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Abstract

The non-real spectrum of a singular indefinite Sturm-Liouville operator

A =
1

r

(
− d

dx
p
d

dx
+ q

)
with a sign changing weight function r consists (under suitable additional as-
sumptions on the real coefficients 1/p, q, r ∈ L1

loc(R)) of isolated eigenvalues
with finite algebraic multiplicity which are symmetric with respect to the real
line. In this paper bounds on the absolute values and the imaginary parts of
the non-real eigenvalues of A are proved for uniformly locally integrable poten-
tials q and potentials q ∈ Ls(R) for some s ∈ [1,∞]. The bounds depend on
the negative part of q, on the norm of 1/p and in an implicit way on the sign
changes and zeros of the weight function.
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1. Introduction

In this paper we investigate the non-real spectrum of indefinite singular
Sturm-Liouville operators associated to the differential expression

` =
1

r

(
− d

dx
p
d

dx
+ q

)
(1.1)

with real coefficients 1/p, q, r ∈ L1
loc(R) satisfying Hypothesis 2.1 below. In

particular we suppose that p is positive and r does not vanish almost everywhere
on R. We emphasize that the weight function r is assumed to have different
signs, more precisely, it is allowed that r has finitely or even infinitely many sign
changes within a compact interval. For this reason ` is called indefinite and the
associated Sturm-Liouville operators may exhibit non-real spectrum, see, e.g.
[7, 10, 15, 16, 18, 19, 21, 25]. For 1/p we assume that it is contained in Lη(R)
for some η ∈ [1,∞]. For the potential q in (1.1) we only assume uniform local
integrability so that, in particular, potentials in Ls(R) for any s ∈ [1,∞] are
allowed. The assumptions in Hypothesis 2.1 naturally generalize the case p = 1,
r = sgn and q ∈ L1(R) or q ∈ L∞(R) studied in [4, 5].

The differential operators associated to ` act in the weighted L2-space L2
r(R)

of measurable functions f : R → C such that f2r ∈ L1(R). Equipped with the
usual scalar product

(f, g)r :=

∫
R
f(t)g(t)|r(t)| dt, f, g ∈ L2

r(R), (1.2)

Hypothesis 2.1 (b) ensures that L2
r(R) is a Hilbert space. We are interested in

the non-real spectrum of the maximal operator

A =
1

r

(
− d

dx
p

d

dx
+ q

)
, dom(A) = Dmax,

associated to ` in L2
r(R) with

Dmax =
{
f ∈ L2

r(R) : f, pf ′ ∈ AC(R), `f ∈ L2
r(R)

}
,

where AC(R) denotes the space of absolutely continuous functions. Since the
weight function r changes its sign the operator A is not symmetric nor self-
adjoint with respect to the Hilbert space inner product (1.2) but becomes self-
adjoint with respect to the indefinite inner product

[f, g]r :=

∫
R
f(t)g(t)r(t) dt, f, g ∈ L2

r(R).

Hence, the non-real spectrum of A is symmetric with respect to the real axis,
and from Hypothesis 2.1 and perturbation methods we conclude that the non-
real spectrum consists of isolated eigenvalues with finite algebraic multiplicity.
The properties of A are collected in the following theorem; a self-contained proof
using standard techniques in Sturm-Liouville theory is presented in Appendix A.
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Theorem 1.1. Suppose Hypothesis 2.1 holds. Then the operator A is self-
adjoint with respect to the indefinite inner product [·, ·]r, the non-real spectrum
of A is symmetric with respect to the real axis and consists of isolated eigenvalues
with finite algebraic multiplicity.

The main objective of the present paper is to prove bounds on the absolute
values and the imaginary parts of the non-real eigenvalues of A. For the case
of regular indefinite Sturm-Liouville operators related estimates were obtained
in [1, 8, 9, 14, 17, 20]. The more difficult case of singular indefinite Sturm-
Liouville operators was so far only studied in very special situations; cf. [4, 5]
for p = 1, r = sgn, and q ∈ Ls(R) for s = 1 or s = ∞ (see also [2, 6]). In
contrast to the abovementioned contributions here we impose only rather weak
assumptions in Hypothesis 2.1 on the coefficients in (1.1), in particular, we treat
weight functions r with finitely or infinitely many sign changes within a compact
interval, functions 1/p ∈ Lη(R) for η ∈ [1,∞] and uniformly locally integrable
potentials q or q ∈ Ls(R) for s ∈ [1,∞].

All main results are collected in Section 2; their proofs are postponed to
Section 4. Theorem 2.2 treats the case 1/p ∈ L∞(R) and q is supposed to be
uniformly locally integrable; regarding the assumptions on q this is the most
general result. Our estimates depend on the norm of the negative part q− of q,
the L∞-norm of 1/p and in an implicit form on the sign changes and zeros of the
weight function r. Under the slightly stronger assumption q− ∈ Ls(R) for some
s ∈ [1,∞] by simultaneously allowing 1/p to be in Lη(R) for some η ∈ [1,∞] we
obtain similar estimates (except the case η = s = 1) in terms of the Ls-norm
of q− and the Lη-norm of 1/p in Theorem 2.4. In the case η = s = 1 we find a
sufficient condition for the absence of non-real spectrum in Theorem 2.5. The
estimates in Theorem 2.2 and in Theorem 2.4 are in some sense implicit as they
are expressed in terms of an auxiliary function g ∈ AC(R) which neutralizes the
behaviour of the weight function r. The construction of such a function g is
the topic of Section 3. A similar technique was used in [1] for regular indefinite
Sturm-Liouville problems.

In the special case that the weight function r has only finitely many sign
changes we obtain explicit estimates in Theorem 2.6 which again depend on the
norms of q− and 1/p, and on the sign changes and zeros of the weight function
r. These estimates become very simple for r = sgn and p = 1 in Corollary 2.7.
If, e.g. q is uniformly locally integrable with q− ∈ Ls(R) for s ∈ [1,∞) then
every non-real eigenvalue λ of A satisfies

| Imλ| ≤ 2
2s+1
2s−1 · 3 ·

√
3‖q−‖

2s
2s−1
s

and

|λ| ≤
(
2

2s+1
2s−1 · 3 ·

√
3 + 2

3−2s
2s−1 · 9

)
‖q−‖

2s
2s−1
s .

It is remarkable that for s = 1 these bounds reduce to those obtained in [5,
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Theorem 1.3] recently. If q− ∈ L∞(R) then

| Imλ| ≤ 6 ·
√

3‖q−‖∞ and |λ| ≤
(

6 ·
√

3 +
9

2

)
‖q−‖∞. (1.3)

We emphasize that, in contrast to the bounds obtained in [4, 5], it is only needed
that the negative part q− is contained in Ls(R) for s = 1 or s = ∞ while q is
assumed to be uniformly locally integrable. Moreover, if the negative part q− is
small compared to q the bounds in (1.3) may be stronger than those obtained

in [4], e.g. if ‖q−‖∞ < 3−
3
2 ‖q‖∞ then the bounds in (1.3) are better than the

ones in [4].

2. Main results

In this section we state all main results of the paper without proofs. The
proofs are presented in Section 4. Our standing assumptions on the functions r,
p, and q are collected in Hypothesis 2.1 below. For this recall that the normed
space of uniformly locally integrable functions L1

u(R) is defined as

L1
u(R) =

{
f ∈ L1

loc(R) : sup
n∈Z

∫ n+1

n

|f(t)| dt <∞
}
, ‖f‖u := sup

n∈Z

∫ n+1

n

|f(t)| dt.

