created in the plane of the aperture stop or the exit 

pupil plane; see Subsection 2.2.4. The reference sphere is constructed in the exit pupil plane, 

along with the chief ray. If the real chief ray is selected, the field-dependent (image-shape) 
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aberrations are not included in the shape of the obtained wavefront error, therefore generally 

one can write: 

𝑊𝑡𝑜𝑡 (ρ𝑥, ρ𝑦) =  ∑ 𝑐𝑖𝑍𝑖(ρ𝑥, ρ𝑦)𝑖 ,  (2-25) 

where i represents a number of coefficients used for least square fitting. In case the total 

wavefront error is referenced to the coordinates at the elliptical exit pupil the stretching to 

convert an ellipse into a unit circle is needed before fitting Zernike coefficients [43]; see Figure 

2-15. 

 

Figure 2-15. The wavefront error evaluated at the uniform grid located on elliptical exit pupil is stretched into 

the unit circle before fitting Zernike coefficients. 

Table 2-4 represents a simplified relation between wave aberration coefficients to the sixth 

order and Zernike fringe coefficients, taking into account only similarities in radial and 

azimuthal symmetries. 

Table 2-4. Simplified relations between coefficients of wave aberration function and Zernike fringe coefficients.  

Aberration name Vector form Scalar form in polar 

coordinates 

j m n Characteristic 

Zernike fringe 

coefficient 

Zero order     

Uniform piston 𝑊000 𝑊000 0 0 0 𝑍1  piston 

Second order     

Quadratic piston 𝑊200(𝐻 ⃗⃗⃗⃗ ∙ 𝐻 ⃗⃗⃗⃗ ) 𝑊200𝐻
2 1 0 0  

Magnification 𝑊111(𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  ) 𝑊111𝐻𝑟 cos𝜙 0 1 0 𝑍2/3 tilt 

Focus 𝑊020(𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  ) 𝑊020𝑟
2 0 0 1 𝑍4 defocus 

Fourth order     

Spherical 

aberration 
𝑊040(𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  )2 𝑊040𝑟

4 0 0 2 𝑍9 spherical 

aberration 



33 

Coma 𝑊131(𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  )(𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  ) 𝑊131𝐻𝑟3 cos𝜙 0 1 1 𝑍7/8 coma 

Astigmatism 𝑊222(𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  )2 𝑊222𝐻
2𝑟2 𝑐𝑜𝑠2 𝜙 0 2 0 𝑍5/6 astigmatism 

0°/45°  

Field curvature 𝑊220(𝐻 ⃗⃗⃗⃗ ∙ 𝐻 ⃗⃗⃗⃗ )(𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  ) 𝑊220𝐻
2𝑟2 1 0 1 𝑍4 defocus 

Distortion 𝑊311(𝐻 ⃗⃗⃗⃗ ∙ 𝐻 ⃗⃗⃗⃗ ) (𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  ) 𝑊311𝐻
3𝑟 cos𝜙 1 1 0 𝑍2/3 tilt 

Quartic piston 𝑊400(𝐻 ⃗⃗⃗⃗ ∙ 𝐻 ⃗⃗⃗⃗ )2 𝑊400𝐻
4 2 0 0  𝑍1  piston 

Sixth-order field     

Oblique spherical 

aberration 

(sagilttal) 

𝑊240(𝐻 ⃗⃗⃗⃗ ∙ 𝐻 ⃗⃗⃗⃗ ) (𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  )2 𝑊240𝐻
2𝑟4 1 0 2 𝑍9 spherical 

aberration 

6th order field 

Coma 
𝑊331(𝐻 ⃗⃗⃗⃗ ∙ 𝐻 ⃗⃗⃗⃗ ) (𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  )(𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  ) 𝑊331𝐻

3𝑟3 cos𝜙 1 1 1 𝑍7/8 coma 

6th order field 

Astigmatism 
𝑊422(𝐻 ⃗⃗⃗⃗ ∙ 𝐻 ⃗⃗⃗⃗ )(𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  )2 𝑊422𝐻

4𝑟2 𝑐𝑜𝑠2 𝜙 1 2 0 𝑍5/6 astigmatism 

0°/45° 

6th order field 

curvature 
𝑊420(𝐻 ⃗⃗⃗⃗ ∙ 𝐻 ⃗⃗⃗⃗ )2(𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  ) 𝑊400𝐻

4𝑟2 2 0 1 𝑍4 defocus 

6th order Distortion 𝑊511(𝐻 ⃗⃗⃗⃗ ∙ 𝐻 ⃗⃗⃗⃗ )
2
(𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  ) 𝑊511𝐻

5𝑟 cos𝜙 2 1 0 𝑍2/3 tilt 

Piston 𝑊600(𝐻 ⃗⃗⃗⃗ ∙ 𝐻 ⃗⃗⃗⃗ )3 𝑊600𝐻
6 3 0 0 𝑍1  piston 

Sixth-order 

aperture 

    

6th order Spherical 

aberration 
𝑊060(𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  )3 𝑊060𝑟

6 0 0 3 𝑍16 secondary 

spherical aberration 

6th order aperture 

Coma 
𝑊151(𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  )(𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  )2 𝑊151𝐻𝑟5 𝑐𝑜𝑠 𝜙 0 1 2 𝑍14/15 secondary 

coma 

Oblique spherical 

aberration 

(tangential) 

𝑊242(𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  )2(𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  ) 𝑊242𝐻
2𝑟4 𝑐𝑜𝑠2 𝜙 0 2 1 𝑍12/13 secondary 

astigmatism 0°/45° 

Un-nammed 𝑊333(𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  )3 𝑊333𝐻
3𝑟3𝑐𝑜𝑠3𝜙 0 3 0  𝑍10/11 trefoil      

 0°/ 30° 

Eighth-order 

aperture 

    

8th order Spherical 

aberration 
𝑊080(𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  )4 𝑊080𝑟

8  0 0 4  𝑍25 tertiary 

spherical aberration 

8th order aperture 

Coma 
𝑊171(𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  )(𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  )3 𝑊171𝐻𝑟7 𝑐𝑜𝑠 𝜙 0 1 3 𝑍23/24 tertiary coma 

8th  order aperture 

Astigmatism 
𝑊262(𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  )2(𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  )2 𝑊262𝐻

2𝑟6 𝑐𝑜𝑠2 𝜙 0 2 2 𝑍21/22 tertiary 

astigmatism 0°/ 45° 

Un-nammed 𝑊353(𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  )3(𝜌 ⃗⃗⃗  ∙ 𝜌 ⃗⃗⃗  ) 𝑊353𝐻
3𝑟5𝑐𝑜𝑠3𝜙 0 3 1 𝑍19/20 secondary 

trefoil 0°/ 30° 

Un - named 𝑊444(𝐻 ⃗⃗⃗⃗ ∙ 𝜌 ⃗⃗⃗  )4 𝑊444𝐻
4𝑟4𝑐𝑜𝑠4𝜙 0 4 0 𝑍17/18 tetrafoil 

 0°/22,5° 
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2.4 Freeform optics 

The application of freeform elements in optical systems allows for direct correction of 

aberrations of higher orders. In order to utilize the potential of freeforms in the ray tracing 

simulations a suitable mathematical description is necessary. In the design stage this is best 

accomplished with globally valid polynomial sets [16] added to the basic shape: 

𝑧(𝑥, 𝑦) =  𝑍𝑏𝑎𝑠𝑖𝑐 + ∑ 𝑐𝑗𝑍𝑗(𝑥, 𝑦)𝑗 .  (2-26) 

The basic shape contribution is typically described with e.g. a sphere, a conic, or a biconic. The 

freeform sag contribution is added to characterize the deviation from the basic shape and is the 

part allowing for the direct correction of higher order aberrations [18].  

For sake of fast convergence of optimization process, it is beneficial to select a set of orthogonal 

polynomials to describe the freeform sag contribution. There exist two orthogonality types, 

namely sag and gradient. Thus, freeform surfaces with circular apertures are typically described 

with sag orthogonal Zernike fringe polynomials or gradient orthogonal Q-polynomials [44]. 

The Zernike fringe polynomials are also commonly used to characterize wave aberrations 

obtained both analytically or numerically; see Section 2.3. An accurate overview of global 

freeform surface descriptions is provided in [18].  

After an optical system is designed and freeform elements are manufactured and measured, the 

imaging performance of the real system needs to be simulated. The manufactured freeform 

element deviates in shape from the ideal solution found in a optical design program.  

𝑧𝑑𝑒𝑣(𝑥, 𝑦) =  𝑧𝑟𝑒𝑎𝑙(𝑥, 𝑦) − 𝑧𝑖𝑑𝑒𝑎𝑙(𝑥, 𝑦). (2-27) 

This is due to artifacts resulting from the complex fabrication process [16].  Thus, to describe 

the real surface typically a large number of coefficients is necessary if a globally valid 

polynomial set is used [45]. Alternatively, the deviation from the ideal shape can be described 

using local descriptions such as lateral shifted radial basis functions (RBFs) [20]: 
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2.5 Tolerance sensitivity analysis 

The imaging performance of a real system differs from that simulated in the optical design 

program. Thus, for the real system to meet specifications tolerances need to be assigned after 

the design stage. Tolerances are divided into two categories, namely manufacturing tolerances 

and assembly tolerances. Further, with respect to system parameters the first group can be 

divided into form and material tolerances and the later into decenter and tilt tolerances. To 

determine values for each tolerance it is helpful to study the sensitivity of the system to changes 

of these parameters. This is carried out by evaluating a change in a performance criterion 𝑏𝑗 

with respect to a change of system parameter 𝑡𝑘 on surface 𝑘 [39]:  

∆𝑏𝑗(𝑡𝑘) =  𝑏𝑗
𝑖𝑑𝑒𝑎𝑙 − 𝑏𝑗(∆𝑡𝑘) .  (2-28) 

In this way only the effect of deviation of a single parameter is evaluated. However, during 

manufacturing or assembling of a real system more than one parameter are typically perturbed. 

Thus, to estimate the net effect the superposition of changes upon each perturbed system 

parameter is used. There are three possible models: 

𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑠𝑢𝑝𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛:   ∆𝑏̃𝑗
𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 = √∑ ∆𝑏𝑗(𝑡𝑘)2𝑘  

                𝐿𝑖𝑛𝑒𝑎𝑟 𝑠𝑢𝑝𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛:   ∆𝑏̃𝑗
𝑙𝑖𝑛𝑒𝑎𝑟 = ∑ ∆𝑏𝑗(𝑡𝑘)𝑘                   (2-29) 

𝑊𝑜𝑟𝑠𝑡 − 𝑐𝑎𝑠𝑒 𝑠𝑢𝑝𝑒𝑟𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛:   ∆𝑏̃𝑗
𝑤𝑜𝑟𝑠 𝑐𝑎𝑠𝑒 =  ∑|∆𝑏𝑗(𝑡𝑘)|

𝑘

 

Further, in order to consider the varying azimuthal orientation of parameters the Räntsch 

superposition model can be applied. This adjustment step is obtained with: 

∆𝑏̃𝑗
𝑅ä𝑛𝑡𝑠𝑐ℎ = √∆𝑏̃𝑗

𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 ∙  ∆𝑏̃𝑗
𝑤𝑜𝑟𝑠 𝑐𝑎𝑠𝑒 . (2-30) 

The sensitivity analysis is especially useful in estimating the assembly tolerances. The surface 

with the most significant influence on the imaging performance can be identified and used as 

a compensator in the alignment process of the system.  

