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NANO EXPRESS Open Access

Complexation with C60 Fullerene Increases
Doxorubicin Efficiency against Leukemic
Cells In Vitro
Anna Grebinyk1,2,3, Svitlana Prylutska2, Sergii Grebinyk1, Yuriy Prylutskyy2, Uwe Ritter4, Olga Matyshevska2,
Thomas Dandekar3 and Marcus Frohme1*

Abstract

Conventional anticancer chemotherapy is limited because of severe side effects as well as a quickly evolving
multidrug resistance of the tumor cells. To address this problem, we have explored a C60 fullerene-based nanosized
system as a carrier for anticancer drugs for an optimized drug delivery to leukemic cells.
Here, we studied the physicochemical properties and anticancer activity of C60 fullerene noncovalent complexes
with the commonly used anticancer drug doxorubicin. C60-Doxorubicin complexes in a ratio 1:1 and 2:1 were
characterized with UV/Vis spectrometry, dynamic light scattering, and high-performance liquid chromatography-
tandem mass spectrometry (HPLC-MS/MS). The obtained analytical data indicated that the 140-nm complexes were
stable and could be used for biological applications. In leukemic cell lines (CCRF-CEM, Jurkat, THP1 and Molt-16),
the nanocomplexes revealed ≤ 3.5 higher cytotoxic potential in comparison with the free drug in a range of
nanomolar concentrations. Also, the intracellular drug’s level evidenced C60 fullerene considerable nanocarrier
function.
The results of this study indicated that C60 fullerene-based delivery nanocomplexes had a potential value for
optimization of doxorubicin efficiency against leukemic cells.
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Introduction
The main efforts in cancer research aim at finding more
powerful and selective ways for direct elimination of can-
cer cells. This task can be addressed with means of nano-
biotechnology. Recent progress in this field has arisen
interest in a carbon nanostructure — C60 fullerene [1] that
not only exhibits unique physicochemical properties [2, 3],
biological activity [4–10] and antioxidant behavior [11–
14], but also possesses a significant potential to serve as a
nanocarrier for drug delivery into cancer cells [15–25]
(here consistently abbreviated as “C60”).
The anticancer anthracycline chemotherapeutic drug

Doxorubicin (here abbreviated consistently as “Dox”) is
one of the first candidates for a more targeted

nanodelivery due to life-threatening cardiotoxicity and
other serious side effects [25, 26]. The main mechanism
of Dox toxicity against cancer cells is its intercalation
into nuclear DNA followed by inhibition of topoisomer-
ase activity, DNA replication, and repair [26–28]. But
Dox’s side effects on cardiomyocytes are considered to
be determined by another mechanism, mainly,
iron-related reactive oxygen species formation [27, 28].
The combination of C60 antioxidant potential [2, 11, 13]
and its ability for drug delivery [24, 25] makes the nano-
structure very attractive for anticancer therapy.
Complexation of Dox with nanostructures increases

the drug’s size, both improving its retention in the or-
ganism and prolonging the therapeutic activity [29, 30].
To develop an applicable nanosystem for a successful
anticancer drug delivery, previous studies focused on
aspects regarding stability, biocompatibility, biodistribu-
tion and functionality [29–33].
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A coupling of Dox and C60 for a passive targeting of can-
cer cells can be achieved by covalent linkage [15–17, 23] or
by noncovalent interactions [18–22]. A complex of C60 with
two amide-linked Dox molecules showed the same cytotox-
icity against human breast cancer MCF-7 cells as the free
drug [16]. When Dox was bound to C60 through a carba-
mate linker, it exhibited no change in antitumor efficacy
but had no systemic toxicity in a murine tumor model [17].
When one or two Dox molecules were anchored on pegy-
lated C60 particles through a urethane type bond, the com-
plex exhibited even a delayed antiproliferative effect on
MCF-7 cells [23].
For noncovalent complexation of the aromatic Dox

molecule with the polyaromatic surface of C60, the π-π
stacking effect is responsible. In a pioneering attempt,
Evstigneev et al. [19] showed a simple and fast method
of C60 noncovalent complexation with Dox in water [19]
and in physiological solution [20]. The proposed nano-
system was shown to have higher toxicity compared with
the free drug against various human tumor cell lines in
vitro and mice Lewis lung carcinoma in vivo [21, 22]. In
another approach, an antimicrobial effect and the
applicability for in vivo imaging were shown [18].
The aim of the presented research is to assess the

physicochemical properties of the C60-Dox complex
formed after noncovalent interaction of the components,
its intracellular accumulation and сytotoxic potential
against human leukemic cells lines.

