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Abstract

Abstract

Heavy metal and radionuclide contaminations of soil and water, resulting from former

mining and milling industries, represent a serious problem worldwide. Due to the

fact that heavy metals and radionuclides, like uranium, are not biodegradable, their

remediation is of great concern. Remediation of such contaminated sites is often

laborious and cost-intensive, requiring the need of technical facilities and high amounts

of chemicals. In this thesis, investigations were performed to find alternatives for the

currently used conventional remediation and waste water treatment at the site of the

former uranium mine in Königstein (Saxony, Germany). As a concept of remediation,

the administrating company of the former uranium mining sites in Eastern Germany,

Wismut GmbH, started a controlled flooding of the underground mine in Königstein

in 2001. As a consequence of the former leaching process, started in the 1980s,

with sulfuric acid to mobilize the uranium within the sandstone, the underground

and flooding water displays the characteristics of an AMD (acid mine drainage) site.

Despite the harsh conditions prevalent within the flooding water a high microbial

diversity could be detected. Microorganisms display abilities to interact with metals or

radionuclides in various ways. They are able to mobilize or immobilize them. The usage

of microorganisms or plants for decontamination of metal- or radionuclide-polluted

soils and waters is called bioremediation. The restoration of such highly contaminated

sites using bioremediation requires vital microbial cells, which are able to survive

within these harsh environmental conditions. Against this background, in this thesis

indigenous microorganisms were isolated from the flooding water and investigated for

their ability removing uranium from surrounding solutions and their tolerance against

heavy metals, in particular uranium.

The bacterial strain A. facilis, identified by DNA-based methods within the flooding wa-

ter, was investigated with regard to its interaction mechanisms with uranium. The results

demonstrate that the gram-negative betaproteobacterium is able to remove high amounts

of uranium (130 mgU/gdbm) by passive biosorption and active bioaccumulation. Ura-

nium is either sorbed to the outer membrane or actively taken up into the cell. Inside the
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cytoplasm it was observed that the removed uranium is associated with polyphosphate

granules. In addition, the uranium tolerance tests displayed, that the bacterial cells

are able to grow in the presence of uranium concentrations similar to those present in

the flooding water (MIC 0.2 mM). In further investigations, structural information on

uranium immobilized by the bacterial cells was generated. The spectroscopic analyses

showed, that the uranium immobilization on functional groups at the outer membrane of

A. facilis is dependent on the incubation time. During the first hours uranium is mainly

bound on lipopolysaccharides suggesting the formation of uranyl-phosphoryl species.

With increasing incubation time, uranium seemed to be bound to carboxylic groups of

the peptidoglycan layer in addition to the phosphoryl groups.

One indigenous strain, directly isolated from the flooding water using culture-dependent

methods, represents the yeast KS5 (R. toruloides). The investigations on this natural

occurring isolate revealed high uranium tolerances (MIC 6 mM), indicating the devel-

opment of adaption mechanisms. Furthermore, the fungal strain has demonstrated a

high efficiency of uranium removal (350 mgU/gdbm). TEM studies identified both

underlying interaction mechanisms, bioaccumulation and biosorption. Nevertheless,

active bioaccumulation seems to be the prominent process involved in the uranium

immobilization. Inside the cytoplasm, uranium is associated in lipid granules resulting

in the formation of meta-autunite minerals.

Culture-independent methods could identify the presence and activity of anaerobic

microorganisms within the flooding water of the former uranium mine. Sulfate (SRB)

and iron reducing bacteria (IRB) are known for their ability to reduce uranium(VI) into

uranium(IV). For that reason, investigations on microbial uranium(VI) reduction, using

the flooding water as background medium, were performed. As carbon source and

electron donor, 10 mM glycerol, were directly added to the flooding water. After six

weeks of incubation at 30 ◦C a complete reduction to uranium(IV) was detected using

XANES und UV-vis spectroscopy. By 16S rDNA gene analyses the bacterial diversity

was identified. The majority of the found species are IRB (> 40 %). Thus, the microbial

uranium(VI) reduction is mediated by these bacteria.

Finally, the obtained results of the microbial uranium(VI) reduction occurring directly

within the flooding water could be transferred to a pilot plant with a volume of 100 L.

The laboratory scale experiments were successfully repeated and verified. Thus, it was

shown that the microbial reduction of uranium(VI), by adding only 10 mM glycerol to

the flooding water, could be used in future applications for in situ for bioremediation

approaches at the site of the former uranium mine Königstein.
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In conclusion, this study shows the importance of investigating uranium interaction

mechanisms of natural occurring microorganisms in conjunction with bioremediation

of contaminated sites. This thesis contributes to the development of bioremediation

approaches for the treatment of metal and radionuclide contaminated sites resulting

from former mining industry.
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Kurzfassung

Kurzfassung

Schwermetall- und Radionuklidkontaminationen von Böden und Gewässern sind zum

Großteil das Ergebnis ehemaliger Bergbau- und Metallgewinnungsindustrien und stellen

weltweit ein ernstzunehmendes Problem dar. Aufgrund der Tatsache, dass Schwermet-

alle und Radionuklide, wie Uran, nicht durch biologische oder andere Prozesse ab-

baubar sind, ist deren Sanierung von großer Bedeutung. Durch den hohen technischen

Aufwand und den Einsatz großer Mengen an Chemikalien, ist die Sanierung ehema-

liger Minen oft aufwendig und mit hohen Kosten verbunden. Im Rahmen dieser Arbeit

wurden Untersuchungen durchgeführt, um auf dem Gelände der ehemaligen Uranmine

in Königstein (Sachsen, Deutschland) Alternativen für die verwendete konventionelle

Flutungswasserbehandlung zu finden. Als Sanierungskonzept startete die Betreiberge-

sellschaft der ehemaligen Uranabbaugebiete in Ostdeutschland, die Wismut GmbH, im

Jahr 2001 eine kontrollierte Flutung der Mine in Königstein. Aufgrund des sinkenden

Urangehaltes im Sandstein wurde Mitte der 1980er Jahre zur Gewinnung von Uran

mit Schwefelsäure versetztes Wasser zur Laugung eingesetzt. Auf diese Weise kon-

nte das Uran, aber auch andere Metalle, mobilisiert und somit in Lösung gebracht wer-

den. Noch heute weist das Flutungswasser aus diesem Grund einen niedrigen pH und

hohe Metallkonzentrationen auf und ähnelt somit typischen AMD (acid mine drainage)-

Standorten. Trotz der vorherrschenden harschen Bedingungen im Flutungswasser kon-

nte eine hohe mikrobielle Diversität durch kulturunabhängige Methoden nachgewiesen

werden. Durch vorangegangene Studien konnte gezeigt werden, dass Mikroorgansi-

men verschiedene Prozesse entwickelt haben, um mit Metallen oder Radionukliden zu

interagieren. Speziell angepasste Mikroorganismen können so in der Lage sein, Met-

alle oder auch Radionuklide zu mobilisieren, aber auch zu immobilisieren. Ein alterna-

tives Konzept, welches Mikroorganismen oder Pflanzen zur Sanierung von Metall- oder

Radionuklid- kontaminierten Böden und Gewässern verwendet, stellt die Biosanierung

dar. Vor diesem Hintergrund wurden in der vorliegenden Arbeit natürlich vorkommende

Mikroorganismen aus dem Flutwasser isoliert und auf ihre Fähigkeit hin untersucht,

Uran aus der umgebenden Lösung zu entfernen. In weiteren Experimenten wurde ihre
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Toleranz gegenüber Schwermetallen, insbesondere Uran, getestet.

Das Bakterium A. facilis, welches mittels DNA-basierter Methoden im Flutungswasser

identifiziert werden konnte, wurde zunächst auf seine Wechselwirkungen mit Uran un-

tersucht. Die Ergebnisse zeigen, dass dieses gramnegative Betaproteobakterium in der

Lage ist, große Mengen an Uran durch passive Biosorption und aktive Bioakkumula-

tion zu immobilisieren (130 mgU/gdbm). Mit Hilfe von ortsauflösenden Messmeth-

oden, wie TEM (Transmission Elektronen Mikroskopie), wurde Uran an der äußeren

Membran und innerhalb der Zelle detektiert. Im Zytoplasmas liegt Uran mit Polyphos-

phatkörnern assoziiert vor. Darüber hinaus konnten Toleranztests belegen, dass A. fa-

cilis in der Lage ist, in Gegenwart von Uran zu wachsen (MIC 0.2 mM), die de-

nen im Flutungswasser der ehemaligen Uranmine entsprechen. Um detaillierte In-

formationen auf molekularer Ebene zu erhalten, wurden in weiteren Untersuchungen

die strukturellen Informationen, des durch die Bakterienzellen immobilisierten Urans,

aufgeklärt. Mit Hilfe von spektroskopischen Analysen konnte gezeigt werden, dass

Uran, in Abhängigkeit von der Inkubationszeit an unterschiedliche funktionelle Grup-

pen der äußeren Membran von A. facilis gebunden wird. Während der ersten Stun-

den ist Uran hauptsächlich an Lipopolysacchariden lokalisiert. Dies wurde durch die

Identifizierung von Uranylphosphoryl-spezies nachgewiesen. Im weiteren Verlauf der

Inkubation wurde festgestellt, dass Uran an Carboxylgruppen der Peptidoglykanschicht

sorbiert ist. Ein weiterer untersuchter natürlich vorkommender Mikroorganismus, der

mit kulturabhängigen Methoden direkt aus dem Flutwasser isoliert wurde, repräsentiert

die Hefe KS5 (R. toruloides). Die Ergebnisse zeigen, dass das Isolat eine hohe Toler-

anz gegenüber Uran aufweist (MIC 6 mM). Darüber hinaus ist KS5 in der Lage, relativ

hohe Mengen an Uran zu immobilisieren und somit aus der umgebenden Lösung zu

entfernen (350 mgU/gdbm). Mit Hilfe von TEM-Studien konnten die beiden Interak-

tionsmechanismen, Bioakkumulation und Biosorption, identifiziert werden. Anders als

bei A. facilis zeigen die Ergebnisse, dass bei KS5 die aktive Bioakkumulation den do-

minierenden Prozess bei der Uranimmobilisierung darstellt. Innerhalb des Zytoplasmas

der Hefezellen ist Uran mit Lipidgranula assoziiert.

Weitere Experimente auf der Grundlage von DNA- und RNA-basierten Methoden kon-

nten sowohl das Vorhandensein, als auch die Aktivität von anaeroben Mikroorganis-

men im Flutwasser der ehemaligen Uranmine nachweisen. Insbesondere die anaer-

oben Sulfat- (SRB) und Eisen-reduzierenden Bakterien (IRB) sind für ihre Fähigkeit

bekannt, Uran(VI) zu Uran(IV) zu reduzieren. Aus diesem Grund wurden Unter-

suchungen zur möglichen mikrobiellen Reduktion von Uran(VI) unter Verwendung des
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Flutungswassers und der darin vorhandenen Mikroorganismen durchgeführt. Zur In-

duzierung der mikrobiellen Aktivität wurde als Kohlenstoffquelle und Elektronendonor

10 mM Glycerin direkt in das Flutungswasser gegeben. Nach sechs Wochen Inkubation

bei 30 ◦C wurde mittels XANES- und UV-vis-Untersuchungen eine vollständige Reduk-

tion zu Uran(IV) nachgewiesen. Die Ermittlung der bakteriellen Diversität nach sechs

Wochen Inkubation ergab, dass es sich bei der Mehrheit der identifizierten Bakterien

um IRB handelt (> 40 %). Somit zeigt sich, dass die mikrobielle Uran(VI)- Reduktion

hauptsächlich durch die Anwesenheit von IRB hervorgerufen wird.

Schlussendlich konnten die erhaltenden Erkenntnisse der mikrobiellen Uran(VI)- Re-

duktion in eine Pilotanlage mit einem Volumen von 100 L überführt werden. Die Ergeb-

nisse dieser Arbeit zeigen, dass die Ergebnisse auf industrielle Maßstäbe übertragbar

sind. Damit konnte gezeigt werden, dass die mikrobielle Reduktion von Uran(VI)

allein durch die Zugabe von 10 mM Glycerin bei zukünftigen Anwendungen als in

situ Biosanierungsapplikationen auf dem Gelände der ehemaligen Uranmine Königstein

genutzt werden könnte.

Zusammenfassend ergibt sich, dass im Rahmen dieser Arbeit die Wechsel-

wirkungsmechanismen zwischen natürlich vorkommenden Mikroorganismen und Uran

im Detail beschrieben und neue Zusammenhänge zwischen aktivem und inaktivem Stof-

fwechsel der Mikroorganismen gezeigt werden konnten. Somit können diese einen

wertvollen Beitrag zur Entwicklung von Biosanierungsansätzen für die Behandlung von

Metall- und Radionuklid-kontaminierten Standorten aus der ehemaligen Bergbauindus-

trie leisten.
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1 Introduction

1 Introduction

1.1 Uranium mining activities in Germany and the

former uranium mine Königstein

Due to the industrial mining and milling of uranium ores, one big challenge of this

century is the management of radioactive waste and the protection of humans and the

environment from its chemical and radiological impacts. Large areas of the environment

were processed for nuclear energy and weapon production since the 1940s [1]. In

Eastern Germany, hundreds of millions of cubic meters waste rock materials and

tailings were left behind after the cessation of uranium mining [2]. A total of 231,000

metric tons of uranium were mined, making East Germany the fourth-largest producer

of uranium worldwide [3]. Since 1991 the Wismut GmbH is responsible to carry out

the closure of the former uranium mining sites in Eastern Germany, including their

environmental remediation and clean-up of the complete surface areas [4]. These former

mining sites are Ronneburg, Schlema, Königstein, Pöhla and Dresden Gittersee, with

Ronneburg in Thuringia and Schlema in Saxony being the largest and most famous

uranium mining locations [4].

Between 1960 and 1990, approximately 18,000 metric tons of uranium were mined at

the former uranium mine in Königstein. The former mining site is located in Saxony

close to Dresden (Figure 1.1). The site covers an area of approximately 6.5 km2 and

comprises four mine levels. The ore body is located in the 4th aquifer of the sandstone

rock formation (Figure 1.2). It is situated in an ecologically sensitive area, due to the fact

that the 3rd aquifer located above the ore body serves as an important water reservoir for

the surrounding cities and therefore is environmentally very sensitive. During the first

two decades, uranium was recovered using conventional mining methods, by blasting

operations of the underground and transport of the rocks to surface, where is was further

processed [5]. From 1984 onwards, uranium was mined by underground block leaching

using sulfuric acid (2-3 g/L H2SO4), due to the decreasing uranium content within the

sandstone [6]. As a result, the decommissioned mine displays high levels of pollutants,
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Figure 1.1: Geographic localization of the former uranium mining site Königstein (adapted after
maps.google.de [access 03.11.2017 10:00]), with overview (red square) of the former
mining site (picture library Wismut GmbH)

such as sulfate, heavy metals, and naturally occurring radionuclides (uranium and

radium).

Since 2001, the former uranium mine is being remediated by controlled flooding

up to a water level of 139.5 m above sea level [7]. The concept of the controlled

flooding process was developed to avoid contamination of the overlaying aquifers,

which is facilitated by the presence of the north fault (Figure 1.2 gray shaded area),

a disturbance in the underground rock formation. Therefore, the flooding water is

drained off, collected and pumped to the surface where it is purified in a laborious water

treatment plant (Figure 1.1 overview red box) [8]. The controlled flooding will lead to

a reduction of the pollutant concentrations, to the restoration of hydraulic conditions to

near pre-mining settings, and finally prevent the migration of contaminations to nearby

aquifers [9]. But, estimates of the Wismut GmbH suggest that, the treatment of the

flooding water will be necessary for at least two to three decades from now.
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1.2 Chemical composition of the fooding water in

Königstein

As a consequence of the leaching with sulfuric acid, the flooding water in Königstein

still displays a low pH of 2.8 to 3.0. The acidic conditions cause the mobilization of

metals from the host rock, including uranium. With a uranium concentration between 8

mg/L and 13 mg/L, the flooding water displays a 10,000 times higher concentration as

compared to surface waters [10] (limit for drinking water in Germany 0.01 mg/L). Not

only the concentration of uranium is increased, but also the sulfate and iron contents.

Together, these characteristics give rise to typical acid mine drainage (AMD) condi-

tions. The formation of AMD is a consequence of sulfide-bearing materials, which are

exposed to oxygen and water. The production often occurs in iron sulfide-aggregated

rocks. However, the process of AMD formation may also occur naturally, mining in-

dustry can promote AMD generation simply through increasing the quantity of sulfides

expose [11]. AMD sites display a high risk to contaminate surface, groundwater, and

soil, since some effluents generated by the metal mining industry contain large quanti-

ties of toxic substances, such and heavy metals, which have serious human health and

ecological implications [12,13]. For that reason, it is an important task to remediate these

contaminated former mining sites and prevent the pollution of the surrounding environ-

ment. The technical and chemical effort of conventional water treatment, associated

with high costs, leads to a significant interest in alternative approaches [14]. A detailed

table with all important parameters and chemical compounds within the flooding water

is shown in Chapter 3.4 Table 1. Within the flooding water not only radionuclides like

uranium and radium are present in high concentrations, also iron, manganese, arsenic

and other metals occur in high amounts [16].

Aside from metals and ions, the total organic carbon (TOC) represents a major factor for

microbial activity. Carbon compounds like humic matter, organic acids, carbohydrates

or aminoamides represent important energy sources. Carbon can be present in different

forms, soluble, particular, organic, or inorganic as CO2, HCO –
3 or CO 2–

3 [17]. Within

the flooding water a low concentration of around 1.0 mg/L TOC was detected and thus

it is one of the limiting factors for microbial life and activity in the underground of the

former mining site.
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Figure 1.2: 3D geological view of the Königstein mining area (from [15]). The north fault is
shown as grey shaded area.

1.3 Uranium

With the atomic number of 92 uranium belongs to the actinides, which are defined as

elements with atomic number between 90 and 103. These elements subsequently fill

up the 5f electron shell. The special property of actinides is their missing of stable nu-

clides, by meaning all isotopes of these elements are radioactive. Some isotopes occur

as primordial nuclides (e.g.235U and 238U). Due to their long half-life (> 108 years), they

represent the composition of the earth since their evolution. Elements with an atomic

number higher than uranium, transuranium elements, are not naturally occurring in the

environment, they arise for example by neutron capture within reactors. Uranium is

a heavy metal with the atomic mass for natural uranium of 238.03 g/mol. In nature,

uranium occurs as three of its 23 known isotopes, 234U (0.005 %), 235U (0.72 %), and
238U (99.27 %) [18]. The half-life of these uranium isotopes ranges from 2.5× 105 to

4.5×109 years [19]. Due to its properties as a ’light’ actinide, uranium exhibits a variety

of stable oxidation states in solution. Based on the delocalization of the 5f electrons, the

5f orbital is overlapped with the 6d orbital [20]. The electron configuration of uranium

is [Rn]5f36d17s2.

The naturally occurring isotopes of uranium are α-emitters, which decay to radioactive

daughters. At the end of the decay chain of 238U, the non-radioactive 206Pb occurs [21].

As the 49th most abundant chemical element in the Earth’s crust and with a concentra-
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Figure 1.3: Speciation of uranium within the flooding water of the former uranium mine, under
environmental conditions at a pH range of 2-4, grey area displays the prevalent pH
conditions of the flooding water.

tion of 1−10 µg/g, uranium is not rare. By weathering processes, it can be transported

to groundwater and other water systems. Nevertheless, the concentration of uranium in

surface waters is low (10 µg/L) [22]. The toxicity of the heavy metal was investigated by

several further studies. The chemical toxicity of soluble uranium compounds can even

surpass the potential radiotoxic effects, under special circumstances [23].

The uranium transport behavior in nature is dependent on its chemical speciation. The

oxidation states, in which it can occur, are +2, +3, +4, +5, and +6 [24, 25]. However,

the oxidations states +2, +3, and +5 are unstable at environmental conditions. In nature,

U(VI) and U(IV) are most frequent, though U(IV) is less soluble and usually forms the

oxide mineral uraninite (UO2). In contrast, U(VI) commonly forms soluble and some-

times highly mobile complexes. The oxidation states U(V) and U(VI) are able to form

actinyl ions, so called uranyl ions, [O U O]+/2+. In solution, uranium exhibits a com-

plex redox behavior due to the different redox potential of different redox pairs (e.g.

U(VI)/U(V) = 0.088; U(VI)/U(IV) = 0.267; U(IV)/U(III) = -0.553 at 298.15 K in wa-

ter) [26, 27].

In addition, the pH value strongly influences the interaction mechanisms of uranium

with the environment. The solubility can be altered by pH-dependent hydrolysis reac-

tions, and thus can influence the sorption of uranium to inorganic matter [28]. Further-

more, the ionic strength as well as the type and concentration of inorganic ligands, and

the prevalent redox potential play a crucial role for the speciation of uranium in nat-

ural aquatic systems. Besides the mentioned chemical factors, also biotic parameters
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influence uranium mobility in natural environments. In particular, the bioavailability of

uranium, meaning its ability to interact with indigenous microorganisms, depends on its

concentration and physicochemical speciation. Evidence from previous studies suggest

that UO 2+
2 and UO2OH+ are the most bioavailable forms of uranium(VI) [29].

Within the flooding water of Königstein, at acidic pH value and under oxidizing con-

ditions uranium mainly occurs as dissolved mobile uranium(VI) species, UO2SO4 (~73

%), UO 2+
2 (~22 %), and UO2(SO4) 2–

2 (~10 %) (Figure 1.3). In addition to theoreti-

cal calculations, TRLFS studies confirmed these findings and displayed the highly mo-

bile speciation form UO2SO4 [30]. However, in minor concentrations UO2(SO4) 2–
2 and

UO2OH+ are present in the flooding water as well.

1.4 Metal-microbe interactions

As mentioned, indigenous microbial communities in the flooding water are able to inter-

act with radionuclides, such as uranium, and other metals in multiple ways (Figure 1.4).

For example, studies demonstrated that the binding to the surface of microbial cells may

be more efficient than binding to surrounding inorganic components under specific con-

ditions [31–33]. This ability of microbial cells to form metal complexes is primarily

based on two facts: the usually high number of metal binding ligands, e.g. peptidogly-

can, lipopolysaccharides, proteins and glycolipids, and the high surface-to-volume ratio.

