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Zusammenfassung i 
 

Zusammenfassung   
Heutzutage spielen Freiformflächen eine wichtige Rolle bei der Verbesserung der 

Abbildungsleistung in nicht-rotationssymmetrischen optischen Systemen. Aller-

dings gibt es derzeit noch keine allgemeingültigen Regeln für das Design mit 

Freiformflächen. Das Ziel dieser Arbeit ist es zum Design nicht-rotationssymmet-

rischer Systeme mit einer Methode zur Startsystementwicklung, der Analyse und 

Korrektur von Bildfehlern, sowie Regeln zur Positionierung der Freiformflächen 

beizutragen. 

Zuerst wird eine Methode zur Startsystementwicklung basierend auf der nodal-

aberration-theory und der Gaussian-brackets aufgezeigt. Ein gutes Startsystem 

sind hat nur minimale Bildfehler, sowie eine sinnvolle Struktur, bevor Freiform-

flächen angewendet werden können. Die Gaussian-brackets-Methode ist hierbei 

nicht auf den Systemtyp oder die Anzahl der Flächen beschränkt. Die Bildfehler 

werden dann mit der Methode der kleinsten Quadrate optimiert. 

Die vektorielle Bildfehlertheorie ist wichtig für Designstrategien und die Bewer-

tung des Systems. Auf dieser Grundlage werden Designstrategien zum Ermitteln 

von Knotenpunkten für Koma und Astigmatismus abgeleitet. Die Auswahl-regeln 

zur Positionierung von Asphären und Freiformflächen resultieren aus dem Ver-

halten in Abhängigkeit der Position zur Pupille. 

Da bikonische Flächen im Design von Freiformsystemen häufig als Grundform 

verwendet werden, werden die daraus erzeugten Bildfehler abgeleitet. Damit 

kann aus der Bildfehlertheorie geschlossen werden, dass Koma und Astigmatis-

mus, die durch die bikonische Fläche erzeugt werden, entkoppelt sind, was ein 

Vorteil ist, um Knotenpunkte für Startsystem zu erhalten. 

Die Methode zur Startsystementwicklung mit Gaussian-brackets wird mit TMAs 

demonstriert. Darüber hinaus wird erweitertes Yolo-Teleskop mit drei Spiegeln 

und einer kleinen Blendenzahl designt. Das feldkonstante Koma wird hier durch 

die Strategie basierend auf der nodal-aberration-theory korrigiert. Der große As-

tigmatismus wird durch die bikonische Grundformen, sowie Freiform-polynome 

höherer Ordnung korrigiert. Auf der Grundlage der Auswahlregeln ist ein Schei-

mpflug-System in dieser Arbeit mit zwei Freiform-Oberflächen designt. Es ist er-

wiesen, dass die Uniformität eines Scheimpflug-Systems nur mit Freiformflächen 

ausbalanciert werden kann. 
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Abstract iii 

Abstract   

Nowadays freeform surfaces play important roles in improving the imaging per-

formance in non-rotationally symmetric optical systems. However, there are cur-

rently no general rules for the design with freeform surfaces. In this work, the aim 

is to contribute to the workflow of non-rotationally symmetric system design with 

the initial system design method, the analysis and the correction of aberrations in 

the systems, and the position selection rules for freeform surfaces.  

Firstly, an initial system design method is proposed based on nodal aberration 

theory and Gaussian brackets. A good initial system with minimum aberrations 

and reasonable structure is essential before adding freeform surfaces. The other 

already existing methods are limited to certain types of systems. The Gaussian 

brackets method is not limited to the system type or the number of surfaces. The 

aberrations are optimized using the nonlinear least-squares solver. 

The vectorial aberration theory is important for design strategies and the perfor-

mance evaluation. Thus, design strategies for obtaining nodal points of coma and 

astigmatism are concluded in this work based on the vectorial aberration theory. 

The surface position selection rules for aspheres and freeform surfaces are also 

generated based on the different behaviors when the surface is located at or 

away from the pupil.  

Since the biconic surface is often used as the basic shape in the freeform system 

design, the aberrations generated by the biconic surface are derived in this work. 

Thus, it is concluded from the aberration theory that coma and astigmatism gen-

erated by the biconic surface are decoupled, which is a benefit to obtain nodal 

points when designing initial systems. 

Based on the Gaussian brackets initial system design method, initial setups of 

TMA systems are designed to demonstrate the design procedure. An extended 

Yolo telescope with three mirrors is designed with a small f-number. The field-

constant coma is corrected by the strategy based on nodal aberration theory. The 

large astigmatism is further corrected using biconic surfaces and higher order 

freeform polynomials. Based on the selection rules, a Scheimpflug system is 

designed in this work with two freeform surfaces. It is proved that the uniformity 

of Scheimpflug systems can be balanced only with freeform surfaces.  
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1  Introduction and motivation 

In the past, a large number of optical systems are rotationally symmetric due to 

the limitation of computational and manufacturing techniques and the benefits of 

symmetry. Before the existing of computers, telescopes with small fields but good 

imaging quality were already designed. With the appearance of photography, 

many good camera lens systems have been designed and produced in the last 

centuries, which have extended field-of-view (FOV) compared with the old tele-

scope systems. However, the lens design technology developed quite slowly until 

the existing of computers. Although aberration theory and ray tracing were 

established before that, the computing capacity was poor with only a small 

number of rays. The designers should have enough experience to determine the 

direction and changes of the design [1].  

Since the middle of 20th century, computers were programmed to trace a large 

number of rays, illustrate the system analysis, and realize the optimization of the 

system [1].  With the fast development of computer technology, it also allows the 

possibility to couple complicated mathematics in the design process, for instance, 

the surface shape can be extended to aspherical or freeform surfaces with series 

of polynomials. Therefore, the development of optical design was highly improved 

in the last decades relying on the improvement of computational technology and 

manufacturing technology.  

Nowadays, the specifications of design become more challenging towards the 

trend of small F-number, large FOV, very compact size, low cost, etc. Many good 

imaging systems are designed such as fish-eye objectives, zoom lens system, 

microscope objectives, and lithography systems.  

Additionally, systems without rotational symmetry are investigated in specialized 

applications. Off-axis three mirror anastigmats (TMAs) are designed to achieve 

high resolution, small size, and obscuration free due to the folding of the ray paths 

[2]. By combining reflective and refractive elements, applications as head-

mounted displays (HMDs) are also designed [3]. Scheimpflug systems realized 

large shift of object distance using the asymmetric imaging condition [4]. Since 

the manufacturing technology nowadays allows the use of freeform surfaces, in 

those non-rotationally symmetric systems mentioned above, freeform surfaces 

are widely used to compensate the asymmetric effect and improve the system 
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performance in the past 20 years. However, due to the limitation of the most fre-

quently used optimization algorithms such as Damped Least Squares (DLS), it is 

more complicated when dealing with freeform surfaces. On the one hand, the 

large number of degrees of freedom provide possibilities to achieve good perfor-

mance. On the other hand, the performance of the starting point, the selection of 

surface representation, the selection of surface position, and the optimization 

steps will influence the final result. Many details should also be considered, such 

as the manufacturability controlling during the design procedure and the optimi-

zation steps when increasing the number of variables by adding more polynomi-

als to the surface. The analysis of system performance and aberrations are also 

quite different from the traditional designs. There are so far no general rules of 

designing a non-rotationally symmetric system with freeform surfaces. Therefore, 

the main objective of this thesis is to solve some problems for the system design 

without rotational symmetry, which are methods to obtain a good initial system, 

analysis of aberrations in the systems, and the position selection rules to locate 

aspheres and freeform surfaces. The methods and techniques are applied in 

some typical non-rotationally symmetric applications.  

Similarly to traditional systems, the analysis and the optimization of system per-

formance rely on ray tracing and aberration theory. Based on the aberration the-

ory, the designers decide how to deal with the system. Therefore, our work is 

mainly based on vectorial aberration theory.  

Chapter 2 opens a brief introduction of already existing initial system design 

methods and their limitations to be improved. Since our work is mainly based on 

aberration theory, the traditional Seidel aberration theory for centered systems 

and the extension to Nodal Aberration Theory (NAT) for the off-axis systems are 

briefly introduced. In non-rotationally symmetric systems, aspheres and freeform 

surfaces are often used. Thus, the most frequently used representations and their 

properties of the aspherical and freeform surfaces are also shortly introduced. 

Additionally, the traditional design process and the problems of non-rotationally 

symmetric systems are discussed.  

In Chapter 3, the vectorial aberration theory is explained in detail, based on which 

the design strategies can be proposed. When the system reference changes from 
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paraxial to parabasal, the aberration distribution over the FOV is no longer rota-

tionally symmetric, which can be represented in a vectorial formulation. The sys-

tematic initial design procedure based on confocal conic surfaces is introduced 

in this chapter. The techniques to avoid obscuration are also discussed. We also 

propose a new initial system design method based on Gaussian brackets and 

NAT, which overcomes the limitation of the number of surfaces, and the limitation 

of refractive or reflective type. Based on NAT, the paraxial environment is 

extended to the parabasal environment. Therefore, this method can deal with ro-

tationally symmetric, plane-symmetric, and general non-rotationally symmetric 

systems. In this chapter, the system geometry to minimize the aberrations and 

the surface selection rules are also generated based on the understanding of 

aberration contribution in the system. Therefore, the primary aberration coeffi-

cients, the contribution of the aspherical part and freeform parts based on vecto-

rial representations are studied. Since biconic surfaces become the beneficial 

choice for the basic surface shape, the aberrations of the biconic surface are also 

derived.  

Three typical applications without rotational symmetry are demonstrated in Chap-

ter 4. The unobscured TMA system is the most often seen plane-symmetric re-

flective system. The Yolo telescope system shows a complete loss of symmetry. 

Scheimpflug systems do not belong to the off-axis systems. Instead, it is a special 

kind of non-rotationally symmetric system with a variant magnification along the 

field, which leads to non-rotationally symmetric imaging condition in the FOV. It 

is shown how the initial setups of the three kinds of systems can be designed 

based on the Gaussian brackets method. The aberration behavior of off-axis sys-

tems is analyzed to decide the tilt angles, which vanish the aberrations of the 

central field. For TMA systems and Yolo systems, since the number of surfaces 

is small, all the surfaces are often added with aspheres and freeform surfaces. 

But the Scheimpflug system consists of more surfaces. Thus the position selec-

tion should be made for the freeform surface location. The surface positions are 

analyzed based on vectorial aberration theory, which gives a hint which aberra-

tions would be influenced at a certain position. The surfaces are selected based 

on the rules that are generated. 

Finally, the conclusions and outlooks are drawn in Chapter 5. 
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2 State of the art 

2.1 Initial system design methods 

For general system design, the starting point is important for the following optimi-

zation procedure. In traditional system design, a good starting point provides the 

possibility to achieve the system performance by only a small number of iterations 

of the structural modification or material replacement. For an optical design with 

freeform surfaces, the starting point influences the number and complexity of 

freeform surfaces, which correspond to the cost and difficulty in fabrication. 

Therefore, it is important to find an initial system, which has minimum aberrations 

before the optimization procedure. 

In traditional system design, the initial system can be selected from an already 

existing system. The paraxial properties of the selected existing system are sim-

ilar or the same as the specifications of the design. Therefore, the final design 

can be achieved after certain iterations of structural change and optimization. For 

this method, the designer should have enough experience in system design and 

certain database of existing designs, such as patents [5].  

Another option of conventional methods is to begin with a thin-lens model [6]. 

This method works fine with even complicated systems such as zoom systems. 

With this method, the focal power of each group of components is represented 

by one thin lens. The paraxial properties, such as focal length, numerical aper-

ture, and zoom factor, are fulfilled with the thin-lens model. By substituting the 

thin components by real lenses and further changing the bending or splitting the 

lenses, the final system performance can be achieved. For instance, the zoom 

system consists of an afocal system in front of the camera lens. The afocal sys-

tem has three groups of components. The front and rear groups have positive 

focal power, and the middle group is negative. The system has variant focal 

length by moving the middle group. Therefore the afocal system can be initially 

designed with the thin lens model as in Figure 2-1. 
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Figure 2-1 Thin lens model of zoom system [6] 

The manufacturing technique nowadays allows the possibility to use freeform sur-

faces in the systems. Therefore, the system can be extended to an off-axis struc-

ture. The design process of off-axis systems differs from centered systems due 

to the complicated aberrations and geometric behavior. Therefore, certain meth-

ods are proposed to find a good starting point before adding the freeform sur-

faces. One method is to use confocal conic sections [7]. Reflective conic surfaces 

are also named Cartesian surfaces [8]. Rays starting from one geometric focal 

point will be perfectly imaged to the other focal point, which provides the possi-

bility to have one field perfectly imaged. Therefore, it means that the nodal point 

can be obtained in the FOV of an off-axis system. However, problems appear 

when adding freeform surfaces to the system because of the large off-axis use of 

the conic sections. The design procedure of the conic-confocal method will be 

introduced in our work. We formulate the general rules and steps to obtain the 

on-axis model and tilt the surfaces at the confocal points, the relations between 

the angles to obtain linear astigmatism free, and the technique to check the ob-

scuration condition.  

The Simultaneous Multiple Surface (SMS) method differs from the methods men-

tioned above since it is used to design the initial system directly with freeform 

surfaces instead of the basic shapes such as spherical surfaces or conic sections. 

In the case of finite FOV, the SMS method allows coupling of the chosen rays 

from a certain number of fields into image points by using a certain number of 

freeform surfaces [9]. In recent years, it is a hot topic to extend the SMS method 

concerning the number of freeform surfaces and the number of selected fields. 

Therefore, the limitation of this method is the number of surfaces and the number 

of fields. 
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To overcome the shortcomings of the existing methods, we have developed a 

method based on NAT and Gaussian brackets to design the initial system [10]. 

Gaussian brackets defined by Tanaka was used to design centered system 

based on Seidel aberration theory. NAT can bring the system from on-axis envi-

ronment to parabasal environment. Therefore, the new method can deal with both 

refractive and reflective systems. The number of surfaces is not limited. The 

method works for centered systems, off-axis systems and also special asymmet-

ric imaging systems such as Scheimpflug systems. 

2.2 Traditional aberration theory 

In real optical imaging applications, it is impossible to achieve a perfect image, 

which is due to the aberrations generated by each component in the system. In 

ideal optical systems, all rays starting from one object point are supposed to be 

imaged to an ideal image point on the Gaussian image plane. In real imaging 

systems, the displacement of rays from the ideal image point along the image 

plane is called transverse aberration, while the displacement along the optical 

axis is called longitudinal aberration. Since the rays are always perpendicular to 

the wavefront, the deformation of the wavefront and the transverse aberration of 

the rays are equivalent. The wavefront deformation is called wave aberration [11]. 

The relation of those three descriptions of aberrations is illustrated in Figure 2-2.  

 

Figure 2-2 Relation of different aberration description [11] 

As shown in Figure 2-2, the wave aberration is the difference between the real 

wavefront and the reference sphere at the exit pupil, which is represented as W. 
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The ideal image is located at point A, however, due to deformation of the 

wavefront, the intersection point of the real ray with the image plane locates at 

point A’. The transverse aberration shown as 'y∆  is the deviation from A to A’ 

along the image plane. The real ray intersects with the optical axis at point B. 

Hence the displacement 's∆  measured along the optical axis from A to B is the 

longitudinal aberration.  

The traditional aberration theory was developed for rotationally symmetric 

systems. Therefore it is sufficient to use two rays, which are the marginal ray 

(MR) and the chief ray (CR) of the largest field as seen in Figure 2-3, to represent 

the whole paraxial ray tracing in the system. Normally, the two paraxial rays are 

selected in the tangential (meridional) plane of the system.  

 

Figure 2-3 Marginal ray and chief ray in an off-axis field in the optical system. 

The traditional aberration theory is called Seidel aberration theory that is named 

after Ludwig von Seidel, who first gave the third order aberrations systematically 

in 1856 [12]. The five Seidel aberrations are named spherical aberration, coma, 

astigmatism, field curvature and distortion. When the aberrations are represented 

by transverse aberration, they are of the third order. The relation between the 

wave aberration and the transverse aberration is given as [11, 13, 14]  

 ( ),
' ,p pref

p

W x yRx
n x

∆
∂

= −
∂

 (2-1) 

 ( ),
' ,p pref

p

W x yRy
n y

∆
∂

= −
∂

 (2-2) 

where 'x∆  and 'y∆  denote the transverse aberration in x and y coordinates. refR  

denotes the radius of the reference sphere. px  and py  are the pupil coordinates 

in x- and y-axis. n  is the refractive index in the image space. Therefore, it can be 
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seen that wave aberration is one order higher than transverse aberration. There-

fore, the five monochromatic primary aberrations regarding wave aberration are 

of the fourth order.  

 

Figure 2-4 Polar coordinate of pupil and field height 

In this thesis, we unify the polar coordinate of the field coordinate and the pupil 

coordinate and illustrate them in Figure 2-4. Different from some of the literature, 

where the azimuthal angle is defined as the angle from the y-axis to the field 

vector or the pupil vector, we define the azimuthal angle as the angle from the x-

axis to the field vector or the pupil vector. In this case, the definition of the 

coordinate matches the polar coordinate definition for some of the freeform 

surface representations such as Zernike fringe polynomials. As mentioned, the 

aberrations in the system can be decomposed into aberration contribution of each 

surface. Additionally, the aberrations generated by each surface can be further 

decomposed into the aberrations generated by different parts of the surface sag. 

Therefore, it makes sense to unify the coordinates. 