Methods/Experimental
Chemicals
RPMI 1640 liquid medium, phosphate-buffered saline
(PBS), fetal bovine serum (FBS), penicillin/streptomycin
and L-glutamin were obtained from Biochrom (Berlin,
Germany). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetra-
zolium bromide (MTT) and Hoechst 33342 were obtained
from Sigma-Aldrich Co. (St-Louis, USA). Dimethylsulfox-
ide (DMSO), sodium chloride, acetonitrile, formic acid and
trypan blue from Carl Roth GmbH + Co. KG (Karlsruhe,
Germany) were used.

C60 and C60-Dox Complex Synthesis
The pristine C60 aqueous colloid solution was prepared
by C60 transfer from toluene to water using continuous
ultrasound sonication as described by Ritter et al. [34]
The obtained C60 water colloid solution had a final
concentration of 150 μg/ml with 99% purity, stability
and homogeneity and an average nanoparticle’s size of
100 nm [34, 35].
Dox (“Doxorubicin-TEVA”, Pharmachemie B.V., Utrecht,

Netherlands) was dissolved in physiological solution at an
initial concentration of 150 μg/ml.
A C60-Dox complex was prepared according to the

protocol [20]. Briefly, C60 and Dox solutions were mixed

in 1:1 or 2:1 weight ratio. The mixture was treated in the
ultrasonic disperser for 30 min and stirred magnetically
for 24 h at room temperature. The final concentration of
both C60 and Dox in the C60-Dox 1:1 complex was
75 μg/ml. The final concentration of C60 and Dox in the
C60-Dox 2:1 complex was 100 μg/ml and 50 μg/ml, re-
spectively. The unbound drug was washed out with the
Pur-A-LyzerTM Midi 1000 Dialysis Kit Sigma-Aldrich
Co. (St. Louis, USA). The stability (ζ-potential value) and
size distribution (hydrodynamic diameter) [20, 36–39] of
complexes were systematically checked and shown to be
practically unchanged after 6 months of storage in
physiological saline solution. The working concentration
of C60-Dox complexes in the probes was presented ac-
cording to Dox-equivalent concentration in the range of
0.1–100 μM purposely to compare the effect of the
complexes with the effect of free drug in the same
concentration.

High-Performance Liquid Chromatography-Tandem Mass
Spectrometry
Mass spectrometry of the C60-Dox complexes after chro-
matographic separation was achieved with a tandem quad-
rupole mass spectrometer LCMS-8040, equipped with an
electrospray ionization (ESI) source (Shimadzu, Kyoto,
Japan) coupled to a Nexera high-performance liquid chro-
matography (HPLC) system. The latter used an Eclipse
XDB-C18 100mm× 4.6mm, 3 μM column (Agilent, Santa
Clara, USA) with an isocratic mobile phase of acetonitrile
and 0.1% formic acid water solution (80:20, v/v) at a flow
rate of 0.3ml/min. The chromatographic reverse phase
conditions and optimized MS/MS parameters are presented
in Table 1. For identification and quantification, the mo-
lecular ion of Dox was chosen. HPLC-ESI-MS/MS analysis
was performed in positive mode by using multiple reaction
monitoring (MRM) regime that provides the best sensitivity
and accuracy of measurements. After MS/MS-optimization,
a unique MRM transition that includes precursor and char-
acteristic product ions was acquired and used for further
identification and quantification. The protonated Dox
([M+H]+, 544.2m/z) was used as a precursor ion with the
most abundant fragment ions of 130.2 and 361.1m/z.
For data processing, the software LabSolutions HPLC