The chemical binding of metals to the surfaces of microbes will be affected by processes

like ion exchange, complexation, adsorption, and electrostatic interactions [34, 35]. The

present ligands on the surface of microbes include negatively charged, functional groups,

like phosphate, carboxyl, hydroxyl, amino and thiol groups. The mentioned passive and

rapid process, biosorption, is simply based on physical adsorption or chemical sorp-

tion [36, 37]. The process is only controlled by pH dependent protonation, and thus,

is independent of the cell metabolism. Besides this well described passive biosorption,

metabolism-dependent processes can also alter the migration behavior of metals and

radionuclides. Active processes such as biotransformation, biomineralization, bioaccu-

mulation, and complexation by microbially-generated compounds, can have mobilizing

and immobilizing effects on uranium and other metals. The term bioaccumulation, in

general, describes an interaction mechanism, whereby metals are taken up in an active

process using metal transporters, located within the cell walls of the microorganisms.

Compared to the fast process of biosorption, this interaction will generally be slower. So

far, no specific transporters for uranium were identified which lead to the speculation For
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Figure 1.4: Interaction mechanisms of microorganisms and metals. Simplified model of a mi-
crobial cell interacting with uranium. Red structure within the cytoplasm shows
uranium associated with polyphosphate granules.

uranium that it could be taken up faulty by other transporters, due to a mix up with es-

sential ions like calcium [29,38]. As a consequence, the uranium uptake mechanism into

cells is still not completely understood. However, recent studies assume that the uptake

of uranium is metabolism-independent, and the transport occurs as a consequence of an

increased permeability of the cell membrane due to a toxic stress reaction [39]. Nev-

ertheless, the results in this thesis demonstrate, that active processes could be involved

and that an active metabolism of the cells is required for uptake of uranium within the

cells (Chapters 3.1 and 3.3). In addition, studies on bioaccumulation of uranium by bac-

terial cells have shown, that it was found associated in polyphosphate granules (Figure

1.4) [40].

Previous investigations revealed that these phosphate inclusions are important for the

intracellular storage of divalent cations [37, 41].

Another interaction mechanism which influences the uranium transport behavior in the

environment is the mineralization of metals and radionuclides by organic or inorganic

compounds released from microorganisms [42]. Biomineralization is distinguished be-

tween uranium-binding ligands that reduce its solubility and those that enhance solubil-

ity and mobility. This interaction mechanism includes the precipitation of mineral com-

plexes, resulting from the release of microbial inorganic ligands, such as phosphates, car-

bonates and sulfides (Eqs. (1.1)–(1.3)) [38]. Another pathway for biologically-induced
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precipitation is the release of reducing ligands. Previous studies identified microorgan-

isms, which are able to release orthophosphate (inorganic phosphate, PO 3–
4 ) resulting

from the activity of several enzymes, summarized as phosphatases. This enzyme activi-

ties are well described for a large variety of aerobic and anaerobic bacteria and for some

archaea [43–50].

HPO 2–
4 + M2+ MHPO4 (1.1)

CO 2+
4 + M2+ MCO3 (1.2)

H2S + M2+ MS (1.3)

Specific microorganisms also produce organic compounds, that affect the mobility of

uranium. One example is the release of humic substances resulting from the microbial

degradation of complex organic matter. These complexes are very resistant to further

biodegradation and consequently accumulate in nature [51]. These humic substances

can be differentiated by acidity and chemical composition, resulting in humin (insoluble

fraction), humic acid (soluble under alkaline conditions), and fulvic acid (soluble at all

pH values) [52]. Humic and fulvic acids in particular are known to interact with uranium

and thus influence its migration behavior in nature [53–59]. Nevertheless, humic sub-

stances could also be involved in the reduction of uranium(VI). They serve as terminal

electron acceptors in microbial respiratory pathways and may subsequently donate these

electrons to uranium(VI) [60, 61].

The production of bioligands is another interaction mechanism between microorgan-

isms and metals. Well described compounds, which can interact with metals in highly

efficient ways, are siderophores. Microorganisms usually form these chelating agents

in case of iron deficiency. Siderophores increase the iron solubility due to their

complexation with functional groups, in particular hydroxamate and catechol groups

[62]. However, the binding of siderophores is typically not highly specific. Conse-

quently, they can also increase the solubility of other metals and radionuclides, which

leads to an increase in bioavailability. For example, the siderophores pyoverdine and

desferrioxamin-B are known to enhance the mobility of uranium [63, 64].

Microbe-mediated oxidation and reduction processes, which lead to a chemi-

cal modification of metals and radionuclides caused by metabolic activity, are

called biotransformation. The oxidation of uranium under aerobic conditions was

demonstrated for several acidophilic microorganisms, such as the bacterial strain

Acidithiobacillus ferrooxidans [65] and the two archaeal species Sulfolobusmetallicus
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and Metallosphaerasedula [66, 67]. In contrast to the oxidation of uranium, the reduc-

tion takes place under anaerobic conditions. Thereby, anaerobic microorganisms trans-

fer electrons from an electron donor to uranium(VI), and thus reduce it to uranium(IV).

It is assumed that the reduction of uranium(VI) proceeds by a single-electron trans-

fer to uranium(V), followed by disproportionation [68]. At circumneutral conditions,

uranium(VI)/(IV) displays a similar redox-couple compared to Fe(III)/(II), thus iron-

reducing bacteria are able to respire uranium(VI) as an alternative electron acceptor [69].

Eqs. (1.4) and (1.5) show the reaction of Fe(III) and uranium(VI) under anaerobic con-

ditions, while acetate serves as an electron donor in the other half-cell reaction [69]:

CH3COO– + 8 Fe(III) + 4 H2O 8 Fe(II) + 2 HCO –
3 + 9 H+ (1.4)

CH3COO– + 4 U(VI) + 4 H2O 4 U(IV) + 2 HCO –
3 + 9 H+ (1.5)

Other groups of microorganisms are also able to reduce uranium(VI), including sulfate-

reducing bacteria [70], fermentative bacteria [71], acido-tolerant bacteria [72], and

myxobacteria [73]. Furthermore, a uranium reduction was demonstrated at high temper-

atures (about 100 ◦C), for Pyrobaculumislandicum, a hyperthermophilic archaeon [74].

Most of these microorganisms use the reduction of uranium(VI) to gain energy for

growth, while others do not gain energy [75]. The speciation of the reduced uranium

is frequently found to be uraninite (UO2) [70, 76]. Notably, abiotic uranium reduction

by Fe(II) minerals [77–81] and additionally by biominerals [82–84] is also possible.

However, under ambient environmental conditions, the majority of the studies suggest

a direct enzymatic reduction as the dominant mechanism mediating uranium(VI) reduc-

tion [85, 86].

In conclusion, the clear separation between the mentioned processes is not trivial and

they will frequently be interconnected, e.g. in the formation of UO2 through biotic re-

duction. It is, however, obvious, that microbial processes have a significant impact on

the behavior of radionuclides across a wide range of environments and will be important

in processing contaminated sites [87].

1.5 Bioremediation and field studies

Due to the reason, that toxic metals, in particular uranium, are not metabolic degradable,

their remediation depends on an approach which decreases their bioavailability [88].

The initial step may be the increasing contaminant mobility for extraction or the im-
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mobilization of the metal using sequestration, complexation, or change in speciation to

reduce solubility [71]. All these mentioned mechanisms are exhibited in the microbial

repertoire. To intelligently design practical applications and accurately predict long-term

behavior, the mechanisms must be understood on the molecular level [88]. The need for

developing bioremediation approaches is mainly due to the high costs, the technological

limitations, and the lack of specificity of the present available physicochemical methods.

Furthermore, the invasive physical clean-up, which includes excavation, transport, and

disposal of wastes, as well as pumping and treatment of the flooding water could have

drastic influences on the indigenous biodiversity and thus, could even increase human

health risks [89]. For that reason, in situ bioremediation approaches could be advan-

tageous, as they are expected to be cost-effective, more specific and environmental-

friendly. Moreover, previous studies could demonstrate, that the recovery of metals

using biological approaches is highly efficient, enabling the treatment of sites with low

uranium concentrations which are not amenable to chemical methods [90].

For bioremediation approaches, it seems to be necessary to establish procedures based

on metabolically active microorganisms. Therefore, industrial applications are primarily

determined by the ability of the microorganisms to maintain and survive the radiation

exposure and the chemical toxicity of uranium. On that account, highly tolerant strains

would be beneficial. An example for a well-studied and eligible strain is Deinococcus

radiodurans, which is able to maintain 5000 Gray [91]. The toxicity of actinides should

not impede bioremediation approaches based on active and living microorganisms. The

strains investigated in the present work, for example, displays high tolerances against

uranium up to concentrations of 6.0 mM for Rhodosporidium toruloides (Chapter 3.3).

Hence, it is obvious that the growth and metabolism of indigenous strains within the

flooding water of Königstein is in principle possible at uranium-polluted sites.

The main focus for active microbial bioremediation applications of uranium-

contaminated sites is based on uranium immobilization by precipitation caused by ura-

nium(VI) reduction. The microbial reduction of highly soluble uranium(VI) into less

soluble uranium(IV) minerals has been studied, as it promises a high potential. Encour-

aging microcosm experiments of polluted sediments from the inactive "Midnite mine" in

Stevens County (WA, USA) and contaminated soils from "DOE NABIR field research

center site" in Oak Ridge (TN, USA) were performed. The addition of organic sub-

strates lead to the stimulation of microbial uranium(VI) reduction at both sites [92, 93].

The injection of ethanol stimulated the activity of indigenous microorganisms, as a con-

sequence of which uranium(VI) levels were drastically reduced from about 50 mg/L to
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less than 30 µg/L within two years. Subsequent studies on the microbial diversity re-

vealed a high abundance of metal reducing bacteria such as Geobacter, Shewanella and

Desolfovibrio [94].

Another example of successful bioremediation was conducted at a former uranium ore

processing facility, "Old Rifle" (CO, USA). Here, acetate was injected into the subsur-

face, resulting in a decrease of uranium(VI) concentration within 50 days from initial

values of 0.4 and 1.4 µM to less than 0.18 µM [95]. Also in this case, the microbial com-

position was determined, which displayed in particular Geobacter species as dominant

representatives, indicating that they are key players in the uranium(VI) reduction [96].

Nevertheless, it has to be mentioned, that the successful bioremediation strongly de-

pends on the surrounding conditions. For instance, in the presence of oxygen and rather

high nitrate concentrations under highly acidic conditions, the uranium(VI) reduction

was suppressed in microcosm experiments with sediments from the FRC aquifer (Oak

Ridge, TN, USA) [97].

Besides the microbial uranium(VI) reduction under anoxic conditions, one alternative

approach at oxygenated conditions could be the precipitation of uranium in the form

of insoluble inorganic compounds. Previous studies investigated the bioprecipitation of

uranium by the activity of non-specific phosphatases, which are expressed by a large

variety of aerobic and anaerobic bacteria [45, 98–100]. It is well-described, that these

enzymes release inorganic orthophosphate form organic phosphate compounds. The re-

leased orthophosphate interacts with uranium and causes the precipitation of inorganic

uranyl phosphate minerals which are formed in the surrounding aqueous system or di-

rectly on the cell surface of the microbes. Studies on different Pseudomonas strains,

which were able to release sufficient amounts of orthophosphate, demonstrated the ap-

plicability of this interaction mechanism as a possible bioremediation approach. The

release of orthophosphate was stimulated by the addition of an organic phosphate source

and simultaneous overexpression of phosphatase genes [101].

Furthermore, studies were performed to investigate the possible application of biosorp-

tion for bioremediation approaches. Their outcome suggests that the availability of

uranium-binding sites may limit biosorption as use for biotechnological processes.

Moreover, the insufficient stability and specificity of biosorbents resulted in little

progress for industrial application [102]. For that reason, the authors concluded that

the commercial application of biosorption is rather limited, and therefore is likely to be

used in approaches as a supporting process [103]. However, the process of biosorption is

substantially faster compared with direct bioreduction. On that account, several previous

21



1 Introduction

studies on biosorption have shown their potential use within these approaches [103–105].

In conclusion, all these case studies show that the use of microorganisms for remediation

applications depend on the surrounding conditions and thus, it seems to be necessary to

develop adjusted solutions. Nevertheless, many field studies could prove the applicabil-

ity of in situ bioremediation approaches.

1.6 Microbial diversity within the flooding water of

Königstein

Even though AMD waters are known to be toxic the majority of microorganisms

[106, 107], they can contain highly-specialized diverse microbial life [108]. Despite

the harsh conditions in the flooding water of the former uranium mine Königstein, in-

vestigations on the microbial diversity displayed a high number of metabolically active

microorganisms [109]. As a consequence of the controlled flooding, the diversity in the

underground changes drastically. Previous investigations during the beginning of the

flooding process have shown a poor biodiversity at so far unflooded shafts. In the bac-

terial community mainly, betaproteobacteria (> 60 %) were detected, which were domi-

nated by the species of Ferrovum myxofaciens. Besides this obligate chemolithotrophic

iron- oxidizing bacteria, also the sulfur-oxidizing bacterium, Acidithiobacillus ferrooxi-

dans, could be identified in lower abundances. In addition, also in minor amounts iron-

reducing bacteria such as Acidocella spp. and Acidiphilum spp. were detected [109]. In

addition, eukaryotes could also be identified in the microbial community. Five classes of

metabolic active microorganisms were found: Heteroblosea, Fungi, Opithokonta, Cero-

zoa, and Ciliophora. However, the majority of the obtained sequences (88.5 %) were

identified as unclassified eukaryotes [109].

In contrast, after about ten years in the ongoing flooding process the bacterial diversity

was dominated by alpha-, beta-, and gammaproteobacteria, mainly by the phylogenetic

groups of Nitrospira, Firmicutes, Acidobacteria, and TM7. The dominating iron oxi-

dizing bacterium (IOB) F. myxofaciens could not be detected and was assumed to be

displaced by Acidithiobacillus spp. The bacterial diversity is still dominated by iron

oxidizing and reducing bacteria, as well as sulfur oxidizing bacteria. Furthermore, by

culture- dependent approaches sulfate reducing bacteria were found and identified, with

the major species Desulfosporosinus spp. In addition to bacteria, also archaea were

detected. The dominating group of this domain was Thermoplasmata. In addition to

bacteria and archaea, also eukaryotes were investigated. Interestingly, compared to the
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conditions before the flooding process, less eukaryotic diversity and also differences in

the composition was found in the flooding water [109].

Investigations on the microbial diversity within the flooding water of the former ura-

nium mine Königstein, as well as other previous studies on AMD sites demonstrate that

environmental factors influence the microbial communities tremendously. Thus, pH,

temperature, concentration of dissolved metals and other solutions, total organic car-

bon, and dissolved oxygen shape the AMD associated microbial diversity [110]. AMD

sites triggered by anthropogenic mining activities represent a significant environmental

problem. The associated microbiome is restricted to almost a few abundant taxa of spe-

cialized archaea and bacteria. Such habitats comprise unique microorganisms with novel

metabolic functions selected to deal with the harsh conditions [110].

1.7 Aims of the study

The challenge of this thesis was to gain new insights in the microbial interactions of

natural occurring organisms with uranium(VI). In particular, the objective was to under-

stand the impact of indigenous microorganisms within the flooding water of the former

uranium mine Königstein on the migration behaviour of uranium(VI) to investigate pos-

sible strategies on in situ bioremediation approaches. The gained knowledge could be

used to develop new setups to improve the existing waste water treatment plant and to

eventually replace the conventional treatment using in situ bioremediation.

Therefore, investigations on natural occurring microorganisms isolated from the flood-

ing water with uranium(VI) were performed. The existing knowledge of the interac-

tion mechanisms between indigenous microorganisms and uranium(VI) is limited. Sev-

eral investigations on well-studied model organisms were performed, but the underlying

molecular mechanisms are still not completely understood. For that reason, experiments

performed in this thesis should help to answer the following questions:

1. Are indigenous microorganisms adapted towards high heavy metals concentra-

tions, compared to strains isolated from non-contaminated sites?

2. How do strains isolated from flooding water interact with uranium(VI) and which

interaction mechanisms took place?

3. Are natural occurring microorganisms able to remove high amounts of ura-

nium(VI) from surrounding solutions, and furthermore are they suitable candidates

for in situ bioremediation approaches?
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4. Is the usage of indigenous microorganisms for bioremediation strategies advanta-

geous, and why could they be a better alternative compared to well-studied model

organisms?

5. How is the metabolism of microbes involved in the uranium removal capacity and

is it necessary for possible bioremediation processes to work with living microor-

ganisms?

6. Where is the uranium located when associated with cells and which functional

groups are involved on these immobilization process?

7. Despite oxidizing conditions within the flooding water, are anaerobic microorgan-

isms active and are they able to interact with uranium by redox reactions?

8. Are the obtained results in this thesis transferable to industrial scale applications,

to prove the applicability for on-site bioremediation by using indigenous microor-

ganisms?
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2.1 Combined use of flow cytometry and microscopy to

study the interactions between the gram-negative

betaproteobacterium Acidovorax facilis and

uranium(VI)

Gerber U, Zirnstein I, Krawczyk-Bärsch E, Lünsdorf H, Arnold T, Merroun ML (2016)

J Hazard Mater 317:127-134. doi: 10.1016/j.jhazmat.2016.05.062.

In this manuscript the interaction mechanisms of the betaproteobacterium A. facilis with

uranium(VI) were investigated. This strain was detected within the flooding water of

the former uranium mine Königstein by culture-independent methods. A. facilis was

studied to figure out the possibility of its use for in situ bioremediation approaches. The

cells show a fast and effective capacity to remove uranium from solution and the strain

has a high tolerance for uranium, withstanding concentrations of up to 0.1 mM. Thus,

our results could demonstrate, that the investigated bacterial strain A. facilis could be a

suitable candidate for in situ bioremediation of the flooding water in Königstein as well

as for other contaminated waters.

Contribution of the authors
Ulrike Gerber: concept and design of all experiments, performed all

experiments, evaluation of the data, preparation of the

manuscript, overall own contribution: 80 %
Isabel Zirnstein: phylogenetic calculations

Evelyn Krawczyk-B|ärsch: supervision of the project, discussion of the results, cor-

rections of the manuscript

Heinrich Lünsdorf: TEM sample preparation and TEM analyses, corrections

of the manuscript

Thuro Arnold: co-supervision of the project, corrections of the

manuscript

Mohamed L. Merroun: discussion of the results, supervision of the project, cor-

rections of the manuscript
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2.2 Multidisciplinary characterization of U(VI)

sequestration by Acidovorax facilis for

bioremediation purposes

Krawczyk-Bärsch E, Gerber U, Müller K, Moll H, Rossberg A, Steudtner R, Merroun

ML (2017)

J Hazard Mater 347:233–241. doi.org/10.1016/j.jhazmat.2017.12.030.

By multidisciplinary characterization combining aqueous chemistry, TEM, EXAFS,

TRLFS and ATR FT-IR the interaction mechanisms of A. facilis with uranium(VI) were

studied on the molecular level. The results from kinetic batch experiments demonstrate

that uranium is bound preferentially to phosphoryl and carboxyl functionally groups of

the outer membrane. The findings obtained from this study contribute to a better un-

derstanding of the fate and transport of uranium within contaminated environments and

improve the possibility to use this bacterial strain for future bioremediation applications.

Contribution of the authors
Ulrike Gerber: concept and design of experiments, laboratory work,

evaluation of the data, co-preparation of the manuscript,

overall own contribution: 50 %
Evelyn Krawczyk-B|ärsch: supervision of the project, discussion of the results,

preparation of the manuscript

Katharina Müller: evaluation of the in situ ATR FT-IR data

Henry Moll: evaluation of the EXAFS data

André Rossberg: evaluation of the EXAFS data

Robin Steudtner: evaluation of the TRLFS data

Mohamed L. Merroun: performed TEM analyses, discussion of the results, su-

pervision of the project, corrections of the manuscript
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2.3 Metabolism-dependent bioaccumulation of uranium

by Rhodosporidium toruloides isolated from the

flooding water of a former uranium mine

Gerber U, Hübner R, Rossberg A, Krawczyk-Bärsch E, Merroun ML

Submitted to PLOS ONE (29/03/2018), first revision (16/05/2018)

The aim of this study is to investigate the indigenous strain KS5 (R. toruloides) iso-

lated from the flooding water of the former uranium mine Königstein and its interaction

mechanism with uranium. Tolerance tests demonstrate that the isolated yeast exhibits

high tolerance towards uranium and chromium, in contrast to a tested reference strain.

These findings indicate, the strain has developed adaption mechanisms as a response to

the surrounding conditions, i.e. high concentration of uranium and other heavy metals.

In addition, the uranium removal capacity was studied and revealed a high uranium im-

mobilization capacity. In temperature-dependent experiments, a metabolism-dependent

uranium interaction could be demonstrated. TEM analyses identified the main interac-

tion mechanisms of active bioaccumulation. The investigations revealed that KS5 could

be used for bioremediation approaches due to its high tolerance und removal capacity of

uranium.

Contribution of the authors
Ulrike Gerber: concept and design of all experiments, laboratory

and field work, preparation of TEM samples, eval-

uation of the data, preparation of the manuscript,

overall own contribution: 80 %
René Hübner: performed TEM analyses, corrections of the manuscript

André Rossberg: evaluation of the EXAFS data

Evelyn Krawczyk-Bärsch: supervision of the project, discussion of the results, cor-

rection of the manuscript

Mohamed L. Merroun: performed TEM (elemental distribution) analyses, dis-

cussion of the results, co-supervision of the project, cor-

rections of the manuscript
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2.4 Microbial mediated uranium(VI) reduction within

the flooding water of a former uranium mine - a

possible bioremediation approach

Gerber U, Schäfer S, Röder G, Lehmann S, Zirnstein I, Krawczyk-Bärsch E,

Rossberg A

In preparation for submission

In this manuscript, the interaction mechanisms of anaerobic microorganisms with ura-

nium(VI) directly within the flooding water were studied. To stimulate the metabolic

activity of indigenous anaerobic microorganisms, glycerol as a carbon source and possi-

ble electron donor was added to the flooding water. During six weeks of incubation, re-

duction of uranium(VI) to uranium(IV) by microorganisms could be induced. The trans-

formation of the highly soluble uranium(VI) into the less soluble uranium(IV) driven

by microbial activity could be the basis of bioremediation processes directly on site

of contaminated environments. Anaerobic microorganisms present within the flooding

water of the former uranium mine Königstein showed fast and efficient reduction of ura-

nium(VI). To verify the obtained results performed in lab scale experiments a pilot plant

was designed. The results could be confirmed and show the high potential to use these

specialized anaerobic microbes for in situ bioremediation.

