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Abstract

Using direct numerical simulations of isotropic turbulence in periodic cubes of several grid sizes, the
largest being 8192 yielding a microscale Reynolds number of 1300, we study the properties of pressure
Laplacian to understand differences in the inertial range scaling of enstrophy density and energy
dissipation. Even though the pressure Laplacian is the difference between two highly intermittent
quantities, it is non-intermittent and essentially follows Kolmogorov scaling, at least for low-order
moments. Using this property, we show that the scaling exponents of local averages of dissipation and
enstrophy remain unequal at all finite Reynolds numbers, though there appears to be a very weak
tendency for the difference to decrease with increasing Reynolds number.

As in other highly correlated systems [1, 2], local” averaging over scales smaller than the system size is often
employed [3, 4] in turbulence to study its statistical structure. Local averages of highly intermittent quantities are
dependent on the averaging scale itself [5-7] and paradigms such as the central limit theorem do not apply.
Properties oflocal averages of energy dissipation [8] (characterizing straining motions) and enstrophy [9]
(characterizing local rotation) are the subject of much debate. The consensus of experimental and numerical
work is that the local averages of these two quantities are different [ 10—16] while theories (with some numerical
support), rooted in the paradigm of small-scale universality [17-22], conclude oppositely.

Here, we reconcile this difference by establishing two specific results. First, we show that the pressure
Laplacian, which engenders the topological asymmetry between dissipation and enstrophy [13, 23-25], assumes
anearly self-similar (i.e. non-intermittent) form in the inertial range (IR); even though the pressure Laplacian is
the difference between two highly intermittent quantities, it is essentially non-intermittent (i.e. scale-invariant)
and roughly follows Kolmogorov scaling. Second, while the pressure [26—28] does constrain the scaling of local
averages of dissipation and enstrophy, the self-similar property of the pressure Laplacian implies that the
exponents remain unequal at all finite Reynolds numbers, though this constraint appears to weaken very slowly
with increasing Reynolds number.

Direct numerical simulations (DNS)

We use a DNS database of isotropic turbulence obtained by solving the incompressible, three-dimensional
Navier—Stokes equations for the components of the turbulent velocity field u;(x, t) withi = x, y, z in a periodic
cube with edge length Ly = 2, spanning a wide range of Reynolds numbers [29]. Taylor microscale Reynolds
numbers up to 1300 were used. The largest DN'S was conducted on a grid size of §192° [22]. A statistically steady
state was obtained by forcing the low Fourier modes [29]. Averages over ten large-eddy turnover times were used
for the analysis; (-) denotes space/time averages.
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Definitions. It is well known in homogeneous turbulence that € = Q + 2v/(9u; /0x; Ou;/0x;), where
€= g(au,» /Ox;j + Ou;j/0x;)* is the turbulent energy dissipation rate per unit mass, v/is the kinematic viscosity of

the fluid and the summation convention is implied; the enstrophy density is given by 2 = v|w|?, where
w = V x uisthevorticity.

Define the local average of dissipation and enstrophy at scale r as

6(x, 1) = éf e(x+x,ndx, Q1) = %j“/ Qx + x/, t)dx/, (1)

r YV

where V, = r’ is a volume centered around x. Taking the divergence of the Navier—Stokes equations at constant
mass density po, we obtain the Poisson equation for the pressure field p, which can then be related via its
Laplacian to eand Qas §2 = ¢ + 2vAp/p,. Averaging this relation over volume of scale r > 0, we get

Q1) = e t) + Ap.(x, 1), )

where Ap, is the locally averaged field of the pressure Laplacian Ap over scale rand is given by the surface
integral, in accordance with Gauss’s theorem, as

Ap.(x,t) = w1 iu,-(x + X/, Huj(x + ¥/, t)ds;. 3)
Po Vr Sr 8x]-
Here, s, denotes the surface around volume V,. For brevity, in what follows, we drop the dependence on (x, #):
for instance, €, = ¢, (x, t). We note that in homogeneous turbulence, forany r > 0, (Ap,) = 0 or equivalently,
(e, = (€,). Buthigher moments of ¢, and (2, can differ.

