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To my grandmother



,»We live by our eyes and ears and tend generally to be oblivious to the chemical happenings
in our surrounds. Such happenings are ubiquitous. All organisms engender chemical signals,
and all, in their respective ways, respond to the chemical emissions of others. The result is a

vast communicative interplay, fundamental to the fabric of life.*

Thomas Eisner & Jerrold Meinwald, 1955
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Zusammenfassung Vv

Zusammenfassung

Mehr als 70% der Erdoberflache sind von Wasser bedeckt, wovon ca. 97% als
Meerwasser in Ozeanen und Meeren auftreten. Die lichtdurchflutete Zone dieser
Flache bildet den Lebensraum des marinen Phytoplanktons, also allen mit den
Meeresstromungen treibenden, photosynthetisch aktiven Organismen. Durch die
Fixierung von Kohlenstoffdioxid in organischem Material und die Bildung von
Sauerstoff spielt Phytoplankton eine bedeutende Rolle fur das globale Klima,
biogeochemische Stoffkreislaufe, und die marine Nahrungskette. Die Dynamiken in
Auftreten und Sukzession des marinen Phytoplanktons sind bis heute nur bedingt
erklarbar. Dabei spielen Interaktionen mit Viren, Bakterien und Zooplankton, die Gber
chemische Molekule vermittelt werden, eine wichtige Rolle. Die Entschlusselung
dieser Interaktionen wurde durch die technischen Errungenschaften der letzten
Jahrzehnte und datenintensive Ansatze stark voran getrieben.

In meiner Dissertation erforsche ich die Anwendungsmdglichkeiten verschiedener
Metabolomics-Ansatze zur Untersuchung der Okologie des marinen Phytoplanktons
insbesondere in Feldstudien. So stellte ich den Forschungsstand von Metabolomics
im Bereich der chemischen Okologie in einem umfangreichen Ubersichtsartikel
zusammen, und fuhrte ein systematisch optimiertes und standardisiertes Protokoll zur
metablolomischen Analyse mariner Algen ein. Weiterhin entwickelte ich eine UHPLC-
APCI-HRMS Methode zur simultanen Messung fltiichtiger und nichtflichtiger Oxylipine.
Mithilfe eines GC-MS basierten, nichtselektiven Screenings intra- und extrazellularer
Metabolite beobachtete ich im Wachstumsverlauf der Mikroalge Phaeocystis pouchetii
deren Stoffwechselveranderungen und identifizierte potentielle physiologische Marker.
Um die chemische Diversitat und physiologische Plastizitat ganzer Phytoplankton-
Gemeinschaften abzubilden, wandte ich wahrend einer Forschungsfahrt im Nordmeer

einen Meta-Metabolomics-Ansatz an.

Oxylipine spielen fur marine Kieselalgen eine wichtige Rolle zur Abwehr von
Fraldfeinden. Verwundungsaktiviert werden dabei Membranlipide durch eine
Enzymkaskade zu polyungesattigten Aldehyden (PUAs) umgewandelt, welche einen
fruchtschadigenden Effekt auf Rauber haben. Daneben werden eine Vielzahl nicht-
volatiler Oxylipine mit ahnlicher Wirkung freigesetzt. Wahrend die leichtfllichtigen
PUAs direkt mittels GC-MS gemessen werden konnen, bendtigen die polareren
nichtfluchtigen Oxylipine eine LC-MS-Analytik. Die entwickelte LC-APCI-HRMS
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Methode bietet zum ersten Mal die Moglichkeit, beide Substanzklassen in einer
Messung zu erfassen. Durch eine sensitive Analytik von PUAs basierend auf der
selektiven Aufzeichnung ausgewahlter lonen (selected ion monitoring; SIM) konnte ich
erstmals Hexadienal in einer marinen Mikroalge nachweisen. Erganzendes
nichtselektives Screening von nichtflichtigen Oxylipinen im Full Scan-Modus
ermdglichte die simultane Messung von Decatrienal und 10-hydroxydeca-5Z,8Z-
diensaure als zugehoérigem enzymatischen Produkt. Biochemische Untersuchungen
zur Freisetzung von Oxylipinen in marinen Mikroalgen werden somit erleichtert. Die
kurze Probenaufarbeitungs- und Messzeit, sowie das geringe Probenvolumen,
ermoglichen einen hohen Probendurchsatz sowohl in Labor- als auch

Freilanduntersuchungen.

FralR durch RuderfulRkrebse und andere biotische Interaktionen kénnen durch die
Physiologie von Algen beeinflusst werden, wie mehrfach in der Vergangenheit
diskutiert wurde. Physiologische Plastizitat ermoglicht es Mikroalgen aufRerdem, sich
an veranderte Umweltbedingungen anzupassen, und erhoht somit deren Fitness und
Uberlebensrate. Unser Verstandnis fiir die Stoffwechselplastizitdt der taxonomisch
heterogenen Gruppe des marine Phytoplanktons ist allerdings noch begrenzt.
Wachstumsabhangige Veranderungen intra- und extrazellularer Metabolite der
Kaltwasserart Phaeocystis pouchetii konnte ich durch ein nichtselektives Metabolit-
Screening darstellen. Das Wachstum in Batch-Kulturen I6ste limitierende
Veranderungen in abiotischen Parametern  wie Lichtintensitat  und
Nahrstoffkonzentrationen aus. Stoffwechselveranderungen traten im Hinblick auf freie
Aminosauren auf, welche im exponentiellen Wachstum parallel zur Stickstoffaufnahme
zunehmen. Wachstumslimitationen in den stationdren Phasen fuhren u.a. in
Konsequenz fortlaufender Photosynthese bei gleichzeitig reduziertem Wachstum zu
einer Akkumulation von Kohlenhydraten. Die Zunahme von Produkten des Lipid-
Stoffwechsels, wie zum Beispiel von a-tocopherol, mehrfach ungesattigten Fettsauren,
und Sterolen in der spaten stationaren Wachstumsphase, deutet auf die Notwendigkeit
hin, die Stabilitat der Zellmembranen aufrecht zu erhalten. Zusatzlich zu diesen
allgemeinen Stoffwechselantworten existieren auch Artspezifische
Stoffwechselveranderungen, z.B. im Mannitolgehalt von Haptophyten, welche daher
als Taxon-spezifische physiologische und okologische Biomarker fur Umweltstudien
geeignet sein konnten. Die Wachstumsphysiologie von Mikroalgen spiegelt sich auch

in extrazellularen Metaboliten wider. Dabei zeigt sich im Exometabolom von
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P. pouchetii eine diverse chemische Zusammensetzung aus Stoffwechsel-
assoziierten Metaboliten sowie Metaboliten, welche der Regulation biotischer
Interaktionen dienen. Letzteres zeigt sich in Molekllen, welche eine hohe Ahnlichkeit
mit den als Infochemikalien bekannten Metaboliten Lumichrom und Indole-3-
essigsaure aufweisen. Die Physiologie von Mikroalgen kann somit auch durch

extrazellulare Biomarker beschrieben werden.

Auch in naturlichen Phytoplankton-Gemeinschaften ist eine solche physiologische
Plastizitat zu erwarten. In einem Meta-Metabolomics-Ansatz nutzte ich nichtselektive
Metabolit-Screenings, um die Stoffwechselplastizitat in marinen Feldexperimenten
sichtbar zu machen. Gangige Freilandexperimente zur Untersuchung von Rauber-
Beute-Beziehungen stellen Verdunnungsexperimente dar. Deren Storung durch
polyungesattigte Aldehyde, welche bei vorangegangener Filtration durch einige
Algenarten wie P. pouchetii oder bestimmte Algenblutestadien freigesetzt werden
konnen, ist in der Vergangenheit mehrfach postuliert worden. Dies konnte jedoch nicht
eindeutig gezeigt werden. Durch ein nichtselektives Screening der im Filtrat gelosten
Metabolite konnte ich den generellen Einfluss der Filtrationsmethode auf die
chemische Zusammensetzung des Filtrats sichtbar machen. Eine Maoglichkeit, auf
diesen Effekt hin zu prufen, ist die Bestimmung spezifischer Wachstumsraten. Auch
die Zellphysiologie und somit intrazellulare Metabolite stehen im Verdacht, Rauber-
Beute-Beziehungen zu beeinflussen. So wurde fur P. pouchetii mehrfach postuliert,
dass die Zellphysiologie flr verminderten Fral® durch Ruderful3krebse verantwortlich
sei. Wahrend einer Ausfahrt im Nordmeer zur Untersuchung von P. pouchetii
dominierten Phytoplankton-Gemeinschaften, konnte ich durch einen Meta-
Metabolomics-Ansatz erstmals die Stoffwechselplastizitdat ganzer Phytoplankton-
Gemeinschaften abbilden. Metabolite, wie z.B. Eicosapentaensaure, bilden als
taxonomische Marker die Verteilung von Algenarten ab. Die Verbreitungsmuster von
physiologischen Markern aus P. pouchetii Laborkulturen zeigen hingegen den Einfluss
abiotischer Umweltfaktoren auf den Stoffwechsel des Phytoplanktons und die

abgebildete chemische Landschaft.

Die Forschung im Bereich der Okologie wird zu einem gewissen Grad taxonomisch
definiert und ausgerichtet. Auf der Ebene von Metaboliten spielt Phylogenie hingegen
weniger eine Rolle. Dies zeigt sich am Beispiel der gut untersuchten Substanzklasse
der Oxylipine, deren Verbreitung und Zusammensetzung in den verschiedenen

marinen Phytoplankton-Taxa keinen direkten Zusammenhang mit der globalen
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Biomasse oder der 6kologischen Relevanz aufweist. Dies zeigt sich auch in den Meta-
Metabolomen von Phytoplankton-Gemeinschaften, deren taxonomische Signaturen
durch Methodeneffekte und Nahrstofflimitationen Uberlagert werden. Metabolomics
erlaubt es, diese funktionelle Diversitat und Plastizitat des marinen Phytoplanktons
abzubilden. Erganzend zu den Analysen gut untersuchter Moleklle, konnen
nichtselektive Metabolit-Screenings dabei helfen, die chemische Diversitat im marinen
Plankton besser zu erfassen.
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Summary

More than 70% of the earth's surface is covered with water, of which about 97% is
saltwater in oceans and seas. The photic zone of this area forms the habitat of the
marine phytoplankton that is all drifting photosynthetic organisms. By fixing carbon
dioxide in form of organic material and releasing oxygen, they play an important role
for the global climate, global biogeochemical cycling, and the marine food web.
However, the succession and dynamics of marine phytoplankton blooms are still not
fully understood and far from being predictable. It, nevertheless, becomes evident that
chemically-mediated interactions with viruses, bacteria and zooplankton are of
importance. The elucidation of these interactions has been strongly driven and

improved by the technical and computational achievements of the last decades.

| explored in my thesis the capabilities of different metabolomics approaches for the
investigation of marine phytoplankton ecology especially in environmental studies. |
conducted a comprehensive review of metabolomics in the field of chemical ecology,
and introduced a systematically optimized and standardized protocol for the metabolic
analysis of marine algae. Furthermore, | developed a UHPLC-APCI-HRMS method for
the simultaneous profiling of volatile and non-volatile oxylipins. By performing GC-MS-
based untargeted metabolite profiling of algal endo- and exometabolites, | monitored
throughout growth of Phaeocystis pouchetii its metabolic alterations and identified
potential physiological markers. During a research cruise in the Norwegian Sea, |
applied a meta-metabolomics approach to map the chemical diversity and

physiological plasticity of phytoplankton communities.

Oxylipins play an important role as grazer defence metabolites for marine diatoms.
Cellular wounding activates the enzymatic transformation of membrane lipids to
polyunsaturated aldehydes (PUAs) that have a teratogenic effect in the grazer
offspring. In addition, non-volatile oxylipins are released, which show similar effects.
While PUAs are typically measured by GC-MS, more polar non-volatile oxylipins are
analysed by LC-MS. The developed LC-APCI-HRMS method allows for the first time
to study both compound classes on one analytical platform within one run. The
sensitive analysis of PUAs in selected ion monitoring (SIM) mode revealed for the first
time hexadienal in a marine microalgae. Complementary untargeted profiling of non-
volatile oxylipins enabled the simultaneous analysis of decatrienal and 10-

hydroxydeca-57,8Z-dienoic acid as corresponding enzymatic product. This will
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facilitate the biochemical investigation of oxylipin production in marine microalgae. The
short sample processing and analysis time, as well as the low sample volume, allow a

high sample throughput in both laboratory and field experiments.

Grazing and other biotic interactions may be influenced by algal physiology, as has
been repeatedly discussed in the past. Physiological plasticity further allows
microalgae to adapt to environmental changes, which increases their fitness and
survival. However, our understanding of physiological plasticity is still limited for the
taxonomically heterogeneous group of marine phytoplankton. Growth-related changes
in intra- and extracellular metabolites of the cold water species Phaeocystis pouchetii
were monitored using untargeted metabolite profiling. Batch-cultures introduced
changes in growth-limiting parameters, for example, in light intensity and nutrient
concentrations. Metabolic alterations occur with regard to free amino acids that
increase during exponential growth in parallel to nitrogen incorporation. Growth
limitation in stationary growth phases leads for example to an accumulation of
carbohydrates based on a mismatch of continuing photosynthesis and limited growth.
The increase in lipid-derived structures during late stationary growth including o-
tocopherol, polyunsaturated fatty acids, and sterols, points to the need to sustain
membrane stability. In addition to these common algal metabolism responses, also
species-specific alterations exist, e.g. for haptophytes in mannitol levels, which may
be used as taxon-specific physiological markers in environmental studies. Microalgal
growth physiology is also reflected in extracellular metabolites. Exometabolomes of
P. pouchetii represent diverse chemical mixtures that reflect not just growth physiology
but also biotic interactions, as metabolites with high similarity to known infochemicals

were present, including a lumichrome-like and indole-3-acetic acid-like compound.

The same physiological plasticity can be expected in natural phytoplankton
communities. In a meta-metabolomics approach, | applied untargeted metabolite
profiling to visualise metabolic plasticity in marine field experiments. A common
approach to investigate predator-prey-relationships in the environment are dilution
experiments. Their disturbance by PUAs, which may be released during filtration from
certain phytoplankton species like P. pouchetii or certain bloom phases, has been
postulated in the past. However, this could not be proven by targeted PUA analysis.
Untargeted metabolite profiling of the extracellular metabolites in the filtrate uncovered
a general treatment effect on the chemical composition of the filtrate. One possibility

to control for this effect are measurements of specific growth rates. Similarly, it has
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been proposed several times in the past, that cell physiology may be responsible for
the reduced grazing of copepod on P. pouchetii. In an extensive research cruise in the
Norwegian Sea investigating different phytoplankton blooms that were dominated by
P. pouchetii, 1 could for the first time map the metabolic plasticity of whole
phytoplankton communities using a meta-metabolomics approach. Metabolites like
eicosapentaenoic acid reflected algal taxonomy and thus species distribution. The
occurrence patterns of the physiological markers that were derived from P. pouchetii
cultures visualised the strong imprint of abiotic environmental factor responses on the

metabolic landscape.

Research in ecology is to a certain extent defined and driven by taxonomy. On the
metabolite level, however, phylogeny is not the main driving force. This is visible for
the well-investigated class of oxylipins, whose occurrence and composition throughout
marine phytoplankton taxa is not directly related to global biomass and ecological
significance. This is also visible for meta-metabolomes of whole phytoplankton
communities, whose taxonomic signature is imprinted by treatment effects and nutrient
limitation effects. Metabolomics is able to visualize the functional diversity and plasticity
of the marine phytoplankton. Complementary to targeted analysis of well-known
molecules, untargeted metabolite profiling will thereby help to expand the coverage of
the chemical diversity in plankton ecology.
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1 Introduction

1.1 The chemical ecology of marine phytoplankton

1.1.1 Chemically mediated interactions in phytoplankton ecology

Within the field of chemical ecology, interactions of organisms with their biotic and
abiotic environment that are mediated by chemical molecules are investigated.
Besides the identification of chemical signals also their biosynthesis, reception, signal
transduction, and effects on the receiving organism and the ecosystem are studied.
Originating from terrestrial ecology (see Hartmann (2008) and references therein),
marine chemical ecology research is still in its advent, especially with regard to
plankton communities (Poulson et al. 2009) (Fig. 1).

Light Temperature Nutrients Salinity

Other
phytoplankton
species

phytoplankton
species

Fig. 1 Marine phytoplankton species undergo chemically mediated interactions, both within the species
as well as with other phytoplankton species, zooplankton, fungi, bacteria, or viruses. Further, abiotic
factors including irradiance, temperature, or nutrient availability influence their ecology.

Plankton (Greek planktos "errant") encompasses all aquatic organisms drifting with the
ocean currents due to no or low motility. This includes viruses, bacteria, archaea, fungi,
protozoa, algae and animals, spanning a size range from <2x107 m (viruses) to
several meters (jellyfish). Depending on their ecological function, these taxa are
classified into photoautotrophic phytoplankton (Greek phyton "plant") as primary
producer, heterotrophic zooplankton (Greek zoon "animal") as consumer, and
heterotrophic bacterio- and mycoplankton (Greek mykes "fungus") as decomposer.
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The photoautotrophic phytoplankton communities play an important role on a global
scale. While fixing >10'* g CO2 day™' phytoplankton is responsible for about 46% of the
annual global net primary production and dominating the marine primary production
(Field et al. 1998). Phytoplankton thus forms the base of the marine food web and
influences global climate and biogeochemical cycling. Another interesting aspect of
marine phytoplankton communities compared to terrestrial plants is their taxonomic
diversity with representatives in prokaryotes and eukaryotes (Fig. 2). The permanent
endosymbiosis of a cyanobacterium in a eukaryotic host cell led to the basal clades of
rhodophytes (red algae), chlorophytes (green algae) and glaucophytes (Falkowski et
al. 2004).

A B
HIZARIA ALy,
A “OLare

B

Primary endosymbiosis:
Cyano-
bacterium

lunji\iimﬂl(li
PBejorpey

Secondary endosymbioses:

red/green
algae

{0} nucleus

’ mitochondrion

Eukaryota

Prokaryota

BACTERIA ARCHAEA

Fig. 2 Phytoplankton biodiversity as source for chemical diversity: scheme of endosymbiotic events (A)
and phylogeny (B) showing the distribution of phytoplankton taxa across the eukaryotic and prokaryotic
lineages. Engulfment of a prokaryotic cyanobacterium by an eukaryotic host (primary endosymbiosis)
led to the clade of Archaeoplastida (marked with star). Representatives of subsequent sequential
endosymbioses of red and/or green algal cells by different eukaryotic host cells (secondary
endosymbioses) are found in the clade of SAR (Stramenopiles, Alveolates, Rhizaria) and Excavates
and Discicristates. The red arrows point to the plant, animal and fungal kingdom. The most diverse and
ecologically important phytoplankton taxa are indicated by bold letters. Figure is adapted from Not et al.
(2012), copyright license no. 4284020697673.

Further diversification took place by multiple secondary endosymbioses of red and/or

green algal cells leading to cryptophytes, haptophytes, stramenopiles (e.g. diatoms),
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dinoflagellates, chlorarachniophytes and euglenophytes. The most dominant marine
phytoplankton taxa showing also highest species diversity are diatoms, haptophytes,
and dinoflagellates. Each endosymbiotic event was accompanied by a gene transfer
from endosymbionts to host nuclei increasing the genetic pool (Tirichine and Bowler
2011). Together with the effect of horizontal gene transfer from bacteria and viruses
(Bowler et al. 2008), phytoplankton taxa gained a large genetic diversity resulting, for
example, in unusual metabolic pathways (Allen et al. 2011; Fabris et al. 2012). Also
novel infochemicals may be expected in the chemical ecology of phytoplankton
compared to what is known from plants. In the following, the term 'microalgae’ will be
used synonymously for phytoplankton, even though it includes species that are
associated with the ocean floor (benthic).

As plants in the terrestrial realm, marine phytoplankton species can undergo multiple
types of interactions. Phytoplankton interactions are mediated neither by visual nor
auditory cues, but solely through infochemicals inducing e.g. developmental,
morphological, physiological, and behavioural changes. Such infochemicals are
defined as naturally occurring chemicals that mediate the interaction between two
individuals inducing an adaptive response in the receiver (Dicke and Sabelis 1988).
Interactions within the same species are mediated by pheromones, whereas
allelochemicals occur in interactions between different species with profit for the
sender (allomone), receiver (kairomone), or both (synomone). In the following, the

different interactions as known for the marine phytoplankton are introduced.

Phytoplankton pheromones

Only little is known so far about intraspecific interactions covering ecologically
important processes such as sexual reproduction or programmed cell death and
thereby bloom succession. The first identified diatom pheromone, the diketopiperazine
diproline (1), attracts mates in the benthic diatom Seminavis robusta (Gillard et al.
2013). No pheromones have yet been identified in pelagic marine microalgae. Indole-
3-acetic acid (IAA, 2) is a well-known growth regulating hormone ('signalling molecule
within multicellular organisms') in plants. Also the marine microalgae Emiliania huxleyi
can biosynthesize |IAA (Labeeuw et al. 2016). Interestingly, only coccolith-bearing cells
seem to produce |AA, whereas naked cells are more sensitive in their physiological
response indicating an intraspecific signalling function (Labeeuw et al. 2016). The

same molecule is mediating algae-bacteria interactions (Amin et al. 2015).
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Polyunsaturated aldehydes (PUAs, e.g. 3-5) - originally investigated as activated
grazing defence metabolites (see 1.1.3) - can induce programmed cell death in diatom
blooms thereby regulating bloom decline (Vardi et al. 2008; Vidoudez and Pohnert
2008). Similar autoinhibitory and autotoxic effects also occur in other microalgae (Olli
and Trunov 2007; Yamasaki et al. 2011), however, the responsible infochemicals have

not yet been identified.
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Phytoplankton allelochemicals

Interspecific interactions were investigated more intensively with the majority of
allelopathic studies being conducted on allomones and grazing defence metabolites.
Most of the involved infochemicals are, however, still unknown. The known neurotoxin
domoic acid (6) is released by the diatom Pseudo-nitzschia delicatissima as a
siderophore reducing the growth of Skeletonema costatum by giving competitive
advantage under low iron conditions (Prince et al. 2013). Several dinoflagellate genera
(e.g. Alexandrium, Prorocentrum, Karlodinium) and Karenia brevis induce allelopathic
effects like growth reduction or cell lysis in other dinoflagellates, diatoms, cryptophytes
and raphidophytes (Ma et al. 2011a; Prince et al. 2010; Tameishi et al. 2009). The
haptophyte Prymnesium parvum causes cell lysis in the cryptophyte Rhodomonas
baltica (Uronen et al. 2007), and the dinoflagellate Cochlodinium polykrikoides induces
immobilization in diatoms (Lim et al. 2014). However, with the exception of karlotoxins
(7-13) (Adolf et al. 2006) the involved allelochemicals were only preliminarily
characterized. Also PUAs (e.g. 3-5), which are well-known grazer defence metabolites,

can induce allelopathic effects in a broad range of algal phyla (Ribalet et al. 2007a).

HOOC
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OH OH OH OH

HO

1
OH OH R OH
7R" = OH; R = C4H, OH
8 R' = OH; R? = C4Hq R2
9 R' = OH; R? = C4H,Cl OH OH

10 R" = OH; R? = C5H4Cl 713
11 R' = OH; R? = C4HgCl
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Different predator-prey interactions are mediated by chemical cues, e.g. prey
recognition and tracking, algal defence with effects on both predator behaviour and
physiology, or predator avoidance. Predators can sense, track (Tiselius et al. 2013),
and immobilize their prey (Blossom et al. 2012; Remmel and Hambright 2012). Prey
quality can be recognized prior to ingestion (Barofsky et al. 2010; Martel 2009;
Selander et al. 2011). Phytoplankton cells can defend themselves constitutively by
permanent synthesis of well-known algal toxins such as saxitoxin (14) (Alexandrium
sp.), brevetoxins (15-22) (Karenia sp., Waggett et al. (2012)), or nodularin (Nodularia
spumigena), however, the ecological role and toxic mechanisms are poorly understood
(Landsberg 2002; Turner and Tester 1997). Phytoplankton cells may also activate their
chemical defence upon wounding by converting an inactive precursor into an active

defence metabolite as demonstrated for the wound-activated release of

15 R = CH,C(=CH,)CHO
16R = CH2C(=CH2)CH20H

o H " 17 R = CH,CH(CH3)CH,OH
H,N” N % ] o
OH 15-17
14 R
18 R = CH,C(=CH,)CHO
19 R = CH,C(=CH,)CH,OH
20 R = CH,CH(CH3)CH,OH 18-22

22 H-ring epoxide (27S,28R) of 18 57 gH H H
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dimethylsulfide (DMS, 24) and acrylate (25) from dimethylsulfoniopropionate (DMSP,
23) in Emiliania huxleyi (Wolfe et al. 1994; Wolfe et al. 2000), or for the oxylipin release
from polyunsaturated fatty acids (PUFAs) in diatoms (see 1.1.3). In both cases their
function as defence metabolites is, however, under discussion. Chemical defence may
also be induced upon grazer contact as observed for Alexandrium sp. (Selander et al.
2015; Wohlrab et al. 2010) or E. huxleyi (Kolb and Strom 2013). Phytoplankton may
avoid predation upon reception of (so far unknown) grazer cues by changes in motility
(Harvey et al. 2013) and morphology, e.g. chain length (Bergkvist et al. 2012; Jiang et
al. 2010; Selander et al. 2011) or colony formation (Long et al. 2007; Tang et al. 2008).
The recently described copepodamides (26-33) are the first potential copepod cues

that may mediate phytoplankton-copepod interactions (Selander et al. 2015).

O R! 0R2§ OH

'033\/\N
H

26-33

26 R = CHj3; R? = docosahexaenoic acid 30 R' = CH,; R? = docosahexaenoic acid
27R'= CHg; R? = eicosapentaenoic acid 31 R'= CHy; R2 = eicosapentaenoic acid
28 R' = CH,; R? = stearidonic acid 32 R" = CHj; R? = stearidonic acid

29 R" = CHg R?=H 33R"=CHy; R?=H

Parasitism describes interactions with benefits on the expense of the host. Algicidal
effects mediated, for example, by proteases, troponoids and indole-derivatives were
demonstrated for several bacteria already including Kordia algicida, Phaeobacter
gallaeciensis, Bacillus sp. and Shewanella sp. (Jeong et al. 2003; Paul and Pohnert
2011; Pokrzywinski et al. 2012; Seyedsayamdost et al. 2011). Some parasites thereby
rely on chemical cues like DMS to recognize and track their hosts (Garces et al. 2013).
The sensitivity of the dinoflagellate host Karlodinium veneficum towards parasitic
dinoflagellates is mediated via karlotoxins (7-13) and membrane sterol composition

(Place et al. 2009). Membrane constituents like sterols and glycosphingolipids also
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play an important role in the host-virus interaction of the haptophyte Emiliania huxleyi,
in which they mediate, for example, programmed cell death in the host population
(Rosenwasser et al. 2014; Vardi et al. 2012).

Facilitation describes interactions, in which one partner benefits with a positive
(mutualism) or neutral effect (commensalism) for the interacting partner. The
mutualistic interaction between the dinoflagellate Scrippsiella trochoidea and bacteria
of the Marinobacter clade is mediated by the siderophore vibrioferrin (34) (Amin et al.
2009). Also facilitation of microalgal growth (Paul et al. 2009) and cyst germination
(Bolch et al. 2011) has been described, the infochemicals are, however, still awaiting

structure elucidation.
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Whereas this happens on small spatial scales, a tritrophic interaction mediated via
DMS (24) was observed between marine phytoplankton, herbivore copepods, and
higher trophic level organisms. Upon copepod grazing, phytoplankton releases DMS
(24) from DMSP (23). This attracts species that feed upon copepods such as birds or
penguins (Amo et al. 2013; Savoca and Nevitt 2014). Such ecosystem-wide effects
mediated by phytoplankton infochemicals are rarely investigated. So far, primarily the
fate and role of microalgal toxins within the marine food web have been investigated
(Schwartz et al. 2016). Phytoplankton toxicity is under the control of both biotic (con-
specifics, grazers) and abiotic factors (nutrient availability, salinity, aeration). Toxins
like nodularin, saxitoxin (14), gonyautoxins, brevetoxins (15-22) and domoic acid (6)
as produced by cyanobacteria, dinoflagellates and diatoms are transferred to higher
trophic levels including krill, fish, and seals, in which they may induce toxic effects. The
investigation of phytoplankton chemical ecology on the community level is difficult to
mimic with simplified laboratory-based experiments and requires more field-based

research.
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1.1.2 Elucidation of phytoplankton metabolic pathways

The investigation of infochemicals is often targeting metabolites that occur and act in
the exometabolome of marine microalgae. However, the endometabolome and
especially primary metabolites provide the basis for phytoplankton interactions as well
(Fig. 3). Besides the investigation of biosynthetic pathways of certain infochemicals in
the producing organisms, this also includes metabolic responses in the receiving
organism and interactions with the abiotic environment mediated by e.g. nutrient

concentrations that shape biotic interactions.
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Fig. 3 Untargeted metabolite profiling sheds light on metabolic pathways and resulting primary and
secondary metabolites, as well as excreted extracellular metabolites including signal molecules.

Metabolic diversity between taxa revealed by genome sequencing

Due to the polyphyletic origin of the marine phytoplankton (Fig. 2), differences in the
primary and secondary metabolism exist between microalgal taxa. Recent advances
in whole-genome sequencing technologies allowed the sequencing of several marine
microalgae, including Emiliania huxleyi, Thalassiosira pseudonana (Armbrust et al.
2004), Phaeodactylum tricornutum (Bowler et al. 2008), and Ostreococcus tauri
(Derelle et al. 2006), and even more genomes are in preparation. Already these
genomes revealed novel potential metabolic pathways and a large number of genes
and proteins with unknown functions (Tirichine and Bowler 2011). In diatoms, for
example, there is evidence that metabolic pathways exist for the ornithine-urea-cycle,
which is known for metazoa (Allen et al. 2011), and the Entner-Doudoroff glycolytic
pathway, which is known for prokaryotes (Fabris et al. 2012). In the haptophyte
E. huxleyi mannitol as major carbon storage of Cs photosynthesis (Obata et al. 2013)

and NAD-independent malate-oxidation (Rokitta et al. 2014) were elucidated. Whole-
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genome sequencing thereby provides evidences that have to be confirmed by

complementary analyses on the proteome, transcriptome or metabolome level.

Metabolic plasticity within species

Next to the metabolic diversity between taxa, substantial metabolic plasticity within
species exists. Microalgal metabolism differs e.g. between the various life phases of
one species. Thus, for example, many primary metabolites (citric acid, lactic acid,
threonic acid, saccharides) were up-regulated in the haploid cell type of
Emiliania huxleyi, whereas triacylglycerols were reduced, which may be due to the high
energy demand of flagellar movement (Mausz and Pohnert 2015; Wordenweber et al.
2017). In contrast, diploid cells were characterized by higher levels of DMSP (23),
which was proposed to be a response to higher osmotic needs during calcification
(Wordenweber et al. 2017). Both life phases also differed in their sterol composition,
being enriched either in ergosterol (haploid cells) or epibrassicasterol (diploid cells)
(Mausz and Pohnert 2015). Microalgal metabolism also responds to various biotic and
abiotic environmental factors like temperature, salinity, irradiance and nutrient
concentrations. Viral infection of E. huxleyi induced fatty acid metabolism, production
of viral-specific glycosphingolipids, and lead to a severe reduction in sterols and other
terpenes (Rosenwasser et al. 2014). In response to light-dark-cycles, diurnal
fluctuations in metabolite concentrations can occur. Trehalose, for example, exhibited
strong diurnal fluctuations in the chlorophyte Ostreococcus tauri with accumulation at
night due to starch degradation (Hirth et al. 2017). In the diatom Skeletonema marinoi,
maltose and most amino acids accumulated during night, whereas only a few amino
acids (e.g. proline) were more abundant during day (Vidoudez and Pohnert 2012). The

observed diurnal variability in S. marinoi was even stronger during exponential growth.

Growth phase-specific marker metabolites

Phytoplankton cells develop their metabolic phenotype during growth, which has been
documented on the metabolic level for only a few microalgal species so far:
Skeletonema marinoi (Barofsky et al. 2010; Vidoudez and Pohnert 2012),
Emiliania huxleyi (Mausz and Pohnert 2015), and Synechococcus elongatus (Fiore et
al. 2015). Free amino acids and saccharides characterized the exponential growth of
S. marinoi (Vidoudez and Pohnert 2012). In the stationary phase only a few
metabolites had their maximum level, e.g. glucose, probably fuelling the lipid
metabolism as further indicated by the accumulation of glycerol, inositol isomers and
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lipids during stationary and declining growth. Induced catabolic reactions during growth
decline gave rise to some known (e.g. sterols and other terpenes) and many unknown
metabolites. Putrescine (35) increased throughout growth. In contrast, the exponential
growth of E. huxleyi was characterized by carboxylic acids and mannitol, which
appears to be the major carbohydrate storage molecule in this haptophyte (Mausz and
Pohnert 2015). Amino acids were not regulated. During stationary growth, free fatty
acids and putatively identified (di)galactosylglycerol increased indicating an active lipid
metabolism. Declining growth was characterized by terpenes (e.g. a-tocopherol and
sterols) but also by several mono- and disaccharides as putative breakdown products
of structural polysaccharides. Growth of the cyanobacterium S. elongatus was
characterized by an intracellular increase in DMSP (23), spermidine (36) and
spermidine pathway-related metabolites, which also all belonged to the most abundant

intracellular metabolites (Fiore et al. 2015).

H
H2N/\/\/NH2 H2N/\/\/N\/\/NH2

35 36

Already these three studies indicate general metabolic responses during growth (such
as induced lipid metabolism under growth limitation), but also clear taxon-specific
differences (such as mannitol as main carbohydrate storage molecule in E. huxleyi).
For several growth phase-specific metabolites the function is not yet known (e.g.
lumichrome), or they seem to be multifunctional without a specific recognized role (e.g.
putrescine). Thus, further studies are necessary to discriminate between growth
phase-related metabolites that are strain-specific, species-specific, or common among
the phytoplankton clades. This may allow us in the future to discriminate phytoplankton

bloom phases in natural environments.
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1.1.3 Elucidation of phytoplankton infochemicals

Bioassay-guided fractionation

Even nowadays, bioassay-guided fractionation is a widely used approach to isolate
and identify infochemicals in chemical ecology and new protocols are still developed
(Cutignano et al. 2015). Active crude extracts are separated via (preparative) LC, GC,
or thin-layer chromatography (TLC) based on chemical properties, fractionated
manually or automatically, and the fractions are tested in bioassays for their ecological
activity. This procedure is conducted in an iterative manner to purify and isolate the
active compound(s) before final structure elucidation via MS or NMR spectroscopy.
Different analytical platforms and bioassay set-ups are necessary to cope with the
broad range in polarity, size, mode of action, and biosynthetic origin that can be

expected for an unknown infochemical as reviewed by Weller (2012).

Many compounds that play a role in marine phytoplankton ecology have been
elucidated by bioassay-guided fractionation. This applies especially to harmful algal
bloom toxins that can induce negative effects in organisms at higher trophic levels like
fish or humans. Toxin classes include alkaloids like domoic acid (6), tetrahydropurines
like saxitoxin (14), macrocyclic imines like pinnatoxin A (37), linear and macrocyclic

polyethers like karlotoxins (7-13), and ladder-frame polyethers like
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brevetoxins (15-22), yessetoxin (35), and prymnesin-2 (36) (Rasmussen et al. 2016).
These phytoplankton toxins thereby demonstrate nicely the chemical diversity that can
be expected in marine infochemical research spanning a wide range in molecular size

and polarity.

The formerly proposed toxicity towards fish has been retracted recently for some
phytoplankton metabolites (Blossom et al. 2014), and the responsible ichthyotoxic
compounds could not be elucidated so far. This lack in identification of active
compounds is exemplary for the infochemical research on marine phytoplankton in
general (see 1.1.10), and may be due to the methodical limitations of bioassay-guided
structure elucidation. The approach requires multiple sample purification and
enrichment steps, and a well-designed bioassay. This is a solvent-demanding and
time-consuming process with often low reproducibility. For marine samples a desalting
step is needed. Especially unstable compounds and infochemicals with additive,
antagonistic, or synergistic effects are difficult to elucidate via this approach and
require for new analytical methodologies such as comparative metabolite profiling (see
Chapter 1.2).

Targeted analytical approaches for polyunsaturated aldehydes and other oxylipins

Once a member of a compound class is identified that is biologically active (Miralto et
al. 1999), targeted chemical analyses allow the discovery of additional members.
Short-chained polyunsaturated aldehydes (PUAs; e.g. 3-5) are a well-investigated
infochemical compound class that plays, for example, a role in predator-prey
interactions of marine phytoplankton. Upon cell wounding, PUAs are enzymatically
cleaved from membrane-derived polyunsaturated fatty acids (PUFAs) and may be
directly released into the grazer gut (Pohnert 2002; Wichard et al. 2007). PUAs can
accumulate in the grazer gonads and react with proteins and DNA (Wolfram et al. 2014;
Wolfram et al. 2015) leading to reproductive failure in the predator population. It thus

reflects an activated chemical grazer defence strategy.

PUAs belong to the class of oxylipins - a diverse group of metabolites derived from
fatty acid oxygenation (original definition by Gerwick et al. (1991): 'oxygenated
compounds which are formed from fatty acids by reaction(s) involving at least one step
of mono- or dioxygenase-catalyzed oxygenation'). Catalyzed by lipoxygenases
(LOXs), free PUFAs are thereby oxygenized with molecular oxygen to fatty acid

hydroperoxides (FAHs). These can be further converted to e.g. PUAs, w-oxo acids,



Introduction 13

hydroxyacids, and halogenated, unsaturated, or alicyclic hydrocarbons (Fig. 4).
Biological functions of some oxylipins have been reported for marine and freshwater
microalgae (d'lppolito et al. 2009; Fontana et al. 2007; Nanjappa et al. 2014; Pohnert
and Boland 1996; Wang and Shimizu 1990; Wendel and Juttner 1996; Wichard and
Pohnert 2006).

HPL PUAS
w-oxo acids
HPHL . y
LOX Hydroxy acids
PUFA° ——»  Hydroperoxides EAS Epoxyalcohols
+0
2 HR Unsaturated hydrocarbons
[
Alicyclic hydrocarbons
PO

Halogenated hydrocarbons
Fig. 4 Scheme of oxylipin-generating pathways that are known in phytoplankton. Free polyunsaturated
fatty acids (PUFAs) are oxygenized by lipoxygenases (LOXs) to fatty acid hydroperoxides (FAHSs).
Different enzymes then lead to a variety of oxylipin products: HPL = hydroperoxide lyase, HPHL =
hydroperoxide halolyase, EAS = epoxyalcohol synthase, HR = hydroperoxide reductase, PO =
peroxidase.

The occurrence of PUAs depends on the presence of certain precursor fatty acids and
the corresponding enzymes. For marine microalgae, the following PUAs are known
with their biosynthetic pathways (Fig. 5): (2E,4Z)-hepta-2,4-dienal (3), (2E,4Z)-octa-
2,4-dienal (4), (2E,4Z)-octa-2,4,7-trienal (4b), (2E,4Z)-deca-2,4-dienal (5), and
(2E,4Z,7Z)-deca-2,4,7-trienal (5b). A wound-activated enzymatic pathway was
proposed for their production (Pohnert 2002). In the first step, lipases release free fatty
acids from membrane phospholipids and from chloroplast-derived glycolipids
especially mono- and digalactosyldiacylglycerols (Cutignano et al. 2006; d'lppolito et
al. 2004; Pohnert 2002). In the second step, free PUFAs such as C16:3w-4 (40),
C16:4w-1 (41), C20:4w-6 (AA, 42) and C20:5w-3 (EPA, 43) are oxygenated by LOX
enzymes (Fig. 5). These are non-heme iron-containing dioxygenases that typically
interact regio- and stereospecific with 1Z,4Z-pentadiene moieties within PUFAs
(Schneider et al. 2007). Several LOXs are reported for marine diatoms, however, only
9-, 11- and 14-LOX seem to play a role for PUA formation (Andreou et al. 2009). In the
third step, LOX-derived intermediate FAHSs, for example (6Z,10E,122)-9-hydroperoxy-
6,10,12-hexadecatrienoic acid (d'Ippolito et al. 2006), are further enzymatically
transformed. Hydroperoxide lyases (HPLs) - haeme-containing monooxygenases -
cleave FAHSs substrate specific into two short-chained oxylipins like PUAs and shorter-

chain fatty acid derivatives (Fig. 5). In higher plants this has been demonstrated to be
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a homolytic cleavage releasing an aldehyde and a w-oxo acid (Grechkin and Hamberg
2004). Diatom HPLs seem to follow another mechanism releasing hydroxy fatty acids
like (82)-8-hydroxyoct-6-enoic acid (44) and (5Z,82)-10-hydroxydeca-5,8-dienoic acid
(45, Fig. 5) (Barofsky and Pohnert 2007). Non-enzymatic isomerisation may result in
w-0xo acids. All enzymes are probably present in an active form in cell lysates as the
whole reaction releases up to 4.1 fmol cell'! of 5b within seconds after loss of cellular
integrity (Pohnert 2000).
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~ = = = _~_COOH —»{d] ~—=v="0 4 HO_—_ = _~_COOH
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Fig. 5 Known biosynthetic pathways of polyunsaturated aldehydes in marine diatoms. Free
polyunsaturated fatty acids as released from glycolipids (GL) or phospholipids (PL) and transformed by
an enzymatic cascade into polyunsaturated aldehydes as described by a - d'lppolito et al. (2003), a/b/d/e
- d'lppolito et al. (2004), b - Pohnert et al. (2004), ¢ - Pohnert (2000), c/d/e - Pohnert (2002) and Barofsky
and Pohnert (2007). LOX = lipoxygenase, HPL = hydroperoxide lyase.

PUA research has focused on marine diatoms in the past and Skeletonema costatum
and Thalassiosira rotula often served as model organism (d'lppolito et al. 2002a;
d'lppolito et al. 2002b; Miralto et al. 1999; Pohnert 2000). Observed species- and
strain-specificity in PUA production (Pohnert et al. 2002) motivated the screening of
>70 diatom strains, of which about 38% released PUAs with T. rotula being the most
active species (Wichard et al. 2005a). Besides diatoms, PUA-production has been
recorded within the following marine micro- and macroalgae: rhodophytes (de Alencar
et al. 2017; Kajiwara et al. 1990), the chlorophyte Ulva sp. (Akakabe et al. 2003;
Alsufyani et al. 2014), the phaeophyte Laminaria sp. (Boonprab et al. 2003; Goulitquer
et al. 2009), and the haptophyte Phaeocystis pouchetii (Hansen et al. 2004). Thus,
within marine phytoplankton so far only diatoms and Phaeocystis pouchetii are known
to produce PUAs, whereas within freshwater phytoplankton diatoms, chrysophytes,

synurids and cyanobacteria are known to release PUAs (Juttner 1995).
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Their role as chemical defence metabolites is due to their influence on the reproduction
of copepods causing e.g. reduced fecundity and hatching success and malformation
of nauplii. This was first observed for copepods fed with Thalassiosira rotula (lanora
and Poulet 1993; Poulet et al. 1994) and later confirmed in >30 copepod-diatom
interactions (Ban et al. 1997). After observing reduced copepod viability during blooms
of Skeletonema costatum and Pseudo-nitzschia delicatissima, Miralto et al. (1999)
were the first that showed that the a,B,y,0-unsaturated aldehydes 5 and 5b were
responsible. Activity is dependent on the a,B-double bond conjugated to the aldehyde
function representing a Michael-acceptor, which reacts non-specifically with
nucleophiles (Adolph et al. 2003). Reactivity is influenced by side chain polarity (longer
side chain length increases activity) with 5 being the most active PUA (Adolph et al.
2003). PUA accumulation in copepod gonads (Wolfram et al. 2014) and their
nucleophile attack of e.g. proteins and DNA (Carvalho et al. 1998; Wolfram et al. 2015)
may explain the deleterious effects on copepod grazers (reviewed in lanora et al.
(2003); lanora and Miralto (2010); Paffenhofer (2002)). PUAs also act on other phyla,
e.g. fungi, echinoderms, molluscs and annelids (Adolph et al. 2004; Caldwell et al.
2002), including antimicrobial and allelopathic effects (Ribalet et al. 2007a; Ribalet et
al. 2008). The observed toxicity towards diatoms themselves and PUA release directly
before the declining growth phase both in field and laboratory studies indicates an
additional role as infochemical during bloom succession (Casotti et al. 2005; Vardi et
al. 2006; Vidoudez and Pohnert 2008; Vidoudez et al. 2011b).