Contribution of the authors
Ulrike Gerber: concept and design of all experiments, laboratory and

field work, evaluation of the data, preparation of the

manuscript, overall own contribution: 80 %
Sebastian Schäfer: laboratory and field work (pilot plant)

Grit Röder: laboratory and field work

Susanne Lehmann: UV-vis spectroscopy

Isabel Zirnstein: culture-independent analyses of the microbial diversity

Evelyn Krawczyk-Bärsch: supervision of the project, discussion of the results

André Rossberg: XANES data evaluation, discussion of the XANES re-

sults
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3.1 Combined use of flow cytometry and microscopy to

study the interactions between the gram-negative

betaproteobacterium Acidovorax facilis and

uranium(VI)

Gerber U, Zirnstein I, Krawczyk-Bärsch E, Lünsdorf H, Arnold T, Merroun ML (2016)

J Hazard Mater 347:233–241. doi.org/10.1016/j.jhazmat.2017.12.030
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Supplementary Information

Combined use of flow cytometry and microscopy to study

the interactions between the gram-negative

betaproteobacterium Acidovorax facilis and uranium(VI)

U. Gerber1, I. Zirnstein2, E. Krawczyk-Bärsch1, H. Lünsdorf3, T. Arnold1, M. L.

Merroun4

1 Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße

400, 01328 Dresden, Germany
2 Research Institute of Leather and Plastic Sheeting (FILK) gGmbH, Meissner Ring 1-5, 09599

Freiberg, Germany
3 Helmholtz Centre for Infection Research, Central Facility for Microscopy, Inhoffenstr. 7,

D-38124 Braunschweig, Germany
4 University of Granada, Department of Microbiology, Campus Fuentenueva, E-18071 Granada,

Spain

PCR amplification of 16S rDNA gene fragments and sequencing

To perform colony PCR, colonies grown on agar plates were picked using a sterile pipette tip and

were suspended in 100 µl of nuclease-free water followed by incubation at 95 ◦C for 5 min. An

aliquot of this colony suspension was then added to each PCR reaction. The colony suspension

(1-3 µl) was used in a 25 µl amplification assay with gene-specific primers. For the amplifi-

cation of the 16S rDNA, the primer combination 27F (5’-AGAGTTTGATCCTGGCTCAG-3’)

and 1492R (5’-GGTTACCTTGTTACGACTT-3’) were used. A Taq DNA Polymerase (5 U/µl,

Promega, Mannheim, Germany) was used to catalyse the PCR using the following cycling con-

ditions: initial denaturing at 94 ◦C for 12 min, followed by 30 cycles of denaturing at 94 ◦C for

1 min, annealing at 54 ◦C for 45 s, and extension at 72 ◦C for 90 s, finalized by a 20 min elon-

gation at 72 ◦C. PCR products were purified with the innuPREP-PCR pure Kit (Analytik Jena,

Jena, Germany), and eluted in double-distilled water. Purified PCR products were sequenced

by GATC (GATC Biotech AG, Konstanz, Germany). The retrieved 16S rDNA sequences were

compared with sequences available in the non-redundant nucleotide database of the National

Center or Biotechnology database (http://www.ncbi.nlm.nih.gov) using BLASTN and the ribo-

somal database project (RDP, http://rdp.cme.msu.edu/seqmatch/seqmatch_intro.jsp).
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Figure 1: Phylogenetic tree based on minimum-evolution analysis of 16S ribosomal RNAs using
neighbor-joining evolutionary distance model. Sequences retrieved from the acidic
uranium contaminated mine water of the former uranium mine Königstein and were
denoted as "Isolate". The reference organism A. facilis was added to compare the
relationship to the isolates. The scale bar corresponds to a distance of 5 substitutions
per 100 nucleotide positions.

The sequences were aligned to the closest phylogenetic relatives by using CLUSTALW version

1.7 [1]. Neighbour-joining trees were calculated by using MEGA 4 software [2].

Isolated bacteria from mining water

In this study, a high number of betaproteobacteria strains were isolated using FeTSB medium [3],

a nutrient broth containing 0.25 g/L as organic carbon suitable for the cultivation and enrichment

of heterotrophic and mixotrophic iron-oxidizing bacteria. The isolates (SK W4, 70U1, etc.) were

phylogenetically affiliated to the genus Thiomonas (Fig. 1). FeTSB culture media with different

potassium tetrathionate concentrations selected the growth of autotrophic iron-oxidizing bacterial

strains related to Acidithiobacillus ferrooxidans. Based on dominance of isolated betaproteobac-

teria from earlier Königstein uranium mine water experiments, A. facilis was selected for further
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investigations. Although A. facilis was not isolated from the flooding water, it has been well

studied and is closely related to the betaproteobacteria that were identified by pyrosequencing,

making it an ideal reference organism. Additionally, RNA studies with following pyrosequencing

showed the dominance of metabolic active betaproteobacteria in the mine water [4].
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3.2 Multidisciplinary characterization of U(VI)

sequestration by Acidovorax facilis for

bioremediation purposes
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J Hazard Mater 347: 233–241. https://doi.org/10.1016/j.jhazmat.2017.12.030

45





3 Manuscripts

47



3 Manuscripts

48



3 Manuscripts

49



3 Manuscripts

50



3 Manuscripts

51



3 Manuscripts

52



3 Manuscripts

53



3 Manuscripts

54



3 Manuscripts

55





3 Manuscripts

3.3 Metabolism-dependent bioaccumulation of uranium

by Rhodosporidium toruloides isolated from the

flooding water of a former uranium mine

Gerber U, Hübner R, Rossberg A, Krawczyk-Bärsch E, Merroun ML

Submitted to PLOS ONE (29/03/2018), first revision (16/05/2018)

57





3 Manuscripts

Metabolism-dependent bioaccumulation of uranium by

Rhodosporidium toruloides isolated from the flooding

water of a former uranium mine
Ulrike Gerber1,*,#, René Hübner2, André Rossberg1,3, Evelyn Krawczyk-Bärsch1, Mohamed L.

Merroun4

1 Helmholtz-Zentrum Dresden - Rossendorf, Institute of Resource Ecology, Bautzner Landstraße

400, 01328 Dresden, Germany
2 Helmholtz-Zentrum Dresden - Rossendorf, Institute of Ion Beam Physics and Materials

Research, Bautzner Landstraße 400, 01328 Dresden, Germany
3 Rossendorf Beamline at ESRF - The European Synchrotron, CS40220, 38043 Grenoble Cedex

9, France
4 University of Granada, Department of Microbiology, Campus Fuentenueva, E-18071 Granada,

Spain
# Present Address: Faculty of Natural Sciences, Brandenburg University of Technology Cottbus-

Senftenberg, Universitätsplatz 1, 01968 Senftenberg, Germany

* Corresponding author

E-Mail: gerberu@b-tu.de (UG)

Telephone: +49 3573 85 974

Fax: +49 3573 85 909

Abstract

Remediation of former uranium mining sites represents one of the biggest challenges worldwide

that have to be solved in this century. During the last years, the search of alternative strate-

gies involving environmentally sustainable treatments has started. Bioremediation, the use of

microorganisms to clean up polluted sites in the environment, is considered one the best alter-

native. By means of culture-dependent methods, we isolated an indigenous yeast strain, KS5

(Rhodosporidium toruloides), directly from the flooding water of a former uranium mining site

and investigated its interactions with uranium. Our results highlight distinct adaptive mechanisms

towards high uranium concentrations on the one hand, and complex interaction mechanisms on

the other. The cells of the strain KS5 exhibited high uranium tolerance being able to grow up
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to 6 mM, and also high ability to accumulate this radionuclide (350 mguranium/gdrybiomass,

48 hours). The removal of uranium by KS5 displays a temperature- and cell viability-dependent

process, indicating that metabolic activity could be involved. By STEM (Scanning transmission

electron microscopy) investigations we observed that uranium was removed by two mechanisms,

active bioaccumulation and inactive biosorption. This study highlights the potential of KS5 as a

representative of indigenous species within the flooding water of a former uranium mine which

may play a key role in bioremediation of uranium contaminated sites.

Introduction

Heavy metal pollution of the environment is one of the biggest problems today due to its great

impact on the surface and groundwater, and even in the catchment areas of drinking water [1].

In particular, uranium contamination is a result of former mining activities, by weathering of

uranium containing minerals or by accidental release to the environment [2, 3]. In Germany,

the former uranium mine Königstein was one of the smallest mining sites in Eastern-Germany.

Uranium was recovered from the underground sandstone by leaching with sulfuric acid [4]. The

mining activity resulted in the release of about 2 million of cubic meters of acid pore water,

which contained high amounts of uranium. Due to the stop of uranium mining in Germany, the

underground is actually in the process of remediation and since 2001, the mine is flooded in

a controlled way. Nevertheless, the flooding water still contains relatively high concentrations

of uranium (8 mg/L) and other heavy metals. Additionally, the flooding water displays a low

pH (around 3) as a consequence of the leaching process [5]. For this reason, the flooding wa-

ter is treated by an elaborate chemical wastewater treatment plant. In contrast to other former

uranium mines in Germany, Königstein is unique in the remediation effort, due to disturbances

in the underground rock formation, it is not possible to flood the mine completely, otherwise

nearby aquifers would be potentially contaminated with uranium. Therefore, the flooding water

is pumped to the surface (pump-and-treat technique) and is treated by chemical precipitation and

ion exchange [6].

Within natural environments the mobility and bioavailability of uranium depends strongly on

its speciation and physicochemical form [7]. Particularly in acidic (pH < 5) and non-reducing

conditions the free uranyl ion (UO 2+
2 ) predominates the uranium speciation [8]. Previous studies

showed that uranium mainly occurs in the bulk solution as highly soluble UO2SO4-species within

the flooding water of the former uranium mine [9]. Besides abiotic factors such as pH, redox po-

tential, dissolved organic and inorganic ligands, and the presence of solid particulates [5, 10, 11]

[5,10,11], biological processes could have a significant impact on the migration of radionuclides.

They can affect their mobility by a variety of interaction mechanisms, such as biosorption on

functional groups of the cell-surface, bioaccumulation within the cell, biotransformation (reduc-
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tion or oxidation of the radionuclide), and biomineralization [2, 12–19].

Despite harsh environmental conditions generated in the mining process, such as high uranium

and sulfate concentrations, and low pH, leading to acid mine drainage (AMD), microorganisms

are able to survive and even display metabolic activity in these environments [20]. In addition,

culture-independent studies of the microbial diversity within the flooding water of the former

uranium mine Königstein revealed a diverse community of microbial life [21, 22]. Therefore,

microorganisms should be taken into consideration to investigate possible interaction mecha-

nisms which could be helpful for biological approaches concerning bioremediation.

Investigations on the influence of yeast cells on actinides, like uranium are still in its infancy [23].

Much is known about the interaction of model organisms, such as Saccharomyces cerevisiae and

Escherichia coli, with heavy metals and radionuclides [24–26]. It seems to be important to con-

sider microorganisms from ecological niches, like the former uranium mining site Königstein,

for the use in metal bioremediation approaches, since conventional technologies, such as chem-

ical precipitation and ion exchange, are cost-intensive and often inefficient for metals at low

concentrations [27–29]. Therefore, the present study aimed to describe the possible role of mi-

croorganisms that were isolated from their natural uranium-contaminated habitats as a potential

alternative to conventional chemical remediation strategies, due to their adaptive tolerances and

possible immobilization ability of radionuclides. We investigated an isolated yeast, KS5, which

was identified as Rhodosporidium toruloides. R. toruloides (syn. Rhodotorula gracilis) belongs

to the division of Basidiomycota and is an oleaginous yeast [30]. Species of Rhodosporidium

were isolated from heavy metal contaminated soil in former studies. Heavy metal tolerance tests

with this strain displayed high tolerances against several metals [31]. In addition to the high

tolerances, R. toruloides offers many other biotechnological opportunities as an alternative yeast

model compared to S. cerevisiae, which lacks several biochemical features [30]. Furthermore,

we investigated the uranium removal capacity of the indigenous yeast KS5 and its tolerance to

selected heavy metals. More precisely, different influencing factors on the uranium removal ca-

pacity of KS5 were examined, such as temperature, initial dry biomass and viability of the yeast

cells. To obtain a detailed and closer look on the localization of the removed uranium on the

cell membrane and possibly inside the cells, high-angle annular dark-field scanning transmis-

sion electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy (EDXS)

were performed. The structural parameters of the uranium complexes formed by the strain were

studied using EXAFS (extended X-ray absorption fine structure spectroscopy) spectroscopy. In

addition, we compared the metal tolerances of the isolated strain KS5 with the reference strain

DSM 10134 to investigate natural adaption mechanisms against heavy metals. The results of our

investigations provide new insights on the interaction of indigenous yeast cells with uranium, and

consequently, a possible use of microbial cells for in situ bioremediation.
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Methods and Materials

Water sampling, microbial isolation and cultivation conditions

Samples (1 L) of flooding water from the former uranium mine in Königstein (Saxony, Germany)

were taken into sterile glass bottles. The water was stored at 4 ◦C until further processing. For

isolation of aerobic fungal microorganisms, 500 µL of the flooding water was plated onto solid

SDA (Sabouraud Dextrose Agar) medium (Peptone 5.0 g/L, Casein Peptone 5.0 g/L, Glucose

40.0 g/L, 15.0 g/L Agar-Agar, pH 6.5 ± 0.1) [32]. The plates were incubated at 30 ◦C for

five days. After appearing of single colonies, they were picked and transferred into liquid SDA

medium to obtain pure cultures. The purity of the cultures was tested by plating again onto solid

plates and by PCR analysis. R. toruloides DSM 10134 was obtained from the DSMZ (Leibniz

Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Ger-

many).

Molecular characterization, amplification of rRNA ITS gene
fragments and sequencing

For molecular identification of the isolated microorganisms, cells were grown in liquid SDA

medium for 48 hours at 30 ◦C and 130 rpm. Two mL of the solution were sampled and the

DNA was extracted using alkaline lysis [33]. The rRNA ITS gene fragments which are the DNA-

barcode established for fungi [34] were amplified using the primer pair ITS1 and ITS4 [35]. PCR

was performed as described in White et al., 1990. Before sequencing the amplified products,

the DNA was purified using the innuPREP-PCR pure Kit (Analytik Jena, Jena, Germany), and

eluted in double-distilled water according the instructions of the manufacturer. The purified PCR

products were sequenced by GATC (GATC Biotech AG, Konstanz, Germany). The retrieved

rRNA ITS sequences were compared with sequences available in the non-redundant nucleotide

database of the National Center or Biotechnology database (http://www.ncbi.nlm.nih.gov)

using BLASTN and the ribosomal database project.

Heavy metal tolerance (determination of MIC) and use of different
carbon sources

For heavy metal tolerance tests with uranium, chromium, zinc, cadmium, and copper, yeast cells

(KS5 and DSM 10134) were grown for 48 hours in liquid SDA medium at 30 ◦C and 130 rpm.

Subsequently, cells were washed twice in 0.9 % NaCl solution to remove the residual ingredient

medium. The microbial suspension with an initial OD600nm of 5.0 was 1:500 diluted and 100 µL

were plated onto solid agar plates containing SDA 1:5 diluted with adjusted metal concentration
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(cadmium, copper and chromium 0.1 - 5.0 mM; zinc and uranium 0.1 - 10.0 mM). The plates

were incubated for 48 hours at 30 ◦C. The minimal inhibitory concentration (MIC) was deter-

mined in triplicates. In addition, tolerance test with uranium in liquid medium was determined

using the isolate KS5. SDA medium 1:5 diluted was adjusted with different uranium concentra-

tions (0.05, 0.1, 0.2 mM) and was inoculated with 50 µL of a 48 hours old culture. After distinct

time points, samples were taken to analyze the OD600nm. The incubation took place at 30 ◦C

and 130 rpm in triplicates. The resulting growth curves were plotted with logarithmic scale to

calculate the growth rate µ = lnxt−ln t0
t−t0

and doubling time td = ln2
µ

within the linear exponential

phase. To investigate the use of different carbon sources, KS5 and DSM 10134 were pre-cultured

in liquid SDA medium as described above and washed two times with 0.9 % NaCl solution. The

washed cells were diluted to an OD600nm of 0.1. 50 µL solution from the diluted and washed cell

suspension was inoculated in 50 mL minimal-salt-medium (MSM, 0.2 g/L KH2PO4, 0.6 g/L

K2HPO4, 0.5 g/L (NH4)2SO4, 0.1 g/L MgSO4 · 7 H2O, 0.01 g/L CaCl2, 0.005 g/L FeCl2, 0.01

g/L MnCl2) which was supplemented with 1 % of different carbon sources (lactate, maltose,

mannose, fructose, glucose, sucrose, xylose, acetate, oxalic acid, glycerol, ethanol, galactose).

The cells were incubated at 30 ◦C and 130 rpm for 72 hours. The experiments were carried out

in triplicates. Finally, to investigate the growth with the different carbon sources, the OD600nm

was measured.

Determination of uranium removal capacity

To test the ability to remove uranium from the surrounding solution, yeast cells of KS5 were

grown in liquid SDA medium for 48 hours at 30 ◦C and 130 rpm. Afterwards cells were washed

three times with sterilized tap water pH 5.0. The washed yeast cells were suspended in the

background solution (sterilized tap water pH 5.0) to an initial OD600nm of 1.0 (6.5 mg/mL ±
0.5 mg/mL). Subsequently, uranium as UO2(NO3)2 was added to reach a final concentration

of 0.1 mM. To investigate the temperature-dependent uranium removal capacity, the yeast cells

were washed with an acclimated background solution at 4 ◦C or 30 ◦C. The cell suspensions

were incubated at selected temperatures for 48 hours. During the incubation, samples were taken

at distinct time points (5 min, 0.5 h, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h, 26 h, 48 h) to determine

the residual uranium concentration within the supernatant. All experiments were carried out in

triplicates. The samples were centrifuged for 5 min at 13,000 rpm at RT (Centrifuge 5415R,

Eppendorf AG, Hamburg, Germany) and the acidified supernatant was analyzed with Inductively

Coupled Plasma Mass Spectrometry measurements (ICP-MS) using an ELAN 9000 type ICP-

MS spectrometer (Perkin Elmer, Überlingen, Germany). To study the uranium removal capacity

of dead cells, cultures grown for 48 h were immediately autoclaved for 30 min at 121 ◦C and 1

bar for 30 min. The autoclaved cells were assayed same as it is described above. The amount

of removed uranium from the solution was normalized to the dry biomass after drying the cell
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pellet for 24 h at 100 ◦C in an oven (Memmert UE500, Schwabach, Germany). To investigate

the uranium removal capacity dependent on the initial dry biomass (dbm), different weights of

biomass were applied. The cells were incubated with 0.1 mM uranium for 48 hours at 30 ◦C and

130 rpm. Afterwards the cells were harvested and dried as described above.

Effect of uranium on cellular viability using flow cytometry

To investigate the effect of uranium on the cell, uranium-treated cells were stained with fluores-

cent dyes and analyzed by flow cytometry techniques. Therefore, an inoculum of a pre-grown

culture of KS5 and DSM 10134 was added to 1:5 diluted SDA medium either without uranium

as a control or containing a uranium concentration of 0.1 mM. The cells were incubated for 24

hours at 30 ◦C and 130 rpm. Afterwards, the cells were harvested by centrifugation at 8,000

rpm (Centrifuge 5804R, Eppendorf AG, Hamburg, Germany) for 10 minutes and washed twice

with Phosphate Buffered Saline (PBS). Subsequently, the cells were dissolved in PBS to approx-

imately 106 cells/mL. As the "dead" control an aliquot of the cells were incubated for 45 min

at 80 ◦C. The cell viability test was performed with propidium iodide (PI) (stain dead cells) and

fluorescein diacetate (FDA) (stain alive cells). The fluorescent dyes were added to a final con-

centration of 2 µL/mL for PI and 20 µL/mL FDA. The cell suspension was incubated for 15 min

in the dark at ambient temperature. After the incubation with the two dyes both strains were ana-

lyzed by flow cytometry using a FACSCantoII cytometer Becton Dickinson (San Jose Palo Alto,

California) available at the "Centro de Instrumentación Científica" of the University of Granada,

equipped with three lasers: 488 nm blue, 620 nm red, and 405 nm violet. All experiments were

done in triplicates.

Transmission electron microscopy (TEM) and Energy-dispersive
X-ray spectroscopy (EDXS)

Immediately after the uranium removal experiments, the cells were harvested by centrifugation

for 10 min at 6,000 rpm (Centrifuge 5804R, Eppendorf AG, Hamburg, Germany) at room tem-

perature to remove the supernatant. The cell pellet was washed twice with sterilized tap water

at pH 5.0 added with 0.2 % glucose. Subsequently, the cells were fixed with 2.5 % (vol/vol)

glutardialdehyde from 50 % (vol/vol) stock (Carl Roth, Karlsruhe, Germany) over night at 4

celsius. After fixation, the cells were transferred in 4 % (w/v) aqueous low-melting agarose (Life

Technologies Inc., Darmstadt, Germany), and after cooling, dehydrated by an ethanol series (25,

50, 75, 95 % for 10 min; 100 % for 2 h; 100 % over night at RT), followed by ERL-resin

impregnation and polymerization. Sample preparation with minor modifications was done ac-

cording to the user manual [36]. Ultrathin sections of 100 to 200 nm were cut with a diamond

knife (EMS, Munic, Germany) and transferred onto carbon-coated Cu grids (lacey carbon on
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200 mesh Cu (S166-2), Plano GmbH, Wetzlar, Germany). TEM investigations were done with

an image Cs-corrected Titan 80-300 microscope (FEI) operated at an accelerating voltage of 300

kV. Qualitative atomic number contrast images were obtained by high-angle annular dark-field

scanning transmission electron microscopy (HAADF-STEM). Employing a Li-drifted silicon de-

tector (EDAX) in STEM mode, energy-dispersive X- ray spectroscopy (EDXS) measurements

were performed for qualitative chemical analysis. For elemental distribution analysis samples

were examined in HAADF-STEM mode with Titan G2 80-300 microscope (FEI) at "Centro de

Instrumentación Científica" at the University of Granada, Spain. Prior to each STEM analysis,

the specimen holder was plasma-cleaned to minimize contamination.

Extended X-ray absorption fine structure spectroscopy (EXAFS)

In order to obtain information about the structure of the formed uranium complexes at molecular

scale, EXAFS analyses were performed. After uranium immobilization experiments with 0.1

mM uranium, contacted with the yeast cells for 48 h and at 30 ◦C (described above) the cells

were ultra-centrifuged (Ultracentrifuge Optima XL100K, Rotor: SW 32Ti; Beckman Coulter,

USA) for 1 h at 187 000 × g. The supernatant was removed and the resulting cell pellet was

placed into polyethylene sample holders. The sample holders were sealed, frozen, and stored in

liquid nitrogen until the x-ray absorption measurements. The measurements were carried out at

the Rossendorf Beamline BM20 at the European Synchrotron Radiation Facility (ESRF) [37].