Observe, that Ls(R), s ∈ [1,∞], is contained in L1
u(R).

Hypothesis 2.1. The real coefficients p, q, r satisfy the following:

(a) q ∈ L1
u(R);

(b) r ∈ L1
loc(R) such that r(x) 6= 0 for a.a. x ∈ R, and the sets

∆r
+ := {x ∈ R : r(x) > 0} and ∆r

− := {x ∈ R : r(x) < 0}

have positive Lebesgue measure;

(c) there exist a, b ∈ R, a < b, such that

Cr := ess inf
x∈R\[a,b]

|r(x)| > 0

and r has constant sign a.e. in (−∞, a) and constant sign a.e. in (b,∞);

(d) 0 < p(x) <∞ for a.a. x ∈ R and 1/p ∈ Lη(R) for some η ∈ [1,∞].

Beside these conditions we require the existence of a locally absolutely con-
tinuous real function g which neutralizes the behaviour of the weight r in the
sense that rg ≥ γ holds true for some positive γ on a sufficiently large subset
of the real line. To make this more precise we use the notation {rg < 0} for
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the set {x ∈ R : r(x)g(x) < 0}; the sets {|g| < 1} and {|r| < γ} are defined
analogously. Then the characterisation for a suitable pair g and γ is that

ωγ,g :=

(
µ
(
{|r| < γ} ∪ {|g| < 1} ∪ {rg < 0}

)
+

1

γ

∫
{rg<0}

|r(t)| dt

)
is below a certain bound, where µ denotes Lebesgue measure. Actually, this
is no restriction on the conditions in Hypothesis 2.1 since γ and g with the
abovementioned properties always exist; cf. Remark 2.3 and Theorem 3.4.

The following theorem is the first main result. It provides bounds on the
non-real eigenvalues of A under the general assumption q ∈ L1

u(R). Here the
weight function r may have infinitely many sign changes within the compact
interval [a, b]. We decompose the potential q = q+ − q− into its positive part
q+(x) = max{0, q(x)} and its negative part q−(x) = max{0,−q(x)}, x ∈ R.
Note that the bounds below do not depend on the positive part q+.

Theorem 2.2. Assume that Hypothesis 2.1 holds with 1/p ∈ L∞(R) and define

α := 2‖q−‖u + 4‖1/p‖∞‖q−‖2u.

Choose γ > 0 and g ∈ AC(R) real such that ‖g‖∞ = 1, g′ has compact support,√
pg′ ∈ L2(R) and

ωγ,g(4‖1/p‖∞α)1/2 < 1 (2.1)

holds. Then every non-real eigenvalue λ of A satisfies

| Imλ| ≤
√

2‖1/p‖
1
4∞‖
√
pg′‖2α

3
4

γ
(
1− ωγ,g (4‖1/p‖∞α)

1
2
) and |λ| ≤

√
2‖1/p‖

1
4∞‖
√
pg′‖2α

3
4 + 3α

γ
(
1− ωγ,g (4‖1/p‖∞α)

1
2
) .

Remark 2.3. The estimates in Theorem 2.2 (and also in Theorem 2.4 below)
depend on the choice of the constant γ and the function g. In Theorem 3.4 for
every β > 0 a constant γ > 0 and a real function g ∈ AC(R) with ‖g‖∞ = 1 is
constructed such that g′ has compact support,

√
pg′ ∈ L2(R) and

ωγ,gβ < 1.

Hence, for given r, p, q satisfying Hypothesis 2.1, there always exist γ and g such
that (2.1) holds. The same holds true for the corresponding conditions on ωγ,g
in Theorem 2.4.

If, in addition to Hypothesis 2.1, the negative part q− of the potential belongs
to Ls(R) for some s ∈ [1,∞] we obtain the following estimates.

Theorem 2.4. Assume that Hypothesis 2.1 holds with 1/p ∈ Lη(R) for some
η ∈ [1,∞] and let q− ∈ Ls(R) for some s ∈ [1,∞]. Let η + s > 2 and define

β =



((
2η−1
η

)2

‖1/p‖η‖q−‖s
) ηs

2ηs−η−s

if η, s ∈ [1,∞),

(4‖1/p‖∞‖q−‖s)
s

2s−1 if η =∞, s ∈ [1,∞),

(4‖1/p‖∞‖q−‖∞)
1
2 if η =∞, s =∞.

(2.2)
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Choose γ > 0 and g ∈ AC(R) real such that ‖g‖∞ = 1, g′ has compact support,√
pg′ ∈ L2(R) and ωγ,gβ < 1 holds. Then every non-real eigenvalue λ of A

satisfies the following bounds.

(i) If η ∈ [1,∞) and s ∈ [1,∞) with 2 < η + s or η =∞ and s ∈ [1,∞) then

| Imλ| ≤
‖q−‖

1
2
s β

s+1
2s ‖√pg′‖2

γ(1− ωγ,gβ)
and |λ| ≤

‖q−‖
1
2
s β

s+1
2s ‖√pg′‖2 + 3‖q−‖sβ

1
s

γ(1− ωγ,gβ)
.

(ii) If η = s =∞ then

| Imλ| ≤
(
‖q−‖∞β

) 1
2 ‖√pg′‖2

γ(1− ωγ,gβ)
and |λ| ≤

(
‖q−‖∞β

) 1
2 ‖√pg′‖2 + 3‖q−‖∞

γ(1− ωγ,gβ)
.

The case η = s = 1 is excluded in Theorem 2.4. In this situation, which is
slightly different, we can give a sufficient criterion for the non-real spectrum of
A to be empty.

Theorem 2.5. Assume that Hypothesis 2.1 holds with 1/p ∈ L1(R) and q− ∈
L1(R). If, in addition, ‖1/p‖1‖q−‖1 < 1 then the spectrum of A is real.

In the above results the weight function r is allowed to have infinitely many
sign changes. If we restrict to the case of finitely many sign changes or of one
sign change we obtain simpler estimates. In particular, in the estimates the
function g does not appear anymore and the parameter γ is given explicitly.
To formulate the results we first discuss the notion of sign changes or, more
precisely, turning points of r. In [10] turning points of r are defined as the
elements of ∆r

+ ∩∆r
−. Since this definition depends on the representative of r

in the equivalence class in L1
loc(R) we use a slightly different approach. Here

turning points of r are elements in

Tr :=
{
x ∈ R : µ(∆r

+ ∩ I) > 0, µ(∆r
− ∩ I) > 0 for all open intervals I with x ∈ I

}
.

(2.3)

The set Tr is a closed subset of ∆r
+ ∩ ∆r

−. Under Hypothesis 2.1 the set Tr
is bounded and, thus, compact. Hypothesis 2.1 (b) also ensures that Tr 6= ∅.
Furthermore, the set Tr does not depend on the representative of the equivalence
class of r in L1

loc(R). Besides Tr, the set of points where r is close to zero also
plays an important role. More precisely, define

Zr :=

{
x ∈ R : ess inf

y∈I
|r(y)| = 0 for all open intervals I with x ∈ I

}
, (2.4)

which is again independent of the representative of r in L1
loc(R). Note that Zr

and {r = 0} in general do not coincide.
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Theorem 2.6. Assume that Hypothesis 2.1 holds with 1/p ∈ Lη(R) for some
η ∈ [1,∞] and that the set Tr ∪ Zr contains n <∞ elements. For

0 < δ <
1

2
min

{
|x− x′| : x, x′ ∈ Tr, x 6= x′

}
(2.5)

define Ω :=
⋃
x∈Zr (x− δ, x+ δ), γ := ess infx∈R\Ω |r(x)| and

P :=

(∑
x∈Tr

(∫ x

x−δ

1

p(t)
dt

)−1

+
∑
x∈Tr

(∫ x+δ

x

1

p(t)
dt

)−1
) 1

2

.

