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Abstract
Using direct numerical simulations of isotropic turbulence in periodic cubes of several grid sizes, the
largest being 81923 yielding amicroscale Reynolds number of 1300, we study the properties of pressure
Laplacian to understand differences in the inertial range scaling of enstrophy density and energy
dissipation. Even though the pressure Laplacian is the difference between two highly intermittent
quantities, it is non-intermittent and essentially followsKolmogorov scaling, at least for low-order
moments. Using this property, we show that the scaling exponents of local averages of dissipation and
enstrophy remain unequal at all finite Reynolds numbers, though there appears to be a veryweak
tendency for the difference to decrease with increasing Reynolds number.

As in other highly correlated systems [1, 2], ‘local’ averaging over scales smaller than the system size is often
employed [3, 4] in turbulence to study its statistical structure. Local averages of highly intermittent quantities are
dependent on the averaging scale itself [5–7] and paradigms such as the central limit theoremdonot apply.
Properties of local averages of energy dissipation [8] (characterizing strainingmotions) and enstrophy [9]
(characterizing local rotation) are the subject ofmuch debate. The consensus of experimental and numerical
work is that the local averages of these two quantities are different [10–16]while theories (with some numerical
support), rooted in the paradigmof small-scale universality [17–22], conclude oppositely.

Here, we reconcile this difference by establishing two specific results. First, we show that the pressure
Laplacian, which engenders the topological asymmetry between dissipation and enstrophy [13, 23–25], assumes
a nearly self-similar (i.e. non-intermittent) form in the inertial range (IR); even though the pressure Laplacian is
the difference between two highly intermittent quantities, it is essentially non-intermittent (i.e. scale-invariant)
and roughly followsKolmogorov scaling. Second, while the pressure [26–28] does constrain the scaling of local
averages of dissipation and enstrophy, the self-similar property of the pressure Laplacian implies that the
exponents remain unequal at allfinite Reynolds numbers, though this constraint appears toweaken very slowly
with increasing Reynolds number.

Direct numerical simulations (DNS)

Weuse aDNS database of isotropic turbulence obtained by solving the incompressible, three-dimensional
Navier–Stokes equations for the components of the turbulent velocity field ( )u tx,i with i=x, y, zin a periodic
cubewith edge length L0=2π, spanning awide range of Reynolds numbers [29]. Taylormicroscale Reynolds
numbers up to 1300were used. The largest DNSwas conducted on a grid size of 81923 [22]. A statistically steady
state was obtained by forcing the lowFouriermodes [29]. Averages over ten large-eddy turnover timeswere used
for the analysis; á ñ· denotes space/time averages.
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Definitions. It is well known in homogeneous turbulence that  n= W + ¶ ¶ ¶ ¶( )u x u x2 i j j i , where

 º ¶ ¶ + ¶ ¶n ( )u x u xi j j i2
2 is the turbulent energy dissipation rate per unitmass, ν is the kinematic viscosity of

thefluid and the summation convention is implied; the enstrophy density is given by wnW º ∣ ∣2, where
w = ´ u is the vorticity.

Define the local average of dissipation and enstrophy at scale r as

 ò ò= + ¢ ¢ W = W + ¢ ¢( ) ( ) ( ) ( ) ( )t
V

t t
V

tx x x x x x x x,
1

, d , ,
1

, d , 1r
r V

r
r Vr r

whereVr=r3 is a volume centered around x . Taking the divergence of theNavier–Stokes equations at constant
mass density ρ0, we obtain the Poisson equation for the pressure field p, which can then be related via its
Laplacian to ò andΩ as  n rW = + Dp2 0. Averaging this relation over volume of scale r�0, we get

W = + D( ) ( ) ( ) ( )t t p tx x x, , , , 2r r r

whereDpr is the locally averaged field of the pressure LaplacianDp over scale r and is given by the surface
integral, in accordance withGauss’s theorem, as

ò
n
r

D º
¶
¶

+ ¢ + ¢( ) ( ) ( ) ( )p t
V x

u t u t sx x x x x,
2 1

, , d . 3r
r s j
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Here, sr denotes the surface around volumeVr. For brevity, inwhat follows, we drop the dependence on ( )tx, :
for instance,  º ( )tx,r r .We note that in homogeneous turbulence, for any  áD ñ =r p0, 0r or equivalently,
á ñ = áW ñr r . But highermoments of r and Wr can differ.