In rotationally symmetric systems with spherical surfaces, the wave aberration is 

expanded in a Taylor power series regarding the aperture and field as [12-15] 

 ( ) sin ,k l m
klm j

j p n m
W W H ρ φ

∞ ∞ ∞

=∑∑∑∑       
2

,
2

k p m
l n m
= +
= +

 (2-3) 

where H  denotes the normalized field height (actual field height divided by the 

largest field height), ρ  denotes the normalized radial aperture height in the pupil 

coordinate, and φ  denotes the azimuthal angle of the pupil coordinate. klmW  

denotes the aberration coefficients. The coefficients of the primary aberrations of 

the jth surface in the system are listed in Table 2-1. The aberration coefficients 
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~I VS S  are the five Seidel coefficients [12-15]. The total wavefront aberration is 

written as the sum of contributions of each surface in the system. The coefficients 

klmW  can be calculated using the paraxial ray trace data. ju  denotes the marginal 

ray angle, ju  denotes the chief ray angle, jh  denotes the marginal ray height, 

and jh  denotes the chief ray height. jn  is the refractive index. 

The parameters jA  and jA  are defined as 

 ( ) ,j j j j jA n h c u= +  (2-4) 
 ( ).j j jj jA n h c u= +  (2-5) 

The Lagrange invariant is given as 

 ( ).j jLag j j j jH n h u h u= −  (2-6) 

Table 2-1 Calculation of primary monochromatic aberration coefficients 

Aberrations Coefficients 
Spherical 
aberration 

2
040

1

1 1 '
8 8

j j
j I j jj

j j

u uW S A h
n n −

 
= = − − 

 
 

Coma 131
1

1 1 '
2 2

j j
jj II j j j

j j

u uW S A A h
n n −

 
= = − − 

 
 

Astigmatism 
2

222
1

1 1 '
2 2

j j
jj III j j

j j

u uW S A h
n n −

 
= = − − 

 
 

Field 
curvature 

2
220

1

1 1 1 1
4 4

j IV j jLag j
j j

W S H c
n n −

 
= = − − 

 
 

Distortion 

( )

3

2 2
1

311

1

1 1
1 1
2 2 1 12

j j
j j

j V j

j jj jj j j
j j

A h
n n

W S

h A h A h A c
n n

−

−

  
− −  
  = = −    + − −    

 

The wave aberrations discussed above only concern monochromatic aberrations. 

For refractive systems, the index of refraction depends on the wavelength. There-

fore, the focal power of the system varies for different wavelength, which causes 

chromatic aberrations. Concerning chromatic change of aberrations, the most 

significant changes are the chromatic change of magnification and defocus. Chro-

matic aberration can be described by transverse chromatic aberration and longi-

tudinal chromatic aberration corresponding to the chromatic change of magnifi-

cation and the chromatic change of defocus, which are illustrated in Figure 2-5. 

The variation of focal length with wavelength is called the longitudinal chromatic 
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aberration shown as the difference ' longs∆  between blue and red wavelengths as 

an example. Since the transverse chromatic aberration is the change of magnifi-

cation with the wavelength and the image height depends on the chief ray, the 

transverse aberration is illustrated as the difference ' transy∆  between the chief ray 

heights of blue and red wavelengths in the Gaussian image plane [11, 14].  

 

Figure 2-5 Longitudinal and transverse chromatic aberrations of blue and red 

wavelengths. 

Chromatic aberration is the second-order property of the wavefront deformation. 

Thus, the second order change in wavefront with wavelength is given as [14] 

 2 2
000 200 111 020sin .W W W H W H Wλ λ λ λ λρ φ ρ∂ = ∂ + ∂ + ∂ + ∂  (2-7) 

The terms and the corresponding types of aberrations are listed in Table 2-2. 

Table 2-2 Chromatic aberration terms 

Term Aberration 
000Wλ∂ and 200Wλ∂  Chromatic changes of piston 

020Wλ∂  Chromatic change of focus 
111Wλ∂  Chromatic change of magnification 

The calculation of the two chromatic aberration coefficients are listed in Table 

2-3. The two coefficients are also calculated based on the paraxial ray trace data 

of the chief ray and the marginal ray. They are also named as IC  and IIC  in 

some literature and shown with the five monochromatic Seidel coefficients 

~I VS S  in bar diagrams for the analysis of aberrations in rotationally symmetric 

systems [11-14].  

The aberration coefficients in Table 2-1 and Table 2-3 are derived for the jth sur-

face in the optical system. The total aberration can be calculated as the sum of 

the contribution of each surface.  
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Table 2-3 Calculation of the primary chromatic aberration coefficients 

Aberration Coefficient 

Transverse chromatic aberration 111
j

jj II j j
j

nW C A h
n

λ ∆
 ∂

∂ = =  
 

 

Longitudinal chromatic aberration 020
1 1
2 2

j
j I j j j

j

nW C A h
n

λ ∆
 ∂

∂ = =  
 

 

2.3 Nodal Aberration Theory 

When optical systems are without rotational symmetry, such as plane-symmetric, 

double plane-symmetric, or non-symmetric systems, the traditional aberration 

theory (Seidel aberration theory) is not valid, because the rays in the tangential 

(meridional) plane cannot represent all the rays in the system. Therefore, to ex-

tend the aberration theory to non-rotationally symmetric systems, the wave aber-

ration function is extended based on the field and aperture vectors [14-16]. R. V. 

Shack wrote the aberration function in the vectorial form as 

 ( ) ( ) ( ) ( ) ( ), .
p n m

klm j
j p n m

W H W H H Hρ ρ ρ ρ
∞ ∞ ∞

= ⋅ ⋅ ⋅∑∑∑∑
       

 (2-8) 

As shown in Figure 2-4, the normalized field vector in the image plane is given as 

 .iH He θ=


 (2-9) 

Therefore, the two components of the field vector in x- and y-axis are given as 

 cos
.

sin
x

y

H H
H H

θ
θ

=
 =

 (2-10) 

Similarly, the normalized pupil vector and the two components in x- and y-axis 

are given as  

 ,ie φρ ρ=


 (2-11) 

 cos
.

sin
x

y

ρ ρ φ
ρ ρ φ

=
 =

 (2-12) 

The vectorial relations are as 

 ( )2 2cos ,H H H Hθ θ⋅ = − =
 

 (2-13) 

 ( )2 2cos ,ρ ρ ρ φ φ ρ⋅ = − =
 

 (2-14) 

 ( )cos .H Hρ ρ θ φ⋅ = −
 

 (2-15) 
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Therefore, in rotationally symmetric systems, where the field height is 

represented by the fields along the y-axis, which means / 2θ π= , the vectorial 

wave aberration representation as in Eq. (2-8) can be written in the form of Eq. 

(2-3).  

In non-rotationally symmetric systems, there is one group called tilted component 

systems (TCS), which means the components in the system are tilted or decen-

tered while each of them is individually axially symmetric. For a system consisting 

of only spherical surfaces, if the surface is tilted or decentered, it can be seen as 

a total tilted effect, because the vertex of a spherical surface can be an arbitrary 

point on the surface. As shown in Figure 2-6, the spherical surface is decentered 

along y-direction with a distance of δν  and tilted with an angle of β . Thus, the 

center of curvature O  is decentered to 'O  with a displacement of oδ  in paraxial 

approximation. The original vertex 0ν  moves to ν . The local axis 1 is along the 

new vertex ν  and the new center of curvature 'O . If the new vertex of the surface 

is assumed to be *ν , which locates on the reference axis, the equivalent local 

axis becomes local axis 2. Then the decentering and tilt effects can be seen as 

an equivalent tilt effect. The tilt parameter is given as [15] 

 0 .c c oβ β δν δ= + =  (2-16) 

 

Figure 2-6 Equivalent local axis and tilt parameter of a spherical surface. [15] 

Therefore, every decentered or tilted surface can be treated as a tilted surface. 

The tilt effect leads to a displacement of the normalized field vector, which is 

defined as σ


. Therefore, the wave aberration for tilted component systems are 

given as [15] 
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( ) ( ) ( ) ( ) ( ) ( ), ,
p mn

j j jklm j
j p n m

W H W H H Hρ σ σ ρ ρ σ ρ
∞ ∞ ∞

   = − ⋅ − ⋅ − ⋅   ∑∑∑∑
          

 (2-17) 

in which, 2k j m= +  and 2l n m= + . The wave aberration expansion of the fourth 

order is written as 

 ( ) ( ) ( )
( )
( ) ( ) ( )
( ) ( ) ( )

2
040 131

2

222

220

311 .

jj jj j

jjj

j jjj

j j jjj

W W W H

W H

W H H

W H H H

ρ ρ σ ρ ρ ρ

σ ρ

σ σ ρ ρ

σ σ σ ρ

 = ⋅ + − ⋅ ⋅ 

 + − ⋅ 
 + − ⋅ − ⋅ 
   + − ⋅ − − ⋅   

∑ ∑

∑

∑

∑

      

  

     

      

 

(2-18) 

Therefore, the effective normalized field height defined as Aj jH H σ= −
  

 for the jth 

surface is shown as in Figure 2-7.  

 

Figure 2-7 The effective field height and the field shift vector of a surface [15] 

The field shift vector can be calculated using the real ray tracing data of the optical 

axis ray (OAR). The definition of the OAR is the ray passing through the center 

of the object plane, the center of the image plane, and the center of pupils for all 

the surfaces in the system. Hence, the OAR is the chief ray of the central field in 

an off-axis system. When all the surfaces are centered, the OAR passes along 

the optical axis through the vertex of each surface. The incident angle of the OAR 

is always zero. When the surface is tilted, the OAR has a certain incident angle 

on the surface. The field shift vector σ


 can be derived using the OAR incident 

angle 
*
ji


 and the paraxial ray trace data of the largest chief ray. When the surface 

is tilted in both x- and y-direction, the OAR incident angle is represented as a 

vector. For the off-axis system, the paraxial ray trace is considered as in the 

centered case. When making paraxial ray trace, it is assumed that all the tilted or 
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decentered surfaces are centered on the common optical axis. The field shift vec-

tor is given as [15-17] 

 *

.j
j

j j

i
h c u

σ = −
+





 (2-19) 

The calculation of the field shift vector is real-ray based. The ray direction cosine 

data of the OAR is obtained in the local coordinate of the object plane of each 

surface, which corresponds to the object plane and its conjugates in the system.  

The three normal vectors, which are used to calculate the field shift vector, are 

illustrated in Figure 2-8. The system is assumed as centered when performing 

paraxial ray trace. All the surfaces and pupils are centered on the optical axis as 

in Figure 2-8(a). The paraxial ray trace data of the marginal ray and the chief ray 

of the largest field is also used to calculate the Seidel aberration coefficients as 

in Table 2-1. In Figure 2-8(b), the surface is decentered and tilted from the optical 

axis. The local coordinate is defined in the object plane. Hence the normal vector 

of the object plane is defined as N


, which is normalized. The original vertex ν  of 

the surface is decentered from the optical axis. The normalized direction vector 

of the OAR is defined as R


. As mentioned above, the vertex can be an arbitrary 

point on the spherical surface. Thus the intersection point of the OAR with the 

surface is defined as the new vertex of the tilted surface. The axis of the surface 

is along the center of curvature 'O  and the new vertex *ν . The normal vector S


 

with length of 1 at the OAR intersection point is along the axis of the surface. The 

direction cosines along the z-axis of the three unit vectors R


, S


, and N


 are 

always defined as negative. Therefore, the direction cosines of the vectors in the 

local coordinate of the jth surface are given as [10, 17] 

 ( )0, 0, 1 ,jR = −


 (2-20) 
 ( ), , ,j j j jS SRL SRM SRN=



 (2-21) 
 ( )0, 0, 1 .jN = −



 (2-22) 

Therefore, the value of the field shift vector is calculated as 

 
( )

.

j

jj j j j j
j

jj j j

j j j

SRL
N R S u h c

SRMu h c
u h c

σ

 −   × × +   = =
 + − + 

  



 (2-23) 
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The Seidel aberration coefficients ( )klm jW  and the field shift vector jσ


 can be 

obtained by tracing the paraxial chief ray, the paraxial marginal ray, and the real 

OAR. The primary aberrations of a system with off-axis spherical surfaces can be 

derived using Eq.(2-18) and Eq.(2-23). 

 

Figure 2-8 Real-ray-based calculation of the field shift vector. (a) Centered sur-

face for paraxial ray trace (b) tilted surface for real OAR trace. 

2.4 Gaussian brackets and Generalized Gaussian Constants 

In Section 2.2 and 2.3, it is mentioned that the Seidel aberration coefficients are 

calculated based on paraxial ray trace data. It is well known that ray transfer ma-

trix (also known as ABCD matrix) is used for ray tracing in paraxial approximation 

[11, 18]. Thus, Gaussian brackets and the Generalized Gaussian Constants 

(GGC’s) are used to perform paraxial ray tracing based on a matrix method [19-

22]. Instead of the individual matrix for each element, it is always written as one 

total 4x4 matrix, which consists four elements called GGC’s. Each Generalized 

Gaussian Constant is defined as a Gaussian bracket.  

As a generalization of the ideas and theories of Herzberger [19-21], the descrip-

tion of Gaussian brackets is defined by Tanaka based on the theory of continued 
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fractions [22]. A Gaussian bracket, whose elements consist of a set of numbers 

or functions, 1 2 1, , , , ,i i i j ja a a a a+ + − , is written in the form as 

 [ ]1 2 1, , , , , .i
j i i i j jG a a a a a+ + −=   (2-24) 

The expression in a recurrent form is given as 

 1 2 , ,
1 , 1,
0 , 2.

i i
j j j

i
j

G a G i j
G i j

i j

− −+ ≤
= = +
 = +

 (2-25) 

If the bracket is empty, it corresponds to the second line in Eq. (2-25). If there are 

plural elements, the Gaussian bracket is defined as the first line. For instance, 

when the Gaussian bracket consists of four elements, 3
i

iG + , it is obtained as 

 2

1

1 1

2 1 2 2

3 1 2 3 1 3 2 3

0,
1,

,
1,

,
1.

i
i

i
i

i
i i

i
i i i

i
i i i i i i

i
i i i i i i i i i i i

G
G

G a
G a a
G a a a a a
G a a a a a a a a a a

−

−

+ +

+ + + +

+ + + + + + + +

=
=
=
= +
= + +
= + + + +

 (2-26) 

 

 

Figure 2-9 Ray path from the ith component to the jth component. 

In an optical system as shown in Figure 2-9, the power of each component is 

defined as iΦ  and the reduced distance is named ' ie  between the ith and the 

(i+1)th components. The component here means a surface in a thick lens system 

or a lens in a thin lens system. The powers and the negative reduced distances 

are arranged in a series as 

  1 1 2 2 1 1, ' , , ' , , ' , , ' , , .k k k kΦ e Φ e e Φ e Φ− +− − − −   (2-27) 

For systems consisting of only spherical surfaces, the power and the reduced 

distance are given as 
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 ( )-1 - ,i i i iΦ n n c=  (2-28) 
 ' ,i

i
i

de
n

= −  (2-29) 

where ic  is the curvature of the ith surface; 1in −  is the refractive index before the 

ith surface; in  is the refractive index after the ith surface; id  is the distance from 

the ith surface to the (i+1)th surface. 

Based on the definition of Gaussian brackets, GGC’s for the subsystem from the 

ith surface to the jth surface are defined as 

 [ ]1 1 1, ' , , ' , , ' ,i
j i i i i jA Φ e Φ e e+ + −= − − −  1,i

iA =  (2-30) 
 [ ]1 1 1' , , ' , , ' ,i

j i i i jB e Φ e e+ + −= − − −  0,i
iB =  (2-31) 

 [ ]1 1 1, ' , , ' , , ' , ,i
j i i i i j jC Φ e Φ e e Φ+ + −= − − −  ,i

i iC Φ=  (2-32) 
 [ ]1 1 1' , , ' , , ' , ,i

j i i i j jD e Φ e e Φ+ + −= − − −  1.i
iD =  (2-33) 

The relations between the four GGC’s are given as 

 1 1 1' , ,
1 , ,

i i
j j ji

j
C e A i j

A
i j

− − −− + <
=  =

 (2-34) 

 1 , ,
0 , 1,

i i
j j ji

j
A Φ C i j

C
i j

−
=

= +
≤+




 (2-35) 

 1 1 1' , ,
0 , ,

i i
j j ji

j
D e B i j

B
i j

− − −− + <
=  =

 (2-36) 

 -1 , ,
1 , .

i i
j j ji

j
B Φ D i j

D
i j

+ <
=  =

 (2-37) 

In paraxial approximation, the ray refraction or reflection at the ith surface with the 

power of iΦ  is given as a matrix transfer as 

 

1

1 0
.

' 1
i i

i i i i i

h h
n u n uΦ −

    
=    

    
 (2-38) 

Different from the matrix definition of the thin lens, the power in Eq. (2-28) and 

Eq. (2-38) is derived according to the law of refraction of a single surface. If the 

component is considered as a thin lens in air, the power is given by the negative 

value of the focal power as 1/ 'i fΦ = − . 

The paraxial ray transfer from the ith surface to the (i+1)th surface with the reduced 

distance of ' ie  is written as 

 1

1 1

1 '
.

0 1
i i i

i i i i

h e h
n u n u

+

+ +

−    
=    

    
 (2-39) 
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By applying Eqs. (2-38) and (2-39) in the sequence, in which the ray passes 

through, and arranging the product by using the associated properties of the ma-

trix, the paraxial ray trace from the ith surface to the jth surface can be obtained as 

the following four relations. 