Several analytical methods have been developed for the qualitative and quantitative
analysis of marine dissolved (Vidoudez et al. 2011a) and particulate PUAs (d'lppolito
et al. 2002a; Spiteller and Spiteller 2000; Wichard et al. 2005b). Main challenges are
thereby their low concentrations within biological samples and their inherent chemical
instability. The first analyses that profiled diatom-derived PUAs were conducted by
solid phase microextraction (SPME) and gas chromatography coupled mass
spectrometry (GC-MS). Following Spiteller and Spiteller (2000), algal cultures were
concentrated by centrifugation, cells disrupted by sonication, and PUAs extracted
either from the cell-free liquid phase (Pohnert 2000) or headspace (Pohnert et al. 2002)
with a polydimethylsiloxane (PDMS)-coated SPME fibre. Analytes were then directly
evaporated in the GC injector. This allows the fast, direct, and sensitive detection of
algal PUAs using mass spectrometry. Subsequent structure identification is facilitated

by electron ionization (El)-based fragmentation. However, precise quantitative
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analyses are complicated as it is an equilibrium-based extraction influenced by e.g.
salinity and temperature. Recent advances in on-fibre derivatization (Ma et al. 2011b)
may stabilize these reactive analytes and may also enable sample storage. To
overcome the limitations of SPME, a protocol was developed that used solvent
extraction and chemical derivatization of PUAs for subsequent GC-MS analysis
(d'lppolito et al. 2002a; d'Ippolito et al. 2002b). PUAs were extracted from the aqueous
phase using acetone and dichloromethane. Extracts were then dried, cleaned,
concentrated, and derivatized to ethyl esters via a Wittig reaction with
carbethoxyethylidene-triphenylphosphorane (CET-TPP, Fig. 6A). The protocol allows
to stabilize PUAs and enables in combination with nuclear magnetic resonance (NMR)
spectroscopy complete structure elucidation of purified samples. However, Z-E-
isomerisation during extraction takes place and only aldehydes between C8-C16 can
be determined. With a limit of detection (LOD) of approx. 100-200 ug aldehyde per
biological sample using selected ion monitoring (SIM) the sensitivity is low and not
sufficient for natural phytoplankton samples.
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Fig. 6 Derivatization reactions for the targeted analysis of (polyunsaturated) aldehydes. (A) Wittig
reaction with CET-TPP resulting in ethyl ester homologues of the aldehydes. (B) Oximation with PFBHA
resulting in an E- and Z-isomer. RT = room temperature.

To improve the sensitivity for field-based studies, a protocol using in situ derivatization
with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine (PFBHA) was developed that
allows a robust quantitative PUA analysis (Fig. 6B, Wichard et al. (2005b)). Algal
samples are concentrated by filtration and re-suspended in buffered PFBHA solution.
During sonication, the released PUAs are directly derivatized to pentafluorobenzyl-
oximes, which are solvent-extracted, dried, and further concentrated for GC-MS
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analysis. Two stable oximation products of each PUA stereoisomer are formed (Fig.
6B). With a LOD of <2000 cells in 1L of sample this method is sensitive enough for
field experiments. The sensitivity can be further enhanced using chemical ionization
(Cl) instead of El.

The PFBHA protocol also includes a method to detect w-oxo acids, the second lyase
product, after silylation of the acidic group. This demonstrates a general difficulty when
investigating oxylipin metabolism: the chemical diversity in oxylipin substrates,
intermediates and products requires several analytical methods and platforms for a
comprehensive analysis of the metabolic pathways. Alsufyani et al. (2014) therefore
combined fast screening of PUAs using the SPME method, exact quantification of
PUAs using the PFBHA method, and investigation of the second HPL product using
ultra-high pressure liquid chromatography (UHPLC)-MS. A protocol for the parallel

analysis of PUAs and non-volatile oxylipins using one analytical platform still lacking.
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1.2 The metabolomics toolbox

Metabolomics - the comprehensive and quantitative investigation of all metabolites
(small molecules <1 kDa) produced by an organism under a given set of conditions
(Fiehn 2001) - is a tool that has been repeatedly proposed to advance the research in
chemical ecology (Prince and Pohnert 2010). The different aims in metabolomic
analyses regarding e.g. analytical sensitivity, identification level, or metabolite
coverage are thereby met by several sub-disciplines (Fiehn 2001). Thus, targeted
metabolite analysis aims to quantify a small number of metabolites by a selective but
sensitive and accurate method. Untargeted metabolite profiling aims to analyse one or
a few subsets of metabolites or compound classes in a (semi-) quantitative way. And
rapid untargeted metabolite fingerprinting aims to classify samples based on
metabolite occurrence patterns gained by semi-quantitative analysis of
endometabolomes. The corresponding classification of exometabolomes is defined as
metabolite footprinting (Allen et al. 2003). Endometabolites are thereby all metabolites
within the cells of an organism, whereas all metabolites released in the surrounding of
a cell are termed exometabolites (Nielsen and Oliver 2005) (Fig. 3). All metabolomics
approaches have to cope with the noisiness of metabolomes (high variability) and the

need to relate interesting metabolites to functional roles in an ecological context.

1.2.1 Analytical strategies: an interdisciplinary overview

There is no technology existing yet that would allow the analysis of the whole
metabolome at once, thus, complementary strategies have to be applied. A typical
metabolomics workflow comprises the experimental design, sample processing, data
acquisition using analytical instruments, computational data analysis, and biological
interpretation or generation of new hypotheses (Fig. 7). Recent achievements in
metabolomics research were mainly driven by the progress in analytical techniques

and bioinformatics tools.

Especially in untargeted metabolomics the design of the experiment and sample size
estimation are crucial for subsequent meaningful statistical analyses as a high co-
linearity and variability exist in metabolite data (Hendriks et al. 2011). Decisions on
metadata structure, biological and technical replication, and randomization have to be
taken. Incubation experiments with stable-isotopically labelled metabolites may
facilitate the unravelling of metabolic pathways (Weber et al. 2013). Approaches for
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power analysis and sample size determination in metabolomics studies have already

been proposed (Blaise et al. 2016) and should be further optimized.

Data Data Biological
acquisition analysis interpretation

Fig. 7 Overview over metabolomics workflow highlighting sample processing steps. SP(ME) = solid-
phase (micro)extraction. LLE = liquid-liquid extraction.

Sample collection and processing approaches have to be developed in line with the
research question as they strongly determine the quality of the generated data and
metabolite coverage (Dettmer et al. 2007; Villas-Bbas et al. 2005). Prior orimmediately
after rapid collection of the biomass and/or medium, enzyme activity and accordingly
cell metabolism have to be interrupted (‘quenched') by, for example, temperature or
pH changes to prohibit any metabolite alterations. Metabolites are then extracted from
the complex biological matrix using organic or aqueous solvents (liquid-liquid
extraction) or solid-phase (micro)extraction (SP(M)E) to reduce interference by e.g.
salts or proteins. Finally, metabolite concentrations are increased via solvent
evaporation. Prior to GC-MS analysis, metabolites are derivatized to increase their
volatility and thermal stability. Various protocols have been developed to optimize the
sample collection and processing for specific study organisms (Patejko et al. 2017; van
Gulik 2010; Winder et al. 2008), extracellular matrices (Pinu and Villas-Bbas 2017), or

to improve derivatization conditions (Gullberg et al. 2004).

Several analytical platforms exist for data acquisition, each covering a different range
in polarity and molecular weight as reviewed in Dunn et al. (2005) and Villas-Boas et
al. (2005). Metabolite detection can thereby be achieved using either MS, NMR,
infrared (IR) or raman spectroscopy. Whereas the last three techniques are primarily
used for high-throughput metabolite finger- and footprinting, mass spectrometry

coupled to a chromatographic system is generally applied for metabolite profiling (Fig.



Introduction 20

8). Gas chromatography (GC), liquid chromatography (LC) or capillary electrophoresis
(CE) allow to separate metabolites in complex biological samples prior MS analysis.
While instrumental sensitivity and resolution were continuously improved in recent
years, the metabolite identification is still a major issue (Wolfender et al. 2015). In the
past, LC-MS analyses were restricted due to the difficulty of relating obtained molecular
masses to molecular formulas and chemical structures. However, achievements in
chromatography (e.g. UHPLC, Guillarme et al. (2010)), mass spectrometry (e.g. high
resolution mass spectrometry (HRMS), such as Orbitrap-MS and Fourier-transform ion
cyclotron resonance mass spectrometry (FT-ICR-MS)), and data analysis tools (e.g. in
silico fragmentation tools, Wolf et al. (2010)) greatly improved LC-MS-based
untargeted metabolite profiling approaches. GC-MS offers larger identification
efficiency in untargeted profiling approaches, which is due to the high chromatographic
resolution and reproducible mass fragmentation. Metabolite fragmentation is based on
El at 70 eV and allows to compare fragmentation patterns with existing mass spectral
data bases. Especially volatile, but also non-volatile, non-polar to medium-polar
components can be analysed by GC-MS following appropriate derivatization steps
(Fig. 8B).
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Fig. 8 Metabolomics approaches differ with regard to number of investigated metabolites and the
accuracy in detection and quantification (A). The coverage of metabolites further depends on the
analytical instrumentation discriminating towards metabolite polarity and molecular weight (B). Figures
are adapted from Fernie et al. (2004), copyright license no. 4284021405305, and from Halket et al.
(2005) , copyright license no. 4284030145796.

The broad and still developing field of computational data analysis includes platform-
specific data extraction, data pre-processing, data analysis using e.g. uni- and
multivariate statistical analyses, and validation steps (Alonso et al. 2015; Xi et al.
2014). Appropriate methods for data pre-processing (normalization, scaling, centring)

have to be chosen (van den Berg et al. 2006). An increasing number of online and

stand-alone software (Mahieu et al. 2016; Xia and Wishart 2016), as well as metabolite
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databases (Vinaixa et al. 2016) facilitates statistical analyses and allows better
metabolite identification. Aspects of standardization and quality control like data and
metadata reporting (Fernie et al. 2011; Fiehn et al. 2008) have been targeted by e.g.
the metabolomics standard initiative (Fiehn et al. 2007). The main application and main
developments originate from human, microbial and plant sciences, and several model
organisms and validated protocols exist already (e.g. Bolten et al. (2007); Lisec et al.
(2006)). Metabolomics workflows have to meet several challenges with regard to their
application in chemical ecology, e.g. the broad range of species in focus with only a
few well-investigated model systems, or the low concentration of the metabolites of
interest. Since the review of Prince and Pohnert (2010) on metabolomics in chemical
ecology, many new analytical techniques have been developed, and a growing number
of studies demonstrates the potential of metabolomics approaches to elucidate

infochemicals and metabolic responses.
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1.2.2 Untargeted metabolite profiling techniques for marine phytoplankton

The number of studies and thus also standards and protocols optimized for
metabolomics investigations of marine algae in general, and for untargeted metabolite
profiling of marine phytoplankton in particular, is still limited (Goulitquer et al. 2012).
Method development for marine algae needs to address certain challenges: metabolic
quenching is complicated by low phytoplankton abundances and harvesting
techniques, high polysaccharide levels induce difficulties in cell disruption and
homogenization, high salinity levels interfere during analyte detection, low metabolite
concentrations in seawater require concentration steps via e.g. SPE, and large number
of unknown structures and lack of (species-specific) databases for marine organisms
hinders metabolite identification. Especially sample collection and sample processing
steps have to be optimized and adjusted to the needs of the study organism. So far,
rather few studies aimed to optimize protocols for the untargeted profiling of algal intra-
and extracellular metabolites. Sample collection and separation of algal cells and
medium highly depend on the study organism ranging from rapid filtration for pelagic
microalgae (Vidoudez and Pohnert 2012), decanting and scraping for benthic
microalgae (Nappo et al. 2008), to picking and thorough cleaning for macroalgal thalli.
The effect of, for example, biomass-to-solvent ratio, extraction solvent composition,
and derivatization time on the quality of metabolite profiles was investigated for the
diatom Skeletonema costatum (Vidoudez and Pohnert 2012). However, additional
studies evaluating the effect of these and other steps are also needed for other non-
model organisms, followed by a critical review of the obtained results to compile the
expertise in standardized protocols as has been done already for plants (Lisec et al.
2006; Veyel et al. 2014). In a first step, the current knowledge on metabolite profiling
techniques of marine algae has to be compiled in a detailed protocol to guide and

enhance future research.
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1.2.3 Investigating phytoplankton communities: Meta-metabolomics

So far, metabolomics investigations of marine phytoplankton have been primarily
conducted under controlled laboratory conditions using isolated microalgal cultures.
However, many processes and mechanisms that are present in and responsible for
phytoplankton dynamics in the field (e.g. bloom initiation, succession and decline)
cannot be simulated under laboratory conditions. Natural marine environments are
highly dynamic on small to large scales resulting also in a large spatial and temporal
patchiness of phytoplankton communities. Environmental fluctuations occur with
regard to e.g. water turbulence, temperature, nutrient concentration, light spectrum,
light cycle, light intensity, and due to biological interactions with grazers and
competitors. A simulation of the marine microbial environment is neither achieved by
axenic (bacteria-free) nor xenic cultures with atypical species dominating. Also
processes like sinking and buoyancy as encountered in natural environments is
normally not targeted in laboratory set-ups. Thus, research in marine (chemical)
ecology is to a large extent field-based and relies on the investigation of semi-natural
mesocosm experiments (experimental water enclosures) or natural phytoplankton

communities (Grice and Reeve 1982; Lalli 1990).

Recently, meta-approaches have been applied to marine phytoplankton communities
with the goal to unravel complexity by whole-system sampling. Thus, in the Tara
Oceans project (Karsenti et al. 2011) global metabarcoding revealed a large proportion
of still undescribed eukaryotic taxa in the marine plankton (de Vargas et al. 2015). In
addition, the shift from nomenclature ecology to trait-based ecology (McGill et al. 2006)
motivated to go from taxonomic to functional interpretations using meta-genomics
approaches complemented with meta-transcriptomics, meta-proteomics (Williams and
Cavicchioli 2014), and meta-metabolomics that capture the spatial and temporal
variation, signalling and communication in natural communities (Raes and Bork 2008)
(Fig. 9).

Recently, the first meta-metabolomics studies have been conducted for marine
phytoplankton communities. Llewellyn et al. (2015) investigated particulate organic
matter between 0.7 ym and 200 ym at two stations in the English Channel via
untargeted metabolite profiling of polar (using UHPLC-FT-ICR-MS) and lipid (using
direct infusion (DI)-FT-ICR-MS) metabolites. Ray et al. (2016a) related copepod
grazing in a semi-natural mesocosm experiment to phytoplankton bloom succession

as described by intracellular metabolite profiles (using GC-TOF-MS). An increase in
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meta-metabolomics investigations and in available sample and data analysis

strategies in the next years may improve field investigations in marine chemical

ecology.
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Fig. 9 Data availability for different spatial scales of systems biology ranging from biomolecules to
pathways, organisms and ecosystems with regard to 4 dimensions that can be targeted (+++ ample
data available, ++ some high-throughput data sets available, + few data sets available). Community
analyses at the ecosystem level can be conducted at the molecular level (e.g. meta-metabolomics), at
the genetic or protein level (metagenomics, -transcriptomics, -proteomics), or at the cellular level. Figure
is adapted from Raes and Bork (2008), copyright license no. 4284030357097
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2 Thesis objectives

Chemically mediated processes play an important role in the ecology of marine
phytoplankton e.g. in sexual reproduction, interspecies competition, grazing defence,
or host-virus interaction. Several involved metabolites and metabolic classes have
already been elucidated and are wunder regular investigation, such as
dimethylsulfoniopropionate (algae-bacteria interactions), polyunsaturated aldehydes
(grazing defence), polyunsaturated fatty acids (food web), or glycosphingolipids (viral
infection). This is, however, just a small fraction within the broad range of metabolites
that are actually produced by the marine phytoplankton, especially with regard to the
taxonomic diversity of protozoans from which primarily diatoms are so far under
investigation. To cover a wider range of metabolites while analysing naturally occurring
structures, metabolomics is well suited and rapidly developed in recent year in parallel
with the underlying analytical techniques and data processing strategies. Thus,
metabolomics offers new research possibilities in the field of chemical ecology,

especially with regard to complex field situations, that are explored in this thesis.

Metabolomics in marine phycology: State of the art

Thus, the first aim of this thesis was to review the current expertise in metabolomics
studies within the field of chemical ecology in general and of marine plankton ecology
in particular (Manuscript 1). Further, | aimed to optimize and generalize the current
methodological knowledge about endo- and exometabolic analyses of marine micro-
and macroalgae, i.e. protocol details, technical considerations, and challenges, to
facilitate a growing number of metabolomics investigations in plankton ecology in the

future (Manuscript 2).

Metabolic diversity meets taxonomic diversity

Another objective of this thesis was to further expand the current knowledge about
metabolic plasticity of microalgal cells with regard to algal taxonomy. Following the
thorough endometabolic characterizations of the diatom Skeletonema marinoi and the
haptophyte Emiliania huxleyi during growth, | investigated another haptophyte
(Phaeocystis pouchetii) to indicate metabolic commonalities within algal lineages
(Manuscript 3). As exometabolic investigations of microalgae are still in the minority,
also a thorough extracellular metabolic characterization throughout growth was
pursued for Phaeocystis pouchetii (Manuscript 3).
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Meta-metabolomics in ecological field studies

Further, | explored the applicability of metabolomics investigations for field-based
ecological studies. Thus, | aimed to find out whether laboratory-derived metabolic
features or patterns that describe metabolic stages of unialgal cultures can be used in
the characterization of metabolic states of mixed natural communities. Therefore, the
occurrence of growth-regulated microalgal endometabolites within several
phytoplankton communities in the Northeast Atlantic was studied (Manuscript 3).
Untargeted metabolite profiling of phytoplankton bloom exometabolites was applied to
facilitate the interpretation of a classical productivity study of marine bacterioplankton
communities that is based on dilution (Manuscript 4).

Improving the analysis of 'known' metabolites for marine ecology

Motivated by the improved analytical possibilities provided by the orbitrap high
resolution mass spectrometry technology, | finally aimed to re-investigate the
qualitative and quantitative analysis of polyunsaturated aldehydes (PUAs), a well-
known metabolic class that is regularly measured in marine ecology. Thus, my
objective was to develop a targeted and untargeted metabolite profiling method for the
parallel analysis of nonpolar PUAs and polar oxylipins on one analytical platform
(Manuscript 5). Known PUA producers (Skelefonema costatum, Thalassiosira rotula)
as well as an uncharacterized species (Chaetoceros didymus) were screened.
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Chemical ecology elucidates the nature and role of natural products as mediators of organismal
interactions. The emerging techniques that can be summarized under the concept of metabolomics
provide new opportunities to study such environmentally relevant signaling molecules. Especially
comparative tools in metabolomics enable the identification of compounds that are regulated during
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1 Introduction

The ecological understanding of natural products that mediate
interactions within and between organisms can be considered
as the core of the discipline chemical ecology.' Knowledge of the
nature of chemicals that mediate such interactions is central in
this research area. The identification of active metabolites
opens up possibilities from fundamental work in bioassays over
general investigations of the physiology and ecology of an

Friedrich Schiller University, Institute of Inorganic and Analytical Chemistry,
Lessingstr. 8, D-07743 Jena, Germany. E-mail: Georg.Pohnert@uni-jena.de; Fax: +49
3641 948 172; Tel: +49 3641 948 170

This journal is © The Royal Society of Chemistry 2015

organisms in the field of chemical ecology.

organism to the manipulation of entire ecosystems. Signaling
molecules that mediate interactions between organisms have
motivated many activities in basic research but also the
commercial interest e.g. for pest control is a driving force in the
search of such bioactive metabolites.” It is thus not surprising
that the focus of numerous groups working in chemical ecology
is the structure elucidation of these active principles. Since the
early days of this discipline the central tool for such endeavors
has been bioassay-guided structure elucidation. The work flow
has first been successfully established for the identification of
the insect pheromone bombykol (1) by Butenandt and
colleagues in 1959.° It is based on the separation of an active
crude extract by e.g. chromatography, selective extraction or
crystallization and testing of the resulting fractions in bioas-
says. Active fractions are further purified and again tests of
activity guide the further selection until a pure active compound
can be submitted to structure elucidation.® This time-
consuming and often tedious process can involve multiple
rounds of separation and testing until the identification of a
signal molecule is achieved. Besides the high workload the
approach bears also the risk that activity of labile substances is
lost during handling. Compounds that are only active in more
complex formulations or specific mixtures, are also not recog-
nized due to the involved purification steps and require
combinatorial tests for activity verification.” Despite these
drawbacks bioassay-guided structure elucidation was the main

Nat. Prod. Rep., 2015, 32, 937-955 | 937
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Scheme 1 Hallmark molecules in chemical ecology that were isolated
by bioassay-guided structure elucidation. These include the first insect
pheromone bombykol 1, the bacterial quorum sensing signals of the
acyl homoserine lactone family 2 and volicitin 3, the first insect derived
inducer of plant defense.

available technique for signal identification in chemical ecology
over decades. Indeed, besides bombykol most hallmark mole-
cules in chemical ecology have been identified by this approach
(Scheme 1).%7

With the advent of -omics techniques additional tools
became available for the search for active principles. These
include, among many others, the use of microarray methods,
targeted knockout experiments based on the identification of
candidate genes, and proteomics.*™® But especially metab-
olomics techniques provide a novel approach to the identifica-
tion of molecules of relevance in chemical interactions. In fact,
long before the discipline of metabolomics emerged, compar-
ison of metabolic profiles that were created from extracts of
organisms in different physiological states or ecological stress
situations were used to spot candidate metabolites that are
upregulated in an interaction context. This is e.g. demonstrated
by the identification of volatiles in response to insect
herbivory." In a procedure that would today be categorized as
metabolic profiling, volatiles in the headspace of plants were
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collected in controls and plants suffering herbivory. Compar-
ison of gas chromatography/mass spectrometry (GC-MS)
profiles led to the identification of several herbivory-induced
compounds that could later be assigned to ecological functions
in an indirect chemical defense. The collection and compre-
hensive analysis of plant volatiles from control organisms and
those under herbivore pressure revealed not only the up regu-
lation of terpenoid biosynthesis but also motivated further
bioassays that led to a wide-ranging understanding of induced
plant defenses. The involvement of the plant hormone jasmonic
acid and its amino acid conjugates in the induction of meta-
bolic pathways towards plant defensive metabolites was also
discovered using such profiling tools.* It is striking to see that
even in early publications figures are presented that would meet
the reporting standards of modern metabolomics. Despite the
fact that data mining tools were not as elaborate as today these
studies enabled the investigation of regulatory patterns that
allowed spotting candidate molecules or pathways relevant in
species interactions.

Since these early days of metabolic profiling the discipline of
metabolomics has emerged and matured. Even if some
approaches are still in their infancy, the multiple facets of
metabolomics are now emerging as central tools in chemical
ecology for screening the pool of natural products and for the
elucidation of regulative principles and pathways. Per definition
the metabolome represents all metabolites of a given species,
but comprehensive monitoring of such a structurally diverse set
of compounds is technically often not feasible.*® Thus several
sub-disciplines have emerged that use the power of modern
analytical instrumentation paired with elaborate statistical
analysis suited mainly to recognize dynamic metabolic
processes. Principal approaches and techniques in metab-
olomics have been reviewed extensively over the last years and
will not be a subject of this contribution. We, however, want to
refer to selected reviews for further reading concerning the
general concepts in metabolomics,*° specialized techniques
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that play an important role in chemical ecology including mass
spectrometry'”'® as well as nuclear magnetic resonance
(NMR).™>* A wide array of statistical methods is applied
routinely within metabolomics and already reviewed under
different aspects including data pre-processing, uni- and
multivariate analyses and visualization aspects.**”**

Comparative metabolomics provides the best-suited tools to
unravel chemically mediated species interactions.”® This
approach will accordingly be the initial focus of this review. In
contrast to previous studies where a targeted analysis of the
induction of single compounds or specific groups of
compounds was performed, comparative metabolomics allows
to monitor global changes and to unravel multiple pathways
that are affected by environmental stimuli using elaborate
algorithms on complex data sets. Knowledge about the
production of specific compounds or classes of metabolites
during interaction situations might help to make educated
guesses of their function. As a consequence this can motivate
following bioassays to verify such hypotheses.>® In addition, this
review will cover concepts where multiple —omics techniques
are combined in a systems biology approach to obtain a
comprehensive picture of an organisms' response in interaction
situations. We will also introduce aspects how the compre-
hensive metabolomics initiatives for model species might be
fruitfully applied in the chemical ecology. Taken together, we
aim to classify and evaluate metabolomics as a potential future
driver in the search for the nature, role and regulation of
signaling molecules.

2 The comparative metabolomics
approach

This rather descriptive approach is the fundamental metab-
olomics tool in chemical ecology. Comparison of metabolomes
for the investigation of chemical interactions does not neces-
sarily require a comprehensive monitoring of as many
compounds as possible. If the nature of a chemical interaction
is known, the work plan can be dramatically simplified by a pre-
selection of specific groups of analytes. Thus, for example the
metabolomics-enabled search for airborne pheromones of
insects would surely not require extraction of the insects
themselves for a metabolic profiling but rather be restricted to a
comprehensive monitoring of emitted volatiles in the head-
space. In contrast, elucidation of plant defense metabolites
might exclusively require monitoring metabolites in the plant's
tissue or on its surface. Numerous specialized techniques have
been introduced focusing on specific groups of the exometa-
bolome (exuded metabolites) e.g. volatiles, surface associated
metabolites or dissolved metabolites from aquatic organisms.
But also the endometabolome (internal metabolites) within
specific cells, tissue or the whole organism can be addressed
selectively. Another way to perform a pre-selection is the
inclusion of functional considerations in the initial analytical
approach. Thus, it has been successfully demonstrated that the
search for compounds acting as metallophores, which mediate
metal complexation and uptake in microorganisms and thereby

This journal is © The Royal Society of Chemistry 2015
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shape organismal interactions, can be pre-selected by biasing
analytical techniques.?”*® A pre-identification of metallophores
in the exometabolome can be realized by recording liquid
chromatography/mass spectrometry (LC-MS)-runs of the
extracts in presence and absence of metals. The shift in masses
resulting from the complexation of the metal can be used in a
chemometric approach to pre-select only those metabolites
relevant for metal interactions.>”*® Alternatively, isotope-assis-
ted data mining approaches were recently introduced that spot
specific isotopic patterns of metals in complexes.” A pre-
selection can also be made if specific pathways are suspected to
be relevant in organismal interactions. This approach has e.g.
been demonstrated for the elucidation of defense metabolites
of the moss Dicranum scoparium. Here, initial evidence sug-
gested that lipid-derived oxylipins mediate a wound activated
chemical defense against herbivorous slugs.** Administration
of stable isotope labeled fatty acids allowed to identify upre-
gulated metabolites using automated routines of data mining
thereby pointing towards a novel set of previously unrecognized
highly reactive metabolites.’* Genetic tools can make such
pathway-associated approaches even more powerful. This was
shown in the structure elucidation of myxoprincomide, a
natural product from Myxococcus xanthus. The knockout of non-
ribosomal peptide synthetase (NRPS) genes and subsequent
comparative metabolic profiling led to the identification of this
novel metabolite of which the function in the natural environ-
ment is, however, still undetermined.** The emerging possibil-
ities arising from the systematic pairing of metabolomics and
genome mining opens up new avenues for the discovery of
natural products.*

2.1 Comparative metabolomics in plant sciences

Plant interactions so far often have been studied by targeted
analysis of a few model organisms. But especially within plant
sciences comparative metabolomics has recently also been
applied fruitfully. Metabolomics approaches using several
platforms can be used on more diverse sets of plants to eluci-
date (common) interaction patterns. Plants can respond to a
multitude of challenges by adapting their metabolic repertoire.
These can include simple environmental stress situations, such
as drought or light stress or infestation with pathogens and
herbivory. But even herbivore interactions can be complex with
different herbivores grazing on the same plant inducing
different defense mechanisms at the same time. Thereby they
also interact with each other in an indirect way via induced
qualitative and quantitative changes of primary and secondary
metabolites throughout the plant. All of these types of chal-
lenges can be addressed by comparative metabolomics.
However the planning of experiments is crucial. For the
understanding of simple responses the comparison of plant
control and plants with grazer A might be sufficient. If a
comprehensive picture of the defense potential of a plant shall
be obtained additional investigations of the effects of a second
grazer B as well as additional grazer A-grazer B-plant systems are
required. On top, additional environmental stress factors can be
considered to obtain a comprehensive picture.
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A well-studied system is the grazing of aphids and root
feeding nematodes on Arabidopsis thaliana. Single effects of
each grazer have already been studied. Targeted analysis of
glucosinolates in response to feeding bioassays have been
introduced thereby paving the way for more complex
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experimental set-ups.** Such targeted profiling focuses on a
small set of known candidate metabolites with similar chemical
properties whereas untargeted approaches open up future
perspectives in plant chemical ecology by uncovering previously
unidentified lines of defense. Recently the mutual influence of

Herbivore plant interactions
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Fig. 1 Herbivore interactions of above ground feeding aphids and below ground feeding nematodes on Arabidopsis thaliana regulate aliphatic
glucosinolates (Gls), amino acids and sugars. Selected up-(red) and down-regulated (blue) metabolites are depicted for the shoot (8-methyl-
sulfinyloctyl Gls, 4-methoxyindol-3-ylmethyl Gls, indol-3-ylmethyl Gls, 3-methylbutyl Gls, 4-methylthiobutyl Gls), the phloem (aspartic acid,
gamma-aminobutyric acid), and for the roots (erythronic acid, trehalose, 3-methylsulfinylpropyl Gls, 6-methoxysulfinylhexenyl Gls).
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above- and below-ground herbivores that is mediated by plant
chemistry was addressed.**** Comparative metabolic profiling
was used to monitor effects of grazing of the aphid Brevicoryne
brassicae and the nematode Heterodera schachtii on A. thaliana
(Fig. 1). Metabolic profiling of primary metabolites in the shoots
by GC-MS and metabolic fingerprinting of shoot and root tissue
by LC-MS were conducted and analyzed via multivariate statis-
tics. Aphid grazing had a significant local effect in the shoot
tissue. Only minor systemic effects were observed in the root
tissue but changes of glucosinolates indicated an induced
defense. As a consequence, aphid grazing led to reduced
nematode infestation. In contrast, nematodes did not evoke any
significant metabolite alterations locally or systemically thus
having no influence on aphid population.** The confounding
effect of nitrate fertilization in this plant-mediated herbivore
interaction was considered in a follow-up study.*® Again, only
aphid grazing influenced nematodes but in a complex pattern.
Under lower nitrate conditions aphid grazing increased nema-
tode population whereas under higher nitrate fertilization
nematodes were reduced as seen before. Metabolic profiling of
root primary metabolites via GC-MS gave 88 compounds of
which 54 could be identified. Multivariate statistics revealed
that only marginal changes were observed under aphid grazing
which might indicate a very sensitive reaction of nematodes. In
a study where the specialist B. brassicae was replaced by the
generalist Myzus persicae nematodes negatively influenced
aphid abundance under lower nitrate availability.”” Targeted
metabolic profiling of amino acids and glucosinolates was
conducted via GC-MS followed by principal component analysis
(PCA) and multivariate analysis of variance (MANOVA). In
response to nematode feeding the amino acid composition in
the phloem changed as well as the glucosinolate composition in
the leaves. The latter was correlated with aphid abundance.
The aspect of diurnality of changes in above- and below-
ground metabolite patterns in response to herbivory was
addressed in the wild tobacco plant Nicotiana attenuata.’®
Herbivory was simulated by wounding of the tobacco plants and
administration of the oral secretion of the herbivorous cater-
pillar Manduca sexta. Metabolic fingerprinting showed that
different compounds were oscillating in leaves compared to
roots. In fact, only ten ions of 182 oscillating in leaves and 179
oscillating in roots (LC-MS) were rhythmic in both tissues. The
response to simulated herbivory of seven selected metabolites
was investigated in detail (unknown disaccharide, lyciumoside
I, phenylalanine, tyrosine, coumaroyl tyramine, feruloyl
putrescine, N-feruloyl tyramine, 12-oxo-phytodienoic acid, and
jasmonic acid) and compared to transcript analyses, revealing a
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Scheme 2 Coumaroyl and caffeoyl spermidines and putrescines from
A. thaliana. Specific positions of the residues were not assigned.*°
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highly tissue-specific accumulation. It was concluded that the
pronounced diurnal rhythm in the generalized and specialized
metabolism that mediates the plant's responses to herbivory
might play an important role in orchestrating its response to
herbivory.

The role of the plant hormone jasmonic acid (JA) for herbi-
vore defense was addressed in a Nicotiana attenuata mutant.* If
a jasmonate O-methyltransferase from A. thaliana is expressed
in N. attenuata, it methylates JA, thereby acting as a sink for this
plant hormone. This mutant was more vulnerable to grazing in
the field. Targeted analyses of known defense compounds
nicotine, diterpene glycosides and trypsin proteinase inhibitors
but also untargeted metabolic profiling of volatile and non-
volatile leaf metabolites was conducted. 42 of the most abun-
dant and consistently detected volatile organic carbons (VOCs)
in GC x GC/MS were compared between the mutant and the
wild type after wounding. Early and late response VOCs could be
separated clearly via PCA and partial least squares discriminant
analysis (PLS-DA) due to increase of terpenes and hexenylesters
and decrease of non-esterified green leaf volatiles during late
response. In the late response mutants were separated from
wild type due to reduced VOC emission (including cis-3-hexen-1-
ol, cis-3-hexenyl-butyrate, -acetate, a-terpineol, trans-o-berga-
motene and B-myrcene). Also the metabolic profiles (LC-MS) of
secondary metabolites of mutant and wild type leaves were
separated (PLS-DA) due to reduction of defense compounds
such as nicotine, diterpene glycosides and phenylpropanoid-
putrescine and -spermidine conjugates as well as some
unknown metabolites in the mutant plants. This study
convincingly demonstrated the multiple effects of jasmonic
acid in a plant's defense and the power of metabolomics
approaches to unravel such complex responses.

Gaquerel et al* followed the effect of silencing of a
hydroxycinnamoyl transferase (HCT)-like gene in N. attenuata,
which was found to be induced in a previous transcript
screening after herbivory.** Targeted analysis of well charac-
terized herbivory-responsive caffeoyl- and feruloyl-based
putrescine and spermidine phenolamides (PAs) did not show
any pronounced silencing effects. However, an unknown PA-
type did. This motivated an untargeted metabolomics approach
using LC-MS. Up to 12% deregulation in insect-attacked leaves
could be assigned to a diversion of coumaric acid units into the
production of coumaroyl-containing PAs (Scheme 2). Samples
could be separated according to genetic manipulation and
herbivory treatment via PCA, and Venn diagrams showed
increased metabolite numbers in silenced plants. All metabo-
lites influenced by silencing were clustered hierarchically and
annotation of the strongest regulated entries allowed the
identification of several novel PA isomers and derivatives. The
HTC-like gene thus encodes a coumaroylquinate-forming
enzyme and mediates competition between the PA pathway and
lignin production. This work is a nice example how metab-
olomics can be used to uncover a previously undescribed
network of metabolites and help to unravel the interplay among
herbivory and developmentally-controlled metabolic responses.

The herbivory effect of Spodoptera spp. on maize is well-
investigated. Two recent studies now applied metabolomics to
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mine for hitherto poorly characterized responses.**** In those
monocotyledonous plants 1,4-benzoxazin-3-ones (Bxs) are
major defense compounds but the inducibility of specific
metabolites of this class is rather poorly understood. Therefore
Glauser et al.*> used unbiased LC-MS-profiling to screen plant
material before and after herbivory. PCA clearly separated the
treatments and by investigating the loadings 2-B-b-glucopyr-
anosyloxy-4,7-dimethoxy-1,4-benzoxazin-3-one  (HDMBOA-Glc
4) and 2-B-o-glucopyranosyloxy-4,7,8-trimethoxy-1,4-benzox-
azin-3-one (HDM,BOA-Glc 5) appeared as strongest contribu-
tors to the separation in induced plants. Catabolism of these
metabolites was addressed by monitoring also the digestive
products in specialized and non-specialized herbivores. Since
plants and herbivores differ in their Bxs-profiles digestive
processes could be followed up based on PCA-evaluation of
metabolic patterns. Consecutive analyses revealed the role of
the highly dynamic activation of maize Bxs in chemical defense.
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p-coumaroyltyramine 6

Local and systemic responses to leaf herbivory by S. littoralis
were the topic of a recent survey of secondary metabolites from
maize leaves, sap, roots and root exudates.** A very compre-
hensive coverage using LC-MS in combination with unsuper-
vised (PCA) and supervised (orthogonal (O)PLS-DA) data mining
revealed more than 300 features in leaves and roots, 180
features in sap and 40 features in root exudates. Thirty-two
differentially regulated compounds were identified from Spo-
doptera littoralis-infested maize seedlings and isolated for
structure assignment by microflow NMR. Treatment-specific

Scheme 3 13-Oxo0-9,11-octadecadienoic acid 7 is upregulated in
Paraconiothyrium variabile and suppresses formation of the myco-
toxin beauvericin 8 in Fusarium oxysporum.
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separation was only achieved for leaf samples and root
exudates. Local leaf response consisted of an increase of lyso-
phospholipids, azelaic acid, 1,3-benzoxazin-4-one derivatives,
tryptophan and  N-hydroxycinnamoyltyramines, whereas
systemic response could be assigned to 1,3-benzoxazin-4-one
derivatives increase in the sap and root exudates. Since N-
hydroxycinnamoyltyramines were previously not identified in
plant-herbivore interactions the authors tested the effect of the
dominating p-coumaroyltyramine 6 on S. littoralis. This plant-
derived natural product was metabolized by the larvae and
increased larval growth, acting presumably as nitrogen source
for the insect. The untargeted comparative metabolomics
approach can thus lead to discovery of novel dynamically
regulated metabolites and help to create novel hypotheses
about herbivore-plant-interaction.

The interaction between the fungal endophyte Fusarium
verticillioides and the pathogen Ustilago maydis which are both
growing on maize has been the subject of several studies.***
The endophyte thereby decreases the harmful effect of the
pathogen.*® LC-MS metabolic profiling of isolated partners as
well as of co-cultures of the fungi revealed that most secondary
metabolites are constitutively produced by each species.***
Nevertheless the presence of F. verticillioides leads to reduction
in U. maydis biomass. Comparative metabolomics was also
employed to investigate leaf herbivory of Manduca sexta and
Helicoverpa zea on tomato (Solanum lycopersicum) by GC-MS.*"*
Metabolites were identified based on library searches resulting
in 56 and 60 identified primary metabolites respectively and
further analyzed via PCA and Venn diagrams. Primary metab-
olites throughout the plant (apex, leaves, stem, and roots)
showed a species- and tissue-specific plant response. Induced
metabolic changes were strong in the apex and root tissues as
well as in damaged leaves confirming a whole-plant response to
damage.

The metabolome of the endophytic fungus Paraconiothyrium
variabile is of interest if the indirect interaction with its host
plant Cephalotaxus harringtonia is concerned. P. variabile
inhibits the phytopathogen Fusarium oxysporum thus providing
protection for the host.* During an in vitro competition situa-
tion of both fungi LC-MS profiling and analysis with the
powerful software XCMS* revealed, besides a comprehensive
set of inactive constitutively produced metabolites, a series of
induced compounds. These included 13-ox0-9,11-octadecadie-
noic acid 7, 13-hydroperoxy-9,11-octadecadienoic acid, and
several unknowns (Scheme 3). Interestingly, nanogram
amounts of 13-oxo-9,11-octadecadienoic acid reduced the
production of the mycotoxin beauvericin 8 in the phytopath-
ogen F. oxysporum thereby promoting the idea of an induced
interference mechanism.

Allelopathic interactions were investigated in a large study
that addressed the effects of 16 Mediterranean plants on ovate
goatgrass Aegilops geniculata using NMR-based comparative
metabolic profiling.”* Extracts of the 16 donor plants were
characterized in terms of chemical composition. The effects of
plant extracts on A. geniculata revealed a biological activity for
most studied species probably due to phenolic compounds
such as flavonoids and hydroxycinnamate derivatives. In

This journal is © The Royal Society of Chemistry 2015



Open Access Article. Published on 30 April 2015. Downloaded on 06/09/2016 09:50:19.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.

(ec)

Review

accordance to allelopathic activity, PCA analysis of NMR data of
A. geniculate extracts clearly separated active treatment samples
from controls and inactive treatment samples. This separation
could be assigned to an increase in amino acids and organic
acids and a decrease in oblongaroside, betaine, and cis-aconitic
acid indicative for oxidative stress responses of the receiver
plant. In accordance, hierarchical cluster analysis indicated
three metabolite response groups: no, slight and strong meta-
bolic changes due to treatment. This study is a nice example
how such systemic approaches allow unravelling synergistic
effects of allelopathic interactions that would have been diffi-
cult to spot in traditional bioassay-guided approaches.

Schweiger et al. analyzed the mutualistic interaction of
arbuscular mycorrhiza (AM) with plant roots.”> This ancient
fungi-plant-symbiosis is widespread occurring in >80% of land
plants. Common vs. species-specific responses in leaves of five
model and non-model plant species (Plantago lanceolata, P.
major, Veronica chamaedrys, Medicago trunculatula, Poa annua)
to the generalist AM fungi Rhizophagus irregularis were investi-
gated. A comparative metabolomics approach was selected
involving the targeted metabolic profiling of carbohydrates,
organic acids and sugar alcohols via GC-MS, of amino acids via
HPLC-fluorescence detection, and the untargeted finger-
printing via LC-MS of methanolic leaf extracts. Between 18%
and 45% of the polar metabolome was shared among species
and designated as core metabolome with the rest being highly
species/taxon-specific metabolites. Those species-specific
differences would superimpose treatment effects and therefore
these were analyzed separately for each plant. Besides a few
common features in the dicotyledonous plants, responses were
very species-specific even though the core metabolome would
have allowed a common response pattern. The low conservation
of responses indicates a long time of specific plant-fungus
coevolution that leads to specific manifestations in the
expressed metabolic response.

Mating diatoms
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Metabolomics also allows the classification of responses of
organisms by collecting “metabolic fingerprints” of a multitude
of samples in defined states. Novel samples can then be
compared to this data set allowing a categorization without any
further ecological or physiological evaluation. This approach is
especially used in plant sciences where stress responses are
often analyzed by suitable interpretation of such metabolic
patterns. Categorization of responses might also allow the
identification of metabolites relevant in a specific interaction
context thereby making this approach very valuable for the
search of active metabolites in chemical ecology.

2.2 Comparative metabolomics in marine science

Especially in the chemical ecology of marine algae comparative
metabolomics has recently gained importance e.g. to unravel
anti-herbivory defense strategies,* allelopathic interactions,**
bacteria-algae-symbioses,*® or to discover algal pheromones.*”
However, compared to plants, defense strategies against
herbivory are only poorly investigated in marine algae.*®* Other
disciplines in marine chemical ecology currently start to use
this emerging tool box as well.*® Generally, the rather complex
matrix of the seawater that carries signaling molecules repre-
sents a certain challenge if waterborne signals are concerned. In
addition, there is no logical pre-selection for enrichment and
extraction techniques of specific compound classes as it is the
case for volatiles in insect signaling. It has been shown that the
physical nature of metabolites that carry information in the
seawater can range from highly polar zwitterionic metabolites®*
to entirely hydrophobic hydrocarbons.®” The molecular weight
is also not limiting the information content, since gases® and
small molecules® as well as high molecular weight lipids®> and
proteins®® can be active in interaction situations. Extraction
techniques thus have to cover a broad spectrum of metabolites
if those relevant in interactions shall be universally covered.

LC-MS profiling

Signal intensity

Retention time

Statistical analysis
o

PC1

Fig. 2 The attraction pheromone di-L-prolyl diketopiperazine 9 was identified by comparative metabolomics of the diatom S. robusta (top left
shows a mating pair). Cells with induced pheromone production were compared to control cells. LC-MS and statistical analysis pointed towards
upregulated signals. The most prominent 9 was selected for purification and structure elucidation and proved to be as active as the natural

product in bioassays.
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Solid phase extraction and LC-MS analysis were suitable
tools for the elucidation of the first diatom sex pheromone
guided by comparative metabolomics.®” The pennate diatom
Seminavis robusta reproduces mainly asexually by cell division.
Due to the rigid biomineralized cell wall of the diatoms this
leads to a gradual cell size reduction in the population. If the
cell size drops below a specific value, sexual reproduction of the
alga is enabled. In this process pheromones are involved that
activate the mating behavior and attract the partner cells of
opposite mating types.®® Comparative metabolic profiling of
culture medium from cells that are not sexually active and those
that call their mating partner revealed several upregulated
metabolites as candidates for attraction pheromones.®” The
highest upregulated metabolite (>100 times) was isolated by
fractionation and further bioassays confirmed its activity as
mate attractant. Structure elucidation via MS(/MS), synthesis
and co-injection proved di-L-prolyl diketopiperazine 9 as pher-
omone that was as active in bioassays as the natural pheromone
(Fig. 2).

To unravel its chemical defense, the metabolome of the red
alga Gracilaria vermiculophylla in response to herbivory by the
generalist isopod Idotea baltica was studied using a combina-
tion of GC-MS and LC-MS metabolomics and bioassays.”®
Mechanical wounding significantly changed metabolic profiles
as revealed by Permanova analysis, with some compounds
being increased more than 100-fold. Metabolites that were
upregulated in wounded tissue were predominantly eicosanoids
(Scheme 4).