The yeast cells were measured at 15 K in a closed-cycle He-cryostat in order to reduce thermal

noise and to avoid radiation-induced redox reactions of uranium during the measurements.

A water-cooled Si(111) double-crystal monochromator in channel cut mode (5-35 keV) was used

to monochromatize the incoming synchrotron X-ray. In dependence of the uranium amount the

spectra were collected in fluorescence mode or in transmission mode using ionization chambers.

A reference sample, meta-autunite Ca(UO2)2(PO4)2 · 6 H2O [38], was measured at room temper-

ature in transmission mode [39]. The K-edge spectrum of an yttrium metal foil (first inflection

point at 17038 eV) was recorded simultaneously for energy calibration of the sample spectra. E0,

the ionization energy, of the uranium LIII-edge was defined as the maximum of the second deriva-

tive of the averaged spectra. Eight scans in fluorescence mode were collected of the yeast cells

incubated with 0.1 mM uranium. The fluorescence spectra were corrected for the detector dead

time and subsequently averaged. The spectra were analyzed using the data analysis programs

Sixpack/SamView (Version 0.59) (Webb 2005) and WinXAS (version 3.11) [40].
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Results and discussion

Phylogenetic affiliation, morphological characterization and
utilization of different carbon sources of KS5

Culture dependent methods based on the use of SDA medium resulted in the isolation of different

microbial strains. SDA medium was developed and used for enrichment of fungal stains from en-

vironmental and clinical samples [31]. Single colonies obtained were used for the enrichment of

pure cultures indigenous within the flooding water of Königstein. On SDA agar medium, the iso-

late KS5 displayed red round and shiny colonies (see Supplementary Material). The phylogenetic

affiliation of the microbial isolate based on ITS rRNA gene analysis displayed high similarity to

R. toruloides (strain JZ-9, 99 % identity and 100 % query cover). These yeast cells are known

for their production of lipid related molecules, including biodiesel, adhesives, and high-value nu-

tritional oils [41–47]. In addition, R. toruloides is able to utilize a wide variety of carbohydrates

derived from plant biomass, including xylose and cellobiose [47–49]. To investigate the isolated

strain in more detail, studies on the metabolic versatility regarding the use of different carbon

sources were performed. In addition, the reference strain DSM 10134 was investigated in the

same way. These experiments were performed in order to find a suitable carbon source to grow

the isolated strain KS5 directly within the flooding water for in situ bioremediation approaches.

The results (Table 3.1) displayed slight differences for the carbon sources mannose, acetate and

ethanol. KS5 displays better growth on mannose and acetate, compared to DSM 10134. Notably,

KS5 shows the ability to grow in the presence of xylose, in contrast to DSM 10134 which was not

able to metabolize this sugar. The fermentation of xylose to ethanol by yeasts was well studied

by several investigations and could be a useful process for the production of bioethanol [50–53].

Nevertheless, the results show that the uranium bioremediation potential of the isolated strain

KS5 could be enhanced by the ability to use different sugars like maltose, fructose, mannose and

sucrose.

Impact of uranium and selected heavy metals on microbial growth

To investigate the impact of uranium on the microbial growth, 1:5 diluted SDA medium with in-

creasing metal concentrations was used. The growth curves of KS5 incubated with two different

uranium concentrations are displayed in Fig. 1. It is clearly visible that the curves with uranium

(0.05 and 0.1 mM) are clearly shifted compared to the control (without uranium). The lag-phase

was longer which might originate from a possible adaption of the cells to uranium. Based on the

growth curves, we calculated the growth rate µ and doubling time td for all three approaches (Ta-

ble 3.2). Compared to the uranium-free control, a decrease of the growth rates µ with increasing

metal concentrations was observed. At the highest uranium concentration of 0.1 mM, the growth
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rate is more than half times smaller compared to that of the control. Furthermore, with increasing

uranium concentrations also the doubling times increased. At 0.1 mM, the doubling time is more

than twice higher. Nevertheless, the yeast cells are able to grow up to a uranium concentration

of 0.1 mM in liquid SDA medium. Furthermore, the uranium tolerance of KS5 in comparison to

the reference strain DSM 10134 was studied using flow cytometry. The cells were grown in 1:5

diluted SDA medium supplemented with 0.1 mM uranium. After an incubation time of 24 h the

cells were stained with PI and FDA. The percentage distribution of viable and dead cells with

and without uranium is displayed in Fig. 2. In the absence of uranium more than 80 % of the

KS5 and all the DSM 10134 cells displayed viability. At a uranium concentration of 0.1 mM the

two microbial strains tolerate this metal in different ways. The cell viability was reduced to 60 %

and 10 % for KS5 and DSM 10134, respectively. The high uranium tolerance of KS5 could be

explained by adaption of this strain to uranium in its natural habitat contaminated with uranium.

To survive within the flooding water, containing high amounts of uranium, KS5 has to develop

adaption mechanisms. Previous studies have shown that microorganisms, which were isolated

from contaminated sites, display the ability to tolerate relatively higher concentrations of heavy

metals [54–56]. These natural occurring microbes could be promising candidates for their use in

the bioremediation of these inorganic contaminants [31]. In addition, Sakamoto et al., 2012 [57]

concluded that several genes of S. cerevisiae are involved in uranium tolerance. Phosphate trans-

porter genes were observed to be responsible to contribute to uranium tolerance and furthermore,

cell surface proteins contributed to the uranium accumulation [57]. Further investigations with

the isolated strain KS5 should be performed to identify possible gene responsible for the high

Table 3.1: Growth on different carbon sources of KS5 and DSM 10134
Carbon source KS5 DSM 10134
lactate + +
maltose ++ ++
mannose ++ +
fructose ++ ++
glucose + +
sucrose ++ ++
xylose +/- -
acetate + +/-
oxalic acid - -
glycerol + +
ethanol +/- +
galactose +/- +/-

The two strains were grown in liquid mineral-salt-medium which was added with 1 % carbon
source. Growth was determined by measuring of the OD600nm. ++ good growth (OD > 0.4), +
growth (OD 0.2-0.39), +/- less growth (OD < 0.2), - no growth (OD = 0.0), (n=3).
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uranium tolerance. To evaluate the tolerance against selected heavy metals (Cr, Cu, Cd, Zn)

and uranium, KS5 was grown on solid agar plates with increasing concentrations of metals. To

compare possible adaption mechanisms of the indigenous yeast KS5 the reference strain, DSM

10134, was investigated in the same way. The results of the heavy metal tolerances (Table 3.3)

showed clear differences between the two strains. The investigated uranium tolerance on solid

agar plates revealed a six-fold higher tolerance of the natural isolate (6.0 mM) compared to the

reference strain (1.0 mM). Previous studies using other isolated yeasts from Spanish clay deposit

showed similar results. Two isolated strains from bentonite samples exhibit tolerances up to 10

mM for uranium [58]. In addition, also for chromium KS5 showed a distinct higher tolerance

than the reference DSM 10134. An isolated strain of Rhodosporidium sp. from metallurgical

wastes displayed a similar high resistance to chromium [59]. However, for copper, cadmium and

zinc we could not see obvious differences between the natural isolate and the reference strain.

Our investigations on uranium and selected heavy metals tolerance revealed a possible evolution-

ary adaption of KS5 to the surrounding environmental conditions. Compared to the reference

strain, DMS 10134, the indigenous yeast exhibits tremendously high tolerances of uranium and

chromium. To identify the molecular mechanisms behind these high tolerances gene expression

analysis should be performed. Nevertheless, the results display the ability of KS5 to survive high

concentrations of uranium as well as other heavy metals and thus, this indigenous yeast could

play an important role of in situ bioremediation approaches of contaminated sites.

Uranium removal capacity of KS5

In order to determine the influence of KS5 on the immobilization capacity of uranium at natural

conditions, uranium removal studies were performed. Uranium was removed rapidly from the

surrounding solution within 24 h. After 48 h incubation, metal binding saturation by the cells

was reached. The uranium removal capacity of the strain KS5 is a temperature-dependent pro-

cess as was indicated in Fig. 3a. The cells were able to remove around 150 mgU/gdrybiomass

(dbm) from the surrounding solution at 30 ◦C, whereas at 4 ◦C the cells removed only around

75 mgU/gdbm, respectively. Experiments with heat-killed cells incubated at the same tempera-

tures revealed that dead cells remove lower amounts of uranium compared to living yeast cells.

Nevertheless, the amount of removed uranium of around 60 mgU/gdbm is almost equal to the

amount for cells incubated at 4 ◦C. Furthermore, regarding to the percentage removal of ura-

nium (Fig. 3b), living cells of KS5 removed nearly 100 % of soluble uranium from solution.

Table 3.2: Growth rate and doubling time of KS5 growing with different uranium concentrations
Control 0.05 mM 0.1 mM

Growth rate µ [h-1] 0.19 0.13 0.08
Doubling time td [h] 3.73 5.55 8.56
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In contrast, only 40 % of uranium was removed by heat killed cells. These findings imply that

uranium removal by KS5 cells is metabolism-dependent. Moreover, the temperature-dependent

experiments indicate that the uranium removal is based on different interaction processes, prob-

ably passive biosorption and active bioaccumulation. In addition, the less amount of removed

uranium by dead cells of KS5 could prove the occurrence of metabolically-dependent processes.

The process of biosorption is rapid and will be not affected by temperature due to the metabolism-

independent sorption of uranium on negatively charged groups of the cell membrane [60, 61].

In contrast, the mechanism of intracellular bioaccumulation of actinides especially uranium is

poorly understood. However, previous studies assumed an active transport of uranium into the

cells [62]. The same temperature-dependent and thus possibly metabolism-dependent process

was observed by uranium interaction experiments on A. facilis [63]. Similar to KS5, the bacterial

cells removed lower amounts of uranium at lower temperatures. Compared to other yeast cells,

like S. cerevisiae, KS5 could remove distinct higher amounts of uranium from the surrounding

solution [64]. Although the authors used lower concentrations of the metal, the studied strain

removed only 40 % of the initial concentration, which correspondents to a uranium removal

capacity of 17 mgU/gdbm. In addition, they investigated the removal capacity of living and

dead cells for comparison purpose. On the contrary to our findings S. cerevisiae accumulated

higher amounts of uranium onto dead cells [64]. Indicating again that active mechanisms, such

as bioaccumulation, could be responsible for the uranium removal by living cells of KS5 further

to the passive process of biosorption. STEM analyses (results discussed below) support this as-

sumption. Fig. 4 shows the effect of biomass concentration of KS5, ranging from 0.05 to 0.24

mg/mL on uranium removal capacity. The results reveal that the uranium binding capacity of the

isolate KS5 decrease with increasing the biomass concentration from 0.05 to 0.1 mg/mL, accu-

mulating up to 350 and 175 mgU/gdbm, respectively. Afterwards, the equilibrium of uranium

removal capacity was reached at around 150 mgU/gdbm and almost the complete amount of

dissolved uranium was removed by the yeast cells. In addition, the removal capacity dependent

on dry biomass displays the same result as the kinetic studies mentioned above. The ability to

remove uranium was different at two tested temperatures. Cells, which were incubated at 4 ◦C

removed much less uranium compared to cells at 30 ◦C. Even at the lowest initial dry biomass

only around 80 mgU/gdbm was removed by the yeast cells. Compared with other fungal strains,

KS5 displays a high capacity of uranium removal. All observed Rhizopus strains displayed a ca-

Table 3.3: MIC (mM) for KS5 and DSM 10134 on SDA medium 1:5 diluted
Uranium Chromium Copper Cadmium Zinc

KS5 6.0 5.0 0.4 < 0.1 1.0
DSM 10134 1.0 1.0 0.3 < 0.1 0.7

MIC: concentration at which no growth occurred; n=3.
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pacity between 180 and 260 mgU/gdbm [65]. In contrast to bacterial cell such as Paenibacillus

sp. JG-TB8, which was recovered from a soil sample of another uranium mining site (Johan-

ngeorgenstadt, Germany) and displayed a uranium removal capacity of 138 mgU/gdbm (at pH

4.5) [66], KS5 shows a higher capacity. Compared to the model organism S. cerevisiae, which

displayed maximum biosorption quantity of 102 mgU/gdbm [67], KS5 was able to remove

more than twice. The biosorption of heavy metals especially uranium by yeast cells was shown

in previous studies and confirmed our investigations of actively intracellular uptake [62, 68].

Localization of removed uranium by TEM studies

Transmission electron microscopy analyses were performed to investigate the cellular localiza-

tion of uranium accumulated by the cells of KS5, and to elucidate the possible uranium inter-

action mechanisms with this yeast. The temperature-dependent uranium removal capacity tests,

conducted at 4 ◦C and 30 ◦C , suggest the implication of two possible interaction mechanisms,

namely passive biosorption and active bioaccumulation. Fig. 5a shows a STEM image of KS5

incubated at 30 ◦C together with two EDX spectra obtained for two regions of metal accumulates

(Figs. 5b and 5c) localized within the cells. Intracellular uranium is detected in the form of

phosphorous-containing needle-like structures which are localized at the plasmatic membrane,

as well as at the outer membrane of the nucleolus. Additionally, uranium is associated in lipid

granules localized within the cytoplasm. Several studies showed that R. toruloides is known for

overproduction of lipids and pigments [44, 69–71] and for the formation of lipid droplets which

serve as energy reservoir [72]. To investigate the possible binding sites of uranium, further ele-

ment distribution analyses were performed (Figs. 6a-d). The results clearly indicated the com-

mon presence of uranium together with phosphorus (needle-like structures) (Fig. 6b). In contrast,

when cells incubated at 4 ◦C (Fig. S2), it is clearly visible that, considerably less uranium amount

was immobilized by the cells. Uranium is localized only at the outer membrane and is not taken

up into the cell. Due to the fact, that only cells which were incubated at 30 ◦C display intracel-

lular accumulated uranium whereas cells incubated at 4 ◦C showed no uranium inside the cells,

it could be assumed that uranium is actively accumulated. In comparison to other yeast strains,

the same needle-like fibrils were observed [64]. In contrast to our results, however, the authors

could not detect any uranium accumulates inside the yeast cells. Furthermore, Strandberg et al.

1981 [73] suggested no metabolisms-dependent uranium interaction mechanism by S. cerevisiae

which seems to be in disagreement with the finding reported in the present work, where the cells

of the strain KS5 interact with uranium in a metabolisms-dependent way due to the temperature-

dependent uranium immobilization capacity. Other studies on naturally isolated yeast cells from

Spanish clay deposits confirmed a similar uranium immobilization behavior [58]. Uranium was

precipitated on the outer cell surface as well as intracellularly. In addition, also needle-like struc-

tures of the immobilized uranium could be observed and were identified as uranyl-phosphate
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minerals with a structure similar to H-autunite [58]. Resulting from the TEM investigations, we

confirmed our previous results and our hypothesis that uranium was immobilized by two different

mechanisms, by active bioaccumulation and by passive biosorption.

Speciation of removed uranium by EXAFS analysis

EXAFS measurements were performed to determine and identify the structure of uranium immo-

bilized by the isolated strain KS5. Fig. 7 displays the k3-weighted EXAFS spectra and their cor-

responding Fourier transforms (FT) of the yeast cells contacted with 0.1 mM uranium at 30 ◦C for

48 h and of the meta-autunite reference. The FT signal of the uranium (U) interaction (Fig. 7, U1)

at 4.8 Å (not corrected for phase shift) was Fourier filtered in the R-interval of 4.53 Å - 5.18 Å

for both samples. When comparing the signatures in the FT of the uranium solid formed upon

contact with the KS5 strain (red traces) with the reference material meta-autunite (black traces),

strong similarities can be seen, pointing toward the formation of a meta-autunite-like biomineral

under the influence of the yeast cells. A strong indication of meta-autunite formation as a conse-

quence of the biomineralization processes is the detected U-P interaction at R+∆R = 2.9 Å and

the U-U interactions at R+∆R = 4.8 Å (U1) and at R+∆R = 6.8 Å (U2) (Fig. 7). Moreover, the

Fourier filtered U1 signals are in phase (Fig. 7, left), showing that the radial U-U1 distance is the

same for both samples. Though, the presence of other uranium species in minor contributions

cannot completely be excluded, since the spectrum of the yeast sample does not match exactly

with that of meta-autunite. According to the TEM studies, uranium was mainly removed by

bioaccumulation within the cytoplasm and boned via protonated phosphoryl containing groups.

The formation of meta-autunite, as a response of uranium interaction with microorganisms, was

mentioned by several further studies [19, 74, 75]. However, few studies with R. toruloides and

meta-autunite formation are known. The removal of uranium by yeast cells and its resulting im-

mobilization by formation of uranium minerals may play an important role in bioremediation of

uranium contaminated sites due to their stability for long time periods [76].

Conclusion

Our present study describes the interaction mechanisms of KS5 with uranium(VI) and its tol-

erance to selected heavy metals. Uranium removal studies and TEM analyses revealed that the

cells of the strain interact with uranium through a temperature-dependent process. For yeast cells

incubated at 30 ◦C, intracellular uranium accumulates as needle-like structures were detected in

the cytoplasm and also within lipid-granules, which might be a consequence of different detoxi-

fication mechanisms. Our findings confirm, that natural occurring microorganisms may play an

important role in predicting the transport and fate of uranium at contaminated sites which could

be used for in situ bioremediation.
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Figures

Figure 1: Growth curves of KS5 incubated with different uranium concentrations, the cells were
grown in liquid SDA 1:5, uranium was added in different concentrations, squares no
uranium, circles 0.05 mM uranium and triangle 0.1 mM uranium, incubation for 172
h at 30 ◦C; n=3, error bars indicate standard deviation.

Figure 2: Percentage distribution of viable and dead cells using flow cytometry, cells of KS5 and
DSM 10134 were incubated with 0.1 mM uranium or without (control) in 1:5 diluted
SDA medium for 24 h at 30 ◦C. Cells were stained with FDA and PI for cell viability
test. Viable (living cells) are displayed in dark grey and dead cells in grey pattern; n=3,
error bars indicate standard deviation.
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Figure 3: Temperature-dependent uranium removal capacity of KS5 (a) Uranium removal relat-
ing to dry biomass, orange curves show incubations at 30 ◦C and blue curves at 4 ◦C,
filled scares display living cells (solid lines) and open triangles display heat killed
cells (dashed lines); (b) Percentage uranium removal of living cell (solid line and filled
scares) and heat killed cells (dashed line and open triangles) at 30 ◦C; initial uranium
concentration 0.1 mM; background solution tap water pH 5.0; n=3, error bars indicate
standard deviation.

Figure 4: Uranium removal capacity by KS5 as function of the initial dry biomass, initial ura-
nium concentration 0.1 mM, background tap water pH 5.0, incubation time 48 h at
30 ◦C (filled squares) and 4 ◦C (open circles); n=3, error bars indicate standard devia-
tion.
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Figure 5: STEM-EDXS analysis of an ultrathin-sectioned KS5 sample after uranium removal
experiments at 30 ◦C for 48 h (a) HAADF-STEM micrograph together with (b) EDX
spectra of a needle-like structure localized at the inner cytoplasm-membrane, and (c)
of immobilized uranium localized within lipid granules. The characteristic peaks of
copper in the EDX spectra are caused by fluorescence excitation of the TEM support
grid.
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Figure 6: HAADF-STEM analysis of an ultrathin-sectioned KS5 sample after uranium removal
experiments at 30 ◦C for 48 h (a) HAADF-STEM micrograph together with distri-
bution analysis of (b) uranium (purple) and phosphorus (green), (c) uranium, and (d)
phosphorus.
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Figure 7: ULIII EXAFS spectra (left) and corresponding Fourier transform (FT) (right), KS5
was incubated with 0.1 mM uranium at 30 ◦C for 48 h (shown in red), The reference
meta-autunite (shown in black) together with the Fourier filtered uranium interaction
at 4.8 Å (bottom). The noise level (background) was determined from the FT peak
magnitude in the 15-20 Å R-region, where no significant signal from the sample itself
is expected (blue line).
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Figure S1: Red colonies of KS5, singe colonies appearing on solid SDA agar plates, incubation
at 30 ◦C for 48 hours.

Figure S2: STEM-EDXS analysis of an ultrathin-sectioned KS5 sample after uranium removal
experiments at 4°C for 48 h (a) HAADF-STEM micrograph together with EDX spec-
trum (b) of a needle-like structure localized at the outer cytoplasm membrane.
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Abstract

This study investigated the sustainability of microbial mediated uranium(VI) reduction in the

flooding water of a former uranium mining site located in Germany, for possible applications

of bioremediation. Presently, the site of the former uranium mine is remediated by an intensive

and time-consuming waste water treatment, due to the fact that the underground is flooded in a

controlled way. The task for the next years is to find alternative approaches which combine cost

efficiency, environmental friendliness and minimizing time effort. We examined the ability of

anaerobic bacteria, natural occurring within the flooding water, for their uranium(VI) reduction

capability. Therefore, the electron donor and carbon source glycerol was added, to stimulate

microbial growth. During six weeks of incubation, analytical techniques, like measurement of
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redox potential, pH, uranium redox state, and iron and sulfate concentration, were performed.

A distinct decrease of the redox potential was observed after six weeks of incubation time. In

combination with XANES (X-ray absorption near edge structure) a complete reduction of ura-

nium(VI) to uranium(IV) was detected. Furthermore, the underlying molecular mechanisms of

the microbial uranium(VI) reduction and the bacterial diversity after six weeks incubation were

investigated. To verify the applicability for industrial scale bioremediation approaches, a pilot

plant was designed and the obtained results from laboratory scale experiments were successfully

repeated. We could demonstrate that the results achieved in the laboratory scale samples are

transferrable to industrial scale applications and thus, could be used for potential in situ bioreme-

diation approaches of former uranium mining sites.

Introduction

The presence of high levels of uranium at contaminated sites, resulting from former uranium min-

ing activities in the last century, represent a major concern due to its potential for mobilization and

dissolution in the surrounding environment. Studies demonstrated that toxic radionuclides have

migrated into groundwater for decades, which leads to a serious threat to the environment and

public health [1]. Consequently, the main objective in the last years is the remediation of heavy

metal contaminated sites. However, clean-up approaches for these areas are projected to be ex-

pensive and to last many decades. One of numerous former uranium mining sites in Germany

represents the uranium mine in Königstein, which is currently in the remediation process. There-

fore, the underground of the mine is flooded in a controlled way and the flooding water is pumped

to the surface. In following steps, the flooding water is treated by a conventional chemical waste

water treatment plant [2]. Traditional remediation methods of groundwater by pump-and-treat,

followed by ion exchange, seems to be elaborated and cost-prohibitive. For that reason, in situ

bioremediation could be a possible alternative, by using indigenous microorganisms to clean-up

contaminated sites [3]. Moreover, previous studies demonstrated that bioremediation provides

an efficient, cost-effective, and environmental-friendly technology [4].