Then the following estimates hold for every non-real eigenvalue λ of A.

(i) If η = ∞ and 2δn(4‖1/p‖∞α)1/2 < 1 for α := 2‖q−‖u + 4‖1/p‖∞‖q−‖2u
then

| Imλ| ≤
√

2‖1/p‖
1
4∞α

3
4P

γ
(
1− 2δn (4‖1/p‖∞α)

1
2
) and |λ| ≤

√
2‖1/p‖

1
4∞α

3
4P + 3α

γ
(
1− 2δn (4‖1/p‖∞α)

1
2
) .

Suppose q− ∈ Ls(R) for some s ∈ [1,∞], where η + s > 2, and define β as in
(2.2).

(ii) If η ∈ [1,∞) and s ∈ [1,∞) with 2 < η + s or η =∞ and s ∈ [1,∞), and
2δnβ < 1 then

| Imλ| ≤ ‖q−‖
1
2
s β

s+1
2s P

γ(1− 2δnβ)
and |λ| ≤ ‖q−‖

1
2
s β

s+1
2s P + 3‖q−‖sβ

1
s

γ(1− 2δnβ)
.

(iii) If s = η =∞ and 2δnβ < 1 then

| Imλ| ≤
(
‖q−‖∞β

) 1
2P

γ(1− 2δnβ)
and |λ| ≤

(
‖q−‖∞β

) 1
2P + 3‖q−‖∞

γ(1− 2δnβ)
.

If Tr is a singleton then the set on the right hand side of (2.5) is empty and,
hence, δ in (2.5) can be choosen arbitrarily large. This is the case in the next
corollary, where we apply the previous theorem to r = sgn and p = 1. The
bounds in item (ii) for the special case s = 1 coincide with those obtained in
[5].

Corollary 2.7. Let p = 1, r = sgn and q ∈ L1
u(R). Then the following estimates

hold for every non-real eigenvalue λ of A.

(i) One has

| Imλ| ≤ 12 ·
√

3
(
‖q−‖u + 2‖q−‖2u

)
and

|λ| ≤ (12 ·
√

3 + 9)
(
‖q−‖u + 2‖q−‖2u

)
.
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(ii) If q− ∈ Ls(R) for s ∈ [1,∞) then

| Imλ| ≤ 2
2s+1
2s−1 · 3 ·

√
3‖q−‖

2s
2s−1
s

and

|λ| ≤
(
2

2s+1
2s−1 · 3 ·

√
3 + 2

3−2s
2s−1 · 9

)
‖q−‖

2s
2s−1
s .

In particular, if s = 1 then

| Imλ| ≤ 24 ·
√

3‖q−‖21 and |λ| ≤
(
24 ·
√

3 + 18
)
‖q−‖21.

(iii) If q− ∈ L∞(R) then

| Imλ| ≤ 6 ·
√

3‖q−‖∞ and |λ| ≤
(

6 ·
√

3 +
9

2

)
‖q−‖∞.

3. The parameter γ and the function g

In this section we discuss the choice of the parameters γ and g in Theo-
rems 2.2 and 2.4. In particular, it will turn out in Theorem 3.4 that there
always exist a function g and a constant γ as required in the assumptions of the
Theorem 2.2 and Theorem 2.4.

In the next lemma it is shown that in the case of a finite set Tr one can
choose a representative r ∈ L1

loc(R) such that Tr = ∆r
+ ∩∆r

−.

Lemma 3.1. Let r be as in Hypothesis 2.1 and assume that Tr is finite. Then
there exists a function w ∈ L1

loc(R) with w = r a.e. such that the disjoint sets

∆w
+ := {x ∈ R : w(x) > 0} and ∆w

− := {x ∈ R : w(x) < 0}

are finite unions of disjoint open intervals and for the boundaries ∂∆w
± of ∆w

±
we have

∂∆w
+ = ∂∆w

− = ∆w
+ ∩∆w

− = {w = 0} = Tr. (3.1)

Proof. Let F± be the family of all open intervals I such that µ(I ∩ ∆r
±) > 0

and µ(I ∩∆r
∓) = 0, and consider the open sets

Υ+ =
⋃
I∈F+

I and Υ− =
⋃
I∈F−

I. (3.2)

For the union in (3.2) it suffices to consider open intervals I with rational end-
points, and hence Υ+ and Υ− can be viewed as unions of countable many open
intervals. Together with the σ-subadditivity of the Lebesgue measure this im-
plies

µ(Υ+ ∩∆r
−) = 0 and µ(Υ− ∩∆r

+) = 0. (3.3)
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Moreover, the sets Υ+, Υ− and Tr are disjoint by definition. Consider an
arbitrary x ∈ R and an open interval I containing x. The real line is the disjoint
union of ∆r

+, ∆r
− and {r = 0} where the latter has Lebesgue measure zero. At

least one of the sets I ∩∆r
+ and I ∩∆r

− has positive Lebesgue measure and x
is contained either in Υ+, Υ− or Tr. This shows

R = Υ+ ∪Υ− ∪ Tr, (3.4)

where the union is disjoint.
Another helpful observation is the following. Consider an open nonempty

interval I with I ∩Tr = ∅. The interval I is a connected set. On the other hand
since I ∩ Tr = ∅ it can be represented as the disjoint union of the open sets
I ∩ Υ+ and I ∩ Υ−. Thus, either I ∩ Υ+ = ∅ and I ⊂ Υ− or I ∩ Υ− = ∅ and
I ⊂ Υ+. Since Υ+ and Υ− are open and disjoint we have

∂Υ+ ∩Υ+ = ∅, ∂Υ− ∩Υ− = ∅, ∂Υ+ ∩Υ− = ∅, ∂Υ− ∩Υ+ = ∅. (3.5)

Here, (3.4) implies ∂Υ+ ⊂ Tr and ∂Υ− ⊂ Tr. Consider x ∈ Tr. Since Tr is
finite there exists an nonempty open interval (a, b) with (a, b)∩Tr = {x}. Then
(a, x) ∩ Tr is empty and, by the consideration above, either (a, x) ⊂ Υ+ or
(a, x) ⊂ Υ−. Hence, by (3.3), (x, b) ⊂ Υ− or (x, b) ⊂ Υ+ respectively. This
shows x ∈ ∂Υ+ ∩ ∂Υ− and, therefore, Tr ⊂ ∂Υ+ ∩ ∂Υ−. From (3.5) we obtain
∂Υ+ = ∂Υ− = Tr and by (3.5) also Υ+ ∩Υ− = Tr. As Tr is finite the sets Υ+

and Υ− consist of finitely many disjoint open intervals.
We define

w(x) =


1 if x ∈ Υ+ \∆r

+,

−1 if x ∈ Υ− \∆r
−,

r(x) if x ∈ (Υ+ ∩∆r
+) ∪ (Υ− ∩∆r

−),

0 if x ∈ Tr.

Then ∆w
+ = {w > 0} = Υ+ and ∆w

− = {w < 0} = Υ− consist of finitely many
open disjoint intervals and we have Tr = {w = 0}. Since Tr has Lebesgue
measure zero as well as Υ+ \ ∆r

+ = Υ+ ∩ (∆r
− ∪ {r = 0}) and Υ− \ ∆r

− =
Υ− ∩ (∆r

+ ∪ {r = 0}), see (3.3), we have w = r a.e. Finally, the properties in
(3.1) hold by construction of the sets ∆w

±.