The sensitivity analysis based on the performance of perturbed systems is computationally 

intensive and is carried out after the design stage. However, some insights about the “as-built”, 

performance of a system can be gained priori, e.g. by studying aberrations generated in the 
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system. In [14] three designs of an optical data storage objective with NA= 0.55 are compared 

to estimate the “as-built” performance; see Figure 2-16.  

 

Figure 2-16. The three possible designs of an optical data storage objective with NA= 0.55. Strained surfaces are 

marked with circles, based on [14]. 

Since there is no field considered the spherical aberration is the only one generated. Thus, 

Seidel contributions to the spherical aberration in each design are analyzed; see Figure 2-17. 

 

Figure 2-17. Seidel contributions to spherical aberration of three designs from Figure 2-16 [14]. 

It is shown that despite similar total value, magnitudes of the aberration at each surface varies. 

It is further concluded that the preferable solution is the one without strained surfaces, meaning 

without significant surface contributions. In other words the smooth distribution of aberration 

contributions from each surface is desired for a good “as-built” performance.  

In case other aberrations need to be considered the same investigation can be conducted with 

Seidel sensitivity parameter [46]. This parameter is defined as the sum of squares of all Seidel 

contributions from each surface: 

𝜔𝑗 = ∑ (𝑆𝑗
𝑙)2𝑙  .  (2-31) 

Strained surfaces are the ones with a larger value of 𝜔. The performance of the whole system 

can then be evaluated by: 
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𝛺 = √
1

𝑁
∙ ∑ 𝜔𝑗

2𝑁
𝑗=1 .  (2-32) 

There exist other possibilities to estimate the sensitivity of the system based on its ideal 

performance. A detailed overview of sensitivity parameters based on fundamental optical 

design principles can be found in [47]. 
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Chapter 3   Novel method for decomposition of 

the total wave aberration  

In the design process, surface-by-surface aberration contributions are of special interest. The 

expansion of the wave aberration function into the field- and pupil-dependent coefficients is an 

analytical method used for that purpose; see Section 2.1. In the following chapter, an alternative 

numerical method utilizing data from the trace of multiple ray sets is described [48]. Surface 

contributions are divided with respect to their phenomenological origin into intrinsic, induced 

and transfer components. Each component is determined from a separate set of rays.   

3.1 Intermediate references 

As specified in the former chapter the convention chosen in this thesis is that the field vector 

is placed at the object plane and the pupil vector is placed at the exit pupil reference sphere 

defined individually for each field point. In the following section, a set of intermediate 

references necessary to evaluate surface aberration contributions, is defined. 

3.1.1 Reference spheres 

The optical system is divided into segments of the optical path measured along the real chief 

ray (RCR); see Subsection 2.2.2. Each segment covers one surface and a distance to a 

subsequent surface. Surface contributions represent the change of a wavefront that occurs due 

to propagation through individual segments. Thus, to evaluate surface contributions, reference 

spheres are established directly at the intersection of the RCR with individual surfaces; see 

Figure 3-1. Each segment is therefore bounded with an entrance sphere before a surface and an 

exit sphere before a subsequent surface.  
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Figure 3-1. The reference spheres constructed at the intersection points of the real chief ray (RCR) with each 

surface. The real ray (RR) is traced until uniform cartesian grid on the exit pupil sphere. 

3.1.2 Intermediate images  

The reference spheres are centered upon intermediate image points. The intermediate image 

points are defined as points of intersection of the RCR with the intermediate image plane. In 

order to determine the location of intermediate image planes the parabasal aperture rays (PAR) 

are utilized. A small fraction of the normalized pupil coordinates is selected so that rays exhibit 

first-order properties (are aberration free) [38]. Since emerging wavefronts in case of tilted 

systems are astigmatic, orthogonally oriented pairs of rays are traced. The intersection points 

of perpendicular pairs of rays are projected onto the OAR, and the middle point is found. This 

corresponds to the location of the circle of least confusion and is a suitable choice to balance 

intermediate astigmatism, which is especially pronounced in tilted mirror systems. Field vector 

is located on the object plane oriented perpendicular to the OAR. Thus, according to the trace 

of parabasal field rays (PFR), intermediate image planes are also oriented perpendicular to the 

OAR. It is important to note that this assumption is not valid for Scheimplug systems with 

tilted object or image planes. Consequently, surface contributions are evaluated with respect to 

the aberrated vector 𝐻⃗⃗  projected on the plane perpendicular to the OAR; see Figure 3-2.  
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Figure 3-2. The construction of the intermediate image planes. (a) First, parabasal aperture rays (PAR) around the 

optical axis ray (OAR) are traced to determine the center of the intermediate image plane. (b) Next, since parabasal 

field rays (PFR) are parallel to the OAR, intermediate planes are oriented perpendicular to the OAR. The location 

of individual field points is determined from the intersection points of real chief rays (RCR) with the intermediate 

image planes. 

The definition of the intermediate image planes based on the trace of the OAR and 

corresponding parabasal rays assures convergence to the Gaussian model in case of axially 

symmetric systems. 

3.2 Components of surface contributions determined from the 

trace of multiple ray sets  

The total wavefront error is defined as the map of OPDs calculated along real rays traced to 

the exit pupil sphere of a system. The transverse pupil coordinates (𝜌𝑥, 𝜌𝑦) are assigned to the 

uniform cartesian grid  (𝑥, 𝑦) on the final reference sphere. If only one set of rays is traced, the 

grid created on an arbitrary intermediate reference sphere is distorted, which is indicated with 

primed coordinates (𝑥′, 𝑦′). This is solved by tracing multiple sets of rays aimed at the uniform 
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grids (𝑥, 𝑦) of local coordinates on each reference sphere.  Consequently, instead of measuring 

the OPD along a single real ray up to the exit pupil sphere, multiple rays are used. This can be 

thought of as evaluating wavefront errors after each surface at the similar undistorted set of 

coordinates on reference spheres. Thus, wavefront errors can be subtracted from each other to 

find the change caused by a particular segment of a system. This is explained for the single 

OPD value in Figure 3-3. 

 

Figure 3-3. The complete surface contributions to the total OPD determined from the trace of multiple real rays 

(RR2 and RR4). The first-order ray (FR) coincides with RR2 at the exit pupil of the first segment and with RR4 

at the exit pupil of the complete system.  

The contribution of the first surface is defined as the OPD at point 𝐵. The contribution of the 

second surface is found from the difference between the OPD at points 𝐷 and 𝐵 on similar 

transverse coordinates on the entrance and the exit reference sphere of the segment 

𝑂𝑃𝐷𝑆2  =  𝑂𝑃𝐷𝐷  − 𝑂𝑃𝐷𝐵 .  (3-1) 

Additivity is therefore preserved, since the sum of both surface contributions is equivalent to 

the total OPD calculated at point 𝐷 along a single ray: 

𝑂𝑃𝐷𝑡𝑜𝑡𝑎𝑙  =  𝑂𝑃𝐷𝑆1 + 𝑂𝑃𝐷𝑆2 = 𝑂𝑃𝐷𝐷 .  (3-2) 

There is no real ray intersecting points 𝐵 and 𝐷. One can imagine a first-order ray (FR) 

connecting uniform coordinates on all reference spheres.  

The advantage of utilizing multiple ray sets is that the transverse pupil aberration −|∆𝜌 |, which 

negative sign is due to the difference with the analytical approach (see Subsection 3.3), is 

incorporated in the contribution of the second surface 
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−|∆𝜌 | = [(𝐵′𝑥 − 𝐵𝑥), (𝐵′𝑦 − 𝐵𝑦) ]. (3-3) 

This allows for extraction of the induced effect defined here as a result of incoming aberrations 

and the pupil distortion. Thus, the surface contribution is further divided into the intrinsic and 

induced parts resulting from refraction on the surface and the transfer component, which is 

present due to the propagation of the aberrated wavefront in free space. 

In case of the first segment of the system, the entering wavefront is ideal. Since there are no 

incoming aberrations, the pupil distortion is of no effect. The refraction on the surface is of 

purely intrinsic type. It is therefore enough to trace one ray to point 𝐴 at the uniform grid (𝑥, 𝑦) 

of the exit reference sphere located on the first surface; see Figure 3-4. 

 

Figure 3-4. The first real ray (RR1) is traced to determine the component of the total OPD resulting from the 

refraction on the first surface. 

To determine the transfer component the second ray is traced to the uniform grid at the second 

surface entrance sphere; see Figure 3-5. 
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Figure 3-5. The second real ray (RR2) is traced to determine the transfer component of the total OPD resulting 

from propagation between surfaces.  

The transfer part (𝑂𝑃𝐷𝑇1) is then found by subtracting the OPD at point 𝐴 from the OPD at 

point 𝐵:  

𝑂𝑃𝐷𝑇1 = 𝑂𝑃𝐷𝐵 − 𝑂𝑃𝐷𝐴.  (3-4) 

Defining the transfer component in this way takes into account the transverse pupil aberration 

measured at the reference sphere between points 𝐴′ and 𝐴. Thus, the transfer component is a 

combined effect of the pupil distortion caused by incoming aberrations of the first surface and 

deformation arising upon propagation of the aberrated wavefront between surfaces. Since the 

propagation of an ideal wavefront in free space only changes the scaling without introducing 

any aberration, the transfer component is considered as the part of the induced effect. This is 

different than in the classical division according to individual pupils of the surfaces. In that 

case the transfer term is not distinguished and divided between intrinsic and induced parts of 

successive surfaces [28]. The advantage of separating the transfer component is that it directly 

refers to the design parameter of the system. 

The OPD contribution from the first surface is then determined by summing up the transfer and 

refraction parts. 

The complete effect of refraction of the incoming aberrated wavefront on the second surface 

(𝑂𝑃𝐷𝑅2) is found by subtracting the contribution of the first surface from the OPD at point 𝐶 

at the exit reference sphere located on the second surface: 

𝑂𝑃𝐷𝑅2 = 𝑂𝑃𝐷𝐶 − 𝑂𝑃𝐷𝐵.  (3-5) 

This is illustrated in Figure 3-6. 
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Figure 3-6. The third real ray (RR3) is traced to determine the component of the total OPD resulting from 

refraction on the second surface.  