As a consequence of the leaching process with sulfuric acid in the last years of uranium mining

activity, the flooding water still displays a low pH (~ 3.0) and contains high concentrations of sul-

fate (~ 1.0 g/L). In addition to the high uranium concentration present within the flooding water

(8 mg/L), also other heavy metals display high concentration levels. Taken as a whole, these con-

ditions characterize this site as an acid mine drainage (AMD). AMD sites often occur in the min-

ing industry and represent a major problem, that poses an additional risk to the environment due

to the fact that they contain elevated concentrations of metals and metalloids. The major cause

of the development of AMD sites is the accelerated oxidation of iron pyrite (FeS2 and sulphidic

minerals through the contact with oxygen and water, as a result of the mining processes [5].
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However, AMD waters are known for their abundant microbial diversity [6, 7]. The microorgan-

isms inhabiting such harsh environments are extremophile microorganisms and known for their

specific characteristics. Thus, they can be efficient in removing radioactive pollutants from the

environment and therefore, could be used for industrial processes, bioremediation, and discov-

ery of new biosorbents [8]. Microorganisms are able to interact with metals and radionuclides,

like uranium, in various ways. Several studies were performed investigating immobilization of

metals by biosorption and bioaccumulation [9, 10]. Biosorption is defined as a passive process,

whereby the metal is bound on functional groups of the outer membrane of microorganisms. It

is independent of metabolic activity and therefore, nutrients are not required [11]. In contrast,

bioaccumulation is considered to be an active process. The metal is taken up into the cytoplasm

of the cells. In addition, also biomineralization is a known active process. Due to enzymatically

mediated mechanisms, uranium is transformed to insoluble non-oxide minerals, usually metal

phosphates [12, 13]. However, uranium(VI) could additionally serve as an electron acceptor for

redox reactions of certain anaerobic metal and sulfate reducing bacteria (MRB/SRB) [3, 14–16].

The reduction of uranium is defined as the process, by which microorganisms chemically reduce

uranium from the highly soluble oxidation state VI by a two-electron process to the less soluble

oxidation state IV. Consequently, this fact leads to the general hypothesis, that uranium reduction

displays a high potential for bioremediation or immobilization strategies [17]. The stimulation

of microbial activity to fix aqueous uranium(VI) into insoluble minerals in situ seems to provide

a suitable approach, due to its relatively inexpensive and non-destructive characteristics [18]. In

contrast, uranium(IV) can serve as an electron donor with nitrate as electron acceptor [19]. Both

described processes are called biotransformation [3, 20, 21].

Moreover, the transport properties of uranium in natural environments are governed by contrast-

ing chemistry behavior of the both oxidation states uranium(VI) and uranium(IV). In solutions

and under oxidizing conditions uranium(VI) generally forms highly mobile complexes with car-

bonate and hydroxide. On the contrary, uranium(IV) precipitates in solution under anoxic condi-

tions are highly insoluble, and thus immobile minerals, such as uraninite [21]. Nevertheless, the

uranium mobility dependents on other factors as well, like pH and prevalent minerals [22–25].

In this study, we investigated the capability of anaerobic microorganisms, naturally occurring

within the flooding water, for the uranium(VI) reduction. Previous studies investigating the mi-

crobial diversity in the flooding water, revealed the presence of anaerobic MRB, like sulfate

(SRB) and iron reducing bacteria (IRB) [26]. To stimulate the microbial activity, we added 10

mM glycerol to the flooding water and incubated the samples over six weeks. During incubation

time, the redox potential was periodically measured, to investigate microbial induced redox reac-

tions. Furthermore, samples were analyzed using XANES (X-ray absorption near edge structure)

spectroscopy to determine the redox state of uranium. Beside uranium, also the reduction of iron

and sulfate were investigated to obtain a detailed view of the microbial mediated redox reactions

and furthermore, to understand which MRB are mediators for the microbial uranium(VI) reduc-
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tion. Therefore, additional analyses based on 16S rDNA were performed to examine the bacterial

diversity within the flooding water after six weeks incubation time and successful uranium(VI)

reduction. We were able to induce a microbial uranium(VI) reduction within the flooding water

in laboratory scale experiments (1 L) by adding the electron donor glycerol. With the obtained

knowledge, a pilot plant (100 L) was designed to confirm these findings and to test the applica-

bility of microbial mediated uranium(VI) reduction, by adding glycerol to the flooding water, in

industrial scale applications. The investigated microbial uranium(VI) reduction in the flooding

water of the former uranium mining site in Königstein could be used as in situ bioremediation

to support the conventional water treatment, and in the future replace the elaborated chemical

remediation techniques.

Methods and Materials

Sampling site

The Königstein mine is an inactive uranium mine located in Saxony (Germany). The investigated

area represents a very special case due to its localization in an ecological sensitive and dense pop-

ulated area (50°54’54.1"N 14°01’42.0"E). The ore body is located in the 4th sandstone aquifer.

However, the overlaying 3rd aquifer serves as an important water reservoir for the nearby cities.

A contamination of this environmental sensitive aquifer would have tremendous consequences

for the drinking water in this area

Sampling campaign

Flooding water samples were sampled directly from the borehole at the Königstein site into sterile

1 L glass serum bottles. The bottles were directly sealed with butyl rubbers and aluminum caps.

Immediately after the sampling campaign, the water within the sealed serum bottles was sterile

gasified with N2. Until further applications, the water samples were stored at 4 ◦C in the dark.

For the realization of the pilot plant, 100 L flooding water were sampled into sterile 10 L plastic

canisters. The samples were immediately transferred to the laboratory and were filled into the

pilot plant. Afterwards the 100 L flooding water were gasified with N2. The lid and all other

vents were sealed airtight.

Uranium(VI) reduction experiments

To investigate the possible uranium(VI) reduction, 10 mM glycerol (0.92 g/L) as electron donor

and carbon source was added sterile and under anoxic conditions to the flooding water samples.

Afterwards the samples were incubated for six weeks at 30 ◦C in the dark. The control samples
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were either incubated without the addition of glycerol or as sterile control, whereby the flooding

water was immediately sterile filtrated through a 0.2 µm sterile filter. Subsequently, the sterile

samples were treated like described above. Three times a week samples were taken within an

anaerobic chamber to measure the redox potential (WTW SenTix® ORP Xylem Analytics Ger-

many Sales GmbH & Co. KG, Weilheim, Germany) and the pH value (WTW SenTix® Mic,

Xylem Analytics Germany Sales GmbH & Co. KG, Weilheim, Germany). In addition, once a

week a sample was prepared for XANES analyses, as describes below.

In addition, to examine a possible uranium(VI) reduction in field scale, 100 L flooding water

within the pilot plant were treated in same way, except for the incubation temperature. The pilot

plant was incubated at room temperature (20 ◦C) over six weeks. The monitoring of pH, tem-

perature and redox potential took place by an on-line measurement system. The electrodes were

directly installed into the lid of the pilot plant. Furthermore, samples were regularly taken, using

a N2-flushed sterile syringe, to examine the redox state of uranium with UV-vis spectroscopy

(Lambda 750 Uv/vis/NIR Spectrophotometer, PerkinElmer, USA), the Fe(II) and moreover, the

Fe(II) concentration and sulfate concentration.

DNA extraction, amplification, and phylogenetic analysis

For the investigation of the microbial diversity of the laboratory scale experiments (1 L), two

samples were pooled, respectively. The DNA extraction, amplification and purification of the

16S rDNA gene was performed by Blue Biolabs GmbH (Germany). In addition, the sequencing

and data evaluation were completed by the same company.

In comparison, to investigate the microbial diversity of the pilot plant (100 L) after six weeks

incubation, the DNA was extracted and purified using the alkine lyse method [27]. Therefore, the

water sample was sterile filtered (0.2 µm), and the remaining biomass from the filter was washed

and suspended with 0.05 M oxalic acid. The extracted DNA was purified and concentrated with

DNA Clean & Concentrator-5 Kit (Zymo Research, USA). Subsequently, a PCR (polymerase

chain reaction) was performed for 16S rDNA gene amplification. The obtained PCR product

was purified using Wizard® SV Gel and PCR Clean-Up System (Promega, USA). Cloning and

transformation of the PCR product were performed using TOPO TA Cloning Kit for Sequencing

(Thermo Fisher Scientific Inc., USA). By colony PCR, positives clones were selected and PCR

products were sequenced by GATC Biotech AG (Eurofins Genomics, Germany). The obtained

sequence information was identified by the Basic Local Alignment Search Tool (BLAST) of the

National Center for Biotechnology Information (NCBI).
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XANES (X-ray absorption near edge structure) measurements and
data evaluation

To investigate the oxidation state of uranium within the samples, incubated for six weeks,

XANES measurements were performed. Therefore, every week a sample (1 L) was centrifuged

for 20 min at 20 000 rpm at room temperature. The obtained pellet was resuspended in 15

mL of the supernatant and ultra-centrifuged for 1 h at 187 000 × g. The formed pellet was

filled into a polyethylene sample holder. The sample holder was hot sealed and immediately

frozen in liquid nitrogen. All steps were performed under anoxic conditions to avoid uranium

reoxidations with oxygen. In addition, reference samples of uranium(VI) and uranium(IV) were

prepared with the flooding water as background solution. XANES measurements were carried

out at the Rossendorf Beamline BM20 located at the European Synchrotron Radiation Facility

(ESRF) [28]. The samples were measured at 15 K in a closed-cycle helium cryostat in fluores-

cence mode using a 13-element germanium solid-state detector. The X-ray beam was monochro-

matized by a silicon (111) double-crystal monochromator in channel cut mode (5-35 keV). For

energy calibration of the sample spectra, the K-edge spectrum of an yttrium metal foil (first

inflection point at 17038 eV) was recorded simultaneously. The ionization energy, E0, of the

uranium LIII-edge was defined as E0 = 17185 eV [28].

The average oxidation state of uranium in the flooding water samples was determined by fitting

the XANES region by a linear combination of standard spectra, obtained from the two references

samples of uranium(IV) and uranium(VI) using ITFA (iterative target factor analyses) [29].

Analytical techniques

After determination of the pH, the samples were acidified and investigated regarding their chem-

ical composition. For inorganic elements, inductively coupled plasma spectroscopy (ICP-MS)

(ELAN 9000 type ICP-MS spectrometer, Perkin Elmer, Überlingen, Germany) and atomic ab-

sorption spectroscopy (AAS) (Perkin Elmer 4100 AAS, Überlingen, Germany) were used. Anion

concentration was determined by Ion Chromatography (IC-system 732/733, Metrohm, Filder-

stadt, Germany). In addition, the total organic carbon (TOC) was analyzed with HT1300-TOC

(Analytik Jena, Jena, Germany). The concentrations of sulfate and iron(II) were measured by

precipitation of sulfate with barium chloride according to Kolmert et al. [30] and by a ferrozine

assay according to Viollier et al. [31] (spectrophotometer µQuant™ of Bio-Tek Instruments, Inc.,

USA). All dilutions were prepared with two-times distilled water. All samples were determined

in triplicates.
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Development of a pilot plant for industrial scale applications

To transfer the obtained results from laboratory scale to industrial applications, a pilot plant with

a total capacity of 100 L was designed (Fig. 1). A glass tank with 330.0 to 405.0 mm diameter

and 880.0 mm height (glass wall thickness 20 mm) was manufactured by Marcel Hellbach (Glas-

bläserei Hellbach, Brand-Erbisdorf, Germany). The lid (545.0 mm diameter, 13.0 mm thickness)

was designed removable. For on-line measurements of pH, redox potential, temperature and for

sampling, devices were placed in the lid. The pilot plant was located in the laboratory without

additional heating and exclusion of light. Two independent runs of the pilot plant with freshly

sampled flooding water were performed, respectively.

Results and discussion

Characteristics of the flooding water samples

Prior to the investigations of a possible microbial uranium(VI) reduction, the flooding water

samples were characterized using different analytical techniques (Tab. 1). In comparison with

previous results [26,32], the pH value shows no drastic changes during the last years of remedia-

tion. As a consequence of the in situ leaching with sulfuric acid the pH is acidic (2.8 - 3.0). Due

to the ongoing flooding process, oxidizing conditions are prevalent. The redox potential (600

mV - 670 mV) and the oxygen concentration (2.3 mg/L - 3.7 mg/L) displayed no changes since

2011. However, the underground of the former mine is not completely mixed, for that reason

one cannot rule out the possibility of areas which could present reducing conditions. During the

last years, the metal and trace element concentrations fluctuate considerably. Until 2011, the

concentrations are still increasing tremendously for almost all elements. This phenomenon could

be explained by additional flooding steps of underground areas (in 2010). Nevertheless, due to

the constantly flooding with fresh water during the last years the overall concentrations are de-

creasing, except for lead. However, in particular the uranium concentration with 8 mg/L is still

high and represents the highest risk for possible contamination of the surrounding environment.

Together with high concentrations of sulfate (1470 mg/L), iron (56.2 mg/L - 112.0 mg/L), low

pH value and other heavy metals, all the mentioned parameters represent a typical acid mine

drainage (AMD) site [33].

For microbial activity and metabolism, the total organic carbon (TOC) represents the limiting

factor, which is low within the flooding water (1.1 mg/L). AMD sites usually contain a low or-

ganic carbon concentration and thus, the addition of extra electron donors is required. At acidic

conditions the inhibitory effect of potential substrates should be taken into consideration [34].

Therefore, to stimulate the microbial activity for possible redox reactions and specifically, for

uranium(VI) reduction, the electron donor glycerol was added to the flooding water samples.

93



3 Manuscripts

Previous studies could demonstrate that at acidic conditions the reduction of metals, as well as

sulfate, could be affected by different factors [34]. For instance, organic acids could act inhibitory

at acidic conditions. The toxicity of these is dependent on their dissociation constants thus, at pH

3.0 half of the concentration of lactate acid would be present in the acid form (undissociated),

which is able to diffuse into the cell. Inside the cytoplasm protons would be released, which cause

a lowering of the intracellular pH value. Consequently, the protons have to be actively pumped

out of the cell [34]. Therefore, glycerol, as well as other non-ionic substrates, like hydrogen,

sugars and other alcohols, represents a suitable and cost-effective electron donor, which are pre-

ferred at acidic conditions [35–37]. Several SRB, like Desulfovibrio spp. and Desulfosporosinus

spp., were reported to grow with glycerol as carbon and energy source [34, 38–42].

Microbial uranium(VI) reduction

To investigate the possible uranium(VI) reduction ability of the indigenous anaerobic microor-

ganisms within the flooding water, the electron donor and carbon source glycerol was added.

The flooding water samples were therefore flushed with N2 and incubated at 30 ◦C to achieve

Table 1: Physical-chemical Parameters of the flooding water. Alteration of the parameters preva-
lent in the flooding water during remediation over six years.

2011 [26] 2013 [26] 2015 2017
pH 3.3 3.0 2.8 - 2.9 2.8 – 2.9

Redox potential [mV] 600 640 670 650
O2 [mg/L] 2.3 3.0 3.7 n.d.

Temperature [◦C] 13.5 13.8 13.0 14.0
Na [mg/L] 32.8 108.3 91.3 45.6

SO 2–
4 [mg/L] 489.8 973.1 1470.0 n.d.

U [mg/L] 6.1 7.8 14.0 8.0
TOC [mg/L] 0.8 0.3 1.1 1.1
Fe [mg/L] 91.6 56.2 122.0 62.5
K [mg/L] 12.5 8.8 7.7 8.6

Mg [mg/L] 8.0 15.4 31.8 18.5
Ca [mg/L] 91.6 246.5 304.0 207.0
Mn [mg/L] 2.5 7.2 8.9 8.4
Cd [µg/L] 19.5 73.4 112.0 62.1
Co [µg/L] 114.7 181.0 292.0 n.d.
Cr [µg/L] 16.3 35.5 75.0 n.d.
Cu [µg/L] 6.9 41.0 86.0 75.8
Pb [µg/L] 79.2 304.0 654.0 917
Ni [µg/L] 242.5 454.1 617.0 384
Zn [mg/L] 3.5 5.7 16.2 9.2

n.d. not determined
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reducing and anaerobic conditions. To verify the adjusting reducing conditions, the redox poten-

tial was measured. In Fig. 2 the changes of the redox potential during six weeks of incubation

time is displayed. A distinct decrease of the redox potential from initially 670 mV to 560 mV

was detected after 14 days. In comparison, the sterile control without bacteria, but added with

glycerol, displayed no change. After 35 days the equilibrium of around 230 mV was reached.

Notably, the sterile control displayed no change during the whole incubation time, consequently

the addition of glycerol has no influence on the decrease of the redox potential and the acquired

reducing conditions. Within six weeks of incubation time, an absolute change of 440 mV was

detected. Theoretical calculations of the uranium speciation and redox state (data not shown)

using the experimental conditions (including ion concentrations, pH value, redox potential, and

temperature) indicated a uranium reduction. At the detected redox potential of 230 mV after six

weeks incubation, uranium(IV) is theoretically predicted.

On this basis, XANES spectroscopy was performed. Therefore, anoxic flooding water samples

were prepared and investigated regarding their uranium redox states (Fig. 3). After five weeks

of incubation time at 30 ◦C with 10 mM glycerol, a distinct shift of the spectrum was detected

(Fig 3, grey area). Furthermore, compared to the uranium(VI) reference sample, the ‘typical’

uranium(VI) shoulder disappeared (Fig. 3, arrow). Thus, with XANES spectroscopy a microbial

mediated uranium(VI) reduction after five weeks was demonstrated. To quantify the prevalent

uranium(VI) and uranium(IV) concentrations during six weeks of incubation time, ITFA (iter-

ative target factor analyses) were performed [29]. By comparison of the obtained spectra with

the two prepared references samples, it was possible to determine the relative uranium oxidation

state concentrations (Fig. 4). As shown in Fig. 4, after five weeks of incubation approximately

50 % of uranium(VI) was reduced to uranium(IV), indicating the microbial reduction of uranium.

During the previous four weeks no change of the oxidation state VI could be detected. Never-

theless, after six weeks, uranium(VI) was completely reduced to uranium(IV). In conclusion, by

combining the analyses of the redox potential, theoretical calculations and XANES spectroscopy,

a microbial mediated uranium(VI) reduction was demonstrated by simply adding 10 mM glyc-

erol.

Until now only few studies were performed on microorganisms capable of reducing uranium(VI),

using cultivation-dependent techniques in natural environments. Furthermore, in contrast to our

investigations, they were conducted in sediment slurries under controlled laboratory conditions.

Investigations on anaerobic MRB or SRB that carry out respiration in acidic environments is still

in its infancy, though the above describes impact of acidic pH on microbial redox reactions [43].

However, in this study we were able to demonstrate the capability of indigenous anaerobic bac-

teria to use glycerol as electron acceptor for the microbial mediated uranium(VI) reduction. The

concept of anaerobic indigenous bacteria, present in the groundwater of a uranium-contaminated

site at the Bear Creek Valley (TN, USA), has been tested in laboratory scale experiments. Nu-

merous results using controlled conditions in laboratory experiments displayed the feasibility of
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microbial uranium(VI) reduction [44–48].

Moreover, during six weeks of incubation time the sulfate and Fe(II) concentrations were mea-

sured to investigate the microbial activity of SRB and IRB within the flooding water (Fig. S1).

In association with the analysis of the bacterial diversity using 16S rDNA, the activity of bacteria

should be investigated to detect their possible influence on the uranium(VI) reduction. IRB rep-

resented the major group, which were identified for their capability of dissimilatory uranium(VI)

reduction [49–51]. In subsurface environments, IRB bacteria are likely to outcompete SRB, due

to the fact that Fe(II) is usually a much more abundant electron acceptor than sulfate [43,50,51].

Therefore, IRB are thought to have a high bioremediation potential in uranium-contaminated

subsurface sediments [43]. In accordance to this, during six weeks of incubation the Fe(II) con-

centration displayed a slight increase, possibly due to the activity of IRB within the flooding

water (Fig. S1, black symbols and curve). However, the analyzed sulfate concentration revealed

no changes, by meaning no increase could be detected during the whole incubation time (Fig.

S1, blue symbols and curve).

Applicability of microbial uranium(VI) in pilot plant scale

The promising results of the microbial uranium(VI) reduction obtained in laboratory scale exper-

iments (1 L) were scaled up and transferred to a pilot plant with a total volume of 100 L (Fig. 1).

Similar to the previous experiments, 10 mM glycerol were directly added to the with N2 flushed

and anoxic incubated flooding water. By using an on-line measurement system pH value, redox

potential and temperature were examined. The approach was incubated for six weeks at RT. Two

independent runs, each time using fresh flooding water samples, were performed. Due to the

fact, that both approaches displayed slight deviations, the results were considered independently,

and therefore no mean values were calculated.

In contrast to the results obtained from the laboratory scale experiments, the redox potential dis-

played a faster decrease and furthermore, a lower equilibrium of around 100 mV after 14 days

(Fig. 5a and b) in both approaches. However, during the first incubation of the flooding water in

the pilot plant a drastic increase of the redox potential at day 14 was detected (Fig. 5a, grey area).

This abrupt change could be explained by an accidental invasion of oxygen. Nevertheless, within

the following days the redox potential reached the same equilibrium compared to the second run.

While incubation at RT, the initial temperature of the flooding water (14-15 ◦C) increased to

nearly 22 ◦C in the first days and no drastic changes during six weeks of incubation time was ob-

served (Fig. S2, black curves). However, the pH showed distinct changes from initially 2.6/2.8 to

2.4/2.2 (Fig. S2, blue curves). The results obtained from the first run of the pilot plant approach

displayed the highest variations during the incubation time (Fig. S2, open circles). The pH value

decreased drastically during the second week. Subsequently. the pH increased until the initial

value. This observed deviation of the pH is in accordance to the change of the redox potential of
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the first run, thus the possible invasion of oxygen in the flooding water of the pilot plant could

be an explanation for these differences. In addition, the Fe(II) and sulfate concentrations were

investigated (Fig 5b-c, e-f). In accordance to the experiments from laboratory scale samples, the

Fe(II) concentration revealed a distinct increase (Fig. 5e). As a consequence of the observed

drastic change of the redox potential during the first run at day 14, the Fe(II) concentration in-

creasd, too (Fig. 5b). The oxygen invasion could lead to a Fe(II) reoxidation. Moreover, after

26-28 days of incubation time, the sulfate concentration decreased slightly (Fig. 5c and f). Thus,

in contrast to the laboratory scale approaches, a possible microbial mediated sulfate reduction

could be detected in the samples of the pilot plant.