Results

To build up some intuition, we show in figure 1 all three fields in a small sub-volume of the computational box.
The top row shows quantities without any averaging while the two bottom rows are locally averaged quantities
for two averaging scales r and two different thresholds. The top row displays the typical structure: while the
dissipation layers appear more sheet-like, the local enstrophy arranges itself in a tube-like fashion [9, 22]. This is
afingerprint of the local vortex-stretching, a central building block of three-dimensional turbulence. High-
amplitude shear layers (leading to dissipation) are the result of self-induced strain [30, 31]. With increasing r, the
differences between ¢, and €2, become less consequential, as the panels (f) and (i) show. Figures 1(c), (f) and (i)
show that the isosurfaces of positive amplitude of local pressure Laplacian appear to have a spatial correlation
with local enstrophy. Pressure minima or pressure Laplacian maxima are found in the low dissipation vortex
cores beyond which Ap. and e, tend to be positively correlated, since the isosurfaces of positive amplitude of
local pressure Laplacian have a greater correspondence with local dissipation at larger scales (compare panels (f),
(1) with (d), (g), respectively), in relation to that at the smallest scales (compare panel (¢) with (a)). The pressure
Laplacian isosurfaces of negative amplitude (but same magnitude) are much more sparsely distributed,
indicating a positively skewed field.

By examining the variance, skewness and flatness of the pressure Laplacian Ap,, we now show that it has
attributes of nearly self-similar Kolmogorov-like scaling at high Reynolds numbers. First, figure 2 shows that the
variance of Ap, inIR (n < r < L) follows the power-law, ((Ap,)?) ~ r~% where &, is the second-order scaling
exponent. Kolmogorov’s arguments [32], which do not account for intermittency, imply that §&, = 8/3; the
measured second-order exponent is quite close (see the inset which presents local slopes), with the higher
Reynolds number data showing better conformity. The trend towards intermittency-free scaling of ((Ap,)?)
reported here is consistent with that of the Ap spectrum, reported in [33, 34].

Now, the condition for self-similarity is that the exponent, g; := &, /g, where &, is the scaling exponent of
Ap, atorder g, should be a constant over a range of scales; for Kolmogorov scaling, this ratio must be 4/3. In
figure 3, we plot the local slopes for the second, third and fourth moments in this self-similar format for the
highest Reynolds number considered. Although the behavior at fourth order is less convincing than that of the
second, there exists the tendency to the constant value of 4/3 (within the error bars of 0,), leading to the
conclusion that Ap islikely to be a self-similar quantity following the Kolmogorov scaling at least at low orders.
Note, however, that the fourth moment of Ap, is equivalent to the twelfth moment for velocity differences [4];
this renders fourth-order statistics more sensitive to finite sampling effects, compared to lower orders.

Analogously, the probability density functions (PDFs) of Ap,, normalized by the respective standard
deviation, op, = ((Ap, )?)1/2, collapse for different averaging scales rin the IR, as seen in figure 4, confirming
that Ap, is indeed self-similar. The PDF tails collapse within error bars, but less perfectly than the bulk, possibly
due to finite sampling and finite Reynolds number effects. Furthermore, the PDFs are distinctly non-Gaussian
and positively skewed. The skewness increases with Reynolds number, suggesting that high enstrophy and low
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Figure 1. Isosurface plots of the kinetic energy dissipation rate (a), (d), (g), the local enstrophy (b), (e), (h), and the pressure Laplacian
(0), (f), (i). Data are obtained from the DNS at the highest Reynolds number in a cubic sub-volume with a side length L,/16. Panels (a)—
(c) show the data without spatial averaging at an isosurface level of 1.5 in characteristic units of the DNS. Panels (d)—( f) display the
fields for r = 10natalevel of 1.0; = (v3/(e))!/* is the Kolmogorov length scale of the flow. Panels (g)—(i) display the field at

r = 33natalevel of 0.5. Positive isosurfaces for the pressure Laplacian are shown in yellow and negative ones in red, in panels (c), (f)
and (i). In panel (i) negative contours are indicated by black arrows.
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Figure 2. Variance of the locally averaged pressure Laplacian as a function of the averaging scale r. Dotted line corresponds to the
Kolmogorov mean-field [32] scaling of r~*/>. Inset shows the exponent, &,(r) = d[log((Ap.)*)1/d[logr] versus r/n. The dotted line
corresponds to the self-similar exponent, £, = 8/3.IntheIR, r/n € (25 350) for Ry, = 1300 (filled circles), the least-square fit
exponent, §, = 2.73 £ 0.02.
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Figure 3. Quantities o, := —¢, /g forq = 2,3 and 4, plotted against the averaging scale  for R\ = 1300, where £, is the scaling
exponent of Ap atorder g, ((Ap,)?) ~ r~%. The curves are close to the self-similar Kolmogorov value of —4/3 (dotted line) in IR.
The error bars correspond to 95% confidence intervals obtained from temporal variations of the local slopes using a Student’s-¢
distribution.
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Figure 4. Probability density function (PDF) of the scale averaged pressure Laplacian Ap,, normalized by its standard deviation, oay ,
at Ry = 1300, for different IR separations. Error bars correspond to the standard deviation of P(Ap, /O’Apr) over an ensemble of 16
temporal snapshots over 10 eddy turnover times. The PDFs collapse across the IR within error bars, demonstrating the self-similar
nature of Ap,.

dissipation events (Ap, > 0), are increasingly more probable than the converse (Ap, < 0), over inertial length
scales.