A detailed investigation of the data set by canonical analysis
of principal coordinates (CAP) showed 11 upregulated metab-
olites in LC-MS and 8 upregulated metabolites in GC-MS data
including prostaglandins, hydroxylated fatty acids, and arach-
idonic acid derived lactones. Isotopic labelling confirmed that
most upregulated metabolites were derivatives of arachidonic
acid. In subsequent bioassays five of the upregulated eicosa-
noids were tested for feeding deterrence. Only prostaglandin A2

OH OH
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Scheme 4 Wound-activated produced eicosanoids (PGA, 10, PGE,
11, 7,8-di-HETE 12, 8-HETE 13, and a previously unknown lactone 14)
with the feeding deterrent prostaglandin A2 10 framed.
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10 was deterrent while all other tested compounds rather
attracted Idotea. This wound-activated defense differed from the
induced defense which was systemically manifested in tissue
neighboring feeding activity as revealed by CAP analysis in
comparison to controls. While the activated response led to a
change in eicosanoids, induced response affected mainly
primary metabolites indicating a general stress effect, which
calls for further investigations.

Allelopathy is an important mediator of competition in
plankton® and has been investigated focusing on the nature of
allelopathic metabolites and the physiological response of the
receiver.***® In a comparative study of the interaction of the
diatoms Skeletonema costatum and Thalassiosira weissflogii in
co-culture it was observed that S. costatum promoted the growth
of T. weissflogii. Comparative metabolic profiling via LC-MS
revealed significant metabolic changes in the intra- and extra-
cellular metabolome of both algae compared to monocultures.
In the medium eight S. costatum specific metabolites and one 7.
weissflogii specific metabolite were found; their identification
still remains an open task. Intracellular metabolomics in co-
culture showed both up- and down-regulated metabolites in S.
costatum whereas in T. weissflogii only downregulation was
observed compared to the respective controls. This study
demonstrates that even without physical contact non-toxic
diatom cells can influence interaction partners by modulation
of their endo- and exometabolome. In this context a novel
approach to characterize exudates from aquatic autotrophs by
stable-isotope metabolic footprinting might prove helpful for a
thorough characterization of algal exudates from the complex
seawater background.” Using a similar approach, the positive
effect of the bacterium Dinoroseobacter shibae on the alga Tha-
lassiosira pseudonana was investigated.>® D. shibae slightly
enhanced the growth of T. pseudonana in co-culture. Metabolic
profiling of intracellular metabolites via GC-MS revealed more
than 500 algal metabolites which could be separated according
to treatment via principal coordinate analysis (PCO) and CAP. In
accordance to the observed enhanced growth, algal primary
metabolites were upregulated in presence of bacteria, among
them amino acids such as serine, proline, phenylalanine and a
glutamic acid derivative, as well as picolinic acid, some fatty
acids and sugars. This study demonstrates a re-wiring of
primary metabolism in the presence of bacteria, thereby
underlying the complexity of plankton interactions.

2.3 Comparative metabolomics in nematode research

In nematode pheromone research comparative metabolic
profiling has been applied mainly via MS/MS and NMR.”"7* This
field has recently been comprehensively reviewed elsewhere and
thus this chapter will focus only on the general principles of
metabolomics in the elucidation of signal molecules in this
context.”” The model organism Caenorhabditis elegans produces
a class of glycolipids, the ascarosides, regulating diverse func-
tions including development and behaviour.”*”® Ascarosides
(e.g. 15-20) are built of the dideoxysugar ascarylose and fatty
acid-derived side chains of varying length. Since bioassay-
guided fractionation often was unsuccessful due to synergistic
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functions of the metabolites that are lost during purification,
comparative metabolomics proved to be the method of choice.
The differential analysis by 2D-NMR spectroscopy (DANS)
simplifies detection of ascarosides that are preferentially
produced during interaction and regulation events.”® For this
purpose DQF-COSY NMR spectra of the wild type were overlaid
with spectra of a signaling-deficient mutant, daf-22. Since the
biosynthesis of certain mating and dauer pheromone compo-
nents is abolished in daf-22 worms a subtraction of the wild type
and the mutant metabolome allowed identification of novel
potentially active components. Major remaining signals repre-
sented mainly short-chained ascaroside structures including
the four novel ascarosides ascr#6.1 16, ascr#6.2 17, ascr#7 18,
and ascr#8 19.

ascr#6.1 R-configuration 16
ascr#6.2 S-configuration 17

HO ascr#7 18
OH
PPN
ON\A[(
o ° coo
HO ascr#8 19 H
OH
- OH

Additional HSQC- or HMBC-NMR, as well as HPLC-MS
investigations and total synthesis confirmed the structures, and
their function was verified in bioassays where ascr#8 proved to
be a strong male-specific attractant and inducer of larval
arrest.”® Using LC-MS-based targeted metabolomics it could be
shown that C. elegans males produce ascaroside signatures that
differ from those of hermaphrodites. Even minor structural
modifications profoundly affect the ascarosides’ signaling
properties.”” These approaches proved to be fruitful in the
elucidation of other functions and structures of ascaro-
sides.”””®”? The sex-specific attraction of the nematode Pana-
grellus redivivus was initially investigated by bioassay-guided
fractionation followed by LC-MS, 1D- and 2D-NMR, and total
synthesis.”” Males are attracted by ascr#1 (only produced by
females) and females by dhas#18 (only produced by males).

This journal is © The Royal Society of Chemistry 2015

View Article Online

NPR

Targeted profiling of the exometabolomes of a mixed culture by
LC-MS® revealed four more ascarosides (ascrif10, ascri3,
bhas#18, and bhas#10); however, a biological function could
not be identified. Further comparative profiling of males,
females and mixed cultures revealed highly sex-specific
ascaroside production. Males only exhibited bhas#18 and
dhas#18 whereas females exhibited at least 6 different ascaro-
sides. The study suggests that ascarosides can have different
functions in different nematode species and can even serve as
allelochemicals.

The biosynthesis of ascarosides was elucidated by compar-
ative LC-MS? profiling of wild type and several peroxisomal beta-
oxidation mutants. Based on a series of elaborate experiments a
working model of ascaroside biogenesis was proposed that
involves an origin from very long side chain precursors that are
transformed via peroxisomal beta-oxidation.” A picture arises
of ascarosides as a modular library derived from carbohydrate
metabolism, peroxisomal beta-oxidation and amino acid
catabolism. Interested readers are referred to the contribution
“combinatorial chemistry in nematodes: modular assembly of
primary metabolism-derived building blocks” by Stephan H.
von Reuss and Frank C. Schroeder within this issue of NPR.

DANS-based comparative metabolomics of daf-12 and daf-9
C. elegans mutants revealed steroids with unexpected structural
features that were further characterized after HPLC purifica-
tion.*” The compounds that are ligands of nuclear hormone
receptors (NHR) of C. elegans extend our knowledge of tran-
scriptional regulators in metazoans significantly (Fig. 3). More
elaborate algorithms for comparative metabolic profiling via
NMR have been already applied for comparison of the nema-
todes Pristionchus pacificus and Panagrellus redivivus and await
application in the chemical ecology of this system.*"

2D NMR comparative metabolomics
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Fig.3 Schematic work flow for the comparative NMR-metabolomics-
based identification of novel steroids with signal properties from C.
elegans wild type and mutant strains (NHR nuclear hormone
receptors).
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2.4 Comparative metabolomics unravels pheromones in
social insects

Social insects like bees, ants, wasps or bumblebees use chem-
ical signals for diverse chemical interactions such as nest-,*?
sex-,**#* or caste-recognition,®® or as appeasement signal in
mutualistic nest sharing.®® Mainly cuticular hydrocarbons
(CHCs) serve for chemical communication within and between
species. These rather simple natural products are produced in
complex mixtures that can hardly be resolved using traditional
bioassay-guided fractionation. However, comparative metab-
olomics proves to be an ideal tool to spot relevant CHCs that are
present in specific species or members of one species or that are
regulated in interaction situations.

Reproduction in eusocial insects and thus development of
reproductive queens and non-reproductive workers is regulated
by pheromones which are primarily non-volatile, saturated
hydrocarbons.*® Comparative profiling of queen and worker
cuticular extracts were investigated in the wasp Vespula vulga-
ris,*® the bumblebee Bombus terrestris,”® and the ant Cataglyphis
iberica. Candidate pheromones were selected based on the
assumption that they are more abundant in queens compared
to workers.** The identified structures were tested in ovary
regression and development bioassays and it was found that
active compounds were all long-chain linear and methyl-
branched saturated hydrocarbons (n-C27, n-C29, 3-MeC29 in
the wasp and ant species, and n-C25 in the bumblebee).*

Primitively eusocial insects - such as permanently social
polygynous epiponin wasps - can show caste flexibility until the
adult stage. Queen selection either happens under physical
attack® or peacefully.” Regarding the first case, after queen
removal Polybia micans workers show aggression towards
young, potential queen candidates. Prospective queens with
larger ovaries also have higher amounts of queen caste-specific
hydrocarbons thus probably increasing worker aggression. After
a few days some are accepted and start as new queens.
Comparative metabolic profiling of CHCs via GC-MS revealed a
general dominance of linear alkanes but also showed differ-
ences between caste, age and reproductive status. C25 and 3-
MeC25 could be identified as queen caste-specific. Further
bioassays would be needed to confirm the potential roles. A
similar but peaceful social behavior was found within the
closely related Synoeca surinama, however dominant CHCs
differ considerably.”* Altogether 22 CHCs (alkenes or linear
alkanes) were identified. Stepwise discriminate function
analysis separated queens from >4 days old workers. C25 : 1 was
increased in all queens in all colonies, whereas workers had
longer hydrocarbons. Thus it seems that after queen removal,
juvenile hormone modifies the CHC blend of young workers
with an increase in C25:1 matching that of reproductive
queens.

Worker reproduction in ants is reduced through policing
behavior, such as physical aggression or egg eating. Based on
the observation that CHCs regulate such aggression Smith et al.
investigated the ant Aphaenogaster cockerelli where worker-
produced eggs are not policed.” A. cockerelli has large colonies
with only one queen and workers with active ovaries producing
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trophic eggs. CHCs were collected via solid phase micro-
extraction from ants and vie hexane extraction from eggs,
measured by GC-MS and analyzed via nonmetric multidimen-
sional scaling (nMDS). Interestingly, this species was found to
have no distinct signaling pattern for worker-produced eggs
which was confirmed by policing assays. In contrast, cuticular
profiles of queens, workers and reproductive workers showed
quantitative and qualitative differences which allow a separa-
tion via nMDS. These patterns were further investigated and
confirmed via bioassays: reproductive cheaters could be
mimicked by applying synthetic pentacosane, a compound
typical of fertile individuals on nonreproductive workers. Pen-
tacosane treatment induced nestmate aggression in colonies
where queens were present.”?

Within the trap-jaw ant Odontomachus brunneus large pop-
ulation differences within CHC profiles were observed that are
potentially responsible for nest mate discrimination.*
However, Z9 : C29 was found via nMDS as conserved fertility
signal in queens across populations, a compound that was
already recognized earlier. Social parasites such as the
bumblebees Bombus bohemicus and B. rupestris use similar nest-
specific signals (worker trail pheromones) to find their hosts.*
Inter- and intraspecific odor variation of 45 hydrocarbons of
nests of potential hosts were examined via GC-MS. PCA and
discriminant function analysis (DFA) revealed interspecific and
intercolonial differences in the odor bouquets of the host that
were predominantly due to different patterns of alkenes. In Y-
olfactometer choice tests B. rupestris showed a clear preference
for the scent of its host proving that volatile signals enable
parasite females to discriminate between potential host species.

In all these examples the power of statistical analysis of
complex metabolic signatures could be demonstrated. While
separation of the hydrocarbons and testing is tedious and
would risk overlooking effects of specific mixtures, the recog-
nition and evaluation of metabolic patterns helps to unravel the
complex language of CHCs.

2.5 MS/MS networking in comparative metabolomics

The capacity to generate vast data sets also challenges the ability
for downstream processing.’® In the above mentioned examples
the major goal was to eliminate signals of potentially irrelevant
metabolites, but approaches to use MS-based molecular
networking or other elaborate algorithms also allow to sketch
more complex interaction networks by comprehensively evalu-
ating metabolic patterns.”” An emerging tool is MS/MS
networking, a visualization method for MS/MS data sets where
molecules are clustered with regard to similarities in their
molecular ion mass and fragmentation pattern.”® MS/MS
spectra of complex mixtures of molecules are compared pair
wise and their similarity is expressed as cosine of the normal-
ized ratio of relative ion intensities (cosine similarity score). As a
result structurally similar compounds with similar fragmenta-
tion patterns are located close to each other thus forming sub
clusters of “molecular families” that share certain chemical
properties. For identification of single nodes or whole sub
clusters the network can be supplemented with standards and
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database entries.”® This identification differs from traditional
approaches as MS/MS spectra are matched against other MS/MS
spectra instead of matching them against protein sequences or
molecular structures. Related or identical compounds are
therefore detected before considering their possible identifica-
tion. Instead of the traditional peak-by-peak identification
consensus identifications from sets of spectra of related
compounds are determined allowing a novel approach for
classification.”**”* Common metabolites in data sets of inter-
action studies as well as the global molecular diversity of single
species or certain taxa can be easily visualized. Also biosynthetic
considerations can be taken into account during data evalua-
tion.’***** The software to generate MS/MS networks is freely
available'®>'*® and even quantitative data sets can be
considered."”’

To demonstrate the applicability of the MS/MS networking
approach, several bacterial colonies were analyzed in situ on
agar plates using nano desorption electrospray MS (DESI-MS).*®
Networks of metabolites from Bacillus subtilis, Streptomyces
coelicolor, S. marcescens, Mycobacterium smegmatis and Pseudo-
monas aeruginosa demonstrated the ability to visualize species-
dependent molecular diversity. But also time-dependent
networks of B. subtilis colonies could be generated to gain
insights into bacterial developmental processes. Most impor-
tant in the context of this review is the fact that also microbial
interactions could be visualized as shown for S. coelicolor and B.
subtilis (Fig. 4). Molecular networking was able to confirm
earlier reports that B. subtilis PY79 elicits pigment production in
S. coelicolor, whereas S. coelicolor increases production of the
cannibalistic factors SKF and SDP in PY79 in the region of
interaction.”®

(0] (0]
| H
NN N~ N
N N
n | H
0]

n=4 (22), 6

This journal is © The Royal Society of Chemistry 2015

(23), 9

The antifungal activity of Pseudomonas sp. SH-C52 - a strain
that protects sugar beet plants from soil born fungi'*® - could be
tentatively assigned to thanamycin 21 by generating a compar-
ative MS/MS network of the wild type strain and two mutants. A
partial structure of thanamycin 21 could be generated based on
MS/MS data and analysis of the gene cluster. Since this initial
report, MS/MS network-guided genome mining has been
applied several times to facilitate the identification of non-

ribosomal peptides (NRPs) and their associated gene
clusters.”'%*
OH IY\
I\NI\I\/\
o) O&L\(
H
N
H
O
OH
Cl

The antifungal activity of the octocoral symbiont Bacillus
amyloliquefaciens against 13 different marine and terrestrial
fungi was investigated using matrix-assisted laser desorption/
ionization-imaging mass spectrometry (MALDI-IMS).'* In side-
by-side interactions of B. amyloliquefaciens with Aspergillus
fumigatus and A. niger potential antifungal metabolites were
measured and visualized using seeded MS/MS networking.
Within the network members of the iturin-family were spotted
that proved to be active in antifungal bioassays. The excreted
metabolites of Streptomyces coelicolor during interaction with
five other actinomycetes showed a high specificity with regard
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to the interacting partner.'® By combining nano DESI-MS and
MALDI-IMS one of the most comprehensive sets of molecules
involved in microbial interactions to date was collected. Among
the metabolites specific for the interaction a family of desfer-
rioxamines 22-25 with acyl side chains of various lengths was
triggered by siderophores from the neighboring actinomycetes.
Altogether about 40% of all nodes within the spectral network
were associated with the acyl-desferrioxamines 22-25 clearly
characterizing the response of S. coelicolor. Besides the impli-
cations for the understanding of the chemical ecology of these
strains, the study also outlines the importance of surveyed co-
culturing in the search for new metabolites with potential
pharmacological activity.

3 The systems biology approach

In contrast to the above mentioned reduction of complexity by
pre-selecting specific groups of metabolites and by identifying
single metabolites of relevance, systems biology approaches
aim for a most comprehensive data collection and interpreta-
tion involving multiple-omics techniques.”'** Within this
section the combination of metabolomics with transcriptomics
or genomics to gather a more complex picture of the chemical
ecology of organismal interactions will be presented. Such
approaches can aim towards a full understanding of the bio-
logical processes connected to the production or perception of
compounds involved in chemical ecology. This is a complex
task, which not only depends on the identification of the
compound itself but also on the investigation of the involved
biochemical pathways and physiological responses on a gene,
transcript, protein, and metabolite level using the entire omics-
toolbox. Additionally, a link to ecology that can be provided in
lab or field experiments is required to determine the role of the
identified principles. Combining all these techniques is chal-
lenging but enables the unbiased generation of novel hypoth-
eses and opens up new research avenues.'”

Due to the advent of next generation sequencing technolo-
gies, genomic resources with a high degree of standardization
can easily be obtained. However, the functional gene annota-
tion that is relevant for the interconnection with metabolomics
is lagging behind. In chemical ecology the understanding of
dynamic metabolic networks is essential and it is therefore
important to gather quantitative information using down-
stream-omics tools on the transcript, the protein or the
metabolite level. A first challenging aspect for such an endeavor
is the experimental design. Especially when taking the ecolog-
ical situation of an organism into account elaborate incubation
and sampling protocols are of key importance. Ideally,
sampling should be performed in one step for all subsequent
omics-technologies. In cases where time series are important
this sampling should be minimal invasive to avoid disturbing
the system. Substantial progress has been made and a recent
protocol describes how one single sample can be used for
analysis of metabolites, DNA, long and small RNA, and proteins
via sequential isolation of those biomolecules.”* Since the
available biomass might be limiting, such a protocol ideally
needs only minute amounts of sample. The introduced protocol

948 | Nat. Prod. Rep., 2015, 32, 937-955

View Article Online

Review

requires only 50 mg fresh weight for a full sample set and has
been tested using the plant species Populus trichocarpa, Pinus
radiata, and Arabidopsis thaliana, as well as the microalga
Chlamydomonas reinhardtii. Successful implementation in four
different laboratories with different background in handling of
such protocols showed the robustness of the method. Data
integration and analysis of the different —omics data sets are
still a major challenge. Several approaches have been intro-
duced to correlate the different data sets, but are highly chal-
lenging to apply.”®'*® Thus often separate analysis of the
respective data-sets and integration of the results is a more
feasible approach as it is illustrated in the following examples.

The mode of infection and resistance of microalgae against a
marine virus was addressed by Rosenwasser and collegues.'*®
Those viruses can control some of the largest oceanic algal
blooms of the coccolithophore Emiliania huxleyi and thereby
deeply influence organismal interactions in the plankton. The
interaction of the algal host and its specific double stranded
DNA virus was observed in a set of infection experiments
involving both, Iytic and non-lytic virus strains. Global host and
virus transcriptome profiling was conducted simultaneously
with metabolome analyses to unravel cellular pathways affected
by the viral infections. The transcript analysis proposed the
regulation of several biochemical pathways of both the host and
the virus. Also distinct shifts in metabolite composition during
lytic and non-lytic infection were observed by comparative
metabolic profiling."***"” In a combined weighted correlation
network analysis that had to take into account a delay in
metabolic compared to transcriptomic response, clusters from
transcriptomics were correlated to metabolite levels. As many
metabolites were correlated to one specific transcript expres-
sion pattern, integrated metabolic maps could be constructed.
Especially during the early stages of viral infection a dynamic
modulation of the host metabolism was observed. Based on the
metabolic maps, a viral up regulation of algal fatty acid
biosynthesis to help viral assembly, and a down regulation of
host sphingolipid biosynthesis was observed. Viral influence on
sphingolipids was already earlier identified in this system,
thereby confirming the validity of the approach.'® But in
addition, several terpenes including a group of sterols were
substantially down regulated in agreement with a reduction of
all host genes related to the production of isopentenyl-pyro-
phosphate in the mevalonate pathway. This down regulation
could be assigned to an antiviral response mechanism that was
further confirmed by inhibition experiments. Subsequent tar-
geted metabolic analyses revealed that the suppression of
steroid formation interferes with viral replication that requires
these metabolites. Viral replication in E. huxleyi thus depends
on the host metabolic machinery to provide sterols, fatty acids
and sphingolipids as building blocks for viral progeny
formation.

Plankton interactions were also the subject of another recent
study that combined metabolome and proteome analyses
during a competition situation.’™® The sublethal allelopathic
effects of the red-tide dinoflagellate Karenia brevis on two
diatom competitors were addressed."® Therefore Aster-
ionellopsis glacialis, a diatom species that co-occurs with the red
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tide dinoflagellate and Thalassiosira pseudonana which may not
have evolved resistance were challenged with K. brevis in co-
cultivation experiments. In both diatoms the presence of the
dinoflagellate caused changes in the metabolic and proteomic
profiles. Up- and down regulated proteins and metabolites were
identified tentatively and related to putative cell functions.
Combining the proteomics and metabolomics results a molec-
ular network was derived from which it was concluded that the
naturally co-occurring species A. glacialis shows a more robust
metabolism with only slight changes in co-cultivation. In
contrast, allelopathy disrupted energy metabolism (glycolysis,
photosynthesis) and impaired cellular protection mechanisms
including cell membrane maintenance, osmoregulation and
oxidative stress response in T. pseudonana (Fig. 5)."** This study
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provided several novel hypotheses for the underlying mecha-
nisms in sub lethal allelopathy that will surely be the subject of
testing in the near future.

Successful combination of -omics approaches are also
reported from the chemical ecology of higher plants.””>*** The
majority of trees form beneficial relationships with ectomycor-
rhizal (ECM) fungi.*** After invasion an ECM-root tip is formed
that can be considered as a type of symbiotic organ. The
processes during invasive colonization of Populus root tips by
the fungus Laccaria bicolor was the subject of a metabolomics/
transcriptomics study by Tschaplinski et al.**® This study could
benefit from the availability of a genomic and transcriptomic
data repository of the fungus. In addition, both, a compatible
host Populus trichocarpa and a recalcitrant host P. deltoides were

Co-cultivation of microalgae

Allelopathy

N

Karenia brevis

\

Thalassiosira pseudonana

Changes in metabolome and proteome

LU gt MUCIn cell wall
nAIGAN 2929282 RRAAXRRARRRRIKRRRAR 29,2 cell membrane
Gluconeo el‘lesis PR R PP R R PP AP R PR \ . .
glycose g pyruvate ~ . Lipid Me_tgbollsm
: | 5 = Sulphollp{d.synthase
STARCH _Pentose 3 CROXISOME  _Fatty - Yphospholipid (C;H,0.:P)
Phosphate | ' ~acids i ipid (C31H4200)
Pathway v | glycerate Fatty acid |Phospholipid (C,6H;,04P)
o €A alanine - oxidation |Lipid (C,;H,,0.,)
= DNA/RNA ‘g,. )
g Synthesis -~ photorespiration —— -
o acetyl CoA Calvin
< Transcriptional - Cycle
Control NAD+ ~*~ | CR(‘;J sCO
o " NADH [ . %
« o Trans'latcon Fatty e Photosynthesns H’
: = Y ¢ Zacids i
#RQTEN Trypsin PEPTIDES Oxidative ‘Fatty acid synthase
| & ?ﬁ ¢ £ Phosphorylation F. blosyntheS|s
- Trypsin=—"* " o n o
inhibitor \_wmgum&u_/ o i
. AM'—%'-D—S OSMOPROTECTANTS
LR ; sarcosine betaine erox:dase
i e et :I;rt:g::;sm proline myo-inositol ‘
;?:r:'i:ee glutamate homarine

Fig. 5 Top: interacting microalgae K. brevis and T. pseudonana were investigated using a metabolomics/proteomics approach. Bottom: the
network of cellular pathways, enzymes, and metabolites in T. pseudonana under the influence of K. brevis are depicted. Pathways and
metabolites enhanced by allelopathy are indicated by red arrows and compound names, respectively and those suppressed by blue labels. Below
panel is reproduced with permission from the National Academy of Sciences.**®
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accessible. The metabolic reprogramming that favors the
formation of the ECM-root tip hybrid tissue in compatible
interactions or that prevents the formation of such tissue in the
recalcitrant host could be addressed by a combination of
metabolomics and transcriptomics. In this case GC-MS proved
to be the method of choice since data base supported evaluation
of spectra allowed the tentative identification of regulated
metabolites that could be brought into accordance with regu-
lated pathways from transcriptomics.”” The symbiotic metab-
olome is altered throughout the colonization process with shifts
in aromatic acids and fatty acid metabolism. The mutualistic
ECM relationship might require such suppression or modera-
tion of host defenses, allowing for the fungus to integrate into
the root tissues. Explorative mapping of the observed metabolic
changes in the benzoate degradation pathway using the KEGG
database'**'** lead to a targeted transcriptome analysis. The
results are in accordance with the fungus being the driver of
metabolic reprogramming in the early stages of colonization.
The challenge of ECM root tips of the recalcitrant P. deltoides
with the fungus led to less pronounced metabolic shifts but
plant defense related compounds such as tryptophan or salicin
were elevated in the incompatible interaction. Targeted degra-
dation assays further showed the capacity of the fungus to
metabolize secreted defensive compounds. Thus diversity and
half-life of plant defense compounds seem to be driving forces
of the interaction.

An important tool for the deciphering of herbivory-induced
gene-to-metabolite dynamics was introduced by Gulati et al.**®
The novel transcript and metabolite data classification tool for
experiments with multiple factors such as treatment, tissue,
genetic context, or time-series was tested on Nicotiana attenuata
using 3 tissues, 2 stressors and a 6-point-time-series for tran-
scriptome and metabolome data. The value of the approach was
demonstrated by revisiting well-characterized changes of regu-
latory genes and the oxylipin pathway. But the dimensionality
reduction approach is also applicable to unravel rewiring of
gene and metabolite networks in an explorative manner.
Dynamic metabolite-metabolite correlation networks were
created to cluster biochemically connected metabolites (e.g.
shikimate pathway derived amino acids correlated with
phenylpropanoid pathway metabolites). This study underlines
the high plasticity of herbivore responses and provides a nice
functional genomics tool to find novel genes and metabolites
involved in herbivore response as shown for oxylipin signaling
and the 17-hydroxygeranyllinalool diterpene glycoside (17-HGL-
DTG) pathway. The root metabolome of N. attenuata under the
influence of leaf herbivory was addressed using this
approach.® A multivariate time-series data analysis was used to
evaluate leaf herbivory-elicited transcriptional and metabolic
dynamics in the roots. Transient systemic responses in roots
were detected. The semi-diurnal transcript oscillation was
inverted and its major amplitude effects translated into root-
specific secondary metabolite shifts.”® Using the multifactorial
approach described in Gulati et al'™ tissue and treatment
effects in a time-course data set could be analyzed that form the
basis for further functional studies on the role of above ground
herbivory on root metabolism.
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The above examples might be considered as starting points
of combined -omics studies in chemical ecology. These few
publications that combined metabolomics with other —omics
data sets to reveal basic principles of chemically mediated
species interactions were all published within the last two years,
thereby representing the start of a novel era in chemical ecology
research. In other research areas relevant for the field, such as
plant physiology, combined -omics approaches are also
increasingly applied and several reviews already discussed the
use of metabolomics, proteomics, transcriptomics and meta-
bolic flux analyses as functional genomics tools."*”**

4 The comprehensive metabolome
approach

This chapter will focus on the use of comprehensive metab-
olomics data of model species in chemical ecology and present
an outline about the potential power of comprehensive data
repositories. In the studies discussed so far the metabolome -
the collection of all metabolites of an organism - has been
covered only to some extent. Based on the hypothesis to be
answered the focus of the study was on a certain subset of the
metabolome. In such cases the exclusion of all other metabo-
lites is crucial to increase the detection limit of the metabolites
in focus. However, if the global metabolome response to species
interactions is in focus of the study a comprehensive approach
covering all present metabolites is needed.'® Such compre-
hensive metabolomes are challenging since no protocol exists
so far that enables the extraction and analysis of the chemical
diverse array of metabolites at once. However, for certain model
organisms, comprehensive collections of metabolites with the
aim to obtain complete metabolomes are currently assembled.
The field of chemical ecology could benefit from such collec-
tions since they would define the metabolic potential and
answer the question of what is possible in chemical signaling.
Another issue, not only in metabolomics but also in all other
—-omics fields,** is the identification and functional character-
ization of detected features, such as metabolites."***** Here
chemical ecology can provide novel structures and hints
towards their function off the beaten track of primary metabo-
lism. There is clearly a need for public large spectral data bases
that not only cover metabolites of key species to support such
initiatives. This also calls for the deposition of own compounds
with the according metadata to allow for knowledge-sharing
between laboratories.

It is estimated that about 5 million putative metabolites exist
in the plant kingdom.*** Besides the structural diversity, also
spatial and temporal variability as well as broad concentration
ranges limit a comprehensive coverage of the metabolome.
Therefore it has been recommended repeatedly to combine
knowledge obtained with different extraction protocols and
analytical tools such as GC(x GC)-MS, LC-MS, NMR or FT-
IR."*713% Standardized protocols addressing such combined
approaches are however still under development.’**'** For
certain model organisms quite comprehensive annotated data
repositories exist as it is the case for Arabidopsis thaliana,**’
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Escherichia coli,"*®* and Saccharomyces cerevisiae."* Those

repositories can serve as reference database not only for these
species themselves but also for related organisms that might be
of more interest in chemical ecology. http://
PlantMetabolomics.org (PM) has been the first available
online data repository covering over 3.100 compounds from A.
thaliana wild type and 50 mutant lines that have been solely
analyzed to accomplish this database.’”” The aim is to annotate
each metabolite with its experimental metadata and abundance
following standardizing procedures (MSL' ArMet,"** MIA-
MET*"). PM is further linked to several other databases
including KEGG and PubChem to allow searching for genetic,
chemical and biosynthetic pathway information. Additionally,
protocols, tutorials as well as diverse statistical tools are
provided. The Yeast Metabolome Database (YMDB) provides
over 2000 metabolites linked to 995 genes or proteins, 66
biochemical pathways and 916 chemical reactions.”® 1540
NMR- and 951 MS spectra are linked to 750 compounds. Intra-
and extracellular concentrations are given for 627 metabolites.
This data has been collected from books, articles, other data-
bases and own measurements, and is linked to metadata,
images, references and other databases. The E. coli metabolome
database (ECMDB) is the most recent annotated data repository
for E. coli (primarily strain K-12)."*® It provides over 2600
metabolite entries with links to 1500 genes or proteins, 125
biochemical pathways and 2800 chemical reactions. It is also
supplemented with 775 NMR spectra and 4035 MS spectra as
well as intracellular concentration data for 800 compounds. But
since S. cervesiae and E. coli serve mainly as model organisms in
molecular biology and are rarely considered in chemical ecology
these powerful data repositories address rather molecular
biologists and system biologists.

Those data repositories are all species-specific, which is
considered to be essential for the field of metabolomics as each
organism has its own unique set of metabolites.'*® Facing this
dilemma it remains to be answered how to integrate the diverse
variety of species that are interesting for chemical ecologists.
The closest related model organism with its associated database
could be used but much of the power of the repositories would
be lost. A remarkable concept for a general purpose, cross-
species, cross-platform data repository for metabolomics data
that can overcome these limitations is realized in the Metabo-
Lights platform.">'** First results from studies in chemical
ecology are already included” and a broad usage would open up
vast possibilities for the search of secondary metabolites in
organismal interactions.

Nevertheless, also chemical ecology can focus on model
organisms, and several experiments on the chemical ecology of
A. thaliana, Caenorhabditis elegans or Drosophila melanogaster
have been conducted that can benefit from and contribute to
the resources of joint metabolomics initiatives. Methods for the
generation of comprehensive metabolomes of e.g. D. mela-
nogaster** or C. elegans,”® or at least standardized metab-
olomics methods for e.g. Bacillus subtilis'** or Staphylococcus
aureus*® are suggested and it can be observed that even
organisms that generated interest in the field of (chemical)
ecology were promoted as models as it is the case with the
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tobacco plant Nicotiana attenuata or the unicellular diatom
Skeletonema costatum. To assist metabolomics in chemical
ecology standard operation procedures for such species with
clear definition of specific protocols are needed as organism-
specific characteristics can influence the extraction efficiency.**®
For example for C. elegans tissue disruption is a crucial step.'*
Tissue selection has also to be considered for more complex
organisms since whole organism homogenates can be insuffi-
cient as was shown for D. melanogaster.*** Sample collection,
preparation, storage, analysis and data handling can thus
introduce a variability that interferes with comparative efforts
between laboratories. At the time being it is an unrealistic goal
to reach a comprehensive coverage of the ‘metabolome’ for
every organism interesting in chemical ecology. But intelligent
use of existing repositories**” normalized procedures and ethics
of reporting and contributing to data bases™® will help to make
metabolomics an even more powerful tool. Of particular
importance is the metabolomics standards initiative (MSI) that
was conceived in 2005 with the goal to develop universal
minimum standard requirements for metabolomics analyses.
Primary minimal standards were published 2007 encompassing
five different areas of metabolomics analyses."** Recommen-
dations addressing the reporting of biological samples from
mammals,** plants, and of environmental
samples'>* were given, as well as for chemical analyses,'* data
processing,’** data exchange structures,' and ontology."® To
benefit from such initiatives, metabolomics researchers, also in

149 150 151

microbes,

chemical ecology, should stick wherever possible to these
recommendations to make their work comparable.”®* Due to
lacking open source file formats the COordination of Standards
in MetabOlomicS (COSMOS) was initiated subsequently and
might prove as a powerful tool to handle and compare data also
in the field of chemical ecology."*>**”

5 Conclusions

From the above discussed examples it can be concluded that
metabolomics represents an emerging technique in chemical
ecology that has the power to shape the discipline in several
ways. For one, the identification of signaling molecules will be
greatly facilitated by at least partially eliminating the need of
bioassay-guided fractionation for the identification of active
metabolites. In a systems biology context, metabolomics
enables connecting chemically mediated interactions to regu-
lative events on a protein or transcriptome level. With the
emerging possibilities of data repositories and the categoriza-
tion of metabolites from ever more model species, the disci-
pline of metabolomics will become more mature and tasks such
as de-replication, metabolite assignment and even structure
elucidation that are tedious today will become routine. There is
still a long way to go to establish metabolomics as standard
technique in labs of biologists, but interdisciplinary approaches
involving analytical chemists are already in place. In addition to
the above outlined avenues, metabolomics also opens up new
fields of research in chemical ecology. Thus, e.g. imaging
techniques will allow to spot the point of interaction in micro-
bial communities,’®'*® on surfaces and in the immediate
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surroundings of plants and algae, as well as in insects.
But also the metabolome of single cells might become of
interest, especially when aspects of cooperative interactions or
cheaters in microbial communities are concerned.'*>"*
However the still limited capabilities of the available imaging
techniques lead to smaller data-sets compared to other
metabolomics techniques and quantification is still problem-
atic. Novel concepts in metabolomics have the potential to allow
the design of fundamentally new experiments in chemical
ecology that will allow monitoring the ecological interactions of
organisms in hitherto unrecognized complexity. One potential
direction to go would be the space- and time resolved moni-
toring and manipulation of complex communities with the aim
to identify the “chemical role” of each partner in set-ups that are
a lot closer to the true ecology of the species than traditional,
often over-simplified co-culturing approaches.
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18.1 Introduction

Metabolomics techniques aim to comprehensively extract, quantify, and
evaluate metabolites from a given organism or community and have
developed into an indispensable tool in life sciences (Allwood et al.
2011; Aldridge and Rhee 2014) (for more information, refer to a recent
special issue in Current Opinion in Chemical Biology) (Schroeder and
Pohnert 2017). Different approaches have been brought forward that
allow us to answer a multitude of questions about the physiology of an
organism and to generate new hypotheses about its response to stress
(Goulitquer et al. 2012; Krug and Miiller 2014). Among others, metabo-
lomics allows us to map changes in primary metabolism that reflect
the regulation of biochemical pathways to categorize samples by using
metabolic fingerprinting techniques or to identify metabolites that are
regulated in stress or interaction situations by comparative metabolic
profiling. Especially, comparative metabolomics is suitable for the
generation of hypotheses about the role of primary and secondary
metabolites (Lee and Fiehn 2008; Kuhlisch and Pohnert 2015). Most
commonly, mass spectrometric techniques are used for the recording
of metabolomics data. With complex samples, mass spectrometry
(MS) can be coupled to efficient separation techniques such as ultra
performance liquid chromatography (UPLC) and gas chromatography
(GQC). By using such hyphenated analytical techniques, the profiling of
hundreds of metabolites within minutes is feasible. Fundamental pre-
requirements for successful metabolomics investigations are the exper-
iment planning, sample preparation, extraction, data recording, and
the statistical evaluation of the results. In this contribution, we describe
a very robust and validated protocol for the generation of metabolic
data from marine organisms. Initially developed for the investiga-
tion of the diatom Skeletonema marinoi, the protocol was successfully
adapted to the investigation of different algal taxa (Nylund et al. 2011;
Vidoudez and Pohnert 2012; Mausz and Pohnert 2015), including flag-
ellated gametes and thalli of the green macroalga Ulva mutabilis and
water samples for exometabolomic profiling (Alsufyani et al. 2017).
Even profiling of entire plankton communities is feasible without the
need for further alterations (Kuhlisch et al. submitted), and it can be
predicted that only minor adaptations to the protocol are required
to make it suitable for a broad range of other (marine) organisms. By
introducing a few additional experimental steps, the method that was
initially developed for the investigation of the endometabolome (i.e.,
the intracellular metabolites) can also be used to monitor the exome-
tabolome (i.e., the metabolites released into the surrounding seawater;
see Barofsky et al. 2009 and Alsufyani et al. 2017). For high-quality
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metabolomics, the sample preparation and handling are decisive, and
we thus place here attention to fully document and describe the work-
flow. We also introduce one selected workflow for data analysis of com-
parative metabolomics datasets.

18.2  State of the art

In the past, qualitative and quantitative metabolite investigations
were conducted by targeted chemical analyses of certain metabolites
or metabolite classes (Gravot et al. 2010; Dittami et al. 2011). However,
along with the improvement of hyphenated analytical techniques, the
simultaneous and untargeted metabolic profiling of a broader range
of substance classes including amino acids, organic acids, sugars, and
fatty acids became feasible as reviewed in Dunn (2008). Complex bio-
logical extracts are thereby separated by, for example, GC, LC, or capil-
lary electrophoresis, followed by their subsequent analysis using MS.
Various available mass analyzers such as quadrupole, time of flight
(TOF), and the Orbitrap provide a range of instruments with variable
sensitivity, mass resolution, and mass accuracy. Besides LC-MS, one of
the most common analytical platforms for metabolic profiling is GC-
MS because of its high chromatographic resolution, sensitivity, and
availability of reference libraries (Dunn 2008). Many experimental steps
for GC-MS metabolic profiling were established in terrestrial plants
and transferred to mammals and microbes (Fiehn 2008). Thus, the first
protocols in plant sciences included plant specific protocols for enzyme
quenching by liquid nitrogen, cell homogenization, and metabolite
extraction in hot methanol before the separation of polar metabolites,
evaporation for derivatization, GC-MS analysis, data processing, and
statistical analysis. A two-step derivatization with optimized methox-
ylation conditions and N-methyl-N-trimethylsilyl-trifluoroacetamide
(MSTFA) as silylation reagent was introduced, and DB-5ms columns
were recommended for separation (Fiehn et al. 2000a, b; Roessner et al.
2000). Isotopically labeled primary metabolites (Fiehn et al. 2000a)
and the polyol ribitol (Roessner et al. 2000) were introduced as inter-
nal standards (ISs) for semiquantitative metabolite analysis. In the
following, several steps of the initial protocols were improved (Lisec
et al. 2006) or adjusted to the needs of other study systems (Winder
et al. 2008), especially for particularly error-prone steps such as met-
abolic quenching (Alvarez-Sanchez et al. 2010), or cell extraction, for
which a one-phase-solvent mixture was proposed by Gullberg et al.
(2004), who also sorted out the effect of oximation time and tempera-
ture during derivatization. Later, GC-TOF-MS systems came in focus,
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which offer faster scan times compared with quadrupole-MS (Wagner
et al. 2003). Furthermore, data processing and analysis strategies were
evaluated, for example, handling of multiple derivatization products
(Kanani and Klapa 2007), appropriate data-scaling methods (van den
Berg et al. 2006), or the choice of uni- and multivariate statistical analy-
ses (Saccenti et al. 2014).

Within the field of marine sciences, metabolomics approaches are still
at their advent (Goulitquer et al. 2012). Metabolic profiling of microalgae
was first established for the freshwater microalga Chlamydomonas
reinhardtii (Bolling and Fiehn 2005), followed by the introduction of
protocols for the investigation of the marine diatoms Phaeodactylum tri-
cornutum (Allen et al. 2008), Skeletonema marinoi (Vidoudez and Pohnert
2012), and Thalassiosira pseudonana (Bromke et al. 2013). With Gracilaria
vermiculophylla and Gracilaria chilensis (Nylund et al. 2011; Weinberger
et al. 2011), the first marine macroalgae were profiled followed by the
brown algae Ectocarpus siliculosus, Laminaria digitata, and Lessonia spicata
(Ritter et al. 2014; Ritter et al. 2017). Some efforts have already been
made to adjust experimental procedures to the needs of macroalgae.
Thus, the robust cell wall structures were extracted after flash freez-
ing in liquid nitrogen and thorough grinding with mortar and pestle.
Prior to this, epibionts were removed gently if thalli were collected in
the field. A challenge that has not been addressed thus far is the high
morphological and chemical diversity of the diverse macroalgal taxa
and life-cycle stages.

In contrast to the profiling of endometabolites of marine algae, rather
few investigations exist, which cover exometabolites (Barofsky et al. 2009;
Gillard et al. 2013; Becker et al. 2014; Longnecker et al. 2015). The meth-
odology in this field is currently developing as reviewed in Minor et al.
(2014). Main challenges are the separation of cells and surrounding
medium without cell leakage and the extraction of dissolved metabolites.
Thus, cells should be removed, for example, by gentle filtration over sand
or GF/C filters (Barofsky et al. 2009; Alsufyani et al. 2017). The most com-
mon extraction method for dissolved metabolites in seawater is solid-
phase extraction (SPE) as it is fast, simple, and removes the salt load of
marine samples that would otherwise interfere with subsequent analyti-
cal processes. Metabolite coverage depends both on the choice of the SPE
cartridge adsorbent and eluting solvents. Styrene divinylbenzene phases
showed highest recoveries thus far, and we propose CHROMABOND®
Easy cartridges due to their high recovery of m/z-retention time pairs
(Barofsky et al. 2009).

In the following protocol, we focus on sample generation for GC-MS
analysis in addition to LC-MS and give a brief overview of processes
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in data treatment. Different sampling and extraction strategies for the
diverse macroalgal life stages are presented. We also introduce a protocol
for profiling the exometabolome of micro- and macroalgae.

18.3 Materials
18.3.1 Solvents

e Acetone (certified ACS, Fisher Chemical)

e Chloroform (for HPLC, HiPerSolv CHROMANORM® [>99.8%, fil-
tered through 0.2 um, packed under N,, stabilized with 0.6% etha-
nol], VWR)

¢ Ethanol (gradient grade for LC, LiChrosolv®; >99.9%, filtered through
0.2 um, Merck)

¢ Hexane (for GC, SupraSolv® [>98%], Merck; stored over 4 A molecu-
lar sieve)

¢ Methanol (for HPLC, Chromasolv®Plus [>99.9%], Sigma-Aldrich)

¢ Pyridine (for HPLC, Chromasolv®Plus [>99.9%], Sigma-Aldrich; stored
over 4 A molecular sieve under argon)

¢ Tetrahydrofuran (THF; for HPLC, HiPerSolv.e CHROMANORM®
[>99.7%, filtered through 0.2 um, packed under N,, not stabilized],
VWR,; stored under argon)

e Water (for HPLC, Chromasolv®Plus [filtered through 0.2 um],

Sigma-Aldrich)

Extraction solution (see Table 18.1 in Section 18.3.4)

Column elution solution (see Table 18.2 in Section 18.3.4)

Internal standard (IS) solution (see Table 18.3 in Section 18.3.4)

Methoxyamine hydrochloride (98%, Sigma-Aldrich; hygroscopic

and thus stored in a desiccator under argon and vacuum-dried

before use)

¢ Retention time index (RI) solution (see Table 18.4 in Section 18.3.4)

e MSTFA (1 mL vials, Macherey—Nagel)

18.3.2 Equipment

Fume hood

Lab coat

Safety goggles

Chemical-resistant gloves (nitril or latex, dependent on solvent)
Eppendorf® pipettes (1000, 100, and 10 pL, recently checked and
calibrated)
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e Filtration pump system with vacuum control and Nalgene® tubing
(Figure 18.1)

e DURANE filtering flasks (1 L, KECK™ assembly, Erlenmeyer shape)
with rubber seals (Figure 18.1)

e DURAN?® dismountable filter holders (o 50 mm, 250 mL top mani-

fold, sintered filter discs [Porosity 4], FKM seals, PP outlet funnel)

(Figure 18.1a)

Tweezers

25 mL glass beaker

TissueLyser II (QIAGEN, max. speed: 30 frequencies s?)