The transfer component to the exit pupil of the system is found from the trace of the fourth ray 

in analogy to the transfer part of the first surface contribution; see Figure 3-8. The OPD along 

the fourth real ray is at the same time the total OPD introduced by the system evaluated at the 

uniform grid on the exit pupil reference sphere (𝜌𝑥, 𝜌𝑦). 

 

Figure 3-7. The fourth real ray (RR4) is traced to determine the total OPD and the transfer component of the 

second surface resulting from propagation to the exit pupil sphere of the system. 

In order to evaluate the effect of refraction on the second surface independently from the rest 

of the system, the intrinsic component is introduced. The intrinsic part is a deformation of an 

ideal wavefront after refraction on the surface. Consequently, to determine the intrinsic OPD, 

an additional ray has to be traced until point 𝐶.  This is realized by ignoring the first surface 

and tracing ray directly from the intermediate image location (𝑂’); see Figure 3-8. 
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Figure 3-8. The fifth real ray (RR5) is traced to determine the intrinsic component of the total OPD resulting 

from refraction of an ideal wavefront on the second surface. 

The induced part from the refraction on the second surface is found by subtracting the intrinsic 

component from the complete effect of refraction. It therefore evaluates the wavefront change 

due to the effect of incoming aberrations and pupil distortion:  

𝑂𝑃𝐷𝑅2
𝑖𝑛𝑑 = 𝑂𝑃𝐷𝑅2 − 𝑂𝑃𝐷𝑅2

𝑖𝑛𝑡.  (3-6) 

Thus, in order to determine all components of surface contributions in a system, with two 

surfaces and a remote exit pupil, the trace of five ray sets is necessary. The first four ray sets 

are traced through the complete system with the uniform grids located on the respective 

reference spheres. The last ray set is traced from the intermediate image location through the 

second surface. 

3.2.1 Boundary shape of reference spheres 

Since emerging wavefronts are in general case astigmatic, the boundary shape of the beam 

footprint at each reference sphere is elliptical. As described in Subsection 2.2.3.2, the chosen 

convention is that the shape of the cross-section of the wavefront entering the system is circular 

and changes to elliptical in the exit pupil. The semi-major and semi-minor axes of an ellipse 

are determined by tracing parbasal aperture rays in tangential and sagittal planes. Intersection 

coordinates are then scaled to cover the complete cross-section; see Figure 3-9. 
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Figure 3-9. The wavefront error is determined on the elliptical footprint at reference spheres assigned to each 

surface up to the exit pupil. The reference spheres are defined upon the real chief ray (RCR). The semi-major 

and semi-minor axes of the beam footprint are defined with orthogonally oriented marginal rays (𝑀𝑅𝑥 ,𝑀𝑅𝑦). 

The change of footprint shape is the induced effect resulting from primary astigmatism and 

propagation distances. Thus, wavefront errors are evaluated from multiple ray sets aimed at the 

uniform grids placed on reference spheres with elliptical boundary shapes. However, the last 

ray set is traced to evaluate the intrinsic component, which is independent of incoming 

aberration effects. Thus, rays originating from intermediate object point (see Figure 3-7) are 

aimed at the reference spheres with circular boundary shapes. Radii are defined, so the circles 

have the same area as corresponding elliptical footprints of the aberrated wavefront; see Figure 

3-10.    

 

 

Figure 3-10. The radius of the circular boundary of an ideal wavefront at a reference sphere to determine the 

intrinsic component is selected so the area of the circle is the same as the area of the elliptical footprint marked 

by an aberrated wavefront.  
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3.2.2 Zernike surface contributions 

Zernike fringe is the set of polynomials used to classify numerically obtained wavefront errors. 

The wavefront errors are stretched to the shape of the unit circle and a fitting routine is applied; 

see Section 2.3. Thus, the total wave aberration can be written as: 

𝑊𝑡𝑜𝑡 (ρ𝑥 , ρ𝑦) =  ∑ ∑ 𝑐𝑖𝑠
𝑐𝑜𝑚𝑝

𝑍𝑖(ρ𝑥 , ρ𝑦)𝑖𝑠 = ∑ ∑ (𝑐𝑖𝑠
𝑖𝑛𝑡𝑍𝑖(ρ𝑥 , ρ𝑦) + 𝑐𝑖𝑠

𝑖𝑛𝑑𝑍𝑖(ρ𝑥 , ρ𝑦) + 𝑐𝑖𝑠
𝑡𝑟𝑎𝑛𝑠𝑍𝑖(ρ𝑥 , ρ𝑦))𝑖𝑠 ,    (3-7) 

Where 𝑐𝑖𝑠
𝑐𝑜𝑚𝑝

 is a Zernike fring coefficient 𝑖 corresponding to a contribution form surface 𝑠, 

and  𝑐𝑖𝑠
𝑖𝑛𝑡, 𝑐𝑖𝑠

𝑖𝑛𝑑 and  𝑐𝑖𝑠
𝑡𝑟𝑎𝑛𝑠 are Zernike fringe coefficients of, intrinsic, induced and transfer 

components respectively.     

The bar plots obtained from the program implemented in Matlab® illustrate Zernike aberration 

components to the total wave aberration of an arbitrary three mirror system; see Figure 3-11. 

Zernike aberrations of a system are presented either with respect to a surface 𝑠 or as surface 

contributions of a selected Zernike fringe coefficient 𝑖. 

 

Figure 3-11. The bar plots generated in Matlab®. Each set of bars represents Zernike contributions from a 

selected surface (𝑊𝑐𝑜𝑚𝑝) and is further decomposed into intrinsic (𝑊𝑖𝑛𝑡), induced (𝑊𝑖𝑛𝑑) and transfer (𝑊𝑡𝑟𝑎𝑛𝑠) 

components. (a) All Zernike fringe coefficients from the contribution of a selected surface. Coefficients 

characteristic for wave aberration up to the fourth order (1-9) and above the fourth order (10-16) are shown with 

different scales. (b) Surface-by-surface contributions of a selected Zernike aberration (trefoil). The last bar set 

shows the components of the aberration in the exit pupil.  

3.3 Comparison with analytical results 

In the following section results obtained with the proposed method are compared with the 

wavefront error maps generated from aberration coefficients, calculated with the macro of 

Sasian [25].  For that purpose an axially symmetric, two-mirror system represented 
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schematically in Figure 3-12 is investigated. Since the stop is located at the second surface, the 

exit pupil of the first surface contribution is located directly before the second mirror. Thus, 

two divisions of the total wave aberration introduced in Subsection 2.2.2 are equivalent. For 

sake of comparison, the exit pupil spheres are constructed upon the first-order chief ray (FCR). 

Thus, aberrations due to the displacement of the field vector ∆𝐻⃗⃗  are present in the evaluated 

wavefront errors.  

 

Figure 3-12. The two-mirror system with the stop located at the second surface (M2). The exit pupil of the first 

surface contribution (ExP1) is located directly before the second mirror. The exit pupil of the second surface 

contribution is sequenced directly after the second mirror (ExP2). Thus, aberrations of the second surface are 

exclusively the result of the reflection from the second mirror. The reference spheres are centered upon the first-

order chief ray (FCR).  

The comparison of results obtained with both methods shows that the distribution of surface 

contributions is changed; see Figure 3-13. This is due to the difference in the location of the 

pupil vector. All wave aberration coefficients are evaluated for the pupil vector 𝜌  located on 

the exit pupil plane of the system, whereas in the numerical approach OPDs are referred at the 

uniform grids on the exit pupil spheres of the respective surfaces. It means that in case of the 

first surface, the contribution is referred to the exit pupil of the first mirror which corresponds 

to the distorted vector 𝜌 + 𝛥𝜌   on the pupil of the systems.  Thus, the redistribution of surface 

contributions is due to two factors; the use of pupil spheres instead of planes and the change in 

the location of the pupil vector from the exit pupil to the intermediate exit pupils assigned to 

each surface. 
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Figure 3-13. The comparison of wavefront error maps evaluated from the wave aberration coefficients  and 

obtained with the proposed numerical method (a) contribution from the first surface according to the aberration 

coefficients, (b) the difference between analytical and numerical results, (c) contribution from the second 

surface according to the aberration coefficients, (d) the difference between analytical and numerical results, (e) 

the total wave aberration according to the aberration coefficients, (f) the residual difference between analytical 

and numerical total wavefront errors. 

 

However, it is important to emphasize that in case of the total wave aberration the pupil vector 

is still placed on the exit pupil reference sphere of the complete system. This is due to the 

concatenation of the intermediate exit pupils; see Equation (3-2). Thus, the difference in the 
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total wave aberration is only due to the change in the pupil shape, which is of less significance 

as shown in Figure 3-13(f).  

The redistribution of the surface contributions due to the different position of the equidistant 

pupil grid, results in the sign difference of the induced component. As described in Subsection 

2.1.5, in [29] the induced part of the second surface up to the sixth order depends on the fourth-

order incoming aberrations and the third-order transverse pupil aberration of the first surface, 

measured with respect to the exit pupil of the system; see Equation (2-9). 

Analogously, in case of the example system, for the numerical approach the induced part of 

the second surface contribution with no restriction to the expansion order can be noted by: 

𝑊2
(𝑖𝑛𝑑)(𝐻⃗⃗ , 𝜌 ) = (𝑊𝑡𝑜𝑡(𝐻⃗⃗ , 𝜌 ) − 𝑊1(𝐻⃗⃗ , 𝜌 + ∆𝜌 )) − 𝑊2

(𝑖𝑛𝑡)(𝐻⃗⃗ , 𝜌 ). (3-8) 

The term in the parenthesis is the complete contribution of the second surface defined as in the 

Equation (3-1). The transverse pupil aberration is included with a different subtraction order 

than in Equation (2-9). The same sign difference was indicated while deriving the transverse 

pupil aberration in Equation (3-3). The further difference between both induced parts is due to 

the transverse pupil aberration evaluated numerically on a sphere and analytically on a plane; 

see Figure 3-14. 



51 

 

Figure 3-14. The comparison of the induced components from the second (a) the induced sixth-order term, (b) 

the induced component obtained numerically. 

3.4 Full field analysis 

3.4.1 Full field displays 

An aberration of the specific kind can be analyzed simultaneously for all field points using a 

graphic representation called full-field display (FFD). The FFD representation was introduced 

as an analysis tool for nodal aberration theory (NAT) to track locations of nodes in aberration 

fields  [12]. In [23] Fuerschbach et al. used FFDs as a representation for numerically obtained 

Zernike aberration coefficients. The same approach is employed to analyze Zernike surface 

contributions over the full field of view (FOV).  