 
1

,
'

i i
j j j i

i i
j j j j i i

h A B h
n u C D n u−

    
=    

    
 (2-40) 

 

1 1 1 1
,

i i
j j j i

i i
j j j j i i

h A B h
n u C D n u− − − −

    
=    

    
 (2-41) 
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1
,

' '

i i
j j j i

i i
j j j j i i

h A B h
n u C D n u

+

+

    
=    
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 (2-42) 

 1

1
1 1 1

.
'

i i
j j j i

i i
j j j j i i

h A B h
n u C D n u

+

+
− − −

    
=    

    
 (2-43) 

The paraxial properties of the system can also be derived using the GGC’s. If the 

system consists of k surfaces, the back focal length from the kth surface to the 

rear focal plane is given by 

 1

1
' .k
F

k

AS
C

=  (2-44) 

The focal length in the image space from the rear principal plane to the rear focal 

plane is given by  

 
1

1' .
k

f
C

=  (2-45) 

2.5 Aspheres 

To allow more degrees of freedom in improving the system performance, aspher-

ical devices are used, which deviate from a spherical shape but are still rotation-

ally symmetric.  

Reflective surfaces with the shape of a conic section have special properties to 

focus certain bundles of rays without any geometric error [6, 8, 11]. A conic sec-

tion, as a special aspherical shape, can be characterized by the following analyt-

ical representation as 

 ( )
( ) ( )

2 2

2 2 2
,

1 1 1
conic

c x y
z

c x yκ

+
=

+ − + +
 (2-46) 

where c  denotes the surface curvature, and κ  denotes the conic parameter. Dif-

ferent shapes corresponding to different values of the conic parameter are shown 

in Table 2-4. 
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Table 2-4 Shape of the conic sections as a function of the parameter [6, 11] 

Shape of surface Conic parameter 
Paraboloid 1κ = −  

Hyperboloid 1κ < −  
Sphere 0κ =  

Oblate ellipsoid 0κ >  
Prolate ellipsoid 1 0κ− < <  

In Eq. (2-46), the surface is represented in Cartesian coordinates. If the aperture 

coordinate of the surface is converted into a polar coordinate, the coordinates x 

and y can be written as a vector ( , )r = x y


, which is called the aperture vector of 

the surface. The two components of the aperture vector are given as 

 cos
,

sin
x r
y r

φ
φ

=
 =

 (2-47) 

where r  denotes the radial coordinate, and φ  denotes the angular coordinate, 

which corresponds to the azimuthal angle of the pupil coordinate in Figure 2-4. 

The coordinate of the surface aperture is illustrated as in Figure 2-10. 

 

Figure 2-10 Polar coordinate of the surface aperture 

Based on the conic surface shape, it is possible to add higher order aspherical 

deformation on the surface shape. The deviation from the conic shape can be 

represented as a set of polynomials. The traditional aspherical shape is 

characterized by Taylor expansion. The general aspherical surface with even 

orders is characterized by a conic shape as the basic shape and a series of pol-

ynomials. The representation in the polar coordinate of an even asphere is given 

as 

 

( )
2

2 4
2 4

2 2 0
,

1 1 1

M
m

even asphere m
m

crz a r
c rκ

+
+

=

= +
+ − +

∑  (2-48) 
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where 2 4ma +  denotes the coefficients of the polynomials and m is the number of 

the polynomial. Therefore, the polynomials are added as a deviation in the z-

direction. The deviation from the spherical shape can be illustrated as in Figure 

2-11.  

 

Figure 2-11 Aspherical surface 

In Figure 2-11, r  denotes the radial height of the aperture. Hence, the surface 

sag corresponding to the radial height is ( )z r . The deviation from the spherical 

surface is shown as z∆ .  

The deviation of the aspherical surface from the conic shape can be character-

ized not only by Taylor expansion but also by orthogonal polynomials, which pro-

vide different properties in convergence and tolerancing compared with Taylor 

expansion. There is a kind of often used aspherical surface representation called 

the Forbes asphere (or the Q-type asphere). There are two types of the Q-type 

asphere, which are called the strong asphere (Qcon) and the mild asphere (Qbfs). 

The strong asphere is written as the basic conic shape and a series of orthogonal 

polynomials as [23].  

 

( ) ( )2 4 2

2 2 0
,

1 1 1

M
con

Qcon m m
m

crz r a Q r
c rκ =

= +
+ − +

∑  (2-49) 

where ma  denotes the coefficients of the polynomials, ( )2 con
mx Q x  (with 2

x r= ) de-

notes an orthogonal set of polynomials, and normr r r=  denotes the normalized 

aperture radial coordinate. normr  is the normalization radius. The set of polynomi-

als are orthogonal, and it follows the relation as 

 
( ) ( )

1
2 2

0

,con con
m n m mnx Q x x Q x h δ=∫  (2-50) 
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where mh  denotes a normalization constant, and mnδ  is the Kronecker delta. 

Therefore, the Qcon polynomials are sag/spatially orthogonal polynomials, while 

the mild aspheres have the property of slope/gradient orthogonal. The mild as-

phere is written as  

 ( ) ( )
2 2

2 2

2 2 2 2
0

1
.

1 1 1

M
bfs bfs

Qbfs m m
mbfs bfs

r rc rz a Q r
c r c r =

−
= +

+ − −
∑  (2-51) 

In this case, the basic shape is no longer a conic section but a spherical shape 

with the curvature of bfsc . The elements of the normal-departure slope are written 

as 

 ( ) ( ) ( ){ }2 2 2
: 1 .Slope bfs

m m
dQ r r r Q r
dr

= −  (2-52) 

 

Figure 2-12 Deviation from the basic shape (a) along z-direction (b) projected 

from the normal direction. 

The polynomials are chosen to make ( )Slope
mQ r  orthogonal. Thus the mild asphere 

is slope orthogonal. The polynomials are divided by a projection factor as 

 ( ) ( ) 2 2cos 1 ,pr bfsP r c rα= = −  (2-53) 

where ( )cos prα  corresponds to the cosine of the projection angle. The projection 

angle is the angle between the local normal vector of the basic shape and the z-

axis. The difference between strong asphere and mild asphere in the deviation 

from the basic shape as shown in Figure 2-12. For strong aspheres as in Figure 

2-12 (a), the deviation from the basic shape to the aspherical shape is measured 
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along the z-axis. The polynomials are named as ( )polyz r . However for mild as-

phere as in Figure 2-12 (b), the polynomials without the projection factor named 

as ( )polys r  are along the normal direction of the basic shape. When the 

polynomials are divided by the projection factor, they are projected onto the z-

direction. 

Thus, the strong asphere has a conic surface as the basic shape. The polynomi-

als are sag orthogonal and along the z-axis. The mild asphere has a best-fit-

sphere as the basic shape. The polynomials are slope orthogonal and along the 

normal direction. 

2.6 Freeform surface representations 

When optical systems are without rotational symmetry, freeform surfaces allow 

more degrees of freedom to improve the system performance. Freeform surfaces 

can be described using different mathematical representations. The frequently 

used freeform surfaces in optical system design are generalized as the sum of 

two parts. The first part is the basic shape, e.g., sphere, conic, or biconic, which 

incorporates mainly the paraxial behavior of the surface such as the focal power 

and the primary astigmatism. The second part is the deviation from the basic 

shape, which is normally described using different freeform polynomials. There-

fore, the deviation part contains the freeform contribution from lower orders to 

higher orders [24]. The general description of a freeform surface is given as 

 
( ) ( )

( )
( ) ( )

,
, , , ,

,
basic

A x y
z x y z x y F x y

P x y
= + ∑  (2-54) 

where basicz  denotes the sag of the basic shape, ( ),A x y  denotes the boundary 

function, ( ),P x y  denotes the projection factor, and ( ),F x y   denotes the polyno-

mials.  

The normalization radius for circular aperture coordinate is replaced by two 

individual normalization length in x- and y-direction as normx  and normy .  

The general representation of the basic shape can also be written in the form of 

a biconic shape as 
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( ) ( )

2 2

2 2 2 2
.

1 1 1 1
x y

biconic
x x y y

c x c yz
c x c yκ κ
+

=
+ − + − +

 (2-55) 

When x yc c c= =  and x yκ κ κ= = , the basic shape becomes a conic section. 

When x yc c c= =  and 0x yκ κ= = , the basic shape is a spherical surface.   

The general description in Eq. (2-54) is written in Cartesian coordinates. For cir-

cular aperture based polynomials, the aperture coordinates can be written in the 

form of Eq. (2-47). The normalized radial aperture coordinate is written as

normr r r= . For rectangular aperture based polynomials, the normalized aperture 

coordinate in x and y are defined according to Eqs. (2-56) and (2-57). The nor-

malization radius for circular aperture is replaced with different normalization 

lengths normx  and normy  in x- and y-direction, but 2 2 2
norm norm normx y r+ ≠ . 

 .
norm

xx
x

=  (2-56) 

 .
norm

yy
y

=  (2-57) 

The frequently used freeform surface representations are written as follows. 

1) Monomials (also known as XY-polynomials or Extended Polynomials) is 

one of the most frequently used freeform surface representations due to 

its suitability for manufacturing and the decoupling in x- and y-direction. 

The polynomials are based on Taylor expansion. However, since it is lack 

of orthogonality, the convergence in optimization is weak. The represen-

tation of monomials written in Cartesian coordinate is given as 

 ( ) ( )
0 0

, , .
M N

m n
Mono basic mn

m n
z x y z x y a x y

= =

= +∑∑  (2-58) 

2) Zernike polynomials are sag orthogonal, which were used to describe the 

wavefront aberrations since different terms indicate different types of ab-

errations. Thus, due to its orthogonality and the direct relation to aberra-

tions, it is often used to correct aberrations in non-rotationally symmetric 

optical systems. There are two sorting called standard convention and 

fringe convention. The Zernike standard surface representation in polar 

coordinate is written as 

 ( ) ( ) ( )
0 0

, , , .
N M

m
Zernike basic nm n

n m
z r z r a Z rφ φ φ

= =

= +∑∑  (2-59) 
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The Zernike polynomials are defined in a circular aperture. The aperture 

coordinate is normalized. The standard convention can be transferred to 

the fringe convention, then it is written as 

 ( ) ( ) ( )
0

, , , .
N

Zernike basic i i
i

z r z r a Z rφ φ φ
=

= +∑  (2-60) 

3) As an extension of Forbes aspheres, the freeform surface can also be 

represented in the form of Forbes polynomials (also known as Q-polyno-

mials). It holds the slope orthogonality with the benefit of both tolerance 

and convergence. It consists of the best-fit-sphere as the basic shape, the 

mild asphere part, and the freeform polynomials. The surface of Q-polyno-

mials in polar coordinate is written as 
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With the projection factor, the Q-polynomials are also projected from the 

normal direction of the best-fit-sphere.  

4) The Chebyshev 2D polynomials and Legendre 2D polynomials are spa-

tially orthogonal. Different from Zernike polynomials, they are character-

ized by normalized rectangular apertures. However, the terms are not di-

rectly related to aberration terms. The mathematical form of those two 

types of polynomials are products of the 1D-polynomials, which are given 

as 

 ( ) ( ) ( ) ( )
0 0

, , ,
N M

Cheb basic nm n m
n m

z x y z x y a T x T y
= =

= +∑∑  (2-62) 

 ( ) ( ) ( ) ( )
0 0

, , .
N M

Lege basic nm n m
n m

z x y z x y a P x P y
= =

= +∑∑  (2-63) 

The difference is the expression of the 1D functions ( )nT x  and ( )nP x  due 

to different weighting function. 

5) Considering all the properties of the mentioned surface representations 

such as orthogonality, aperture shape, boundary condition, and projection 

factor, there is one newly proposed freeform surface representation called 

A-polynomials. The basic shape is biconic, which provides different focal 

powers in x- and y-direction to compensate large astigmatism. Boundary 
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and projection factor can be defined to constrain the boundary properties 

and the direction of the polynomials along z-direction or normal direction. 

It combines the advantage of Zernike polynomials, which corresponds to 

aberration terms, and slope orthogonality of Q-polynomials. The aperture 

shape is rectangular. The general representation of A-polynomial is given 

as 
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N
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−

=

= + ∑  (2-64) 

The most significant difference between different freeform surface representa-

tions is the type of the polynomials. They can be classified into two types, which 

are non-orthogonal and orthogonal polynomials. The orthogonal polynomials 

consist of slope/gradient orthogonal and sag/spatial orthogonal polynomials. Sur-

faces with orthogonality tend to have better convergence in optimization, which 

is preferred by optical designers. The slope orthogonality also provides ad-

vantages in tolerancing. Other differences between the representations are the 

aperture shape, the boundary condition, the domain of definition, and whether 

they are Cartesian or polar based. The boundary function can define the property 

of the boundary and center of the surface. Some types of polynomials describe 

circular aperture, such as Zernike polynomials and Forbes polynomials. Some 

other types describe rectangular aperture, such as Chebyshev or Legendre pol-

ynomials, while monomial polynomials (also known as XY-polynomials) describe 

arbitrary aperture shape. The properties of some commonly used freeform poly-

nomials are listed in Table 2-5. 

Table 2-5 Comparison of different freeform surface representations 

 Basis Orthogonality Domain 

Monomials Cartesian None Arbitrary 

Chebyshev 2D Cartesian Spatial Unit square 

Legendre 2D Cartesian Spatial Unit square 

Zernike Fringe Polar Spatial Unit circle 

Q-polynomials Polar Gradient Unit circle 

A-polynomials Polar Gradient Unit square 
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2.7 Traditional design process 

Traditional optical systems are normally rotationally symmetric such as camera 

objectives, telescope objectives, and microscope objectives. The degrees of free-

dom in a system are the surface data, the thickness between surfaces and the 

materials. Since the optical components are centered on the optical axis, the ge-

ometry of the system structure is not very complicated.  

The first step in the design process is always to review all the specifications, 

which include the first-order properties (such as focal length, f-number (F#), and 

numerical aperture), as well as the working spectral range, the field of view (FOV), 

system packaging constraints, the goal of imaging performance, material 

requirements, the detector size, the free working distance and etc.  

Then a good starting point is essential for the further optimization. The methods 

mentioned in Section 2.1 aim to reach a good starting point for the system design. 

For traditionally systems, the starting configuration is normally capable of 

reaching some specifications such as the focal length or the f-number. The sys-

tem can be formed by thin-lens components and then substituted with real lenses 

in the later optimization. It can also reach good performance for the on-axis field 

and small FOV. Later the FOV is step-by-step increased in the optimization. The 

designer can also use a patent or an existing system as the starting point, which 

has similar properties as the goal specifications, for modification and further op-

timization. The starting system can also be designed by the combination of two 

or more existing systems, which results in a so-called hybrid system [5].  

Before further optimization, proper variables and constraints should be 

established in the design software. The spectral range and FOV are set as input 

[5]. The variables can be the radius of curvature, conic parameter, and distances 

(thicknesses and airspace), and the material characteristics. For more compli-

cated systems, there will be more degrees of freedom corresponding to the com-

plicated geometry or surface parameters.  The constraints are corresponding to 

the specifications such as the first-order properties, the packaging parameters, 

the thickness constraints, the airspace range, and some ray height or angle 

constraints for specific rays when there is a special requirement for the detector 

or intermediate components. 
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After the constraints are set in the merit function (error function) of the software, 

the criteria of the performance should be set. Normally the default criteria are 

used in software as Zemax (OpticStudio). The performance criteria can be the 

root-mean-square (RMS) spot radius, the wavefront error, or the angular error for 

image space afocal systems. The number of arms and rings are defined to control 

the used sampling of rays in the optimization. The final merit function is evaluated 

with values of constraints and the performance criteria value. The goal is to opti-

mize the value of the merit function so that the system performance, as well as 

constraints, can be fulfilled.  

Normally the system does not reach the ideal performance by one simple optimi-

zation, especially for complicated systems with high specifications. There are lo-

cal optimization and global optimization methods, which are based on different 

algorithms. The local optimization based on DLS is often used in Zemax. In this 

case, the optimization to reach the goal performance takes some time and itera-

tions. The time and the difficulty depend on the complexity of the system. The 

more complex the system is, the more complicated the merit function will be. 

Thus, to run one cycle of optimization takes also longer time. It will also be hard 

to reach the global minimum value of the merit function by modifying the system 

structure or changing materials.  

Before making a new iteration of the optimization, the system performance should 

be evaluated. The analysis of the performance can be based on the RMS spot 

radius, modulation transfer function (MTF), aberration values, or encircled en-

ergy, which give the information of the distribution of system errors. Before the 

next iteration of optimization, certain changes can be made in the system to re-

duce the influence of the error. For instance, if one surface has a large contribu-

tion in the aberrations, it can be split to redistribute the aberration contribution 

and reduce the sensitivity of the system. If the chromatic aberration is too large, 

it can be overcome by changing the materials. Furthermore, the weighting of dif-

ferent constraints in the merit function can also be changed. Every modification 

of the intermediate system will cause a change of the merit function. Therefore 

the system error jumps out of the local minimum and can be optimized again, 

which allows the possibility to meet the final performance. The strategy of the 

modification relies on the experience and theoretical basis of the designer. After 
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repeating the system optimization and performance evaluation for certain itera-

tions, it is possible to reach the final goal of performance. Nevertheless, this is 

not the end of optical design. 

 

 

Figure 2-13 Workflow of the traditional design process [5] 

In reality, no optical system can be optimized into ideal systems due to 

aberrations in the system. Similarly, the manufacturing and assembling have al-

ways errors, which lead to changes of surface data and distance, even with tilts 

and decentering of components. The tolerance analysis must be processed to 

see the influence of changes in every component and the sensitivity of the system 

before manufacturing. If the tolerance is too tight, a less sensitive system should 
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be selected or redesigned by reducing the influence of the most sensitive com-

ponent with certain structure modification. The budget should be planned for the 

acceptable error range. 