Lyophilizer

Polytetrafluoroethylene (PTFE) tubing (¢ 0.8 mm, each ~30 cm)

(Figure 18.1b)

Vortex mixer

Ultrasonic bath

Centrifuge (with temperature control, up to 30,000 x g)

Vacuum evaporation facility (desiccator) and vacuum diaphragm

pump (down to 7 mbar, with vacuum control, connected to argon)

¢ Precision balance (+0.1 mg)

Outlet funnel,
filter disc,

Filtering flask

(@) (b)

Figure 18.1 Setup of filtration system (a) and filtrate extraction system (b).
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¢ Hamilton® glass syringes (100 uL)
¢ Heating block (for 1.5 mL vials)

18.3.3 Consumables

* Eppendorf® pipette tips (blue, yellow, and white)

* Eppendorf® centrifuge tubes (1.5 mL, 2 mL)

¢ Whatman® glass microfiber filters (o 47 mm, grade GF/C)

¢ SPE columns CHROMABOND® Easy (3 mL, 200 mg, Macherey—Nagel)

e Metal beads (¢ 3 mm, stainless steel)

¢ Centrifuge tubes (15 mL)

e (Glass screw neck vials both 1.5 and 4 mL, the 1.5 mL vials have to fit
GC-MS or LC-MS autosamplers

¢ Glass inserts for 1.5 mL vials (200 uL) with metal springs compatible
with autosamplers

* Screw caps for 1.5 and 4 mL vials with septa (PTFE coated)

¢ Liquid nitrogen

18.3.4  Solution recipes

The following solutions have to be prepared in advance (Tables 18.1

through 18.4):
Table 18.1 Extraction solution
Quantity to add
Composition Final ratio (v:v:v) (for 10 mL final solution)
Methanol 1 2 mL
Ethanol 3 6 mL
Chloroform 1 2mL

Note: Prepare daily and precool at —20°C before use. During cell sampling, store on ice to
ensure an ice-cold solution for extraction. The composition is optimized for diatom
cells (Skeletonema marinoi) and was suitable for the extraction of other marine organ-
isms but can be adjusted to ensure optimal metabolite extraction if using organisms
with specific mechanical or chemical properties.

Table 18.2 Column elution solution

Quantity to add

Composition Final ratio (v:v:v) (for 20 mL final solution)
Methanol 1 10 mL
THF 1 10 mL

Note: Store in inert containers (ideally glass sealed with PTFE caps). The composition can be
adjusted to ensure optimal elution of the SPE column.
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Table 18.3 Internal standard (IS) solution

Final Quantity to add (for 1 mL final
Composition concentration solution)
Ribitol or 3C,-sorbitol 4 mM 100 pL of stock solution at 40 mM
Water - 900 uL

Note: Prepare a 40 mM stock solution by dissolving 24.9 mg ribitol (>99%, Sigma-Aldrich) in
water. Store stock and working solution at —20°C in inert containers (ideally glass
sealed with PTFE caps). Thaw before use. The polyol ribitol serves as IS in this protocol
as it has not been reported from marine algae thus far. However, it has been shown in
bacteria, fungi, plants, and green microalgae (Bieleski 1982). Here, isotopically labeled
ISs are recommended such as *C¢-sorbitol (Bolling and Fiehn 2005). Both the final con-
centration and composition of the IS can be adjusted with regard to the experiment.

Table 18.4 Retention time index (RI) solution

Final Quantity to add (for 1 mL
Composition concentration final solution)
Decane, C,,H,, 1 mM 10 uL of stock solution at 100 mM
Pentadecane, C;;H;, 1 mM 10 uL of stock solution at 100 mM
Nonadecane, C;;H,, 1 mM 10 pL of stock solution at 100 mM
Docosane, C,,H,, 1 mM 10 pL of stock solution at 100 mM
Octacosane, C,gHsg 1 mM 100 pL of stock solution at 10 mM
Dotriacontane, C,;,Hg, 1 mM 100 pL of stock solution at 10 mM
Hexatriacontane, C;;H,, 0.5 mM 100 pL of stock solution at 5 mM
Hexane - 660 uL

Note: Prepare stock solutions for n-alkanes from Cy, to Cy4 (all >99%, Sigma-Aldrich) in
hexane. Stock and working solutions are stored at —20°C and thawed before use. The
RI solution is used to calculate system-independent retention times, which is, for
example, necessary for comparison with externally measured reference compounds
and thus metabolite identification. Final concentration and composition can be
adjusted with regard to the experiment.

18.3.5 Instrumental setup

Common GC-MS (and LC-MS) instruments can be used. The described
procedure can be easily adjusted to the available instrumentation.

GC-MS instrument: AGILENT 6890N gas chromatograph, equipped
with AGILENT 7683B autosampler, coupled to WATERS® Micromass
GCT Premier™ mass spectrometer (orthogonal acceleration
time-of-flight MS).

Injection parameters: 1 uL injection volume, split/splitless injector at
300°C, splitless to split 10 mode (can be adapted to sample and instru-
ment properties), deactivated AGILENT split liner (4 X 6.3 X 78.5 mm
inner g X outer g X length) with glass wool.
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GC parameters: Constant helium (5.0) flow at 1 mL min~!, AGILENT J&W
DB-5ms column (30 m, 0.25 mm internal diameter, 0.25 um film
thickness, 10 m Duraguard precolumn), oven temperature program:
60°C for 1 min, ramp to 310°C at 15°C min~!, 310°C for 10 min.

MS parameters: Electron impact source (70 eV) at 300°C, scan rate of
5 scans s7!, dynamic range extension mode, resolution of >6000 at

m/z 501.97.

18.4  Experimental procedures

In the following section, all steps from sampling to statistical analysis are
described in detail (Figure 18.2). Preceding steps such as the design of
the experimental setup are not in focus of this protocol. It is, however,

1) Research question

2) Experimental design Control group, Treatment group(s), n = 5 for each
Blank samples, n =3

3) Sample processing  Section 18.4.1-18.4.5

1.3.2-3 Vacuum
3.2.1 ==
%0 mg\ 3.2.2-3
d l.’regze in \
liquid N, Add 5 uL IS sol,
Lyophilize, Add 1 mL 3.2.4-5 3.2.6 3 2.7
N\ Homogenize i
N ¢ extraction sol. 10 min ultrasonic bath! Transfer Dry with
/ 15 min at 30,000 g/4°C  supernatant to desiccator
1.14-6— 3.11

1.5 mL glass vial

Transfer aliquot
Add1mL 4 centrifuge tube

/ extraction sol.,
Add 5 L IS sol. Vacuum
P Vacuum A é
Vacuum
\ 25 2.6-7 2.8-9 2.12 2.13
Lol Load SPE 8 Wash with Elutewith ~Lransfer Dry with
Filtrate through 2 mL methanol aliquot to desiccator

GE/C filter column 4 mL water,| 1.5 mL
at1Lh! Air-dry 2 mL elution sol. glass vial
4.3-5 4.8-9 4.13
E— —_— —» —_—
Add 50 puL Add 50 pL. Transfer to 5 min at 4500 g GC-MS
methoxyamine sol., MSTFA (+ RI sol.), insert-equipped (Transfer supernatant)
1hat60°C, 9 hat RT 1 hat40°C glass vial
4) Data analysis ~ Section 18.4.6
Spectral processing Data processing and statistics Structure elucidation

- Baseline correction - Blank subtraction R - NIST data base
- Deconvolution - Normalization - External standards
- Peak alignment ﬂ _/\> Lu.._ - Uni-/multivariate Js*

- Peak integration statistical analyses
5) Biological interpretation/Hypothesis formulation/Bioassays

Figure 18.2 Metabolomics workflow for the analysis of intra- and extracellu-
lar metabolites of micro- and macroalgae by GC-MS. All numbers refer to steps

within the protocol.
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recommended to set up at least five biological replicates. Further, the sam-
pling of blanks that should undergo identical treatment as the biological
samples is essential for the later identification of contaminants.

18.4.1 Sampling and metabolic quenching

The presented protocol was originally developed for metabolite profil-
ing of phytoplankton samples. Therefore, this section describes several
strategies for collecting algal biomass depending on its origin, including a
sampling of single-celled microalgae (Section 18.4.1.1), of single-cell stages
of macroalgae (Section 18.4.1.2), and of the whole thalli (Section 18.4.1.3).
As metabolites underlie diurnal fluctuations, the sampling time should be
identical for all replicates. Until metabolic quenching (arresting the meta-
bolic activity), all steps have to be conducted as rapidly as possible to pre-
vent metabolic alterations.

18.4.1.1 Filtration of planktonic single-celled algae

¢ Gently shake the culture to homogeneously distribute the cells.

* Collect aliquots for cell counting (Note 1), bioassays, or collection of
other metadata if needed.

e Filter a determined culture volume (Note 2) under reduced pressure
(~600 mbar) through a GF/C filter. The filter should not run dry.
Keep the filtrate at 4°C until SPE (see Section 18.4.2.).

¢ Immediately transfer the wet filter to a 25 mL glass beaker.

¢ Immediately quench the metabolism by quickly resuspending the
cells in 1 mL cold (-10°C) extraction solution. Therefore, rinse cells
as far as possible off the filter by repeatedly pipetting the extrac-
tion solution over the filter. Transfer the suspension into a 1.5 mL
centrifuge tube.

e Add 5 uL IS solution and vortex 10 s.

¢ Store the sample on ice.

* Repeat steps 37 for all replicates. Continue with step 4 in Section
18.4.1.3.

18.4.1.2  Collection of algal gametes (of Ulva spp.)

* Once gametes swarm out of the gametangium, they gather toward
the light. Collect, count, and transfer a volume equivalent to 5 x 10°
gametes into 2 mL centrifuge tubes as described in Chapter 9 by
Califano and Wichard (2018).

* Optional: Free swimming gametes can be sampled by centrifugation
(Note 3).
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* Once the gametes are attached to the 2 mL centrifuge tube wall
or are pelleted after centrifugation, remove the growth medium
with a pipette, and immediately freeze the sample in liquid nitro-
gen. Because of the low recovery rate of entire cells from surfaces,
the tube in which the gametes were grown should also be used for
extraction. Continue with step 4 in Section 18.4.1.3.

18.4.1.3  Collection of algal thalli

* Gently clean the thalli. First, scrape off epiphytes with a scalpel and
then wash three times with autoclaved (filtered) seawater.

e Collect about 100 mg fresh weight of a specific tissue (e.g., blade
tissue or rhizoid, cut with a scalpel) in a 2 mL centrifuge tube and
immediately freeze in liquid nitrogen.

* Remove remaining water by lyophilization at 0.001 mbar at —50°C
until completely dry.

* Optional: Samples can be stored at —20°C for a few days and —80°C
for several weeks.

e Samples are ready for extraction (see Section 18.4.3.).

18.4.2  Solid-phase extraction of extracellular metabolites

The extraction of extracellular metabolites from the filtrates can be done
in parallel for all replicates. Therefore, randomize the samples.

¢ Condition a CHROMABOND® Easy column directly before use.
Therefore, pipette 4 mL methanol onto the column and let it flow by
gravity into a waste vial.

* Wash the column with 4 mL water. Let it flow by gravity into a waste
vial.

¢ Take out all filtrates from the fridge (step 3 in Section 18.4.1.1) and
place them on ice.

¢ Connect the PTFE tube in line with the column. Place the PTFE tube
into the filtration flask containing the filtrate and connect the col-
umn with the vacuum system.

* Pass the sample slowly through the column at a flow rate of
~1Lh-.

¢ Disconnect the column from the PTFE tube and wash the column
with 4 mL water.

¢ Air-dry the column with the vacuum system. Dry column adsorbent
is bright red again.

e Elute the column by gravity with 2 mL methanol into a 4 mL
glass vial.
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¢ Flute in the second step with 2 mL column elution solution into the
same vial.

e Add 5 uL IS solution, close the vial, and vortex for 10 s.

* Optional: Samples can be stored at —20°C for a few days and at —80°C
for several weeks.

¢ Transfer for each sample an aliquot of 1.5 mL into a 1.5 mL glass vial.
For LC-MS see Note 4.

¢ Evaporate to dryness under vacuum using a desiccator (Note 5).
Reduce the pressure from ambient pressure to 0 mbar considering
solvent boiling points (Note 6).

¢ Vent the desiccator slowly with dry air or argon (Note 7) and imme-
diately close all vials.

* Samples are ready for derivatization (see Section 18.4.4.).

18.4.3  Extraction of intracellular metabolites

The extraction of intracellular metabolites can be carried out in par-
allel for all replicates. Therefore, randomize the samples. Depending
on the cell-wall morphology of the studied organism, different cell
disruption methods might be suitable of which two are described in
this section.

* Optional: Thaw samples from step 4 in Section 18.4.1.3 (or directly
use samples from step 5 in Section 18.4.1.3).

18.4.3.1 Cell disruption by ultrasound treatment

* Vortex the samples for 30 s. Transfer an aliquot equivalent to ~5 x 107
cells into a new 1.5 mL centrifuge tube (Note 2).

* Add extraction solution to reach an adequate cell-to-solvent ratio
that is ideally equivalent to a cell density of ~5 x 10° cells uL~! sol-
vent. Continue with step 4 in Section 18.4.3.2.

18.4.3.2  Cell disruption with a bead mill

¢ Place the centrifuge tubes in a precooled (—80°C) TissueLyser II tube
support. Add two metal beads per tube, close again, and disrupt the
cells using the TissueLyser II for 30 s at a frequency of 30 s (Note 8).
During this procedure, the sample will remain frozen.

e Add 5 puL IS solution.

¢ Add 1 mL extraction solution to each sample and vortex vigorously
to homogenize the sample and allow a more uniform extraction.

¢ Place the samples for 10 min into an ultrasonic bath.

¢ Centrifuge the samples at 30,000 x g for 15 min at 4°C.

¢ Transfer the debris-free supernatants into 1.5 mL glass vials. For LC-
MS analysis see Note 4.
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e Evaporate to dryness under vacuum using a desiccator (Note 5).
Reduce the pressure from ambient pressure to a 0 mbar setting con-
sidering solvent boiling points (Note 6).

* Optional: Traces of salt from the medium will precipitate as crystals
that restrain water molecules. Thus, keep the pressure setting at
0 mbar for an additional hour to ensure an entirely dry sample.

* Vent the desiccator slowly with dry air or argon (Note 7) and imme-
diately close all vials.

e Samples are ready for derivatization (see Section 18.4.4.).

18.4.4 Two-step-derivatization for GC-MS analysis

To analyze a broad range of metabolites by GC-MS, the volatility and ther-
mostability of some substances classes need to be enhanced by derivatiza-
tion. In a first step, ketones and aldehydes are derivatized to oximes, and
then functional groups such as —OH, —NH,, —SH, or —COOH as present
in, for example, sugars, fatty acids, or amino acids are chemically deriva-
tized by silylation. Directly use the dried samples from step 15 in Section
18.4.2 or step 10 in Section 18.4.3.2.

* Prepare the methoxyamine solution immediately before derivatiza-
tion. Weigh 20 mg dried methoxyamine hydrochloride in a 1.5 mL
glass vial.

* Add 1 mL pyridine, close the vial, and ensure complete dissolution
by sonication in an ultrasonic bath for at least 5 min.

¢ Pipette 50 uL methoxyamine solution to each sample (a maximum of
20 samples is recommended, Note 9, and immediately close the vials.
Vortex 60 s to redissolve the extract.

* Incubate at 60°C for 1 h.

* Subsequently incubate at room temperature for 9 h (up to 16 h,
Note 10).

* Prepare the silylation solution. Therefore, remove a new vial of
MSTFA from the fridge, and let it warm up to room temperature.
Thaw and vortex the RI solution.

¢ Add with a glass syringe 40 uL RI solution to 1 mL MSTFA and vor-
tex the vial. Rinse the syringe with hexane after use.

¢ Add with a glass syringe 50 UL silylation solution to each sample.
Prevent any cross-contamination between samples. Rinse the
syringe with acetone after use.

e Incubate at 40°C for 1 h (Note 11).

* Let the samples cool down to room temperature.

* Optional: In the case of condensation along the glass, briefly centri-
tuge the vials (=5 s).

¢ Transfer each sample into a glass insert and close the vial.
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¢ Centrifuge all samples at 8000 X g for 5 min using 15 mL centrifuge
tubes padded with a cloth as vial mounting. In the case of precipitate
formation, transfer the supernatant into a new glass insert.

* Analyze the batch of samples immediately (Note 9) by GC-MS
(see Section 18.4.5.).

18.4.5 GC-MS analysis

¢ Directly use the derivatized samples from step 24 in Section 18.4 4.

* Analyze each batch of samples in a random order to diminish,
for example, a potential systematic effect of increasing time delay
between silylation and injection. For analysis details, see the
Instrumental setup.

* Run air injections before, in between, and after each batch to check
for contaminations.

* Use a new glass liner every 21 injections or if air injections indicate
contamination.

¢ For data analysis see Section 18.4.6.

18.4.6  Data analysis for GC-MS data

In the following protocol, a canonical analysis of principal coordinates
(CAP, Anderson and Willis 2003) is used to investigate metabolic altera-
tions. In comparison with other common multivariate statistical analy-
ses, CAP is less sensitive to hidden correlations within the dataset
(McCune et al. 2002), which are a direct result from metabolites generat-
ing multiple peaks, for example, due to different levels of derivatization.
Alternatively, a range of online platforms is available offering different
data processing and analysis strategies. These include MetaboAnalyst
(Xia et al. 2009; see Figure 18.3e), XCMS Online (Tautenhahn et al. 2012;
see Figure 18.3d), and Workflow4Metabolomics (Giacomoni et al. 2015).
The following workflow is also applicable to LC-MS data after adaptation
of the peak detection procedure (Alsufyani et al. 2017).

¢ Conduct a background-noise correction for each chromatogram
using, for example, the CODA tool of MassLynx 4.1 (WATERs,
MCQ = 0.8, Smoothing window = 5).

¢ Convert the raw data files into NetCDF (.cdf), for example, by using
the Databridge tool of MassLynx 4.1.

* Deconvolute all chromatograms with AMDIS 2.71 (N1sT, http://
chemdata.nist.gov/, 2012) with the following parameters: minimum
match factor = 30, type of analysis = simple, low/high m/z = auto,
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Figure 18.3 Statistical data analysis approaches for untargeted metabolomics
datasets. A combination of unsupervised (a) and supervised (b, ¢) multivariate
analyses with univariate analyses (d) is recommended. Selected metabolites of
interest can be further described with heat maps (e) or box plots (f).  (Continued)
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Figure 18.3 (Continued) All plots were generated from a dataset that was
obtained by GC-MS analysis of the macroalga Ulva mutabilis with either two
(a—c) or three (d—f) treatment groups (n = 4). Score plots of (a) principal coor-
dinate analysis and (b) CAP show the separation of sample groups. The vec-
tor plot of the CAP (c) and the t-test-based cloud plot (d, from XCMS Online)
indicate characteristic metabolites. These selected metabolites can be visualized
semiquantitatively with a heat map (e, from MetaboAnalyst) or box plots (£, from
XCMS Online).

instrument type = quadrupole, component width = 32, omitted
m/z = 147, 176, 193, 207, adjacent peak subtraction = 2, resolu-
tion = low, sensitivity = medium, shape requirement = low, column
bleed = 207. Run one batch job each for extra- and intracellular
samples.

¢ Integrate the deconvoluted peaks with MET-IDEA 2.08 (http://
bioinfo.noble.org, 2012). Select the chromatogram with the high-
est number of deconvoluted components as ion file and the fol-
lowing parameters for peak integration: chromatography = GC,
average peak width = 0.08, minimum peak width = 0.5, maximum
peak width = 2, peak start/stop slope = 1.5, adjusted retention
time accuracy = 0.25, peak overload factor = 0.9, MS = TOF, mass
accuracy = 0.1, mass range = 0.3, lower mass limit = 100, ion per
component = 1, exclude ion list = 73, 147, 281, 341, 415. In the output
file, the peak area of each variable as described by model ion (1m/z)
and retention time (min) is listed for each sample.

e Import the peak area file in Excel (M1crosort® Office, 2010). For each
variable, subtract the median area of all blanks from each sample.
Remove variables with a resulting negative peak area.

* Normalize the data. Divide each peak area by the peak area of the
IS of the same sample. For intracellular metabolites, normalize to
extracted biomass (e.g., fresh weight) as well. For extracellular metab-
olites, normalize to the sum of all peak areas within one sample.

* Export the dataset as a text file for further statistical analysis. Sample
and variable descriptors have to be omitted.

¢ Perform a CAP with CAP12 (Anderson and Willis 2003, http://www.
esapubs.org/archive/ecol/E084/011/suppl-1.htm) by using the fol-
lowing parameters: transformation = none, standardization = none,
distance measure = Bray—Curtis dissimilarity, discriminant analysis
mode, number of principal coordinates axes chosen by the program,
999 random permutations test.

¢ Display the resulting sample coordinates as score plots and the
metabolites as loading plot, for example, with SigmaPlot 13.0 (SysTaT
SortwARES). Evaluate the principal coordinate analysis score plot
(Figure 18.3a) to detect sample outliers. Evaluate the CAP score plot
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(Figure 18.3b) for correct sample groups. Use the correlation values
of the original variables with the CAP axes to generate a vector plot
(Figure 18.3c) and select highly correlated variables. Describe these
variables by their m/z and t; values (see Section 18.4.6).

* Compare the mass spectra of all highly correlated variables as
extracted by AMDIS (see Section 18.4.6) with spectral libraries using
MS Search 2.0 (N1sT, http://chemdata.nist.gov/, 2005). A common
commercial database is the NIST library. Other, noncommercial
alternatives are available which often focus on specific metabolites,
for example, the Golm-library for plant metabolites. Document the
quality of spectral comparison with the R-match value.

¢ Compare the retention times of all highly correlated variables with
externally measured reference compounds by calculating nonlinear
retention indices (van den Dool and Kratz 1963). Follow Fiehn et al.
(2008) for metabolomics standards initiative-compliant identification.

18.5 Notes

For a successful untargeted metabolomic approach, the personal secu-
rity and sample protection against contaminants and chemical reactions
with H,O and O, are essential. It is thus recommended to wear personal
protective equipment and work under fume hoods whenever necessary.
Moreover, read the material safety data sheets (MSDS) of all reagents and
follow the recommendations for correct disposal. As biological samples
are rather complex, avoid any contamination by humans or lab equipment
(e.g., fatty acids, plasticizers). It is thus advisable to wear gloves, use glass
or PTFE whenever possible, and rinse lab equipment with solvents before
use. For the same reason, blanks should be carried through the whole pro-
cedure. As the derivatization is moisture sensitive, all involved chemicals
and samples have to be dry, which is especially challenging for salt water
samples. Samples should be exposed to air as rarely as possible. Several
metabolites are labile. Therefore, work should be carried out without lon-
ger interruptions.

Note 1: For subsequent data normalization, it is important to determine
the amount of extracted biomass, for example, as cell count or fresh
weight. For a quantitative comparison or differential screening, it is
best to collect the same biomass among samples wherever possible.

Note 2: The sample volume should provide ~5 x 107 algal cells of a cell
volume of ~100 um? as tested for the diatom Skeletonema marinoi. With
~12 pg C cell! (Menden-Deuer and Lessard 2000), this cell number
equals ~0.6 mg C. For other organisms, the required cell numbers
have to be determined in test runs or indirectly estimated on the
basis of the amount of carbon per cell.
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Note 3: Alternatively, algal cells can be sampled by centrifugation. Cold
solvent quenching before centrifugation is necessary to prevent met-
abolic alterations during centrifugation (Bélling and Fiehn, 2005).

Note 4: At this stage, the samples can be directly used for LC-MS analy-
sis as described in Barofsky et al. (2009) and Alsufyani et al. (2017)
for extracellular extracts and in Barofsky et al. (2010) for cell extracts.
Therefore, transfer an aliquot of 100 puL into insert-equipped glass
vials and measure in one batch in randomized order.

Note 5: All solvents and water residues have to be evaporated before the
derivatization. This can be achieved with a desiccator but also under
a flow of nitrogen. Any sample contamination should, however, be
prevented.

Note 6: Pressure reduction results similarly to heating in solvent boil-
ing. In a desiccator, however, a boiling delay can occur. To avoid any
loss of extract because of this uncontrolled boiling, reduce the pres-
sure stepwise. Select the pressure steps at the boiling points of the
different solvents as listed elsewhere.

Note 7: To vent the desiccator with dry air, mount a CaCO,-filled col-
umn at the air inflow. Alternatively, argon can be used as shielding
gas as it is denser than air and inert.

Note 8: The speed (or the frequency) of the grinding has to guarantee
cell-wall disruption in a short period of time (before thawing) and
has to be optimized for the respective tissue in test runs.

Note 9: The batch size is limited to maximum 20 samples because of the
instability of the silylated samples. If, for example, standing in the
autosampler of a GC-MS instrument at room temperature, decom-
position would be substantial if more than 20 samples in a row
would be measured (Kanani et al. 2008). As one GC-MS run lasts
about 30 min, 20 samples can be analyzed within ~10 h. Biological
replicates should be randomized within one batch.

Note 10: The oximation depends both on reaction temperature and time.
To reduce the decomposition of, for example, sucrose and increase
derivatization efficiency, an oximation for 1 h at 60°C and 16 h at
room temperature was proposed by Gullberg et al. (2004). However,
to be able to work up two batches per day, the latter time is reduced
to 9 h without significant losses. With the addition of MSTFA, the
oximation reaction is quenched because of silylation of the reactive
amine group of methoxyamine.

Note 11: MSTFA is a strong trimethylsilyl group (TMS; Si[CHj;];) donor,
and thus a common silylation reagent. During the silylation reaction,
the active hydrogen of functional groups such as —-OH, -NH, —-NH,
—SH, and —COOH are replaced by a TMS group. As each functional
group has different reaction kinetics, a heating time of 1 h compro-
mises silylation efficiency and required reaction times.
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Abstract

Phaeocystis pouchetii (Hariot) Lagerheim, 1893 regularly dominates phytoplankton blooms in
the Arctic. Through grazing by herbivores and microbial activity it is considered to be a key
resource for the entire marine food web but the actual relevance of biomass transfer to higher
trophic levels is still under discussion. Cell physiology and algal nutritional state are
considered to be responsible for the observed variability. However, no data have so far
yielded insights into the state of Phaeocystis populations that would allow to test this
hypothesis. Therefore, metabolic markers of different growth phases were determined in
laboratory batch cultures using comparative metabolomics. Metabolites, expressed during
exponential, early and late stationary growth of P. pouchetii were profiled using gas
chromatography-mass spectrometry. Then, intra- and extracellular metabolites were
characterized that correlate with the growth phases using multivariate statistical analysis.
Within the endometabolome, free amino acids characterized exponential growth, whereas the
early stationary phase was correlated with sugar alcohols, mono- and disaccharides. In the late
stationary phase free fatty acids, sterols and terpenes increased. Within the exometabolome
carboxylic acids were related to exponential growth, whereas adenosine and an indole
derivative increased towards late stationary growth phase. These marker metabolites were
then traced in Phaeocystis blooms during a cruise in the Barents Sea and North Norwegian
fjords. About 50 endometabolites of P. pouchetii were detected in natural phytoplankton
communities. Their relative abundances at Phaeocystis-dominated stations differed from
diatom-dominated stations. Mannitol, scyllo-inositol, octadecan-1-ol, and several free fatty
acids were characteristic for Phaeocystis-dominated blooms. Distinct metabolic profiles were
detected in the nutrient-depleted community in the inner Porsangerfjord (<0.5 uM NO3).
High relative amounts of free mono- and disaccharides that are indicators for a limited culture
were detected and mapped. This study therefore shows how variable physiology of plankton

blooms can alter the metabolic landscape of entire communities.
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Abbreviations

CAP canonical analysis of principal coordinates
IAA indole-3-acetic acid

IS internal standard

PCO principal coordinate analysis

PSII  photosystem II

PUFA polunsaturated fatty acids

RI retention index

S/N  signal to noise ratio

TCA tricarboxylic acid

1. Introduction

The marine microalga Phaeocystis pouchetii (Hariot) Lagerheim, 1893 is a key phytoplankton
species in Arctic and high latitude areas, especially along the Norwegian coast and in the
Barents Sea (Degerlund and Eilertsen, 2010). Several single celled stages are known or
hypothesized within its life cycle (Rousseau et al., 2007; Whipple et al., 2007), however, most
spring blooms are characterized by the colony stage of the alga (Ratkova and Wassmann,
2002; Wassmann et al., 2005). Colonies develop from dividing single cells excreting a
polysaccharide-rich mucus that builds the matrix for up to 600 cells (Verity et al., 2007a;
Verity et al., 2007b). These carbohydrate-rich particles (Alderkamp et al., 2006) contribute
not only to the microbial loop and vertical flux (Alderkamp et al., 2007; Reigstad and
Wassmann, 2007), but also to the marine pelagic food web. Palatability and intake by grazers,
nutritional value, and chemical defense strategies have been investigated intensively for
decades (Nejstgaard et al. (2007) and references therein). P. pouchetii colonies are ingested
by various grazers including dinoflagellates, ciliates, copepods, amphipods and fish. Other
grazers avoid colonies or select specific colony size ranges. Size selection mechanisms as
well as algal bloom phase-dependent biochemical mediation have been suggested (Estep et
al., 1990; Hansen et al., 1994). Recent modeling of the Arctic marine ecosystem under climate
warming predicted decreasing sea ice coverage and thickness that will influence
phytoplankton community composition and biomass contribution (Slagstad et al., 2011;
Wassmann and Reigstad, 2011). P. pouchetii may expand its distribution and occurrence as
already observed locally (Lasternas and Agusti, 2010; No6thig et al., 2015; Soltwedel et al.,
2016). Within this context, the relevance of P. pouchetii biomass for trophic transfer in the

Arctic food web needs closer investigation.



The role of P. pouchetii within the Arctic food web has been investigated under several
laboratory, semi-natural and natural conditions with contradicting results (Nejstgaard et al.,
2007). Senescent colonies in the East Greenland Current were not substantially grazed (Calbet
et al., 2011) in contrast to previous observations (Estep et al., 1990; Huntley et al., 1987;
Tande and Bamstedt, 1987). During blooms of Phaeocystis in mesocosms in Western Norway
colonies were also not efficiently ingested by micro- and mesozooplankton, while single cells
were actively grazed by microzooplankton (Nejstgaard et al., 2006; Ray et al., 2016a; Ray et
al., 2016b). High rates of microzooplankton grazing on single cells and small colonies may
even have even inhibited bloom-formation in North Norwegian fjords (Archer et al., 2000). In
a study around Spitsbergen, Fram Strait and the Barents Sea, colonies were actively grazed by
mesozooplankton but only ingested at low rates (Norrbin et al., 2009; Saiz et al., 2013). In
conclusion, zooplankton grazing and ingestion may rely on Phaeocystis bloom phase and
colony formation with a possible underlying modulating effect of the metabolite composition

of the cells.

Phytoplankton cells do not represent steady-state chemical compartments. Metabolism,
nutritional state, and exudate composition are highly plastic parameters that respond to
environmental conditions (e.g. light intensity, water temperature, grazing). As shown for
laboratory batch cultures of the diatoms Skeletonema marinoi and Thalassiosira pseudonana,
and the haptophyte Emiliania huxleyi, the composition and release of metabolites from
phytoplankton cells is growth phase-dependent (Barofsky et al., 2010; Barofsky et al., 2009;
Mausz and Pohnert, 2015; Vidoudez and Pohnert, 2012). The responsiveness of herbivores to
the variable metabolite composition can substantially influence grazing rates and thereby
shape predator-prey interactions (Barofsky et al., 2010). Metabolic variability in endo- and
exometabolomes 1is expected, but was never demonstrated in natural phytoplankton

communities and could be a determining factor for P. pouchetii grazing.

The metabolic investigation of complex natural communities in contrast to defined
monoclonal laboratory cultures is termed metametabolomics. Only a few studies exist that
applied untargeted metabolite profiling on marine phytoplankton communities to search for
novel metabolites (Longnecker et al., 2015a), characterize marine particulate organic matter
(Llewellyn et al., 2015), or support metabarcoding studies (Ray et al., 2016a). The aim of the
present work was to define intra- and extracellular marker metabolites for different growth

phases of Phaeocystis pouchetii laboratory cultures using comparative metabolomics



(Kuhlisch and Pohnert, 2015). With these marker metabolites natural phytoplankton

communities were analyzed and characterized in a metametabolomics approach.

2. Material and methods

2.1. Solvents
For sample processing, the following solvents were used: methanol, water, pyridine (HPLC
grade, Sigma-Aldrich); chloroform, tetrahydrofuran (HPLC grade, VWR); ethanol (for LC,
Merck); and hexane (for GC, Merck).

2.2. Algal cultivation
Phaeocystis pouchetii AJO1 (isolated 1994 from Raunefjord, Norway) was obtained from
Aud Larsen (Bergen University, Norway). Cultures were grown in autoclaved, sterile-filtered
f/2 medium (Guillard, 1975) at 6.7 £ 0.9°C, under a 14:10 h light:dark cycle, at 15-50 umol
photons s' m? provided by fluorescent tubes (Osram L15W/840 Lumilux Cool White).
Cultures were shaken once daily. An exponentially growing stock culture was inoculated into
three batches of 450 mL /2 medium to a concentration of 3.1 + 4.7 x 10* cells mL"!. After
11 days cell densities reached 4.7 x 10° + 5.5 x 10* cells mL"! and cultures were combined to
1.5 L inoculation culture. In 2 L glass bottles 1.8 L cultures (n = 4) were set up at an initial
cell density of 4.6 + 3.3 x 10° cells mL"!'. Another bottle with 1.8 L f/2 medium was used as

medium control.

2.3. Sampling of endo- and exometabolites
After 12 days (A), 26 days (B) and 47 days (C) of culturing, intra- and extracellular sampling
of metabolites from all cultures and the medium control was conducted 2 h after onset of
light. Therefore, aliquots of 0.5 L of the respective culture were collected in glass flasks and
stored at culturing conditions until filtration. During filtration, samples were kept on ice and
two samples were prepared in parallel. Samples were filtered through GF/C filters (¢ 47 mm)
at 650 mbar and the still wet filters immediately transferred to 25 mL glass beakers. One filter
was required to pass the entire volume of all samples A, but due to increasing cell counts two
or three filters, respectively, were required for cultures B and C. After filtration, cells were
immediately re-suspended in 1 mL extraction mix (methanol:ethanol:chloroform, 1:3:1, v: v:
v) and all suspensions of one culture were combined in 4 mL glass vials. Filtration took on
average 20 min and the time between sampling and transfer to extraction mix was below 9 h.
After adding 5 puL (C: 10 uL) 4 mM aqueous ribitol (>99%, Sigma-Aldrich) as internal
standard (IS), samples were vortexed for 60 s and kept at -20°C until analysis 1 month after

the end of the experiment. Filtrates were collected in glass flasks, stored at 4°C in the dark,
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and processed immediately after the end of filtration according to Pree et al. (2016). Briefly,
filtrates were passed at 500-600 mbar through Chromabond® Easy cartridges (Macherey-
Nagel, 3mL, 200mg adsorbent) that were eluted with first methanol and then
methanol:tetrahydrofuran (1:1, v: v). 5 uL IS were added (C) and samples were stored at
-20°C until further analysis. All intra- and extracellular samples were further processed as one

batch each in random order.

2.4. Metadata sampling
Every 2-3 days cultures were shaken and aliquots were sampled to determine chlorophyll a
(Chl a) fluorescence, photosystem II (PSII) efficiency, cell abundance, bacterial abundance
and inorganic nutrient concentrations according to Mausz and Pohnert (2015). Briefly, Chl a
fluorescence and PSII efficiency were determined in a black well plate with a plate reader. Fo
(initial fluorescence) was measured after dark-incubation at 5°C and 30 s double orbital
shaking. To determine cell abundance, samples were fixed with acidic Lugol's solution
(Rodhe et al., 1958) at 1% final concentration and stored dark until they were investigated by
light microscopy. At least 400 cells or at most 16 mm? were counted in a Fuchs-Rosenthal

counting chamber in duplicates at x400 magnification. Growth rates were calculated by

KNoeh* N = population size, ¢ =
K +Ng(ett—1) *" pop >t

iterative fitting of the logistic growth model (N, =
growth time, K = max. population size) to the observed cell abundances. To determine
bacterial abundance, aliquots of 1 mL were fixed with glutaraldehyde at 0.5% final
concentration, frozen in liquid nitrogen and stored at -80°C until flow cytometry analysis.
After thawing, samples were diluted 1:50 with TE buffer (10 mM Tris-HCI, 1 mM EDTA, pH
8.0) and stained with SybrGold. 100 pL stained sample were mixed with 300 uL TE buffer
and 100 uL Fluoresbrite™ Plain YG 1.0 um Microspheres (Polysciences, Germany) and
immediately measured in random order at 525 nm. Reference beads were calibrated with
CountBright™ absolute counting beads (7 um, Life technologies, USA) at 575 nm for 1 min

with 10 uL min’!

. TE buffer was used as blank. To determine inorganic nutrient
concentrations, filtered samples were fixed with 5 pL chloroform and stored at -20°C until
analysis. Phosphate (PO4>") was determined colorimetrically (Hansen and Koroleff, 2007) and
nitrate (NO3") with ion chromatography (Okada and Kuwamoto, 1985). Nitrite (NO2) was

analyzed colorimetrically following Parsons et al. (1984).

2.5. Metabolite extraction and derivatization
Samples were thawed and vortexed. For intracellular metabolite profiling, samples (0.5 mL

per filter) were transferred into 1.5 mL centrifuge tubes (Eppendorf, Germany). Suspensions
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were treated for 10 min in an ultrasonic bath, centrifuged (15 min, 30.000 g, 4°C), and
supernatants were transferred to 1.5 mL glass vials. Samples were evaporated to dryness
under vacuum before subsequent derivatization. For extracellular metabolite profiling,
aliquots of 1.4 mL of the eluates from solid phase extraction were transferred to 1.5 mL glass
vials (A/B: 2 uL IS were added) and evaporated to dryness. Samples were then derivatized
with methoxyamine and MSTFA according to Vidoudez and Pohnert (2012). In cases where
the IS peak was missing, samples were re-derivatized with 10 uL MSTFA and incubated for
30 min at 60°C followed by 30 min at 40°C.

2.6. Gas chromatography-mass spectrometry (GC-MS) measurements
Samples were run in random order on a Trace™ GC Ultra coupled to a ISQ™ LT and
AS3000 II auto sampler (all ThermoScientific™) that was equipped with a DB-5ms column
(Agilent J&W, 30 m, 0.25 mm internal diameter, 0.25 pm film thickness, 10 m Duraguard
pre-column), and analyzed as described in Vidoudez and Pohnert (2012). New, deactivated
glass liners (ThermoScientific™, 5 x 8 x 105 mm inner x outer diameter x length) with glass
wool were used for every batch of 21 samples. Samples were injected using split 10

(intracellular) or splitless mode (1 min; extracellular). The electron impact source was set to

70 eV at 280°C. Resolution was 866 at m/z 502.20 (FWHM = 0.53).

2.7. Data processing and statistical analysis

Chromatograms were converted to NetCDF with the Xcalibur File Converter
(ThermoScientific™) and then to RAW with MassLynx 4.1 DataBridge (Waters®) to allow
background-noise correction with the MassLynx 4.1 CODA tool (Waters®, MCQ = 0.8,
Smoothing window = 5). Signals were de-convoluted with AMDIS 2.71 (Nist) as one batch
job each for intra- and extracellular samples. Peaks were integrated in MET-IDEA 2.08 using
the chromatogram with the highest number of components as model ion file. For software
settings see Vidoudez and Pohnert (2012), instrument type was set to 'quadrupole’. The
resulting peak area table was imported in Microsoft® Excel. All peaks were deleted that
corresponded to the IS, retention index (RI)-mix, and any signal that was negative after
subtraction of the corresponding solvent blank in at least 4 samples of one day. Finally, data
was peak sum normalized. A canonical analysis of principal coordinates (CAP) was
performed according to Vidoudez and Pohnert (2012). Variables (loadings) were screened for
significant correlation with the first two CAP axes using the Pearson correlation test (k = 1,
m=2, a=0.01). Score and loading plots were visualized in SigmaPlot 11.0 (Systat
Softwares) and heat maps in MetaboAnalyst 3.0 (Xia and Wishart, 2016).



2.8. Metabolite identification
Metabolites were identified at different levels according to Sumner et al. (2007): metabolites,
where both retention index and mass spectrum matched a chemical reference standard were
classified as level 1 (L1), others were ranked by spectral similarity to a library compound (L2)
or compound class (L3), or remained unidentified (L4). Selected reference standards (n >200)
were derivatized as described above. Linear retention indices (Van den Dool and Kratz, 1963)
were calculated and a match between compound and reference standard was accepted with
ARI <26 (Koo et al., 2014). Mass spectra as extracted by AMDIS were manually compared to
the following spectral libraries using MS Search 2.0 g (Nist): NIST 11 library version
Golm Metabolome T_MSRI_ID
(http://csbdb.de/csbdb/dload/dl_msri.html; 2004) and GMD_20111121_VARS5_ALK_MSP

(mainlib, replib, nist_ri), Database libraries
(http://gmd.mpimp-golm.mpg.de/download/; 2011), and an in-house library (175 compounds
from several metabolite classes including algal extracts of Skeletonema marinoi). Mass
spectra were regarded to match with a reverse match factor (R.Match) >800, or tagged with '

if the factor was 700-800 and '??' if it was 600-700.

2.9. Sampling of natural phytoplankton communities
Phytoplankton communities including colony blooms of P. pouchetii were sampled in the
Barents Sea and along the North Norwegian coast during the PHAEONIGMA cruise from 02-
07" May 2013 on board of R/V Hdkon Mosby (Figure 1, Table 1). Vertical profiles of
temperature, salinity, depth, oxygen, Chl a fluorescence, transmission and irradiance were
measured at each station with a CTD (Sea-Bird SBE 9) mounted to a rosette sampler with 12

Niskin bottles 4 10 L.

Table 1 Overview over sample location, date and water depth of all seven PHAEONIGMA
stations within the Barents Sea and adjacent North Norwegian fjords.

# Station description  Latitude Longitude  Date Sample depths
1 Arctic water 75°48.15N  20°03.63E 02/05/2013 5m, 16 m, 31 m
2 Polar front 74°4251 N 19°5949E 02/05/2013 6 m, 15m,30m
3 Atlantic water 72°4550 N  20°02.78E 03/05/2013 6m,32m,58 m
4 Inner Porsangerfjord  70°20.95N 25°15.57E 04/05/2013 5 m, 20 m, 40 m
Sa Outer Porsangerfjord 70°51.19N  26°05.36 E  04/05/2013 5 m, 20 m, 41 m
5b Outer Porsangerfjord 70°51.06 N 26°04.70 E  06/05/2013 5 m, 20 m, 40 m
6 Ullsfjord 69°55. 79N 19°53.53E 07/05/2013 5m,33m,50m
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Figure 1 Phytoplankton sampling sites in the Barents Sea and North Norwegian fjords during
the PHAEONIGMA cruise. A) Barents Sea transect: 1- Arctic water, 2- Polar front, 3-
Atlantic water. B) North Norwegian fjord stations: 4- Inner Porsangerfjord, 5- Outer
Porsangerfjord, 6- Ullsfjord, Maps adapted from www.norgeskart.no.

Samples for the analysis of dissolved inorganic nutrients, phytoplankton and Phaeocystis
colonial cell abundance were taken as described in Pree et al. (2016). Briefly, nitrate, nitrite,
phosphate and silicate concentrations were determined colorimetrically using a continuous
flow analyzer (Skalar San+ Autoanalyzer) according to an ISO17025 accredited procedure
(Hansen and Koroleff, 2007). For epifluorescence microscopy, a subsample of 50 mL was
stained with 20 uL primulin (250 pg mL! working solution with 0.1 M TRIS HCI at pH 4),
after 3 min fixed with 25% glutaraldehyde and 70% glycerol to a final concentration of 3.6%
glutaraldehyde and 10% glycerol (v%), filtered onto black filters (Nucleopore, 0.4 um),
mounted on glass slides, and stored at -20°C until cell enumeration and carbon estimation
(Sazhin et al., 2007). Phaeocystis colonial cell abundance was determined for subsamples of
20 mL with a FlowCAM II™ (Fluid Imaging technologies, ME, USA) equipped with a x4
objective and a FC300 flow cell (Fluid Imaging technologies) as in Jonasdottir et al. (2011).
Colonial cell number was calculated from individual images of colonies by a grey scale area

calibrated regression as outlined in Ray et al. (2016b).