According to the Table 2-4 each pupil-dependent non-rotationally symmetric aberration is 

characterized by two Zernike fringe coefficients. Thus, up to the sixth order five pairs are 

distinguished; Zernike astigmatism, Zernike coma, trefoil, Zernike secondary astigmatism, 

Zernike secondary coma. The rotationally symmetric aberrations are characterized by only one 

term. These are; Zernike spherical aberration and Zernike secondary spherical aberration. Each 

Zernike aberration is represented graphically by one of four types of symbols; see Figure 3-15. 
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Figure 3-15. Four types of symbols used in the full-field displays (FFDs) [49]; (a) Zernike astigmatism, (b) non-

rotationally symmetric Zernike aberrations of order higher than fourth, (c) rotationally symmetric Zernike 

aberrations, (d) Zernike coma. 

In order to define the magnitude and the orientation of a non-rotationally symmetric Zernike 

aberration, following formulas are used [23]: 

|𝑍𝑖/𝑖+1| =  √𝑍𝑖
2 + 𝑍𝑖+1

2    (3-9) 

𝜃𝑖/𝑖+1 =
1

2
𝑡𝑎𝑛−1 (

𝑍𝑖+1

𝑍𝑖
).   (3-10) 

The FFD can be used in two different ways to analyze an aberration field of an arbitrary system; 

see Figure 3-16. The first is to consider the complete contributions from respective surfaces. 

The second is to examine the total wave aberration in the exit pupil with distinction into 

components. 
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Figure 3-16. The full-field displays of Zernike aberrations; (a) surface contributions of Zernike coma, (b) 

components of Zernike coma in the exit pupil, (c) surface contributions of Zernike secondary coma, (d) 

components of Zernike secondary coma in the exit pupil. 

As presented, depending on which Zernike aberration is studied, different configurations of the 

FFD are more suitable. For Zernike coma, insights are provided by looking at the complete 

surface contributions, whereas correction of Zernike secondary coma results from the balance 

between induced, intrinsic, and transfer components. 

3.4.2 Distortion grid 

As described in subsection 3.1.2, intermediate image planes are necessary to determine the 

center of curvature of reference spheres. Thus, in analogy to subsection 2.2.3.1, an intermediate 

grid distortion can be evaluated in terms of perpendicular components of the normalized field 
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vector; see Equation (2-20). Further it is possible to define surface contributions as the effect 

on the final grid introduced by each surface of the system; see Figure 3-17. 

  

Figure 3-17. The construction of surface contributions to the distortion of the final image grid.  

However, it is important to note that the distortion surface contribution is then evaluated with 

respect to the plane perpendicular to the OAR, which is not necessarily the case for the final 

image plane. In case the intermediate image plane is at infinity the contribution from the surface 

is not evaluated.  Thus, surface contributions to the distortion of the final image grid ∆𝐻⃗⃗ 𝑆𝑗 for 

the system in Figure 3-17 are given as: 

 ∆𝐻⃗⃗ 𝑆1 = ∆𝐻⃗⃗ 𝐴,     

∆𝐻⃗⃗ 𝑆2 = 0,   (3-11) 

 ∆𝐻⃗⃗ 𝑆3 = ∆𝐻⃗⃗ 𝐵 − ∆𝐻⃗⃗ 𝐴.    

3.5 Implementation 

The described method is implemented in Matlab® 32bit. Ray-tracing data is imported from 

Zemax13® to Matlab® workspace utilizing DDE protocol. After first establishing DDE 

connection initial system data is read into Matlab®. The initial system is then automatically 

modified. Next, multiple sets of rays are iteratively traced through the modified system. Ray-

tracing data is transferred to Matlab® workspace after each iteration; see Figure 3-18. It is a 

part responsible for the relatively long computational time; see Appendix A. In the final stage 
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components of the total wave aberration are evaluated in Matlab® following the routine 

described in Section 3.2.  

 

Figure 3-18. The flow of data between Matlab® and Zemax®. Both programs communicate through DDE 

protocol. 

3.5.1 User-defined parameters 

Before establishing the DDE connection with Zemax®, the user is asked to specify parameters 

necessary to perform the trace of multiple ray sets. These parameters are: 

• Sampling 

• Parabasal parameter 

• Selection of infinity ray path. 

Sampling (𝑛𝑃) is a discretization parameter that specifies how many rays are traced along each 

perpendicular axis of the circular ray bundle launched into the system; see Figure 3-19.  

 

Figure 3-19. The sampling number of discretization points along an axis of circular ray bundle launched into the 

system (𝑛𝑃). 

The discretization step (𝑑𝑝) in the pupil coordinates is then determined from the formula: 
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𝑑𝑝 =  
2

𝑁𝑝−1
.  (3-12) 

Depending on if (𝑛𝑃) is an even or an odd number, the center of the pupil is located at points 

(
𝑁𝑝

2
− 1,

𝑁𝑝

2
− 1) or (

𝑁𝑝

2
,
𝑁𝑝

2
) respectively.  

The parabasal parameter defines the fraction of normalized pupil or field coordinates used for 

the trace of rays near the OAR, which are considered as un-aberrated. Thus, parabasal 

parameter strongly depends on the F# of the system as well as on the level of correction. Ray 

tracing data of parabasal rays serves then to define the first-order properties of the system; see 

Subsection 2.2.3.   

The beam path between surfaces can be specified by the intended first-order properties of the 

system. Thus, the user can select surfaces between which the beam is assumed to be collimated 

and the plane reference surfaces are assigned. If no surface is selected program utilizes an 

internally defined parameter. The parameter is based on the trace of the parabasal aperture rays 

(PAR): 

𝜀 =  √(𝛼𝑂𝐴𝑅 − 𝛼𝑃𝐴𝑅)2(𝛽𝑂𝐴𝑅 − 𝛽𝑃𝐴𝑅)2(𝛾𝑂𝐴𝑅 − 𝛾𝑃𝐴𝑅)2,  (3-13) 

where 𝛼, 𝛽 and  𝛾 are direction cosines after each surface. 

If ε is below the threshold value, the program assigns the reference plane instead of the 

reference sphere after a surface.  

3.5.2 Modification of the system 

First, initial system data, such as number and type of surfaces and refractive indices, is read 

into the Matlab® workspace and structures for storing ray-tracing data are created. Afterwards, 

the OAR and the corresponding parabasal aperture rays are traced through the initial system in 

order to determine the location of the intermediate image planes. In the following step, the 

RCR of the field point under analysis is traced to evaluate the radii of curvature of reference 

spheres; see Subsection 3.1.2. Next, after saving a copy of the initial file, dummy surfaces and 

coordinate breaks are inserted before and after each optical surface in the lens data editor 

(LDE); see Figure 3-20.  
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Figure 3-20. Screenshots from the LDE in Zemax13®; (a) an initial system, (b) a system after inserting dummy 

surfaces and coordinate breaks. 

In the next stage, the RCR is traced repetitively to establish reference spheres at dummy 

surfaces; see Figure 3-21. First, the tilt and decenter are determined from the local coordinates 

of the RCR at the plane dummy surface. Then, the tilt and decenter are set at the coordinate 

breaks before and after the reference sphere by refreshing the LDE. Second, the shift is 

determined from the distance between the tilted and decentered dummy surface and the optical 

surface. This distance is accounted along the RCR, therefore the shift is applied at coordinate 

breaks directly before and after a surface. In the third step, after updating the LDE, the formerly 

evaluated radii of curvatures are set. 
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Figure 3-21. The RCR is traced repetitively, updating the LDE after each time; (a) dummy surfaces inserted in 

the LDE before and after a surface, (b) the tilted and decentered dummy surfaces, (c) the entrance and exit 

reference spheres placed at the intersection points of RCR with a surface.    

Lastly, the semi-major axes of ellipses (see Subsection 3.2.1) are selected as semi-diameters of 

the established reference surfaces. The elliptical footprints are then determined by tracing rays 

to the maximum normalized pupil coordinates (1,
𝑏

𝑎
) or (

𝑏

𝑎
, 1) depending on the orientation of 

the semi-major axis.   

3.5.3 Tracing multiple ray sets 

As mentioned in Subsection 3.2, in order to determine components of the total wave aberration 

trace of multiple ray sets is required. This is realized by setting the system aperture to the “float 

by stop” type and selecting ray aiming. The first is to define the boundary of the ray set entering 

the system to be limited by the size of the stop surface. The latter ensures that each ray intersects 

the stop surface at the uniform grid. The stop position is then switched to the previously 

established reference spheres, before and after each optical surface (𝑗𝑆𝑡𝑜𝑝). Next, ray sets are 

iteratively traced to each reference sphere and each surface (𝑗𝑆𝑢𝑟𝑓) in order to determine 

segments of the OPD; see Subsection 2.2.2. The loop is executed until the current stop 

surface (𝑗𝑆𝑡𝑜𝑝) is positioned at the exit pupil reference sphere (𝑛𝑆𝑡𝑜𝑝); see Figure 3-22.    
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Figure 3-22. The trace of multiple ray sets realized by iterative switching the stop position to each reference 

sphere. An additional loop is necessary to determine intersection coordinates of a ray set with each surface until 

the current stop.  

Ray-tracing data is then processed and the complete effect of refraction on each surface and 

the transfer components are evaluated; see Section 3.2.  

In order to determine intrinsic components, surfaces in the LDE are ignored leaving only a 

single optical surface active. Intermediate field points are then set, creating a separate 

subsystem for each surface; see Figure 3-23.  Ray tracing is performed for each subsystem with 

rays aimed at the uniform coordinates on exit reference spheres assigned to each surface.  

 

Figure 3-23. (a) An initial system. (b-d) Subsystems created iteratively to determine intrinsic components from 

each surface.   

 



60 

 

The induced component is then evaluated by subtracting the intrinsic part from the complete 

effect of refraction; see Section 3.2. 

3.5.4 Special aspects 

3.5.4.1 Propagation to the exit pupil 

In Zemax®, aberrations arising upon propagation to the exit pupil are added by first tracing the 

ray set to the image plane and then back to the exit pupil sphere [40]. In the implemented 

routine, the exit pupil is inserted as a surface directly after the last reference surface in the LDE; 

see Figure 3-24. Thus, the transfer term is evaluated from sequential ray-tracing data.   

 

Figure 3-24. A screenshot from LDE in Zemax13® illustrating exit pupil implemented as a dummy surface 

placed at the end of the system. 

In case the RCR does not intersect the OAR in the image plane, the plane reference surface is 

inserted. The distance between the exit pupil and the last surface in that case is selected to be 

equal to ten times the focal length of a system.  

3.5.4.2 Vignetting 

In case a ray launched to the system does not intersect with one of the surfaces, the vignetting 

occurs. This situation is critical since the introduced method is based on the assumption that 

all rays pass through the complete system, creating uniform grids at the stop surface iteratively 

switched to each reference sphere. Consequently, if vignetting is detected the aperture of the 

system needs to be decreased to the level that allows all rays to be traced. This would be better 
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realized with a simultaneous switch of the RCR to the central ray of the vignetted ray bundle. 

However, it cannot be performed with the DDE protocol. Thus, the aperture is decreased more 

than necessary; see Figure 3-25.   