Lemma 3.2. Let r be as in Hypothesis 2.1, assume that Tr is finite, and let

0 < δ <
1

2
min

{
|x− x′| : x, x′ ∈ Tr, x 6= x′

}
.

Then there exists g ∈ AC(R) real with rg > 0 a.e. and ‖g‖∞ = 1 such that g′

has compact support and
√
pg′ ∈ L2(R), where

‖√pg′‖22 =
∑
x∈Tr

(∫ x

x−δ

1

p(t)
dt

)−1

+
∑
x∈Tr

(∫ x+δ

x

1

p(t)
dt

)−1

,
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and

{|g| < 1} =
⋃
x∈Tr

(x− δ, x+ δ). (3.6)

Proof. By Lemma 3.1 we can assume without loss of generality that the sets
{r > 0} and {r < 0} consist of finitely many disjoint open intervals, where the
boundaries of {r > 0} and {r < 0} equal {r = 0} = Tr. Then the function
x 7→ sgn r(x) is piecewise constant with finitely many discontinuities in Tr. Let

g(x) := sgn(r(x))


(∫ x

y
1
p(t) dt

)(∫ y+δ

y
1
p(t) dt

)−1

if x ∈ [y, y + δ), y ∈ Tr,(∫ y
x

1
p(t) dt

)(∫ y
y−δ

1
p(t) dt

)−1

if x ∈ (y − δ, y), y ∈ Tr,

1 otherwise.

Then g ∈ AC(R), ‖g‖∞ = 1, and (3.6) holds. Further,

‖√pg′‖22 =
∑
y∈Tr

(∫ y

y−δ
p(t)|g′(t)|2 dt+

∫ y+δ

y

p(t)|g′(t)|2 dt

)

=
∑
y∈Tr

(∫ y

y−δ

1

p(t)
dt

)−1

+
∑
y∈Tr

(∫ y+δ

y

1

p(t)
dt

)−1

<∞

since 1/p ∈ L1
loc(R) and 1/p > 0 a.e. Since Tr is finite the function g is constant

near ∞ and −∞. Hence, g′ has compact support. Moreover, since {g > 0} =
{r > 0} and {g < 0} = {r < 0} the product rg is positive a.e.

Lemma 3.3. Let r be as in Hypothesis 2.1 and let Zr be as in (2.4). For every
δ > 0 and Ω =

⋃
x∈Zr (x− δ, x+ δ) we have

ess infx∈R\Ω |r(x)| > 0.

Proof. Let [a, b] ⊂ R and Cr = ess infx∈R\[a,b] |r(x)| > 0 be as in Hypothesis 2.1
and consider the open set Ω =

⋃
x∈Zr (x − δ, x + δ). By the definition of Zr in

(2.4) there exists for every x /∈ Zr an open interval Ix containing x such that
cx := ess infy∈Ix |r(y)| > 0. Since [a, b] \Ω is compact and(

[a, b] \Ω
)
⊂
(
R \ Zr

)
⊂
⋃
x/∈Zr

Ix

we find x1, . . . , xm /∈ Zr, m ∈ N, such that [a, b] \ Ω ⊂
⋃m
k=1 Ixk . Thus, since

(R \Ω) ⊂ (R \ [a, b]) ∪ ([a, b] \Ω) we have

ess inf
x∈R\Ω

|r(x)| ≥ min{Cr, cx1
, . . . , cxm} > 0.
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Finally we show that there always exist a function g and a constant γ as
required in the assumptions of Theorem 2.2 and Theorem 2.4.

Theorem 3.4. Assume that Hypothesis 2.1 holds. Then for every β > 0 there
exist γ > 0 and g ∈ AC(R) real with ‖g‖∞ = 1 such that g′ has compact support,√
pg′ ∈ L2(R) and ωγ,gβ < 1 holds with

ωγ,g :=

(
µ
(
{|r| < γ} ∪ {|g| < 1} ∪ {rg < 0}

)
+

1

γ

∫
{rg<0}

|r(t)| dt

)
.

Proof. Fix β > 0 and consider the interval [a, b] ⊂ R from Hypothesis 2.1. Since
limn→∞ µ({|r| < 1

n}) = µ({r = 0}) = 0 there exists γ > 0 such that

µ({|r| < γ}) ≤ 1

4β
. (3.7)

Consider the compact set Tr ⊂ [a, b], see (2.3), and let a0 := min Tr and b0 :=
max Tr. The set Ω+ := ∆r

+ ∩ [a0, b0] has finite Lebesgue measure. By [22,
Part One, Chapter 3, Proposition 15] for ε > 0 there is a finite union Ωε

of bounded open intervals such that µ(Ω+∆Ωε) < ε, where ∆ denotes the
symmetric difference of two sets. Hence the characteristic functions 1Ω+∆Ωε

tend to zero in measure for ε→ 0 and we can choose a sequence Ωm such that
µ(Ω+∆Ωm) → 0 and 1Ω+∆Ωm converge a.e. to zero for m → ∞. Dominated
convergence then implies

lim
m→∞

∫
Ω+∆Ωm

|r(t)| dt = 0.

Hence, there exist N ∈ N and intervals (a1, b1), (a2, b2), . . . , (aN , bN ) such that

for Ω :=
⋃N
k=1(ak, bk)

µ (Ω+∆Ω) ≤ 1

4β
and

∫
Ω+∆Ω

|r(t)| dt ≤ γ

4β
. (3.8)

We have Ω+ ⊂ [a0, b0] but it may happen that Ω * [a0, b0]. In the latter case
we replace Ω by Ω ∩ (a0, b0). It is clear that for this modified set Ω (3.8) still
holds. Therefore, without loss of generality, we may assume that the intervals
(ak, bk), k = 1, . . . , N , are disjoint and ordered in the way that bk < ak+1,
k = 1, . . . , N − 1 with (ak, bk) ⊂ [a0, b0]. In particular, Ω ⊂ [a0, b0]. Define

r̃(x) =


1 if x ∈ Ω,
−1 if x ∈ [a0, b0] \Ω,
sgn(r(x)) if x ∈ (−∞, a0) ∪ (b0,∞).

Since Tr ⊂ [a0, b0] and the signs of r and r̃ coincide outside of [a0, b0] we have
Tr̃ ⊂ [a0, b0]. More precisely, Tr̃ ⊂ {a0, b0, a1, b1, . . . , aN , bN}. Further, from
Ω ⊂ [a0, b0] and {rr̃ < 0} ⊂ [a0, b0] we obtain

{rr̃ < 0} =
(
(∆r

+ ∩ [a0, b0]) \Ω
)
∪
(
∆r
− ∩ [a0, b0] ∩Ω

)
⊂ Ω+∆Ω, (3.9)

11



where it was used that Ω+ \Ω = (∆r
+ ∩ [a0, b0]) \Ω and

Ω \Ω+ = Ω \∆r
+ ⊃ Ω \ (∆r

+ ∪ {r = 0}) = Ω ∩∆r
− = ∆r

− ∩ [a0, b0] ∩Ω.

Hence, (3.8) together with (3.9) implies

µ
(
{rr̃ < 0}

)
≤ 1

4β
and

∫
{rr̃<0}

|r(t)| dt ≤ γ

4β
. (3.10)

Observe, that Tr̃ consists of at most 2(N + 1) elements. Choose δ > 0 such that

δ <
1

2
min

{
|x− x′| : x, x′ ∈ Tr̃, x 6= x′

}
, 4δ(N + 1) <

1

4β
.