Finally, the system, which meets all the specifications and passes the tolerance 

analysis, can be manufactured. The mechanical design of the cell or housing is 

also important. Therefore, it is necessary to consider the mechanical design 

space in the design specifications. Once the optical and mechanical components 

are manufactured, the system can be assembled and tested. The last testing step 

also refers on the design specifications and requirements. The workflow of the 

traditional design process is illustrated in Figure 2-13. It can be seen that, beneath 

the repeating from step 3 to 6 and step (*) when the system performance is not 

fulfilled, a new starting point should be chosen when it is impossible to optimize 

the current structure to a final design [5]. 

2.8 Problems for non-rotationally symmetrical systems 

Nowadays, it is hard to achieve the balance between the higher requirements of 

the optical system performance and the low-cost requirement. In traditional point 

of view, higher performance can be achieved using large number of elements and 

special materials. However, in reality, the working space and system size are 

normally limited. There is also a budget of the cost of the whole system. There-

fore, it is normally the challenge to realize the achievable performance in the lim-

ited space with the limited cost.  

One way to reduce the system size is to fold the system with reflective compo-

nents. By using the same space several times by reflective effect, the system size 

is tremendously reduced. When the reflective components are tilted or decen-

tered, obscuration can be avoided. That would lead to non-rotationally symmetric 

effect in the system performance. The development of manufacturing technology 

makes it realistic to use freeform surfaces. Components with freeform surfaces 

own the capability to compensate the non-rotationally symmetric aberrations in 

the system. Therefore, it is possible to reduce the number of components in non-

rotationally symmetric systems by freeform surfaces. Typical applications are 

three-mirror-anastigmats (TMAs), head-mounted-displays (HMDs), and Yolo-tel-

escope systems. In some other systems with special requirement of focal powers 
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in x- and y-direction, such as anamorphic systems, freeform surfaces are also 

used to achieve high performance. Therefore, in the last ten to twenty years, the 

focus of optical design shifts to non-rotationally symmetric systems with freeform 

surfaces to large extent. However, as a new topic in optical design, there are 

some problems to be solved for non-rotationally symmetric systems.  

1) Complex geometric structure 

In centered system, the geometric relation between components or surfaces are 

the distances or thicknesses. Therefore, the size of the system is normally limited 

by one dimension along the unique optical axis. The other dimension is limited by 

the optical component size, which can be constrained with the ray height on the 

component during optimization. Thus, the geometric structure of the centered 

system is relatively simple and clear. Nevertheless, when the components are 

shifted or tilted in a non-rotationally symmetric system, the geometry to describe 

the relation between components contains not only distances but also angles. 

The propagation lost rotational symmetry of the field coordinate. Even for the 

central field, the ray cone is not rotationally symmetric. The complex structure will 

lead to the following problems. 

2) Analysis of aberrations 

Non-rotationally symmetric effect is already studied to certain extent in centered 

systems, which corresponds to the misalignment of components. NAT was es-

tablished based on the misalignment effect of optical components. When the sur-

face is tilted or centered, it will introduce a perturbation effect in the system per-

formance. Therefore, NAT is widely used in the analysis of non-rotationally sym-

metric systems. However, it is based on small perturbation of the system. Com-

pared with real cases with large tilt angles or decentering, the aberration values 

are not accurate. It is normally used to analyze the nodal points of aberrations 

and if the system is dominated by field-constant aberration. The extension of NAT 

concerning large tilt and decentering is also one of the popular research topics. 

To analyze the aberrations in the system, we need new tools because the aber-

rations can no longer be represented simply by the largest field. Full-field-display 

of aberrations are implemented to illustrate the whole distribution of the aberra-

tions over the FOV. 

3) Change of aberrations due to structure change 
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According to Seidel aberration theory, rotationally symmetric systems suffer from 

rotationally symmetric distributed aberrations. Spherical aberration is field-con-

stant. The marginal ray has the largest incident angle on each surface compared 

with other rays of the axial field. Coma, astigmatism, field curvature and distortion 

are all field-related. Thus the largest field suffers from the largest aberrations. By 

looking at the Seidel coefficients, we can see which surface has the largest aber-

ration contribution. It is predictable that which aberrations will be influenced when 

the system structure changes, such as splitting or pupil shift. Seidel coefficients 

are the aberrations of the largest field because the field height is normalized by 

the largest field over the whole FOV. For both aberration analysis and optimiza-

tion of rotationally symmetric systems, the strategies are relatively clear.  

For the non-rotationally symmetric system, it has several differences. Concerning 

the influence of the basic shape as spherical surfaces, due to the tilt or decenter-

ing of the surface, there is a field shift factor, which leads to different changes of 

different aberrations due to the different power of field relation. For example, 

coma has a linear relation with the field. Thus the influence of the field shift factor 

can be seen as a constant value, which is added to the field-linear coma. At the 

end, the total coma of surfaces can be seen as the sum of the field-linear coma 

and the constant value. But for astigmatism, since the relation with field is nonlin-

ear, the influence of the field shift factor is also complicated. Hence it is hard to 

decide how much the individual tilts or decentering should be to correct all the 

aberrations. For special systems such as Scheimpflug systems, the components 

are centered on the common optical axis, but the imaging condition is asymmet-

ric. Thus, the aberration distribution is also non-rotationally symmetric. When as-

pherical surfaces or freeform surfaces are added on the surface shape, it be-

comes even more complicated because each ray will be locally influenced by the 

local curvature at the intersection point. It is hard to see how large the change of 

aberrations will be caused by different part of the surface. Therefore, the influence 

can only be optimized by the performance criteria in the merit function. The 

chosen of fields is also complicated because of the non-rotational symmetry. The 

whole FOV should be taken into consideration. 

4) Obscuration 
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In centered systems with refractive components, obscuration is normally not con-

sidered. When the system consists of reflective components as telescopes, the 

obscuration is a problem. Beams are truncated at certain components. Therefore 

to achieve certain resolution and brightness, the components are normally quite 

large to overcome the loss of energy due to obscuration.  

The obscuration size is controlled by the ray height on the surface and the dis-

tance between surfaces. However, off-axis systems provide the possibility to 

avoid obscuration and obtain small system size due to the large direction change 

of rays. But the controlling of obscuration during the design procedure is not easy. 

Since the ray direction is controlled not only by the focal power of the surface but 

also the tilt or decentering of the surface, during optimization certain constraints 

should be added in the merit function to keep the rays away from other compo-

nents. When the system is formed by large number of surfaces or the same space 

is used several times due to the folding effect, constraints will be hard to define 

since the geometry is complicated, and the boundary ray heights should be 

constrained in more than one direction.  

5) Initial setup 

As mentioned, the aberrations in the non-rotationally symmetric systems are 

complicated. For bended axis ray, the system is in a real-ray-based parabasal 

environment. The resolution and distortion are separated, and it is more 

complicated to defined paraxiality. Therefore it is not enough to control the whole 

aberrations by reducing the aberrations of the boundary fields in the system. Be-

fore adding freeform polynomials, it is preferred to minimize the aberrations in the 

system with basic shapes. Thus, we can consider to minimize the aberrations of 

the central field. If the central field has no aberrations, which means it is the nodal 

point, the fields close to the nodal point will also suffer from relatively small aber-

rations. Therefore, one goal of initial system design is to obtain the nodal points 

in the FOV. In our work, we introduce two methods to optimize the aberrations of 

the selected field before adding freeform surfaces. There are also other methods 

to design the initial systems. From another point of view, the initial system can be 

directly formed by some freeform surfaces, which leads to sharp image of some 

field points. The SMS method mentioned in Section 2.1 works in this approach. 

6) Design rules and workflow 
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In Section 2.7, the design procedure of the traditional systems is introduced. How-

ever, due to the new problems in non-rotationally symmetric systems, certain 

rules or details should be added in the workflow such as constraints to obtain 

obscuration free and the control of distortion. Some designers prefer to design 

the system with components centered on the axis, then tilt the components to 

remove obscuration. Some prefer to start with tilted plane surfaces to control the 

position of the surfaces and then optimize the curvatures to obtain the target focal 

power of the system. In different cases, the design procedure is completely dif-

ferent. In the optical design community, there is not yet a general rule to design 

non-rotationally system with freeform surfaces.  

7) Freeform surfaces 

In the design procedure, one of the biggest problems is the use of freeform sur-

faces. Different freeform surface representations have different mathematical 

properties, which lead to different performance in the design process. For differ-

ent optical systems, the situation varies tremendously concerning number of com-

ponents, the field distributions on the surfaces, and aberration contributions of 

surfaces. It is hard to generate a simple rule how to select the best working loca-

tion of the freeform surface and the best working representation at the location. 

When more than one freeform surface are needed, it becomes even more com-

plicated. It is preferred to have less number of freeform surfaces due to the low-

cost requirement. The freeform surfaces should have a good performance work-

ing together. Therefore, it is still not clear about the best selection of the freeform 

surface locations and the optimization procedure with the increased number of 

polynomials. Constraints of the surface sag and slope are hard to define the in 

optical design software, although they are important for the manufacturing proce-

dure. Therefore, before coming to the tolerance step, not only the system perfor-

mance but also the surface manufacturability should be evaluated. The tolerance 

of the freeform surface is also complicated since it can have huge number of 

polynomials, which are also the degrees of freedom in the system. The optimiza-

tion procedure of freeform surfaces is already a large topic, although it is only one 

part of the whole design process.  
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3 New methods and results 

3.1 Vectorial aberration theory 

According to the symmetry of imaging systems, systems can be classified into 

general non-symmetric systems, plane-symmetric systems, double plane-sym-

metric systems, and axial symmetric systems as shown in Figure 3-1. In rotation-

ally symmetric (axial-symmetric) systems, the distributions of aberrations are also 

rotationally symmetric. As mentioned in Section 2.2, the traditional description of 

aberrations is in the wave aberration, the transverse aberration, and the longitu-

dinal aberration. The field height and the pupil coordinate are described by scalar 

parameters. The field is considered in the tangential plane. However, when the 

system loses the rotational symmetry, the ray propagation will be expanded from 

the two-dimensional vector to the four-dimensional vector with the ray heights xh  

and yh  in x- and y-direction and the ray angles xu  and yu  in x- and y-direction.    

 

Figure 3-1 Classification of systems according to symmetry 

Thus, the paraxial transfer matrix is extended from 2x2 to 4x4 matrix as [25] 

 '
'

,
'
'
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    =
    
    
    

 (3-1) 

and is referred onto the local coordinates of the axis ray or chief ray, which can 

have an arbitrary path. When the ray propagation is extended from the tangential 

plane to the full 3-dimensional coordinates, the aberrations are no longer repre-

sented by the scalar parameters as in the Seidel aberration representation. The 



3 New methods and results 37 

field and pupil coordinates are both extended to vectorial representations in x- 

and y-axis. Therefore, if the normalized field and pupil vectors are projected to 

the same plane, the relation is illustrated as in Figure 3-2. The relation in the 

system is illustrated in Figure 3-3. 

 

Figure 3-2 Normalized field vector H


 and pupil vector ρ


 

 

Figure 3-3 Vectorial coordinates in a non-rotationally symmetric system 

Therefore, the wave aberration expansion as in Eq. (2-3) can be written in the 

form of Eq. (2-8), according to the relation in Eq. (2-10) and Eq. (2-12). The terms 

of the wave aberrations in scalar and vectorial representations are listed in Table 

3-1. In Seidel aberration theory, the field is assumed on the y-axis. If 0xH =  and 

yH H= , the scalar terms in Table 3-1 are exactly the Seidel aberration terms in 

Eq. (2-3). For a system without rotational symmetry, the wave aberration can be 

expanded in the vectorial terms as in Table 3-1, where the piston terms are 

neglected. 

For different object distances, since the paraxial ray trace data are not the same, 

the Seidel coefficients klmW  are variant. Thus, the aberrations in the whole system 

with variant object distance cannot be characterized by one single expansion as 

in Eq. (2-8). 
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Table 3-1 List of aberrations in scalar and vectorial representations 

Order Name of the term Scalar representation Vectorial  
representation 

2 

Change of  
magnification in x cosxH ρ φ  

H ρ⋅
 

 Change of  
magnification in y sinyH ρ φ  

Defocus 2ρ  ρ ρ⋅
 

 

4 

Spherical aberration 4ρ  ( ) 2
ρ ρ⋅
 

 

Coma in x 3 cosxH ρ φ  ( )( )H ρ ρ ρ⋅ ⋅
   

 
Coma in y 3 sinyH ρ φ  

Astigmatism in 0° ( )2 2 2 cos 2x yH H ρ φ−  2 2
H ρ⋅
 

 
Astigmatism in 45° 22 sin 2x yH H ρ φ  

Focal plane of medial 
astigmatism 

2 2H ρ  ( )( )H H ρ ρ⋅ ⋅
   

 

Distortion in x 2 cosxH H ρ φ   ( )( )H H H ρ⋅ ⋅
   

 
Distortion in y 2 sinyH H ρ φ  

6 

Oblique spherical  
aberration 

2 4H ρ  ( )( ) 2
H H ρ ρ⋅ ⋅
   

 

Coma in x 2 3 cosxH H ρ φ  ( )( )( )H H H ρ ρ ρ⋅ ⋅ ⋅
     

 
Coma in y 2 3 sinyH H ρ φ  

Astigmatism in 0° ( )2 2 2 2 cos 2x yH H H ρ φ−  ( )( )2 2
H H H ρ⋅ ⋅
   

 
Astigmatism in 45° 2 22 sin 2x yH H H ρ φ  

Focal plane of medial 
astigmatism  

4 2H ρ  ( ) ( )2
H H ρ ρ⋅ ⋅
   

 

Distortion in x 4 cosxH H ρ φ  ( ) ( )2
H H H ρ⋅ ⋅
   

 
Distortion in y 4 sinyH H ρ φ  

Trefoil in x ( )3 2 33 cos3x y xH H H ρ φ−  3 3
H ρ⋅
 

 
Trefoil in y ( )2 3 33 sin 3x y yH H H ρ φ−  

Spherical aberration 6ρ  ( )3
ρ ρ⋅
 

 
Coma in x 

(secondary) 
5 cosxH ρ φ  

( ) ( )2
Hρ ρ ρ⋅ ⋅

   

 Coma in x 
(secondary) 

5 sinyH ρ φ  
Astigmatism in 0° 

(secondary) ( )2 2 4 cos 2x yH H ρ φ−  
( )( )2 2

Hρ ρ ρ⋅ ⋅
   

 
Astigmatism in 45° 

(secondary) 
42 sin 2x yH H ρ φ  

For a Scheimpflug system, each object height has its own object distance and 

has an individual expansion of wave aberration regarding the field and pupil vec-

tors. The wave aberration expansion mentioned in Eq. (2-8) only concerns the 

rotationally symmetric optical components. The Seidel aberrations are influenced 
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by the shift factor and derived in a set of conjugate shift equations [13]. It is difficult 

to correct all the aberrations with only the spherical shapes.  

Table 3-2 Properties of systems with different symmetry 
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When the system consists of freeform components, the freeform deviation from 

the rotationally symmetric shape introduces some aberrations, which does not 

follow the relation of the even order rule as in Table 3-1. The relation of field and 

pupil orders are arbitrary, which will be introduced in the following sections.  

Therefore, the properties are summarized in Table 3-2 for systems with different 

symmetry. The properties are marked with different colors (dark blue: meaningful; 

light blue: valid but not meaningful; yellow: not valid). In the vectorial aberration 

of basic shapes (vectorial I), tilt and decentering are considered [14-17]. In the 
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extension of vectorial aberration theory (vectorial II), the influence of freeform 

surface is discussed [26, 27]. The aberration theory of Araki is valid for the pri-

mary aberration analysis [28, 29]. For higher order aberration analysis, Aldi’s the-

ory (only for one single ray) or the theory from Welford for one optical path differ-

ence (OPD) point, and the Zernike-based aberration analysis by Oleszko can be 

used [30-32]. Moreover, the 5×5 transfer matrix is the general formation if surface 

tilts, decentering, tilt addition and image translation are considered [33]. The ref-

erence of ray is discussed in Section 3.2. 

3.2 Parabasal reference 

When classical rotationally symmetric systems are discussed, the starting point 

is usually paraxial optics. It is assumed that all the ray angles are small. Thus, 

only the linear effect of refraction is considered. The perturbation of real ray 

heights and angles from the paraxial case leads to errors in the imaging condition, 

which is called aberration. Since the surface vertexes, the object and image cen-

ters, and the pupil centers are all located on the unique optical axis, it is assumed 

that the rays lie in a neighborhood of the optical axis. Therefore rotationally sym-

metric systems are based on paraxial reference. 

In non-rotationally symmetric systems, there is a group of systems with all the 

components located on the same optical axis. The non-rotational symmetry is 

introduced to the system by using freeform components or non-uniform imaging 

condition. The system environment is still in paraxial reference. For instance, in 

the anamorphic system as in Figure 3-4 (a), the two cylindrical lenses introduce 

asymmetric focal powers in x- and y-direction to the system. The OAR is along 

the unique axis of the system. Thus, the analysis of aberrations is still based on 

paraxial approximation. 

Another example is the Scheimpflug system as in Figure 3-4 (b). The non-sym-

metry is due to the variant magnification along the field. The object plane is tilted 

around the x-axis. Therefore, the object points A, B and C along the field have 

different object distances. When analyzing the aberrations of those three fields, 

the marginal rays and chief rays are different for different object distances. For 

each object distance, it can be regarded as a rotationally symmetric system. Each 

object distance is analyzed in paraxial environment.  
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Figure 3-4 Non-rotationally symmetric systems with paraxial environment. (a) 

Anamorphic system; (b) Scheimpflug system. 