-MS/MS (Shimadzu, Kyoto, Japan) was used. Other
parameters were tuned automatically.
Dox calibration standards from 0.005 to 5 μM were pre-

pared from a 1.85mM water stock solution. The standards
were stored in the dark at 4 °C. The calibration curves
were plotted with 1/X weighting, r2 = 0.99463. The limits
of detection (LOD) and quantification (LOQ) were de-
fined according to LOD = 3.3 × s/Slope and LOQ= 10 × s/
Slope, respectively, where s is the standard deviation of
the regression line.
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Spectroscopic and Fluorometric Analysis
The absorbance and fluorescence spectra of the free Dox
and C60-Dox complex were measured at the following
parameters: (1) absorbance — wavelength range 400–
550 nm, wavelength step size 5 nm, number of flashes
per well 25; (2) fluorescence — λex = 470 nm, wavelength
range 500–800 nm, wavelength step size 2 nm, number
of flashes per well 25. A volume of 100 μl of the studied
solutions was measured in the 96-well plates Sarstedt
(Nümbrecht, Germany) with a multimode microplate
spectrometer Tecan Infinite M200 Pro (Männedorf,
Switzerland).

Dynamic Light Scattering
C60-Dox complex size distribution was evaluated with a
Zetasizer Nano S (Malvern Instruments, UK) equipped
with a He-Ne laser (633 nm). Data were recorded at 37 °C
in backscattering modus at a scattering angle of 2θ = 173°.

Cell Culture
The human cancer T-cell lines of leucosis origin
CCRF-CEM (ACC 240), Jurkat (ACC 282), and Molt-16
(ACC 29) were purchased from the Leibniz Institute
DSMZ-German Collection of Microorganisms and Cell
Cultures (Deutsche Sammlung von Mikroorganismen
und Zellkulturen). The THP1 was kindly provided by
Dr. Sofia Cortes (New University of Lisbon, Portugal).

Cells were maintained in RPMI 1640 medium supple-
mented with 10% fetal bovine serum, 1% penicillin/
streptomycin, and 2mM glutamine, using 25 cm2 flasks
at a 37 °C with 5% CO2 in a humidified incubator Binder
(Tuttlingen, Germany). The number of viable cells was
counted upon 0.1% trypan blue staining with a Roche
Cedex XS Analyzer (Basel, Switzerland).

Cell Viability
104cells/well were cultured in 96-well cell culture plates
Sarstedt (Nümbrecht, Germany) for 24 h. The cell culture
medium was replaced by a drug-supplemented medium.
Cells were incubated in the presence of varying concentra-
tions of free Dox or C60-Dox complex. After 24, 48, and
72 h of incubation, cell viability was determined with the
MTT reduction assay [40]. Briefly, 10 μl of MTT solution
(5mg/ml in PBS) was added to each well and cells were in-
cubated for 2 h at 37 °C. The culture medium was then re-
placed with 100 μl of DMSO, and diformazan formation was
determined by measuring absorption at λ= 570 nm with the
microplate reader Tecan Infinite M200 Pro (Männedorf,
Switzerland). Curve fitting and calculation of the half-max-
imal inhibitory concentration (IC50) values were done using
specialized software GraphPad Prism 7 (GraphPad Software
Inc., USA). Briefly, individual concentration-effect curves
were generated by fitting the logarithm of the tested com-
pound concentration versus corresponding normalized per-
cent of cell viability values using nonlinear regression.

Fluorescent Microscopy
CCRF-CEM cells were seeded in 6-well plates Sarstedt
(Nümbrecht, Germany) at a cell density of 2 × 105 cells/
well in 2 ml of culture medium and incubated for 24 h.
Then, cells were treated with 1 μM free Dox or C60-Dox
complex during 1, 3, and 6 h and washed with PBS.
Visualization was performed with a Fluorescence Micro-
scope Keyence BZ-9000 BIOREVO (Osaka, Japan)
equipped with red (λex = 480 nm, λem = 600 nm) filter
and a respective acquisition software Keyence BZ-II
Viewer (Osaka, Japan).