To confirm the microbial uranium(VI) reduction in the pilot plant, UV-vis analysis of both runs

were performed. The two runs revealed the same findings. The results displayed an increase of

the uranium(IV) concentration after 21 days (Fig. S3b). During the first 2.5 weeks only ura-

nium(VI) was detected by UV-vis spectroscopy (Fig. S3a). Kirishima et al. [52] investigated

the luminescence properties of uranium(IV) in solution and demonstrated characteristic maxima

of uranium(IV) spectra, using UV-vis spectroscopy. One typical maximum of uranium(IV) dis-

played at around 650 nm. Compared to the spectra of the samples from the pilot plant approaches

starting from day 21, this typical maximum could be detected. Thus, in accordance to the refer-

ence samples from previous investigations, uranium(IV) was obviously identified. Although, it

has to be mentioned, that due to the absorption maximum of glycerol between 400-500 nm, which

was described previously, the typical maxima of uranium(VI) could not clear distinguished [53].

Therefore, a low uranium(VI) concentration, within the samples after three weeks of incubation

time, cannot completely ruled out. Using XANES spectroscopy to examine the laboratory scale

samples, it was shown that uranium(VI) was completely reduced to uranium(IV). Further investi-

gations should be performed, using the same method, to quantify the uranium(IV) concentration

in the flooding water samples from the pilot plant after six weeks of incubation.

In summary, two independent runs of the pilot plant were performed and revealed in the same

findings compared to the results of the laboratory scale experiments. Only slight differences

were shown. However, we demonstrated a microbial mediated Fe(II) reduction followed by a

uranium(VI) reduction. Moreover, due to the lower redox potential, compared to the laboratory

scale samples, a microbial sulfate reduction during the last week was shown. Thus, the up-scaling

experiments in pilot plant approaches (100 L) verified the industrial applicability of the microbial

mediated uranium(VI) reduction in the flooding water of the former uranium mine Königstein for

possible bioremediation methods.

Bacterial diversity after uranium(VI) reduction

To investigate the microorganism responsible for uranium(VI) reduction, 16Sr DNA analyses

were performed. Compared to previous studies of the bacterial diversity prevalent in the flooding
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water of the former uranium mine, the bacterial community displayed distinct changes (Fig. 6).

However, in both samples the majority of the bacteria were identified belonging to the class of

gammaproteobacteria. In addition, also the quantity of unclassified bacteria revealed in similar

numbers. But besides that, the bacterial diversity changes drastically. The investigation of the

flooding water before incubation displayed that the majority of the identified species, belonging

to gammaproteobacteria, were Acidithiobacillus spp. [26]. Studies on the diversity of bacteria

at AMD sites demonstrated that Acidithiobacillus species represents a dominating group in such

harsh environments [54, 55]. Notably, A. ferrooxidans displays an important species, which is

involved in the degradation of mineral ores and furthermore, the oxidation of iron at AMD sites.

Thus, A. ferrooxidans is effecting the development of AMD sites [56]. Consequently, the major

occurrence of these bacteria is in good accordance to previous investigations, as well as the diver-

sity study before the microbial uranium(VI) reduction within the flooding water. The majority of

the identified species after six weeks incubation, belonging to the class of gammaproteobacteria,

were represented by Halomonas spp. (39 %). Although Halomonas species are known for their

tolerance to alkaline conditions, previous studies demonstrated their ability to reduce Fe(III) and

Cr(VI) [57]. Within the first weeks of incubation an Fe(III) reduction was detected, explaining

the occurrence of IRB like Halomonas spp.. In addition, the IRB Acidiphilium spp. could be

identified, which belong to the class of alphaproteobacteria. Cultivated under anoxic conditions,

these bacteria are able to reduce Fe(III) to Fe(II) [58, 59]. Furthermore, previous investigation

about the ability of Fe(III) reduction displayed, that Acidiphilium is able to reduce insoluble

Fe(III) into soluble Fe(II) at a redox potential of 770 mV, which equals the prevalent potential in

the flooding water before six weeks of incubation [50]. To the best of our knowledge, no studies

which described the ability of this identified IRB to reduce uranium(VI) are published. Due to

their majority of the bacterial diversity after six weeks incubation and in addition the knowl-

edge that IRB are able for uranium(VI) reduction, it could be assumed that Halomonas spp. and

Acidiphilium spp., are responsible for the microbial mediated uranium(VI) reduction within the

flooding water samples. However, further studies should be performed to proof this hypothesis

and to investigate their ability to reduce uranium(VI) in more detail.

Although, previous investigations revealed in the presence and activity of SRB in the flooding

water, within the laboratory scale samples (1 L) they could not be detected, using 16S rDNA

investigations. However, the bacterial diversity of the pilot plant sample (100 L) displayed the

occurrence of SRB. Yet, it was not possible to obtain enough sequence information to get an

entire overview about the bacterial diversity after six weeks of the pilot plant approaches (data

not shown). Nevertheless, the results revealed that the majority of the sequences were identified

as A. ferrooxidans (60 %), followed by Desulfovibrio spp. and Acidocella spp.. Despite the low

bacterial diversity information, all obtained sequences were associated with SRB and IRB/IOB,

which is in good agreement to the results of the laboratory scale experiments.

One explanation for the non-successful stimulation of SRB within the laboratory scale samples
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could be the differences of the redox potential. A microbial sulfate reduction at 230 mV is rather

unlikely, due the fact that sulfate reduction mediated by microorganisms was investigated in pre-

vious studies at redox potentials at -220 mV [60]. Therefore, SRB were rather not metabolic ac-

tive and thus, could not be detected using 16S rDNA analyses. However, besides the differences

of the bacterial diversity of both approaches, the results of the pilot plant confirmed the micro-

bial mediated uranium(VI) reduction in up-scaling setups. In conclusion, this findings suggest

the applicability of microbial uranium(VI) reduction for industrial bioremediation approaches on

site of the former uranium mine Königstein.

Conclusion

With the obtained results from this study, we could clearly demonstrate the capability of anaer-

obic microorganisms inhabiting the flooding water to reduce uranium(VI). During an incubation

time of six weeks the prevalent uranium(VI) was completely reduced to uranium(IV), only by the

addition of 10 mM glycerol. In addition, we could also demonstrate a microbial induced Fe(III)

and sulfate reduction. In combination with investigations on the bacterial diversity after six weeks

of incubation, bacteria were identified, which might be responsible for the observed redox reduc-

tion processes. The results revealed that the bacterial diversity is dominated of IRB and SRB.

Concluding, these bacteria, naturally occurring within the flooding water, seems to be responsible

for the uranium(VI) reduction. However, the bacterial communities of the laboratory scale ap-

proaches compared to the pilot plant sample differs drastically. Thus, further experiments should

be performed to investigate the microbial community within the flooding water after uranium(VI)

reduction. Moreover, the results obtained from laboratory scale experiments could successfully

transferred and verified in industrial scale applications within a pilot plant. The microbial me-

diated reduction of uranium(VI) could be used for possible bioremediation approaches, which

would be cost-effective and less time-consuming, than the conventional pump-and-treat process.

With the obtained results, we could confirm previous studies which assumed the applicability

of microbial mediated uranium(VI) reduction for in situ bioremediation approaches. However,

detailed investigations should be performed on the formed uranium(IV) complexes and their sta-

bility at long-time conditions.
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Figures

Figure 1: Pilot plant. Flooding water (100 L) was collected and N2-flushed, 10 mM glycerol
were added, incubation for six weeks at room temperature. For on line measurement,
devices were placed on the lid, (1) pH electrode, (2) redox electrode, (3) temperature
sensor, (4) device for anaerobic samplings by syringe, (5) vent for N2 flushing.

104



3 Manuscripts

Figure 2: Redox potential of flooding water samples incubated over 6 weeks. Flooding water
was collected and N2-flushed to achieve anoxic conditions. As carbon source 10 mM
glycerol was added and the samples were incubated at 30 ◦C for six weeks in the dark.
As sterile control, flooding water was sterile-filtered and supplemented with 10 mM
glycerol. Error bars indicate standard deviation, n=3.
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Figure 3: XANES measurements of anoxic flooding water samples. Samples were incubated
at 30 ◦C for six weeks in the dark, 10 mM glycerol was added, samples were taken once
a week. As references for uranium(VI) and uranium(IV) samples were prepared with
the flooding water a background solution. Grey area displays the shift of the spectra,
and the black arrow indicates the disappearing of the typical uranium(VI) shoulder of
the uranium(IV) spectra.
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Figure 4: Relative uranium concentration of the anoxic flooding water samples calculated
by ITFA. Samples were incubated at 30 ◦C for six weeks in the dark, 10 mM glycerol
was added, samples were taken every week.
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Figure 5: Redox potential, Fe(II) and sulfate concentration during six weeks of incubation
time of the pilot plant samples (100 L). Plots (a-c) display the results of the first
run of the pilot plant, (d-f) display the second run. Grey marked area in (a) shows a
distinct increase of the redox potential, possibly due to an oxygen invasion. The red
curves represent a guide to the eye. The red star in (c) indicates two possible outliers
of the measured sulfate concentration, which were excluded from the linear fitting.
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Figure 6: Bacterial diversity of the laboratory scale experiments (1 L) after six weeks in-
cubation and before. Determined using 16S rDNA gene analysis, diversity before
incubation (2013) changed after [26].
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Supplementary

Figure S1: Fe(II) (black symbols) and sulfate (blue symbols) concentration during six weeks
of incubation time within the laboratory scale experiments (1 L). Samples were
incubated at 30 ◦C for six weeks in the dark, 10 mM glycerol was added, samples
were taken every week.
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Figure S2: Temperature and pH value of the flooding water samples obtained from the pilot
plant. In black the progression of the temperature during six weeks is displayed. The
blue curves show the changes of the pH value. Open symbols represent the first run,
and closed symbols the second run.

Figure S3: UV-vis spectra of the flooding water samples obtained from the pilot plant. Spec-
tra till day 17 in (a) displayed no uranium(IV) concentration, in (b) the spectra after
three weeks of incubation time with detected uranium(IV) (black arrow) are dis-
played.
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4 Discussion

Bioremediation represents a cost-effective and sustainable alternative for the treatment of heavy

metal-contaminated sites at large scale. This emerging strategy uses microorganisms to remove

or immobilize metals and radionuclides from contaminated environments [111]. In addition, also

the use of green plants to decontaminate polluted sites, known as phytoremediation, seems to be

promising for the removal of metals [112,113]. The most attractive advantage of bioremediation

is the reduced impact on natural ecosystems, by using indigenous microorganisms [114]. Mi-

croorganisms play an important role in the maintenance of ecosystems as they are known to be

capable of rapid adjustment towards environmental changes. Furthermore, they are considered to

be the first life forms, and thus they are versatile and adaptive to various challenging environmen-

tal conditions. Microorganisms are omnipresent and play a major role in regulating biogeochem-

ical cycles within extreme environmental conditions such as acidic lakes, hydrothermal vents,

and bottoms of deep oceans [115]. In addition, they are able to produce diverse enzymes which

could be applied for the removal of contaminants, by direct destruction or through transformation

into lesser toxic intermediates [116]. Microorganisms display many characteristics which make

them suitable for bioremediation applications. Some bacteria for example, are able to develop

unique properties, like the synthesis of bioactive compounds, biofilm formation or production of

biosurfactans [117,118]. Previous studies could show, that bacteria inhabitant within heavy metal

and radionuclide contaminated sites are well adapted to these harsh conditions. Consequently,

they play a major role in biogeochemical cycling of toxic metals and may influence their mobility

and toxicity [40, 119].

As a consequence of former mining and milling industry, but also by occasional accidents at

nuclear facilities, such as the casualty 1986 in Chernobyl, radionuclides are released to the envi-

ronment, which result in a possible health risk. It is well described, that exposure to radionuclides

causes acute health effects to humans. Studies demonstrated, that long-term exposure leads to

an elevated risk of kidney damage, leukopenia and leukemia, particularly by the intake of con-

taminated drinking water [120, 121]. Moreover, early symptoms of high doses could include

vomiting, nausea and headache. Increased exposure may result in weakness, fever, hair loss and

dizziness, but ultimately death. In addition, radionuclide exposure to fetuses could have effects

on a cellular level, which can result in smaller head or brain size, poorly formed eyes, abnor-

mal growth and mental retardation [122–124]. In conclusion, this shows the importance of the

elimination of radionuclides, such as uranium, from the environment. Therefore, microbial trans-
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formations of heavy metals and radionuclides are a vital part within natural ecosystem processes

and could have beneficial impacts for our human community [111].

The results described in this thesis could demonstrate that all investigated strains display different

mechanisms to interact with uranium(VI). Resulting from that, the ability to interact with ura-

nium(VI) and decrease its mobility within surrounding solutions is dependent on the individual

organism. In addition, it was clearly demonstrated that indigenous microorganisms influence the

migration behavior of uranium(VI) in tremendous ways. To predict the fate of uranium in the

environment it is important to have knowledge about the indigenous microbial diversity and their

possible impact on its solubility. Moreover, the assessment of microbial populations isolated

from uranium-contaminated sites not only enables us to gain better insights in their role of metal

and radionuclide biogeochemistry, but also allows to evaluate their potential to design effective

bioremediation approaches.

4.1 Uranium removal capability and interaction

mechanisms of the betaproteobacterium A. facilis

The investigated strain A. facilis represents a common soil bacterium which is spread worldwide

and which is not fastidious to special carbon sources [125, 126]. Previous studies could show

that this species represents a major part of metabolic active microorganisms within the flooding

water of the former uranium mining site Königstein [109]. Due to its ability to grow at acidic

conditions (pH 2.9) and at high uranium concentrations (8-13 mg/L) this strain was examined

for its capability to remove uranium from surrounding solutions.

The results of the batch sorption experiments revealed, that the bacterial cells were capable to

remove 130 mgU/gdbm, which corresponds to a removal capacity of almost 100 % [127]. Com-

pared to an isolated strain from a potential site for radioactive waste disposal in China, namely

Bacillus sp. removing about 60 % of total uranium, A. facilis is more efficient in uranium re-

moving [128]. However, other investigated gram-negative bacterial strains could remove similar

amounts of uranium [129–131].

Further experiments were performed to examine the tolerance of A. facilis to grow in the pres-

ence of uranium. Interestingly, despite the fact that the bacterial strain was not directly isolated

from the flooding water of the former uranium mine and thus, the bacterial cells were not nat-

urally exposed to high uranium concentrations, the strain exhibits a high tolerance against this

radionuclide. The investigations revealed a MIC for uranium of 0.2 mM which equals 23.8 mg/L.

Compared to the current uranium concentration of 8 mg/L within the flooding water, the bacte-

rial strain is able to tolerate nearly a threefold higher concentration and therefore, would be able

to resist the harsh conditions at the former uranium mining site in Königstein. Nevertheless, the

uranium tolerance test was performed on solid agar plates. Previous investigations assume that
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due to different conditions of diffusion, complexation and bioavailability of the metal, higher

tolerances are reported on solid media, in comparison to liquid media, and in addition in rich

media, in comparison to minimal media [132, 133]. In conclusion, the revealed values of heavy

metal tolerances of the investigated microorganisms vary with type and composition of the used

media. Thus, it is often difficult to compare obtained results with previous studies due to the

usage of different conditions [40, 134].

To investigate the uranium tolerance of the bacterial cells in more detail, cell viability and

metabolic activity of A. facilis growing in the presence of uranium were performed using flow

cytometry. The cells were grown in liquid NB medium 1:5 diluted to avoid the precipitation of

uranium. After an incubation time of 48 h at 30 ◦C the cells were stained with different flu-

orescent dyes to examine the viability and activity after uranium exposure. In contrast to the

tolerance test on solid medium, these investigations revealed that a concentration of 0.05 mM

reduced the activity and viability of the cells by nearly 50 %. Furthermore, at the highest con-

centration of 0.1 mM uranium 86.3 % of the total cells were not viable and only 6 % of the cells

were active [127]. Thus, in liquid medium the cells were able to tolerate only half of the ura-

nium concentration tested on solid medium, which could be explained by different conditions as

described above, including bioavailability, diffusion and complexation of uranium in solution. In

conclusions, with both investigations it was demonstrated that the tolerance of metals depends on

different factors like mentioned above. The results obtained from this study revealed in different

uranium concentrations for the tolerance of A. facilis. Thus, to study the ability of microor-

ganisms to tolerate heavy metals and radionuclides, like uranium, different methods should be

combined to obtain complete insights rather than misinterpretations.

Furthermore, TEM analysis were performed to examine the localization of the removed uranium

by the bacterial cells. This method allows the visualization of uranium and other elements on

a cellular level. In contrast, the visualization using SEM analyses is limited since this method

is surface specific. By embedding and cutting the samples in ultra-thin sections it is possible

to visualize the inside of the cells including sub-cellular structures. The TEM based investiga-

tion the of interaction mechanisms of A. facilis with uranium showed both, heavy metal uptake

into the cytoplasm and immobilization on the outer cell membrane. Active bioaccumulation

and passive biosorption could by identified as mechanisms of uranium removal from solution.

Furthermore, uranium was localized inside the cell in association with polyphosphate granules,

which are often found in the cytoplasm of bacteria as storage compartments for phosphorous

compounds [135]. Microorganisms are capable to precipitate uranium by the degradation of in-

tracellular polyphosphate granules resulting in the release or efflux of phosphate [136]. However,

A. facilis interacts with uranium not by the release of phosphate to the surrounding solution (data

not shown), uranium is immobilized inside the cytoplasmic polyphosphate inclusions. Similar

observations were made by strains isolated from uranium waste piles [137]. In summary, an

immobilization of uranium by microorganisms and by means of phosphates is not limited to
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phosphate release or efflux, but may also occur via an uptake into the cell and binding uranium

to phosphorus-rich compartments inside the cytoplasm. The investigation of A. facilis demon-

strated that the described interaction mechanisms do not only occur as isolated processes, but

occasionally super-impose with other processes and are thus sometimes difficult to recognize. In

this case study, the bacterial cells were able to remove the uranium by biosorption on the outer

cell membrane and by bioaccumulation within the cytoplasm. During the accumulation, uranium

was immobilized by mineralization associated with phosphate in polyphosphate granules.

Moreover, detailed investigations on the molecular structure of cell-associated uranyl species

(with A. facilis) may contribute to a better understanding of the response of gram-negative bac-

teria to uranium. This work demonstrates, that uranium is associated to the bacterial cell by the

formation of different distinct species, like bound to carboxyl-groups and phosphoryl-groups,

and furthermore to polyphosphate granules which are located within the cytoplasm. But not only

the in depth described structural information of the uranium speciation, also the kinetically in-

vestigations during the removal experiments led to interesting findings. Within the first hours,

uranium is mainly bound to the outer membrane of the bacterial cells and therefore, associated

with lipopolysaccharides. Subsequently, within the following hours of incubation time, the asso-

ciation pattern change and it is indicated that uranium is additionally bound to carboxylic groups,

corresponding to the peptidoglycan. Consequently, uranium immobilization by A. facilis repre-

sents a complex time-dependent process [138]. The majority of previous studies investigated

the endpoint of removal experiments not considering transitional interaction mechanisms in the

meantime [139–141]. With the kinetically investigations about the interactions of A. facilis with

uranium this missing gap could be closed and furthermore, could demonstrate that interaction

patterns changes during incubation time. It is important to develop a complete process under-

standing to predict the fate of radionuclides, like uranium, in the environment and consequently,

promising remediation strategies could be developed [36, 142].

In order to obtain information about the prevalent oxidation state after uranium interaction ex-

periments, the XANES region of the obtained X-ray absorption spectra were analyzed. The

investigations clearly demonstrate that the removed and immobilized uranium is still prevalent

as uranium(VI) and was not reduced to uranium(IV) (data not shown). In addition, uranium(VI)

immobilization experiments with A. facilis were performed under anaerobic conditions (data not

shown), due to the fact that previous studies displayed a uranium(VI) reduction by Acidovorax

species. For instance, investigations in a long-term experiment (more than 2 years) to evaluate

the in situ reduction of uranium(VI) at a highly uranium-contaminated site in Oak Ridge (TN,

USA), proved the presence of Acidovorax spp. [143]. In addition, Acidovorax sp. was detected

in a community of several metal reducing bacteria in microcosm experiments within sediment

samples from the FRC Oak Ridge (TN, USA), to be capable of uranium(VI) reduction [144].

It was shown, that the presence of this denitrifier could contribute to the removal of competing

electron acceptors and ensure the stability of the reduced uranium(IV) [145]. However, to stim-
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ulate the microbial reduction of uranium(VI) in these previous studies ethanol and lactate were

added as carbon source and electron donor, while the experiments performed in this thesis only

used sterilized tap water without adding any carbon source or electron donor. This fact might ex-

plain the not-detectable uranium(VI) reduction by A. facilis. In addition, uranium(VI) reduction

was detected within microcosm experiments, by meaning of a community composed of different

microorganisms. Thus, the observed uranium(VI) reduction was therefore catalyzed by a com-

munity of different microbes. Which could be explaining that no uranium(VI) reduction took

place, by performing experiments using a pure culture of A. facilis. Further experiments under

oxygen-free conditions and by adding, for instance ethanol, should be performed to examine the

physiological ability of A. facilis pure cultures to reduce uranium(VI).

In conclusion, to investigate the uranium removal capacity, the localization of the removed ura-

nium, the ability to grow in the presence of uranium and furthermore the speciation of uranium

associated with the bacterial cells, different methods were used and could deliver detailed infor-

mations about the mechanisms how A. facilis interacts with uranium(VI). The findings presented

in this thesis contribute to a better understanding of microbial interactions with uranium and

demonstrate that the investigated betaproteobacterium may play an important role for the predic-

tion of the mobility and fate of uranium in the environment, as well as in contaminated sites, such

as the former uranium mine Königstein. Together with the obtained fundamental understanding

from this study and the ability of A. facilis to immobilize uranium fast and efficient, this bacterial

strain could be appropriated for in situ bioremediation approaches.