If the skewness of Ap, is positive, as can be seen visually in figure 1 and more quantitatively in figure 4, it
follows that spatial averages of pressure Laplacian and dissipation will be positively correlated. In fact, all
(e (Ap)") > Oform > landn > 1inthelIR. Figure 5 shows, forthem = n = 1 case, the correlation
coefficient, C(¢,, Ap,) = (6 Ap,) /o, 0n,-Ast/n — 0, (€ Ap,) < 0, consistent with the picture that
turbulence is composed of low pressure (or high pressure Laplacian), high enstrophy vortex structures, wrapped
by high dissipation sheets [22, 25, 35, 36]. When the averaging scale rincreases, the average product (¢, Ap,)
eventually becomes positive since Ap, is non-intermittent and remains positively skewed. Interestingly, the
zero-crossings of the two curves in figure 5 occur at about 6nand 87 for Ry, = 1300 and 240, respectively; this is
of the order of the characteristic scale that can be associated with the elementary Burgers vortex stretching
mechanism, the Burgers radius, rg = 47[37]. We find that the zero moves to smaller values as the Reynolds
number increases and saturates at about 57 (see figure 5 inset), which implies that the high-dissipation shear
layer is wrapped as close as possible around the core of the stretched vortex filament at higher Reynolds
numbers, R 2 1000.
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Figure 5. Correlation coefficient between scale averaged dissipation ¢, and scale averaged pressure Laplacian Ap,, as a function of
scale 7. Dashed line at zero given for reference. For r/n > 1, (¢, Ap,) > 0 and increases with Ry. Inset shows the zero-crossing
separation, f, in units of the Kolmogorov length scale, n, where, (¢, Ap, ) = 0,asa function of the Taylor-scale Reynolds number,
R,. With increasing Reynolds number, r decreases, and eventually saturates around the Burgers radius (see text for details).
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Figure 6. Logarithmic derivative of the second order local average of dissipation (e %) with respect to second order local average of
enstrophy (€2), as a function of the averaging scale . The data show a very slow approach towards unity with R in the inertial range.
If the two scaling exponents have to be equal, the ordinate should be unity in IR (marked explicitly for the highest Reynolds number).
The inset shows the local slopes of {¢2) and (Q2) separately at Ry = 1300, and that locally averaged dissipation scales better than
locally averaged enstrophy in the IR. Error bars indicate 95% confidence intervals. The IR is determined using the 4/5ths law.

To see how the positivity of (e’ (Ap,)") in the IR affects the exponents of scale-averaged dissipation and
enstrophy, we average the gth power of both sides of equation (2) and get

q—1 |
Qf) — (el = ((Ap)1) + > 'L((Ap,)mez—my (4)
w = 1 ml(g —m)!

InIR,since ((Ap)?) > 0and ((Ap)™e}) > 0form + n = g, as empirically shown above, we conclude that
() > (). Now assume that ¢, and 2, follow a power law scaling in IR [38], (¢ %) ~ (r/L)"*@ and

Q1) ~ (r/L) ™9, r < L, where 11(q) and 7(q) are independent of R, for all rin the IR and L is the

flow macro-scale. It follows that

T(q) = 1(q). (5)

Figure 6 verifies this expectation for order ¢ = 2, by showing the relative logarithmic derivative of {¢?Z) with that
of (Q2?), at different R,.In the IR, the ratio 1(2)/7(2) < 1 for the Reynolds numbers examined, in agreement
with equation (5). There appears to be a very slow trend towards unity, but the slowness of the approach allows
us to conclude that the inequality holds for all practical Reynolds numbers.
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Conclusions

We have shown that the pressure Laplacian Ap,, which is the difference of spatial averages of two highly
intermittent quantities, namely the enstrophy which quantifies rotational motions and dissipation which
characterizes the strain dominated motions, is a non-intermittent (i.e. scale-invariant) quantity at high Reynolds
numbers. This suggests that rotational and straining motions can be connected statistically in a relatively simple
manner which is not order-dependent. Furthermore, we have established that the statistical asymmetry of Ap,,
results in the uni-directional ordering of the scaling exponents of the moments (e ) and (Q?) as 7(q) > 1(q).
Since the longitudinal and transverse velocity increments can be thought of as being related to dissipation and
enstrophy, respectively [15], it is conceivable that an analogous situation holds for velocity increments. This is an
enticing prospect, since phenomenological models that are usually created for longitudinal increments, for
instance [39, 40], can then be generalized to the velocity increment tensor in an uncomplicated manner.
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