Flow Cytometry
CCRF-CEM cells (2 × 105/well, 2 ml) were seeded in
6-well plates, incubated for 24 h, and then treated with
1 μM free and C60 bound Dox. After 1, 3, and 6 h incu-
bation, the cells were harvested, washed with PBS, and
analyzed with the flow cytometer BD FACSJazz™
(Singapore). A minimum of 2 × 104 cells per sample
were acquired and analyzed with the BD FACS™ software
(Singapore).

Statistics
All experiments were carried out with a minimum of
four replicates. Data analysis was performed with the use

Table 1 HPLC-ESI-MS/MS conditions for analysis of Dox

Chromatographic conditions

Column Agilent Eclipse XDB-C18

Column temperature 40 °C

Mobile phase Acetonitrile, 0.1% formic acid in H2O
(80:20, v:v)

Flow rate 0.3 ml/min

Run time 17 min

Injection volume 3 μl

MS/MS conditions

Ionization source ESI

• Desolvation line
temperature

250 °C

• Heat block temperature 400 °C

Target molecular ion 544.2 [M]+ m/z

Product ions 130.2, 361.1 m/z

Time window 0–17 min

Dwell time 0.2 s

Interface voltage 4.5 kV

Nebulizing gas flow 3 l/min

Drying gas flow 15 l/min

LOD 0.005 μM

LOQ 0.015 μM
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of the GraphPad Prism 7 (GraphPad Software Inc.,
USA). Paired Student’s t tests were performed. Differ-
ence values p < 0.05 were considered to be significant.

Results and Discussion
HPLC-MS/MS Analysis of C60-Dox Complexes
For chromatographic separation we used the reverse-
phase conditions expecting that during the separation
process, hydrophobic C60 molecules are retained on the
column much stronger than those of the more polar
Dox [41]. Elution with the polar mobile phase should
evidently cause decomposition of the complex and re-
lease of free Dox that possesses higher affinity to mobile
phase and can be detected by mass spectrometry.
To confirm the presence of the complex in solution, a

concentration of 1 μM Dox was chosen as an optimal
for analytical analysis. Under isocratic flow conditions,
the retention time for free Dox and Dox as a component
of the complexes with C60 was different — 11.66 and
9.44 min, respectively (Fig. 1). In addition, the chroma-
tography peaks of Dox released from the complexes
were broader and with observed “peak tailing”. Detected
shift in retention times as well as different pick shapes
indicates that decomposition of C60-Dox conjugates on
the column fullerene molecules that possess higher

affinity to the C18 column. Therefore, nanostructure oc-
cupies a part of the active binding sites and interferes
Dox’s binding to those sites properly, thereby affecting
separation process. That is resulted in shorter retention
(reduced time required for Dox to go through the col-
umn) as well as peak bordering and tailing for Dox re-
leased from the complex as compared to free drug. A
very similar phenomenon was observed by Lie et al. [42]
during chromatographic separation of C60 noncovalent
complexes with pullulan. The differences in chromato-
grams of the free Dox and those released from the com-
plexes evidently pointed out on the presence of C60-Dox
complexes in solution.

Spectroscopic and Fluorometric Analysis
The optical properties of Dox are determined by elec-
tron transition in π-complexed system of its aromatic
rings and ketone groups [43]. The typical absorption
spectrum of Dox lies in the wavelengths of λ < 600 nm
with a broad band at 480 nm (Fig. 2a). The UV/Vis
absorption spectrum of pristine C60 water colloidal solu-
tion has three typical absorption bands with maxima at
220, 265 and 350 nm and a long minor broad tail up to
the red region of the visible light [34, 44]. Therefore, the
respective control spectra of free C60 were subtracted
from complex’s spectra. The observed absorption spectra
of both 50 μM complexes were similar to those of free
50 μM Dox, but a 30% hypochromic effect was observed
(Fig. 2a) indicating a Dox fixation on the C60 surface due
to π-π stacking interactions.
The long wavelength absorption maximum of Dox