Lemma 3.2 provides a real function g ∈ AC(R), such that r̃g > 0 a.e., ‖g‖∞ = 1,
µ({|g| < 1}) = 2δ · 2(N + 1) < 1

4β . Further g′ has compact support with
√
pg′ ∈ L2(R). Since r̃g > 0 a.e. (3.10) implies

µ ({rg < 0}) ≤ 1

4β
and

∫
{rg<0}

|r(t)| dt ≤ γ

4β
.

Together with (3.7) this yields ωγ,g <
1
β .

4. Proof of Theorem 2.2, Theorem 2.4, Theorem 2.5, and Theorem 2.6

In this section we prove the theorems in Section 2 on the absolute values
and imaginary parts of the non-real eigenvalues of A. We first collect some
useful estimates for functions contained in dom(A) = Dmax in the next lemma.
Observe also that

√
pf ′ ∈ L2(R) by Lemma A.2 (i).

Lemma 4.1. Suppose Hypothesis 2.1 holds with 1/p ∈ Lη(R) for η ∈ [1,∞]
and let f ∈ Dmax.

(i) If η ∈ [1,∞) then

‖f‖∞ ≤
(

2η − 1

η

√
‖1/p‖η‖

√
pf ′‖2

) η
2η−1

‖f‖
η−1
2η−1

2 . (4.1)

(ii) If η =∞ then

‖f‖∞ ≤
(

2
√
‖1/p‖∞‖

√
pf ′‖2‖f‖2

) 1
2

. (4.2)

Proof. Let f ∈ Dmax and (yn)n∈N be a sequence in R with yn → −∞ and
f(yn) → 0 as n → ∞; cf. Lemma A.2 (ii). First, consider the case η ∈ [1,∞).
Define θ := 2η−1

η . For arbitrary x ∈ R we obtain

|f(x)|θ ≤ |f(yn)|θ + θ

∫ x

yn

|f(t)|θ−1|f ′(t)| dt

12



and, thus,

‖f‖θ∞ ≤ θ
∫
R
|f(t)|θ−1|f ′(t)| dt. (4.3)

The integral in (4.3) can be further estimated by means of the Hölder inequality,

∫
R
|f(t)|θ−1|f ′(t)| dt ≤ ‖√pf ′‖2

(∫
R

|f(t)|2(θ−1)

p(t)
dt

) 1
2

≤ ‖√pf ′‖2
√
‖1/p‖η

(∫
R
|f(t)|

2(θ−1)η
η−1 dt

) η−1
2η

≤ ‖√pf ′‖2
√
‖1/p‖η‖f‖

η−1
η

2 .

(4.4)

Combining (4.3) and (4.4) leads to (4.1).
If s =∞ for arbitrary x ∈ R we obtain

|f(x)|2 = |f(yn)|2 + 2

∫ x

yn

f(t)f ′(t) dt

and, therefore,

‖f‖2∞ ≤ 2

(∫
R
p(t)|f ′(t)|2 dt

∫
R

|f(t)|2

p(t)
dt

) 1
2

≤ 2
√
‖1/p‖∞‖

√
pf ′‖2‖f‖2.

This shows (4.2).

In the following for an eigenfunction f of A we consider

U(x) :=

∫ ∞
x

r(t)|f(t)|2 dt and V (x) :=

∫ ∞
x

(
p(t)|f ′(t)|2 + q(t)|f(t)|2

)
dt

(4.5)

for x ∈ R. Recall that
√
pf ′ ∈ L2(R) and qf2 ∈ L1(R) by Lemma A.2 (i). Hence,

both functions U and V are well-defined on R, real and absolutely continuous.

Lemma 4.2. Suppose Hypothesis 2.1 holds. Let f be an eigenfunction of A
corresponding to a non-real eigenvalue λ. Then λU(x) = (pf ′)(x)f(x) + V (x)
for all x ∈ R and

lim
|x|→∞

U(x) = 0 and lim
|x|→∞

V (x) = 0 (4.6)

hold. In particular,
‖√pf ′‖22 ≤ ‖q−f2‖1. (4.7)
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Proof. We multiply the identity Af = λf by rf and integrate by parts. This
together with Lemma A.2 (iii) yields

λU(x) =

∫ ∞
x

−(pf ′)′(t)f(t) dt+

∫ ∞
x

q(t)|f(t)|2 dt = (pf ′)(x)f(x) + V (x)

for all x ∈ R. Again from Lemma A.2 (iii) it follows that

λ lim
x→−∞

U(x) = λ

∫
R
r(t)|f(t)|2 dt =

∫
R

(
p(t)|f ′(t)|2 + q(t)|f(t)|2

)
dt

= lim
x→−∞

V (x)

and by comparing the imaginary parts we obtain (4.6) since λ ∈ C \R. For the
estimate (4.7) note that limx→−∞ V (x) = 0 implies

‖√pf ′‖22 =

∫
R
p(t)|f ′(t)|2 dt = −

∫
R
q(t)|f(t)|2 dt ≤

∫
R
q−(t)|f(t)|2 dt = ‖q−f2‖1.

Lemma 4.3. Suppose Hypothesis 2.1 holds. Let f be an eigenfunction of A
corresponding to a non-real eigenvalue λ and assume that there exist α > 0,
β > 0 (not depending on f and λ) such that

‖q−f2‖1 ≤ α‖f‖22 and ‖f‖2∞ ≤ β‖f‖22. (4.8)

Furthermore, choose γ > 0 and g ∈ AC(R) real with ‖g‖∞ = 1 in such a way
that g′ has compact support,

√
pg′ ∈ L2(R) and

ωγ,g =

(
µ
(
{|r| < γ} ∪ {|g| < 1} ∪ {rg < 0}

)
+

1

γ

∫
{rg<0}

|r(t)| dt

)

satisfies ωγ,gβ < 1. Then

| Imλ| ≤
√
αβ‖√pg′‖2

γ (1− ωγ,gβ)
and |λ| ≤

√
αβ‖√pg′‖2 + 3α

γ (1− ωγ,gβ)
. (4.9)

We mention that constants γ and functions g with the properties mentioned
in Lemma 4.3 always exist; cf. Theorem 3.4.

Proof. Let U and V be as in (4.5). As limx→−∞ V (x) = 0 by Lemma 4.2 we
have

‖√pf ′‖22 = −
∫
R
q(t)|f(t)|2 dt = −

∫
R

(q+(t)− q−(t))|f(t)|2 dt

≤ ‖q−f2‖1 ≤ α‖f‖22.
(4.10)
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As ‖√pf ′‖22 ≥ 0 we conclude from (4.10) ‖q+f
2‖1 ≤ ‖q−f2‖1 and, thus,∫

R
|q(t)||f(t)|2 dt =

∫
R

(q+(t) + q−(t))|f(t)|2 dt ≤ 2

∫
R
q−(t)|f(t)|2 dt ≤ 2α‖f‖22.

(4.11)

As a consequence of Lemma 4.2 the identity

λ

∫
R
g′(x)U(x)dx =

∫
R
g′(x)(pf ′)(x)f(x) dx+

∫
R
g′(x)V (x) dx (4.12)

holds, where the compact support of g′ guarantees the existence of the integrals.
We estimate the first integral on the right hand side of (4.12) by∣∣∣∣∫

R
g′(x)f(x)(pf ′)(x) dx

∣∣∣∣ ≤ ‖f‖∞‖√pg′‖2‖√pf ′‖2 ≤√αβ‖√pg′‖2‖f‖22,
(4.13)

where we have used (4.8) and (4.10). For the second term in (4.12) integration
by parts together with lim|x|→∞ V (x) = 0 and the inequalities (4.11), (4.10)
yields∣∣∣∣∫

R
g′(x)V (x) dx

∣∣∣∣ =

∣∣∣∣− ∫
R
g(x)V ′(x) dx

∣∣∣∣
≤ ‖g‖∞

∫
R

(
p(x)|f ′(x)|2 + |q(x)||f(x)|2

)
dx ≤ 3α‖f‖22.