 

Figure 3-25. The routine cannot be executed if vignetting occurs; (a) the initial ray bundle, (b) the ray bundle 

reduced to the maximum extent that traverses the complete system centered around the same RCR.   

Numerically there exist two types of vignetting. In the first case, the diameter of a surface 

defined by the user is too small for all rays to pass through the system, but all rays traverse the 

system if diameters are of the automatic type. In the second case, the aperture defined by the 

user is too large for all rays to pass through due to geometrical limitations of the system, e.g. 

total internal reflection. Since the routine is based on shifting the stop position, this situation is 

critical for the execution of the program. If the stop position is shifted to the reference sphere 

after vignetted surface, the ray set defined by the size of the stop cannot be launched into the 

system and Zemax returns an error. Consequently, the presented approach is only valid for the 

first type of vignetting. 

3.5.4.3 Position of the entrance pupil 

In optical design programs, in order to refer to a specific ray launched into a system, the 

normalized entrance pupil coordinates are used. This is independent of ray aiming. 

Consequently, while switching the position of the stop (see Subsection 3.5.3), the location of 

the entrance pupil is changed correspondingly. In case location of the entrance pupil in 

reference to the object plane is changed, the same normalized pupil coordinates refer to a 

different ray; see Figure 3-26. Since wavefront errors obtained for different positions of the 

stop are compared, this aspect needs to be considered in the implemented routine.   
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Figure 3-26. The marginal ray (MR) defined in two possible cases of locating the entrance pupil in reference to 

the object plane; (a) case in which the entrance pupil is located after the object plane, (b) case in which entrance 

pupil is located before the object plane.   
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Chapter 4 Application 

In the design process of a freeform system, it is important to utilize additional design variables 

in the most effective way [21]. The simple approach of adding freeform sag contribution to one 

or more elements in the system may result in an “over-engineered” solution with an 

unnecessarily large deviation of sag from the basic shape; see Section 2.4. Thus, analysis of 

aberrations generated in the system utilizing the same description (Zernike fringe set) as the 

one used for the freeform sag, is a valuable tool in designing freeform systems. In the following 

chapter, it is presented how analysis of the Zernike surface contributions can assist in selecting 

the most effective first-order configuration and a position of the freeform element in the system. 

4.1 Relations between low- and higher-order Zernike 

aberrations 

Imaging performance of freeform mirror systems in the final design stage is typically limited 

by higher-order Zernike aberrations. Thus, the knowledge of how higher-order aberrations are 

generated is of crucial importance in the design process of such systems. As known from 

aberration theory of axially symmetric systems, the higher-order aberration coefficients depend 

on primary aberrations and the first-order ray properties; see Subsection 2.1.5.  General 

dependencies that occur in formulas for the sixth-order intrinsic wave aberration coefficients 

(see Table 2-3) can provide valuable insights for the interpretation of numerically obtained 

Zernike terms. Thus, taking into account these relations, following dependencies are 

formulated for the intrinsic Zernike aberration components of a single field point: 
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Table 4-1. Dependencies of the higher-order intrinsic Zernike components on low-order Zernike aberrations.   

Zernike intrinsic  

components 

Zernike 

coefficients 

Influencing factors 

Zernike sixth-order 

spherical aberration 
𝑍16

𝑖𝑛𝑡 𝑍9,  𝑢
′ 

Zernike secondary coma 𝑍14/15
𝑖𝑛𝑡  𝑍7/8,  𝑢

′ 

Zernike secondary 

astigmatism 
𝑍12/13

𝑖𝑛𝑡  𝑍5/6 − 𝑍7/8,  𝑢
′ 

Zernike trefoil 𝑍10/11
𝑖𝑛𝑡  𝑍5/6,  𝑢

′ 

where 𝑢′ is a slope of an outgoing marginal ray. 

In analogy, the induced and transfer Zernike components depend on accumulated low-order 

aberrations and the first-order ray properties. However, due to crucial differences in the 

definition of the induced effect (see Section 3.3), aberration theory of axially-symmetric 

systems provides little insights for interpretation of the induced and transfer Zernike 

components.  

By employing mentioned aberration relations, the design strategy based on assessing the 

potential of a studied system for the simultaneous correction of low- and higher-order Zernike 

aberrations is formulated. In this approach the effect of adding a low-order Zernike-type 

freeform is analyzed. Dominant primary Zernike aberrations are directly corrected by the 

freeform sag contribution and higher-order Zernike components are influenced due to relations 

listed in Table 4-1. Further, Zernike aberrations in a system with and without a freeform are 

compared and the most beneficial first-order configuration or position of the freeform element 

in a system is selected. 

4.2 Selection of the initial system 

In the following section, it is demonstrated how the analysis of surface-by-surface Zernike 

aberration contributions supports the optimization process in finding the best geometry for a 

freeform mirror system. 
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4.2.1 Geometry of the system 

The investigated system is a three-mirror anastigmat (TMA) with small FOV, an F# of 2.4 and 

an entrance pupil diameter of 40 mm.  

In the first step obscured initial systems are considered in two configurations; with the negative 

element placed at the position of the first (NPP) and the second mirror (PNP); see Figure 4-1. 

The NPP configuration is based on the system investigated in [15]. The PNP is the reflective 

analogue of Cooke triplet, which is a solution that has been extensively investigated since early 

years of the TMA development [50]. The PNP configuration is much more compact with 

approximately four times smaller diameter of the beam at the second mirror. Both 

configurations are optimized for a central field point. 

 

Figure 4-1. The obscured, on-axis initial systems; (a) with the negative element at the first mirror NPP, (b) with 

the negative element at the second mirror PNP 

In the next step, in order to avoid central obscuration, tilt angles are applied. Two cases with 

the so-called “zigzag” and folded geometry are studied. The resulting four layouts, with 

optimized tilt angles, are demonstrated in Figure 4-2. Both resulting PNP systems are much 

smaller in size in comparison to their NPP equivalents. It is also noticed, that for given 

configuration arranging mirrors in the folded geometry reduces the volume of the system. On 

the other hand, tilt angles applied in the “zigzag” geometry are typically smaller. Another 

difference between the “zigzag” and folded geometries is the sign of the tilt angle applied to 

the second mirror.  
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Figure 4-2. The four resulting layouts of the TMA system; (a) NPP “zigzag”, (b) NPP folded, (c) PNP “zigzag”, 

(d) PNP folded  

Further, radii of curvatures in all systems are reoptimized for the smallest spot size RMS values 

with the low-order Zernike-type surface placed at the position of the last mirror. Due to the 

plane symmetry of the TMAs, only Zernike terms 5, 8 and 9 are used to describe the freeform 

sag contributions.  

4.2.2 Zernike surface contributions analysis 

The freeform sag contribution added to the last mirror changes the distribution of dominant 

aberrations of the TMA, namely primary Zernike astigmatism and coma so that contributions 

from first two mirrors are compensated. However, in case of higher-order aberrations, the 

impact on final correction is limited mainly to the change of the intrinsic component from the 

last mirror. The induced and the transfer terms from the last mirror are not significantly 

affected. Thus, Zernike trefoil and in some configurations also Zernike secondary astigmatism 

arise as performance limiting aberrations.  

The potential for simultaneous correction of low- and higher-order Zernike aberrations of each 

configuration is assessed. The Zernike surface contributions in systems consisting of basic-

shape mirrors and then after adding the freeform sag contributions are compared for the central 

field point. The compensation effect of Zernike astigmatism (𝑍5) and Zernike coma (𝑍8) is 

presented in bar plots. Further, the balancing effect of the intrinsic, induced and transfer 
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components of Zernike trefoil (𝑍11) and Zernike secondary astigmatism (𝑍12) is studied in 

each configuration. 

In case of the “zigzag” TMA with the negative element as the first mirror (NPP), the impact of 

the freeform sag is mainly to invert the Zernike astigmatism contribution from the last mirror 

in order to compensate the negative contribution from the second mirror; see Figure 4-3.  

 

Figure 4-3. The Zernike aberrations of the NPP "zigzag" configuration. (a) Zernike astigmatism (Z5) and 

Zernike coma (Z8) in the system without the freeform sag contribution, (b) trefoil (Z11) and Zernike secondary 

astigmatism (Z12) in the system without the freeform sag contribution, (c) Zernike astigmatism (Z5) and 

Zernike coma (Z8) in the system with the freeform sag contribution, (d) trefoil (Z11) and Zernike secondary 

astigmatism (Z12) in the system with the freeform sag contribution. 

The higher-order Zernike components are generated mostly at the last surface due to large slope 

of the outgoing marginal ray.  In analogy to Zernike astigmatism, adding the freeform sag 

results in inverting the intrinsic component of Zernike trefoil, which balances the in this case 

unaffected induced part. Further, the freeform element reduces Zernike coma, which is of the 

same sign as Zernike astigmatism. Consequently, intrinsic Zernike secondary astigmatism is 

diminished. The resulting freeform system is strained due to large aberration contributions but 

well corrected for the low- and the higher-order aberrations simultaneously. 
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As next the folded TMA with the negative element at the first mirror (NPP) is studied; see 

Figure 4-4. It is noticed that in comparison to the “zigzag” geometry, the overall amount of 

generated astigmatism is significantly reduced due to smaller tilt angles at the second mirror. 

Similarly, the higher-order Zernike components are generated in particular at the last surface 

and the sign of astigmatism from the last surface has to be inverted. Consequently, the resulting 

positive intrinsic component of Zernike trefoil balances well the residual negative terms. 

Zernike secondary astigmatism is canceled at the last mirror due to the reduction of primary 

Zernike coma. Thus, the imaging performance is limited due to the contribution to Zernike 

secondary astigmatism from the second mirror. 

 

Figure 4-4. Zernike aberrations of the NPP folded configuration. (a) Zernike astigmatism (Z5) and Zernike coma 

(Z8) without the freeform, (b) trefoil (Z11) and Zernike secondary astigmatism (Z12) without the freeform, (c) 

Zernike astigmatism (Z5) and Zernike coma (Z8) with the freeform, (d) trefoil (Z11) and Zernike secondary 

astigmatism (Z12) in the system with freeform. 

The third studied configuration is the “zigzag” TMA with the negative element at the second 

mirror (PNP); see Figure 4-5. The approximately four times smaller beam diameter at the 

second mirror, in comparison to the NPP configurations, leads to near lack of the coma 
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contribution from the second mirror. In this system, the freeform element slightly increases 

Zernike astigmatism at the last mirror and inverts the Zernike coma contribution. 

Consequently, primary aberrations of the same sign cancel out Zernike secondary astigmatism 

from the third surface and the correction in the image plane is obtained.  Further, it is noticed 

that the correction of Zernike trefoil is obtained due to the increase of the induced component 

at the third mirror. This suggests that the minor freeform sag contribution is “tailored” for the 

incoming aberrated wavefront and the intrinsic component remains nearly unchanged. 