(λ = 480 nm) was used as an excitation wavelength for
tracking its fluorescence. The fluorescence spectrum
exhibits one broad band that consists of three peaks
at 560, 594 and 638 nm with a maximum around 594
nm (Fig. 2b) [43], whereas C60 has no detectable fluores-
cence at this spectral band. C60-Dox complexes’ fluores-
cence was estimated in a series of dilutions with
Dox-equivalent concentration from 3 to 50 μM. Regard-
less of dilution, the fluorescence of Dox (λex = 480 nm,
λem = 594 nm) in the complexes was quenched by C60

moieties (Fig. 2b). Thus, the fluorescence of Dox in both
complexes at 3 μM Dox-equivalent concentration ap-
peared to be quenched by 50%. The observed Dox fluores-
cence quenching is attributed to the strong electron-
accepting capability of C60 [3] and intramolecular
excited-state energy transfer typical for noncovalent Dox
complexes [18, 36, 45], indicating on the close spatial
proximity of the components.

Size Distribution Analysis by Dynamic Light Scattering
The size and stability of a nanoparticulate anticancer
drug is substantially dependent on the cell culture
medium composition, ionic strength and protein

Fig. 1 Multiple reaction monitoring chromatograms of free Dox
(1 μM), C60-Dox 1:1 and C60-Dox 2:1 (1 μM Dox-equivalent
concentration) complexes under isocratic flow (acetonitrile, 0.1%
formic acid in H2O, 80:20, v:v), precursor → product ions transition:
544.2→ 130.2 and 361.1 m/z; a.u. arbitrary units
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concentration. The average hydrodynamic diameter of
1 μM C60-Dox 1:1 and 2:1 complexes in physiological
saline solution (0.9% NaCl) was found to be 135 ± 5
nm and 134 ± 6 nm, respectively, matching the data of
previous investigations [20]. To estimate the stability
in cell culture medium, 1-μM C60-Dox complexes
were incubated at 37 °C for 72 h in RPMI supple-
mented with 10% FBS. The pattern of particle size
distribution in this medium (Fig. 3) is attributed to
the high protein content as well as its probable aggre-
gation [46, 47].
The dynamic light scattering data on 1 μM C60-Dox

1:1 and 2:1 nanocomplex’s hydrodynamic diameter
distribution in FBS-supplemented cell culture showed
that their size was 138 ± 6 nm and 139 ± 5 nm when
measured immediately (Fig. 3a) and 146 ± 4 nm and
144 ± 5 nm after 72 h of incubation (Fig. 3b),
respectively.
The detected stability of the maximum (around 140

nm) indicated that there was no additional aggregation
of the C60-Dox complexes during a prolonged incuba-
tion in FBS-supplemented cell culture medium which
confirmed their suitability for in vitro studies.

Cell Viability
Viability of human leukemic cells of different lines was
estimated by MTT test at 24, 48, and 72 h of incubation
in the presence of C60-Dox complexes as well as of free
Dox separately at equivalent concentrations. C60 alone at
concentrations equivalent to those in the complexes had
no effect on leukemic cells viability (data not shown).
Figure 4 presents time- and concentration-dependent

decrease of leukemic cells viability under Dox treatment.
The drug was shown to exhibit toxicity against leukemic
cells in the nanomolar range. The sensitivity of leukemic
cells to the Dox was found to follow the order
Molt-16 ˃ THP1 ˃ Jurkat ˃ CCRF-CEM (less sensitive).
Under action of 100 nM Dox, the viability of