(4.14)

We want to find a lower bound for the left hand side in (4.12). The notation
Γ := {|r| < γ} ∪ {|g| < 1} will be useful here. From integration by parts and
lim|x|→∞ U(x) = 0 we obtain∫

R
g′(x)U(x) dx = −

∫
R
g(x)U ′(x) dx =

∫
R
g(x)r(x)|f(x)|2 dx

=

∫
{rg<0}

g(x)r(x)|f(x)|2 dx+

∫
{rg<0}c

g(x)r(x)|f(x)|2 dx.

(4.15)

For the first term on the right hand side we have with (4.8)∫
{rg<0}

g(x)r(x)|f(x)|2 dx ≥ −‖g‖∞
∫
{rg<0}

|r(x)||f(x)|2 dx

≥ −‖f‖2∞
∫
{rg<0}

|r(x)| dx

≥ −β‖f‖22
∫
{rg<0}

|r(x)| dx.
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As g(x)r(x) ≥ γ for all x ∈ {rg < 0}c ∩ Γ c we obtain∫
{rg<0}c

g(x)r(x)|f(x)|2 dx ≥
∫
{rg<0}c∩Γ c

g(x)r(x)|f(x)|2 dx

≥ γ
∫
{rg<0}c∩Γ c

|f(x)|2 dx

= γ

(
‖f‖22 −

∫
{rg<0}∪Γ

|f(x)|2 dx

)
≥ γ

(
‖f‖22 − µ({rg < 0} ∪ Γ )‖f‖2∞

)
≥ γ

(
1− µ({rg < 0} ∪ Γ )β

)
‖f‖22,

(4.16)

where we used again (4.8). From (4.15)–(4.16) it follows∫
R
g′(x)U(x) dx ≥

(
γ
(
1− µ({rg < 0} ∪ Γ )β

)
− β

∫
{rg<0}

|r(x)| dx

)
‖f‖22

= γ(1− ωγ,gβ)‖f‖22 > 0.

(4.17)

We compare the imaginary parts in (4.12) and apply (4.13), (4.17), and Lemma 4.2.
Consequently,

| Imλ|γ (1− ωγ,gβ) ‖f‖22 ≤
∣∣∣∣Im(λ ∫

R
g′(x)U(x)dx

)∣∣∣∣
=

∣∣∣∣Im(∫
R
g′(x)(pf ′)(x)f(x) dx

)∣∣∣∣
≤
√
αβ‖√pg′‖2‖f‖22,

which proves the first estimate in (4.9). We compare both sides in (4.12) with
respect to the absolute value. Then by (4.13), (4.14), (4.17), and Lemma 4.2
we obtain

|λ|γ (1− ωγ,gβ) ‖f‖22 ≤
∣∣∣∣(λ ∫

R
g′(x)U(x)dx

)∣∣∣∣
=

∣∣∣∣∫
R
g′(x)

(
(pf ′)(x)f(x) + V (x)

)
dx

∣∣∣∣
≤
(√

αβ‖√pg′‖2 + 3α
)
‖f‖22,

which shows the second inequality in (4.9).

Proof of Theorem 2.2. Without restriction we assume ‖q−‖u > 0. Let λ be a
non-real eigenvalue of A with a corresponding eigenfunction f . Since 1/p ∈
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L∞(R) and

‖f ′‖22 ≤ ‖1/p‖∞‖
√
pf ′‖22 (4.18)

we have f, f ′ ∈ L2(R) by Lemma A.2 (i). Thus, for all ε > 0 and every n ∈ N

sup
x∈[n,n+1]

|f(x)|2 ≤ ε
∫ n+1

n

|f ′(t)|2 dt+

(
1 +

1

ε

)∫ n+1

n

|f(t)|2 dt (4.19)

holds, see, e.g. [23, Lemma 9.32]. Set

α := 2‖q−‖u + 4‖1/p‖∞‖q−‖2u and β := (4‖1/p‖∞α)
1
2

and let ε = (2‖q−‖u‖1/p‖∞)−1 > 0. With (4.19) and (4.18) we estimate∫
R
q−(t)|f(t)|2 dt ≤ ‖q−‖u

∑
n∈Z

sup
x∈[n,n+1]

|f(x)|2

≤ ‖q−‖u
(
ε‖f ′‖22 +

(
1 +

1

ε

)
‖f‖22

)
≤ ‖q−‖u

(
ε‖1/p‖∞‖

√
pf ′‖22 +

(
1 +

1

ε

)
‖f‖22

)
=

1

2
‖√pf ′‖22 +

(
‖q−‖u + 2‖1/p‖∞‖q−‖2u

)
‖f‖22

=
1

2
‖√pf ′‖22 +

α

2
‖f‖22.

(4.20)

Together with (4.7) we obtain

‖√pf ′‖22 = 2‖√pf ′‖22 − ‖
√
pf ′‖22 ≤ 2‖q−f2‖1 − ‖

√
pf ′‖22 ≤ α‖f‖22

and with (4.2) from Lemma 4.1 and (4.20) we find

‖f‖2∞ ≤ 2
√
‖1/p‖∞α‖f‖22 = β‖f‖22 and ‖q−f2‖1 ≤ α‖f‖22.

With the choice of α and β we have√
αβ =

√
2‖1/p‖1/4∞ α3/4

and an application of Lemma 4.3 finishes the proof.

Proof of Theorem 2.4. Suppose that Hypothesis 2.1 holds and let λ be a non-
real eigenvalue of A corresponding to the eigenfunction f . (i) We first consider
the case s, η ∈ [1,∞) where s+ η > 2. Then

2ηs− η − s = η(s− 1) + s(η − 1) ≥ s− 1 + η − 1 > 0.
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Choose

β =

((
2η − 1

η

)2

‖1/p‖η‖q−‖s

) ηs
2ηs−η−s

and α = ‖q−‖sβ
1
s .

Hölder’s inequality yields

‖q−f2‖1 ≤ ‖f‖
2
s∞

∫
R
|q−(t)||f(t)|

2(s−1)
s dt

≤ ‖f‖
2
s∞

(∫
R
|q−(t)|s dt

) 1
s
(∫

R
|f(t)|2 dt

) s−1
s

= ‖q−‖s‖f‖
2
s∞‖f‖

2(s−1)
s

2 .

(4.21)

Thus, together with Lemma 4.1 and (4.7) we obtain

‖f‖2∞ =

‖f‖ 2(2η−1)
η

∞

‖f‖
2
s∞


ηs

2ηs−η−s

≤


(

2η−1
η

)2

‖1/p‖η‖
√
pf ′‖22‖f‖

2(η−1)
η

2

‖f‖
2
s∞


ηs

2ηs−η−s

≤

((
2η − 1

η

)2

‖1/p‖η‖q−‖s

) ηs
2ηs−η−s

‖f‖22 = β‖f‖22.

Using this estimate in (4.21) yields

‖q−f2‖1 ≤ ‖q−‖sβ
1
s ‖f‖22 = α‖f‖22.