4.2 The isolated yeast KS5 (R. toruloides) and its

interaction mechanisms with uranium(VI)

To isolate and investigate fungal strains from the flooding water, by using culture-dependent

methods, a special medium was needed. Therefore, SDA medium contains a high amount of glu-

cose and is commonly used for fungal cultures [146]. After incubation on solid agar plates con-

taining SDA medium the appearance of single colonies could be observed. The hereby obtained

isolates were transferred to fresh liquid medium and phylogenetic affiliations by ITS rDNA gene

analysis were performed. Due to its ability to grow in the presence of high uranium concentra-

tion the isolated strain KS5, identified as Rhodosporidium toruloides (also known as Rhodotorula

toruloides) [147], was chosen to further investigate its interaction with uranium(VI) and to iden-

tify dominant interaction mechanisms. The morphological and physiological characterizations

displayed typical yeast cell properties, which were in accordance to the phylogenetic results. In-

terestingly, R. toruloides is an oleaginous yeast with great biotechnological potential, due to its

ability to accumulate up to 70 % lipids based on the dry biomass and moreover, regarding to its

carotenoid biosynthesis [148].

117



4 Discussion

To investigate the physiologically properties of this basidiomycete in more detail the uti-

lization of different carbon sources was tested. In addition, to identify special capabilities

as a result of the surrounding conditions present in the flooding water, a reference strain

(DSM 10134 R. toruloides), was investigated. In agreement with previous studies the isolated

strain KS5 as well as the reference strain DSM 10134 were able to utilize most of the tested

carbon sources. However, both strains displayed less growth in the presence of galactose, which

was also described before [148]. Despite the different conditions present at the isolating sites

of the investigated strains, no drastic differences could be revealed. Only for the tested carbon

source xylose differences were detectable. KS5 showed less growth, whereas DSM 10134 was

not able to utilize the wood sugar. Several studies could demonstrate that the utilization of xy-

lose to ethanol represents a useful process for the production of bioethanol performed by several

yeast cells [149–151]. The question arises, why does the isolated strain KS5 exhibit the ability

to metabolize xylose in contrast to the reference strain? One explanation could be the remaings

of the former uranium mining industry. To underpin the shafts, wooden beams were used and,

despite the ongoing flooding, they were left behind. As a consequence of the low TOC within

the flooding water microorganisms have to develop adaption mechanisms in form of using alter-

native carbon sources. Thus, KS5 may have developed adaption mechanisms to survive at the

present environmental conditions by using xylose as alternative carbon source. Nevertheless, fur-

ther investigations should be performed to examine this hypothesis in detail, for instance by gene

expression analyses to study possible involved genes responsible for xylose utilization using both

strains.

Apart from the physiologically investigations on the isolated strain KS5, its ability to tolerate and

even to grow in the presence of uranium were tested. Additionally, the interaction of KS5 with

uranium was investigated to examine its potential for bioremediation approaches. Therefore,

different methods were used, like growth behavior in liquid medium supplemented with differ-

ent uranium concentrations and tolerance tests on solid medium containing uranium and other

selected heavy metals. To investigate the uranium tolerance in liquid medium growth rate and

doubling time were examined, in combination with flow cytometry to observe cell viability. The

results clearly demonstrate that the isolated yeast is able to tolerate high uranium concentrations

and furthermore, is able to grow in its presence. The tolerance test on solid agar plates revealed

a MIC for uranium of 6.0 mM, which correlates to a concentration of 1.4 g/L. Compared to the

prevalent uranium concentration within the flooding water of 8 mg/L, KS5 is able to tolerate a

175-fold higher uranium concentration. This high MIC results were coherent with finding from

previous investigations, indicating that the occurrence of heavy metal tolerant strains increases

with the increase of heavy metal or radionuclide concentrations at contaminated sites [152,153].

Next to the high tolerances of uranium, KS5 also displayed a high tolerance against chromium

(MIC 5.0 mM). The ability to grow in the presence of high chromium contents was demonstrated

by a former study on Rhodosporidium sp. isolated from a metallurgical waste site [154]. This
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again represents the adaption ability of the examined yeast cell to tolerate high concentrations

of heavy metals, as well as radionuclides. To investigate the adaption mechanism of KS5 fur-

ther analysis using gene expression should be performed. Interestingly, the tolerance against

several heavy metals and radionuclides is not the only useful ability which was encountered for

Rhodosporidium sp.. Previous investigations could demonstrate its utilization of organic sulfur

for the removal from fossil fuels to increase their quality, which is also known as bioclean-

ing [155]. In conclusion, with these first results it could be shown that KS5 represents a useful

microorganism in many biotechnological applications regarding remediation of contaminated

sites, as well as biocleaning.

However, to investigate the suitability of KS5 in possible bioremediation approaches at uranium-

contaminated sites, like the former uranium mine in Königstein, it was necessary to study its

uranium removal and immobilization capacity. Therefore, tests were performed to examine the

removal of uranium from solution. The results obtained from this thesis could demonstrate a

uranium removal of 350 mgU/gdbm (90 %) at the lowest tested dry biomass, representing

the maximum capacity to remove uranium from solution. Compared to other fungal strains,

KS5 could display an impressive uranium removal capacity. Previous studies on Pleurotus os-

treatus revealed a maximum biosorption capacity for uranium of about 20 mgU/gdbm [156].

However, the observed strains of Rhizopus showed a removal capacity between 180 and 260

mgU/gdbm, which represents a high amount of immobilized uranium as well [157]. Neverthe-

less, KS5 seems to exhibit a high capacity even for fungi. Compared with the bacterial strains

Arthrobacter sp. and Streptomyces longwoodensis which display a uranium removal capacity of

600 and 440 mgU/gdbm [158, 159], gram-positive bacteria seem to be able to remove higher

amounts. Nevertheless, it has to be considered, that the previous performed studies sometimes

did not distinguish between immobilization of uranium by biosorption or bioaccumulation. How-

ever, the tremendous higher uranium removal by the bacterial strains could be a result of the high

surface-to-volume ratio of bacterial cells. The large surface area of bacteria permits on the one

hand the efficient uptake of nutrient and the release of metabolic waste products, and on the other

hand the interaction with mobile metal fractions of the environment.

With the present results it could only be assumed that the isolated strain KS5 is able to tolerate

high concentrations and remove high amounts of uranium. In order to investigate the underlying

interaction mechanisms further investigations were performed, using TEM and EXAFS analyses.

The obtained results clearly revealed the interaction mechanisms bioaccumulation, biosorption

and biomineralization with uranium. In contrast to the examined bacterium A. facilis, where

biosorption was identifies as the dominating process, nearly the whole mount of uranium was

removed by bioaccumulation into the cytoplasm and on the inner cytoplasm membrane of the

yeast cells. In addition, uranium could be detected inside lipid granules. The findings obtained

from this thesis revealed an interesting cascade of metabolic response employed by the cells

of naturally occurring yeast cells to mitigate high uranium concentrations and to survive over
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an extended period of uranium exposure. The results could show that uranium was localized

within the cytoplasm as well as concentrated in granules corresponding to lipid bodies. This

compartmentalization of uranium within lipid granules in R. toruloides during 48 h of uranium

exposure made uranium less available to the cells and consequently minimize its toxicity. Previ-

ous studies with cyanobacteria could demonstrate similar findings [160]. Uranium was localized

in polyphosphate inclusion bodies, like described above for A. facilis. These kind of detoxifica-

tion mechanisms such as bioaccumulation and "self-protection" play a key role in the migration

behavior of radionuclides within the environment. So far, the mechanisms behind the uranium

uptake within the cells are not completely understood. Uranium displays no known biological

function compared with other heavy metals, and previous studies suggested that uranium may

be taken up into the cells as a consequence of increased membrane permeability, which could

be caused by its toxicity [39]. However, the findings obtained from the experiments performed

in this thesis could demonstrate an active uptake mechanism of uranium within the cytoplasm of

the yeast cells. The results revealed different underlying interaction mechanisms at two tested

temperatures. Thus, only at a temperature of 30 ◦C uranium could be detected within the cells

of KS5. On the contrary, at 4 ◦C no uranium was localized inside the cells and furthermore, the

removal capacity was drastically reduced. By applying two different temperatures at uranium

removal experiments it could be demonstrated, that active mechanisms are involved and further-

more, the uranium uptake by the cells is metabolism-dependent.

To investigate the speciation of the immobilized uranium at a molecular level EXAFS analysis

was performed. The resulting spectrum could verify the formation of mineral-like structures,

possibly meta-autunite. In accordance to the needle-like structures within the cytoplasm of the

yeast cells, detected using TEM analyses, uranium was mainly bound via protonated phosphoryl

groups. The formation of meta-autunite minerals by microorganisms as a response of uranium

exposure was mentioned by previous studies [161–163] and seems to be an effective detoxifica-

tion mechanism against uranium. Furthermore, the uranium sequestration as insoluble biominer-

als represents a promising technique for in situ bioremediation approaches, particularly at sites

where bioreduction could be unfeasible due to the possible risk of reoxidation [87]. The main

advantage of the formation of biominerals like meta-autunite is that the end-products are reported

to be insoluble and do not undergo redox changes. Thus, the microbial formation of minerals,

probably meta-autunite, by the isolated strain KS5 could represent a promising result to develop

new bioremediation approaches. KS5 represents a perfect candidate for further investigations in

industrial scale applications, due to its characteristics to persist high uranium concentrations, to

remove high amounts of uranium within a short time, and its ability to form insoluble uranium

minerals.
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4.3 Microbial uranium(VI) reduction - most suitable

capability for bioremediation approaches?

The investigations on anaerobic microorganisms within the flooding water of the former ura-

nium mine Königstein demonstrated, that they are able to reduce uranium(VI) to uranium(IV)

in efficient manner. Despite the prevalent oxidizing conditions, the obtained results revealed

that anaerobic microorganisms survive within the flooding water and are even metabolically ac-

tive. By adding 10 mM glycerol as an energy source and electron donor, the microbial reduction

was stimulated. The dissimilatory uranium(VI) reduction under anaerobic conditions was first

described by Lovley et al. [69], who reported that Geobacter metallireducens and Shewanella

oneidensis are able to conserve energy for growth via the reduction of uranium(VI). These re-

sults could show that some specialized bacteria are able to reduce uranium(VI), whereby the

identified species were mainly related to IRB and SRB [69, 70, 73, 164]. However, the iden-

tified bacteria including Clostridium sp. and Desulfovibrio vulgaris also reduce uranium(VI),

but are unable to conserve energy for their growth resulting from this transformation [165, 166].

Investigations on the anaerobic microbial diversity in the flooding water of the former uranium

mine Königstein at the beginning of the controlled flooding process using culture-independent

methods revealed in the presence of aSRB [167]. Additionally, after the ongoing flooding pro-

cess (2014) culture-dependent approaches were applied to investigate the most probable number

(MPN) of aSRB (after [168, 169]) resulting in a probable cell number of 0.21-1.5 MPN/mL of

metabolically active heterotrophic aSRB [109]. The same investigations were performed two

years later and could confirm the previous results but showed an increase in the most probable

cell number to 4.8 MPN/mL. Due to the changing conditions in the underground resulting from

the ongoing flooding process this slight aberration could be explained. Furthermore, the under-

ground of the mine is not completely mixed and areas with anoxic conditions are quite likely. In

such areas, aSRB could be enriched, explaining the minor increase in the cell number. In con-

clusion, different previous investigations identified the presence of aSRB and in addition their

metabolically activity within the flooding water of the former uranium mine Königstein. For that

reason, studies in this thesis were performed to investigate the possible microbial uranium(VI)

reduction ability by anaerobic bacteria present within the flooding water.

First, to stimulate microbial uranium(VI) reduction it was necessary to figure out the most suit-

able carbon source and electron donor. At acid conditions, like predominating within the flooding

water of the former uranium mine, the microbial reduction of uranium(VI) and other compounds

can be affected by different factors. Thus, the proton concentration represents a major key player.

Since the pH scale is a logarithmic scale, at pH 4 1.000 times more protons are present compared

to pH 7. This causes a diffusion pressure towards the cell membrane of microbes, consequently

much more protons diffuse through it. By active pumping processes, these protons have to be
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pumped out of the cell, resulting in the destruction of the proton motive force. For that reason,

at low pH microorganisms need to invest additional energy to maintain a higher internal pH.

Consequently, less energy is available for growth [170, 171]. Only if this extra needed energy

can be compensated, microbial growth can be achieved. Furthermore, carbon sources in form of

organic acids can act inhibitory at acid conditions. The toxicity is dependent on their dissociation

constants since different concentrations of the protonated form would be present at different pH

values. As an example, the pKa of lactic acid is 3.08, therefore at pH 3 half of the lactate would

be present as protonated species. At acid conditions the undissociated organic acid form is able

to diffuse into the cell. Due to the higher pH inside the cell, the acid dissociates, releases protons

and consequently lowers the internal pH. Additionally, protons have to be pumped out and this

again implies an energy loss. For that reason, previous studies on the isolation of aSRB within

acidic environments failed using lactate as an electron donor, which represents the most com-

mon substrate at neutral conditions. Subsequent studies suggest, that non-ionic substrates like

glycerol, hydrogen, alcohols or sugars are more convenient [169, 170, 172–174]. In conclusion,

for the enrichment of acidophilic SRB and IRB within the flooding water the non-ionic electron

donor glycerol was chosen.

To investigate a possible microbial reduction of uranium(VI) 10 mM glycerol were added di-

rectly to the flooding water, which was previously flushed with nitrogen to eliminate remaining

oxygen. Afterwards, the flooding water samples were incubated for six weeks at 30 ◦C. By reg-

ular measurements a decrease of the redox potential could be detected from initially 670 mV to

230 mV. Theoretical calculations of the prevalent uranium speciation (Figure 4.1) demonstrated a

change in the redox state from uranium(VI) to uranium(IV). However, by applying the geochem-

ical calculations only the available thermodynamic constants (respective formation constants) of

inorganic chemical parameters at 25 ◦C, like cations and anions, were considered [26], meaning,

neither the addition of 10 mM glycerol nor the possible production of microbial metabolites were

included, due to the lake of respective formation constants. In addition, no kinetic process was

included. Consequently, the resulting diagram may not completely display the complex compo-

sition prevalent within the flooding water. However, the received diagram represents a simplified

system to gain a rough estimation about the dominant uranium species after six weeks of incuba-

tion. In agreement with previous studies, the prevalent uranium species within the flooding water

of the former uranium mine Königstein could be identified as the highly soluble uranium sulfate

(UO2SO4 , Figure 4.1 square) [30]. Furthermore, the authors suggested, as a consequence of the

ongoing flooding process, an increase of the pH value, due to dilution processes, and a decrease

of the redox potential. Thus, the speciation of uranium would change to a solid uranium(IV)

phase, either at pH values above 4.2 or at a redox potential below 300 mV [30].

The obvious decrease of the redox potential after six weeks would represent, in comparison

with the theoretically calculations, a change in the redox state of uranium (Figure 4.1 circle).

To verify the first results further methods, like XANES and UV-vis measurements, were used.
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Figure 4.1: pH-Eh predominance area diagram for uranium at 25 ◦C using the mean elemental
concentrations of the flooding water (see Table 1, Chapter 3.4). Theoretical geo-
chemical calculation of the prevalent uranium species was performed using geo-
chemical speciation code "Geochemist’s Workbench" Version 8.0.8/ACT2. Yel-
low areas represent solid uranium phases whereas the blue areas designate aqueous
species, the square represents the initially condition at 670 mM, the circle represents
the conditions after 6 weeks at a redox potential of 230 mM.

In accordance with the geochemical calculations, a microbial uranium(VI) reduction was iden-

tified. XANES spectroscopy was used to determine the oxidation state of uranium and could

display an increase of uranium(IV) after five weeks. After six weeks only uranium(IV) could be

detected. However, uranium was not reduced within the control samples without microorganisms

or glycerol (data not shown), indicating that the addition of 10 mM glycerol in combination with

anaerobic conditions resulted in a complete reduction of uranium(VI) induced by active microor-

ganisms prevalent within the flooding water. In agreement with previous studies, the microbial

uranium(VI) reduction induced by adding an electron donor within environmental samples in

laboratory experiments and also in situ was described and seems to be a promising state-of-the-

art technique for applications in the field [175–180].

Apart from the determination of the oxidation state of uranium, also iron and sulfate were inves-

tigated. During six weeks of incubation, different anaerobic biogeochemical processes could be

detected. According to the change of the redox potential, next to a uranium reduction also iron
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was reduced. By measuring the Fe(II) concentration during six weeks of incubation a slight in-

crease could be detected, thus Fe(III), prevalent within the flooding water, was microbial reduced.

The kinetic investigations revealed the Fe(III) reduction took place within the first three weeks.

Compared with the measured redox potential and the resulting standard redox potentials these re-

sults are in good agreement (Table 1). During the first weeks and relatively high redox potentials

the microbial induced Fe(III) reduction is the dominating process. Afterwards, and by a drasti-

cally decrease of the redox potential the dominating redox reaction is the microbial uranium(VI)

reduction. However, contrary to the results of the Fe(II) and uranium(VI) reduction no significant

change of the sulfate concentration could be detected. In accordance to the standard redox po-

tential (Table 1) a microbial sulfate reduction at 230 mV is rather unlikely. With the addition of

10 mM glycerol to the flooding water it is possible to induce a microbial uranium(VI) reduction.

However, to understand the underlying processes in detail it is necessary to have knowledge about

the microbial diversity responsible for the reduction of uranium. Therefore, DNA was isolated

from samples incubated for six weeks and analyzed with regard to the phylogenetic composition

of their microbial communities. The results clearly indicate the dominance of IRB which also

explain the initial Fe(III) reduction followed by the uranium(VI) reduction. By 16S rDNA gene

analysis more than 40 % of the bacteria were identified as IRB. In minor amounts (< 1%) also

IOB were identified, belonging to genus Acidithiobacillus, which were found by previous studies

within the flooding water. This IOB was detected using culture-independent as well as culture-

dependent methods, indicating that these bacteria are metabolically active [109]. Furthermore,

Acidithiobacillus represents an ubiquitous inhabitant of AMD sites, and is often the dominating

group [182, 183]. As a consequence of the changing conditions after flushing with nitrogen and

the addition of glycerol, IOB represent after six weeks incubation only a minority of the bacterial

community. Nevertheless, the investigations of the bacterial diversity showed no occurrence of

SRB, in accordance with the results of sulfate concentration during the six weeks of incubation.

However, in contrast to that, by culture-dependent methods they could be detected [109]. In sum-

mary, by analytical investigations of iron and sulfate reduction, together with molecular methods

of the bacterial diversity, it could be assumed that the microbial uranium(VI) reduction within

the flooding water was mediated only by the activity of IRB.

The reasons for this non-successful stimulation and detection of SRB could be the not suitable re-

ducing conditions (high redox potential), thus SRB were not metabolic active and consequently,

the cell number was too low for detection. For the culture-dependent determination of SRB

Table 1: Caption
Chemical equation Standard redox potential (mV)

Iron Fe3+ + e– Fe2+ +770 [181]
Uranium U 2+

2 + 2 e– UO2 -42 to +86 [88]
Sulfate SO 2–

4 + 8 e– + 10 H+ H2S + 4 H2O -220 [88]
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within the flooding water a special designed medium was used [109]. However, in this study

only glycerol was added to stimulate anaerobic reducing bacteria. Furthermore, to achieve re-

ducing conditions (the redox potential of the medium must be below -150 mV) in the prepared

medium reductants like sodium sulfide or sodium thioglycolate, with sodium ascorbate, were

added [184]. During the uranium(VI) reduction experiments, performed in this study, no addi-

tional reductants were added to avoid uranium(VI) reduction by these substances. The presence

of metals as cofactors for several enzymes of SRB is also an important factor. For instance,

nickel and selenium are required for their hydrogenase activity. In addition, iron and calcium

represent essential elements for microbial metal reduction [184]. Nevertheless, the missing of

essential metals may not be the reason for the non-successful stimulation of SRB, due to the fact

that the flooding water contains high concentrations of the mentioned metals. Although, previous

studies demonstrated that glycerol represents a suitable electron donor and carbon source for the

enrichment of SRB under acidic conditions, other substrates should be taken into consideration.

Another explanation could be the added concentration of glycerol (10 mM), which could be the

limiting factor. Despite previous tests (data not shown), which demonstrated high levels of glyc-

erol after six weeks of incubation time, the concentration could be too low after the metabolic

activity and uranium(VI) reduction of IRB. On the contrary, the chosen glycerol concentration

could also be too high and could act inhibiting for the metabolic activity of SRB. Also, the incu-

bation time or chosen temperature could be a limiting factor for SRB. So far, the non-successful

stimulation of SRB within the flooding water during uranium(VI) reduction experiments seems

to be unclear. However, also without the presence of SRB the microbial mediated uranium(VI)

reduction by IRB was successful.

In conclusion, results obtained by the use of geochemical methods and molecular biology demon-

strate that the indigenous microorganisms within the flooding water of the former uranium mine

Königstein display the ability to utilize glycerol as an electron donor and uranium(VI) as an

electron acceptor. The addition of glycerol stimulates the microbial reduction capability of ura-

nium(VI) directly, by serving as electron donor for both Fe(III) and uranium(VI) reduction. The

microbial induced uranium(VI) reduction is therefore the result of the metabolic activity of IRB.

Based on the successful stimulation of microbial uranium(VI) reduction in laboratory scale ex-

periments, a pilot plant for industrial scale applications was designed, to verify the applicability

to use this bioremediation approach directly on site of the former uranium mine Königstein.

For this purpose, 100 L flooding water were used and treated in the same way like the 1 L

samples. Similar to the laboratory scale experiments, samples were examined with regard to

a possible uranium(VI) reduction. An online measurement system was applied to obtain real-

time information about pH value, redox potential and temperature. Moreover, Fe(II) and sulfate

concentration were measured and with molecular genetic methods the microbial diversity was

determined after six weeks. Two independent runs of the pilot plant revealed in nearly similar

results. During the incubation time of six weeks a distinct decrease of the redox potential was
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detectable. In comparison to the laboratory scale experiments (1 L), a more drastic decrease

to about 100 mV was measured, which implies a difference of more than 130 mV. In addition,

UV-vis measurements were performed to obtain detailed information about the oxidation state

of uranium present within the flooding water. A distinct uranium(IV) concentration could be

detected after 21 days of incubation. Compared to the experiments performed in laboratory scale

the microbial uranium(VI) reduction took place earlier. In laboratory scale experiments, ura-

nium(IV) could be measured after 35 days, by meaning two weeks later compared to the pilot

plant. In summary, in consideration of the redox potential and the oxidation state of uranium,

reducing conditions were faster adjusted in the 100 L approach of the pilot plant.