CCRF-CEM cells was decreased to 84 ± 7, 50 ± 4 and 34
± 7% compared to the control at 24, 48 and 72 h, re-
spectively. The comparable pattern of 100 nM Dox toxic
effect was found in Jurkat cells. The viability of THP1
cells after treatment with 100 nM Dox cells was found to
be 50 ± 4, 47 ± 5, and 13 ± 4% at 24, 48 and 72 h, respect-
ively. Half-maximal inhibitory Dox concentrations
(IC50) for CCRF-CEM, THP1 and Jurkat cells at 72 h of
incubation were estimated to be 80 ± 9, 43 ± 5 and 38 ±

a

b

Fig. 2 Optical characterization of complexes. Optical density spectra of free Dox and C60-Dox complexes (a). Fluorescence emission spectra of
free Dox and C60-Dox complexes at Dox-equivalent concentration from 3 to 50 μM (b); a.u. arbitrary units
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6 nM, respectively. These data correspond to literature
data [48, 49]. Molt-16 cells appeared to be the most sen-
sitive to the drug since its toxic effect was detected in
the range from 1 to 25 nM within all periods of cell in-
cubation. The viability of Molt-16 cells treated with 5
nM Dox was decreased to 75 ± 4, 28 ± 4 and 18 ± 4% of
that of control at 24, 48 and 72 h, respectively, and the
value of IC50 at 72 h was equal to only 2.0 nM. The
similar high sensitivity of Molt-16 cells with 10 times
more intensive apoptosis induction in comparison with
Jurkat cells under treatment of a herbal alkaloid was pre-
viously reported by Cai et al. [50].
Cells treated with free Dox were used as a control to

assess the viability under action of C60-Dox complexes
at the equivalent doses of the drug. The value of IC50
for the free Dox and C60-Dox complexes was calculated
for each time point and cell line and is listed in Fig. 4.
It was shown that both C60-Dox complexes possessed

higher toxic potential compared to the free Dox against
human leukemic cell lines (Fig. 4).
In summary, our numerous experiments showed for

the four cell lines a variety of enhanced toxicities up to
3.5-fold. C60-Dox 1:1 complex has shown higher toxicity
in comparison with 2:1 complex. The less pronounced

effect (IC50 decrease on ≥ 2.5 times compared with that
for free Dox) of the 2:1 complex can be attributed to the
higher concentration of C60 as its component. Due to its
antioxidant activity [11, 13], excess of C60 can protect
cells against Dox-associated oxidative stress [27].

Intracellular Accumulation of Free Dox and C60-Dox
Complexes
To investigate a potential correlation of the enhanced
toxic effect of C60-Dox complexes with a more effective
intracellular drug accumulation, the cellular uptake of
free Dox and C60-Dox was studied. Since Dox possesses
strong absorption and fluorescence in the visible spectral
region [43, 45] (Fig. 2), tracking of Dox-complexes is
possible with non-invasive direct fluorescent-based tech-
niques. CCRF-CEM cells were incubated in the presence
of 1 μM Dox or C60-Dox complexes in a drug-equivalent
concentration, examined with fluorescent microscopy
and subjected to flow cytometry to quantify the intracel-
lular level of accumulated drug after 1-, 3- and 6-h treat-
ment (Fig. 5). The mean fluorescence intensity of each
sample was calculated from logarithmic FACS histo-
grams by the value of respective Dox red fluorescent sig-
nal (λex = 488 nm, λem = 585/29 nm) and presented in

a

b

Fig. 3 Hydrodynamic size (diameter, nm) of 1 μM С60-Dox complexes in RPMI cell culture medium supplemented with 10% FBS at 0 (a) and 72-h
(b) incubation. Intensity (%) percentage of all scattered light intensity
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Table 2. Autofluorescence of untreated cells was used as
a negative control (Fig. 5a).
Time-dependent accumulation of 1 μM Dox was esti-

mated by fluorescence intensity enhancement (Fig. 5,
Table 2). The fluorescence microscopy images illustrate
that C60-Dox complexes were internalized faster than
free drug as evidenced by much brighter intracellular
fluorescence (Fig. 5b). The mean fluorescent intensities
of the CCRF-CEM cells, treated with 1:1 C60-Dox
complex at 1 μM Dox-equivalent concentration, were in-
creased in 1.5, 1.7 and 2.2 times compared to free Dox
at 1, 3 and 6 h, respectively. 2:1 C60-Dox complex exhib-
ited delayed intracellular drug accumulation reaching
the same level as 1:1 complex at 6 h (Fig. 5, Table 2).
The obtained data demonstrated that Dox complexation