Hence (4.8) is valid. By the choice of α and β we have
√
αβ = ‖q−‖

1
2
s β

s+1
2s and

Lemma 4.3 implies the bounds for λ.
Now consider the case η =∞ and s ∈ [1,∞). Choose

β = (4‖1/p‖∞‖q−‖s)
s

2s−1 and α = ‖q−‖sβ
1
s .

The same estimate as in (4.21) applies here. Thus, Lemma 4.1 together with
(4.7) and (4.21) imply

‖f‖2∞ =

(
‖f‖4∞
‖f‖

2
s∞

) s
2s−1

≤

(
4‖1/p‖∞‖

√
pf ′‖22‖f‖22

‖f‖
2
s∞

) s
2s−1

≤ (4‖1/p‖∞‖q−‖s)
s

2s−1 ‖f‖22 = β‖f‖22.

Combining this with the estimate in (4.21) yields

‖q−f2‖1 ≤ ‖q−‖sβ
1
s ‖f‖22 = α‖f‖22.
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Hence (4.8) is valid and
√
αβ = ‖q−‖

1
2
s β

s+1
2s . Lemma 4.3 implies the bounds for

λ and the assertion (i) is shown.
(ii) Assume η =∞ and s =∞. Choose

α = ‖q−‖∞ and β = 2
√
‖1/p‖∞‖q−‖∞,

so that √
αβ =

√
2‖1/p‖

1
4∞‖q−‖

3
4∞.

We show that (4.8) holds. Observe, that

‖q−f2‖1 ≤ ‖q−‖∞‖f‖22 = α‖f‖22. (4.22)

Lemma 4.1 in combination with (4.7) and (4.22) leads to

‖f‖2∞ ≤ 2
√
‖1/p‖∞‖

√
pf ′‖2‖f‖2 ≤ 2

√
‖1/p‖∞‖q−‖∞‖f‖22 = β‖f‖22.

Hence (4.8) is valid and Lemma 4.3 implies (ii).

Proof of Theorem 2.5. Assume that η = s = 1 and ‖1/p‖1‖q−‖1 < 1. Let
f be an eigenfunction corresponding to a non-real eigenvalue λ of A. Then
Lemma 4.1 (i) and (4.7) yield

‖f‖2∞ ≤ ‖1/p‖1‖
√
pf ′‖22 ≤ ‖1/p‖1‖q−f2‖1 ≤ ‖1/p‖1‖q−‖1‖f‖2∞ < ‖f‖2∞;

a contradiction.

Proof of Theorem 2.6. By Lemma 3.2 for every δ satisfying (2.5) there exists a
real function g ∈ AC(R) with rg > 0 a.e., ‖g‖∞ = 1 such that the support of g′

is compact and ‖√pg′‖2 = P , where

{|g| < 1} =
⋃
x∈Tr

(x− δ, x+ δ).

Lemma 3.3 ensures that γ is positive and {|r| < γ} ⊂ Ω. As rg > 0 a.e. we
have

ωγ,g = µ
(
{|r| < γ} ∪ {|g| < 1}

)
≤

∑
x∈Tr∪Zr

2δ = 2δn.

Choosing δ sufficiently small as stated in (i), (ii) and (iii), respectively, together
with Theorem 2.2 and Theorem 2.4 completes the proof.

Proof of Corollary 2.7. We apply Theorem 2.6. Since Tr = {0} and Zr = ∅ we
have n = 1, γ = 1 and P =

√
2/δ. Without restriction we assume q− 6= 0.

The estimates then follow with the choice δ = 1
12 (2‖q−‖u + 4‖q−‖2u)−

1
2 in (i),

δ = 1
6 (4‖q−‖s)−

s
2s−1 in (ii), and δ = 1

12‖q−‖
− 1

2∞ in (iii).
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A. Proof of Theorem 1.1

In this section we prove Theorem 1.1. Here the main objective is to prove self-
adjointness of the corresponding definite Sturm-Liouville operator associated to
the definite differential expression

τ =
1

|r|

(
d

dx
p

d

dx
+ q

)
on R. Let T be the maximal operator in L2

r(R) associated to τ ,

Tf = τf, dom(T ) = Dmax,

where
Dmax =

{
f ∈ L2

r(R) : f, pf ′ ∈ AC(R), `f ∈ L2
r(R)

}
.

In the next two lemmas we collect properties of the T and the maximal
domain Dmax applying standard techniques in Sturm-Liouville theory, see e.g.
in [12, 13] and [24, Appendix to section 6].

Lemma A.1. Suppose Hypothesis 2.1 holds. For every ε > 0 there exists Cε > 0
such that for all ξ ∈ R

sup
x∈[ξ,ξ+1]

|f(x)|2 ≤ Cε
∫ ξ+1

ξ

|f(t)|2|r(t)| dt+ ε

∫ ξ+1

ξ

p(t)|f ′(t)|2 dt (A.1)

for every f ∈ Dmax.

Proof. Let ε > 0. Since 1/p ∈ Lη(R) for some 1 ≤ η ≤ ∞ there exists δ > 0
such that ∫ x+δ

x−δ

1

p(t)
dt <

ε

2

for all x ∈ R; this can be seen with the help of the Hölder inequality. We can
also assume that δ < 1

2 . Using conditions (b) and (c) in Hypothesis 2.1 it follows
that there exists c > 0 such that∫ x+ δ

2

x− δ2
|r(t)| dt > c

for all x ∈ R. For f ∈ Dmax and x, y ∈ R

|f(x)|2 ≤ 2|f(y)|2 + 2|f(x)− f(y)|2 = 2|f(y)|2 + 2

∣∣∣∣∫ x

y

f ′(t) dt

∣∣∣∣2
≤ 2|f(y)|2 + 2

∫ x

y

p(t)|f ′(t)|2 dt

∫ x

y

1

p(t)
dt.

(A.2)
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We multiply (A.2) with |r(y)| and integrate over I(x, ξ) := [ξ, ξ+1]∩[x−δ, x+δ]
for arbitrary ξ ∈ R and x ∈ [ξ, ξ + 1]. The length of each interval I(x, ξ) is ≥ δ.
Then

|f(x)|2
∫
I(x,ξ)

|r(y)| dy ≤ 2

∫
I(x,ξ)

|f(y)|2|r(y)| dy

+ 2

∫
I(x,ξ)

(∫ x

y

p(t)|f ′(t)|2 dt

∫ x

y

1

p(t)
dt

)
|r(y)| dy

≤ 2

∫ ξ+1

ξ

|f(y)|2|r(y)| dy

+ 2

∫
I(x,ξ)

|r(y)| dy
∫
I(x,ξ)

1

p(y)
dy

∫ ξ+1

ξ

p(y)|f ′(y)|2 dy.

We divide this by
∫
I(x,ξ)

|r(y)| dy and define Cε := 2c−1. This proves (A.1).

Some parts in item (i) and the assertion of item (iii) in the next lemma were
proven under slightly different assumptions in [12] and [13].

Lemma A.2. Under Hypothesis 2.1 all f, g ∈ Dmax satisfy

(i) f,
√
pf ′ ∈ L2(R) and qf2 ∈ L1(R),

(ii) there exist sequences (xn)n∈N and (yn)n∈N with limn→∞ xn = ∞ and
limn→∞ yn = −∞ such that limn→∞ f(xn) = limn→∞ f(yn) = 0,

(iii) limx→±∞(pf ′)(x)g(x) = 0.

Moreover, the operator T is self-adjoint in L2
r(R) with respect to the scalar

product (·, ·)r and semibounded from below.