Water samples for metabolite analysis were collected above, at, and below the Chla
maximum (Table 1), and transferred to 10 L containers (Nalgene™). Intracellular metabolites
were sampled in triplicates by filtering in parallel 2-6 L. at 600 mbar through GF/C filters (g
47 mm). Larger zooplankton was removed from the filtration units with a pipette. Cells were

re-suspended in 1.2 mL extraction mix as described above. The average time between



sampling and quenching was about 12 h since filtration took about 8-10 h. Filtration and
extraction was performed in a 10°C cold room. Samples were stored on board at -20°C until

transportation on ice to Jena, Germany, and at -80°C until GC-MS analysis 1 year later.

2.10. GC-MS analysis of natural phytoplankton samples
Samples were thawed, diluted with extraction mix to 1.7 mL, and 5 uL IS were added.
Aliquots of 0.7 mL per sample were processed in random order as described above for
intracellular samples. Derivatization was achieved according to Vidoudez and Pohnert (2012)
in a reduced volume of 25 uL. methoxymation solution and 25 pL silylation solution. Samples
with weak IS peak were re-derivatized with MSTFA as described above. GC-MS
measurements were conducted using a 6890N GC equipped with a 7683B auto sampler
(Agilent) coupled to a Micromass GCT Premier™ (Waters®) mass spectrometer. The GC
was operated with glass liners (Agilent, 4 x 6.3 x 78.5 mm inner x outer diameter x length),
split 1, and 250° injector temperature. The MS was used with 300°C source temperature and

dynamic range extension mode. Resolution was >6.000 at m/z 501.97.

2.11. Comparison of laboratory- and field-derived endometabolomes
To qualitatively compare the endometabolites of P. pouchetii strain AJO1 with those of the
natural communities, all GC-MS raw files were converted to NetCDF (MetaboLights
MTBLSxxx) and further processed with MetaboliteDetector 2.0 (Hiller et al., 2009). Using
'RI Calibration Wizard' the peaks of all added RI compounds and the IS were once assigned to
calibrate the system and calculate RI values for all deconvoluted features (for parameters see
Supplementary Table 1, 2). This was done separately for each data set. Using 'Batch
quantification' the features of both data sets were quantified within all chromatograms (for
parameters see Supplementary Table 3). The resulting file was exported to Microsoft® Excel,
features with <3 matches within the entire data set and an average S/N ratio <10 were
removed, and all remaining features (n = 214) manually checked for false or missing matches
based on RI and mass spectrum. A presence-absence data table for laboratory, field and
control samples was generated and plotted as Venn diagram using convex curves (Rodgers et
al., 2010). Features shared between laboratory and field but not control samples were
visualized as semi-quantitative box plots using MetaboAnalyst 3.0 (Xia and Wishart, 2016),
and as cruise transect section plots using Ocean Data View 4.7.10 (Schlitzer, 2016) with
DIVA gridding and automatic scale lengths. Spearman rank correlation coefficients and their
MC estimated p-values and 95%-CI limits were calculated for selected metabolites and

environmental parameters (Supplementary Table 4).
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3. Results
3.1. Growth of Phaeocystis pouchetii AJ0I in batch cultures

The metabolic plasticity of P. pouchetii cells was investigated by comparing endo- and
exometabolomes of different growth phases. To prevent potential overlaying effects of
morphological plasticity, a strain with just one morphotype was selected. P. pouchetii strain
AJO1 consists solely of diploid, flagellated cells, and showed no colony formation in culture
since isolation (Jacobsen and Veldhuis, 2005). Batch cultures were set up and monitored
every 2-3 days throughout a period of 47 days, and sampled three times for intra- and
extracellular metabolite profiling. All cultures showed logistic growth (Figure 2A). Light
microscopy confirmed one flagellated single cell type during the whole growth period. Data
were in accordance with reports on synchronized cell divisions taking place during dark phase
(Jacobsen and Veldhuis, 2005). Directly after inoculation, the cultures remained in lag-phase
for 4 days showing no significant changes in cell abundance or Chl a fluorescence (Figure
2A). During this time span PSII efficiency increased, indicating recovery of the cells after
transfer to the fresh medium (Figure 2B, left panel). During the following 12 days cell
numbers and Chl a fluorescence increased significantly between sampling days (t-test, a =
0.05) indicating exponential growth, and PSII efficiency remained at 0.31-0.35 +0.02.
Metabolites were sampled at day 12. The average specific growth rate (u = 0.38 £ 0.04 d'!) is
in agreement with recently observed rates of the same strain (Pfaff et al., 2016). During the
following 20 days, cell abundances leveled off at about 2x10° cells mL™' indicating the
stationary growth phase. Chla fluorescence slightly increased further, whereas PSII
efficiency first decreased to 0.1 £0.04 at day 29 (=early stationary growth, sampled at
day 26), and then remained low until day 46. During the last two days the fluorescence
decreased significantly (t-test, « = 0.05) and PSII efficiency dropped to 0.04 £ 0.01 while no
significant changes in cell abundance occurred (= late stationary growth, sampled at day 47).
Nutrient concentrations can explain this growth development (Supplementary Figure 1).
During lag and exponential growth neither nitrate nor phosphate were limiting, nitrite was
below detection limit. Nitrate decreased from about 800 to 600 uM at the end of the
experiment, thus cultures never became N-limited. Nitrite increased from day 22 onwards to
4.5 uM. For other algae it has been shown that low irradiance levels can restrict the cellular

nitrite reduction followed by nitrite excretion (Collos, 1998; Lomas and Lipschultz, 2006).
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Figure 2 Phaeocystis pouchetii AJO1 growth-associated parameters as average + standard
deviation (n=4). A) Cell abundance (cells mL™'; black) and Chla fluorescence (RFU =
relative fluorescence units; grey). B) Algal PSII efficiency (left panel) and bacterial
abundance (cells mL!; right panel) within the cultures (filled circles) or control (open circles).
Arrows indicate sampling days of intra- and extracellular metabolites.

Thus, light seems to have been limiting thereby inducing the stationary growth phase.
Phosphate fell below 5 uM at day 29 (<1 uM at day 36) and may have limited algal growth
during the last two weeks of the experiment. All cultures were xenic with an initial bacterial
background of 2x10° bacteria mL™! increasing exponentially during algal exponential growth
and leveling off around 5x107 bacteria mL™! (Figure 2B, right panel). Even though bacteria
can influence algal growth and metabolism (Cole, 1982; Paul et al., 2013), xenic cultures
were investigated as algae naturally co-occur with bacteria. The use of one inoculation culture
should have induced the same effects in all algal cultures. Bacterial metabolites can contribute
to the extracted algal profile, however, with an average biovolume of 0.2 um3 for bacteria
(Sherr et al., 2001) and 65 um3 for P. pouchetii (Vogt et al., 2012) the effect of bacterial cells
that may remain on GF/C filters (Mordn et al., 1999) is regarded to be negligible.
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3.2. Growth phase-specific intracellular metabolites
Metabolic pathways are underlying substantial quantitative and qualitative changes during
growth. In batch cultures physiological adaptations occur simultaneously with the developing
growth environment. In total 518 features were detected by AMDIS and integrated by MET-
IDEA. After data pre-processing, 477 features remained for data analysis: 458 + 6 for
exponential growth, 431 + 27 for early and 398 + 57 for late stationary growth (n =4).
Multivariate statistical analysis of the sum normalized peak areas allowed to differentiate all
three growth phases. Initially, an unsupervised principal coordinate analysis (PCO) was
conducted, with the first two axes explaining 78% sample variation (data not shown). Using
the PCO axes a supervised CAP was conducted (Figure 3A). The replicates of each growth
phase grouped together, whereas the growth phases were separated via two axes (eigenvalues:
axis 1 =0.948, axis 2 = 0.836; squared canonical correlations: axis 1 = 0.898, axis 2 = 0.698).
Separation of the growth phases was confirmed by cross validation (1 out of 12 samples
misclassified) and permutation test (n = 9999, p = 0.0004 for trace statistic). Based on a
critical value of 0.708 (test of multiple correlation using t; n = 12), 225 metabolites were
significantly correlated with the CAP axes (Figure 3B) from which 107 were highly correlated

(>0.8). After removal of features with a retention time <5 min and artifacts (contaminants,
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Figure 3 [Colour] Endometabolic changes of Phaeocystis pouchetii AJO1 laboratory batch
cultures during growth (n = 4). Separation is based on canonical analysis of principal
coordinates (CAP); axis eigenvalues are given in parentheses. A) Score plot of the growth
phases: exponential phase (A, bright blue circle), early stationary phase (B, blue triangle), late
stationary phase (C, dark blue square). B) Loading plot (scaled to score plot) of correlated
intracellular metabolites (>0.708) depicted with their tabulated number (Supplementary
Table 5). C) Heat map of correlated intracellular metabolites (area analyte/peak sum)
indicating high (red) or low (green) relative concentrations in the growth phases. For better
visualization metabolites and samples are clustered hierarchically using the Pearson distance
measure and Ward cluster algorithm.
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S/N <10, doublets), 88 features remained for identification. From those 31% were identified
(L1, n=27), 3% putatively annotated (L2, n=3), 41% putatively assigned to metabolite
classes (L3, n = 36), and 25% remained unknown (L4, n = 22). Most metabolites belonged to
the class of saccharides, sugar alcohols, and sugar acids (n = 31), followed by fatty acids and
derivatives (n=11), and amino acids (n=9). Many metabolites had their highest relative
concentration in the exponential phase (n =32), e.g. amino acids, pyrrole-2-carboxylic acid
and threonic acid, or in the late stationary phase (n = 33), e.g. xylose, maltose, sterols, and a-
tocopherol, whereas only 12 metabolites were correlated with the early stationary phase, e.g.

glycerol and scyllo-inositol (Figure 3C).

Saccharides, sugar acids and sugar alcohols were the most pronounced regulated substance
class and showed strong interphase variation. Most saccharides were significantly correlated
with the late stationary phase with either constantly increasing relative concentrations (e.g.
xylose, ribose, maltose, met. 204, 323, 413), or strong up-regulation in both early and late
stationary phase (e.g. glyceraldehyde, met. 231). Most of the sugar alcohols (glycerol, scyllo-
inositol, met. 285, 291, 293, 343), 1,6-anhydro-B-D-glucose, and three unidentified
saccharides (putatively identified (di)galactosylglycerol, met. 238, 428) were correlated with
the early stationary phase. One unidentified sugar alcohol (met. 275) was up-regulated in the
late stationary phase. In this phase, mannitol showed a strong down-regulation, as did two
pentafuranoses (met. 186, 194) and one sugar acid (putatively identified as quinic acid,
Supplementary Figure 2). Most sugar acids (threonic acid, met. 195, 197, 294, 302) and two
unknown saccharides (met. 364, 403) were significantly correlated with the exponential phase
with decreasing relative concentrations towards the late stationary phase. Most fatty acids and
derivatives - the second most pronounced regulated substance class - were correlated with the
late stationary growth (putative hexanoic acid, arachidonic acid (AA), eicosapentaenoic acid
(EPA), 1-palmitoyl-glycerol, met. 381, 387, 392), or both the early and late stationary phase
(putative octadecadienoic- and octadecatrienoic acid). The only exception were tetra- and
hexadecanoic acid which showed higher relative concentrations in the exponential (tetra-) and
early stationary phase (hexa-). Also an unidentified alcohol (met. 155), three hydrocarbons
(putative dodecatriene, met. 389, 433), and two sterols (24-methylcholesta-5,22-dien-3[3-ol,
met. 452) were significantly correlated with the late stationary phase. In contrast, amino acids
(serine, glycine, alanine, valine, threonine, pyroglutamic acid, a proline-derivative) were

correlated with the exponential phase and decreased towards the late stationary phase. Other
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metabolites were either correlated with the exponential (pyrrole-2-carboxylic acid, met. 86,

330) or late stationary growth (a-tocopherol, putative phenol, met. 261, 267, 319, 322).
3.3.  Growth phase-specific extracellular metabolites

In total 884 features were extracted from all chromatograms. After data pre-processing, 807
features remained for data analysis: 530 + 47 for the exponential phase (n = 3), 543 + 109 for
the early and 489 + 131 for the late stationary phase (n = 4). Statistical analysis of the sum
normalized peak areas differentiated the growth phases (Figure 4A). The first two axes of the
unsupervised PCO explained 75% of the sample variation. In the supervised CAP two axes
separated the growth phases (eigenvalues: axis 1 = 0.977, axis 2 = 0.862; squared canonical
correlations: axis 1 = 0.955, axis 2= 0.744). Group separation was confirmed by cross
validation (0 out of 12 samples misclassified) and a permutation test (n = 9999, p = 0.0001 for
trace statistic). Based on a critical value of 0.735 (test of multiple correlation using t; n=11),
287 features were significantly correlated with the CAP axes (Figure 4B). After removal of
features with a retention time <5.6 min and artifacts, 89 features remained for identification.
From those 10% were identified (L1, n=9), 16% putatively annotated (L2, n = 14), 20%
putatively assigned to metabolite classes (L3, n=18), and 54% remained unknown (L4,
n =48). The most abundant substance class was carboxylic acids (n= 11), followed by
saccharides (n = 6), fatty acids (n = 2) and alcohols (n = 2). Hydrocarbons and sugar alcohols
were represented with one metabolite each, and a large number of metabolites belonged to
other classes (n= 15). Many metabolites had their highest relative concentration in the
exponential phase (n = 30), e.g. succinic acid, putatively identified hydroxybutanoic acid, and
a lumichrome-like metabolite, or in the late stationary phase (n = 26), e.g. ribose, adenosine,
putatively identified guanosine, and an indole derivative. Only 19 metabolites were correlated

with the early stationary phase, e.g. glycolic acid, glycerol, and nonanoic acid (Figure 4C).

Carboxylic acids were the most abundant regulated metabolites in the exometabolome and
correlated with the exponential to early stationary growth (e.g. succinic acid, fumaric acid,
glycolic acid, pyruvic acid, and putative hydroxybutanoic acid). Saccharides were correlated
with the exponential (met. 69, 71, 602) or late stationary growth (ribose, putative
ribofuranose). The sugar alcohol glycerol, the fatty acid nonanoic acid, and the putatively
identified alcohol 1-octanol were correlated with the early stationary growth. An unknown
indole derivative, different from the monitored indole-3-ethanol, -acetic acid, -propanoic acid,
and -butanoic acid (Supplementary Figure 3), was correlated with the late stationary phase

and increased throughout growth.
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Figure 4 [Colour] Exometabolic changes in Phaeocystis pouchetii AJO1 laboratory batch
cultures during growth (n = 4). Separation is based on canonical analysis of principal
coordinates (CAP); axis eigenvalues are given in parentheses. A) Score plot of growth phases:
exponential phase (A, bright blue circles), early stationary phase (B, blue triangles), late
stationary phase (C, dark blue squares). B) Loading plot (scaled to score plot) of correlated
extracellular metabolites (>0.735) depicted with their tabulated number (Supplementary
Table 6). C) Heat map of correlated extracellular metabolites (area analyte/peak sum)
indicating high (red) or low (green) relative concentrations in the growth phases. For better
visualization metabolites and samples are clustered hierarchically using the Pearson distance
measure and Ward cluster algorithm.

3.4. Phaeocystis pouchetii in natural phytoplankton communities

Phytoplankton communities were sampled along a transect in the Barents Sea (stations 1-3;
Figure 1) and along the North Norwegian coast (stations 4-6; Figure 1) capturing different
bloom scenarios (Figure 5). The northernmost station in the Barents Sea (station 1) was
located at the ice edge with low water temperatures, slight stratification, non-limiting
nutrients, and a biomass-rich, diatom-dominated algal bloom (Gyrosigma tenuirostrum,
Thalassiosira spp., Odontella aurita). P. pouchetii showed minor abundance, colonies were
not observed. Station 2 was located near Bjgrngya in the polar front region characterized by a
well-mixed water column down to the shelf and low algal biomass again dominated by
diatoms (Thalassiosira spp., Fragilariopsis oceanica, O. aurita) and low abundance of
P. pouchetii as described for station 1. The southernmost station in the Barents Sea (station 3)
was located within the Atlantic water inflow represented by elevated temperatures and
salinities, a well-stratified water column, and high nutrient concentrations. The phytoplankton
bloom was dominated by diatoms (Thalassiosira spp., Skeletonema costatum, Chaetoceros
spp.) and P. pouchetii which was present with high abundance of colonies (5 um cell size).
Station 4 was located in the inner Porsangerfjord and was characterized by a shallow mixed
upper layer and a highly stratified bottom layer with limiting nutrient concentrations (at Chl a

maximum: 0.22 uM silicate, 0.05 uM phosphate, nitrate below detection level). The algal
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bloom was dominated by P. pouchetii (about 50% biomass) in high abundance of colonies
(5 um cell size). The second most biomass-rich taxon was diatoms (Thalassiosira spp.,
Thalassiosira nordenskioldii, Chaetoceros socialis). Station 5a and 5b were both located in
the outer Porsangerfjord with a shallow mixed upper layer, a well stratified layer below, and a
bottom layer (>140 m depth) with increasing temperature and salinity. The Chl @ maximum
was shallow (0-20 m) with reduced to limiting nutrient concentrations (<0.12 uM phosphate,
<0.7 uM nitrate). The phytoplankton community was dominated by P. pouchetii (up to 85%
of the biomass) present with high abundance of colonies (5 um cell size). The southernmost
station was located in the outer Ullsfjord (station 6) with a mixed upper layer and stratified
water below. Nutrients were reduced towards the surface, nitrate and phosphate even limiting
(at 5 m depth: below detection limit). Algal biomass was low with a deep Chl ¢ maximum at
30-40 m depth slowly decreasing towards the bottom. The population was dominated by
ciliates, flagellates and P. pouchetii. Colony abundance increased with depth and cell sizes
varied in contrast to previous stations between 2-6 pm with a high proportion of large cells
(40% at 6 um). In summary, P. pouchetii characterized the phytoplankton communities at
stations 3-6 present with high abundance of colonies primarily at 5 um cell size. These
stations were therefore well-suited to test if growth phase-specific endometabolites as
determined for P. pouchetii AJO1 could be detected in the field and used to characterize the

physiological state of algal blooms.
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Figure 5 [Colour] PHAEONIGMA cruise data with stations sampled along a transect in the
Barents Sea (Station 1-3) and in North Norwegian fjords (Station 4-6) as indicated in Figure 1
Depth profiles of water temperature (blue; °C), salinity (red), density (dashed line; kg m™)
and Chl a (green; pg L) as determined in situ with a CTD. B) Depth profiles of dissolved
inorganic nutrient concentrations (umol L) of phosphate (violet), nitrate (orange) and silicate
(black). C)-E) Phytoplankton community characteristics above, at and below the Chl a
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maximum as determined by microscopy and FlowCAM. C) Relative biomass (mg C m3) of
phytoplankton taxa: Phaeocystis pouchetii (P.p.), diatoms (diat.), flagellates (flag.), ciliates
(cil.), unknown taxa (u.t.). D) Proportion of different cell sizes of P. pouchetii ranging from
2 um (light grey) to 6 um (dark grey). E) Abundance (x100 mL™") of P. pouchetii colonial
cells. Grey horizontal lines indicate sampling depths for metabolite profiling. n.a. = not
available.

3.5. Metametabolome analysis of natural phytoplankton communities
In total, 572 features were extracted by MetaboliteDetector 2.0 (Hiller et al., 2009) from
laboratory and field data. From these, 192 features were removed as contaminants since they
were only found in control samples, and another 198 features were identified as artifacts.
Manual verification revealed that 30% of the remaining features were also present in control
samples. These were excluded as well from further discussion. Thus, 47 features were unique
for Phaeocystis cultures, 29 features were unique for field samples, and 51 features were
shared between laboratory and field samples (Figure 6A, Supplementary Table 7). About 50%
of the metabolites that occurred both in P. pouchetii cultures and in the field were growth
phase-dependent in the cultures, 25% were not regulated, and for the remaining regulation is
unknown. Three main occurrence patterns were found in the field based on hierarchical
cluster analysis of average normalized peak areas per station (Pearson distance measure, Ward
cluster algorithm, Supplementary Figure 4): high metabolite abundance at diatom-dominated
stations, at P. pouchetii-dominated stations except station 4, and at station 4 (Figure 6B).
Within the P. pouchetii-associated metabolites are the sugar alcohols mannitol (rs = 0.55, p-
value = 0.01) and scyllo-inositol (Figure Figure 6B, rs = 0.64, p-value = 0.002), the fatty acids
octadecatetraenoic acid and docosahexaenoic acid, 24-methylcholesta-5,22-dien-3f3-ol (Figure
6B), and a putative 1-stearoyl-glycerol. The fatty acids hexadecanoic acid, octadecanoic acid
(Figure 6B), octadecenoic acid, the alcohol octadecan-1-ol, and several unknown metabolites
formed a subclade with higher abundance at station 3 and lower at station 6. In the clade with
high metabolite abundance at the nutrient-limited station4 are primarily mono- and
disaccharides (ribose, a pentose, a hexose (Figure 6B), maltose (rs =-0.51, p-value =0.03),
met. 403, 413), as well as fatty acids and derived metabolites (hexadecenoic and
polyunsaturated octadecanoic acid, 1-myristoyl-glycerol (Figure 6B), 1-palmitoyl-glycerol)
and phytol. Within the diatom-associated metabolites are threonic acid, several saccharides
(erythrose, met. 138, 254, 256, 352, hexitol (Figure 6B)), the fatty acids EPA (rs = 0.54, p-
value =0.01) and met. 322, and three phytol-like structures. Thus, from the P. pouchetii
endometabolites especially saccharides, sugar alcohols, fatty acids and derived metabolites,

sterols and terpenes were re-detected in the field with three main occurrence patterns.
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Figure 6 Occurrence of Phaeocystis pouchetii endometabolites within natural phytoplankton
communities of the Barents Sea and North Norwegian fjords. A) Area-proportional Venn
diagram of unique and shared metabolites between P. pouchetii laboratory cultures (n = 12),
natural phytoplankton communities (n =358), and controls (n=7). B) Box-Whisker plots
showing abundance of selected shared metabolites (as peak area/peak sum) at Barents Sea (1-
3) and North Norwegian fjord stations (4-6; n = 8-9, averaged over all depths). The depicted
metabolites are representative for different occurrence patterns e.g. Phaeocystis dominance
(top row). Insert shows relative biomass of phytoplankton taxa at the respective sites.

4. Discussion
4.1. Growth-specific endometabolites of P. pouchetii

It has long been expected that metabolic plasticity of phytoplankton may profoundly influence
zooplankton grazing and transfer rates, especially for haptophytes such as Phaeocystis
(reviewed in Nejstgaard et al. (2007)). However, until recently thorough metabolite analyses
of the prey have not been included in grazing studies. When included, it has indeed been
shown that phytoplankton species such as the diatom Skeletonema marinoi can switch from an
avoided to a highly ingested food source in different growth phases in accordance with
changes of their metabolome (Barofsky et al. 2010). Endometabolomic plasticity has still only
been demonstrated for rather few microalgal taxa including diatoms (Vidoudez and Pohnert,
2012) and haptophytes (Mausz and Pohnert, 2015). This study on P. pouchetii is the first
report of endometabolomic plasticity of a dominant Arctic and Boreal haptophyte.
Physiological changes in batch cultures of P. pouchetii were characterized using untargeted
metabolomics. Growth phases as determined by cell abundance and Chl a fluorescence were
associated with distinct endometabolic states. Most pronounced were alternations in amino

acid, fatty acid and carbohydrate metabolism.
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The exponential growth was characterized by high abundance of free amino acids reflecting
high metabolic activity towards proteins under nitrogen-replete conditions. This increased
amount of free amino acids during intense growth has previously also been reported from
diatoms and higher plants (Bromke, 2013). Elevated glutamate levels might be directly linked
to NH4" incorporation. Alanine, which is formed from glutamate, is up-regulated as well.
Serine and glycine represent photorespiration products, threonine is derived from the
tricarboxylic acid (TCA) cycle via aspartate, and valine from glycolytic pyruvate (Bromke,
2013). The dominance of these amino acids in the early growth phase thus indicates active
carbon and nitrogen acquisition. The composition of free amino acids in P. pouchetii differs
from other marine microalgae (Mausz and Pohnert, 2015; Vidoudez and Pohnert, 2012),
which may indicate taxon specificity in nitrogen assimilation and amino acid metabolism. The
observed pattern can be used as specific physiological marker for actively growing
Phaeocystis cells. Pyrrole-2-carboxylic acid is linked to amino acid metabolism via proline
and is involved in pyrrole biosynthesis (Walsh et al., 2006). Even though this carboxylic acid
has been reported for Emiliania huxleyi (Mausz and Pohnert, 2015) and Ostreococcus taurii
(Hirth et al., 2017), its role in microalgal metabolism, particularly during exponential growth,
in not known. Threonic acid, an oxidation product of ascorbic acid, was also present in higher
amounts during exponential phase. Ascorbic acid is a well-known antioxidant in chloroplasts
that scavenges reactive oxygen species. Oxidation of dehydroascorbic acid can be a source for
the observed threonic acid (Foyer and Shigeoka, 2011; Parsons et al., 2011). It may thus mark

the oxidative stress during high photosynthetic activity.

Characteristic for the exponential and even more the early stationary growth of P. pouchetii
were mannitol and a quinic acid like metabolite. Mannitol has been found in several
stramenopiles e.g. phaeophyta and chrysophyta but not in diatoms (Dittami et al., 2011a), and
can thus be considered as a further specific metabolic marker. It acts as an osmolyte and
antioxidant in phaeophyta (Davison and Reed, 1985; Dittami et al., 2011b), and is the main
short-term carbon storage molecule in E. huxleyi (Obata et al., 2013). Mannitol may thus also
play a role in carbon assimilation of P.pouchetii. It would further indicate active
photosynthesis under growth limitation. The quinic acid like metabolite showed high mass
spectral similarity to a reference standard, however, retention indices were not alike
(Supplementary Figure 2). As quinic acid is related to the shikimate pathway fueling the
biosynthesis of e.g. aromatic amino acids, mycosporine-like amino acids, and indole

derivatives, a further chemical characterization is recommended.
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Mono- and disaccharides as well as sugar alcohols such as glycerol, pentitols, and scyllo-
inositol, reflecting an active carbohydrate metabolism, characterized early stationary growth.
The presence of polyols may indicate interconversion of monosaccharide building blocks via
pentitols (Loewus, 1971). Myo-inositol is most commonly reported and plays diverse roles
e.g. in signaling, phosphate storage, or synthesis of oligosaccharides, glycerophospholipids,
and indole-3-acetic acid (IAA) conjugates. In P. pouchetii myo-inositol was present in small
amounts and not regulated. Instead, the stereoisomer scyllo-inositol was elevated at early
stationary phase. This isomer has been previously reported for the haptophyte Paviova with
unknown function (Kobayashi et al., 2007). Inositol isomers are metabolized from myo-
inositol and e.g. involved in phosphor storage (Loewus and Murthy, 2000). Glycerol, which

may be derived from glycolysis, is involved in lipid metabolism (Xue et al., 2017).

Induced lipid metabolism during early and late stationary growth is also reflected by the
elevated presence of glyceraldehyde and two methylated C18-polyunsaturated fatty acids
(PUFAs). Glyceraldehyde may be derived from hexoses fueling the TCA cycle and
potentially also the lipid metabolism via interconversion to glycerol. C18-PUFAs are
synthesized from C18:0 via C18:1®09 (Miihlroth et al., 2013). Phaeocystis is known to contain
high amounts of C14:0, C16:0, C18:0 and C18-PUFAs (especially C18:1®w9 and C18:5w3) in
the polar lipid fraction which is mainly derived from cell membranes (Hamm et al., 2001).
The role and occurrence of free and methylated fatty acids is, in contrast, poorly understood
(Hirth et al., 2017). However, the general trend of up-regulated lipid metabolism with the
onset of stationary growth is in accordance with earlier reports on this metabolite class under

light, nutrient, or osmotic stress (Roessler, 1990).

In late stationary growth mono- and disaccharides, free fatty acids, hydrocarbons, sterols and
alcohols became dominant. These metabolites provide evidence for an active metabolism of
carbohydrates, lipids and derived structures. Within the life cycle of Phaeocystis,
monosaccharides play a role as precursors and intermediates in regular cell metabolism,
whereas disaccharides are involved in the synthesis of polysaccharides for carbon storage, cell
wall and mucus formation (Alderkamp et al., 2007). Thus, uncoupling of Calvin and TCA
cycle during stationary phase may lead to an accumulation of carbohydrates. Monosaccharide
accumulation may further reflect the catabolism of storage polysaccharides, as enhanced
degradation of the storage compound glucan would go ahead with a direct transformation of
glucose. The main sterol in P. pouchetii is 24-methylcholesta-5,22-dien-3B-ol (Hamm et al.,

2001; Nichols et al., 1991), that was found in elevated quantities during later growth phases.
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Also the membrane antioxidant a-tocopherol is most abundant in the late stationary phase.
Both metabolites are relevant for membrane stability during declining growth (see Mausz and
Pohnert (2015); Vidoudez and Pohnert (2012) and references therein). The polyamine
putrescine, that marked the declining growth of Skeletonema marinoi and Alexandrium
tamarense (Lu and Hwang, 2002; Vidoudez and Pohnert, 2008), was neither detected in
P. pouchetii nor in E. huxleyi or other haptophytes (Hamana and Niitsu, 2006; Mausz and
Pohnert, 2015). This demonstrates different strategies in metabolic stress response within

algal lineages during bloom decline.

The growth physiology of P. pouchetii is thus reflected in the endometabolites, such as amino
acids, fatty acids and carbohydrates. Besides general metabolic responses (e.g. a-tocopherol),

also taxon-specific responses are observed (e.g. scyllo-inositol, putrescine).

4.2. Growth-specific exometabolites of P. pouchetii as physiological markers
Marine phytoplankton releases diverse mixtures of dissolved organic matter (DOM)
composed of amino acids, peptides, carbohydrates, fatty acids, lipids and nucleic acids by
both passive leakage and active exudation (Thornton, 2014). Algal exometabolomes may thus
reveal qualitative and quantitative differences with regard to species composition (Becker et
al., 2014), growth phase (Barofsky et al., 2009; Longnecker et al., 2015b), or associated
bacteria (Alsufyani et al., 2017). Growth phase-dependent changes have been rarely
investigated for marine microalgae (Barofsky et al., 2009; Granum et al., 2002). P. pouchetii

is the first haptophyte which is profiled on the exometabolite level during growth.

Within the exometabolome of P. pouchetii, several of the released metabolites were growth
phase-dependent. Compared to the endometabolomes, a smaller fraction of the detected
signals could be identified based on reference compounds and library-based identification.
Since the identification of metabolites discriminates for "known" compounds that are well-
investigated and included in libraries, mainly primary metabolites or those close to primary
metabolism are covered. The proportion of these "knowns" is lower in the open water
compared to the cellular content, potentially as a result from exudation of secondary
metabolites with specialized functions (Pohnert et al., 2007). In addition, primary metabolites
might be degraded or otherwise transformed once released into the environment and therefore

not be identified by library-based approaches.

Some of the identified metabolites or metabolite classes have already been observed and
discussed earlier for microalgae, such as short chain alcohols and fatty acids (Kambourova et

al., 2004). Glycerol has been suggested as algal derived carbon source for associated bacteria
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(Alsufyani et al., 2017). Putatively identified lumichrome - known as algal quorum sensing
agonist of associated bacteria (Meyer et al., 2017) - was elevated during exponential growth.
This compound was also found in E. huxleyi based on intracellular metabolite profiling
(Mausz and Pohnert, 2015), a release mechanism as observed here would explain a plausible
function in the interaction of the alga with the bacterial community (Rajamani et al., 2008). In
the following, the extracellular occurrence of carboxylic acids, 3-alkylindoles and nucleosides

1s addressed.

Several carboxylic acids were detected in the exometabolome of P. pouchetii, e.g. succinic
acid, pyruvic acid and glycolic acid that are all indicators for high metabolic activity. Succinic
acid is an intermediate of the TCA cycle showing highest abundance during exponential
growth which would be in accordance with the overflow hypothesis of DOM release under
excess carbon fixation (Thornton, 2014). Release can also be high during growth phase
transitions due to imbalance situations, which may explain that elevated amounts of pyruvic
acid were detected extracellularly during exponential and early stationary phase. Pyruvic acid
fuels the TCA cycle and fatty acid synthesis, and plays a role in carbon assimilation via [3-
carboxylation in the chloroplast (Tsuji et al., 2009). Succinic and pyruvic acid are involved in
carbon as well as nitrogen metabolism and a clear association to one of the two is therefore
not possible (Zhang et al., 2016). Glycolic acid is formed as photorespiration intermediate of
actively photosynthesizing algae under high light intensities, high O or low CO., and is
excreted into the medium in exchange with bicarbonate (Tolbert and Zill, 1956). It was most
abundant during early stationary phase reflecting active photosynthesis and high cell numbers.
Taken together this group of compounds clearly shows that P. pouchetii releases substantial
amounts of reduced carbon into the surrounding environment that might directly fuel

microbial proliferation associated with blooms.

An indole derivative that increased in abundance throughout growth was also identified in the
metabolomics survey (Supplementary Figure 3). Indole-3-acetic acid (IAA) is a well-known
plant growth and development hormone. It is excreted by marine bacteria promoting algal
growth (Amin et al., 2015) or killing their algal host (Segev et al., 2016), and by the alga
E. huxleyi with a putative intraspecific signaling function (Labeeuw et al., 2016). Elevated
IAA levels inhibit algal growth and may thus control population density comparable to
quorum sensing in bacteria (Piotrowska-Niczyporuk and Bajguz, 2014). Several other indole
derivatives are known from plants and may be involved in microalgal growth regulation as

well (Lau et al., 2009; Ludwig-Miiller, 2000). Further investigations are needed to elucidate
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the exact chemical identity, origin and role of the extracellular indole derivative in

P. pouchetii cultures.

In the late stationary phase the purine nucleosides adenosine and putative guanosine were
elevated. Extracellular nucleosides have already been observed for Synechococcus sp. (Fiore
et al., 2015). However, origin, role and fate of these metabolites can only be hypothesized.
Their increase during late stationary phase may be associated with enhanced membrane
permeability due to autocatalytic cell death (Franklin et al., 2012), DNA degradation, or the
release of other precursor molecules, such as cAMP (Francko and Wetzel, 1980).
Extracellular nucleosides and related metabolites can be re-incorporated by diatoms (Werner,
1971) and play a signaling role in the reproduction and wound response of macroalgae
(Huidobro-Toro et al., 2015; Torres et al., 2008). Production and fate of extracellular

metabolites are further closely linked to associated bacteria (Buchan et al., 2014).

The growth physiology of P. pouchetii is thus reflected in the exometabolome by the
occurrence of e.g. carboxylic acids and ribonucleosides. In addition, molecules such as a 3-
alkylindole and lumichrome-like metabolite with putative signaling functions are constituents
of algal exometabolomes, and point towards a potentially complex signaling chemistry. The
present study therefore paves the way to a more comprehensive interpretation of the

metabolite interactions during bloom development and decay in P. pouchetii.

4.3. Physiological marker metabolites in natural plankton assemblages
Metabolite profiles of phytoplankton blooms depend on algal taxonomy, environmental
factors, and the inherent algal physiology (Mayzaud et al., 1989; Nichols et al., 1989). The
relevance of traditional chemotaxonomy approaches has recently been questioned, since
metabolic variability during growth phases of one species might be more substantial than
differences between species (Barofsky et al., 2010; Bell et al., 2010; White et al., 2015). This
substantial plasticity is documented in this study in both, laboratory and field experiments.
Previous work linked fatty acids to trophic relationships as discussed in Dalsgaard et al.
(2003), and potential senescence markers are reviewed by Rontani (2001). But very few
studies indeed provide a direct link of metabolic variability in the field with algal
performance, as demonstrated for the resistance to viral infection in E. huxleyi (Vardi et al.,
2009). Our data now allow surveying metabolic markers of growth phase-dependent
physiology in the field using an unbiased metabolomics approach and pave the way to a better

understanding of phenotypic variability in the plankton.
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At all cruise stations Phaeocystis was detected and, in accordance, many of the
endometabolites identified in laboratory cultures were also detected in all investigated natural
phytoplankton communities in variable concentration. A diverse metabolic landscape shaped
by the abundance of various phytoplankton in different growth phases was recognized at the
cruise stations (Figure 7). Overlaying influences of e.g. irradiance and bacterial metabolism
additionally modulate the observed metametabolome. Light attenuates with water depth,
which has a strong impact on the photosynthetic activity of all algal cells and on the release of
metabolites such as hexose that decreases in greater depth (Figure 7B). Also reduced nutrient
concentrations of e.g. NOs; and PO4* influence algal physiology and metabolism.
Accordingly, in the inner Porsangerfjord (Station 4, Figure 7C) distinct endometabolite
profiles were observed with increased levels of e.g. several mono- and disaccharides as well
as hexadecenoic acid, 1-myristoyl-, and 1-palmitoyl-glycerol, and phytol. This distinct pattern
may be a result of nutrient limitation and the resulting stress metabolism as observed during
the late growth phase in laboratory cultures. In addition, the decline of the diatom bloom
(Chaetoceros spp.) as indicated by high bacterial production (0.31 ug C L' h') and
abundance of heterotrophic flagellates (e.g. Gyrodinium lachryma) may be reflected in the

metabolic maps.

Several metabolites were most abundant at the stations dominated in biomass by Phaeocystis
(Figure 7E). Their differential distribution within these blooms reflects different bloom
phases. Mannitol, which is not reported in diatoms (Dittami et al., 2011a), showed an
interesting pattern: it was lower at stations 5a/b with high biomass contribution of Phaeocystis
(>60%) and higher at stations with low Phaeocystis biomass (15-35%). Elevated mannitol
levels during exponential and early stationary growth in P. pouchetii would thus correspond
to an earlier bloom phase with high carbon acquisition at station 3. Stations 4-5 were
dominated by P. pouchetii in a stationary bloom phase. The high carbon assimilation at
station 6 may be attributed to physiological changes: colony abundance was low and
increased with depth. Cell sizes ranged from 2-6 um with a high proportion of 6 um cells (ca.
50%) and a relative increase of smaller cells with depth (Figure 5). This indicates bloom
senescence with sinking colonies that induces the release of flagellated single cells (Reigstad
et al., 2000; Rousseau et al., 1994). Station 3 was also characterized by several free fatty acids
reflecting active lipid metabolism, whereas stations 5-6 showed high levels of octadecan-1-ol
and the sterol 24-methylcholesta-5,22-dien-3B-ol. This sterol is a marker for late stationary

growth in the Phaeocystis laboratory cultures and was relative to Phaeocystis biomass highest
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at station 6 and lowest at station 4 confirming again the determination of different bloom
phases at the cruise stations. The occurrence of a few metabolites was either highly correlated
with the biomass of diatoms (Figure 7D, EPA) or of Phaeocystis (Figure 7E, C18:1) and

therefore rather reflects algal taxonomy than physiology.
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4.4. Conclusion
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Taken together, a diverse metabolic landscape in natural phytoplankton blooms can be linked
to physiological conditions of P. pouchetii using the information of endometabolites of
laboratory cultures. The physiological response of phytoplankton cultures and communities to
irradiance, nutrient concentrations, and bloom phase is reflected in their (meta)metabolite
profiles and can be discriminated from species-specific metabolites. Characterization of the
physiological state of Phaeocystis blooms in addition to classical methods such as
microscopy, pigment analysis, or targeted analyses of fatty acids, dimethylsulfoniopropionate
or polyunsaturated aldehydes can give direct information on food quality and may help in the
interpretation of zooplankton grazing variability (Estep et al., 1990; Ray et al., 2016a; Ray et
al., 2016c). Bloom states and metabolic states might also serve as predictors for bloom

succession and toxicity of harmful algae.
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Abstract

Quantification of grazing losses of marine heterotrophic bacteria is critical for understanding nutrient and
carbon pathways in aquatic systems. The dilution method is a commonly used experimental approach for
quantifying bacterivory. However, valid estimates of grazing rates obtained using this method depend on sev-
eral methodological assumptions including that the method does not influence specific growth rates of bacte-
ria. Here, we hypothesize that filtration during the set-up of a dilution experiment has the potential to
release allelochemicals from phytoplankton cells and thereby stimulate or inhibit bacterial growth with the
consequence of biased grazing estimates. We tested this hypothesis during a natural Phaeocystis pouchetii
bloom at two different locations within an Arctic fjord. Results from the dilution experiments suggest higher
gross growth rate and grazing impact for bacteria in the outer fjord compared with the inner fjord. However,
specific growth rates estimated by bacterial production cell ' were significantly elevated in dilutions of water
from the outer fjord but not the inner fjord. The analysis of dissolved metabolites in the seawater from both
experiments prior and after filtration revealed altered metabolic profiles after filtration at both stations. As
unaffected specific growth of prey on dilution is one of three fundamental assumptions of the dilution
method, we conclude that it is important that empirically estimated bacterial specific growth rates be rou-

tinely included when using the dilution method to quantify bacterivory.

Marine heterotrophic prokaryotes (subsequently referred
to as bacteria) are important players on a global scale in bio-
geochemical processes, such as nutrient uptake, carbon
cycling and remineralization. Whereas methods for determi-
nation of bacterial abundance, community composition and
activity are well established today, quantification of bacterial
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interactions with other components of the microbial food
web and their dynamics remain a major challenge in the
field. Grazing by heterotrophic nanoflagellates (HNF) and
microzooplankton on bacteria is, together with viral lysis,
the main cause of bacterial mortality (Proctor and Fuhrman
1990; Sherr and Sherr 1994; Suttle 2007). Direct measure-
ment of bacterivory is challenging and a range of experimen-
tal methods have evolved, which can be categorized into
three approaches. First, the use of fluorescent-labeled (Sherr
et al. 1987) or radio-labeled (Lessard and Swift 1985) bacte-
ria, second, the use of size fractionation (Wright and Coffin
1984) or dilution (Anderson and Rivkin 2001; Evans et al.
2003; Pearce et al. 2010; Pearce et al. 2011) to uncouple
predator and prey, and third, the direct inspection of food
vacuoles of predators (Dolan and Simek 1999). Often, the
different approaches give results which are not necessarily
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Table 1. Definitions of bacterial growth rates (d™").

Estimating bacterivory using dilution method

Net growth rate (k)
Hassett 1982)
Gross growth rate (u)
intercept (Landry et al. 1995)
Specific growth

rate (.“specific)

Change of bacterial numbers over time in presence of grazers and viruses, often referred to as apparent growth (Landry and
Change of bacterial numbers over time in absence of grazers and viruses, in dilution experiments y corresponds to the y-axis

Rate of biomass production per unit biomass as estimated from leucine incorporation (biomass per time unit per volume)
of bacterial abundance (biomass or cell concentration per volume). Due to short incubation time (1 h typically), it is

usually used as an estimate for gross growth rate (Ducklow 2000; Kirchman 2001), and sometimes referred to as
independent growth measure (e.g., Pasulka et al. 2015)

comparable because each approach contains shortcomings
not resolved yet (Vaque et al. 1994).

In comparison to the methods using labeled bacteria or
food vacuole inspection, the major advantage of size fractio-
nation and the dilution technique is their ability to estimate
both grazing and growth of the prey community (net and
gross growth). In size fractionation experiments growth and
grazing are based only on comparison between predator-free
incubations and untreated incubations. The dilution method
includes a gradient of dilution with predator-free water and
thereby, theoretically results in a more accurate estimate of
grazing and growth rates.

The dilution method (Landry and Hassett 1982) was
designed to estimate growth and grazing losses of phytoplank-
ton but has also been applied to determination of bacterial
growth and bacterivory (Anderson and Rivkin 2001; Evans
et al. 2003; Pearce et al. 2010, 2011). For both prey organisms,
weaknesses of the dilution method include the need for exper-
imental manipulation and the typically long incubation time
of 24 h (Landry 1994; Schmoker et al. 2013). Several studies
revealed that preparation of dilutions by addition of whole
seawater (WSW) to filtered seawater (FSW) can result in
changed grazer behavior (Moigis 2006), differences in bacte-
rial community composition (Agis et al. 2007), and enrich-
ment of organic and inorganic nutrients (Ferguson et al.
1984). During some phytoplankton blooms, such as Phaeocys-
tis pouchetii which is known to release organic material [review
by Alderkamp et al. (2007)], preparation of FSW can cause
release of dissolved metabolites that can inhibit phytoplank-
ton growth in diluted treatments (Stoecker et al. 2015). Meas-
urements of bacterivory may be more sensitive to
experimental manipulation and long incubation times than
measurements of herbivory because of the great potential of
bacteria to be both stimulated and/or inhibited by released
metabolites or nutrients and the relatively rapid response
times of bacteria compared with phytoplankton assemblages.