The second group of non-rotationally symmetric systems is the off-axis system. 

Four kinds of off-axis systems are illustrated in Figure 3-5. The first system in 

Figure 3-5(a) is a two-mirror telescope system with off-axis aperture. The two 

mirrors are centered on the same optical axis. However, due to the shift of the 

stop from the co-axis, the fields are also decentered from the optical axis, which 

means only off-axis apertures of the two mirrors are used. If we only consider the 

used part of the mirror, the system can be seen as an off-axis system. Figure 3-5 

(b) shows a TMA system, in which all the three mirrors are off-axis. Each mirror 

has an individual axis along the vertex and the center of the surface. In Figure 

3-5 (c), the HMD system with two reflective and two refractive surfaces is shown. 

The reflective surfaces are used to fold the ray path in order to reduce the system 

size. The last system in Figure 3-5 (d) is a Yolo telescope system with two mirrors. 

For Yolo telescope, the beam is not only folded in the tangential plane, but also 

in the sagittal plane. Therefore, the system is without symmetry.  

For all the systems in Figure 3-5, the OAR is not along a unique axis anymore. 

Instead, the OAR is bent by the surfaces, which leads to a certain finite non-

paraxial incident angle of the OAR on the surface. Therefore, the OAR is not the 

paraxial ray anymore. It is called the parabasal ray and must be based on real 
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ray trace. In paraxial reference, all the rays are assumed to be in an environment 

near the paraxial ray, while in off-axis systems all the rays are assumed to be in 

an environment near the parabasal ray [34]. 

 

Figure 3-5 Off-axis systems with parabasal environment. (a) Co-axis two-mirror 

system; (b) TMA system; (c) HMD system; (d) Yolo telescope. 

In the parabasal environment, when the bending of OAR leads to large incident 

angles of the surfaces, the aberrations of the central field cannot be neglected, 

which corresponds to the field shift vector in NAT. The OAR (parabasal ray) 

should be based on the real ray tracing. The other fields are based on paraxial 

ray tracing near the parabasal ray. Therefore, when we use NAT to analyze an 

off-axis system, the theory is based on a mixture of paraxial environment and 

parabasal environment with finite ray trace of the OAR.  

3.3 Initial system finding 

Finding a good starting system is always an important topic in optical design. In 

this chapter, two kinds of methods are introduced to design non-rotationally sym-

metric systems. One is based on confocal conic surfaces, which works for off-

axis systems. The conic confocal method is investigated by many researches [7, 
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35, 36]. In this thesis, we illustrate the complete design process step by step and 

add the correction of field curvature together with the obscuration free condition. 

The other one is called Gaussian brackets method based on NAT, which works 

for general systems. In this method, the initial system is designed with spherical 

surfaces, which allows further correction by conic or aspherical surfaces before 

adding freeform surfaces.  

3.3.1 Conic-confocal method 

In principle, the conic-confocal method can be applied to both refractive and re-

flective system with more than one surfaces [7, 35-37]. In this work, we demon-

strate the method with a special case, which is with three mirrors. As mentioned 

in Section 2.5, conic shaped reflective surfaces can image certain bundles of rays 

without any geometric error. The reflective surface shapes, which have the prop-

erty to reflect all rays emerging from an initial point to the same image point, are 

called Cartesian surfaces [8]. Thus, the conic-shaped reflectors are Cartesian 

surfaces. The parabolic reflector, the hyperbolic reflector, and the elliptical reflec-

tor all have two geometric focal points as in Figure 3-6. For a parabolic reflector, 

one geometric focal point is at infinite distance from the surface. Those three 

kinds of conic reflectors can image the field starting from one geometric focal 

point perfectly to another. The two geometric focal points are named a stigmatic 

pair. The imaging property is called stigmatism [8].  

 

Figure 3-6 Cartesian surfaces 

It is known that in an off-axis TMA system, it is possible to minimize spherical 

aberration, coma, astigmatism, and field curvature with three mirrors. However, 

the condition to achieve the goal is complicated in calculation. For instance, it 

follows different conditions to achieve sine condition and astigmatism free 
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condition, or to correct Petzval curvature. When the TMA system consists of cer-

tain FOV, it is even more challenging to correct aberrations of every field. One 

approach to correct the aberrations is to add freeform degrees of freedom to the 

mirrors, which means the freeform surface will provide the ability to compensate 

the residual aberrations in the initial system. From the manufacturing point of 

view, the cost and difficulty to manufacture a freeform surface is directly related 

to the complexity of the freeform shape. It is also known that the freeform surface 

provides possibility to change the bending of rays locally with different local cur-

vature at individual points of the surface. Large residual aberrations in the initial 

system request large deviation of the freeform part to provide more correction 

ability, which will increase the cost and difficulty in manufacturing. Thus, it is a 

smarter design strategy to obtain a good initial system with small residual aber-

rations before adding the freeform surface.  

Considering the 4th order wave aberrations, which are the primary aberrations in 

a system, it is not realistic to request all the fields corrected for an off-axis system 

with only basic surface shapes. Therefore, one design strategy is to obtain one 

or more nodal points in the FOV. Then the fields near the nodal point will suffer 

from relatively small aberrations. In a three-mirror system, it is possible to obtain 

one nodal point by using three Cartesian surfaces, if the second mirror has one 

confocal point with the first mirror and another confocal point with the third mirror. 

The object point, intermediate image points and the image point of the field all 

locate on the stigmatic pairs. Here, the central field is selected as the nodal point. 

The first mirror is always parabolic shaped in the case of a telescope with the 

object lying in infinity. The second and the third mirrors can be either elliptical or 

hyperbolic shaped. The types of mirrors are listed in Table 3-3. 

Table 3-3 Surface types in conic-confocal method 

 M1 M2 M3 
Infinite object Parabolic Elliptical/hyperbolic Elliptical/hyperbolic 
Finite object Elliptical/hyperbolic Elliptical/hyperbolic Elliptical/hyperbolic 

From the NAT, it is known that the spherical aberration is field-constant for an 

imaging system with fixed object distance. For a TMA system, if the central field 

is perfectly imaged, it means the spherical aberration vanishes.  

The condition to obtain corrected field curvature is relatively simple. It is only re-

lated to the radii of curvature of the three mirrors. According to the definition of 
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Petzval curvature as in Eq. (3-2), the condition to flatten the field is to obtain the 

value of Petzval curvature as zero [11].  

 1 '' ,
'

j j
k j

ptz j jj

n nn c
R n n

−
= − ⋅

⋅∑  (3-2) 

where 1/ ptzR  denotes the Petzval curvature. 'kn  denotes the index in the image 

space. jc  denotes the curvature of the jth surface. jn  and 'jn  denote the refrac-

tive index before and after the jth surface. Therefore, for a three-mirror system, 

the Petzval curvature vanishing condition can be derived as 

  1 2 3 0.c c c− + =  (3-3) 

It is known that astigmatism is introduced because of the different focal powers 

of a surface in tangential and sagittal planes. In an off-axis system, the incident 

angle of the OAR on each surface leads to different focal powers in x- and y-

direction. By certain combination of the OAR incident angles on the three mirrors, 

it is possible to achieve equal focal powers in tangential and sagittal directions 

for the whole system. Since the central field is perfectly imaged, the astigmatism 

is already canceled. However, it is better to obtain small astigmatism near the 

central field. According to the theory of S. Chang, the linear astigmatism of a 

three-mirror system can be vanished following the relation as 

 ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 2 3 2 3 31 tan 1 tan 1 tan 0,m m m i m m i m i+ + + + + =  (3-4) 

where jm  denotes the local magnification of the jth mirror. ji  denotes the incident 

angle of the OAR on the jth mirror [7, 36]. Due to the parabasal environment, the 

definition of local magnification is different from the paraxial magnification.  

As it can be seen in Figure 3-7, the object distance l  is defined as the distance 

between the object point and the intersection point of the OAR. The image dis-

tance 'l  is defined as the distance from the intersection point of the OAR to the 

image point. Then the local magnification of the jth surface is defined as the ratio 

between the image distance and the object distance as in Eq.(3-5). The incident 

angle is defined as the angle from the normal vector to the OAR. 

 'j
j

j

lm
l

=  (3-5) 

Therefore, the design steps of the conic-confocal method are as follows. The 

workflow is shown in Figure 3-8. 

1) Obtain the on-axis setup with spherical surfaces 
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Figure 3-7 Local magnification of an off-axis conic surface 

 

Figure 3-8 Workflow for the conic-confocal design method in Zemax/OpticStudio 

Firstly, the on-axis setup should be obtained with only spherical surfaces. The 

goal of this step is to obtain a three-mirror telescope system with a Galileo tele-

scope formed by the first two mirrors. The third mirror converges the collimated 

beam to the image plane [35]. Therefore, the radii of curvature and distances 

should follow certain relations. The relations to obtain the on-axis setup with 

spherical surfaces are given as Eqs. (3-6)-(3-10) and the Petzval vanishing con-

dition is given as in Eq. (3-3), where 1d  denotes the distance from the first mirror 

to the second mirror, 3d  denotes the image distance from the third mirror to the 
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image plane, and 'f  denotes the focal length of the whole system. Since the field 

is collimated after the second mirror, the distance between the second mirror and 

the third mirror can be arbitrary. Thus, the distance 2d  between the second mirror 

and the third mirror is defined the same as 1d . 
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Some of the relations are hard to define in the merit function. In Zemax or Optic-

Studio, it is possible to define certain functions in the ZPL file (language macro) 

and call the value of the function in the merit function. Therefore, the conditions 

to obtain the setup can be defined and then optimized by the combination of ZPL 

file and merit function.  

2) Optimize the conic parameters and achieve the confocal condition 

In the second step, the surfaces are optimized to conic shape. The geometric 

focal points should also coincide with each other. It is mentioned that the first 

mirror should be parabolic shape, if the object is at infinite distance. Thus, the 

conic parameter should be is optimized to -1 due to the optimization of spherical 

aberration. The other two surfaces can be either elliptical or hyperbolic. Thus, the 

conic parameters of the second and the third mirrors should be smaller than zero. 

The Petzval curvature vanishing condition as in Eq. (3-3) still should be fulfilled. 

In the merit function, the focal length of the whole system should be also defined. 

To obtain confocal condition, the Seidel coefficient of spherical aberration of each 

mirror should be optimized to zero. Following this rule, the geometric focal points 

will automatically coincide. Because for a Cartesian surface, only when the stig-

matism condition is fulfilled, the spherical aberration vanishes. The intermediate 

image points move to the geometric focal points during optimization to fulfill the 

stigmatism condition.  

3) Add coordinate breaks at the confocal points 



48  3 New methods and results 

After the conic confocal setup on axis is obtained, it is possible to calculate the 

position of the geometric focal points. To maintain the confocal condition during 

tilting the surfaces, the surfaces should be tilted around the geometric focal 

points. For instance, in a TMA system with one parabolic mirror and two elliptical 

mirrors as in Figure 3-9, the first confocal point is called 1F , which is the focal 

point of the parabolic mirror and the first geometric focal point of the second mir-

ror. The second confocal point 2F  is the second focal point of the second mirror 

and the first focal point of the third mirror. Then the sharp image will locate at the 

second focal point 3F  of the third mirror. The coordinate breaks are added at the 

two confocal points 1F  and 2F . The second mirror can be tilted by tilting the co-

ordinate break (CB2) at the point 1F , and the third mirror can be rotated by tilting 

the coordinate break (CB3) at the point 2F . Since in conic-confocal method, the 

stop is normally located before the first mirror, there is another coordinate break 

(CB1) added before the first mirror to decenter the stop. Since the first mirror is 

parabolic, the shift of the stop only decenters the field, but the rays of the central 

field are still parallel to the surface axis, which will be perfectly focused to the first 

confocal point 1F . The locations of the confocal points and the coordinate breaks 

are illustrated in Figure 3-9. 

 

Figure 3-9 Locations of the coordinate breaks in a conic-confocal setup 

4) Shift and tilt the mirrors to correct linear astigmatism 

As mentioned in the third step, the first mirror is only decentered. The second and 

third mirror are tilted around the confocal points. There are two options to shift 

and tilt the mirrors. The first one is to shift the first mirror and tilt the second mirror 

with certain value and avoid obscuration of the ray bundles on M1 and M2. The 
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tilt of the third mirror is calculated according to the condition in Eq. (3-4). After the 

first mirror and the second mirror are moved off-axis, the incident angles and local 

magnifications of the first two mirrors are obtained. The local magnification of the 

first mirror is zero since the object is at infinite distance. The incident angles of 

the first two mirror are obtained by the ray direction of the OAR and the normal 

vector of the intersection point on the surface. As it is known in an elliptical conic 

section, the sum of the distances from a point to the two focal points, which means 

the sum of l  and 'l , equals the length of the major axis. In a hyperbolic conic 

section the absolute value of the difference between l  and 'l  equals the length 

of the major axis. This relation of the lengths gives one equation. With law of 

cosines, it is possible to obtain the relation between the lengths l , 'l  and the in-

cident angle, which gives the second equation. Therefore, including Eqs. (3-4)-

(3-5), it is possible to solve the four unknown parameters 3m , 3l , 3 'l  , and 3i  with 

four equations. The incident angle can be converted into the tilt angle of the sur-

face. Thus, it is possible to calculate the tilt angle of the third mirror, which fulfills 

the linear astigmatism vanishing condition as Eq. (3-4). The second option is to 

shift the first mirror and tilt the second mirror linearly. Every step is considered as 

a new system, and the tilt of the third mirror is calculated according to the condi-

tion to vanish linear astigmatism.  

5) Evaluate obscuration 

Every intermediate system obtained from step 4 should be evaluated for the ob-

scuration condition. Only when the system is obscuration free, it will be saved as 

an initial setup. The main criterion is to evaluate the position of the intersection 

points on the surfaces. When the intersection points on one surface are not inside 

any other ray bundles, it means no ray bundle is truncated by the surface. For a 

design with certain FOV, the boundary fields in y direction should be added for 

the evaluation. The details for the obscuration evaluation are introduced in the 

following sections. 

6) Save the system 

The systems without obscuration will be saved. Therefore, there are more than 

one solution from the same on-axis setup. They all have one perfectly imaged 

point in the center of the field of the FOV. The linear astigmatism vanishes. How-

ever, since the tilt angle of the third mirror is calculated, the direction of the tilt 
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cannot be predicted. Thus, the designer can select one design as the initial setup 

from all the results, which has relatively small residual aberrations and proper 

system size.  

As an example, the on-axis setup of a TMA system is designed with the entrance 

pupil diameter of 80mm, focal length of 325 mm and free working distance of 200 

mm, and the FOV of 2 2°× ° . The on-axis setup is designed following the step 1) 

to 3) mentioned above. Two results with different tilt angles of the second mirror 

are shown in Figure 3-10. The decentering of the first mirror is 200mm for both 

cases. The second mirror is tilted with -20° for the case in Figure 3-10 (a) and 10° 

for the case in Figure 3-10(b). Then the solution of the tilt angle of M3 is 1.281° 

for the first case in Figure 3-10(a) and 2.480° for the second case in Figure 

3-10(b). It is seen from the spot diagram that the central field is imaged to a sharp 

point, and the fields near the central field only suffer from coma. Linear astigma-

tism vanishes. However, due to the different magnifications in x- and y-direction, 

the anamorphism and the sine-condition are not comfortable. 

 

Figure 3-10 Example for conic-confocal method  

This method works perfectly in obtaining the nodal point in the center of the FOV. 

However, it can be seen from Figure 3-10 that the conic surfaces are off-axis 

used. If we only consider the off-axis used part, it is so called the quasi-freeform 

surface. When a conic surface is off-axis used, the effect can be seen as a 

freeform surface, which will be explained in detail in the following sections. If the 
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vertex of the conic surface is still located at the rotational symmetry center, when 

freeform surfaces are added, the off-axis used part will locate at the boundary of 

the freeform surface. During optimization, the basic shape parameter and the 

lower order terms of the freeform surface will influence the bending of the off-axis 

used part tremendously, which makes the surface very sensitive to small change 

of the parameters. This is one of the inconvenience of this method. One possible 

method to overcome the shortcoming is to shift the vertex to the intersection point 

of the OAR. Then the conic surface will be converted into a freeform surface, 

based on which the further optimization with additional freeform polynomials will 

be less sensitive. Another possibility is to design the initial system with only spher-

ical surfaces since the vertex can be an arbitrary point on a spherical surface, for 

which a completely different design method called Gaussian brackets method is 

proposed. This method is introduced in the next section. 

3.3.2 Gaussian brackets method 

It is known that the main idea to design an initial system is to reduce the aberra-

tions before adding freeform surfaces and numerical correction. For a non-rota-

tionally symmetric system, the distribution of aberrations are also non-rotationally 

symmetric. It is known that the central field of the rotationally symmetric system 

only suffers from spherical aberration. For off-axis systems such as TMAs and 

HMDs, the tilt of each component introduces field-independent aberrations, such 

as field-constant coma and astigmatism. Therefore, if the total contribution of 

field-constant aberrations does not vanish, the central field suffers from large ab-

errations. In this case, the FOV is far away from the nodal points, so that the 

system suffers from large aberrations. Therefore, for initial system design of off-

axis systems, the main idea is to optimize the aberrations of the central field in 

order to move the nodal point in the center of the FOV.  

For special designs as Scheimpflug systems, the optical components are still 

centered. Thus the system does not suffer from field-constant aberrations. In-

stead, the large shift of object distance leads to large variation of aberrations over 

the FOV. Even the spherical aberration is field-variant in a Scheimpflug system. 