Results

To build up some intuition, we show infigure 1 all threefields in a small sub-volume of the computational box.
The top row shows quantities without any averagingwhile the two bottom rows are locally averaged quantities
for two averaging scales r and two different thresholds. The top rowdisplays the typical structure: while the
dissipation layers appearmore sheet-like, the local enstrophy arranges itself in a tube-like fashion [9, 22]. This is
afingerprint of the local vortex-stretching, a central building block of three-dimensional turbulence. High-
amplitude shear layers (leading to dissipation) are the result of self-induced strain [30, 31].With increasing r, the
differences between r andΩr become less consequential, as the panels (f) and (i) show. Figures 1(c), (f) and (i)
show that the isosurfaces of positive amplitude of local pressure Laplacian appear to have a spatial correlation
with local enstrophy. Pressureminima or pressure Laplacianmaxima are found in the low dissipation vortex
cores beyondwhichDpr and r tend to be positively correlated, since the isosurfaces of positive amplitude of
local pressure Laplacian have a greater correspondence with local dissipation at larger scales (compare panels (f),
(i)with (d), (g), respectively), in relation to that at the smallest scales (compare panel (c)with (a)). The pressure
Laplacian isosurfaces of negative amplitude (but samemagnitude) aremuchmore sparsely distributed,
indicating a positively skewed field.

By examining the variance, skewness andflatness of the pressure LaplacianDpr , we now show that it has
attributes of nearly self-similar Kolmogorov-like scaling at highReynolds numbers. First,figure 2 shows that the
variance ofDpr in IR (h  r L) follows the power-law, á D ñ ~ x-( )p rr

2 2 where ξ2 is the second-order scaling
exponent. Kolmogorov’s arguments [32], which do not account for intermittency, imply that ξ2=8/3; the
measured second-order exponent is quite close (see the inset which presents local slopes), with the higher
Reynolds number data showing better conformity. The trend towards intermittency-free scaling of á D ñ( )pr

2

reported here is consistent with that of theDp spectrum, reported in [33, 34].
Now, the condition for self-similarity is that the exponent, s x≔ qq q , where ξq is the scaling exponent of

Dpr at order q, should be a constant over a range of scales; for Kolmogorov scaling, this ratiomust be 4/3. In
figure 3, we plot the local slopes for the second, third and fourthmoments in this self-similar format for the
highest Reynolds number considered. Although the behavior at fourth order is less convincing than that of the
second, there exists the tendency to the constant value of 4/3 (within the error bars ofσq), leading to the
conclusion thatDpr is likely to be a self-similar quantity following theKolmogorov scaling at least at low orders.
Note, however, that the fourthmoment ofDpr is equivalent to the twelfthmoment for velocity differences [4];
this renders fourth-order statisticsmore sensitive tofinite sampling effects, compared to lower orders.

Analogously, the probability density functions (PDFs) ofDpr , normalized by the respective standard

deviation, s = á D ñD ( )pp r
2 1 2

r
, collapse for different averaging scales r in the IR, as seen infigure 4, confirming

thatDpr is indeed self-similar. The PDF tails collapse within error bars, but less perfectly than the bulk, possibly
due tofinite sampling andfinite Reynolds number effects. Furthermore, the PDFs are distinctly non-Gaussian
and positively skewed. The skewness increases with Reynolds number, suggesting that high enstrophy and low

2
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Figure 1. Isosurface plots of the kinetic energy dissipation rate (a), (d), (g), the local enstrophy (b), (e), (h), and the pressure Laplacian
(c), (f), (i). Data are obtained from theDNS at the highest Reynolds number in a cubic sub-volumewith a side length L0/16. Panels (a)–
(c) show the data without spatial averaging at an isosurface level of 1.5 in characteristic units of theDNS. Panels (d)–( f) display the
fields for r=10η at a level of 1.0; h n= á ñ( )3 1 4 is theKolmogorov length scale of theflow. Panels (g)–(i)display the field at
r=33η at a level of 0.5. Positive isosurfaces for the pressure Laplacian are shown in yellow and negative ones in red, in panels (c), (f)
and (i). In panel (i)negative contours are indicated by black arrows.

Figure 2.Variance of the locally averaged pressure Laplacian as a function of the averaging scale r. Dotted line corresponds to the
Kolmogorovmean-field [32] scaling of r−8/3. Inset shows the exponent, x = á D ñ( ) [ ( ) ] [ ]r p rd log d logr2

2 versus hr . The dotted line
corresponds to the self-similar exponent, ξ2=8/3. In the IR, h Î ( )r 25 350 for =lR 1300 (filled circles), the least-square fit
exponent, ξ2=2.73±0.02.

3
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dissipation events D >( )p 0r , are increasinglymore probable than the converse D <( )p 0r , over inertial length
scales.

If the skewness ofDpr is positive, as can be seen visually infigure 1 andmore quantitatively infigure 4, it
follows that spatial averages of pressure Laplacian and dissipationwill be positively correlated. In fact, all
á D ñ >( )p 0r
m

r
n form�1 and n�1 in the IR. Figure 5 shows, for them=n=1 case, the correlation

coefficient,   s sD º á D ñ D( )p p,r r r r pr r
. As h  á D ñ <r p0, 0r r , consistent with the picture that

turbulence is composed of low pressure (or high pressure Laplacian), high enstrophy vortex structures, wrapped
by high dissipation sheets [22, 25, 35, 36].When the averaging scale r increases, the average product á D ñpr r

eventually becomes positive sinceDpr is non-intermittent and remains positively skewed. Interestingly, the
zero-crossings of the two curves infigure 5 occur at about 6η and 8η for =lR 1300 and 240, respectively; this is
of the order of the characteristic scale that can be associatedwith the elementary Burgers vortex stretching
mechanism, the Burgers radius, rB≈4η [37].Wefind that the zeromoves to smaller values as the Reynolds
number increases and saturates at about 5η (see figure 5 inset), which implies that the high-dissipation shear
layer is wrapped as close as possible around the core of the stretched vortexfilament at higher Reynolds
numbers,Rλ 1000.