In this study, we applied the dilution technique to mea-
sure bacterivory during a P. pouchetii bloom in coastal Arctic
waters. Two locations within a fjord (inner and outer fjord,
subsequently referred to as IF and OF) were selected for
setting-up dilution experiments. We tested the hypotheses

that (1) 0.2 um filtration of seawater during the set-up of a
dilution experiment alters the metabolic profile of the water
with a chance to release allelochemicals and as a conse-
quence (2) the addition of 0.2 um filtered water to the
diluted treatments impacts specific growth of bacteria (see
Table 1 for definition of bacterial growth) and thereby violat-
ing one of the central assumptions of the dilution technique
(Landry and Hassett 1982). To address these hypotheses, we
measured bacterial concentrations and bacterial production
(Smith and Azam 1992) in the WSW and diluted treatments
as well as comparing metabolic profiles of the WSW and the
FSW used for dilution.

This combination of biological and chemical measure-
ments allowed us to evaluate the reliability of the dilution
technique for measuring bacterivory during P. pouchetii
blooms and to recommend procedures for applying the dilu-
tion technique to measurement of bacterivory.

Materials and procedures

Theoretical outline of dilution method for bacterivory
The dilution technique uses incubations of WSW and
dilutions (typically 1-4 dilutions in fraction 10%, 25%, 50%,
75% of sample to WSW) to derive estimates of net growth
rate (= apparent growth rate, k) at different densities of graz-
ers based on bulk measurements of biomass or cell counts.
Landry and Hassett (1982) state 3 crucial assumptions of the
method, first that growth rate of prey (u) is not affected by
dilution, second, that grazing loss (g) is proportional to
grazer abundance (D=dilution factor). Third, growth of prey
is assumed to be exponential, as described in Eq. 1 (Landry
and Hassett 1982), where k is apparent growth rate and P;
and P, biomass/concentration of prey at the end and start of

the incubation.
1, (P
k= tln (Po) (1)

When these three assumptions are met, linear regression
analysis of net growth rates of prey against dilution factor
results in an reliable estimate of grazing (g, slope) and
growth of the prey population in absence of any grazing (u,
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y-axis intercept) as shown in Eq. 2 (Landry and Hassett
1982).

k=p—(gxD) @

Several studies have tested whether these assumptions are
met when using the dilution method for herbivory, as
reviewed in Schmoker et al. (2013), but only a few studies
have tested these assumptions with bacteria as prey organ-
isms despite increased use of the dilution method to quan-
tify bacterivory. Tremaine and Mills (1987) addressed each of
the three assumptions when using the method for bacteri-
vory and tested the first assumption by including different
concentrations of dissolved organic carbon (DOC) in the
dilutions to simulate potential increase in DOC in the dilu-
ent due to shear stress on cells during filtration. They found
increased growth with increasing carbon concentrations,
although not statistically significant. Berninger and Wick-
ham (2005) also tested the first assumption by including one
set of replicates with amended nutrients to ensure no nutri-
ent limitation was given. However, specific growth of bacte-
ria may not only be affected by dissolved nutrients or
organic matter in the seawater but also by presence or
absence of dissolved metabolites caused by release from phy-
toplankton cells or adsorbance/breakdown during filtration.
Here, we argue that 0.2 ym filtration during the preparation
of dilutions alters concentrations of dissolved metabolites
and consequently affects specific growth rate of bacteria. We
suggest that cell specific rates of incorporation of radioactive
precursors, such as leucine, can be used as index of specific
growth as shown in Eq. 3 (Ducklow 2000).

BP;
Hspecific = P7t (3)

where pgpecine 1S converted from leucine uptake (BP;, biomass
d~! cell ") of bacterial mass (P, biomass cell! at the end of
the experiment). Bacterial production measurement is a
measure of “gross production” of biomass (Ducklow 2000;
Kirchman 2001), and can serve as a relatively simple control
during the dilution method to test the underlying assumption
that specific growth of bacteria is not affected by dilution.

Study sites and sampling

The study was carried out during the PHAEONIGMA
project cruise in May 2013 on board of R/V Hdkon Mosby.
Water for dilution experiments was collected at two different
locations in the Porsangerfjord (ca. 70°32'N 26°31'E), north-
ern Norway at the maximum fluorescence depth (20 m). The
first experiment was conducted on 4-5™ May 2013 in IF and
the second experiment on 6-7" May in OF.

At the time of sampling there was an ongoing bloom of
colonial P. pouchetii as assessed on board by FlowCAM imag-
ing using a color FlowCAM (ver. VS IV) with the same set-
tings as described in Jonasdottir et al. (2011). We estimated

Estimating bacterivory using dilution method

cell numbers using a calibrated regression between manually
counted number of cells per colony and colony grey scale
area (ABD) according to Jakobsen and Carstensen (2011).
Cell carbon was then estimated assuming a Phacocystis cell-
volume of 60 ym?> cell ! and the generic volume to carbon
scaling of Menden-Deuer and Lessard (2000). Phaeocystis sin-
gle cells (motile and nonmotile stages) and other phyto-
plankton were identified and enumerated by epifluorescence
microscopy as described in Sazhin et al. (2007). In brief, sam-
ples were stained with primuline, fixed with 3.6% glutaralde-
hyde and gently filtered onto black Nucleopore filters (0.4
um) and stored at —20°C until analysis.

Chlorophyll a (Chl a) was assessed in triplicate water sam-
ples (200-250 mL) according to Parsons et al. (1984). Water
was filtered onto 47 mm 0.2 um polycarbonate filters, and
immediately frozen. Prior to measurement of fluorescence,
Chl a was extracted in 90% acetone overnight at 4°C, and
analyzed using a Turner Designs AU fluorometer.

Concentrations of dissolved inorganic nutrients (i.e.,
PO3~, NOj; and dissolved Si), were determined by colorimet-
ric continuous flow analysis by a Skalar San Plus auto-
analyzer. Analysis procedures were done on routine basis fol-
lowing a standard ISO170235 accredited procedure according
to the methods described by Hansen and Koroleff (1999).
The precision was 0.06 uM, 0.1 uM and 0.2 uM for PO?{,
NO; and dissolved Si, respectively.

Experimental set-up

Before dilution experiments, all containers, bottles, filters
and tubing were soaked in 10% HCI and rinsed with ultra
pure water. Water for dilution experiments was collected
with Niskin (5 L) bottles attached to a CTD-rosette and trans-
ferred into 20 L containers (Nalgene). The experiments con-
sisted of four dilutions in duplicates, in the proportions of
10%, 25%, 50%, and 70% of sample relatively to the sum of
sample and filtered seawater, and triplicates of whole sea-
water (100%, WSW). Routinely in dilution experiments,
nutrients (10 uM NO3, 0.6 uM PO,) were added to all dilu-
tions, to avoid mineral nutrient limitation, except of another
set of triplicates of WSW without nutrient addition, serving
as control. Filtered seawater (FSW) was obtained by pre-
filtration through a 35 ym mesh and then gravity filtration
through 0.2 um sterile inline filter (Whatman Polycap cap-
sule). Dilutions were prepared in 20 L Nalgene containers,
and subsequently syphoned into experimental bottles (2.4 L)
in a staggered way to ensure homogenous water masses
between the replicates. All experimental bottles were incu-
bated at in situ temperature (4-5°C) and light conditions
(~ 6% surface irradiance) in a large volumetric container on-
deck with running seawater pumped from ca. 2.5 m depth
in the bow of the ship. Initial sampling for flow cytometry
and bacterial production was done from remaining water
from all dilutions and WSW and after 24 h of incubation
from experimental bottles.
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Bacteria net growth (k, d”!) was calculated for each dilu-
tion and WSW treatments as in Eq. 1. Grazing (g) and gross
growth rate (u) of bacteria were calculated by linear regression
analysis of net growth rate against dilution factor. Specific
growth rates of bacteria were derived as shown in Eq. 3. Single
analysis of variance (ANOVA) was used to test for significant
differences (p <0.05) among mean values of specific growth
rates in the dilutions and WSW. For linear regression, ANOVA
and calculation of diversity indices R-studio (including vegan-
package, Oksanen et al. (2015)) was used.

Abundance of bacteria and heterotrophic nanoflagellates
Bacteria were enumerated using a FACSCalibur flow cytom-
eter (BD, Biosciences, Franklin Lakes, New Jersey, U.S.A.)
equipped with an air-cooled laser providing 15 mW at 488 nm
with standard filter set-up. Samples for bacterial counts were
fixed in glutaraldehyde (0.5% final conc.) for 30 min at 4°C,
frozen in liquid nitrogen and stored at —80°C until further
analysis. For analysis samples were thawed and diluted 5- to
100-fold in TE buffer (Tris 10 mM, EDTA 1mM, pH 8). Samples
were stained with a green fluorescent nucleic-acid dye (SYBR
Green I) for 10-15 min in the dark and run in the flow cytome-
ter with the discriminator at green fluorescence and a flow rate
of 30 uL min~!. Bacterial population determination was based
on scatter plot observations of the side-scatter signal vs. the
green fluorescence signal of SYBR Green I. The cell numbers
were calculated from the instrument flow rate based on volu-
metric measurements. For calculation of specific growth rates
bacterial concentrations were converted to biomass using a
carbon content of 20 fg C cell ! (Lee and Fuhrman 1987).
Abundances of HNF were determined on an Attune® Focus-
ing Flow Cytometer (Applied Biosystems by Life technologies)
with a syringe-based fluidic system and a 20 mW 488 nm laser.
Samples were fixed and stored in the same manner as bacterial
samples and were stained with SYBR Green I for 2 h in the dark
and run in the flow cytometer with discrimination on basis of
green and red fluorescence, side-scatter and forward-scatter fol-
lowing the protocol of Zubkov et al. (2007). Volumes of 800 uL

were run using a flow rate of 200 uL min ..

Bacterial production

Bacterial production (BP) was determined by incorporation
of *H-leucine as described in Smith and Azam (1992). Tripli-
cate samples were incubated with *H-leucine (60 nM final
concentration) for 1 h in the dark at in situ temperature in a
water bath on-deck with continuous water flow. Protein syn-
thesis was terminated by adding trichloroacetic acid (TCA) to
a final concentration of 5%. A fourth sample served as control
and was fixed with TCA before isotope addition. After incuba-
tion all samples were centrifuged (10 min) and the superna-
tant was removed and washed with TCA. The pellets were
washed twice by adding 5% TCA followed by centrifugation.
After removing the supernatant, scintillation cocktail (Eco-
scint) was added and samples were radio assayed in a Tri-Carb
2900TR scintillation counter (PerkinElmer Life and Analytical
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Sciences, Waltham, Massachusetts). Disintegrations per
minute (DPMs) from killed controls were subtracted from the
average of live DPM. Incorporation rates of leucine were con-
verted to bacterial production assuming a conversion factor of
1797 as the grams of protein produced per mole of incorpo-
rated leucine and 0.86 as the weight ratio (g: g) of total C: pro-
tein in bacteria (Simon and Azam 1989).

Dissolved metabolites within seawater

Sampling for metabolic profiles was done at both stations at
Chl a maximum (IF, OF, n= 3) and during set-up of the dilu-
tion experiments of both unfiltered (IF-WSW, OF-WSW) and
0.2 um gravity filtered sea water (IF-FSW, OF-FSW). Until proc-
essing water was kept in carboys in the dark at 15°C. For meta-
bolic foot printing all particulate matter from 2-3 L WSW was
gently removed under vacuum (600 mbar, GF/C filter) in ana-
Iytical duplicates. Dissolved metabolites were absorbed to
inline installed Chromabond® EASY solid phase extraction car-
tridges (Macherey-Nagel) which were conditioned with 4 mL
methanol and rinsed with 4 mL ultra pure water prior sample
loading (Barofsky et al. 2009). Loaded cartridges were rinsed
again with 4 mL ultra pure water, dried with a vacuum pump,
and gravity eluted with 2 mL methanol and 2 mL methanol:
tetrahydrofuran (1: 1 v/v; Chromasolv® Plus, Sigma Aldrich;
HiPerSolv, VWR). Samples were stored at —20°C until transport
on ice to Jena, Germany, and at —80°C until analysis approxi-
mately 1 yr later. After thawing, 5 uL 4 mM aqueous ribitol
were added as internal standard and an aliquot of 1.5 mL per
sample was dried under vacuum. Derivatization was done by
adding 50 uL methoxyamine solution (20 mg mL ™' methoxy-
amine hydrochloride in pyridine, Chromasolv® Plus, Sigma
Aldrich), incubation at 60°C for 1 h and room temperature for
11 h, and subsequent addition of 50 uL. N-methyl-N-(trimethyl-
silyl) trifluoroacetamide for 1 h at 40°C. Immediate GC-MS
analysis and further data processing were performed as
described by Vidoudez and Pohnert (2012). The DB-5Sms col-
umn had a length of 30 m attached to a 4.6 m pre-column,
source temperature was set to 250°C, and the split to 1. Chro-
matogram deconvolution was performed using AMDIS 2.71
with a smoothing window of five scans and peak integration
using MET-IDEA 2.08 with a lower mass limit of 50. Artifacts
found also in solvent controls were excluded using Excel 2010.
The effect of 0.2 um gravity filtration and station differences
were investigated with a canonical analysis of principal coordi-
nates (CAP) and the strongest treatment correlated peaks were
putatively identified with the spectral library NIST 2011.

Assessment

Different conditions in IF and OF: background
information

At the time of sampling, phytoplankton community of
Porsangerfjord was dominated by colonial cells of P. pouche-
tii, accounting for 82% (IF) and 94% (OF) of the total carbon
of phytoplankton at Chl g4 maximum (20 m). Chl a
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Table 2. Overview of biological parameters and nutrient con-
centrations at IF and OF at Chl a max (20 m).

IF OF
Chla(ugL™") 63*1.5 6.0x1.7
Bacteria (mL™") 7.4 X 10° 2.0 X 10°
HNF (mL ™) 615 1249
Hspecific (d_1) 1.0 0.6
Dissolved Si (uM) 0.22 0.81
NO3 (uM) 0.00 2.10
PO;™ (uM) 0.05 0.23

concentrations were similar at both stations (6.3 =1.5 ug
Chla L 'inIF, 6.0+ 1.7 ug Chl a L™! in OF, Table 2). How-
ever, microscopy revealed higher diversity of phytoplankton
community (based on carbon estimates) in IF than in OF
(1.24 Shannon index in IF and 0.91 in OF). The diatom Tha-
lassiosira spp. accounted for the major difference in phyto-
plankton assemblage of those two stations and was only
present in IF and not in OF. Nutrient concentrations of dis-
solved Si, NO;, and POj[ at 20 m depth were low and close
to detection limit in IF but higher in OF (Table 2). Together
these findings indicate that phytoplankton community at IF
was at the reminiscence of a diatom bloom whereas in OF
there was a monospecific P. pouchetii bloom.

Bacteria and HNF varied in terms of abundance in these
different bloom situations (Table 2). In IF bacteria concentra-
tion at 20 m depth was 7.4 X 10° mL ™' and HNF abundance
was 615 mL™!. In OF, bacteria concentration was 3.7 X
lower (2.0 X 10° mL™!) and HNF abundance 2 X higher
(1249 mL™"). Bacterial specific growth was 1.0 d~' in IF and
0.6 d”! in OF. Microzooplankton abundances were low at
both stations (1 mL™!) and consisted of ciliates only.

Dilution experiments

Following the method of Landry and Hassett (1982) the
regression line provided an estimate of gross growth rate of
bacteria of 0.58 d™! at IF and 0.75 d~' at OF. Estimates of
grazing mortality were also higher in OF (0.19 d™!) than IF
(0.06 d71, Fig. 1). Bacterial growth in controls of WSW was
not significantly different to WSW with nutrient amend-
ment and therefore is not shown (p > 0.05, Table 3).

Apparent growth rates were not significantly related to
dilution factor in any of the two experiments (p >0.05, Table
3) and linear regression line yielded low R* values (R*=0.13
in IF, R*=0.29 in OF) a commonly observed problem when
using dilutions for bacterivory (Berninger and Wickham
2005) and herbivory (Calbet and Saiz 2013).

Specific growth at the start of the experiment (Fig. 2a)
was not affected by dilution and was higher in IF (1.1 =0.2
d™!) than in OF (0.7 0.2 d™ ). However, at the end of the
experiment (24 h) specific growth increased by a factor of 9
in dilutions of 10% and 25% compared with WSW during
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Fig. 1. Net growth rates of bacteria (d~") derived from initial and final
(24 h) cell counts from IF and OF. Grazing and gross growth rates were
higher in OF (ugross=0.75 d”', g=0.19 d~', R#=0.29) than in IF
(Hgross = 0.58 d 7, g=0.06 d™', R”=0.13). Filled circles and solid line
symbolize samples from OF, open circles and dashed line from IF.

Table 3. p-values of statistical analysis (ANOVA and regres-
sion) of dilution experiments.

ANOVA, p-values IF OF

Regression total bacteria abundance 0.264 0.090
WSW (+nutrients), WSW (—nutrient) 0.211 0.869
Regression LNA bacteria abundance 0.939 0.013
Regression HNA bacteria abundance 0.292 0.010

the experiment in OF, corresponding to a maximum of 13.2
d! in the 10% dilution (Fig. 2b). In dilutions of IF specific
growth rates remained at the same level as at the start of the
experiment (1.2 0.2 db.

It should be noted that bacterial production measure-
ments by *H-leucine uptake is controversial due to the con-
versions to carbon content of a “typical” bacterial cell
(Ducklow 1993). In spite of this controversy we assume a
constant conversionfactor for all dilutions and WSW to
show how dilution affects bacterial carbon incorporation.
Another issue is that leucine might act as fertilizer for bacte-
rial growth, as it is labile and especially in oligotrophic con-
ditions stimulating growth. For this study, we consider this a
negligible problem, since incubation is only 1 h, and if leu-
cine acted as a carbon source for C-limited bacteria, it would
have had the same effect in all bottles and not change the
overall result. Moreover, enrichment bioassays performed
with water from both stations (Fig. 1 in Supporting Informa-
tion) show that C addition in form of glucose did not
increase bacterial production significantly for any of them,
suggesting that C was in fact not limiting.
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Fig. 2. Specific growth rates of bacteria (d™') at the start (a) and at the end (24 h, b) of the experiment in dilutions and WSW. Open circles display

samples from IF, filled circles from OF.
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Fig. 3. Net growth rates (d™ 1) of HNA (triangles and solid lines) and LNA (circles and dashed lines) bacteria in IF (@) and OF (b). In IF, HNA, and
LNA bacteria had similar net growth in all dilutions and WSW, whereas in OF, HNA, and LNA had opposite trends.

How the differences in specific growth rates in OF affect
the net growth rates of bacteria we can only speculate at this
stage. One possible inference could be that bacteria in dilu-
tions of OF did not only increase in numbers during incuba-
tion, but also in biomass and/or additionally changed
community composition. Interestingly, flow cytometer plots
indicated a shift in bacterial community or activity. Scatter
plots of samples from WSW at the start of the dilution
experiments showed two distinct populations of bacteria
(Fig. 2 in Supporting Information), corresponding to differ-
ent (high and low) nucleic-acid staining properties, called
HNA and LNA bacteria (Li et al. 1995; Gasol et al. 1999).
During 24 h of incubation, HNA and LNA bacteria developed
differently at the two stations. To illustrate this change, we
repeated the calculations for HNA and LNA bacteria sepa-
rately (Eq. 1) and performed linear regression analysis
against dilution factor. We did not aim to derive growth or

grazing rates from these calculations but to demonstrate the
difference in HNA and LNA bacteria in dilutions compared
with WSW. For bacteria from IF (Fig. 3a), the regression lines
are more or less parallel to each other for both populations
and similar to the one derived from total community counts.
In OF (Fig. 3b), the discrimination into HNA and LNA bacte-
ria revealed that HNA and LNA bacteria developed differ-
ently in dilutions. Linear regression of HNA and LNA
bacteria against dilution factor was significant (p <0.05) for
OF but not for IF (Table 3).

Gasol et al. (1999) found a similar increase in abundances
of HNA bacteria in size fractionation experiments when graz-
ers were absent (0.8 um filtered water). They suggested that
HNA bacteria are large and active cells preferable grazed on
and as a consequence of reduced grazing pressure HNA bac-
teria increased. We find one case where HNA and LNA devel-
oped similar in the dilution experiment (IF) and one case
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Fig. 4. Score plot of a canonical analysis of principal coordinates (CAP)
showing a clear separation of seawater samples from the Chl a maxi-
mum at IF (open circles) compared with OF (filled circles) based on rela-
tive abundances of dissolved metabolites (n= 3). [Eigenvalues 0.99986,
squared correlations 0.99972, misclassification error 66.67%].

where they showed opposite net growth along a gradient of
dilutions with filtered seawater (OF). Filtered seawater is not
only predator free but also contains a different level of
metabolites released from phytoplankton cells during filtra-
tion or reduced during filtration compared with unfiltered
seawater. Therefore, we cannot determine whether HNA bac-
teria in dilutions of OF grow better due to decreased grazing
or due to change in concentrations of metabolites. We did
not examine community composition and we cannot tell
whether HNA and LNA are different phylogenetic groups
(Zubkov et al. 2001; Vila-Costa et al. 2012) or whether this
discrimination is due to different levels of bacterial activity
from the same taxa (Li et al. 1995). However, the increase of
specific growth rate in OF corresponds well with the increase
of HNA bacteria numbers in OF and most importantly con-
stitutes a violation of one of the basic assumptions of the
dilution method (Landry and Hassett 1982).

Whereas we found increased growth rates of bacteria in
dilutions with FSW in OF, Pasulka et al. (2015) recently
described decreased specific growth of bacteria in dilutions
prepared for estimating viral lysis (30 kDA filtrate) and graz-
ing on picophytoplankton. Pasulka and colleagues were not
aiming for retrieving rates for bacterivory from their experi-
ments but suggest that altered growth of bacteria in dilu-
tions have an impact on the other communities like
picophytoplankton and consequently the grazing rates. Find-
ings of Pasulka et al. (2015) provide additional support of
the main objective of this study, which is to show, that dilu-
tion method needs modifications and cautionary use when
applying it for bacterivory estimates.

Dynamics within grazer community during incubation are
important to consider during dilution experiments because,
e.g., if there is a trophic cascade within grazers during incuba-
tions, grazing rates become biased (Calbet and Saiz 2013). In
our study, ciliate abundances were similar and low (1 mL ™) at
both stations, and although HNF concentrations were different
in IF and OF, (Table 2) their growth rates during the experi-
ments (Fig. 3 in Supporting Information) were similar in dilu-
tions and WSW suggesting that there was neither a strong
trophic cascade nor an effect of dissolved metabolites on HNFs.

Filtration altered sea water chemistry
The profiles of metabolites in seawater (exometabolome)
of IF and OF can be separated with a CAP when using IF/
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Fig. 5. Score plot of a canonical analysis of principal coordinates (CAP)
showing a clear separation of WSW samples (circles) compared with 0.2
um gravity filtered seawater samples (triangles) based on the relative
abundances of dissolved metabolites in IF (open symbols) and OF (filled
symbols) (n=2). [Eigenvalues 0.9421, squared correlations 0.88755,
misclassification error 25%].

OF as groups (Fig. 4). By subtraction of chromatographic
profiles of control samples it was made sure that only
metabolites in the seawater and no contaminations contrib-
uted to this difference. This result is in line with the other
parameters previously used to indicate different bloom sta-
tus despite similar Chl a concentrations at the two stations
(Table 2).

For dilution experiments at both sampling sites significant
differences in the metabolic profile of the seawater were
observed when comparing FSW and WSW (Fig. 5). Thus, fil-
tration has a clear impact on the metabolic composition of
seawater masking the initial differences of metabolic profiles
of seawater of IF and OF (Fig. 4).

The GC-MS metabolic profiling approach allows to tenta-
tively assign structures to compounds that cause the separa-
tion into distinct groups. The 0.2 um gravity filtration
reduced some contaminations (phthalates, sebacic acid,
siloxanes) but also saccharides (galactosyl-glycerol, disaccha-
rides; Table 4a). This can be due to an adsorption effect on
the filter or depletion due to a lack of stability of metabolites
during filtration. Further, we also detected several metabo-
lites that were more abundant after filtration (Table 4b), pos-
sibly released due to stress and disruption of cells during
filtration. Unfortunately most metabolites remain unknown,
however, some fatty acids and dodecanol could be tenta-
tively assigned by spectral library search.

Discussion

The main objective of this study was to provide a rela-
tively simple adjustment of the dilution method to test the
first basic assumption of Landry and Hassett (1982) by meas-
uring bacterial production additional to abundance. We pro-
vide results of two dilution experiments used to derive
bacterivory rates where in one case (IF) specific growth rates
were not affected by dilution and another case (OF) where
these were significantly affected. Chemical analysis revealed
differences in metabolic profiles of metabolites in seawater
from the two stations as well as a change in metabolic pro-
files caused by the filtration. Bacteria growth might be
affected by release of allelochemicals but also by the adsorp-
tion of metabolites, such as saccharides due to filtration. For



Pree et al.

Table 4. Heat map of dissolved seawater metabolites with
highest correlation to the CAP axis separating WSW and FSW as
groups for both the inner (IF) and outer (OF) Porsangerfjord sta-
tion. Yellow: more abundant, blue less abundant.

a) Putative metabolites which decreased or depleted during filtration.

WsW FSW

Putative metabolites

Terephthalic acid
Galactosylglycerol

Glycerol
Sebacic acid?

b) Which are only present or increased after filtration.

Phthalate?
Isooctylphthalate
Siloxane

MUFA?
Disaccharide?

Disaccharide?

WswW FSW

Putative metabolites IF OF IF OF

MUFA, monounsaturated fatty acid.
“-” unknown metabolite.
7", reverse match in comparison with NIST library < 800.

Dodecanoic acid

Dodecanol
Decanoic acid

Ditertbutylphenol?

Estimating bacterivory using dilution method

an in-depth evaluation a structure determination of the rele-
vant metabolites causing the differences would be required
but this was clearly beyond the scope of this work.

Obviously, our study is limited to dilution experiments
during a P. pouchetii bloom and further studies under differ-
ent conditions are needed. Nevertheless, Phaeocystis sp. is an
important primary producer as it seasonally forms dense
blooms at higher latitudes and may dominate the pelagic
biomass at certain periods (reviewed by Verity et al. 2007).
Moreover, change of metabolic profiles when filtering sea-
water for dilution experiments is not only an issue during
blooms of Phaeocystis but has also been shown during other
phytoplankton blooms such as Skeletonema marinoi (Stoecker
et al. 2015).

Analysis of metabolic profiles before and after filtration
during the set-up of dilution experiments is desirable but
not always feasible due to high workload and costs. How-
ever, the suggested modification of including BP measure-
ments as a proxy of specific growth when using dilution
method for bacterivory helps to unravel uncertainties com-
ing along with the method and to understand whether
derived bacterivory rates are reliable or not. In terms of addi-
tional costs/efforts the suggested modification is minor, also,
only little volume of the incubation bottles is needed for BP
measurements (<10 mL).

For previous studies of bacterivory using dilution method
based on flow cytometric analysis, one could reanalyze the
scatter plots and check whether two different populations
(HNA, LNA) are distinguishable. Further, if they developed
differently during incubation in dilutions and WSW the
assumption can be drawn that either bacterial community or
bacteria specific growth was affected by filtration and bacter-
ivory rates are biased.

Comments and recommendations

We recommend including measurements of BP to the pro-
tocol of the dilution method for bacterial grazing to test and
validate the effect of dilution with 0.2 um filtered water on
bacteria specific growth rates. By that, one can identify the
circumstances under which the dilution technique provides
reliable estimates for bacterivory and minimize the uncer-
tainty the impact filtration might have on bacterial growth.
In case of different specific growth rates in dilutions and
WSW the derived grazing rates are inaccurate. If future stud-
ies show that in the majority of dilution experiments specific
growth rates differ between WSW and dilutions, alternative
methods not using a filtration step should be preferred. At
the same time, improvement of the filtration protocol, by
combining biological and chemical measurements, is a
necessity for further developing the dilution method toward
more accurate estimates of bacterivory rates.
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Abstract

Polyunsaturated aldehydes (PUAs) are a group of microalgal metabolites that have attracted a lot of atten-
tion due to their biological activity. Determination of PUAs has become an important routine procedure in
plankton and biofilm investigations, especially those that deal with chemically mediated interactions. Here
we introduce a fast and direct derivatization free method that allows quantifying PUAs in the nanomolar
range, sufficient to undertake the analysis from cultures and field samples. The sample preparation requires
one simple filtration step and the initiation of PUA formation by cell disruption. After centrifugation the
samples are ready for measurement without any further handling. Within one chromatographic run this
method additionally allows us to monitor the formation of the polar oxylipins arising from the cleavage of
precursor fatty acids. The robust method is based on analyte separation and detection using ultra high perfor-
mance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry (UHPLC-APCI
MS) and enables high throughput investigations by employing an analysis time of only 5 min. Our protocol
thus provides an alternative and extension to existing PUA determinations based on gas chromatography-
mass spectrometry (GC-MS) with shorter run times and without any chemical derivatization. It also enables
researchers with widely available LC-MS analytical platforms to monitor PUAs. Additionally, non-volatile

oxylipins such as w-oxo-acids and related compounds can be elucidated and monitored.

Polyunsaturated aldehydes (PUAs) are short-chained «,f,y,0-
unsaturated aldehydes which came into focus of marine biolo-
gists due to their high bioactivity (Miralto et al. 1999). These
fatty acid-derived metabolites are mainly produced by plankton-
ic and benthic microalgae. As PUAs can play important roles in
the interaction and regulation of algae-herbivore relationships,
they have become a common parameter, determined along
with other metadata in many studies. Being produced on cell
damage of microalgae (Pohnert 2000; Pohnert 2002) PUAs have
been made responsible for numerous effects on the grazer repro-
ductive success such as the inhibition of copepod egg hatching
or the action as causative agents for abnormal larval morpholo-
gy (Miralto et al. 1999; lanora et al. 2004; Poulet et al. 2007).
However, the ecological relevance of these findings is still under
discussion (Wichard et al. 2008). PUAs were not only found to
be responsible for influencing diatom-copepod interactions,
they also play a role in, e.g., intraspecific signaling and pro-
grammed cell death, allelopathy, and bacteria-phytoplankton
interactions (Adolph et al. 2004; Vardi et al. 2006; Ribalet et al.
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Additional Supporting Information may be found in the online version of this
article.
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2008; Ribalet et al. 2014). Mainly diatoms are considered as
important sources for PUAs but also other marine organisms,
such as the brown alga Dictyopteris sp. and the green alga Ulva
sp., as well as terrestrial plants and mosses produce «,f3,y,6-unsat-
urated aldehydes (Noordermeer et al. 2001; Schnitzler et al.
2001; Stumpe et al. 2006; Alsufyani et al. 2014).
Biosynthetically, algal PUAs are derived from C;s and Cyo
polyunsaturated fatty acids (PUFAs) in a wound-activated pro-
cess. These precursor fatty acids are enzymatically released
within seconds after cell damage from phospholipids (Pohnert
2002) or glycolipids (d'Ippolito et al. 2004; Cutignano et al.
2006) and transformed to PUAs by a lipoxygenase (LOX)-
hydroperoxide lyase (HPL) or a LOX-halolyase cascade (Pohnert
2000; d'Ippolito et al. 2004; Wichard and Pohnert 2006). Hexa-
decatrienoic acid (C16 : 3w4) serves as precursor for 2E,4Z-octa-
dienal (3), hexadecatetraenoic acid (C16 : 4wl) for 2E,4Z,7-
octatrienal (5), arachidonic acid (C20 : 4w6) for 2E,4Z-decadie-
nal (4), and eicosapentaenoic acid (C20 : 5»3) for both 2E,4Z-
heptadienal (2) and 2E,4Z,7Z-decatrienal (6) (Pohnert 2000;
d'Ippolito et al. 2003; d’Ippolito et al. 2004; Pohnert et al.
2004). Besides PUAs, a multitude of other oxylipins are pro-
duced by diatoms such as hydroxy-, keto-, epoxyhydroxy-fatty
acid derivatives (see Cutignano et al. 2011 and references
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therein), some of which are also biologically active (lanora
et al. 2011). Variability in the content of precursor molecules
and enzyme activity leads to species-, strain- and even clone-
specific oxylipin profiles that are further modulated by envi-
ronmental factors (Wichard et al. 2005a; Ribalet et al. 2007;
Taylor et al. 2009; Dittami et al. 2010; Gerecht et al. 2011). In
addition, the physiological state of the cells determines their
PUA profile (Vidoudez and Pohnert 2008).

To qualitatively or quantitatively analyze the oxylipin
composition of diatoms from laboratory cultures and field
samples several methods have been developed (Wendel and
Juttner 1996; Pohnert 2000; d’'Ippolito et al. 2002a; Wichard
et al. 2005b; Cutignano et al. 2011). Especially in field
experiments, the low concentration and the inherent insta-
bility of PUAs requires elaborated sample preparation and
sensitive detection methods for the direct determination of
PUAs in filtered seawater samples (Vidoudez et al. 2011).
Methods monitoring PUAs by gas chromatography-mass
spectrometry (GC-MYS) include the enrichment of the volatile
PUA-containing oxylipin fraction by adsorption to resin and
subsequent headspace GC-MS (Wendel and Juttner 1996) or
the more convenient solid phase micro extraction coupled
to GC-MS (Pohnert 2000; Spiteller and Spiteller 2000). The
rather labile aldehydes can be further stabilized by chemical
derivatization (d'Ippolito et al. 2002a; Wichard et al. 2005Db).
Using pentafluorobenzylhydroxylamine (PFBHA), PUAs can
be trapped in the aqueous phase without interfering with
the enzymatic oxylipin production (Wichard et al. 2005b).
This has been proven as a very robust and reliable method
used by several laboratories (Taylor et al. 2007; Morillo-
Garcia et al. 2014; Lavrentyev et al. 2015). Derivatization is
followed by extraction using hexane giving highly reproduc-
ible results in GC-MS. Alternatively, high performance liquid
chromatography (HPLC)-separation of PUA-derived dinitro-
phenylhydrazones has been introduced on liquid-liquid
extracts of PUAs (Edwards et al. 2015). Recent studies focus-
ing on oxylipin profiles of diatoms not only analyzed the
volatile oxylipins using GC-MS but also screened for non-
volatile oxylipins such as fatty acid hydroperoxides,
hydroxy-, epoxyhydroxy fatty acids or w-oxo-acids using lig-
uid chromatography-mass spectrometry (LC-MS) (Barreiro
et al. 2011; Ianora et al. 2015).

Our goal was to overcome the time-consuming derivatiza-
tion processes by elaborating a method for the direct detec-
tion and quantification of PUAs and non-volatile oxylipins
by ultra high performance liquid chromatography (UHPLC)-
HRMS in a fast procedure not requiring extraction or deriva-
tization steps, suitable for high sample capacities.

Materials and procedures
Reagents

2E,4E-hexadienal (1, 95%), 2E,4E-heptadienal (2, >97%),
2E,4E-octadienal (3,>95%), 2E,4E-decadienal (4, 85%),
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methanol (CHROMASOLV® Plus, for HPLC), and water
(CHROMASOLV® Plus, for HPLC) were purchased from Sigma-
Aldrich (Germany). Vanillin (VEB Laborchemie Apolda,
Germany) was used as internal standard (IS).

Algal cultivation and enumeration

The marine diatom Chaetoceros didymus Na20B4 was
obtained from W. Kooistra (Stazione Zoologica Anton Dohrn,
Naples, Italy). The strains Skeletonema costatum RCC75 and
Thalassiosira rotula RCC776 were obtained from the Roscoff
Culture Collection (RCC, Roscoff, France). Stationary cultures
were inoculated in artificial seawater (Maier and Calenberg
1994) in polystyrene culture flasks (Sarstedt, Germany) and
grown without agitation at 11.3 = 0.42°C under an illumina-
tion of 15 umol photons m~2 s™! on a 14 : 10 light : dark
cycle (OSRAM Lumilux Cool White L36W/840). After 2 weeks
the cultures reached 1-4 X 10° cells mL~! (Table 1) and were
aliquoted into four replicates with 40 mL each. For cell enu-
meration 1.5 mL of each culture were fixed with 10 yL mL™*
acid Lugol’s solution (Rodhe et al. 1958).

Cell abundance of C. didymus was determined with a Nan-
noplankton Chamber (PhycoTech Inc., St. Joseph, MI) and
of §. costatum and T. rotula with a Fuchs-Rosenthal hemocy-
tometer (Laboroptik, Friedrichsdorf, Germany) using a Leica
DM2000 microscope (Heerbrugg, Switzerland). At least 400
cells or 16 mm? were counted in four replicates.

Sample preparation

For cell harvesting, 40 mL of each replicate were concen-
trated by filtration on Whatman® GF/C filters (@ 47 mm)
under reduced pressure (600 mbar). Cells were rinsed off the
filter with 0.5 mL artificial seawater. The suspensions were
transferred to 1.5 mL Eppendorf-tubes and 5 uL vanillin (700
umol L1 in MeOH : H,O; 1 : 1; v : v) were added as IS. After
10 s vortexing, PUA formation was initiated by 1 min pulsed
(50%) ultrasound treatment in an ice-cold water bath using a
Bandelin Sonopuls HD 2070 (Berlin, Germany). Tubes were
closed and incubated for 10 min in a water bath at room tem-
perature to complete PUA formation (Pohnert 2000). Samples
were cooled for 2 min in an ice-bath before adding 270 uL
methanol. These cell lysates were centrifuged with an Eppen-
dorf centrifuge 5415 D (9,300 rcf; 3 min), supernatants trans-
ferred to 1.5 mL glass vials, sealed air tight with a Teflon
septum, and subsequently measured by UHPLC-HRMS. Ali-
quots of 40 mL artificial seawater were processed as described
above as blank samples.

UHPLC-HRMS Orbitrap measurements

UHPLC was carried out using a Thermo Scientific (Bremen,
Germany) UltiMate HPG-3400 RS binary pump and a WPS-
3000 auto sampler which was set to 10°C and which was
equipped with a 25 uL injection syringe and a 100 uL sample
loop. The injection volume was set to 10 pL. The chromatog-
raphy column Phenomenex (Aschaffenburg, Germany) Kinet-
ex® C-18 RP (50 X 2.1 mm; 1.7 um) was kept at 25°C within
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Table 1. Cell abundance of harvested diatom cultures as
mean cell abundance = SD (cells mL™"; n=4).

Mean cell
abundance = SD
Algal species Strain (cells mL™")
Chaetoceros didymus Na20B4 1.9 X 10°+1.9 x 10*
Skeletonema costatum RCC75 4.0 X 10°+3.5 x 10*
Thalassiosira rotula RCC776 9.7 x 10*+8.6 x 10°

the column compartment TCC-3200 and elution was carried
out using a gradient (Table 2). Eluent A was water with 2%
acetonitrile and 0.1% formic acid (v : v). Eluent B was acetoni-
trile with 0.1% formic acid (v : v). The UHPLC was coupled to
a Thermo Scientific™ Q Exactive plus™ hybrid quadrupole-
Orbitrap mass spectrometer equipped with an atmospheric
pressure chemical ionization (APCI) source. To minimize
source contamination a solvent delay was set at the beginning
(0.0-0.2 min) and end (3.5-5.0 min) of the chromatographic
run. For monitoring of the PUAs 1-4 a targeted selective ion
monitoring (tSIM) in the positive ionization mode was used
with the following parameters: [M+H]"; m/z=x (Table
3) = 0.2; resolution = 70,000; AGC target=35 X 10* maximum
IT = 254 ms. For untargeted monitoring of other relevant oxy-
lipins such as 5-9 a simultaneous full scan was set to: m/
z=70-500; resolution = 70,000; AGC target=35 X 10% maxi-
mum IT = 254 ms. Further settings were: sheath gas flow rate-
=40 arbitraty units; aux gas flow rate= 15 arbitraty units;
sweep gas flow rate = 0 arbitraty units; discharge current = 8.0
uA; capillary temperature = 350°C; S-lens RF level = 33; vapor-
izer temperature = 360°C; acquisition time frame=0.5-3.5
min. MS? experiments were recorded with stepped normalized
collision energy of 15, 30, and 45 selected by the calculated
mass = 0.2 m/z starting at 50 m/z.

Quantification

Peak detection and integration were carried out using the
Thermo Scientific™ Xcalibur™ 3.0.63 Quan Browser soft-
ware with the following settings: mass tolerance = 10 ppm;
mass precision=35 decimals; compounds=CsHgO (1),
C7H100 (2), CsH120 (3), C1oH160 (4), CsH100 (5), C10H140
(6); adduct = [M + H]"; retention time window =3 s; signal-
= XIC from tSIM experiment for the dienals (1-4) and XIC
from full scan experiment for dienals (1-4) and trienals
(5-6); peak detection algorithm = ICIS (Smoothing = 1); peak
detection method = highest peak. Area ratios of each analyte
relative to the IS were determined and the analyte concen-
tration per volume or cell calculated via calibration curves
and cell abundances. After blank subtraction all replicates
were averaged.
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Table 2. Gradient for UHPLC-HRMS measurement.

Time Flow Solvent B

(min) (mL min™") (%) Curve*
0.0 0.400 35 5
0.5 0.400 35 5
3.0 0.675 100 8
4.0 0.675 100 8
4.1 0.675 35 5
5.0 0.400 35 5

Eluent A was water with 2% acetonitrile and 0.1% formic acid. Eluent B
(= Solvent B) was acetonitrile with 0.1% formic acid. Curve 1-9 with
5 = linear gradient and 6-9 concave upward (Fig. 1a).

*Instrument parameter setting linear or non-linear solvent gradients.

Calibration, limit of detection (LOD), and limit of
quantification (LOQ)

A PUA stock solution of 2E,4E-dienals (1-4; all 100 ymol
L~ ! in MeOH) was generated from commercial standards (see
“Reagents”).

Seven calibration solutions were freshly prepared indepen-
dently for an all-in-one-quantification in the range from 1 X
1078-5 X 1075 mol L' (MeOH : H,0; 35 : 65; v : v) using
vanillin as IS (5 uL of a 700 uymol L™ solution in MeOH :
H,O; 1 : 1; v : v), and subsequently analyzed by UHPLC-
HRMS in six technical replicates. The injection volume was
set to 10 uL. The average peak area ratio analyte/IS was plot-
ted against the nominal concentration of each analyte for
the working range of 1 X 10"®—1 x 10~° mol L™'. Each cali-
bration in the data set was tested to be normally distributed,
free of outliers and homoscedasticity was proven for the
whole concentration range. A Mandel test was applied to
test the linear model against the quadratic model. No statis-
tically significant differences demonstrated linearity.

The LOD and LOQ were estimated by the lowest analyzed
concentration that gave a signal-to-noise (S/N) ratio equal to
or greater than 3 (LOD) and 10 (LOQ). The noise range
directly before the eluting peak was evaluated. Whenever the
analyzed concentrations did not match a S/N of 10 the LOQ
was interpolated by linear regression of the three lowest cali-
bration concentrations.

Precision and sample stability

The precision of the instrument was determined by re-
injection of a quality control sample (QCS) at the beginning
(n=6, QCSstart) and end (n=6, QCS.hq) of the entire mea-
surement regime. As QCS acted a freshly prepared sample of
S. costatum as described (see above). Homoscedasticity of the
peak area ratios of IS and selected PUAs (2-4) was proven for
the QCSsart and QCSepng samples using the F-test (¢« = 5%).

Sample stability of the cell free samples was determined
by re-capping the vials after injection and re-measurement
after 7 days of storage at 5°C in darkness. This was exempla-
ry conducted for S. costatum and T. rotula for all quantifiable
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Table 3. PUA structures and diagnostic UHPLC-HRMS data as m/z [M + H] .

Chemical species Structure m/z [M+H]" LOD (mol L™ LOQ (mol L")
2E,47-hexadienal (1) /,:Wo 97.06479 1.0 x 1078 5.0x 1078
2E,4Z-heptadienal (2) \N\&O 111.08044 <1.0 X 1078 23x10°8
2E4Z-octadienal (3) /\/W\&O 125.09609 5.0%x 1078 1.4 x 1077
2E,4Z,7-octatrienal (5) WO 123.08044 n.d. n.d.
2E,47-decadienal (4) /\/\N\&O 153.12739 <1.0 X 1078 1.9 x10°8
2E,47,7 Z-decatrienal (6) 151.11174 n.d. n.d.

Limit of detection (LOD; in mol L™") and quantification (LOQ; in mol L™") as determined for the corresponding 2E,4E-isomers. n.d. = not determined.
*S/N at the lowest analyzed concentration of 1 X 1078 M was 5 (2) and 6 (4).
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Fig. 1. UHPLC-HRMS analysis of polyunsaturated aldehydes including
the gradient used for chromatography. (a) Gradient program for liquid
chromatography (dark grey: organic phase (B); bright grey: aqueous
phase). (b) Extracted ion chromatograms of the internal standard vanil-
lin (IS, in red), and the authentic standards 2E4E-hexadienal (1, in
black), 2E4E-heptadienal (2, in blue), 2E4E-octadienal (3, in green),
and 2E,4E-decadienal (4, in magenta) measured within one single run.
Intensities are normalized to equal signal response. (c) Extracted ion
chromatograms of a cell free extract of Thalassiosira rotula RCC776 har-
boring dienals (1-4) and the trienals octatrienal (5) and decatrienal (6)
(color code see (b), trienals are in a darker color shade than their corre-
sponding dienals). Note: In cell free extracts E/Z-isomers of PUAs are
detected, resulting in more than one peak per aldehyde.

analytes. Sample stability over prolonged time was estimated
by re-measurement of T. rotula extracts after 113 days storage
at —20°C.
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Assessment

Sample preparation

The sample preparation was modified according to former
protocols (Wichard et al. 2005b) to achieve a fast analytical
workflow allowing cell enrichment, cell wounding, incuba-
tion for wound-activated PUA production, and removal of
suspended cell material within 20 min before UHPLC-HRMS
measurement. The novel analytical approach allows deter-
mining PUAs within the complex cell-free algal lysate matrix
without work- and time-intensive derivatization procedures
as introduced by d’Ippolito et al. (2002a), Wichard et al.
(2005b), or Edwards et al. (2015).