Thus, the main idea is to uniform the aberrations over the FOV to obtain uniform 

system performance.  
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The already existing initial system design methods mentioned in Section 2.1 deal 

with either specialized system types or limited number of surfaces. In addition, 

they provide limited ability in the analysis of the system during the design proce-

dure due to extended FOV and broadband illumination. Therefore, one of the 

aims of the thesis is to propose a method, which has no limitation in the system 

type and the number of surfaces. This method is directly aberration related. Thus 

it also can be used to analyze the residual aberrations in the system and provide 

a feedback for further structural modification or adding freeform surfaces.  

In Section 2.4, the Gaussian brackets formulated by Tanaka is introduced. The 

four GGC’s as in Eqs. (2-30)-(2-33) are defined to formulate the paraxial theory 

of optical systems. Therefore, the paraxial ray tracing data and some first-order 

properties can be derived fast and analytically in matrix computation using the 

GGC’s. The paraxial ray tracing data provides the possibility to derive the Seidel 

aberration coefficients. This method was used to design initial configuration of 

centered imaging systems based on Seidel aberration theory [38]. In this thesis, 

the Gaussian brackets method is extended from the paraxial environment to the 

parabasal environment based on NAT.  The main idea is to derive the aberrations 

of the selected fields and the first-order properties analytically. By solving nonlin-

ear equations, the solution for the system data is obtained to achieve minimum 

aberrations of the selected fields.  

 

Figure 3-11 Shift of nodal point of a single surface by tilting the surface 

According to nodal aberration introduced by Thompson as mentioned in Section 

2.3, the wave aberration for non-rotationally symmetric systems is built upon a 

vectorial formulation. The decenter contribution of the field is described by a 

displacement vector of each surface. The field shift vector shifts the nodal point 
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away from the central field for the aberration contribution of each surface. The 

shift of nodal point of a single surface is illustrated in Figure 3-11. The surface is 

tilted around the x-axis, which means a field shift vector jσ


 direction is 

introduced in y. The distribution of coma is shown in the image plane of the sur-

face. It is seen that the green ray stands for the chief ray of the field, which has 

the same normalized field height as jσ


 and corresponds to the nodal point. 

Therefore, the nodal point is shifted from the origin point to this field.  

The distribution of coma is shown here as an example. The nodal point of coma, 

astigmatism, focal plane of medial astigmatism, and distortion of a single surface 

is the same. Therefore, it is impossible to shift the nodal point back to the center 

of the FOV with only one surface. By using more than one tilted surface, it is 

possible to obtain the solutions which lead to nodal points at the selected fields. 

In off-axis systems, the solutions of the Gaussian brackets method contain the 

field shift vector of each surface. The value of the field shift vector should be 

converted to the tilt angles of the surfaces, which can be used to construct the 

setup in the design software.  

 

Figure 3-12 Tilt angles and real-ray-based vectors of plane-symmetric mirror 

system 

In plane-symmetric systems, the surfaces are only tilted around x-axis. For a 

plane-symmetric reflective system as in Figure 3-12, the tilt angle of the jth surface 

around the vertex point is equal to the incident angle ji  of the OAR, which is also 

equal to the angle between jR


 and jS


. After the surface, the coordinate should 

be tilted by reflection angle ' ji   to keep the optical axis along the optical axis ray. 
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According to the real-ray-based normal vectors as in Eqs. (2-20)-(2-22), the tilt 

angles of a plane-symmetric reflective system can be derived as  

 
' arctan .j

j j
j

SRMi i
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 
 (3-11) 

 

Figure 3-13 Tilt angles and real-ray-based vectors of plane-symmetric refractive 

system 

 

Figure 3-14 Tilt angles and real-ray-based vectors of a mirror tilted in both x- 

and y- direction 

In a plane-symmetric refractive system as in Figure 3-13, the first coordinate 

break should also be tilted with the angle ji , which equals the incident angle of 

the OAR. The incident angle is calculated following the same relation as Eq. 

(3-11).  The second coordinate break after the surface should be tilted with the 

refractive angle, which is calculated by refraction law as  
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For a non-symmetric system with off-axis components, the field shift vector con-

tains components in both x- and y-direction. A tilted mirror in Figure 3-14 is shown 

as an example.  

The first step is to rotate the coordinate around z-axis before the surface with an 

angle of α , then x-axis is perpendicular to the plane, where the reflection takes 

places. The second step is similar to plane-symmetric case that the coordinate 

before the surface should be tilted around x-axis with an angle of i , which is the 

incident angle of the OAR. After the surface, the coordinate is tilted with the re-

flection angle 'i  to keep the z-axis along the OAR. Since the field shift vector of 

each surface is calculated according to the real-ray-based vectors in the local 

coordinate of the object (or intermediate images) as reference, at the end the 

coordinate should be tilted around z-axis by an angle of α−  to keep the x-y axis 

of the intermediate image the same as the field coordinate in the object plane. 

Then the conversion of Euler angles according to the real-ray-based vectors of 

the next surface is correct. 

Thus, the tilt angles of the coordinates of the jth surface are given in four steps. 

1) Tilt the coordinate around z-axis with the angle of jα  before the surface. 

When the value of jSRM  is not zero: 

 
tan( ).j

j
j

SRLarc
SRM

α = −  (3-13) 

When the value of jSRM  is zero: 

 
90 .jα = − °  (3-14) 

2) Tilt the coordinate around x-axis with the angle of ji  before the surface. 

When the value of jSRM  is not zero: 

 
if 0,jSRM <      

2 2

tan( ),j j
j

j

SRL SRM
i arc

SRN
+

=  (3-15) 

 
if 0,jSRM >     

2 2

tan( ).j j
j

j

SRL SRM
i arc

SRN
+

= −  
(3-16) 

When the value of jSRM  is zero: 
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 tan( ).j

j
j

SRLi arc
SRN

= −      (3-17) 

3) Tilt the coordinate around x-axis with the angle of ' ji  after the surface are as 

 
' j ji i=   (Reflective),       (3-18) 

 1' arcsin sin( )j
j j

j

ni i
n
− 

= −  
 

  (Refractive). 
(3-19) 

4) Tilt the coordinate around x-axis with the angle of jα−  after the surface. 

In off-axis systems and anamorphic systems, due to the incident angle of the 

OAR at each surface, the focal powers are different in tangential and sagittal 

planes. Therefore, Coddington equations are applied as an additional constraint 

in the method to control the astigmatism of the central field more directly. If the 

chief ray incident angle at a surface is presented by i  and the refractive angle is 

'i , the Coddington equations are shown as in Eq. (3-20) for the sagittal imaging 

and Eq. (3-21) for the tangential imaging [6]. 

 
[ ]' 'cos( ') cos( ) ,

'
n n c n i n i
s s
− = −        (3-20) 

 [ ]
2 2'cos ( ') cos ( ) 'cos( ') cos( ) ,
'

n i n i c n i n i
t t

− = −       (3-21) 

where s  and t  denote the object distance of a surface in sagittal and tangential 

planes, 's  and 't  denote the image distance of a surface in sagittal and tangen-

tial planes along the OAR, n  and 'n  denote the refractive index before and after 

the surface, and c  denotes the curvature of the surface. The local focal power 

skewΦ  of the OAR of each surface is defined as 

 
[ ]'cos( ') cos( ) .skewΦ c n i n i= −       (3-22) 

For each surface, the object distance and image distance respectively in sagittal 

and tangential plane are derived as 

 '' ,
skew

ns n Φ
s

=
+

 
(3-23) 
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2

'cos ( ')' .cos ( )
skew

n it n i Φ
t

=
+

 
(3-24) 

Therefore, using Eqs. (3-23)-(3-24) and the distance between the surfaces, for a 

system with the number of surfaces as k , the total image distance 'ks  and 'kt  in 

tangential and sagittal planes can be derived analytically.   

In this method, if the solutions are obtained to minimize the focal plane of medial 

astigmatism of the central field, it only characterizes one field point. It is known 

that the focal plane of medial astigmatism contains the field curvature part. There-

fore, one more condition based on the Petzval sum of the system is added as Eq. 

(3-2) to correct the field curvature. This condition also reduces one unknown pa-

rameter, since the one of the curvatures can be represented by the refractive 

indices and the curvatures of other surfaces.  

Table 3-4 Nonlinear functions in the optimization procedure 

Term Function 

Spherical aberration 040 jj
W∑  

Coma in x ( )131 j x jxj
W H σ−∑  

Coma in y ( )131 j y jyj
W H σ−∑  

Astigmatism (axis in 0°) ( ) ( )2 2
222

1
2

j x jx y jyj
W H Hσ σ − − − ∑  

Astigmatism (axis in 45°) ( )( )222 j x jx y jyj
W H Hσ σ− −  ∑  

Focal plane of medial 
astigmatism ( ) ( )2 2

220 222
1
2

j j x jx y jyj
W W H Hσ σ   + − + −    

∑  

Distortion in x ( ) ( ) ( )2 2
311 j x jx y jy x jxj

W H H Hσ σ σ − + − − ∑  

Distortion in y ( ) ( ) ( )2 2
311 j x jx y jy y jyj

W H H Hσ σ σ − + − − ∑  

Focal length 
1

1'
k

f
C

−  

Coddington equations ' 'k ks t−  

Other first-order properties For instance: back focal length 'FS  

Therefore, with the paraxial ray tracing data obtained by GGC’s, a series of non-

linear functions can be derived based on the NAT, the Coddington equations, the 

focal length, and other first-order properties of the system. The functions are 

given as in Table 3-4. 
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The design procedure of the Gaussian bracket method is given in the following 

steps. 

1) Define the number of surfaces including the pupils 

The number of surfaces should include the object plane, the pupil and its conju-

gates (intermediate pupils), and the image plane. For a system with infinite object, 

the entrance pupil is regarded as the first surface.  

2) Define initial ray data 

The paraxial ray tracing data are derived based on the GGC’s in the matrix ap-

proach. Thus, the initial ray data of the marginal ray and chief ray should be 

defined according to the specifications. Since the system is regarded as centered 

in the paraxial model, only the ray heights and ray angles in the tangential plane 

should be defined. They can also be defined with the system parameters analyt-

ically. For instance, when the system has a finite object distance, the initial chief 

ray angle is defined using the field height and the distance from the object plane 

to the entrance pupil.  

3) Define stop position 

Since the pupils and the intermediate pupils are considered as surfaces with no 

power in the system, the reduced distances consist of the distances between the 

real surfaces and the pupils. It provides the possibility to define the location of the 

stop at a real surface location. If the distances from the real surface to its two 

pupils are both zero, the stop is defined at the surface location. For some sys-

tems, the stop location is not fixed. After the solutions are obtained, the stop can 

be defined at any pupil or intermediate pupil location in the system. For systems 

with the stop before the first surface, the entrance pupil is defined as the stop. 

4) Apply the equation of Petzval curvature vanishing to present one surface cur-

vature by the other curvatures 

In a system with certain number of surfaces, the curvature of one surface can be 

represented by the refractive indices and the curvatures of other surfaces using 

Eq. (3-2). Then one unknown parameter is reduced. 

5) Define Gaussian brackets and derive the Generalized Gaussian constants 
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After the number of surfaces is defined, the curvature, the reduced distance, and 

the refractive indices are defined. Some of the parameters are variables, and the 

others are already known. For instance, the refractive indices can be defined with 

values, and the curvature is zero for each pupil. If the stop is located at a real 

surface, the reduced distances before and after the real surface are also zero. 

With the system parameters, the GGC’s are derived analytically. 

6) Fast on-axis paraxial ray trace by using GGC’s  

When the initial ray data are defined, and the GGC’s are derived, the paraxial ray 

trace data on each surface can be obtain in the matrix approach.  

7) Derive the Seidel aberration coefficients using the on-axis paraxial ray tracing 

data 

Using the paraxial ray trace data obtained in the last step, the Seidel aberration 

coefficients klmW  are derived using the equations in Table 2-1.  

8) Derive focal length and other first-order properties by using GGC’s 

It is mentioned in Section 2.4 that the first-order properties can be represented 

by the GGC’s. Therefore, the focal length is derived using Eq. (2-45) and the back 

focal length is defined using Eq. (2-44). 

9) Derive the primary aberrations of the selected field by adding the real-ray-

based field decenter vectors as variables 

In this step, field decenter vectors are defined as variables for tilted surfaces. For 

the object plane, pupils, centered surfaces, and the image plane, the field de-

center vectors are defined as zero. Therefore, the primary aberrations as in Table 

3-4 are derived using the Seidel coefficients obtained in step 7) and the field de-

center vectors based on NAT. For an off-axis system, normally the selected field 

is the central field. Thus the five primary aberrations of the central field are de-

rived. For a Scheimpflug system, the goal is a good uniformity of the performance. 

It is not realistic to optimize all the aberrations for different object distances in the 

initial configuration. Therefore, several fields are selected along the object dis-

tance, and only some of the aberrations of the selected fields are optimized for 

the initial setup. For instance, spherical aberration and distortion of individual se-

lected field are selected. The keystone distortion of the whole FOV cannot be 

avoided.  
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10)  Derive the sagittal and tangential image distances. 

This step is only for off-axis systems. Using the defined system parameters, the 

image distances of the central field can be derived in sagittal and tangential 

planes according to the Coddington equations as Eqs. (3-20)-(3-24).  

11)  Obtain the analytical functions 

In this step, all the aberrations derived in step 9) are defined as analytical func-

tions. The first-order properties should equal to the target value. Thus the differ-

ence between the focal length or the other first-order parameters and their target 

values can also be defined as functions. The image distances in sagittal and tan-

gential planes obtained by Coddington equations should be the same after opti-

mization. Thus the difference between them is also defined as a function. The 

value of all the functions should be minimized to obtain the initial system. 

12)  Minimize the functions by nonlinear least-squares solver 

The nonlinear least-squares solver in Matlab is used to solve the nonlinear equa-

tions. The optimization toolbox in Matlab provides the possibility of nonlinear fit-

ting optimization. The working principle of this solver is that, when a group of 

functions are defined with the same variables, it solves the fitting problem to ob-

tain a group of solutions, which leads to the minimum value of a series of the 

nonlinear functions. Here, the variables are the system parameters. The functions 

are the aberrations and the first-order properties of the system. Therefore, the 

nonlinear least-squares solver provides an optimization procedure to obtain a 

group of system data, which leads to minimum aberrations and fulfills the first-

order properties. In the nonlinear least-squares solver, the starting value and 

boundary values should be given for each variable. The designers can set proper 

boundary conditions to obtain a physical setup. The range of tilt angles can also 

be controlled by the boundary values to avoid obscuration.  

13)  Convert the solutions into system data and check the performance of the sys-

tem in the design software 

Since the solutions are the curvature, field shift vectors, and reduced distances 

for both real surfaces and pupils, they must be converted into the data, which can 

be used as input in a design software, such as radius of curvature, tilt angles of 

the coordinate breaks, and distances between real surfaces. The conversion of 
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tilt angles are mentioned. After the system data are inserted, the system perfor-

mance and obscuration are checked in the design software. 

Although this method works for both refractive and reflective systems with unlim-

ited number of surfaces, it also has certain limitations. The first limitation is that 

the number of nonlinear functions is limited by the computational capability of the 

computer. The complexity of the system will influence the memory space that 

each function takes. The second limitation is that the nonlinear least-squares 

solver provides a local minimum searching approach. The boundary values of the 

unknown parameters should be defined according to the pre-defined geometry of 

the system. If the solver cannot obtain a good solution, the boundary and starting 

values should be re-adjusted until a good initial setup is obtained. The method 

will be demonstrated in Chapter 4 with the TMA systems as an example. The 

initial setups of the Yolo system and the Scheimpflug system in Chapter 4 are 

both obtained using this method. The strategies to select aberrations and fields 

are different for those systems, which will be discussed. 

3.4 Obscuration 

In the design of off-axis systems, obscuration is always one of the problems. For 

the system performance and first-order properties, it is possible to define the error 

functions directly and optimize the error functions. However, obscuration cannot 

be directly defined in the error function. Therefore, there are some methods to 

control the obscuration indirectly.  

Off-axis systems can be classified into two types. One is the plane-symmetric off-

axis system, in which the components are off-axis only in the tangential plane. 

The other type is the non-symmetric off-axis system, in which the components 

are off-axis in both tangential and sagittal planes.  

The main idea to avoid obscuration is to avoid any truncation of the ray bundles 

by other surfaces. For plane-symmetric off-axis systems, the position of the sur-

faces and the ray bundles are considered only in one plane. If there is obscura-

tion, it will be seen that parts of the ray bundles are truncated by the other surface 

in the tangential plane, which is more obvious compared with the non-symmetric 

case. For non-symmetric system, the layouts in tangential plane and sagittal 

planes do not give the complete information of the geometry. For instance, if we 
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take the plane-symmetric system as a special case of the general non-symmetric 

system, although the surfaces occur in the other ray bundles in the sagittal layout, 

the system is still obscuration free. Therefore, currently we only discuss the tech-

niques to avoid obscuration in plane-symmetric off-axis systems.  

The TMA system is taken as an example to show the often used methods to avoid 

obscuration. For off-axis TMA systems, there are two types of geometry. One is 

called the zigzag structure. The mirrors are always tilted to bend the OAR towards 

the same direction in y-axis as shown in Figure 3-15(a). The other one is called 

folding structure as in Figure 3-15(b). The tilt angle around x-axis of all the mirrors 

are of the same sign. Therefore, the OAR is folded and goes through the same 

space for several times. The folding structure is more compact compared with the 

zigzag structure, since the zigzag structure requires relatively large diameter in 

the y direction.   

 

Figure 3-15 Different geometric structure of TMA systems. (a) Zigzag structure; 

(b) Folding structure. 