Furthermore, similar to the laboratory scale experiments the Fe(II) and sulfate concentration

was investigated. However, the first run could not detected a distinct Fe(II) reduction, due to a

possible oxygen invasion during the first weeks, the second run confirmed the results from the

previous experiments in laboratory scale. Despite these non-successful determination of Fe(II)

by analytical methods, pictures of the flooding water, incubated in the pilot plant, revealed an

obvious change of the color during six weeks of incubation time (Figure A1). After filling and

flushing with N2 the color of the water turned from colorless to brownish-orange (Figure A1, 3

h), which indicates a oxidation of Fe(II) to insoluble Fe(III) participates. Starting from day 7

the color disappeared and the flooding water displayed colorless like initially. In conclusion to

these observations, during the first three weeks a slight but significant increase of Fe(II) could

be analytical detected at the second run of the pilot plant. Moreover, in contrast to the previous

studies with 1 L flooding water, a slight decrease of sulfate was observable during the last days

of the incubation, indicating a microbial sulfate reduction. In conclusion, during the first days

of incubation a slight but distinct Fe(III) to Fe(II) reduction was demonstrated, followed by ura-

nium(VI) reduction induced at day 21 and a sulfate reduction after day 30 (Figure 4.2). With

the obtained results from this study, it is possible to understand the synergy of the underlying

microbial reduction processes and furthermore, to predict the fate of metals, especially uranium,

in the environment under reducing conditions. As a consequence of the availability of different

metals and ions within the flooding water of the former uranium mine in Königstein, it is not

surprising that several reactions will take place simultaneously. However, for possible bioreme-

diation approaches this obtained knowledge could help to predict processes more specifically and

furthermore, to demonstrate that other supportive redox reactions might take place, resulting in a

decrease of other soluble metals and increase of pH values.

In addition, the bacterial diversity was investigated using 16S rDNA gene analysis. However,

it was not possible to obtain enough sequence information to get an entire overview about the

bacterial diversity after six weeks within the approach of the pilot plant. Only ten sequences

could be obtained and were compared to the NCBI database. The majority of these sequences

were identified as A. ferrooxidans (60 %), followed by Desulfovibrio spp. and Acidocella spp..

Two sequences could be associated with the phylum Firmicutes. Despite only a few sequences

126



4 Discussion

Figure 4.2: Measured redox potential of the pilot plant during six weeks of incubation. Colored
areas display the microbial redox reaction taken place while incubation, green - iron
reduction, yellow - uranium reduction and red - sulfate reduction. Red star indicates
a distinct increase of the redox potential, possibly caused by an oxygen invasion.

could be obtained, all were associated with either IRB/IOB or SRB, which is in accordance to

the results to the laboratory scale experiments.

Previous studies demonstrated the ability of A. ferrooxidans to reduce metals [185]. These bac-

teria are able under aerobic conditions to oxidize elemental sulphur to sulphuric acid [186].

Moreover, A. ferrooxidans could be identified as a major part of the consortium found at AMD

sites and it could be shown that these species are tolerant to uranium [187, 188]. In addition,

A. ferrooxidans can grow under anaerobic conditions using Fe(III) as final acceptor and sulphur

as substrate [186]. More than a half of the identified sequences could be associated with this

species, which is also known to reduce uranium(VI) [186]. Thus, these bacteria could be one of

the species which are responsible for the detected microbial Fe(II) and uranium(VI) reduction.

Interestingly, previous investigations of the microbial diversity within the flooding water identi-

fied A. ferrooxidans as a dominating group, which is in good accordance of these findings [109].

In addition, the heterotrophic Acidocella spp. represent IRB, which are known to be extremely

acidophilic. A well-studied strain of A. aromatica (PFBC) is able to catalyzes Fe(III) reduction

under micro-aerobic and anaerobic conditions [189]. Furthermore, experiments demonstrated

the ability of chromium reduction and immobilization by A. aromatica [190]. Experiments

performed to investigate the metal resistance of Acidocella strains revealed high tolerances of
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zinc, nickel, copper, and cadmium [191]. In comparison with previous studies on the bacterial

diversity of the flooding water in Königstein using culture-independent and culture-dependent

methods, the species of Acidocella spp. was detected as well [109]. Until now, no uranium in-

teraction mechanisms of Acidocella spp. are described. However, with this study it was shown

that this species could be involved in microbial uranium(VI) reduction within the flooding water.

Further investigations should be performed to examine the possible uranium interaction mech-

anisms of the Acidocella species occurring in the flooding water of the former uranium mining

site Königstein. The in addition identified species Desulfovibrio was described by Lovley and

Phillips [70] for its uranium(VI) reduction capability. The authors highlighted that the enzy-

matically uranium(VI) reduction was mediated by the cytochrome c3. Moreover, the enzyme

could by successfully cloned and expressed in two other strains, suggesting that the ability to

reduce uranium(VI) could be genetically combined with other metabolic useful properties, like

the ability to degrade organic contaminants and denitrification [192]. The previously obtained

results demonstrated, that Desulfovibrio species are able to reduce uranium(VI) under anaerobic

conditions and thus, they could be responsible for the microbial mediated uranium(VI) reduc-

tion of flooding water of the pilot plant. Two sequences could be identified with high similarity

to the phylum of Firmicutes. By investigations using culture-dependent methods, the species

Desulfosporosinus could be enriched from the flooding water samples. A well-defined medium

for acidophilic SRB [168] was used and incubated with several dilutions of the flooding water

(Figure A2). Microscopically investigations displayed bacterial cells containing spores (Figure

A3). Previous investigations using similar conditions and 16S rDNA analyses demonstrated the

presence of the spore-forming bacterium D. acidophilus [109]. This bacterium represents an ob-

ligate anaerobic, spore-forming, acidophilic SRB, which was isolated previously from an AMD

site [169]. In addition, the SRB bacterium D. reducens was described for its ability to reduce

metals, like Mn(IV), Fe(III), and Cr(VI). Even uranium(VI) was reduced to uranium(IV) [193].

Thus, the previous detected and described bacterium Desulfosporosinus spp. could be, within a

consortium of several bacteria, responsible for the microbial uranium(VI) reduction within the

flooding water samples of the pilot plant approaches. Despite the differences of the microbial

diversity detected within the laboratory scale experiments and the pilot plant approaches, mainly

MRB were identified. The obtained results indicate a combined uranium(VI) reduction, medi-

ated by several species, which seems to be reasonable due to the relative high microbial diversity

within the flooding water of the former uranium mine.

In conclusion, the results from the pilot plant experiments confirm the microbial reduction of

uranium(VI) under anoxic conditions, only by adding of 10 mM glycerol, in up-scaling setups.

These findings suggest the applicability of microbial uranium(VI) reduction at the site of the

former uranium mine Königstein as a preferred bioremediation approach. Due to the usage of

the cost-effective electron donor glycerol and the fast bioreduction process in just six weeks, the

microbial-mediated uranium(VI) reduction represents a suitable alternative, which could replace
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the traditional waste water treatment. Nevertheless, further experiments should be performed to

support this hypothesis and to repeat the experiments in industrial scale applications (> 100 L).

In addition, the microbial diversity should be investigated in more detail, to obtain a complete

overview of the microorganism, responsible the for uranium(VI) reduction.

4.4 Possible applications for in situ bioremediation at the

former uranium mining site Königstein

Resulting from the obtained findings within this thesis, different options could be possible to

remediate the former uranium mining site by using microorganisms. To select the most suitable

process it has to be determined which approach provides a low-cost treatment, at a high efficiency

and minimizing the volume of chemical and/ or biological sludge to be handled [104].

The bacterial strain A. facilis and the yeast R. toruloides were able to remove high amounts

of uranium by the two identified interaction mechanisms, biosorption and bioaccumulation. A.

facilis was identified by culture-independent, DNA-based, methods. However, the investigated

strain was not directly isolated from the flooding water. Therefore, the bacterial cells have to

be pre-cultured in large scale procedures to obtain high amounts of biomass. In additional steps

the cells have to be separated from the growth medium and transferred to the flooding water to

remove the soluble uranium. Thus, the use of A. facilis for in situ bioremediation could display

further challenges, including additional facilities for the growth of the bacterial cells.

Besides, the major interaction mechanism of A. facilis with uranium is biosorption. Most re-

searchers define biosorption as a passive and metabolically-independent process [103, 105, 194]

which can be performed by dead biomass or cell fragments with the advantages of easy and safe

handling and preparation. However, biosorption can also be performed by living cells as a pas-

sive uptake or metabolically-independent adsorption via surface complexation onto cell walls or

outer membranes [105,194]. The biosorption of metals and radionuclides by microorganisms can

be affected by different factors, like solution pH, ionic strength, initial pollutant concentration,

other pollutants or competitive ions, the biosorbent itself, temperature and the speed of agita-

tion. The most important factor affecting biosorption represents the chemistry of the biosorbents

themselves and their availability of metal-binding sites, the activity of functional groups and the

competition with coexisting ions within the solution [34]. For instance, an increase of the sur-

rounding pH value enhances the removal of cationic metals, but reduces the removal of anionic

metals [104]. Among the biotechnological applicability, a number of proposed biosorption pro-

cesses have been patented for commercial application. Fomina et al., 2014 [104] published a full

list of patents related to biosorption from 1973 till 2011. However, despite the numerous results

which could be obtained over decades of research, most biosorption processes are still at the

laboratory scale. Reasons for this could be a poor understanding of the underlying mechanisms,
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the kinetics and thermodynamics of the process [104]. On the other hand, previous studies sug-

gested an insufficient specificity and stability of biosorbents, which cause the little progress in

industrial scale applications [102]. In conclusion, the potential use of A. facilis for bioremedi-

ation approaches at the former uranium mining site Königstein is rather low and will likely be

used only as supporting process in remediation application in the future, as a consequence of the

lacking knowledge of the underlying mechanisms of biosorption of metals and radionuclides on

microbial surfaces and their potential stability.

Due to the mentioned uncertainties, many established bioremediation approaches are based on

active processes, conducted by living cells. Compared to the direct reduction of uranium, which

would lead to an immobilization, the process of biosorption is subsequently faster. However, the

uranium-polluted flooding water is poor in biomass concentration, due to the high toxicity of ura-

nium and low TOC content. Therefore, biosorption alone may not be sufficient to bioremediate

uranium from polluted sites, unless the biomass content is increased [111].

R. toruloides (KS5), in contrast, was directly isolated and experiments displayed that this strain is

able to grow directly within the flooding water (data not shown) only by adding a carbon source

in the form of sugar. As a consequence, no additional industrial processing with special growth

media or growth reactors would be necessary to obtain large amounts of biomass for the removal

of uranium directly from the flooding water. Furthermore, the uranium tolerance test displayed

that the yeast cells are resistant to the prevalent uranium concentrations, and could tolerate even

higher uranium concentrations. The uranium removal by KS5 cells is fast and efficient, nearly the

whole amount of soluble uranium in solutions was immobilized during 48 h incubation. In con-

trast to the bacterial cells of A. facilis, the predominant interaction mechanism of the yeast cells

with uranium is bioaccumulation, the active uptake within the cells. Also the removal efficiency

of KS5 compared to the bacterial cells of A. facilis is tremendously higher. As described above,

preferentially used bioremediation approaches are based on active interaction mechanisms. Thus,

the isolated strain KS5 could represent a candidate to investigate its applicability in larger scale

experiments, like pilot plants. Furthermore, uranium is immobilized as minerals associated with

phosphate, which exhibit a low solubility and remain stable under changing conditions. Further

experiments should be performed such as growing the yeast cells directly within the flooding

water and examine its uranium removal ability at the prevalent conditions.

However, the stimulation of anaerobic microorganisms to reduce aqueous uranium(VI) into in-

soluble minerals in situ may provide a cost-effective and non-invasive alternative to remediate

radionuclide-contaminated sites. The employment of bioreduction, in particular, appears promis-

ing, with the suitable applicability in the field [87]. No additional technical applications to sep-

arate the uranium-bearing microorganisms from solution would be necessary and furthermore,

the elaborated pump-and-treat technique could be discontinued. The idea was to stimulate mi-

crobial growth and activity directly within the flooding water and to use the underground itself as

sediment basin for metal sludge formed by precipitation of uranium as well as sulfide and other
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metals. This in situ treatment using anaerobic microorganisms is a possible low-cost and low

maintenance concept for acid mine water processing. Thus, costs for sludge handling could be

minimized or eliminated and no additional heavy metal polluted waste would occur. Since the

reduction of sulfate could be detected during the last days of incubation time, a longer incuba-

tion would possibly lead to a complete sulfate reduction and consequently an increase of the pH

value. Thus the high sulfate concentration could be removed from the AMD flooding water with

a concomitant increase of the acid pH [195], consequently less chemicals would be necessary for

the water treatment at the site of the former uranium mine in Königstein.

The results obtained in this thesis, indicate that the isolated strain KS5, but also anaerobic mi-

croorganisms indigenous within the flooding water of the former uranium mine Königstein, may

have a crucial role in the bioremediation of uranium at this investigated site and should be taken

into consideration for alternative strategies. However, the investigations on the anaerobic micro-

bial uranium(VI) reduction could be transferred to industrial scale applications, and thus repre-

sent the most suitable and best characterized approach concerning applicability for in situ biore-

mediation processes at the site of the former uranium mine Königstein.

4.5 Conclusion and scientific relevance

This thesis provides new insights about the interaction of indigenous microorganisms form

uranium-contaminated environments. It was shown that the fate and transport behavior of ura-

nium within the environment and at the former uranium mining site strongly depends on the

presence and metabolic activity of natural occurring microorganisms. Furthermore, the results

demonstrate that the investigated strains A. facilis and R. toruloides are able to remove high

amounts of uranium from surrounding solutions by passive biosorption and active bioaccumu-

lation. In addition, a correlation between microorganisms isolated from heavy metals polluted

sites, and high tolerances against them were highlighted. With the obtained results from experi-

ments with anaerobic microorganisms and their potential of uranium(VI) reduction, a pilot plant

was developed to verify the previous findings. The results from laboratory scale experiments

were successfully transferred and simultaneously confirmed by experiments in larger scale ap-

plications, indicating that with the provided knowledge in situ bioremediation approaches could

be applicable in the future. By comparison of the possible advantages and disadvantages of the

investigated interaction mechanisms, it was shown that bioremediation using anaerobic MRB for

the reduction of uranium(VI) seems to be the most suitable method.

With this thesis, strategies are presented for possible alternative concepts which could support

the conventional and elaborated water treatment of former uranium mining sites, or in future

steps to replace them. However, it has to be taken into consideration to prevent or minimize

the generation of uranium-contaminated AMD sites at the beginning. By meaning, when there
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is the risk of AMD generation, the first option should be avoiding the formation itself [170].

Johnson and Hallberg outlined in their review [196], "prevention is better than the cure", and de-

scribed approaches, which could be used to prevent or minimize the generation of mine drainage

waters. Summarizing, as long as the activity of acidophilic microorganisms increases the for-

mation of AMD sites, technologies should be used, to avoid either oxygen, water or both from

contacting the ore, which could elude their microbial activity [197–199]. While metals are mined

by conventional methods, which result in the formation of acidic waters mobilizing heavy metals

like uranium, extensive waste water treatment processes have to be performed. Therefore, biore-

mediation represents a promising problem-solving approach.

The obtained results from this thesis were published in international scientific journals and pre-

sented at international conferences. Therefore, they are available to a broad community interested

in alternative approaches for the remediation of heavy metal polluted sites, like the former ura-

nium mine Königstein. On that account, these findings should be taken into consideration for

future remediation applications.
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5 Outlook

Although the revealed results could give detailed and unique insights about the interaction mech-

anisms of the investigated microbial strains with uranium(VI), some open questions still remain.

Until now, the uptake process of uranium inside the cells is unknown. With the obtained results

from this thesis it could be demonstrated, that the bioaccumulation of uranium seems to be an

active mechanism, by meaning it is dependent on the microbial metabolisms. Nevertheless, trans-

porters for uranium-uptake are unidentified. For that reason, investigation should be performed to

identify possible transport-proteins which may be responsible for the uptake of uranium. In addi-

tion, gene expression analyses could be used to gain information about possibly involved genes.

Therefore, this identified genes could be transformed and expressed in reference strains or other

microorganisms to investigate the resulting uranium removal efficiency. Consequently, such ge-

netically modified microbes could be used to understand the uptake mechanism of uranium on

the one hand, and they could be used for bioremediation approaches at other contaminated sites

on the other hand. However, the use of genetically modified microorganisms within the envi-

ronment is difficult, thus indigenous strains should be preferred. The strain KS5 (R. toruloides),

which was well described within this study, should be examined in further experiments using

directly the flooding water. In further steps the obtained results from laboratory scale could be

transferred to industrial scale applications to design a pilot plant, placed directly on site, possibly

connected with the borehole.

Moreover, in these studies only a few microorganisms were investigated regarding their interac-

tions with uranium(VI). With A. facilis and R. toruloides exclusively pure cultures of these strains

were used for the experiments. However, in nature microbes occur in communities composed of

a large variety of different bacteria, eukaryotes and archaea. Thus, it seems to be necessary to

perform microcosm experiments using environmental samples to achieve similar conditions to

those found within the flooding water. By using anaerobic microorganisms for uranium(VI) re-

duction directly within the flooding water these conditions were almost achieved. Nevertheless,

working under oxygen-free conditions needs further treatment of the water and a special design

of reactors or pilot plants.

The microbial community after anaerobic incubation over six weeks was analyzed using 16S

rDNA gene analyses of two pooled samples. Thus, not the complete diversity, including bac-

teria, archaea and eukarya, could be displayed. Consequently, further investigation should be

performed to obtain a detailed and closer view of the microbial community within the flooding
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water samples. In addition, the same investigations should be implemented using samples from

the pilot plant to compare both experimental approaches in detail. Thus, the microbial diversity

could be compared to obtain results about possible differences between the two different ap-

proaches, for instance changes due to the up-scaling process. Furthermore, to gain a detailed pro-

cess understanding a quantification of the microbial biodiversity should be performed, to know

which microorganisms are mainly responsible for the microbial uranium(VI) reduction. There-

fore, 16S/18S rRNA gene analyses in combination with meta-transcriptome analyses could be

used to identify the dominating metabolic active microorganisms. Furthermore, meta-proteomic

analyses could be performed to identify proteins involved in uranium stress response to clarify

the underlying mechanisms of the microbial uranium(VI) reduction.

Glycerol represents a cost-effective and non-toxic polyhydric alcohol, which is industrially used

in food- and pharmaceutical industry. Nevertheless, other similar carbon sources should be taken

into consideration to stimulate the microbial uranium(VI) reduction. Therefore, further experi-

ments with alternative carbon sources, like ethanol and sugar derivates, should be performed to

investigate their efficiency in stimulation of microorganisms responsible for metal-/radionuclide

reduction.

Another important area for further investigations is the determination of the stability or longevity

of the bioreduced uranium(IV) complexes/minerals, particular if the environmental conditions

changes. For instance, re-oxidation processes of uranium(IV) are well described and known

to be catalyzed by oxygen, nitrate, Fe(III) minerals, oxides, organic ligands and bicarbon-

ate [145, 200–208]. At the moment only half of the underground mine is flooded, meaning there

are large surfaces contacting the water with the surrounding atmosphere. Consequently, within

the flooded underground the prevalent redox processes are still oxidizing and oxygen could re-

oxidize the microbial reduced uranium(IV). Previous studies using glycerol phosphate as elec-

tron donor could demonstrate, that uranium(VI) was successfully reduced by microorganisms

and precipitated as uranium phosphate minerals [209]. The precipitation of phosphate minerals

is a promising alternative due to the high stability to oxidative changes and their longevity, which

has been demonstrated in natural analog sites [49, 210–212]. Therefore, it could be promising to

stimulate the microbial reduction of uranium(VI) within the flooding water by adding glycerol

phosphate, which could enhance, under the prevalent conditions, the stability of the reduced ura-

nium(IV). With XANES spectroscopy it was possible to determine the oxidation state of uranium

within the samples, after stimulation of microbial activity by adding 10 mM glycerol. However,

due to the low content of uranium in the natural samples, it was not possible to identify the

speciation of the reduced uranium(IV). Further investigation on the formed uranium(IV) species

should be performed to understand the microbial reduction of uranium(VI) on molecular level.

In addition, the information about the species of uranium(IV) could help to predict the stability

of the formed uranium(IV) complexes and to estimate their stability within the underground of

the former uranium mine.
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Appendix

Figure A1: Color change of the flooding water in the pilot plant during 30 days of incubation
time.
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Appendix

Figure A2: MPN approaches for determination of SRB. A dilution series of the flooding water
samples were inoculated in aSRB medium [168]. Left in black control sample with-
out flooding water, negative for SRB activity; right in white samples of the flooding
water positive for SRB activity by the occurrence of black precipitation (FeS).
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Appendix

Figure A3: Light microscopy (phase-contrast) of spore-forming bacterial cells within the flood-
ing water samples (1 L) after six weeks incubation at 30 ◦C, 10 mM glycerol added.
Red arrows indicate the endospores.
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Abbreviations

Abbreviations

A. aromatica Acidocella aromatica

A. ferrooxidans Acidothiobacillus ferrooxidans

A. facilis Acidovorax facilis

AMD Acid mine drainage

aSRB Acidophilic sulfate reducing bacteria

ATR FT-IR Attenuated total reflection Fourier transform-infrared

BLAST Basic local alignment search tool

CO Colorado

D. acidophilus Desulfosporosinus acidophilus

dbm Dry biomass

DNA Deoxyribonucleic acid

DSMZ Leibniz-Institut Deutsche Sammlung für Mikroorganismen und Zellkulturen

GmbH

e.g. exempli gratia/for example

Eh Redox potential

Eq. Equation

Eqs. Equations

et al. et alii

EXAFS Extended X-ray absorption fine structure

F. myxofaciens Ferrovum myxofaciens

GmbH Gesellschaft mit beschränkter Haftung

h Hours

ICP-MS Inductively coupled plasma mass spectrometry

IOB Iron oxidizing bacteria

IRB Iron reducing bacteria

ITS Internal transcribed spacer

L Liter
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Abbreviations

M Molar

MIC Minimal inhibitory concentration

min Minutes

MPN Most probable number

MRB Metal reducing bacteria

MTC Maximal tolerated concentration

NCBI National Center for Biotechnology Information

OD Optical density

P Phosphorous

PCR Polymerase chain reaction

pKa Logarithmic acid dissociation constant

R. toruloides Rhodosporidium toruloides

rRNA Ribosomal ribonucleic acid

RT Room temperature

SDA Sabouraud dextrose agar

SEM Scanning electron microscopy

SRB Sulfate reducing bacteria

TEM Transmission electron microscopy

TN Tennessee

TOC Total organic carbon

TRLFS Time resolved laser fluorescence spectroscopy

U Uranium

USA United States of America

v/v Volume/volume

w/v Weight/volume

WA Washington

XANES X-ray absorption near edge structure
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