Proof. Let f, g ∈ Dmax. Then integration by parts yields∫ x

y

(Tf)(t)g(t)|r(t)| dt =

∫ x

y

(
p(t)f ′(t)g′(t) + q(t)f(t)g(t)

)
dt

+ (pf ′)(y)g(y)− (pf ′)(x)g(x)

(A.3)

for all y < x. We show item (i). By Hypothesis 2.1 (c) there exists Cr > 0 with
|r(x)| ≥ Cr for a.a. x outside of a compact interval [a, b] and we obtain∫

R
|f(t)|2 dt ≤ (b− a) sup

x∈[a,b]

|f(x)|2 +
1

Cr

∫
R\[a,b]

|f(t)|2|r(t)| dt <∞,

where the continuity of f implies the boundedness on [a, b]. This shows f ∈
L2(R).
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From now on we assume that f is a real function; this is no restriction. Let
y < x such that 1 ≤ x− y. For n ∈ N with 1 ≤ n ≤ x− y < n+ 1 we have∫ x

y

|q(t)||f(t)|2 ≤
∫ x

x−n
|q(t)||f(t)|2 dt+

∫ y+n

y

|q(t)||f(t)|2 dt

=
n∑
k=1

(∫ x−k+1

x−k
|q(t)||f(t)|2 dt+

∫ y+k

y+k−1

|q(t)||f(t)|2 dt

)

≤ 2‖q‖u
n∑
k=1

sup
t∈[x−k,x−k+1]

|f(t)|2 + 2‖q‖u
n∑
k=1

sup
t∈[y+k−1,y+k]

|f(t)|2 dt.

Fix ε > 0 such that 4‖q−‖uε ≤ 1
2 and let Cε as in Lemma A.1. Then∫ x

y

|q(t)||f(t)|2 ≤ 2‖q‖u
(
ε

∫ x

x−n
p(t)|f ′(t)|2 dt+ Cε

∫ x

x−n
|f(t)|2|r(t)| dt

)

+ 2‖q‖u
(
ε

∫ y+n

y

p(t)|f ′(t)|2 dt+ Cε

∫ y+n

y

|f(t)|2|r(t)| dt
)
.

Thus, for all y < x with 1 ≤ x− y we obtain∫ x

y

|q(t)||f(t)|2 ≤ 4‖q‖u
(
ε

∫ x

y

p(t)|f ′(t)|2 dt+ Cε

∫ x

y

|f(t)|2|r(t)| dt
)
. (A.4)

Let λ = −4‖q‖uCε. Then by (A.3) and (A.4) we obtain∫ x

y

(
(T − λ)f

)
(t)f(t)|r(t)| dt ≥

∫ x

y

(
p(t)|f ′(t)|2 −

(
|q(t)|+ λ|r(t)|

)
|f(t)|2

)
dt

+ (pf ′)(y)f(y)− (pf ′)(x)f(x)

≥ 1

2

∫ x

y

p(t)|f ′(t)|2 dt+ (pf ′)(y)f(y)− (pf ′)(x)f(x)

(A.5)

for all y < x with 1 ≤ x − y. Assume that
√
pf ′ is not square integrable over

(0,∞) and fix y = 0. Since f ∈ Dmax the left hand side in (A.5) is bounded
for all x > 0. The integral on the right hand side is nonnegative for all x > 0
and tends monotonically to ∞ as x → ∞. Thus, there exists b > 0 such that
(pf ′)(x)f(x) is positive for all x ≥ b. Due to Hypothesis 2.1 the function |r| is
bounded from below on [b,∞) by some Cr > 0 (one possibly needs to increase
b) and we obtain∫ ∞

b

|f(t)|2|r(t)| dt =

∫ ∞
b

(
|f(b)|2 + 2

∫ t

b

(pf ′)(s)f(s)

p(s)
ds

)
|r(t)| dt

≥ Cr
∫ ∞
b

|f(b)|2 dt =∞,
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which contradicts f ∈ L2
r(R). This shows that

√
pf ′ is square integrable over

(0,∞). In the same manner one obtains the integrability over (−∞, 0). From
(A.4) together with

√
pf ′ ∈ L2(R) and f ∈ L2

r(R) one obtains qf2 ∈ L1(R),
which finishes the proof of (i). Moreover, the continuity of f and f ∈ L2(R)
imply (ii). In fact, by the mean value theorem we find a strictly increasing
sequence (xn)n∈N with∫ ∞

0

|f(t)|2 dt =
∑
n∈N

∫ n+1

n

|f(t)|2 dt =
∑
n∈N
|f(xn)|2.

Thus, f(xn) → 0 as n → ∞. The sequence (yn)n∈N can be constructed in the
same way. This proves (ii).

We show that limx→∞(pf ′)(x)g(x) = 0 for all f, g ∈ Dmax, where it is again
sufficient to consider only real functions. Let f, g ∈ Dmax be real. Due to (A.3)
the limits limx→±∞(pf ′g)(x) exist and are finite. Assume

lim
x→∞

p(x)|f(x)g′(x)| =: α > 0.

Then there exists b > 0 such that |f(x)| > 0 and

p(x)|g′(x)| ≥ α

2|f(x)|

for x ∈ [b,∞). Multiplication with |f ′(x)| and integration leads to∫ x

b

p(t)|f ′(t)g′(t)| dt ≥ α

2

∫ x

b

∣∣∣∣f ′(t)f(t)

∣∣∣∣ dt ≥ α

2

∣∣∣∣∫ x

b

f ′(t)

f(t)
dt

∣∣∣∣ =
α

2

∣∣∣∣ln ∣∣∣∣f(x)

f(b)

∣∣∣∣∣∣∣∣ .
(A.6)

Let x in (A.6) run through the sequence (xn)n∈N from (ii). One obtains that
the right hand side grows to ∞ while the left hand side is still bounded since (i)
holds. This is a contradiction and hence the assumption α > 0 was false; thus
limx→∞(pf ′)(x)g(x) = 0. The analog result for x → −∞ follows in the same
way. This shows (iii).

From (iii) we obtain

lim
x→∞

(
(pg′)(x)f(x)− (pf ′)(x)g(x)

)
− lim
y→−∞

(
(pg′)(y)f(y)− (pf ′)(y)g(y)

)
= 0

for all f, g ∈ Dmax. This implies the self-adjointness of T , see e.g. [11, Theo-
rem 5.1]. From (A.3), (A.4) and (iii) we obtain for ε > 0 with 4‖q−‖uε ≤ 1

2

(Tf, f)r =

∫
R

(
p(t)|f ′(t)|2 + q(t)|f(t)|2 dt

)
≥ ‖√pf ′‖22 − ‖qf2‖1

≥ 1

2
‖√pf ′‖22 − 4‖q−‖uCε(f, f)r ≥ −4‖q−‖uCε(f, f)r

for all f ∈ Dmax, which shows that T is semibounded.
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Proof of Theorem 1.1. The map

(Jf)(x) := sgn(r(x))f(x), x ∈ R, f ∈ L2
r(R),

is a fundamental symmetry of the Krein space (L2
r(R), [·, ·]r) such that [·, ·]r =

(J ·, ·)r. Therefore, as T is self-adjoint in the Hilbert space L2
r(R) it is clear that

A = JT

with dom(A) = Dmax is self-adjoint in the Krein space (L2
r(R), [·, ·]r). It remains

to show the assertions on the non-real spectrum of A. If the signs of r near∞ and
−∞ differ then the claim follows by [3, Theorem 4.2]. Otherwise, one obtains
the proposed spectral properties of A in a similar way as in [3, Theorem 4.2] by
applying [3, Corollary 3.9].
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