For the zigzag structure as in Figure 3-16, the traditional way to avoid obscuration 

during optimization is to add some virtual planes at certain positions. For in-

stance, if the distance between M1 and M2 is 1d , and the distance between M2 

and M3 is 2d , one virtual plane (VP1) is added before M1 with a distance of 1d , 

and another virtual plane (VP2) is added after M3 with a distance of 2d . Then the 

two virtual planes will have intersection points with the rays. To avoid obscuration 

by M2, the intersection points of VP1 should have smaller ray heights in y-axis 

compared with the intersection points on M2. Therefore, if the system consists of 

only one field, the upper marginal ray height in y-axis on VP1 should be smaller 
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than the lower marginal ray height on M2, which means point A is below point A’ 

as in Figure 3-16. Similarly, the ray height of the upper marginal ray on M2 should 

be smaller than the ray height of the lower marginal ray on VP2 in y-axis, which 

means point B is below point B’. To avoid obscuration of M1 and M3, each of the 

two surfaces should not truncate the rays reflected by the other one. Therefore, 

it means the upper marginal ray height on M1 should be smaller than the lower 

marginal ray height on M3 in y, which means point C is below point C’. The dif-

ference between the ray heights can be defined in the merit function and the value 

can be optimized according to the mechanical constraints. When the system has 

certain FOV, the ray heights of the marginal rays are replaced by the ray heights 

of the coma rays of the boundary fields in y direction. 

 

Figure 3-16 Virtual planes in a TMA system to avoid obscuration 

However, the method to add virtual planes and optimize the position of the inter-

section points of the rays in y direction works only for the zigzag structure. If the 

system has a folding structure as in Figure 3-15(b), the orientation of the surface 

is arbitrary. By only controlling the difference of the ray heights in x- and y-direc-

tion, the obscuration cannot be avoided. The relation between the surfaces and 

the ray bundles should be considered in a more general point of view. Since the 

main idea is to avoid truncation of rays, it means that none of the points on a 

surface should appear within the other ray bundles.  

In Figure 3-17, part of a multi-plane reflective system is shown. The system con-

tains some off-axis surfaces, which are tilted in the tangential plane. To show the 

relation of the surfaces and the ray bundles more clearly, the system layout is 

drawn as a zigzag structure, but it can also be applied to folding structure. If only 
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the central field is taken into consideration, the intersection points of the upper 

marginal ray on the surfaces are the points A, B, C, D, and E, while the 

intersection points of the lower marginal ray are the points A’, B’, C’, D’ and E’. 

Each pair stands for the boundary of a surface. For example, C and C’ are the 

boundary points of the jth surface. Between two surfaces, the ray bundle is formed 

by four points, for instance, the ray bundle between the (j-2)th surface and the (j-

1)th surface is formed by points A, B, B’ and A’. If the system has a certain FOV, 

the four points will be extended to the intersection points of coma rays of the 

boundary fields. The polygon formed by the boundary intersection points of two 

neighboring surfaces includes all the ray bundles. Therefore, the main idea to 

avoid obscuration is to keep the points on a surface out of the polygon formed by 

other surfaces. For instance, for an arbitrary surface in a system such as the jth 

surface in Figure 3-17, the points of jth surface should be out of the polygon 

formed by the (j-1)th surface and the (j-2)th surface, which means the polygon 

AA’B’B. It should also be out of the polygon formed by (j+1)th surface and the 

(j+2)th surface, which is the polygon DD’E’E. 

 

Figure 3-17 Relation of surfaces and ray bundles to avoid obscuration 

For the conic-confocal method in Section 3.3.1, the shift of the first mirror and the 

tilt of the second mirror is arbitrary. The designer can try to avoid obscuration of 

the first two mirrors by setting proper values of the shifts and tilts. However, the 

tilt angle of the third mirror is calculated according to the condition to vanish linear 

astigmatism. Thus, the value cannot be defined to obtain obscuration free. After 

the shifts and tilts are obtained for the mirrors, the obscuration condition should 

be checked.  
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Based on the idea mentioned above, two boundary points and the intersection 

point of the OAR on the surface are taken into consideration. If those three points 

of each surface are all out of the polygons formed by other surfaces, the system 

is obscuration free. The criterion to check whether one point is inside a polygon 

is shown in Figure 3-18. When the point E is inside the polygon ABCD as in Figure 

3-18(a), if the each points of the polygon is connected with the point E, the sum 

of the four angles 1ω , 2ω , 3ω  and 4ω  of between the lines is always 360°. If the 

point E is outside of the polygon as in Figure 3-18(b), the sum of the angles is 

smaller than 360°. Therefore, after the three points of every surface are checked, 

the system without obscuration is saved as an initial system in the conic-confocal 

method. 

 

Figure 3-18 Criteria to check the position of a point (a) in a polygon; (b) outside 

of the polygon 

This criterion mentioned above is for checking the obscuration. However, it is not 

an error function, which can be optimized during the design process. In the re-

search of C. Xu, the distance from the point to the edges of the polygon is defined 

as an error function for optimization [39]. Since the system geometry of off-axis 

system can be very complicated, the relation of a surface and the polygon formed 

by other surfaces are discussed in different cases [39].  

3.5 Aberrations 

As mentioned, the aberrations in the non-rotationally symmetric system are 

represented in vectorial form. In this section, the vectorial aberrations of the basic 

shape and the deformation from the basic shape are introduced. It is known that 
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the surface shape starts from a basic spherical shape. With aspherical defor-

mation, it is extended to a conic or aspherical surface.  With the freeform defor-

mation, it is further extended to a freeform surface. As mentioned in Section 2.6, 

the biconic surface is used as a basic shape of the surface representations due 

to its benefit of correcting astigmatism. Therefore, the aberrations generated by 

the biconic surface is of interest to analyze the performance of the system. By 

understanding the aberrations in the system, the design strategy and surface se-

lection rules can be generated.  

3.5.1 Primary coefficients 

The vectorial aberration representation is given by the NAT, which also includes 

the tilt effect of surfaces. For the spherical surface shape, the primary aberrations 

are given as Eq. (2-18).  

Therefore, for a certain object distance, the spherical aberration is constant along 

the FOV. The total spherical aberration of the system is the sum of the spherical 

aberration of each surface. Therefore, the spherical aberration is influenced by 

the bending of the surface, the refractive index of the material and the distance 

between surfaces. When designing the initial setup of an off-axis system, one of 

the most difficult tasks is to correct coma and astigmatism of the central field 

simultaneously. With only spherical surfaces, it is known from the Seidel aberra-

tion theory that the Seidel coefficients klmW  of the primary aberrations are 

coupled. For an off-axis surface, the other parameter, which influences the value 

of the aberration, is the tilt of the surface.  

The vectorial aberration representation of coma coefficient of the whole system 

is given as  

 ( )131 131 131

131131 .

j jComa j j jj j j

sum jjj

W W H H W W

HW W

σ σ

σ

= − = −

= −

∑ ∑ ∑
∑

   

 

 (3-25) 

It is seen from Eq. (3-25) that the total coma of the off-axis system with spherical 

surfaces is formed by two parts. One is the field-linear part, which is the same as 

the centered system. The second part is the field-constant part, which purely de-

pends on the field shift vectors of the surfaces. For the central field, the total coma 

equals the field-constant part in Eq. (3-25) as 
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From Eq. (3-26), it can be seen that coma of the central field is determined by the 

Seidel coefficient of 131W , the paraxial chief ray incident angle i  of the centered 

model as in Figure 2-8(a), and the real ray direction cosines SRL  and SRM  in x  

and y directions of the OAR, which corresponds to the tilt of the surface. If radii 

of curvature and the distances between the surfaces are fixed, the sign of the 

coma value of each surface is determined by the tilt angle of the surface. If the 

direction cosines of the OAR lead to the same sign of coma value of all the sur-

faces, it is impossible to correct coma of the central field. The whole FOV is dom-

inated by a large field-constant coma, which equals the total coma of the central 

field. The strategy to compensate the field-constant coma will be shown in Chap-

ter 4 in the Yolo telescope example. 

It is known from the Coddington equations that the astigmatism of the central field 

of an off-axis system is determined by the incident angles of the OAR, which lead 

to different the focal power in tangential and sagittal planes. The Coddington 

equations also correspond to the astigmatism in NAT. The incident angles in Cod-

dington equations correspond to the field shift vectors in NAT. The astigmatism 

(in 0° axis) of the central field is given as 
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It is seen in Eq. (3-27) that only the absolute values of SRL  and SRM can 

influence the sign of astigmatism. The sign of SRL  and SRM  individually will not 

influence the astigmatism. Therefore, the sign of the incident angle of the OAR 

will not influence the value of the field-constant astigmatism. For a plane-sym-

metric off-axis system, the astigmatism value of a surface is the same when it is 

tilted clockwise or counterclockwise with the same angle around the x-axis. Since 

in this case 0SRL =  and the value of 2SRM  is always positive, the sign of 222 /W i   

should not be the same of all the surfaces. Otherwise, the astigmatism cannot be 

corrected for the central field.  
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Since the Seidel coefficients 222W  of astigmatism and 131W  of coma are coupled, 

it is difficult to obtain the tilt angles of spherical surfaces, which could correct 

coma and astigmatism of the whole system simultaneously, especially when the 

range of the tilt angle is limited to avoid obscuration. Therefore, in some cases 

with high specification, it is unrealistic to optimize all the aberrations of the initial 

setup. Only some of the aberrations are derived as the nonlinear functions in the 

Gaussian brackets method.  

It is known that aspherical deformation is added on the basic spherical shape to 

correct aberrations to some extent. The aberrations generated by the asphere 

can be decomposed into one part generated by the basic spherical shape and 

the other part generated by the aspherical deformation. If the aspherical 

representation is expanded up to the 4th order, the Eq. (2-48) is written as 

 ( ) ( ) ( ) ( )2 2 22 2 3 2 2 3 2 2 2 2
4

1 1 1c c .
2 8 8

aspherez x y x y x y a x yκ= + + + + + + +  (3-28) 

The first two terms of Eq. (3-28) are the same as the expansion of a spherical 

surface up to the 4th order. The Seidel aberration theory is derived based on the 

expansion of a spherical surface up to the 4th order. Thus the aberrations gener-

ated by the aspherical deformation correspond to the last two terms of Eq. (3-28). 

When the pupil is located at the surface, the relation between the normalized 

pupil vector in Figure 2-4 and the radial aperture vector in Figure 2-10 of the 

surface aperture is written as 
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 (3-29) 

where h  denotes the paraxial marginal ray height on the surface. The contribu-

tion of the aspherical deformation at the pupil is given by  
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 (3-30) 

where ( )n∆  denotes the difference between the refractive index after and before 

the surface. When the surface is located away from the pupil, the normalized 

pupil vector is shifted by h∆


 due to the finite chief ray height h  on the surface as 

in Figure 3-19. The shifted normalized pupil vector is written as 

 
.shift

hh H
h

ρ ρ ρ= + ∆ = +
    

 (3-31) 
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Figure 3-19 Pupil shift with finite chief ray height 

The spherical aberration coefficient 040
ASPH

jW  of the jth surface generated by the as-

pherical deformation is defined as  

 ( ) 3 4
4040

1 .
8

ASPH
jW n a h∆ κ = + 

 
 (3-32) 

By substituting the normalized pupil vector in Eq. (3-30) with the shift factor in Eq. 

(3-31), the primary aberrations generated by the aspherical deformation are de-

rived and listed in Table 3-5.  

Table 3-5 Primary aberration coefficients generated by the aspherical part of a 

surface away from the pupil in vectorial representation [14] 
Aberration Value 

Spherical aberration ( ) 2

040
ASPHW ρ ρ⋅

 

 

Coma ( )( )0404 ASPHh W H
h

ρ ρ ρ
 

⋅ ⋅ 
 

   

 

Astigmatism ( )
2

2 2
0402 ASPHh W H

h
ρ

 
⋅ 

 

 

 

Focal plane of medial  
astigmatism ( )( )

2

0404 ASPHh W H H
h

ρ ρ
 

⋅ ⋅ 
 

   

 

Distortion ( )( )
3

0404 ASPHh W H H H
h

ρ
 

⋅ ⋅ 
 

   

 

It can be seen that when the asphere is away from the pupil, it generates all types 

of primary aberrations. However, coma and astigmatism are still coupled. Both of 

them are related with the value of the spherical aberration 040
ASPHW  generated by 

the aspherical deformation, which limits the correction ability.  

Therefore, it is impossible to decouple coma and astigmatism with rotationally 

symmetric components. Freeform surfaces provide the possibility to decouple 
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coma and astigmatism by introducing the polynomials corresponding to the aber-

ration terms. 

3.5.2 Zernike fringe freeform surface 

Although aspheres and biconic surface provide certain ability to correct aberra-

tions in non-rotationally symmetric systems, it is required to add higher order pol-

ynomials to further correct the residual aberrations. It is mentioned in Section 2.6 

that the freeform deformation from the basic surface can be represented by dif-

ferent polynomials, which means different polynomials can describe the same 

surface sag. Therefore, we only use Zernike fringe polynomials to show how the 

aberrations are derived. For the other types of polynomials, the behavior is similar. 

The relation between the normalized radial aperture coordinate r  of a Zernike 

fringe surface at the pupil and the radial coordinate ρ  of the normalized pupil 

vector in the wave aberration expression is given by 

 
.normr r r

h h
ρ = =  (3-33) 

The freeform deformation of a surface is given by the Zernike fringe polynomials 

as 

 ( )
1

, ,
N

Zernike poly i i
i

z C Z r C Zφ
=

= = ⋅∑
 

 (3-34) 

where C  denotes the coefficients of the Zernike fringe terms, Z  denotes the Zer-

nike polynomials, and φ  denotes the azimuthal angle of the aperture coordinate. 

When n  denotes the refractive index, the coefficients M


 calculated in lens unit 

is defined as  

Refractive  

 ( ) .M n C= ∆
 

 (3-35) 

Mirror  

 2 .M nC= −
 

 (3-36) 

Then the wavefront deformation of the generated by the Zernike fringe freeform 

polynomials at the pupil is given as  

 ( ) ( ), .Zernike poly
norm

hW M Z r n C Z
r

∆ φ ∆ ρ  = ⋅ = ⋅     

    

 (3-37) 
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When the surface is located away from the pupil, the normalized pupil vector in 

Eq. (3-37) will be replaced as the shifted pupil vector as in Eq. (3-31). 

 The wavefront deformation generated by the freeform deformation described 

Zernike fringe polynomials is derived as in Eqs. (3-33)-(3-37). The theory has 

been proposed from the extension of NAT [26, 27, 40].  

However, the influence of the normalization radius was not discussed before. 

When the same freeform deformation is described by Zernike fringe polynomials 

with different normalization radius, the value of the coefficients will also be differ-

ent. The deformation of the wavefront is the same, although the coefficients of 

the polynomials are different. Thus, Eq. (3-33) is used to obtain the relation of the 

normalized pupil coordinate and the normalized aperture coordinate. The influ-

ence of the normalization radius is included in the wavefront deformation as in 

Eq. (3-37).  

Table 3-6 Wavefront deformation generated by term 2 to term 16 of a Zernike 

fringe surface at the pupil 
Defor-
mation 

Vectorial representation 

Spherical  
aberration ( ) ( )

4 4
2 2

9 166 30
norm norm

h hM M
r r

ρ ρ ρ ρ   ⋅ − ⋅   
   

   

 

Coma ( )( ) ( )( )
3 3

7/8 14/153 12
norm norm

h hM M
r r

ρ ρ ρ ρ ρ ρ   ⋅ ⋅ − ⋅ ⋅   
   

       

 

Astigma-
tism 

2 2
2 2

5/6 12/133
norm norm

h hM M
r r

ρ ρ   ⋅ − ⋅   
   

   

 

Defocus ( ) ( ) ( )
2 2 2

4 9 162 6 12
norm norm norm

h h hM M M
r r r

ρ ρ ρ ρ ρ ρ     ⋅ − ⋅ + ⋅     
     

     

 

Tilt 2/3 7/8 14/152 3
norm norm norm

h h hM M M
r r r

ρ ρ ρ     ⋅ − ⋅ + ⋅     
     

     

 

The aberrations generated by the freeform deformation of a surface located at 

the pupil with Zernike fringe polynomials from term 2 to term 16 are shown in 

Table 3-6. It is seen in Table 3-6 that when the freeform surface is located at the 

pupil, it only generates field-constant aberrations. There is also no influence on 

field curvature or distortion. For some systems with large field-constant aberra-

tions, such as TMAs with large field-constant coma, the freeform surface placed 

at the pupil position will contribute to the aberration correction effectively.  
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When the surface is located away from the pupil, all the field-constant aberrations 

in Table 3-6 are also generated. Due to the shift of the pupil vector according to 

finite chief ray height as in Eq. (3-31), each Zernike term generates also some 

other field-dependent aberrations. For instance, aberration generated by term 5 

and 6 when the surface is located away from the pupil is derived as  

 
( )

2 2
2

5/6 5/65/6

22 2
2

5/6 5/6

2
2

5/6
2

,

2

2

norm norm

norm norm

norm norm
astigmatism primary

h hW M h M
r r

h h h hM H M H
r h r h

h hhM
r r

∆ ρ ρ

ρ

ρ

    = ⋅ + ∆ = ⋅        

      + ⋅ + ⋅      
      

  = ⋅ +  
   

    

   

 

2
* 2

5/6 5/6 .
norm

change of magification

hM H M H
r

ρ
 

⋅ + ⋅  
 

    

 (3-38) 

It is seen from Eq. (3-38) that terms 5 and 6 generate another two terms in addi-

tion to the field-constant astigmatism. One is the change of magnification with the 

conjugate of field. The other one is quadratic piston.  