UHPLC-HRMS Orbitrap measurements

For quantification, a fast reversed-phase ultra-high perfor-
mance liquid chromatography (RP-UHPLC) method was
developed to separate PUAs. An elaborate curve-shaped 2.5
min gradient followed by a column wash with 100% organic
eluent and re-equilibration of one minute was performed to
achieve an optimal separation of the analytes. All analyzed
compounds were baseline separated (Fig. 1b). The very short
overall measurement time compared to former approaches
(d’Ippolito et al. 2002a; Wichard et al. 2005b) now provides
the opportunity of high sample throughput analyses, e.g.,
for monitoring experiments covering PUAs as well as other
PUFA breakdown products. APCI proved to be superior com-
pared to heated electro spray ionization (HESI). Sensitivity
for the rather nonpolar short-chain aldehydes using HESI
was two to three times lower compared to APCI (data not
shown). For the dienals (1-4) targeted SIM analyses were
used to enable maximum performance. For the analysis of
trienals (5-6) and non-volatile oxylipins (7-9) a parallel
analysis in full scan mode was executed. Hereby also poten-
tial unknown compounds may be identified. All method
parameters were tested and verified with purchased dienal
standards to ensure the adequate performance within all
measurements.
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Table 4. Mean concentration =+ SD [fmol cell '] of the sums of the isomeric hexa- (1), hepta- (2), octa- (3), and decadienal (4),
and of octa- (5) and decatrienal (6) in the exponentially growing marine diatom strains Chaetoceros didymus Na20B4 (n = 4), Skeleto-
nema costatum RCC75 (n=4), and Thalassiosira rotula RCC776 (n = 3).

PUA concentration (fmol cell™")

Algae 1 2 3 4 5° 6°

C. didymus n.d. 0.01 +0.001 n.d. * n.d. n.d.

S. costatum n.d. 0.48+0.13 0.25+0.09 * 0.08 +=0.03 0.024 +0.005
T. rotula * 0.18 = 0.04 0.17+0.03 0.03+0.01 0.42+0.08 1.08 £0.41

* = detected. n.d. = not detected.

®Trienal concentration as estimated if similar response factor as for the corresponding dienal is assumed.

Calibration, LOD, and LOQ

The statistical tests of normal distribution and trends
passed for all calibration standards. As data showed no homo-
scedasticity over the working range of 1 X 107 ® mol L' to 1
X 107° mol L' a weighted linear regression was applied (1/y,
Miller and Miller 2005). No significant difference was deter-
mined between the weighted linear and quadratic regression.
According to this result the weighted linear model was accept-
ed and used for quantification.

For each dienal LOD and LOQ were estimated based
on the lowest analyzed concentration that on average gave
S/N >3 or 10, respectively (Table 3). The LOD ranged from 1
to 5 X 107® mol L™ for the different analytes with the high-
est instrumental sensitivity for 2E,4E-decadienal.

Precision and sample stability

The precision of the instrument was successfully verified
by homoscedasticity of re-measured QCS at the beginning
(QCS;start) and end (QCSepg) of the entire measurement regime.

Re-measurement of samples after storage of seven days at
reduced temperatures (5°C) and darkness resulted in a recov-
ery rate of >91% for all quantified compounds. Thus sample
stability for 1 week was demonstrated. After additonal pro-
longed sample storage of 113 days at —20°C a recovery
of > 84% for the dienals and of 50-77% for the trienals was
determined (Supporting Information $8).

Dienal analysis in diatom cultures

Laboratory cultures of marine microalgae in exponential
growth phase were investigated to evaluate the applicability of
the new UHPLC-HRMS method for the detection and quantifi-
cation of PUAs with two conjugated double bonds (dienals).
Cultures of the bloom forming diatoms C. didymus, S. costa-
tum, and T. rotula were analyzed. For the latter two species,
PUA production was already quantified using a GC-MS meth-
od following derivatization (Wichard et al. 2005a). Concentra-
tions determined in Wichard et al. (2005a) served as reference.
C. didymus was investigated for the first time with regard to
PUA production. Besides 2, 3, and 4 that are regularly
recorded in diatoms also hexadienal (1) was detected.

Dienals were detected and quantified in all three diatom
strains (Table 4). Heptadienal (2) was present in highest
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amounts in S. costatum (0.48 +0.13 fmol cell™!) followed by
octadienal (3) with 0.25*0.09 fmol cell !. Decadienal (4)
was present in quantifiable amounts only in T. rotula
(0.03 =0.01 fmol cell™Y). Values for S. costatum can be com-
pared to those from Wichard et al. (2005b) who investigated
the same strain using PFBHA-derivatization. As in our study
heptadienal (2) was the most dominant PUA with ca. 0.1
fmol cell ' followed by octadienal (3) thus indicating the
validity of the approach. In general, all results presented
here are in accordance with earlier investigations and are
well within the range of already observed species-, strain-,
and culture dependent variability (Pohnert et al. 2002;
Wichard et al. 2005a). Hexadienal (1) was detected in traces
in T. rotula which is to our knowledge the first record of 1 in
marine diatoms. Co-injection with an authentic standard
confirmed the first evidence of the formation of hexadienal
(1) by T. rotula. This detection of a low abundant, previously
unknown metabolite supports the power of the direct PUA
determination introduced here. Decadienal (4) was for the
first time detected in traces in S. costatum.

Decadienal (4) was present in three of the four possible
isomeric forms. The peak corresponding to the reference
standard (2E,4E-isomer, tg = 3.14 min) was followed by two
peaks with identical mass (tg = 3.30 min, tg = 3.45 min) pre-
sumably corresponding to the 2E,4Z- and 2Z,4E-isomers
since the fourth possible isomer with 2Z,4Z geometry has
not been found in diatoms. We could not observe baseline
separation of the isomers of 2 and 3, which might be caused
by their lower polarity and thereby shorter retention times.
We therefore have to consider both isomers contributing to
the integration for quantification. The origin of the different
isomers is not fully understood; it was assigned to the release
of isomeric mixtures by diatoms (Miralto et al. 1999) but
also was discussed to be caused by isomerization occurring
during sample processing (d’Ippolito et al. 2002a,b). Because
our method induces minimum stress during sampling and
the pure standards show only one signal without contribu-
tion of isomerization during the experimental procedure
(Fig. 1b), we conclude that the production of isomeric mix-
tures by diatoms is more likely the explanation for the
phenomenon.
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Fig. 2. UHPLC-HRMS analysis of polar eicosapentaenoic acid-derived products. (a) Lipoxygenase-mediated oxygenation and hydroperoxide lyase
cleavage of eicosapentaenoic acid. All known (Barofsky and Pohnert 2007) and in this context newly observed products are listed. (b) Representative
extracted ion chromatograms from a culture of Thalassiosira rotula RCC776 from the products 7 (b1), 8 (b2), and 9 (b3). (c) MS? spectrum of
7 obtained from b1 including the main fragments. (d) MS? spectrum of 8 obtained from b2 including the main fragments. Detailed fragmentation
trees including the assignment to the spectra can be found in the Supporting Information (§4-S7).

Trienal analysis in diatom cultures

Trienals, PUAs with three double bonds, such as 2E,4Z,7-
octatrienal (5) and 2E,4Z,7Z -decatrienal (6) are also released
by marine algae and show comparable or even higher activi-
ty compared to dienals (Miralto et al. 1999; Juttner 2005;
Romano et al. 2010). For 5 and 6 no commercial standards
are available and thus chromatograms were screened in full
scan mode. Chromatographic runs were evaluated by moni-
toring the calculated accurate masses of the trienals (Table 3;
for extracted mass spectra see Supporting Information S$1).
Both trienals were assigned to intense peaks eluting ca. 0.5
min earlier compared to the dienals of identical chain length
(Fig. 1c). Decatrienal (6) was confirmed by analysis of its
MS? spectrum (Supporting Information $2-83). Peak shapes
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indicate the occurrence of isomers that are not baseline sepa-
rated. The trienals § and 6 were thus determined as sum of
all isomers and detected in quantifiable amounts in T. rotula
and S. costatum but not in C. didymus. The trienal concentra-
tion can be estimated by comparison of the peak areas in
full scan mode and assuming similar response factors as for
the corresponding dienals (Table 4). Due to the fact that
these values are not supported by referencing to synthetic
standards different response factors in the MS might lead to
a slight overestimation of one of the groups. The relative
proportion of trienals compared to the dienals was as low as
12% in S. costatum and as high as 80% in T. rotula. S. costa-
tum contained more octatrienal (5) compared to decatrienal (6),
while 6 was the major PUA in T. rotula. The relative
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proportions of these metabolites are in accordance with pre-
vious investigations using derivatization-based methods
(d'Ippolito et al. 2002a; Wichard et al. 2005a,b).

Non-volatile oxylipins in diatom cultures

During the formation of PUAs from fatty acids a second
product is released in diatoms namely short-chain hydroxyl-
ated fatty acids: 6E-8-hydroxyoct-6-enoic acid accompanying
3 and 5, and 5Z,8Z-10-hydroxydeca-5,8-dienoic acid (7)
accompanying 4 and 6 (Fig. 2a; Barofsky and Pohnert 2007).
Analogous to these metabolites, formation of heptadienal (2)
from eicosapentaenoic acid would result in 57,87,11Z-13-
hydroxytrideca-5,8,11-trienoic acid, a metabolite that has
not been detected so far in diatom lysates. As no commercial
standards are available for these oxylipins the chromato-
grams were screened in full scan mode and monitored for
the calculated accurate masses of these oxylipins. An intense
peak eluting at around 0.79 min (Fig. 2, bl) could be
assigned to 7 and was fully confirmed by its high resolution
mass and by the evaluation of the according MS? spectrum
(Fig. 2¢). The presence in quantifiable amounts in T. rotula
but not in C. didymus and S. costatum is in accordance with
the high amounts of decatrienal (6) released by T. rotula
(Table 4). Additionally, a concomitantly eluting peak at 0.75
min (Fig. 2, b2) was tentatively assigned to the correspond-
ing w-oxo-acid 5Z,8Z-10-oxodeca-5,8-dienoic acid (8) based
on evaluation of the accurate mass and the MS? spectrum
(Fig. 2d). The w-oxo-acid may be formed as a shunt product
of the lyase which seems to produce similarly to known
P450 enzymes the corresponding oxo analogue (Noorder-
meer et al. 2001; Grechkin and Hamberg 2004). Supporting
this hypothesis is the fact that evidence for the oxidation
product, namely the dicarboxylic acid (9) was found (Fig. 2,
b3) which easily can be obtained as oxidation product from
8 on air contact.

Discussion

The developed method provides a sensitive technique to
measure and identify oxylipins including dienals, trienals, as
well as w-oxidized-acids within complex biological matrices.
In contrast to previously published methods it can monitor
the wide array of diatom-derived oxylipins within one single
chromatographic run. This will enable mechanistic studies of
fatty acid metabolism in diatoms and other oxylipin-
producing organisms. The method will also facilitate investi-
gations on the activity of the hitherto poorly investigated
polar oxylipins derived from LOX-HPL reactions, thereby
opening up new fields of research. Especially the fact that no
bias is introduced due to the lack of the need for extraction
procedures, the method provides direct access to the wound-
activated metabolism of diatoms. The first identification of
hexadienal (1) in diatom extracts shows that the untargeted
measurement of previously unidentified compounds is possi-
ble in parallel to targeted PUA analysis. In addition it
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demonstrates that the newly introduced method allows for
sensitive detection of novel products that were previously
overseen, presumable due to their problematic extraction or
derivatization. Small required sample volumes compared to
existing methods (d'Ippolito et al. 2002a) and the short anal-
ysis time make this method ideal for higher throughput sur-
veys of cellular PUA concentrations in naturally occurring
phytoplankton assemblages as well as cultures. Due to the
high plasticity of the parameter “PUA” such high through-
put analyses will enable a close monitoring of PUA in dia-
toms under the influence of abiotic and biotic stressors. A
quantitative comparison of the performance of the newly
introduced protocol and previous approaches is hindered by
the fact that neither, d’Ippolito et al. (2002a) nor Edwards
et al. (2015) report limits of detection. Compared to Wichard
et al. (2005b) our method is more sensitive (1.7 X 10”8 mol L™!
vs. 7.2 X 1078 mol L™! determined in GC-EI-MS mode). In
case of sensitivity problems, the method would easily allow a
lowering of the LOD by scaling up the volume of filtered sam-
ples to increase the analyte signal intensities. Compared to
derivatization-based methods we avoid handling of potential-
ly toxic metabolites and extraction protocols using organic
solvents. Further, in contrast to PFBHA-derivatized PUAs
where each isomer results in two peaks we only detect one
signal per analyte resulting in less complex chromatograms.
However, PFBHA treatment traps PUAs and allows the detec-
tion of even highly reactive metabolites that might be over-
looked using our protocol. In conclusion, we provide a fast
and direct determination of PUAs that is as sensitive as estab-
lished protocols based on derivatization. We are able to pick
up and quantify all PUAs previously detected in the phyto-
plankton species investigated here as well as other novel apo-
lar and polar oxylipins. We also introduce the use of wide
spread LC-MS analytical platforms and provide an alternative
for labs that do not have access to GC-MS methods.

Comments and recommendations

In this study laboratory cultures of marine diatoms were
investigated. To apply the method on field samples the
UHPLC-HRMS measurements can be used without further
adjustment.

The sensitivity is determined by the amount of PUA-
producing cells on the GF/C filter and their PUA production.
Sensitivity can thus easily be increased by filtration of more
biomass. In case of samples containing larger particles or
herbivores an additional filtration step removing those
might be required. The method allows high throughput
investigations and our monitoring of stability indicates that
usage of a cooled (5°C) auto sampler would be sufficient for
accurate measurements of larger sample sets. If prolonged
storage time is required, as in the case of field experiments,
sample instability could easily be compensated using stand-
ards that are processed and stored under identical conditions
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as the field samples. In this study cell damage and the follow-
ing PUA production were achieved by ultrasound treatment,
which was adjusted to diatom cells. For other phytoplankton
members with non-silicified cell walls the ultrasound treat-
ment can be modulated accordingly to achieve sufficient cell
damage; alternative methods like repeated freezing and thaw-
ing cycles might be utilized for cell disruption. Mass spec-
trometers that provide accurate mass measurements are
recommended to filter out the background noise of the com-
plex sample matrix to obtain high analyte sensitivities. How-
ever, even nominal mass resolution together with the added
selectivity by chromatographic retention time is sufficient for
the determination of PUAs. In these cases, additional specific-
ity might be brought in using MS? protocols. When analyzing
high salinity matrices a routine cleaning of the corona dis-
charge needle is recommended as salt precipitation influences
the analyte ionization.
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4 Discussion

Organisms interact with each other in various ways, mediated by visual, acoustic,
mechanical or chemical cues. Whereas we have a good understanding of the first
three, which we rely on ourselves, chemically mediated interactions - while being of
major importance for single-celled organisms - are far less understood. This
evolutionary old chemical language is not just highly matrix-dependent, with different
sets of infochemicals in the marine realm compared to the terrestrial. Various methods
exist to address research questions in chemical communication and to decipher the
molecule-driven communication between organisms, reaching from classical
bioassay-guided structure elucidation to newly emerging metabolomics approaches.
The prospects of metabolomics approaches for the also still rather new field of
chemical ecology of marine phytoplankton are discussed in the following.

4.1 Complementing targeted with untargeted analysis of infochemicals

4.1.1 From targeting PUAs to broad oxylipin profiling

The observation of Miralto et al. (1999), who for the first time linked reduced egg
hatching and viability of copepod grazers to diatom-released polyunsaturated
aldehydes (PUAs), has motivated a multitude of studies further investigating the
ecological role of algal PUAs. Their enzymatic biosynthesis from lipid-derived fatty
acids was demonstrated (d'Ippolito et al. 2002b; Pohnert 2002), their biological activity
linked to structural properties (Adolph et al. 2003), and their accumulation in the
gonads of grazers shown and linked to reduced reproductive success (lanora et al.
2004; Wolfram et al. 2014). With regard to the differential PUA production within
various diatoms (Wichard et al. 2005a), the observation of intra- and interspecific
growth inhibition and toxicity (Casotti et al. 2005; Vardi et al. 2006) suggested
population-control also on the level of primary producers. In parallel to an increasing
number of studies confirming the deleterious effects of PUAs on marine organisms
(Ribalet et al. 2007a; Romano et al. 2010), also contradictory observations were
reported (Dutz et al. 2008; Jones and Flynn 2005; Wichard et al. 2008). The
observation of Fontana et al. (2007), that the production of non-volatile oxylipins in
diatoms also results in reduced reproductive success in copepods, lead to an
intensified investigation of non-volatile oxylipins in the following years (Barreiro et al.

2011; lanora et al. 2011; lanora et al. 2015; Varrella et al. 2016). Separate analytical
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platforms for the targeted analysis of diatom-derived PUAs have been introduced to
date and since recently also for non-volatile oxylipins. Whereas PUAs are measured
after extraction via SP(M)E either directly or subsequent to derivatization using GC-
MS (d'lppolito et al. 2002a; Pohnert 2000; Vidoudez et al. 2011b; Wichard et al. 2005b),
non-volatile oxylipins are analysed following derivatization by LC-MS (Cutignano et al.
2011). The developed LC-MS-based protocol (Manuscript 5) combines targeted
volatile and untargeted non-volatile oxylipin analysis on one analytical platform. It
allows to precisely quantify well-known PUAs and, in addition, to screen for e.g. still

unknown accompanying lyase products.

4.1.2 Analytical platform for oxylipin profiling

In the following, the developed analytical protocol is discussed focusing on quality
control and selected validation key criteria. Sample preparation including all steps from
culture filtration to sample injection is fast (ca. 20 min) and easy as no extraction or
derivatization is needed. In contrast to the sample preparation for headspace SPME
analysis (Pohnert 2000), particulate organic matter has to be removed prior to LC-MS
measurement requiring one additional centrifugation step. Cultures are harvested by
filtration, which for the small required volume of 40 mL and the investigated cell
densities is rapidly and efficiently done. Some optimized protocols allow to centrifuge
microalgae without cellular wounding (Bolling and Fiehn 2005). However, other algal
species should not be centrifuged (Michels et al. 2016), as diverse hydrodynamic
forces act on algal cells during centrifugation leading to cell disruption (Xu et al. 2015).
A bottleneck of the developed method for high-throughput analyses is the artificial
wounding of algal cells that was achieved by separate ultrasound treatment per
sample. Parallel processing of several samples in an ultrasonic bath resulted in
decreased analyte intensities (Fig. S 1). Depending on algal cell wall robustness,
wounding by ultrasonic baths, freeze-thaw-cycles, exposure to saline or solvent
solutions, or bead mill treatment (e.g. for macroalgae, Manuscript 2) may help to
increase sample throughput (Juttner 2001; Wichard et al. 2005b). The subsequent
UHPLC method was optimized to separate aldehydes in the range of Cs-C10 within a
chromatography run time of 5 min, which is well below typical GC run times of about
30 min (d'lppolito et al. 2002a; Wichard et al. 2005b). Taking the polarity of the analytes
into account, APCI instead of ES| was chosen to ionize PUAs, resulting in 2-3x higher
sensitivity than with the more commonly used ESI (data not shown). When measuring
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marine samples with high salt load, the corona discharge needle should be cleaned
regularly to ensure robust ionization. APCI has been introduced earlier to analyse e.g.
2,4-dinitrophenylhydrazine-derivatized PUAs (Edwards et al. 2015), the hydroperoxide
lyase product 12-oxododeca-5,8,10-trienoic acid (Pohnert 2000), and hydroxy fatty
acids as intermediates of oxylipin biosynthetis (Santiago-Vazquez et al. 2004). To
further increase the sensitivity of the targeted PUA analysis, positive ionization and
targeted SIM mode were applied, resulting in LODs of <1-5x10% M and LOQs of 1.9-
14x10® M (Manuscript 5). Thereby, the instrumental sensitivity was highest for
decadienal, followed by heptadienal, hexadienal and octadienal. Recently, an
optimized protocol for PUA analysis using SPME with on-fiber derivatization led to a
LOD of 0.027 ug L' for decadienal (Ma et al. 2011b). Previous derivatization methods
reported a LOD of 100-200 ug aldehyde per starting sample (d'lppolito et al. 2002a)
and a LOQ of 11 ug L' per standard (Wichard et al. 2005b). To compare these values,
the minimum number of phytoplankton cells in 1 L of seawater was estimated that
would be needed for quantitative analyses (Table 1). The achieved LOQ for decadienal
of 19 nM, which equals <400 cells of natural phytoplankton with reported 47.7 fmol cell
' (Wichard et al. 2005b), is in the lower range of previous protocols and well suited for
the investigation of algal cultures and field samples (d'lppolito et al. 2002a; Ma et al.
2011b; Wichard et al. 2005b).

Table 1 Limits of detection (LOD) and quantification (LOQ) as reported for several PUA analysis
protocols (d'lppolito et al. 2002a; Ma et al. 2011b; Wichard et al. 2005b) in comparison to the developed
method (Manuscript 5). For comparison, the minimum amount of PUA-producing algal cells in 1 L of
seawater for quantitative studies was estimated. LODs were transferred to LOQs based on S/N and the
molar mass of decadienal. Further, a rather high PUA content of 47.7 fmol/cell as reported for natural
phytoplankton samples (Wichard et al. 2005b) was considered.

Analyte LOD LOQ Reference PUA-producing cells/L
Decadienal 0.027 pg/L - Ma et al. 2011b ~12
Decadienal <1x108 M 1.9x108 M  Kuhlisch et al. 2017 <400
'Aldehyde’ - 11 pg/L Wichard et al. 2005b <2 000
'Aldehyde’ 100-200 pg/sample - d'lppolito et al. 2002a >45 000

Further comparison with alternative protocols is hindered by the poorly documented
declaration of descriptors such as selectivity, accuracy, precision, sensitivity, working
range, robustness or recovery, which are used to validate analytical methods (van
Zoonen et al. 1998). Instrument precision was tested by re-injection of one biological
sample at the beginning and end of the measuring sequence, and homoscedasticity

was proven (Manuscript 5). Relative standard deviation of the peak areas increased
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with decreasing analyte concentration in an acceptable range (IS <3%, heptadienal
<6.2%, octadienal <8.7%, decadienal <10.4%). Using weighted linear regression
analysis, the working range (108-10-> M) was extended compared to Wichard et al.
(2005b). Sample stability for short periods was similar to Wichard et al. (2005b), which
allows to store samples after collection until analysis at 4°C. Prolonged storage for
more than 16 weeks at -20°C resulted in recoveries of >84% for dienals and >50% for
trienals. With regard to trienal analysis, alternative conditions (e.g. -80°C) should be
considered for long-term storage. Furthermore, analyte loss due to covalent binding
with matrix components has to be expected when working with biological sample
matrices (43-62% recovery, Wichard et al. (2005b)), which will be discussed in the
following chapter.

4.1.3 Requirements of oxylipin analyses

The developed method (Manuscript 5) provides a snapshot of the current PUA
concentrations in the sample matrix, thus representing an integrated view over PUA
producing and consuming processes. For accurate quantitative analyses additional
aspects should be taken into account. As the enzymatic reactions were not stopped
after initiation by sonication, a continuous production of PUAs has to be considered
until either the substrate is diminished, enzymatic reactivity is lost due to stability, or
substrate encounter rate decreases due to dissolution. Even though enzymes can be
active in the sample matrix for up to 20 min (Pohnert 2002), decatrienal formation
shows a saturation after already 3 min (Pohnert 2000) in parallel to a decline in
polyunsaturated fatty acids (Wichard et al. 2007). The causes for the saturation are not
yet known. To control the formation of PUAs, enzymes can be specifically inhibited as
shown with phospholipase A2 inhibitors (Pohnert 2002) or by pH regulation (Pohnert
2000). With regard to the fate of PUAs, the inherent reactivity of the a,3-unsaturated
structure should result in decreasing concentrations of free PUAs (Wichard et al.
2005b) due to nonspecific reactions with matrix components such as proteins or DNA
(Carvalho et al. 1998; Zhu et al. 2010). Supporting this assumption, a moderately
specific labelling of proteins involved in energy metabolism was observed, as well as
the accumulation of labelled PUAs in copepod gonads (Wolfram et al. 2014; Wolfram
et al. 2015). How nonspecific covalent binding and specific accumulation of PUAs are
regulated is not yet known. To control the reactivity of PUAs, derivatization protocols
can be applied that stabilize PUAs directly upon release, thereby limiting the covalent
binding to matrix components (Wichard et al. 2005b).



Discussion 142

4.1.4 Ecological relevance of oxylipin formation in microalgae

Applicability of the developed targeted oxylipin protocol was demonstrated by
quantitative dienal analysis in exponentially growing diatom cultures. Concentrations
ranged from 0.01 fmol cell-1 to 0.48 fmol cell-1 and were well within already reported
concentration ranges (Manuscript 5, Table S 1). The presence of 2E,4Z-hexadienal
was for the first time demonstrated in a marine diatom. Typically, heptadienal,
octadienal and decadienal are monitored and reported in PUA analyses of marine
diatoms, which is in part due to the availability of reference standards. Also in a in
recent study of marine benthic diatoms hexadienal was found next to several other
uncommon mono- and polyunsaturated aldehydes (Pezzolesi et al. 2017). With regard
to the known biosynthetic pathways, a LOX and HPL for w-1 unsaturated fatty acids
have to exist, however, such fatty acids have not been reported so far. Thus, unknown
mechanisms may be responsible for the generation of 2E,4Z-hexadienal. This
discovery of novel structures highlights the necessity of untargeted methods
complementing established targeted PUA analyses in order to discover unexpected
compounds and metabolic pathways. Decadienal could only be quantified in the
Thalassiosira rotula culture even though instrument sensitivity was highest for
decadienal (Manuscript 5). Further, it was detected for the first time in traces in
Skeletonema costatum RCC75. Besides these known PUA producers, Chaetoceros
didymus was investigated that has not been studied for PUA production before. With
low amounts of heptadienal (0.01 fmol cell-1) and only traces of decadienal it is in the
lower range of reported PUA concentrations in marine diatoms (Manuscript 5, Table
S 1), and appears not to be an important PUA producer. The investigated C. didymus
strain was isolated in the Gulf of Naples, is regularly recorded in temperate to warm
ocean areas, and known for its resistance against algicidal bacteria (Paul and Pohnert
2011). Within the cosmopolitan Chaetoceros genus, which is among the most
abundant and diverse planktonic diatom taxa (Malviya et al. 2016), PUA formation was
only observed in a few other species so far namely C. compressus and C. muelleri,
while C. affinis, C. calcitrans, and C. socialis do not produce PUAs at all (Dutz et al.
2008; Fontana et al. 2007; Ma et al. 2011b; Wichard et al. 2005a). In this context it is
interesting to note that the diatom genus Thalassiosira, which is also among the most
abundant and diverse diatom taxa (Malviya et al. 2016), is a well-known PUA producing
taxon. The genus Skeletonema, which has been investigated intensively with regard

to PUA formation, barely contributes to global diatom biomass (Fig. 10, Leblanc et al.
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(2012). Thus, despite the wealth of positive effects of PUAs for the releasing algae,
there seems to be no relation to their ecological dominance. With the concepts of trait-
based phytoplankton ecology in mind (Litchman and Klausmeier 2008), it may be
assumed that non-PUA producing diatom taxa exhibit equivalent functional traits based
on other chemical molecules as already observed for nonvolatile oxylipins (lanora et
al. 2011). PUA screening of ecologically more relevant microalgae and the recording
of HPL gene distributions within algal lineages may assist in the future to determine

the actual ecological relevance of PUA formation within the marine plankton.
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Fig. 10 Proportion of the different diatom genera to the global diatom biomass following Leblanc et al.
(2012). The genera highlighted by color exemplary reflect the divergence between relevance in biomass
contribution (e.g. Chaetoceros, Thalassiosira) and in PUA release (e.g. Thalassiosira, Skelefonema).

Untargeted oxylipin profiling was conducted in addition to the targeted analysis of
PUAs. Therefore, full scan mode and targeted SIM mode were run in alternating scans.
The high mass resolution (70.000) of the Orbitrap detector allowed to assign
chromatographic peaks in full scan mode to known diatom oxylipins, which were further
characterized and confirmed by MS/MS measurements as reference standards were
not available. Putatively assigned peaks of octa- and decatrienal were integrated and
quantified assuming identical response factors as for the respective dienals. Especially
in Thalassiosira rotula the trienals were present in high concentrations accounting
together for 80% of the total quantified aldehyde amount. In many structure-activity
studies decadienal is applied (Adolph et al. 2003; Gallina et al. 2014; Pepi et al. 2017;
Wolfram et al. 2015), however, with regard to occurrence and concentration of

decadienal and decatrienal in so far investigated diatom cultures (Manuscript 5, Table
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S 1), the contribution of decatrienal may have been underestimated and
underrepresented in an ecological context. This again highlights the importance to
design ecologically relevant experiments and not base set-ups on available reference
standards or techniques. Sampling for untargeted metabolite analyses can control for
unexpected or unknown effects. The untargeted oxylipin profiling also enabled to
screen for short-chain hydroxylated fatty acids, which are suggested to be the second
enzymatic products accompanying PUAs after HPL cleavage in diatoms (Barofsky and
Pohnert 2007). Accordingly, 10-hydroxydeca-57,8Z-dienoic acid - the counterpart of
decatrienal as most intense observed PUA - could be assigned to a peak in full scan
mode. The simultaneous presence of the corresponding w-oxo-acid with similar
intensity may reflect an enzymatic side-reaction as known of plant HPLs (Grechkin and
Hamberg 2004).

In conclusion, the developed protocol combines targeted and untargeted oxylipin
profiling of diatom extracts by parallel full scan and targeted SIM measurement. Both
polar and nonpolar oxylipins are captured using APCI technology. The short analysis
time allows experiments with high sample throughput. Nonpolar PUAs can thereby be
detected with high sensitivity and without derivatization needs in complex biological
sample matrices. After the discovery of PUAs in diatoms and their role for algal
defence, the scientific focus was and still is primarily on a few known molecules namely
heptadienal, octadienal and decadienal. Still many findings especially with regard to
their biosynthesis and mode of action on the molecular level await discovery. However,
several studies also showed species-dependent the release of other short chain PUAs
and non-volatile oxylipins in even higher amounts than or in the absence of PUAs. The
developed method can help to monitor lyase products for a better understanding of the
involved enzymatic mechanisms. It allows to screen for new candidates of oxylipin
chemistry, thereby broadening our understanding of grazer defence in marine
phytoplankton communities. Further, the parallel profiling of polar and nonpolar
oxylipins may help to unravel the many contradicting results between oxylipin formation
in diatoms and their effect on algal grazers. It may also help to reassess the proposed
multifunctional roles of PUAs in plankton ecology that arose in the last years. PUA
formation has not only been related to grazer defence, but also to allelopathic effects
towards other microalgae, antimicrobial activity, intraspecific cell signalling, and
population control. Also to other metabolites in plankton ecology, like DMSP, multiple
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roles are assigned that may be re-investigated by combined targeted and untargeted

analyses to validate causalities.
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4.2 Mapping phenotypic plasticity of microalgae using untargeted
metabolite profiling

4.2.1 Stimulating physiological plasticity in laboratory cultures

For a comprehensive understanding of the chemical ecology of marine phytoplankton
it is not just necessary to investigate the chemical nature of signal molecules, their
biosynthesis and release. It is also important to characterize the responses in
perceiving organisms. In general, marine organisms can respond to biotic and abiotic
environmental cues with changes in biochemistry, physiology, development,
morphology, and behaviour in order to improve their survival, fecundity, and thus
fitness. This so called phenotypic plasticity is defined as the 'property of individual
genotypes to produce different phenotypes when exposed to different environmental
conditions' (Pigliucci et al. 2006). Phenotypic plasticity can thereby affect the ecology
and evolution of chemically-mediated species interactions e.g. by stabilizing
populations, structuring food webs, reciprocal plasticity and speciation (Agrawal 2001;
Miner et al. 2005). The most rapid organism responses occur on the metabolic level
as reflected by fluctuations in transcripts, proteins, and metabolites, and are
designated as physiological plasticity. Both primary and secondary metabolism are
involved in organism responses resulting in alternating intra- and extracellular
metabolite levels. Secondary metabolites seem to be thereby of lower importance for
the marine phytoplankton compared to land plants (Metlen et al. 2009; Pohnert et al.
2007). Untargeted metabolite profiling can follow in an unbiased way the physiological
organism responses in chemically-mediated interactions. To simulate dynamic, mixed-
factorial changes of environmental cues, the physiological plasticity of a marine
microalga was mapped for batch culture growth. The physiology of algal cells - as
observed e.g. in batch cultures - is hypothesized to have large implications for grazing
ecology and thus the marine food web. Phaeocystis pouchetii was chosen as study
organism to complement available data on Skeletonema marinoi (Barofsky et al. 2010;
Vidoudez and Pohnert 2012), Thalassiosira pseudonana (Barofsky et al. 2009),
Synechococcus elongatus (Fiore et al. 2015), and Emiliania huxleyi (Mausz and
Pohnert 2015), and to broaden the knowledge about common and species-specific
metabolic marker (Manuscript 3).
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4.2.2 Constraints of laboratory batch cultures for metabolomics studies

In the following, the implications of monoclonal, non-axenic batch culture set-ups for
the quality and interpretation of metabolite profiles will be discussed. Under distinct
environmental conditions, a chemical phenotype is not just determined by the
environment, but also by the underlying genotype (and its epigenetic transformation,
see Schmidt et al. (2016)), and the interaction between both (Falconer 1989). In natural
marine phytoplankton populations, a large diversity of genotypes exists due to large
population sizes and short generation times that can be further increased by
environmental fluctuations (Reusch and Boyd 2013). The occurrence of genotype
diversity and phenotypic plasticity was recently shown in monoclonal Chlamydomonas
cultures by applying untargeted metabolite profiling on the single cell level (Krismer et
al. 2017). Single cell metabolite profiling is, however, still the exception for the
investigation of chemical phenotypes of unicellular microalgae. Most commonly, bulk
analyses of algal cultures are conducted (Manuscript 2), assuming low genetic
heterogeneity and - as cell metabolism is linked to cell cycle - promoting metabolic
homogeneity by cell cycle synchronization using strict light-dark regimes (Krupinska
and Humbeck 1994). The putatively diploid flagellates of the monoclonal Phaeocystis
pouchetii strain AJO1 divide during dark phase, and thus cell cycle synchronization can
be assumed (Jacobsen 2002; Jacobsen and Veldhuis 2005). As metabolites were
sampled at a fixed time point shortly after the onset of light, a high metabolic
synchronization of these algal cultures was supposed (Manuscript 3). However, some
initial genotype diversity may have been present, as the strain was isolated 1994
(Jacobsen 2002), and subsequently maintained by repeated dilution. Metabolite
profiles of the biological replicates diverged with prolonged experimental duration.
This, however, did not interfere with the multivariate statistical data analysis
(Manuscript 3). Batch cultures induce continuous changes in environmental
parameters causing physiological plasticity in microalgal cells as described for
Skeletonema marinoi (Vidoudez and Pohnert 2012), Emiliania huxleyi (Mausz and
Pohnert 2015), and Phaeocystis pouchetii (Manuscript 3). Based on population size
descriptors as cell abundance, algal growth rates can be calculated, according to which

the growth in batch cultures can be divided in different phases (e.g. lag, exponential,
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stationary, and declining growth phase, Fig. 11) each with a distinct associated
physiology (Bolier and Donze 1989; Monod 1949).

4 Retardation Effects of environmental
changes appear

A 1 2 3 4 5 6 C
2 Phase Phase Description
= i
o ' R 1 Lag Physiological adaptation to
° E o . .
= . conditions after inoculation
(7] I .
o ' 2 Acceleration
£ ! ! 3 Exponential Growing population changes
B T T T T T environment

: 5 Stationary  One (ore more) factors are
' limiting growth
E 6 Declining Stationary and declining phase
E are highly species-specific

Fig. 11 Phases of algal batch growth as defined by cell density (A) and changes in the growth rate (B).
Vertical dotted lines mark the transition between growth phases as described in (C). Figure adapted
from Monod (1949).
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The cold-water species Phaeocystis pouchetii showed a slow growth development
taking about 50 days from lag to late stationary phase, which is twice as long as for the
previous investigated species. Following 4 days of lag phase, the exponential phase
lasted for about 12 days and was sampled for metabolite profiling. Subsequently, algal
growth slowly levelled off for about 30 days and thus the last two metabolite samplings
were defined as early and late stationary phase. The limiting environmental parameter
of the growth-limited phases can vary with different effects on algal physiology and
should be characterized based on the accompanying descriptive metadata. Neither
nitrate nor phosphate were limiting at the beginning of the stationary phase and based
on the elevated nitrite levels a light limitation can be hypothesized (Collos 1998; Lomas
and Lipschultz 2006). In the late stationary phase probably additional limitation in
phosphate occurred (<1 uyM). Co-limitations in phytoplankton are common and
complicate data analysis and interpretation (Cloern 1999; Davidson and Gurney 1999).
Whereas lag and exponential growth phase can be clearly defined and discriminated,
subsequent growth phases show stronger deviations from theoretical models, and
were observed in various ways for other investigated algal species (Mausz and Pohnert
2015; Vidoudez and Pohnert 2012) (Manuscript 3). Whereas metabolite profiles of
exponential growth can be directly compared and interpreted between algal species,
this is more complicated for the subsequent growth-limited phases due to the variability
in limiting parameters (e.g. nutrients, irradiance or CO2), and may contribute to the

divergence between studies. As final note on the batch culture design, the use of xenic



Discussion 149

cultures is discussed. The growth of Phaeocystis pouchetii induced the growth of the
associated bacterial community but abundances never exceeded 5x107 cells mL-"
(Manuscript 3). Various interactions between algae and bacteria are known (Meyer et
al. 2017; Seymour et al. 2008) and may have influenced the growth of P. pouchetii.
Particularly with regard to the growth-promoting character of algae-bacteria
interactions, the investigation of axenic cultures is less representative for natural
environments. With regard to the influence of residual bacterial biomass on algal
metabolite profiles, the ratio of the average biovolume of 0.2 ym? (bacteria) vs. 65 ym?
(Phaeocystis) in combination with 1.2 ym filter pore size should not lead to substantial
effects on endometabolomes. The particle size of 80 ym of the SPE cartridges in
combination with short solvent contact should limit the effect on algal exometabolomes.
However, the potential interference of bacterial biomass has to be considered

individually e.g. for small cell sizes of the investigated algal species (Hirth et al. 2017).