 

Figure 4-5. Zernike aberrations of the PNP “zigzag” configuration. (a) Zernike astigmatism (Z5) and Zernike 

coma (Z8) without the freeform, (b) trefoil (Z11) and Zernike secondary astigmatism (Z12) without the 

freeform, (c) Zernike astigmatism (Z5) and Zernike coma (Z8) with the freeform, (d) trefoil (Z11) and Zernike 

secondary astigmatism (Z12) in the system with freeform. 

The last considered configuration is the folded TMA with the negative element at the second 

mirror (PNP); see Figure 4-6. Similarly as in the “zigzag” PNP configuration, only minor 

reduction of astigmatism and the inversion of the coma from the last mirror are required. This 

results in deteriorated performance in terms of the higher-order Zernike terms. Zernike 

secondary astigmatism from the third mirror is diminished and the residual contribution in the 

exit pupil increases. Same applies in case of trefoil. Further, it is noticed that the opposite tilt 
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angle of the second mirror leads to an inverted relation between the induced and intrinsic 

components of trefoil at the second mirror.  

 

Figure 4-6. Zernike aberrations of the PNP folded configuration. (a) Zernike astigmatism (Z5) and Zernike coma 

(Z8) without the freeform, (b) trefoil (Z11) and Zernike secondary astigmatism (Z12) without the freeform, (c) 

Zernike astigmatism (Z5) and Zernike coma (Z8) with the freeform, (d) trefoil (Z11) and Zernike secondary 

astigmatism (Z12) in the system with the freeform. 

In the next step two configurations with the highest potential for simultaneous correction of 

low- and higher-order Zernike aberrations are down selected for further investigation with two 

freeform surfaces. The NPP “zigzag” is well corrected in the exit pupil but is the most strained, 

which make it inadvisable selection for a further design development. In case of the PNP folded 

system, the correction of primary aberrations leads to the imbalance of the higher-order terms 

in the exit pupil. Thus, the PNP “zigzag” and the NPP folded configurations are chosen. Indeed 

these are the layouts most commonly found in the literature and patents [15, 50]. 

The two systems are reoptimized with the second freeform sag contribution added to the stop 

at the second mirror and the FOV of 1 deg. In this way the field-dependent and the field-

constant aberrations can be corrected [21]. Similarly, Zernike aberrations in the system with 

and without freeform contributions are investigated for the on-axis field point.  
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In case of the folded NPP configuration, differently than for the system with only one freeform, 

the system is strained by large compensating contributions of primary aberrations generated at 

the second and at the third mirror; see Figure 4-7. It is interesting to notice that in absence of 

the freeform contribution at the second mirror the induced trefoil component from the third 

mirror disappears. This phenomenon is assigned to the reduction of incoming astigmatism. 

However, due to nearly collimated beam after reflection from the second mirror (small slope 

of the marginal ray u’), the large astigmatism contribution does not significantly influence the 

intrinsic components of trefoil and Zernike secondary astigmatism. In turn, the large 

contribution of Zernike astigmatism from the third mirror of the opposite sign increases the 

intrinsic trefoil component. Consequently, the correction of the trefoil in the exit pupil is 

obtained from the balance of the positive induced and the negative intrinsic components. In 

analogy, the incoming coma and astigmatism of opposite signs generate the induced secondary 

Zernike astigmatism component at the third mirror. It is further balanced out by the intrinsic 

component resulting from the inverted relation between the primary aberration contributions 

of the third mirror.  
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Figure 4-7. Zernike aberrations of the NPP folded configuration. (a) Zernike astigmatism (Z5) and Zernike coma 

(Z8) surface contributions generated in the system with freeform sag contributions added at M2 and M3, (b) 

trefoil (Z11) and Zernike secondary astigmatism components generated in the system with freeform sag 

contributions added at M2 and M3, (c) Zernike astigmatism (Z5) and Zernike coma (Z8) surface contributions 

generated in the system with freeform sag contribution subtracted from M2, (d) trefoil (Z11) and Zernike 

secondary astigmatism (Z12) components generated in the system with freeform sag contribution subtracted 

from M2, (e) Zernike astigmatism (Z5) and Zernike coma (Z8) surface contributions generated in the system 

with freeform sag contribution subtracted from M3, (f) trefoil (Z11) and Zernike secondary astigmatism (Z12) 

components generated in the system with freeform sag contribution subtracted from M3. 

As the second possible solution, the “zigzag” PNP configuration was studied; see Figure 4-8. 

Similarly as in case of the system with one freeform element, the impact of the two freeform 

elements on the redistribution of primary aberrations is not significant. The subtraction of the 

freeform sag from the second mirror increases Zernike astigmatism that disturbs  
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Figure 4-8. Zernike aberrations of the PNP “zigzag” configuration. (a) Zernike astigmatism (Z5) and Zernike 

coma (Z8) generated in the system with freeform elements at M2 and M3, (b) trefoil (Z11) and Zernike 

secondary astigmatism generated in the system with freeform elements at M2 and M3, (c) Zernike astigmatism 

(Z5) and Zernike coma (Z8) generated in the system with the freeform sag contribution subtracted from M2, (d) 

the trefoil (Z11) and the Zernike secondary astigmatism (Z12) components generated in the system with the 

freeform sag contribution subtracted from M2, (e) Zernike astigmatism (Z5) and Zernike coma (Z8) generated 

in the system with the freeform sag contribution subtracted from M3, (f) trefoil (Z11) and Zernike secondary 

astigmatism (Z12) generated in the system with the freeform sag contribution subtracted from M3. 

the correction of trefoil through both; the increase of the negative intrinsic component from the 

second mirror and the increase of the positive induced components from the second and the 

third mirrors. Consequently, the balance in the exit pupil is disturbed. Minor change of Zernike 

astigmatism caused by the subtraction of the freeform sag from the third mirror has nearly no 

influence on the correction of trefoil. The small contribution of coma and the converging 

outgoing marginal ray at the third mirror result in Zernike secondary astigmatism being 

generated only at the third mirror. Thus, the correction of Zernike secondary astigmatism 

remains nearly unaffected.  
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To validate the analysis of aberrations of the central field point for the full FOV, the FFDs of 

the trefoil and Zernike secondary astigmatism components in the exit pupil are generated; see 

Figure 4-9. The homogeneous distribution of the aberration components over the considered 

small FOV is noticed. The only deviation results from the presence of the Zernike aberration 

terms Z10 and Z13 in case of field points with non-zero 𝐻𝑥 coordinate. Thus, the observed 

relations between the low- and higher-order aberrations are valid for the complete FOV. In case 

a larger FOV is considered and freeform elements are placed away from the stop, aberration 

fields become field-dependent and field points have to be analyzed separately.  

 

Figure 4-9. The full-field displays (FFDs) showing the components of trefoil (Z10, Z11) and secondary Zernike 

astigmatism (Z12, Z13) in the exit pupil; (a) the components of trefoil in the NPP folded TMA system, (b) the 

components of secondary Zernike astigmatism in the NPP folded TMA system, (c) the components of trefoil in 

the PNP “zigzag” TMA system, (d) the components of secondary Zernike astigmatism in the PNP “zigzag” 

TMA system.   

The relations between aberrations presented above cannot be easily identified using classical 

performance metrics like the spot size RMS or the Zernike coefficients in the exit pupil. The 

analysis of the Zernike aberration components is therefore a powerful tool in determining 

differences between configurations [51]. 
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4.2.3 Performance comparison 

In order to supplement the aberration analysis, auxiliary performance criteria for both down-

selected TMA configurations are introduced. To sum up the analysis of the previous subsection, 

the spot size RMSs for 0 deg field angle are listed in Table 4-2. Additionally, to carry out the 

misalignment sensitivity analysis, the tilt error of 0.1 deg is introduced to the first and 

separately to the second mirror without decentering the subsequent surfaces and the resulting 

spot size RMSs are evaluated. Further, two supplementary criteria, namely peak-to-valley (P-

V) of the freeform sags without the rotationally symmetric part and volumes of the systems are 

compared.  

Table 4-2. The comparison of TMA configurations in terms of the auxiliary performance criteria 

Criterion NPP folded PNP “zigzag” 

0° field angle [spot RMS] 4.5 µm 1.5 μm 

0.1° tilt error of M1 [spot RMS] 4.8 μm 2.5 μm 

0.1° tilt error of M2 [spot RMS] 13.9 μm 2.4 μm 

Volume of the system 2.06 dm3 0.34 dm3 

Freeform sag at M2 [P-V] 410 μm 9 μm 

Freeform sag at M3 [P-V] 430 μm 7 μm 

 

The results of Table 4-2 confirm the results of analysis from Subsection 4.2.2 and therefore the 

PNP “zigzag” configuration appears as a better solution for the TMA system with the small 

FOV. It is characterized by smaller RMS of the spot size, smaller volume and smaller P-V 

values of the freeform sag contributions, which reduces manufacturing costs. It is further 

noticed that the PNP “zigzag” configuration is less sensitive to the tilt error of the second 

mirror. This correlates with the P-V values of the freeform sag contribution from the third 

mirror. 

Congruent results pointing out the “zigzag” geometry as the best-performing solution for the 

freeform TMA system with PNP configuration were obtained from the aberration analysis 

based on NAT [22].   
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4.3 Selection of the surface 

In the following subsection, the design strategy based on assessing the potential of a studied 

system for simultaneous correction of low- and higher-order Zernike aberrations is utilized to 

select the most effective surface for adding the freeform sag contribution. The plane-

symmetric, three-mirror system without field and with the F# = 5 is investigated. The system 

consists of concave mirrors with equal optical powers. Two ray-tracing directions are 

considered; initial, from infinite object to finite image (I-F) and reversed, from finite object to 

infinite image (F-I); see Figure 4-10. 

 

Figure 4-10. The layouts of the analyzed three-mirror system; (a) with the initial ray-tracing direction from 

infinite object to finite image space (I-F), (b) with the reversed ray-tracing direction from finite object to infinite 

image space (F-I).   

Since all mirrors have equal optical powers and are tilted by the same angle, the performance 

limiting aberration is accumulated Zernike astigmatism. As known from Seidel theory (see 

Subsection 2.1.4), in such system the contributions of primary astigmatism from each surface 

are of similar sign and magnitude independently of the ray-tracing direction; see Figure 4-11.  
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Figure 4-11. Distributions of primary Zernike astigmatism in the analyzed three-mirror system without a 

freeform; (a) with the initial ray-tracing direction (I-F), (b) with the reversed ray-tracing direction (F-I). 

However, the distribution of the higher-order Zernike aberrations depends on the slope of the 

outgoing marginal ray (see Section 4.1) and therefore differs for each ray-tracing direction. 

Thus, the components of trefoil, which is the dominant higher-order aberration, are studied; 

see Figure 4-12.  

 

Figure 4-12. The distributions of trefoil in the analyzed three-mirror system without freeform; (a) with the initial 

ray-tracing direction (I-F), (b) with the reversed ray-tracing direction (F-I). Each complete contribution is 

decomposed into the intrinsic, induced and transfer parts. The last bar shows the sum of all aberrations in the 

system.  