Figure 3.Quantities s x-≔ qq q for q=2, 3 and 4, plotted against the averaging scale r forRλ=1300, where ξq is the scaling
exponent ofDpr at order q, á D ñ ~ x-( )p rr

q q. The curves are close to the self-similar Kolmogorov value of−4/3 (dotted line) in IR.
The error bars correspond to 95% confidence intervals obtained from temporal variations of the local slopes using a Student’s-t
distribution.

Figure 4.Probability density function (PDF) of the scale averaged pressure LaplacianDpr , normalized by its standard deviation, sDpr ,
at =lR 1300, for different IR separations. Error bars correspond to the standard deviation of  sD D( )pr pr over an ensemble of 16
temporal snapshots over 10 eddy turnover times. The PDFs collapse across the IRwithin error bars, demonstrating the self-similar
nature ofDpr .
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To see how the positivity of á D ñ( )pr
m

r
n in the IR affects the exponents of scale-averaged dissipation and

enstrophy, we average the qth power of both sides of equation (2) and get

 åáW ñ - á ñ = á D ñ +
-

á D ñ
=

-
-( ) !

!( )!
( ) ( )p

q

m q m
p . 4r

q
r
q

r
q

m

q

r
m

r
q m

1

1

In IR, since á D ñ( )p 0r
q and  á D ñ( )p 0r

m
r
n form+n=q, as empirically shown above, we conclude that

áW ñ á ñr
q

r
q . Now assume that r and Wr follow a power law scaling in IR [38],  ~ m-⟨ ⟩ ( ) ( )/r Lr

q q and
W ~ t-⟨ ⟩ ( ) ( )/r Lr

q q , r L, where m ( )q and τ(q) are independent of lR for all r in the IR and L is the
flowmacro-scale. It follows that

t m( ) ( ) ( )q q . 5

Figure 6 verifies this expectation for order q=2, by showing the relative logarithmic derivative of á ñr
2 with that

of áW ñr
2 , at different lR . In the IR, the ratioμ(2)/τ(2)<1 for the Reynolds numbers examined, in agreement

with equation (5). There appears to be a very slow trend towards unity, but the slowness of the approach allows
us to conclude that the inequality holds for all practical Reynolds numbers.

Figure 5.Correlation coefficient between scale averaged dissipation r and scale averaged pressure LaplacianDpr , as a function of
scale r. Dashed line at zero given for reference. For h á D ñ >r p1, 0r r and increases with lR . Inset shows the zero-crossing
separation, *r , in units of theKolmogorov length scale, η, where,

* *
á D ñ =p 0r r , as a function of the Taylor-scale Reynolds number,

lR .With increasing Reynolds number, *r decreases, and eventually saturates around the Burgers radius (see text for details).

Figure 6. Logarithmic derivative of the second order local average of dissipation á ñr
2 with respect to second order local average of

enstrophy áW ñr
2 , as a function of the averaging scale r. The data show a very slow approach towards unity with lR in the inertial range.

If the two scaling exponents have to be equal, the ordinate should be unity in IR (marked explicitly for the highest Reynolds number).
The inset shows the local slopes of á ñr

2 and áW ñr
2 separately at =lR 1300, and that locally averaged dissipation scales better than

locally averaged enstrophy in the IR. Error bars indicate 95% confidence intervals. The IR is determined using the 4/5ths law.
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Conclusions

Wehave shown that the pressure LaplacianDpr , which is the difference of spatial averages of two highly
intermittent quantities, namely the enstrophywhich quantifies rotationalmotions and dissipationwhich
characterizes the strain dominatedmotions, is a non-intermittent (i.e. scale-invariant) quantity at high Reynolds
numbers. This suggests that rotational and strainingmotions can be connected statistically in a relatively simple
mannerwhich is not order-dependent. Furthermore, we have established that the statistical asymmetry ofDpr ,
results in the uni-directional ordering of the scaling exponents of themoments á ñr

q and áW ñr
q as τ(q)�μ(q).

Since the longitudinal and transverse velocity increments can be thought of as being related to dissipation and
enstrophy, respectively [15], it is conceivable that an analogous situation holds for velocity increments. This is an
enticing prospect, since phenomenologicalmodels that are usually created for longitudinal increments, for
instance [39, 40], can then be generalized to the velocity increment tensor in an uncomplicatedmanner.
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