4.2.3 Deciphering endometabolic biomarkers of growth physiology

Chemical profiling of endometabolites illustrates the metabolic state of algal cells and
can follow the physiological responses of algal cells towards external stimuli such as
irradiance, temperature, and grazing. Thereby, especially primary metabolites as direct
metabolic intermediates and products but also secondary metabolites are examined
as free (not conjugated) intracellular metabolites. Different protocols for metabolite
quenching, extraction, and sample processing have been developed in the past with
adjustments to various study organisms and aims, including a protocol for the diatom
Skeletonema marinoi (Vidoudez and Pohnert 2012) (Manuscript 2). The most critical
parameters for marine microalgae are the filtration, especially for flagellated single-
celled cultures, and the metabolic quenching on-filter with a cold mixture of organic
solvents to extract a broad polarity range of metabolites. Following sample preparation
for GC-MS analysis, spectral processing is conducted with AMDIS, a common software
for the deconvolution of GC-MS chromatograms. Subsequent statistical analysis is
conducted by canonical analysis of principal coordinates (Anderson and Willis 2003);
a supervised multivariate analysis that is less prone to multicollinearity in data matrices,
which is common for analyses of derivatized samples. In combination with the NIST
and GOLM mass spectral library, a high degree of metabolite coverage and annotation
can be achieved for endometabolomes exceeding annotation levels of LC-MS-based
profiling studies (Barofsky et al. 2010). This allowed the investigation of growth-

associated endometabolic plasticity of different marine microalgal species (Mausz and
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Pohnert 2015; Vidoudez and Pohnert 2012) (Manuscript 3). In Phaeocystis pouchetii
batch cultures, more than 80 features were found to be highly growth phase-dependent
following this approach. About one third was identified, about half putatively annotated
or assigned to compound classes, and one quarter remained unknown. As e.g. the
GOLM metabolome database was initiated to collect plant metabolites, a certain
percentage of unidentified compounds still has to be expected for marine
phytoplankton metabolomes unless databases with broader taxonomic and chemical
range are established (e.g. MetabolLights, Haug et al. (2013)). Besides amino acids
and fatty acids, primarily carbohydrates such as mono- and disaccharides, sugar
alcohols and sugar acids were observed (Manuscript 3). Due to their high similarity in
mass fragmentation and retention time (Medeiros and Simoneit 2007), many
monosaccharides remained unidentified, whereas the identification of amino acids and
fatty acids was rather unproblematic. The selected endometabolites mapped the
dynamic growth physiology of Phaeocystis cells. Induced primary metabolism during
active growth and photosynthesis in the exponential phase was manifested in elevated
amino acid and carbohydrate levels due to nitrogen- and carbon-acquisition, and
increased short-term carbon-storage and oxidative stress metabolites. Growth-limiting
conditions in early stationary phase induced lipid metabolism, which was manifested
in elevated fatty acid, glycerol, and glyceraldehyde levels, while in the late stationary
phase levels of PUFAs and lipid-derived structures such as sterols and antioxidants
increased to sustain membrane fluidity and stability. This is in agreement with general
lipid metabolism control mechanisms reported for microalgae (Roessler 1990). The
synthesis of triacylglycerols with high proportions of saturated and monounsaturated
fatty acids is considered as an early cellular response to growth limitation (Roessler
1990), while unsaturated fatty acids, sterols and tocopherols are known to accumulate
under stress conditions to scavenge radicals and stabilize membranes (Fryer 1992;
Mikami and Murata 2003). During late stationary phase, also the carbohydrate
metabolism was induced and manifested in elevated mono- and disaccharide levels
(Manuscript 3). Under nutrient-limiting conditions, excess energy is stored in form of
carbohydrates in P. pouchetii as reported earlier (Alderkamp et al. 2007). Whereas
these metabolite dynamics reflect general responses of algal primary metabolism
during growth, also species-specificity can be observed. Mannitol, which is absent in
e.g. diatoms (Dittami et al. 2011), characterised the exponential to early stationary

phase of Phaeocystis pouchetii (Manuscript 3) and Emiliania huxleyi (Mausz and
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Pohnert 2015; Obata et al. 2013). Scyllo-inositol, that characterized the early stationary
phase of Phaeocystis, is in contrast to myo-inositol rarely reported in marine
microalgae (Ford and Percival 1965; Kobayashi et al. 2007). Retention time
comparison with a reference standard is necessary to discriminate the nine inositol
isomers due to their high spectral similarity, which may have hindered more frequent
reports of scyllo-inositol. Putrescine, as marker for the declining growth phase of
diatoms (Vidoudez and Pohnert 2012), has not been detected so far in haptophytes.
This observed taxon-specificity should be validated in the future with more taxa and
environmental cues to distinguish on different taxonomic levels physiological markers

for the analysis of mixed populations in natural plankton communities.
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4.2.4 Deciphering exometabolic biomarkers of growth physiology

Chemical profiling of exometabolites illustrates the metabolic state of the algal cells
due to e.g. overflow mechanisms during active photosynthesis and growth or
metabolite release during cell senescence and death (Thornton 2014). Based on active
exudation and passive leakage both primary and secondary metabolites fuel the
marine pool of dissolved organic matter (DOM). Also signal molecules for chemical
communication within algal populations and between other organisms such as algal
species, grazers, or bacteria are transmitted via the aqueous phase (Schwartz et al.
2016). This covers especially secondary metabolites, but also primary metabolites may
mediate algal interactions (Segev et al. 2016). Several processes shape the chemical
profiles of algal exometabolomes also in laboratory cultures: the passive and active
release of primary and secondary metabolites by algal (and bacterial) cells, the
transformation of metabolites by abiotic (physically, chemically) and biotic factors
(enzymatically), as well as the uptake of metabolites by algal (and bacterial) cells. Few
protocols for the extraction of exometabolites have been developed and applied thus
far that target the needs of algal cultures or marine samples (Manuscript 2). The most
pronounced adjustments to mention are the disruption-free separation of cells from the

surrounding medium, and the removal of the high salt load that would otherwise
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interfere during chemical analysis. Apart from that, extraction of extracellular
metabolites is comparable between different liquid phases such as freshwater, culture
media, or body fluids, and lessons may be learned from other disciplines. In the current
approach, exometabolites are extracted after filtration over glass microfiber filters from
the filtrate using hydrophilic, polymeric cartridges with a weak anion exchanger to
improve the retention of polar analytes (Fontanals et al. 2005). Based on a recovery
assay using glucose, the filtrate was not acidified prior extraction. Subsequent GC-MS
analysis, spectral processing, and data analysis followed the endometabolite profiling
protocol. Even though less primary metabolites are expected to contribute to
exometabolomes, the annotation rate will be higher than for an untargeted profiling
based on LC-MS (Barofsky et al. 2009). This approach allowed the first in-depth
investigation of growth-associated exometabolic plasticity in marine microalgae
revealing potential markers for different growth phases (Manuscript 3). More than 80
features were determined that were highly growth phase-specific in Phaeocystis
pouchetii batch cultures. In comparison to the endometabolome, only a small fraction
could be identified (10%), another third was putatively annotated or assigned to
compound classes, and more than half the features remained unknown, which will be
discussed below. Besides several carboxylic acids, diverse other metabolite classes
were observed including saccharides, sugar alcohols, fatty acids, alcohols, and
hydrocarbons. The observed exometabolite profiles draw a complex and dynamic
picture of the DOM pool that reflects algal physiology as well as putative secondary
metabolite-mediated signalling between algae and bacteria. Active photosynthesis in
the exponential and early stationary phase was manifested in elevated levels of
carboxylic acids and glycerol, whereas cell death in the late stationary phase was
manifested in elevated nucleoside levels. The presence of putatively annotated
lumichrome and an indole derivative indicate potential algae-bacteria interactions. The
observed release of e.g. carboxylic acids may reflect the hypothesis that
"photosynthetic overflow is generally regarded as a consequence of inefficiencies in
cell physiology" (Thornton 2014). Carboxylic acids share like monosaccharides high
spectral similarity, and due to the lack of a few standards, this class was not fully
annotated. How specific they are as physiological extracellular markers is at the
present state difficult to say. Candidates for general growth markers seem to be
glycerol indicating active photosynthesis for several algal taxa (Alsufyani et al. 2017;

Hellebust 1965) and adenosine indicating cell senescence (Fiore et al. 2015). More
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taxon-specific for Phaeocystis pouchetii seems to be the release of mono- and
disaccharides during late stationary phase as Phaeocystis is known for its high
accumulation of carbohydrates under growth-limiting conditions (Alderkamp et al.
2006; Alderkamp et al. 2007). Two features that were putatively annotated as
lumichrome and as indole derivative (retention time close to indole-3-butanoic acid and
tryptophan) are both known to mediate algal-bacterial or bacterial interactions (Amin
etal. 2015; Labeeuw et al. 2016; Rajamani et al. 2008). Interestingly, they had opposite
occurrence patterns with high levels of the lumichrome-like metabolite at early growth
stages and high levels of the indole derivative during later growth stages
(Manuscript 3). For the related haptophyte Emiliania huxleyi lumichrome was
putatively annotated in the endometabolome during exponential phase (Mausz and
Pohnert 2015) suggesting an intracellular origin. Only a few studies exist so far that
link the extracellular occurrence of metabolites with the corresponding
endometabolomes (Longnecker et al. 2015b). To provide more evidence for the origin
of exometabolites, stable-isotopic labelling experiments should be conducted (Baran
et al. 2010; Weber et al. 2013). Thereby, an intracellular formation followed by active
or passive metabolite release is assumed excluding chemically transformation
processes before, while, or after excretion. The low annotation and identification
efficiency for exometabolites will be discussed in the following chapter (see 4.4.3) to
highlight the need for further investigations and optimizations. Taken together,
exometabolite profiling of marine microalgae reflects the vast diversity of dissolved
organic matter that is released by algal cells into the surrounding water effecting not
just species interactions and phenotypic plasticity in co-occurring organisms, but also

fuelling the microbial loop and thus contributing to the marine food web.
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In conclusion, the untargeted metabolite profiling of endo- and exometabolites allowed
to map the physiological plasticity of marine microalgae that accompanies the

dynamics of batch culture growth. Algal endo- and exometabolomes were shown to be
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growth phase-specific reflecting different cell physiological states. Common and taxon-
specific physiological markers could be indicated and were discussed. Based on
putative annotation, candidates for further structure elucidation with potentially
interesting ecological roles were found, e.g. a lumichrome-like metabolite and an indole
derivative. The repeated detection of certain metabolites in several marine microalgae
without known function, like pyrrole-2-carboxylic acid or scyllo-inositol, suggests the
need for further functional characterization within the algal metabolism. This observed
physiological plasticity of marine microalgae will allow a dynamic adaption, acclimation,
and response to biotic and abiotic environmental factors, which, as a result, will also
shape plankton interactions. The physiological plasticity of phytoplankton can also
influence the algal nutritional state, and may thus have large implications for the marine
food web. Further, algal exometabolites create complex chemical environments that
influence associated organisms via the supply of carbon sources and thereby can

structure plankton communities.
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4.3 Advancing environmental studies

4.3.1 Metabolomics to investigate natural environments

When, within the field of chemical ecology, interactions among organisms are
investigated, evidence for the action of chemical mediators is usually adduced in
laboratory set-ups. The ecological relevance of laboratory-derived observations has to
be confirmed by complementary field investigations. This holds true also for marine
plankton ecology (Pohnert 2010). In addition to the direct survey of natural
environments, water enclosures such as mesocosms allow to control certain
environmental parameters of these semi-natural ecosystems. Experimental set-ups
range from mesocosms installed on-land, moored close to the coast, or free-floating
off-shore with high resolution in time, to research cruises to the ocean area of interest
with high spatial resolution. In contrast to terrestrial systems, marine environmental
studies are often more difficult to perform as they depend on research vessels. Stand-
alone equipment is primarily available for abiotic parameters and algal toxins so far
(Glasgow et al. 2004). However, recent developments such as free-drifting devices
analyse nitrogen fixation (Bombar et al. 2015) are promising and may increase spatial
and temporal resolution. Also metabolomics approaches such as (comparative)
metabolite profiling and metabolic fingerprinting will enhance our understanding of
marine environments. Marine plankton communities shape diverse and dynamic
chemical landscapes on the extra- and intracellular level based on infochemicals and
metabolic markers reflecting ecological interactions. Metabolomics can visualise both,
the chemical language and communication that aqueous organisms rely on, as well as
their physiology in response to environmental cues. Chemical landscapes were
investigated by comparative metabolite profiling, and the suitability of metabolomics
approaches for marine environmental studies demonstrated (Manuscript 3,
Manuscript 4). A large physiological plasticity among and between phytoplankton
blooms dominated by Phaeocystis pouchetii was shown, and linked to growth phase-
dependent marker metabolites derived from laboratory experiments (Manuscript 3).
Exometabolite profiling of natural seawater filtrates showed differential chemical
alterations caused by filtration with disturbing effects on subsequent dilution
experiments (Manuscript 4). Both studies highlight the importance of untargeted
chemical analyses in addition to targeted analyses as long as a large part of the organic

matter in marine environments remains unidentified.
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4.3.2 Mapping endometabolite landscapes during phytoplankton blooms

The physiology of algal cells not just determines their fitness within the abiotic
environment, but also influences biotic interactions such as grazing. For a better
interpretation of endometabolic patterns during a Phaeocystis pouchetii bloom in the
field, first growth phase-dependent marker metabolites were identified in controlled
laboratory experiments, and then their distribution was monitored in several
phytoplankton blooms of the same species (Manuscript 3). Growth phases were
induced in laboratory batch cultures to simulate dynamic cell growth comparable to
natural environments. Comparative untargeted metabolite profiling of small
metabolites like amino acids, saccharides, fatty acids, sterols and terpenes using GC-
MS allowed to determine several growth phase-dependent metabolites as suitable
physiological markers for field experiments. Elevated free amino acid levels during
exponential growth reflected active nitrogen assimilation, a feature that is in-line with
previous results (Hirth et al. 2017; Kluender et al. 2008; Vidoudez and Pohnert 2012)
and thus may be common for the majority of nitrogen-dependent microalgae. In
stationary growth phases, the elevated levels in building blocks of carbon-rich
macromolecules such as neutral lipids and polysaccharides reflected the need of
microalgae to store photosynthetically-acquired carbon under growth-limiting
conditions (Manuscript 3) (Geider and La Roche 2002). Just a few metabolites show
higher taxon-specificity and thus are suited to resolve overlaying physiological patterns
within plankton communities. Within those are putrescine as putative diatom
senescence marker (Vidoudez and Pohnert 2012), mannitol as short-term storage
carbohydrate in haptophytes (Mausz and Pohnert 2015) (Manuscript 3), or scyllo-
inositol (Manuscript 3). As for the latter, physiological interpretation is limited for many
endometabolites due to lack of knowledge about their specific functions. Laboratory-
derived biomarkers for viral infection of the marine microalga Emiliania huxleyi are
already used for field and mesocosm studies (Hunter et al. 2015; Vardi et al. 2009;
Vardi et al. 2012). Similarly, the identified growth phase-dependent endometabolites
of Phaeocystis pouchetii were investigated for their suitability as physiological growth
marker for environmental studies (Manuscript 3). About 50 endometabolites of
Phaeocystis laboratory cultures were detected in natural mixed phytoplankton
communities. They showed clear differences between blooms that varied in the
dominance of phytoplankton taxa, but also within the Phaeocystis-dominated blooms,

with diverse patterns of the growth phase-specific metabolites. Nutrient-limitation in the
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inner Porsangerfjord lead to highly distinct endometabolite profiles of the present
phytoplankton community reflecting their cell physiology. The observed elevated levels
in mono- and disaccharides were thereby in accordance with the observations for the
late stationary growth phase. Algal physiology can thus imprint endometabolite profiles
even stronger than phytoplankton taxonomy. Such an endometabolic landscape shows
the great diversity in primary and secondary metabolites within phytoplankton blooms,
and thus the large diversity in metabolic states as encountered by zooplankton grazers.
In selective feeding experiments of Calanus spp. with the diatom Skeletonema marinoi
and the haptophyte Phaeocystis pouchetii it was indicated that phytoplankton bloom
phase can be more relevant for food choice than algal abundance (Estep et al. 1990;
Ray et al. 2016b), which may be a result of algal physiology (Barofsky et al. 2010; Ray
et al. 2016a). However, in the selective feeding experiments with S. costatum the
identified growth phase-dependent endometabolites were neither annotated nor
quantified under copepod grazing (Barofsky et al. 2010). In contrast, the
endometabolites of a phytoplankton community under grazing of copepods in a
mesocosm study were annotated but not linked to algal physiology (Ray et al. 2016a).
Thus, evidence on a metabolic level is still scarce. In parallel to the chemical profiling
of phytoplankton blooms (Manuscript 3) also grazing experiments were conducted
(unpublished results) that may shed light on this in the future.

4.3.3 Mapping exometabolite landscapes during phytoplankton blooms

For the direct interaction with co-occurring organisms, the excreted metabolome (also
referred to as 'phycosphere’, Seymour et al. (2017)) is even more important than the
endometabolome, as it can be directly sensed. Comprehensive analyses of
exometabolites in marine environments are still rare, especially with regard to
phytoplankton chemical ecology. A detailed study that investigated the growth-
dependence of diatom exudates using LC-MS is lacking subsequent feature annotation
(Barofsky et al. 2009). Thus, the GC-MS analysis of Phaeocystis pouchetii
exometabolites in batch cultures allowed for the first time detailed feature annotation
and identification of metabolites that may serve as physiological markers in future field
experiments (Manuscript 3). Carboxylic acids such as glycolic acid or fumaric acid
may represent common markers for active growth based on the photosynthetic
overflow hypothesis, and nucleosides such as adenosine may in general indicate
decaying algal cells (Thornton 2014). Besides such primary metabolites reflecting algal

physiology, secondary metabolites as putative infochemicals were present in the
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exometabolome of P. pouchetii. Several exometabolites are already in the focus of
marine chemical ecologists as chemical mediators, e.g. DMSP (Johnson et al. 2016),
indole-3-acetic acid (Amin et al. 2015), and lumichrome (Rajamani et al. 2008). Their
potential relevance for other phytoplankton taxa and entire communities has been
brought forward (Manuscript 3). No comprehensive profiling of the exometabolite
landscape of marine environments exist to date, and only recently approaches have
been developed to search for molecules of interest in available field data (Longnecker
et al. 2015a).

During mesocosm experiments and research cruises, many incubation experiments
rely on the filtration of seawater such as dilution experiments, which quantify grazing
losses of microorganisms like bacteria or phytoplankton (Anderson and Rivkin 2001;
Landry and Hassett 1982). In the past, negative or low grazing rates repeatedly
indicated that during some phytoplankton bloom situations filtration artifacts may lead
to reduced specific growth rates (Calbet et al. 2011; Stoecker et al. 2014). Based on
targeted chemical analyses these artifacts were regarded to be induced by the release
of DMSP (Wolfe et al. 2000) or PUAs (Stoecker et al. 2015). A release of other
molecules is likely, but was so far not addressed. Untargeted exometabolite profiling
of filtrates visualised in an unbiased way the impact of filtration on DOM composition
(Manuscript 4). In these dilution experiments, that aimed on estimating bacterivory
during blooms of Phaeocystis pouchetii, specific growth rates of the bacteria were
altered in the dilutions with filtrated seawater. This is violating one basic assumption of
the experimental design (Landry and Hassett 1982). Comparative exometabolite
profiling of small molecules demonstrated that filtration alters the chemical composition
of the seawater in various ways (Manuscript 4). Both, a decrease and an increase in
metabolite concentrations was observed after filtration. Reduction in metabolite
concentrations may be due to adsorption to the filter material or to organic residues on
the filter. Elevated metabolite concentrations may be explained by a metabolite release
after cell damage being e.g. filtration-, species-, and cell stage-dependent, or by
contamination with artificial compounds due to sample handling and filter residues.
Filtration-induced chemical alterations even overlaid the intrinsic phytoplankton bloom-
specific exometabolite profiles. However, only a few candidate molecules could be
annotated and about two-thirds of the compounds remained unknown. As solid phase
extraction discriminates towards metabolites that are retained based on the chemical

properties of the selected adsorbent (Minor et al. 2014), occurring allelopathic
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metabolite(s) may not have been extracted by the chosen cartridge. Also, the
allelochemical(s) might have been too low in concentration to be detected by
subsequent analysis. Even though, untargeted exometabolite profiling allowed to
visualise on a metabolite level the influence of filtration techniques on subsequent
experiments. To test whether the basic assumption of constant specific growth is
fulfilled, specific growth rates of the prey organism should be estimated during dilution

experiments.

4.3.4 Future developments to improve meta-metabolomics approaches

Selected aspects of metabolomics approaches for environmental studies that need
further investigation and improvement in the future are discussed in the following.
Metabolomics analyses of natural occurring plankton communities are still scarce and
a developing field. In contrast, many laboratory-based metabolomics studies have
been already conducted. One might thus aim for combined and comparative data
analyses of metabolite profiles that were generated on different analytical platforms as
was done for laboratory and field samples in the present environmental study
(Manuscript 3). However, an automated data analysis was hindered due to difficulties
in the alignment of chromatograms. Several data processing tools are available,
namely XCMS (Smith et al. 2006), MZmine (Katajamaa et al. 2006), MetAlign (Lommen
2009), MetaboliteDetector (Hiller et al. 2009), the 'metaMS' and 'flagme' packages in
R (Robinson 2008; Wehrens et al. 2014), and the Bioinformatics Toolbox™ in
MathWorks®. Nevertheless, none of them resulted in acceptable chromatogram
alignments (data not shown), and time-consuming manual data evaluation was
necessary (Manuscript 3). This was due to several differing instrumental properties
such as large and non-linear retention time shifts, total scan number, mass resolution,
and the presence of a mass calibration standard (Table S 2). With regard to increased
data sharing in open repositories like Metabolights (Kale et al. 2016) or Metabolomics
Workbench (Sud et al. 2016), the re-usage of data obtained on various analytical
platforms should be facilitated in the future. Furthermore, data normalization strategies
as developed for laboratory experiments (Manuscript 2) have to be reviewed for
mixed natural communities that show a large variance in cell size, shape and volume.
Biomass estimators like total organic carbon content and wet weight (Longnecker and
Kujawinski 2017), peak sum (Hines et al. 2007), cell volume, or more advanced
algorithms (Dieterle et al. 2006) may be considered to account for varying particulate

and dissolved organic matter content in environmental studies. Additionally,
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exometabolite analyses, especially untargeted metabolomics approaches, have to
deal with the low natural metabolite concentrations of e.g. <0.1 nM for heptadienal and
octadienal in the Adriatic Sea (Vidoudez et al. 2011a), with a high background of
dissolved organic matter, and contaminations like plasticizers (Kido Soule et al. 2015).
These limitations may be overcome by emerging analytical and data processing

strategies (Kido Soule et al. 2015; Longnecker et al. 2015a).

To conclude, untargeted metabolite profiling allows to visualise the endo- and
exometabolic landscape of marine environments in time and space. On the intracellular
level, the physiological state of whole phytoplankton communities can be depicted,
which reflects biotic and abiotic interactions. In the highly complex extracellular matrix
of phytoplankton cells, chemical cues of diverse plankton taxa and biotic interactions
are merged. Emerging metabolomics techniques may allow in the future to go beyond
integrated community analyses towards single cell metabolomics in natural
environment. Especially for exometabolomics approaches in environmental studies,
improvements are needed with regard to metabolite extraction, metabolite

identification, and functional characterization.
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4.4 Methodological challenges in the field of chemical ecology

Both the field of chemical ecology and metabolomics are rather new disciplines that
are jointly developed intensively in recent years (Manuscript 1). Thus, it is not of
surprise that several open questions remain to be still solved in the near future. In the
following, some of these challenges for metabolomics approaches in the field of
chemical ecology will be addressed.

4.41 Taxonomic diversity in chemical ecology

In contrast to developmental biology (Drosophila melanogaster), microbiology
(Escherichia coli) or plant biology (Arabidopsis thaliana), research questions in the field
of chemical ecology primarily deal with non-model organisms (Manuscript 1). Only a
few known model species are also of interest and investigated in the field of chemical
ecology e.g. Caenorhabditis elegans (Choe et al. 2012; von Reuss et al. 2012).
However, several marine phytoplankton species exist of which the whole genome has
been recently sequenced, and which thus may serve as potential model organisms in
the future e.g. Phaeodactylum tricornutum, Emiliania huxleyi, and Ostreococcus tauri
(Tirichine and Bowler 2011). For those, downstream analyses and predictions of
metabolites or metabolic pathways are possible. The appropriate transformation
methods are, however, still missing for some species like E. huxleyi. Many other
species that are of interest in chemical ecology have not been sequenced yet such as
Phaeocystis pouchetii, or are pending such as P. globosa and P. antarctica for which
an annotated standard genome draft is assembled since 2015. Analysis strategies
independent of the sequencing and annotation of the whole genome of the study
organism would broaden the taxonomic range and applicability for the field of chemical
ecology. Instead of large species-specific metabolite databases like ECMDB (Sajed et
al. 2016) for Escherichia coli, YMDB (Ramirez-Gaona et al. 2017) for yeast, or
PlantMetabolomics.org (Bais et al. 2012), species-independent metabolite data bases
should be favoured like MetaboLights (Kale et al. 2016) (Manuscript 3) to allow an
easy deposition and sharing of identified metabolites. This will help to improve increase
data usage and knowledge sharing between research groups, or in the identification of

cross-kingdom mechanisms.
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4.4.2 Standardizing metabolomics protocols in chemical ecology

The same species-specificity exists with regard to the development of protocols for
sampling and sample processing (Manuscript 1). Instead of a few standardized
metabolomics protocols optimized and investigated for just one single species like the
model organisms Arabidopsis thaliana (Fiehn 2006; Lisec et al. 2006), many protocols
will be necessary in the field of chemical ecology, that are robust and flexible enough
to be applied on a broader species-range to cope with the large number of interesting
species. With regard to sampling for systems biology, this has been already
approached (Valledor et al. 2014). Thus, the future aim should be to develop
metabolomics protocols that are intended and tested not species- but taxon-specific
(Manuscript 2). For improved sharing of protocols but also of important observations
and conclusions during protocol development, that would otherwise not be public, open
data repositories such as MetaboLights (Kale et al. 2016) or MetablomicsWorkbench
(Sud et al. 2016) can and should be involved.

4.4.3 Unidentified metabolite diversity in chemical ecology

Usually, a high proportion of unknown, not annotated metabolites remains in
untargeted metabolomics studies, especially with regard to non-model organisms in
the field of chemical ecology, exometabolomics, and LC-MS-based analyses as
reviewed e.g. by Schrimpe-Rutledge et al. (2016) and Allard et al. (2017). Several
developments and improvements are already on the way and will be further needed
for both, GC- and LC-MS-based metabolomics, to enhance the biological and
ecological data interpretation (Manuscript 5). These include improvements in
analytical chemistry with regard to mass analyser types and mass resolution, but also
spatial and temporal resolution for comprehensive metabolite coverage (Dias et al.
2016; Zampieri et al. 2017). Novel bioinformatics solutions such as in silico
fragmentation (Wolf et al. 2010) or estimators for false discovery rates in metabolite
annotation will enhance data analysis (Scheubert et al. 2017). Data repositories with
broad taxonomic range, or higher-level data bases that link already existing metabolite
data collections from GC-MS, LC-MS", NMR etc. with each other for easier access will
advance data sharing and data deposition (Vinaixa et al. 2016). An accurate and robust
way of annotating mass features has to be defined and applied by following e.g. the
recommendations for metabolite annotation of the metabolomics standards initiative
(Sumner et al. 2007) to facilitate the link between different experiments and data sets.

Following comprehensive functional characterizations, this will allow us to expand our
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knowledge from the current small set of multifunctional metabolites including PUAs
and DMSP to the existing large metabolite diversity having e.g. additive or subtractive
ecological effects. The same increase in complexity has to be reached in terms of
organism interaction experiments (Pohnert 2010), going from the usual bi-directional
interaction studies in co-culture to tripartite systems, mesocosms and other field
experiment set-ups to monitor and entangle chemical interactions in their natural

environment.
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Appendix

Fig. S 1 Effect of cell disruption method (ultrasonic homogenizer vs. ultrasonic bath) on analyte signal intensity of the short-chained polyunsaturated aldehydes

heptadienal (A) and octadienal (B) determined as peak area ratio to the internal standard (IS) vanillin.
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Table S 1 Occurrence of short-chained polyunsaturated aldehydes (PUAs; in fmol/cell) in diatoms as known from previous studies (Manuscript 5)(Amin et al. 2011;
Dittami et al. 2010; Dutz et al. 2008; Fontana et al. 2007; Juttner et al. 2010; Ma et al. 2011c; Pezzolesi et al. 2017; Ribalet et al. 2007b; Wichard et al. 2005a).

Genus Species Strain C6:2 C7:2 C8:2 C8:3 C9:2 C10:2 C10:3 Total PUAs Reference
Asterionellopsis  glacialis - 0.03 0.01 0.002 0 0 0.05 Wichard et al. 2005
Chaetoceros affinis CCMP 158 0 Dutz et al. 2008
Chaetoceros affinis - 0 Fontana et al. 2007
Chaetoceros calcitrans - 0 Wichard et al. 2005
Chaetoceros compressus - 0.87 0.34 0 0.23 1.38 2.82 Wichard et al. 2005
Chaetoceros didymus Na20B4 0 0.01 0 0 + 0 0.01 Manuscript 5
Chaetoceros muelleri - 0.01 0.002 0.01 Ma et al. 2011
Chaetoceros socialis CSFE 17 0 Fontana et al. 2007
Cocconeis scutellum parva - 0.01 0.003 0.01 Juttner et al. 2010
Fragilaria sp. - 0.07 0.03 0 0.003 0 0.10 Wichard et al. 2005
Guinardia delicatula - + Wichard et al. 2005
Guinardia deliculata - 0.18 0 0 0 0 0.18 Wichard et al. 2005
Guinardia striata - 0 Wichard et al. 2005
Leptocylindricus  danicus CCMP 469 0.04 Dutz et al. 2008
Melosira nummuloides - 0.61 6.25 0 0.17 1.65 8.68 Wichard et al. 2005
Melosira Sulcata - 0 0.01 0 0 0 0.01 Wichard et al. 2005
Navicula sp. NAPS 0313 4.16 0 0.40 0 Pezzolesi et al. 2017
Navicula sp. - 0 Wichard et al. 2005
Nitzschia sp. - 0 Wichard et al. 2005
Odontella regia - traces Wichard et al. 2005
Proschkinia complanatoides  PCAPS 0313 1.56 0 0 0.16 0 Pezzolesi et al. 2017
Rhizosolenia setigera - 0 Wichard et al. 2005
Rhodomonas sp. - 0 Dutz et al. 2008
Scripsiella trochoidea - 0.001 0 0.00 Ma et al. 2011
Skeletonema costatum CCMP 1281 0.04 Dutz et al. 2008
Skeletonema costatum RCC 75 0.08 0.05 0.004 0 0 0.13 Wichard et al. 2005
Skeletonema costatum RCC 75 0 0.48 0.25 0.08 + 0.02 0.83 Manuscript 5
Skeletonema costatum SAG 19.99 0.01 0.002 0 0 0 0.01 Wichard et al. 2005
Skeletonema costatum 0.01 0.002 0.01 Ma et al. 2011
Skeletonema marinoi CCMP 2092 4.20 3.30 0.20 7.50 Ribalet et al. 2007
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Skeletonema marinoi CCMP 2092 13.90 14.00 1.00 27.50 Ribalet et al. 2009
Skeletonema marinoi GF04-1G 0 Amin et al. 2011
Skeletonema marinoi GF04-7J 0.00 Amin et al. 2011
Skeletonema marinoi GF04-9B 0.32 Amin et al. 2011
Skeletonema marinoi - + Fontana et al. 2007
Skeletonema pseudocostatum - 0.19 0.19 0.00 0 0 0.38 Wichard et al. 2005
Skeletonema subsalsum - 0 0.03 0 0.01 0 0.04 Wichard et al. 2005

Stephanopyxis turris 0 Wichard et al. 2005

Tabularia affinis TAAPS 0313 2.08 0 0 0.41

0 Pezzolesi et al. 2017
Thalassiosira aestivalis - 1.20 0.25 0.09 0 0 1.54 Wichard et al. 2005
Thalassiosira anguste-lineata - 1.06 0.26 0.21 0 0 1.53 Wichard et al. 2005
Thalassiosira minima - 0.01 0.01 0 0 0.03 0.05 Wichard et al. 2005
Thalassiosira nordenskioeldii - 0 0.01 0 0 0 0.01 Wichard et al. 2005
Thalassiosira pacifica - 6.86 1.86 1.08 0 0 9.80 Wichard et al. 2005
Thalassiosira pseudonana CCMP 1335 0 Wichard et al. 2005
Thalassiosira rotula - 0.30 0.10 0.52 0 0.34 1.27 Wichard et al. 2005
Thalassiosira rotula - 0.40 0.91 1.02 0 3.30 5.69 Wichard et al. 2005
Thalassiosira rotula CCMP 1018 0 Dutz et al. 2008
Thalassiosira rotula CCMP 1018 0.07 0.10 0.05 0 0 0.22 Wichard et al. 2005
Thalassiosira rotula CCMP 1018 9.00 9.00 4.00 7.00 Dittami et al. 2010
Thalassiosira rotula CCMP 1647 2.27 Dutz et al. 2008
Thalassiosira rotula CCMP 1647 1.80 0.50 0.70 1.00 4.60 Dittami et al. 2010
Thalassiosira rotula CCMP 1647 0.32 2.03 0.70 0.13 3.18 6.35 Wichard et al. 2005
Thalassiosira rotula CCMP 1647 1.00 3.00 1.00 1.50 4.00 Wichard et al. 2005
Thalassiosira rotula CCMP 1812 0.25 0.29 0.24 0 0.25 1.04 Wichard et al. 2005
Thalassiosira rotula RCC 776 + 0.18 0.17 0.42 0.03 1.08 1.88 Manuscript 5

Thalassiosira weissflogii - 0 Dutz et al. 2008
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Table S 2 Instrument properties of analytical platforms as used in Manuscript 3 that made an automated chromatogram alignment difficult. Ribitol was used as
internal standard (IS). Both instruments were operated at a scan rate of 5 scans/sec, however, the use of the DRE mode (dynamic range extension) for the GCT
Premier™ resulted in a reduced total scan number.

Instrument parameter Phytoplankton bloom samples Growth phase experiment samples
Instrument WATERS Micromass GCT Premier™ THERMOSCIENTIFIC™ ISQ™ LT

tr (min) of IS 10.75-10.79 11.84

Total scan number 3544 6862

Mass resolution 6129 at m/z 501.97 866 at m/z 502.20

Mass calibration solution yes (perfluorotributylamine) no
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Supporting information of Publication P3:

For full scale images and tables the reader is referred to the electronic version of this
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Table 1 MetaboliteDetector 2.0: 'RI Calibration Wizard' advanced parameters.

Calibration compound

Required score

Ribitol (5TMS)

0.7

Table 2 MetaboliteDetector 2.0: Deconvolution settings.

Baseline adjustment

Peak threshold

Minimal peak height

Bins/scan

Deconvolution width

yes

10

10

10

Table 3 MetaboliteDetector 2.0: 'Batch quantification' parameters.

Non-targeted analysis
Compound matching:
ARI
Pure/Impure
scoring method
req. score
Identification:
ARI
Pure/Impure
Scoring Method
Ref. library
Compound filter:

Max. peak disc. index
Reqg. S/N
Min # ions

Compound reproducibility

15
0.7
RI + Spec
0.5

15
0.7
RI + Spec

0.3
100
0
10

Table 4 Spearman rank correlation coefficients for selected Phaeocystis pouchetii
endometabolites and environmental parameters for PHAEONIGMA cruise samples.
MC estimated p-values and 95%-CI limits are given.

Spearman rank correlation

Environm. parameter Endometabolite Coefficient p-value 95%-ClI
Irradiance Hexose 0.552 0.010 (0.251,0.853)
Nitrate Maltose -0.512 0.030 (-0.893, -0.131)

Ribose -0.459 0.056 (-0.943,0.026)
Diatom biomass C20:5n-3 0.544 0.011 (0.220,0.869)
Phaeocystis biomass Mannitol 0.552 0.010 (0.223,0.881)

Scyllo-Inositol 0.644 0.002 (0.396,0.893)
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Table 5 Intracellular metabolites that are highly correlated (x 20.8) with the exponential (A), early stationary (B) or late stationary (C)
growth phase of Phaeocystis pouchetii AJO1 (n = 4). # - Metabolites are shown as tabulated in Fig. 3B. Vector - correlation coefficient.
Factor - phase median maximum/minimum, Phase - correlated growth phase, lon - model ion used for peak integration, tr - retention
time (min), R.Match - parameter for spectral database comparison (MS Search), I. - linear retention index, Level - identification level
according to Sumner et al. (2007).

# lon tr Vector A1 A2 A3 A4 C4 Factor Phase Class Substance name  R.Match I rl. Level

22 1149 5454  0.8232 0.0005 | 0.0004 [eXo[e[o[oRuoNo[o[o]e} 0.0000 0.0000 10 A Unknown <700 1007 L4
24 117 [SRCZ IR LY 0.0003  0.0002  0.0003  0.0002 0.0003 0.0013 | 0.0009 0.0011 3 C Unknown <700 1015 L4
27 160 5.715 0.8538 [ 0.0004 = 0.0002 0.0004 0.0003 [MeKe[o[o[olmueNe[olo[o}y 0.0003 0.0000 8 A Unknown <700 1034 L4
34 151 5.953 0.8759 |[ONVOR}] 0.0040  0.0037 0.0568 6 C Others Phenol (1TMS) 918 1059 L2
36 2423 6.034 08756 0.0000 0.0000 0.0000 24 A Unknown <700 1067 L4
38 1731 6.122 0.9313 0.0004 0.0029 0.0057 3 C Fatty acid Hexanoic acid (1TMS) 719 1076 1075 L3
42 1459 6.315  0.9374 | 0.0001 0.0001 0.0001 0.0002 [MeXe[OREVKVJl 0.0001 0.0000 6 A Amino acid Valine (1TMS) 798 1096 1093 L1
47 116 6.408  0.9098 | 0.0034 0.0041 0.0044 0.0033 0.0001 [MeXee2I5l 0.0000 0.0000 62 A Amino acid Alanine (2TMS) 841 1106 1103 L1
83 103.1  7.561  0.8763 [OKIIK] 0.0003 5 B/C Saccharide Glyceraldehyde (Meox 2TMS) 819 1226 1224 L1
86 110 7.787  0.8198 | 0.0145 0.0102 0.0206 = 0.0115 0.0007 0.0000 17 A Others 1-Methyl-6-pyrimidinone 749 1249 L3
95 132 7.968 0.8287 | 0.0008 0.0008 0.0007 0.0005 50 A Amino acid Serine (2TMS) 777 1268 1265 L1
96 153.1  7.985 0.8102 | 0.0010 0.0005 0.0005 0.0000 0.0000 1 A Unknown <700 1270 L4
98 117 8.063  0.8306 | 0.0293 0.0230  0.0281 0.0113 2 B aﬁ:%?g Glycerol (3TMS) 915 1278 1277 L1
105 117 8.314  0.8415 | 0.0014 0.0010 0.0012 0.0001 8 A Amino acid Threonine (2TMS) 821 1304 1300 L1
109 174 8.434  0.8116 [ 0.0004 0.0012 0.0009 0.0000 0.0000 38 A Amino acid Glycine (3TMS) 819 1316 1313 L1
118 166 8.855 0.8510 | 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 8 A Others  Pyrrole-2-carboxylic acid (2TMS) 818 1360 1357 L1
121 162 8.927 0.8454 | 0.0004 = 0.0003 0.0005 0.0005 0.0000 0.0000 17 A Unknown <700 1368 L4
122 188.1 8.939 0.8704 0.0043 0.0053 0.0054 0.0000 2 A Amino acid Alanine (3TMS) 905 1369 1366 L1
123 110 8.994 0.8037 | 0.0074 | 0.0031 0.0045 0.0001  0.0000 108 A Unknown <700 1375 L4
130 143 9.175  0.8111 | 0.0005 0.0005 0.0004 0.0004 [OX[e[es] 2 A Unknown <700 1393 L4
Pyruvic acid oxime (2TMS) or
150 2322 9.882 0.8658 | 0.0002 0.0001 0.0002 0.0000 36 A Unknown Aspartic acid (3TMS) 747 1467 L4
Pentadecanal or Decanediol or
155 109.1 10.018 0.8887 | 0.0002 0.0003  0.0003 0.0004 4 C Alcohols Dodecenol 758 1481 L3
159 228.1 10.101 0.8764 | 0.0003  0.0003 0.0003 0.0000 14 A Unknown <700 1490 L4
165 2419 10.191 0.8355 | 0.0001 | 0.0001  0.0002  0.0001 0.0000 0.0000 114 A Unknown <700 1499 L4

The full list is also provided as excel sheet in a separate file.
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Table 6 Extracellular metabolites that are correlated (x 20.735) with the exponential (A), early stationary (B) or late stationary (C)
growth phase of Phaeocystis pouchetii AJO1 (n = 4). # - Metabolites are shown as tabulated in Fig. 4B. Vector - correlation coefficient.
Factor - phase median maximum/minimum, Phase - correlated growth phase, lon - model ion used for peak integration, tr - retention
time (min), R.Match - parameter for spectral database comparison (MS Search), IL - linear retention index, Level - identification level
according to Sumner et al. (2007).

0.0361 0.0264 | 0.0209 0.0267

0.0016

0.0006 | 0.0006 _0.0005

0.0407 0.0293 | 0.0166 0.0188

0.0245 0.0157 | 0.0093 0.0114

# lon tr Vector A1l A2 A3
33 160.0 5716 0.804 0.0015

34 103.1  5.725 0.865

46 150.2 5.878 0.939

48 1521 5928 0.838 0.0293

54 2242 6.028 0.809 0.0001

59 1512 6.114 0.898

61 1432 6.159 0.825

63 260.2 6.201 0.822

64 148.1 6.219 0.899

71 148.1  6.331 0.974

74 1342 6373 0.790

80 101.1  6.481 0.864

82 1421 6524 0.809

83 140.0 6.556 0.916

87 1100 6.602 0.829

95 1001 6.695 0.807
98 1682 6.756 0.771

101 1561 6.814 0.788 0.0037
102 133.0 6.832 0.859 0.0059  0.0030
104 116.0 6.846 0.835 0.0017 0.0007 0.0012

0.0016 0.0025

0.0001

0.0119

0.0005

0.0037

0.0013

0.0022

0.0004

0.0009

0.0023

The full list is also provided as excel sheet in a separate file.

0.0003

0.0002

0.0005

0.0002

0.0044

0.0064

0.0006

0.0005

0.0066  0.0060 0.0048 0.0073

0.0002

0.0002

0.0004

0.0002

0.0049

0.0106

0.0064

0.0007

0.0006

Factor Phase Class Substance name R.Match [ rl. Level
A Unknown <700 1011 L4

B Unknown <700 1012 L4

19 Cc Unknown <700 1029 L4
A Contamination Hydroxypyridine 1TMS 875 1034 L2

30 Cc Unknown <700 1045 L4
A Others Phenol 1TMS 934 1054 L2

3 Cc Unknown <700 1059 L4
Cc Unknown <700 1064 L4

B Carboxylic acid Glycolic acid 2TMS 907 1066 1072 L1

A/B  Carboxylic acid Pyruvic acid 2TMS 826 1078 1086 L1

9 Cc Unknown <700 1083 L4
4 A Saccharide Glyceraldehyde Meox 2TMS 723 1094 L3
3 A Saccharide Glyceraldehyde Meox 2TMS 725 1099 L3
Cc Unknown <700 1102 L4

B Unknown <700 1107 L4

68 A Unknown <700 1118 L4
Cc Unknown <700 1124 L4

A/B  Carboxylic acid Alpha-Ketoglutaric acid Meox 2TMS 722 1131 L3

23 C  Carboxylic acid Oxalic acid 2TMS 748 1133 L3
A Unknown <700 1134 L4
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Table 7 Normalized abundance (peak area/peak sum) of intracellular metabolites of Phaeocystis pouchetii laboratory cultures (n = 4)
in natural plankton communities sampled at station 1-6 during the PHAEONIGMA cruise (3 depths with n = 3). # - Metabolites are
shown as tabulated in Fig. 3B and 4B (n.e. - not extracted). Phase - correlated growth phase (exponential phase (A), early stationary
phase (B), late stationary phase (C), not regulated (-), unknown (?)). Cluster - respective cluster according to Supplementary Figure 3.
Substance name - Metabolite name indicating MS Search match via "?" and modification of functional groups (TMS - trimethylsilyl,
Meox - methoxyamine, Me - methyl). Level - identification level according to Sumner et al. (2007).

Lab data Field data Metabolite identification Station 1 Station 2
Phase # Cluster | Class Substance name Level 1a 1b 1 2a 2b 2c 3a 3b 1a 1b 2a 2b 2c 3a 3b 3c
ne. ? 286 1b Alcohol 1-Octadecanol (1TMS) L1 0.012974
286 B 240 1b Fatty acid C16:0 (Me) L1 0.003973  0.003402 | 0.007533
n.e. ? 281 1b Fatty acid C18:0 (Me) L1 0.000746  0.000654 | 0.001395
333 - 279 1b Fatty acid C18:1 (Me) L1 0.000192
327 B/IC 274 1a Fatty acid C18:4n-3 (Me) L1 0.002167 0.002454
395 B/IC 339 1a Fatty acid C22:6n-3 (Me) L1 0.000840 0.001287 0.000953
ne. ? 386 1a FA derivative 1-C18:0-glycerol (2TMS) L1 0.001845 | 0.001256 0.001288
473 (¢} 416 1a Sterol 24-Methylcholesta-5,22-dien-3beta-ol (1TMS) L1 0.003836 0.003444
284 AB 239 1a Sugar alcohol Mannitol (6TMS) L1
311 B 262/3 1a Sugar alcohol Scyllo-Inositol (6TMS) L1
n.e. ? 72 1b Unknown - L4 0.000046
1721173 - 147 1b Unknown - L4 0.001991 0.003868 0.001475
ne. ? 338 1b Unknown - L4 0.000221 0.000514 0.000284 0.000401 0.000280
253 - 215 1a Unknown ? Skel_Media_C168/205 L4 0.003566 0.008078 0.002969
ne. ? 97 1b Unknown ?? Skel_Media_C086 L4 0.003494 0.005586 0.004111
314 - 261 2a Fatty acid C16:1 (1TMS) L1
332 - 278 2a Fatty acid ? C18:1/C18:3 (Me) L2 0.000299
383 - 330 2a FA derivative 1-C14:0-glycerol (2TMS) L1
410 B/IC 358 2a FA derivative 1-C16:0-glycerol (2TMS) L1
?  Galactosylglycerol  (6TMS)/Glucopyranose
403 A 351 2a Saccharide (5TMS) L3 0.002079 0.005191
281 - 235 2a Saccharide Hexose: ? Glucose/Galactose (Meox 5TMS) L3 0.019588  0.053802 0.033822
413 B/IC 367/8 2a Saccharide ?? Disaccharide L3 0.002652 0.000905
180 - 162 2a Saccharide ?? Monosaccharide L3
429 C 381 2a Saccharide Maltose (Meox TMS) L1 0.001595 0.003112
205 B/IC 188 2a Saccharide Ribose (Meox 4TMS) L1
341 (o} 288 2a Terpene Phytol (1TMS) L1
ne. ? 151 2a Unknown - L4 0.000385

The full list is also provided as excel sheet in a separate file.
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Figure 1 Concentrations of nitrite (A), nitrate (B) and phosphate (C) during logistic
growth of Phaeocystis pouchetii AJO1. Average + SD concentrations within the algal
cultures (n = 4) and one medium control (open circles) as measured by
spectrophotometry (black filled circles) or ICPMS (grey filled circles) are shown. Arrows
indicate metabolite sampling.
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Figure 2 Mass spectral and retention time characterization of unknown quinic acid
derivative detected in the endometabolome of Phaeocystis pouchetii AJ correlating
with the exponential growth phase. A) Mass spectra of quinic acid reference standard
and the unknown derivative. Insert shows schematic formation of the typical indole
fragment with m/z = 202. as well as of representative algal extract (EIC, m/z = 202).
Characteristic fragments are indicated as reported by [1] (Molnar-Perl et al. 1998) and
[2] (Fuchs and Spiteller 1996). B) Extracted ion chromatograms (EICs) of quinic acid
reference standard and representative algal extract (m/z = 345) scaled to retention
time indices.
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Figure 3 Mass spectral and retention time characterization of unknown indole
derivative detected in the exometabolome of Phaeocystis pouchetii AJ correlating with
late stationary growth phase. A) Composite chromatogram of five measurements
including reference standards of indole-3-ethanol, -acetic acid, -propanoic acid and -
butanoic acid each depicted with its chemical structure, as well as of representative
algal extract (EIC, m/z = 202). B) Extracted mass spectrum of unknown indole
derivative. Insert shows schematic formation of the typical indole fragment with m/z =
202. [1] Gathungu et al. (2014).
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Figure 4 Heat map of endometabolites (peak area/peak sum) averaged per cruise
station (class 1-7) and sorted by hierarchical cluster analysis using Pearson distance
measure and Ward cluster algorithm.
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Supporting information of Publication P4:
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Supporting information of Publication P5:

For full scale images the reader is referred to the electronic version of this publication
or thesis.
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S1. UHPLC-HRMS spectrum of A) 2,4, 7-octatrienal (5, m/z=123.08044,
tr = 1.35min) and B) 2,4,7-decatrienal (6, m/z = 151.11174, tr = 2.70 min) as obtained
in full scan mode of a Thalassiosira rotula RCC776 extract. [M + H]* labelled with the
according m/z value.
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S2. MS/MS fragmentation of 2E,4Z7,7 Z-decatrienal (6).
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S3. Fragmentation tree of 2E,4Z,7Z-decatrienal (6) according to the spectrum S2.
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S4. Fragmentation of (6Z,82)-10-hydroxydeca-5,8-dienoic

acid (7).
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S5. Fragmentation tree of (5Z,82)-10-hydroxydeca-5,8-dienoic acid (7) according to the spectrum S4.
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S6. Fragmentation of (6Z,82)-10-oxodeca-5,8-dienoic acid (8).
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S7. Fragmentation tree of (5Z,82)-10-oxodeca-5,8-dienoic acid (8) according to the spectrum S6.
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S8. Re-measurement of PUAs in algal extracts (MeOH:H20, 1:2; v:v) after 113 days of storage at -20 °C. Extracts were derived from
Thalassiosira rotula RCC776 (n = 3). Peak areas were obtained in full scan mode using m/z values as listed in Table 3. Average (+ S.D.)
peak area ratios of analyte to internal standard (IS; vanillin) are depicted.
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