The configuration with the initial ray-tracing direction (I-F) generates large components of 

trefoil at the last mirror and is not corrected for that aberration in the exit pupil. In contrary, in 

case of the reversed ray-tracing direction, the generated components of trefoil are less 

prominent resulting in the smaller contribution to the total wave aberration. This is assigned to 

the differences in the slope of the outgoing marginal ray. If the beam reflected from the mirror 

is converging, the intrinsic trefoil term is larger than in case of a collimated reflected beam. 

Consequently, in case of the initial ray-tracing direction, the marginal ray is converging after 

the first and the last mirrors generating larger intrinsic components of trefoil. Since initial 
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systems are strongly aberrated, the evaluation of the induced effect is less accurate due to the 

large pupil mapping error.  

In the next step the freeform sag contribution, described with the low-order Zernike fringe 

terms 5, 8 and 9, is placed respectively at the position of each mirror, giving in total six 

configurations. It is clear that in order to correct the aberrations of the system, the freeform 

element has to compensate for the sum of Zernike astigmatism from two remaining mirrors. 

As stated before this can be obtained independently of the position of the freeform in the system 

does not depend on the ray-tracing direction. Thus, there are three possible distributions of 

primary Zernike astigmatism in the system with the freeform element; see Figure 4-13.  

 

Figure 4-13. The distributions of primary Zernike astigmatism in the analyzed three-mirror system with the 

freeform element in three different configurations; (a) freeform-spherical-spherical (FSS), (b) spherical-

freeform-spherical (SFS), (c) spherical-spherical-freeform (SSF).  

However, the comparison of the RMS spot size values shows that depending on the direction 

of the ray trace, the suitable position of the freeform element to improve the imaging 

performance differs; see Figure 4-14. In case of the initial beam path (I-F), the system is best 

performing with the freeform at the first surface, whereas after reversing the ray-tracing 

direction the system is better corrected when freeform is placed at the last mirror.  
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Figure 4-14. The RMS spot size values of the analyzed three-mirror system in six resulting cases, varying the 

ray-tracing direction and the position of the freeform element. 

The analysis of the trefoil components in two essentially differing configurations with the 

freeform at the first (FSS) and at the last (SSF) mirrors, and considering both directions of the 

ray trace, provides insights to understand the difference in imaging performance; see Figure 

4-15. It is noticed that in case of the initial ray-tracing direction, which is worse corrected for 

trefoil, placing freeform early in the system results in decreased astigmatism incoming on the 

third mirror. Consequently, due to the converging path of the outgoing marginal ray, the 

induced trefoil component from the third mirror is reduced and the system is corrected for 

trefoil in the exit pupil. Incoming astigmatism is not influenced if the freeform is placed at the 

last mirror. Thus, the induced trefoil component from the third mirror remains significant and 

changes the sign following the change of the Zernike astigmatism contribution.  In contrary, in 

case of the reversed ray-tracing direction (F-I) residual trefoil in the system without a freeform 

is small. This is preserved when the freeform element is placed at the third mirror, where only 

the intrinsic trefoil component from the last mirror is insignificantly changed.  
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Figure 4-15. The distributions of the trefoil components in the analyzed three-mirror system in four down 

selected cases; (a) I-F FSS, (b) I-F SSF, (c) F-I FSS, (d) F-I SSF.  

In the next step, the results are validated for the system with the similar layout and F# decreased 

to 2. In order to obtain a well-corrected system, the freeform sag contribution is described with 

the Zernike terms from 5 to 36. Thus, the correction of both the low- and higher-order 

aberrations is addressed in the description of the freeform sag contribution. Interestingly, the 

comparison of the RMS spot size values shows exactly the same result as in case of the system 

with F# of 5.  In case of the initial beam path (I-F) the system is best performing with the 
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freeform at the first surface, whereas after reversing the ray-tracing direction the system is 

better corrected when freeform is placed at the last mirror; see Figure 4-16. 

 

Figure 4-16. The RMS spot size values of the analyzed three-mirror system with F# increased to 2, in six 

resulting cases, varying the ray-tracing direction and the position of the freeform element. 

Further, the analysis of the Zernike aberration components in the exit pupil in the four extreme 

cases, namely; the I-F FSS, the I-F SSF, the F-I FSS, and the F-I SSF is performed; see Figure 

4-17. It confirms that despite the fact that all Zernike aberrations can now be directly corrected 

by the freeform sag contribution, better imaging performance is obtained in configurations that 

demonstrate the potential for simultaneous correction of the low- and higher-order terms, 

namely the FSS for the initial ray-tracing direction and the SSF for the reversed one. It is shown 

that in these cases trefoil is balanced out in the exit pupil with components of much less 

significant magnitudes resulting in the better corrected and less strained solutions. It is further 

interesting to note that with a decrease of the F# by the factor of 2.5, the magnitude of the 

higher-order aberration components in the exit pupil raises approximately by the factor of 20 

in strained systems. The decrease of F# generates also other than only intrinsic components of 

Zernike astigmatism, which therefore cannot be associated only with primary astigmatism.  
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Figure 4-17. The Zernike aberration components in the exit pupil in the analyzed three-mirror system with 

F#=2; (a) in the system with FSS configuration and the initial ray-tracing direction (F-I), (b) in the system with 

SSF configuration and the initial ray-tracing direction (F-I), (c) in the system with FSS configuration and the 

reversed ray-tracing direction (F-I), (d) in the system with SSF configuration and the reversed ray-tracing 

direction (F-I). 
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4.4 Misalignment sensitivity analysis 

The misalignment sensitivity analysis is carried out for the three-mirror system with F# of 2 

with the initial ray-tracing direction, similar as in the previous section. Additionally, the 

configurations in which the basic shape of two mirrors with no freeform sag contribution is 

toroidal instead of spherical are studied. Systems with toroidal mirrors generate less of 

intermediate primary astigmatism and therefore require less compensation from the freeform 

element. All six resulting configurations are listed in Table 4-3.  

Table 4-3. The list of analyzed configurations of the plane-symmetric three-mirror system. 

Name of the 

configuration 

M1 M2 M3 

SSF spherical spherical freeform 

(spherical basic 

shape) 

TTF toroidal toroidal freeform 

(spherical basic 

shape) 

SFS spherical freeform 

(spherical basic shape) 

spherical 

TFT toroidal freeform 

(spherical basic shape) 

toroidal 

FSS freeform 

(spherical basic shape) 

spherical spherical 

FTT freeform 

(spherical basic shape) 

toroidal toroidal 

 

First, in order to assess the manufacturing tolerances of each freeform element, the P-V values 

of the azimuthal part of freeform sag contributions utilized in each configuration are evaluated; 

see Figure 4-18. The larger is the deviation of the surface sag from the basic shape, the larger 

is the sensitivity to manufacturing errors. It is shown that freeform sag contribution is smallest 

in case of the system with freeform element placed at the first mirror. This corresponds to the 

result of the previous section, where FSS is the configuration with less significant higher-order 

Zernike aberration components in the exit pupil.  It is also interesting to note that the lower 

complexity of a freeform element occurs if toroidal mirrors are utilized.    
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Figure 4-18. The P-V values of the azimuthal part of freeform sag contributions of freeform elements utilized in 

the six configurations of the three-mirror system. 

Further, the tilt tolerances are estimated in the way described in Section 2.5. Thus, the change 

in the RMS spot size values with respect to the tilt error introduced to each mirror 

independently are evaluated; see Figure 4-19. Two alignment approaches, with and without 

decenter compensation, are simulated. From both plots one can see that the tilt error introduced 

to the last mirror of the system has a similar effect independently of considered configuration 

and alignment approach. However, the differences are prominent in case of the second and first 

mirrors. In addition to the error introduced by the mirror, if the tilt error is not compensated by 

decentering of subsequent mirrors, the beam is reflected from the decentered part of subsequent 

mirrors leading to the more significant increase in the RMS spot size values.  

 

Figure 4-19.The resulting RMS spot size values after introducing the tilt error to respective mirrors; (a) the 

alignment approach without decenter compensation, (b) the alignment approach with decenter compensation. 

In the next step two configurations with spherical mirrors, which exhibit extreme values of the 

tilt error on the second mirror are down selected.  The smallest sensitivity to the tilt error is 

obtained in the configuration with the freeform element placed at the first mirror (FSS). The 
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largest spot error occurs when the freeform is at the last mirror in the system (SSF). In analogy 

to the Seidel sensitivity parameter (see Section 2.5), the sums of absolute values of Zernike 

aberrations generated in both unperturbed configurations are shown in Figure 4-20. The SSF 

configuration generates the larger amount of Zernike aberrations summed over all surfaces and 

therefore one can expect larger misalignment sensitivities. The aberration contribution from 

the freeform element is larger and the induced effect is more prominent. This correlates with 

the comparison of the P-V values. However, it is important to note that this correlation does 

not necessarily occur if a system consists of elements with different optical powers. In such 

case freeform sag contribution can be also utilized to reduce the aberration contribution of the 

surface.   

 

Figure 4-20. The absolute sums of Zernike aberrations generated at each surface and the sum of all Zernike 

aberrations of the system (last bar); (a) the SSF configuration, (b) the FSS configuration.  

In the perturbed system the image performance is deteriorated and therefore the sum of Zernike 

aberrations is changed; see Figure 4-21. The tilt error of 0.1° introduced to the second mirror 

affects the aberration sum in both configurations. In the SSF configuration, the imaging 

performance is deteriorated because of increased aberration contribution from the second 

mirror. Additionally, if the third mirror is fixed the decenter of the beam is introducing the 

large change of the aberration contribution from the third surface. This effect is missing if the 

tilt error in the second mirror is compensated by decentering the third mirror. In turn, if the 

freeform is placed at the first mirror the aberration effect is much less prominent and not 

significantly dependent on the alignment approach.  
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Figure 4-21.The changes of Zernike aberrations sums after introducing the tilt error of 0.1° deg on the second 

mirror in case of; (a) the SSF configuration without the decenter compensation at the third mirror, (b) the SSF 

configuration with the decenter compensation at the third mirror, (c) the FSS configuration without the decenter 

compensation at the third mirror, (d) the FSS configuration with the decenter compensation at the third mirror.  

4.5 Analysis of systems with large FOV 

In the following section, the functionality of the introduced method in assisting the design 

process of a refractive system with the freeform element and the large FOV is demonstrated. 

As an example aberrations of a classical Cooke triplet objective with freeform single lens added 

for transverse image translation [52] is analyzed; see Figure 4-22. In this approach a single 

freeform lens is employed to reduce retro-reflection into an axially symmetric objective [53]. 