with C60 promoted the entry into the cells but did not
affect its localization. The control staining of studied cells

with DNA binding dye Hoechst 33342 revealed its coloca-
lization with Dox signal (data not shown). Evidently, Dox
molecules from C60 complexes and the free drug entered
the nuclei that reflect its antiproliferative impact through
DNA damage [26–28]. An increased drug’s intracellular
uptake upon complexation with C60 points towards the
latter functioning as a drug transport promoter. C60 nano-
structure was shown to transmigrate the cellular plasma
membrane due to passive diffusion [51] and/or endocyto-
sis/pinocytosis [52, 53], whereas such small molecules as
Dox can penetrate only via passive diffusion. The C60

structure resembles the structure of clathrine [54, 55], the
major coat component of vesicle formation during endo-
cytosis. Therefore, C60 may function as a transporter of
small aromatic molecules [56]. On the contrary, a covalent
bond between carrier and cargo introduces a structural
alteration into the drug molecule. Consequently, the

Fig. 4 Viability of CCRF-CEM, Jurkat, THP1 and Molt16 leukemic cells, treated with equal doses of free Dox or C60-Dox complexes for 24, 48, and
72 h (*p ≤ 0.05 in comparison with the free Dox, **p≤ 0.05 in comparison with the C60-Dox 1:1 complex, n = 5)
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accumulation pattern and interaction with intracellular
targets are altered resulting in complete or partial loss of
the drug’s function. Liu et al. [15] showed that C60 with
two Dox molecules bound through an amide bond was
distributed predominantly in the cytoplasm.

Conclusion
The physicochemical properties of C60-Dox complexes
with 1:1 and 2:1 ratio of the components were deter-
mined, and their toxicity against human leukemic cells
CCRF-CEM, Jurkat, Molt-16 and THP1 was estimated.

Fig. 5 Intracellular accumulation of the 1 μM free and C60 complexed Dox. Flow cytometry (a) and fluorescent microscopy images (b) of CCRF-
CEM cells incubated with Dox and C60-Dox at the ratio 1:1 and 2:1 for 1, 3 and 6 h. Scale bar 20 μM

Table 2 Mean fluorescence intensity (FI) of intracellular
accumulated Dox estimated by FACS histograms

FI, a.u. 1 h 3 h 6 h

Dox 45 ± 7 85 ± 9 107 ± 11

1:1 C60-Dox 68 ± 9* 145 ± 12* 236 ± 22*

2:1 C60-Dox 57 ± 8* 131 ± 21* 234 ± 23*

*p ≤ 0.01 in comparison with the free Dox
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HPLC-MS/MS analysis revealed evident distinctions in
chromatograms of free Dox and those released from
C60-Dox complexes. Complexation of C60 with Dox was
confirmed by absorption hypochromic effect and fluor-
escence quenching in C60-Dox complexes. We deter-
mined that the size of C60-Dox complexes around 140
nm was retained in the presence of protein and pro-
longed incubation in the medium. Studies on human
leukemic cell lines revealed that C60-Dox complexes
possessed higher cytotoxicity compared to the free drug
in equivalent concentrations. At 72 h of incubation of
cells, the value of IC50 for 1:1 and 2:1 complexes was
decreased on ≤ 3.5 and ≤ 2.5 times, respectively, in com-
parison with IC50 for the free drug. Complexation with
C60 promoted Dox entry into leukemic cells. A treat-
ment of CCRF-CEM cells for 6 h with C60-Dox com-
plexes in 1 μM Dox-equivalent concentration was
followed by 2.2-fold increase of drug intracellular level
as compared to treatment with free Dox.
Our results confirm the function of C60 as a nano-

carrier and the perspective of its application for
optimization of Dox efficiency against leukemic cells.
As Dox is only a representative or model substance
for many antitumor drugs, we expect that our find-
ings may be transferred to other drugs. Increasing a
drug’s uptake into tumor cells and/or its antitumor
qualities may point towards new treatment strategies.
Complexation of drugs with nanocarriers may serve
to reduce their efficacious dose rates and thus atte-
nuate the unwanted side effects.
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