In analyzed objective with F# of 15, the focal length of 100 mm and the FOV of 10 deg, the 

freeform single lens shifts the center of the image by 10 mm. The freeform sag is obtained with 

classical optimization procedure and described with Zernike fringe terms up to the 36th term. 
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Figure 4-22. The layout of the analyzed Cooke triplet objective with freeform single lens added for transverse 

image translation. 

The full field display (FFD) of selected Zernike aberration generated at an individual surface 

is a useful tool in the design process of freeform systems with large FOV; see Subsection 3.4.1. 

As an example, components of trefoil from the front and rear surfaces of the freeform lens are 

shown in Figure 4-23. It is noticed that the complete contributions from both surfaces are of 

opposite sign and therefore compensate each other. The contribution from the front surface is 

of intrinsic type, whereas the contribution of the rear surface consists of the intrinsic and 

induced components. The induced component from the rear surface is a metric of the effect of 

incoming aberrations on the refraction on the surface. Thus, it is an additional design variable 

that depends on both freeform surfaces.  

 

Figure 4-23. The full field displays (FFDs) of the trefoil components; (a) from surface 7, which is the front 

surface of the freeform lens, (b) surface 8, which is the rear surface of the freeform lens. 

Consequently, the correction of the freeform in the exit pupil is established due to the balance 

between three components; see Figure 4-24.  
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Figure 4-24. The FFD of the trefoil components in the exit pupil.  

The method can be also utilized to evaluate surface contributions to the maximum distortion in 

the final image, defined as in Subsection 3.4.2; see Figure 4-25. The final image grid in the 

analyzed system with the marked location of the most distorted point is shown. Further, the 

surface contributions to the maximum distortion in the final image plane are demonstrated with 

the bar plot.  

 

Figure 4-25. (a) The final image grid of the analyzed system with the location of the most distorted point 

marked by a red circle. (b) The surface contributions to the maximum distortion in the final image plane. 

As seen, the correction of the distortion is a result of the compensating effect of the intermediate 

image grids after refraction on the front and rear surfaces of the freeform lens, that correspond 

to contributions from surfaces 7 and 8. This can be better illustrated by generating intermediate 

image grids; see Figure 4-26. Consequently, it can be concluded that the freeform element 

requires tighter assembly and manufacturing tolerances than the rest of the system.  
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Figure 4-26. The surface contribution to distortion of the image grid from; (a) surface 7, (b) surface 8. 
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Chapter 5 Conclusions 

In this thesis the novel numerical method for determining surface-by-surface contributions to 

the total wave aberration was introduced. It utilizes data from tracing multiple ray sets to 

determine surface contribution further divided with respect to phenomenological origin into 

intrinsic, induced and transfer components. Each aberration component is determined from a 

separate set of rays.  

The method provides aberration coefficients derived for a single field point. The graphical 

representation of field dependency is possible with full-field displays. In principle no 

constraints are placed on the geometry of an analyzed system. However, in this thesis only 

plane symmetric freeform systems were studied. Additionally, only systems with near-circular 

apertures were considered. This allowed characterizing the obtained aberration components 

with Zernike fringe polynomials. 

Currently available analytical methods, typically used to analyze wave aberrations are; 

coefficients derived from NAT for non-axially symmetric systems and coefficients of  the wave 

aberration function expanded to the sixth order. Additionally, optical design programs provide 

a tool utilizing ray-tracing data to determine the Zernike aberration coefficients in the exit pupil 

of the system. The presented approach introduces features supplementary to the existing tools, 

summarized in Table 5-1. 
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Table 5-1. The list of functionalities of tools for analysis of wave aberrations. 

Functionality NAT The expansion to 

the sixth order 

Zernike 

coefficients in 

the exit pupil 

Zernike surface 

contributions 

Field-dependency + + - - 

Non-axially 

symmetric 

systems 

+ - + + 

Surface 

contribution 

+ + - + 

Not constrained 

to expansion 

order 

- - + + 

Division into 

components 

only intrinsic 

considered 

intrinsic, induced none intrinsic, 

induced, transfer 

 

It was demonstrated that the analysis of Zernike surface contributions provides insights into 

the design process of freeform systems. The design strategy based on identifying relations 

between low and higher-order Zernike aberrations was formulated. This enables the control of 

higher-order Zernike aberrations with low-order Zernike-type freeform surfaces by tracking 

the behavior of aberration components.   
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Appendix A  

Performance comparison of methods allowing for 

communication between Matlab® and Zemax® 

A.1 Possible methods 

Presented is the performance comparison of COM and DDE protocols, which allow for two-

way communication between Matlab® and Zemax®. Both are applicable with the toolboxes 

MZCOM (by Norman G. Worku) and MZDDE (by D.Griffith). First is introduced for versions 

of Zemax® starting with OpticStudio15®, latter is supported for all professional Zemax® 

versions. COM works only for 64 bit versions of Matlab® whereas DDE works uninterrupted 

for 32 bit version experiencing connection breaks when used with 64 bit version. Additionally 

two modes for utilizing COM protocol are compared. The interactive mode placing changes to 

the currently opened copy of OpticStudio15® and standalone mode that creates the copy of the 

file in Matlab® (occupies license key) and operates on it.  

Firstly, methods are tested for time efficiency in modifying a lens file from Matlab®. Secondly, 

to find the efficient way for transferring the ray-tracing data of larger number of rays into 

Matlab® workspace, the COM routine BatchArrayTrace is compared against zArrayTrace 

.mex file* based on DDE protocol. Finally, combined approaches for two-way communication 

are tested. These are COM in standalone mode, COM in interactive mode together with .mex64 

file and DDE with .mex32. All methods are tested for their speed in exchanging the data 

between two programs. 

 

* mex files are functions written in C, compiled to be compatible with MATLAB environment. 
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A.2 Computational speed evaluation 

To compare the performance in changing data in Zemax® file, the time required for placing 

multiple field points in the loop was measured; see Figure A-1. The comparison of two methods 

operating on currently opened copy of Zemax®, shows that COM interactive mode is 

significantly slower than DDE link. The performance of standalone COM exceeds both and 

can be considered as happening with no delay. It nevertheless takes 5 seconds to generate the 

copy of lens file inside Matlab®. Another disadvantage is that the changes cannot be seen in 

the Zemax® user interface making it more difficult for controlling and debugging.      

 

Figure A-1. Comparison of time required to set field points in lens file from Matlab® using different methods. 

For reading the ray-tracing data of larger number of rays into Matlab® workspace, the COM 

routine BatchArrayTrace and zArrayTrace.mex file are compared. This is realized by a 

measuring time required for tracing different numbers of rays to a single surface; see Figure 

A-2(a). On a logarithmic scale it is shown that the larger the amount of rays the larger is the 

benefit of using .mex file. Since, for every surface routines have to be called individually the 

time for tracing 7841 rays (circular grid of 101x101) to different number of surfaces is also 

tested; see Figure A-2(b). It shows again the superior performance of the .mex file. 
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Figure A-2. Comparison of BatchArrayTrace COM routine with zArrayTrace.mex; (a) when tracing large 

number of rays (b) when tracing a fixed number of rays to multiple surfaces. 

Finally the combined approaches were investigated. As the test, the function tracing 7841 rays 

to 6 surfaces, setting varying number of field points, was run respectively with COM 

standalone, COM interactive and the .mex file, and DDE with .mex file; see Figure A-3. It 

shows that the most efficient combination is the last one. However, it has to be noted that it is 

only stable when used with the 32 bit version of Matlab®. If 64 bit version of Matlab® is used, 

combination of the COM interface in the interactive mode for setting field points and .mex file 

for importing ray tracing data, seems to be the best choice. It is impossible to use the .mex file 

with COM in standalone mode. Thus, BatchArrayTrace routine is the only choice for tracing 

large number of rays. Consequently, this is the combination with the poorest performance.  
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Figure A-3. Performance comparison for tracing 7841 rays to 6 surfaces, setting a varying number of field 

points. Tested approaches are COM standalone, COM interactive and the .mex file, and DDE with .mex file 

both on 32bit Matlab®.  

 

Presented investigation of the performance of different methods for two-way communication 

between Matlab® and Zemax® shows the advantage of using the old DDE communication 

protocol and the .mex file. However, it is important to note that DDE connection is stable only 

with 32bit version of Matlab®. If 64bit version is used together with OpticStudio15® or newer 

version of Zemax®, the COM in interactive mode seems to be the best choice. For reading the 

ray tracing data into Matlab® the zArrayTrace.mex shows the best performance leaving COM 

routine BatchArrayTrace far behind. The COM in standalone mode has an advantage of placing 

changes to the copy of OpticStudio® in real time. Nevertheless it requires 5 seconds to first 

generate the copy and it occupies the license key. If standalone mode is used for reading out 

the ray tracing data the only possibility is to use BatchArrayTrace routine which is slower than 

the .mex file.  
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Zusammenfassung 

Die zunehmende Verwendung von optischen Freiformflächen erhöht die Forderung nach 

optischen Designwerkzeugen die für allgemeine Systeme entwickelt wurden. Im Design-

Prozess sind oberflächenbedingte Aberrationsbeiträge von besonderem Interesse. Die 

Erweiterung der Wellenaberrationsfunktion in feld- und pupillen-abhängige Koeffizienten ist 

eine zu diesem Zweck verwendete analytische Methode. Ein alternativer numerischer Ansatz, 

der Daten aus der Verlauf von mehreren Strahlenbündeln verwendet, wird vorgeschlagen. Das 

optische System ist in Segmente des optischen Weges unterteilt, die entlang des Hauptstrahls 

gemessen werden. Oberflächenbeiträge repräsentieren die Änderung der Wellenfront, die 

aufgrund der Propagation durch einzelne Segmente auftritt. Ferner sind die 

Oberflächenbeiträge hinsichtlich ihres phänomenologischen Ursprungs in intrinsische 

induzierte und transferierende Komponenten unterteilt. Jede Komponente wird aus einem 

separaten Strahlenbündel bestimmt. Die vorgeschlagene Methode stellt keine Beschränkungen 

für die Systemgeometrie oder die Apertur bereit. In dieser Arbeit werden jedoch nur ebene 

symmetrische Systeme mit nahezu kreisförmigen Aperturen untersucht. Dies ermöglichte eine 

Charakterisierung der erhaltenen Aberrationskomponenten mit Zernike-Randpolynomen. 

Die Anwendung der vorgeschlagenen Methode im Designprozess der Freiformsysteme wird 

demonstriert. Die Analyse der Zernike-Oberflächenbeiträge liefert wertvolle Erkenntnisse für 

die Auswahl des Startsystems mit dem besten Potenzial zur Korrektur von Aberrationen mit 

Freiformflächen. Außerdem hilft es beim Bestimmen der effektiven Position eines 

Freiformelements in einem System. Folglich ist es möglich, Systeme zu entwerfen, die für 

Zernike-Aberrationen höherer Ordnung korrigiert sind als die für die Freiform-Sag Beiträge 

verwendeten Koeffizienten, die mit demselben Zernike-Polynomsatz beschrieben sind. 
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