Table 3-7 Aberrations generated by terms 7 and 8 of a Zernike fringe surface 

away from the pupil 
Aberrations Vectorial representation 

Coma ( )( )
3

7/83
norm

h M
r

ρ ρ ρ  ⋅ ⋅ 
 

   

 

Astigmatism ( )2 2
7/8

3
3

norm

hh M H
r

ρ
 

⋅ 
 

  

 

Focal plane of medial 
astigmatism ( )( )

2

7/8
3

6
norm

hh M H
r

ρ ρ
 

⋅ ⋅ 
 

   

 

Distortion 
 ( )( ) ( )

2 2
2 *

7/8 7/8
3 3

6 3
norm norm

h h h hH H M H M
r r

ρ ρ
   
   ⋅ ⋅ + ⋅
   
   

      

 

Following the same method to derive the aberrations, the aberrations generated 

by terms 7 and 8 of a Zernike fringe surface away from the pupil are listed in 

Table 3-7. 

The aberrations generated by terms 7 and 8 in Table 3-7 are shown as an exam-

ple because those two terms generate complicated aberrations away from the 

pupil. The field-constant coma is generated no matter where the surface is 

located. However, some aberrations have special relation to the field. The astig-

matism generated from terms 7 and 8 is field-linear. It is known from Section 3.1 
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that the wave aberration generated by rotationally symmetric surface contains 

only terms with even order. The primary aberrations are of 4th order. Therefore, 

the primary astigmatism generated from the rotationally symmetric shape of the 

surface has a quadratic relation with field. However, the aberrations generated 

from the freeform deformation consist of even order terms and odd order terms. 

This special property will be mentioned in the surface selection rule in the follow-

ing section. 

The wavefront deformation generated by the Zernike fringe terms 2 to 16 when 

the surface is away from the pupil can be found in Appendix B. 

3.5.3 Impact of a biconic basic shape 

It is mentioned that rotationally-symmetric surfaces cannot decouple the astigma-

tism and coma. Biconic surface shape is nowadays used as an extension of the 

basic shape in surface representations. Due to the different focal powers in tan-

gential and sagittal planes, the biconic surface can be used to correct astigma-

tism. The aberrations generated by the biconic surface are derived in this section. 

Therefore, the behavior of the biconic surface and its potential to correct aberra-

tions can be studied.  

As mentioned, the aberrations generated by the aspherical surface can be 

decomposed into one part generated by the basic spherical shape of the surface 

and the other part generated by the aspherical deformation. If the surface shape 

is further extended to the freeform shape, the aberrations generated by the 

freeform deformation is the third part of the total aberration contribution.  

Due to the difference in x- and y-direction of the biconic surface, it is known that 

there is a freeform deformation from the rotationally symmetric shape. Therefore, 

the first step is to decompose the biconic surface representation into the spherical 

part, the aspherical part, and the freeform part. If the curvatures in x-  and y-

direction of a biconic surface are xc  and yc , and the conic parameters in x- and 

y-direction are xκ  and yκ , the surface representation is given as Eq. (2-55). We 

make a Taylor expansion of the surface sag about 2x  and 2y  around the origin. 

The second order expansion is given as  
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 ( ) ( )

( )

( )

( )

2 2 2 2 2 2

2 2

2

2

,
( 0 ), 5

2 2 2 2

sin
2 2

1 cos 2
2 2 2
1 cos 2 .
2 2 4

x y x y xnd
biconic

x y x

x y x

x y x y

astigmatism primarybasic spherical term
axis in term

c c c c cz x y x y y

c c cr r r

c c cr r r

c c c cr r r

φ

φ

φ

°

−
= + = + +

−
= ⋅ +

− − = ⋅ +  
 

+ − = ⋅ + 
 

 

 

 

 (3-39) 

The fourth order expansion is given as 

 ( ) ( ) ( ) ( )( )

( )

( ) ( )( )( )

( ) ( ) ( )

2 24 3 2 3 2

2 2

3
2 2

2 2

2
2 2

1 11 1
8 8
1
8
1 1
8 2 32

1 3 3
64

th
y y x xbiconic

x y x y x x y y

x y
x y x y

aspherical deformation Ibasic spherical term

x x x y y y y x

asphercial deform

z c y c x

c c c c c c x y

c c r r c c c c r r

c c c c c c r r

κ κ

κ κ

κ κ

= + + +

+ + + +

+ = ⋅ + − − ⋅ 
 

+ + + + ⋅  

   

 

( ) ( )

( ) ( )
( ) ( )

3 3 4

, (axis in 0 ), term12

3 3
4

, , 17

1 1 1 cos 2
16

1 11 cos 4 .
64 1 1

ation II

x x y y

Astigmatism secondary

x x y y

x y x x y y

Tetrafoil primary in x term

c c r

c c
r

c c c c

κ κ φ

κ κ
φ

κ κ

°

+ + − +  

 + + +   +  
− + + +    

 (3-40) 

From Eqs. (3-39)-(3-40), the biconic surface can be decomposed into the basic 

spherical shape and the anamorphic deformation. The basic shape is described 

as a spherical surface with the mean curvature as 

 
2

x ybiconic
basic

c cc +
=  (3-41) 

The expansion of the biconic surface up to the fourth order is converted into a 

freeform surface as  

 ( ) ( ) ( ) ( )( )
( )

2 23
4 4

2 4 2 4
5 12 17

1 1
2 8

cos 2 4 3 cos 2 cos 4

biconic I biconic IIbiconic biconic
biconic basic basic

biconic biconic biconic

z c r r c r r A A r r

C r C r r C rφ φ φ

= ⋅ + ⋅ + + ⋅

+ + − +

     

 (3-42) 

The biconic surface is formed by one spherical part with the mean mean curva-

ture biconic
basicc , two aspherical part with the fourth order aspherical coefficients as 

4
biconic IA  and 4

biconic IIA , and the three Zernike fringe terms Z5, Z12 and Z17 with the 
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coefficients of the polynomials as 5
biconicC , 12

biconicC , and 17
biconicC  . The value of the 

normalization radius normr  is arbitrary. The value of the Zernike fringe coefficients 

will change due to the value of the normalization radius.    

 

Figure 3-20 Decomposition of a biconic surface up to fourth order 

Table 3-8 Aspherical terms of the converted biconic surface 

Parameter Value 

4
biconic IA  ( )( )2 21

32
x y x yc c c c− −  

4
biconic IIA  ( ) ( )2 21 3 3

64
x x x y y y y xc c c c c cκ κ+ + +    

Table 3-9 Freeform terms of the converted biconic surface 

Parameter Value 

5
biconicC  ( ) ( )2 3 3 43 1 1

4 64
x y

norm x x y y norm
c c r c c rκ κ−

+ + − +    

12
biconicC  ( ) ( )3 3 41 1 1

64
x x y y normc c rκ κ+ − +    

17
biconicC  

( ) ( )
( ) ( )

3 3
4

1 11
64 1 1

x x y y
norm

x y x x y y

c c
r

c c c c

κ κ

κ κ

 + + +   
 
− + + +    
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The coefficients of the aspherical terms and the freeform terms are listed in Table 

3-8 and Table 3-9. The decomposition corresponding to Eq. (3-42) is illustrated 

in Figure 3-20. 

Thus, the primary aberrations generated by the biconic surface as in Eq. (2-55) 

consists of the three parts: 

(1) The primary aberrations generated by the basic spherical shape. 

The primary aberration coefficients 040 131 222 220 311, , , ,Bic basic Bic basic Bic basic Bic basic Bic basicW W W W W− − − − −

can be derived using the mean curvature biconic
basicc  of the basic spherical shape as 

in Table 2-1. The vectorial wave aberrations are represented as the terms in Eq. 

(2-18). 

(2) The primary aberrations generated by the two aspherical terms. 

Similarly to Eq. (3-32), the spherical aberration coefficient of the aspherical de-

formation is defined as  

 ( )( ) 4
040 4 4

biconic I biconic IIBic AsphW n A A h− = ∆ +  (3-43) 

The aberrations generated by the aspherical terms can be represented as the 

terms in Table 3-5. 

(3) Aberrations generated by the freeform terms. 

The freeform parts of the biconic surface consist of one primary astigmatic term 

(axis in 0°), one secondary astigmatic term (axis in 0°), and one tetrafoil term (in 

x).  In the extension of NAT as Eqs. (3-33)-(3-37), when the surface is located at 

the stop, each freeform term generates only the corresponding field-constant ab-

erration. When the surface is away from the pupil, the normalized pupil vector 

has a shift factor, which introduces the field-dependent factor in the wavefront 

deformation. Therefore, the freeform terms also generate field-dependent aber-

rations when the surface is away from the pupil.  

Table 3-10 Aberrations generated by the primary astigmatic term  

Aberration Value 

Astigmatism, primary (axis in 0°) ( )
2

2
5 cos 2biconic

norm

h n C
r

∆ ρ φ 
 
 

 

Change of magnification ( ) ( )*
52

2 biconic

norm

hh n C H
r

∆ ρ⋅
 
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 Table 3-11 Aberrations generated by the secondary astigmatic term 

Aberration Value 

Astigmatism, Secondary 
(axis in 0°) ( )

4
4

124 cos 2biconic

norm

h n C
r

∆ ρ φ 
 
 

 

Coma ( ) ( )( )
3 *

124
12 biconic

norm

h h n C H
r

∆ ρ ρ ρ⋅ ⋅
   

 

Astigmatism, primary 
(axis in 0°) 

( )

( ) ( )

2
2

12

2
2

2
124

3 cos 2

12 cos 2

biconic

norm

biconic

norm

h n C
r

h h n C H H
r

∆ ρ φ

∆ ρ φ

 −  
 

+ ⋅
 

 

Focal plane of medial 
astigmatism ( ) ( )( )

2
2

2 2
124

12 biconic
x y

norm

h h n C H H
r

∆ ρ ρ− ⋅
 

 

Distortion 
( ) ( )( )
( ) ( )

3
*

124

3
3

124

12

4

biconic

norm

biconic

norm

hh n C H H H
r

hh n C H
r

∆ ρ

∆ ρ

⋅ ⋅

+ ⋅

   

 

 

Trefoil ( ) ( )3 3
124

4 biconic

norm

h h n C H
r

∆ ρ⋅
 

 

Table 3-12 Aberrations generated by the tetrafoil term 

Aberration Value 

Tetrafoil (in x) ( )
4

4
17 cos 4biconic

norm

h n C
r

∆ ρ φ 
 
 

 

Trefoil ( )
3 * 3

174
4 biconic

norm

h h n C H
r

∆ ρ⋅
 

 

Astigmatism, primary ( ) ( )
2 *2 2 2

174
6 biconic

norm

h h n C H
r

∆ ρ⋅
 

 

Distortion ( ) ( )
3 *3

174
4 biconic

norm

hh n C H
r

∆ ρ⋅
 

 

The aberrations generated by the primary astigmatic term, the secondary astig-

matic term and the tetrafoil term of the biconic surface are listed in Table 3-10,  

Table 3-11 and Table 3-12. It can be seen that there is always the field-constant 

astigmatism generated by the biconic surface depending on the value of the co-

efficients 5
biconicC  and 12

biconicC . But the value of coma is always field-dependent. 

Therefore, for a biconic surface, the total generated astigmatism is decoupled 

with coma. The decoupling can be used as an advantage when designing off-axis 
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systems. It is easier to obtain nodal point of both coma and astigmatism at the 

center of the FOV. The verification of the aberration values is shown in Appendix 

C. 

3.6 Selection of freeform surface position 

It is known that concerning the manufacturing and cost of the optical system, the 

number of freeform surfaces and aspheres should be as small as possible. The 

surface shape should also be as simple as possible. Thus, the initial setup is 

optimized with minimum residual aberrations before adding aspheres and 

freeform surfaces.  

However, the position to add an asphere or a freeform surface is not arbitrary. 

First of all, the system performance of the initial setup should be analyzed. When 

the system is dominated by field-constant aberrations or field-dependent 

aberrations, the locations to place freeform surfaces are completely different. 

From aberrations generated by aspheres and freeform surfaces, it is known that 

the three factors, which determine the aberrations generated by the deformation, 

are the coefficients of the polynomials, the ratio /h h  between the chief ray height 

and the marginal ray height, and the ratio / normh r  between the marginal ray height 

and normalization radius. Among those three factors, the ratio /h h  is determined 

by the location of the surface, since it represents the separation of the ray bundles 

of different fields on the surface. The difference of the ratio at the pupil and away 

from the pupil is illustrated in Figure 3-21. 

 

Figure 3-21 Difference of the ratio /h h  at the pupil and away from the pupil 
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The surface, which is selected to add the aspheres or freeform surfaces, should 

perform efficient to compensate the residual aberrations in the system. Thus, the 

rules for surface position selection are concluded as follows. 

(1) If conic surfaces and aspheres are located at the pupil, they can only correct 

spherical aberration. But away from the pupil, they can correct the other four pri-

mary aberrations, which are field-dependent.   

(2) The freeform deformation of a Zernike fringe freeform surface at the pupil gen-

erates only field-constant aberrations corresponding to the terms, which are used. 

The Zernike fringe polynomials at the pupil do not influence distortion and field 

curvature. 

(3) When the Zernike fringe freeform surface is located away from the pupil, the 

freeform part of the surface generates not only field-constant aberrations corre-

sponding to the terms but also other field-dependent aberrations.  

(4) The aberrations generated by aspheres and freeform surfaces are both 

influenced by the separation of the ray bundles of different fields. The separation 

can be described by the ratio between the paraxial chief ray height of the largest 

field and the marginal ray height, which is written as /h h . 

(5) Normally a lens close to the conjugated image plane has large value of the 

ratio /h h . The freeform deformation generates large field-dependent aberra-

tions. It explains the effect that the freeform surface placed at the field lens has 

large impact on distortion. 

(6) When the freeform surface is away from the pupil, the freeform deformation 

generates both even and odd order aberrations. The aberrations generated by 

rotationally symmetric components are always of even order. The even order ab-

errations generated by the freeform deformation are used to compensate the re-

sidual aberrations from the initial setup. However, the odd order aberrations 

should be compensated by another freeform surface away from the pupil. 

(7) It is mentioned that the odd order aberrations generated by two freeform sur-

faces should compensate each other. However, the two freeform surfaces should 

not be too close to each other. When the two surfaces are close to each other, 

the values of the ratio /h h  are similar. If the odd order aberrations generated by 

two freeform surfaces with the same ratio of /h h  compensate each other, the 

generated even order aberrations also compensate each other. The two surfaces 
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have in total no contribution in the aberration correction. Therefore, it is better to 

choose two freeform surfaces, which have large difference in the ratio of /h h . In 

this way, it is possible to compensate the odd order aberrations, and certain even 

order aberrations are generated by the two freeform surfaces to compensate the 

residual aberrations in the system.  

The TMA system has only three surfaces. If the specifications are high, only one 

freeform surface is allowed, and the other two surfaces are aspheres, the location 

of the aspheres will never be the surfaces close to the stop. When the asphere is 

away from the pupil in the off-axis system, it can be regarded as a quasi-freeform 

surface to compensate the field-dependent aberrations. 

For systems with only field-dependent aberrations, such as Scheimpflug systems, 

the location of freeform surface is never close to the stop, which will be 

demonstrated in Chapter 4. 
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4 Examples and applications 

In this chapter, three typical non-rotationally symmetric applications are 

discussed. The TMA system is demonstrated to show the initial system design 

steps based on Gaussian brackets method. The strategy to correct coma is 

shown in the initial design of the Yolo telescope. Biconic surfaces are used to 

further correct the large astigmatism in the system. With the Scheimpflug system, 

the aberration analysis and the surface position evaluation are shown. By under-

standing the initial system behavior and following the surface selection rules, the 

system performance is tremendously improved and uniformed after adding the 

freeform surfaces.  

4.1 TMA system 

Two TMA systems are designed with the Gaussian brackets method to demon-

strate the initial system design procedure. The TMA systems are of no chromatic 

aberrations due to the use of mirrors. Thus, the choice and optimization of mate-

rials are not necessary. The back focal length is added in the nonlinear functions 

as another first-order property to control the working distance. As mentioned, the 

stop position can be defined in this method. For the first example with the zigzag 

structure, the stop is defined at the location of the second mirror. The stop of the 

second example with the folding structure is located before the first mirror.  

The first step is to establish the on-axis model for the paraxial ray trace. The on-

axis model of the TMA system is shown as in Figure 4-1. 

 

Figure 4-1 On-axis model of a TMA system 
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It is seen in Figure 4-1 that a TMA system consists of eight surfaces in total in-

cluding three mirrors, intermediate pupils, and the image plane. The focal powers 

of the intermediate pupils and the image plane are zero as 

 1 3 5 7 8 0.Φ Φ Φ Φ Φ= = = = =  (4-1) 

In Figure 4-1, jL  denotes the thickness from real surface to surface, which can 

be represented by the reduced distance 'je .  

The first example is the zigzag structure TMA system. The focal power of the 

three mirrors is defined to be negative-positive-positive (NPP). The NPP structure 

can be obtained by setting different boundary values for the curvatures in the 

optimization of the nonlinear functions. The design specifications are listed in Ta-

ble 4-1. The stop is located at the second mirror. Thus the reduced distances 3 'e   

and 4 'e  are zero. The intermediate pupil 1 and intermediate pupil 2 in Figure 4-1 

coincide at the position of the second mirror. 

Table 4-1 Specifications of the zigzag TMA system 

Parameter Specification 
Focal length 117.61 mm 

Entrance pupil diameter 50 mm 
FOV 3°×4° 

F-number 2.78 
Stop position Second mirror 

According to the FOV and entrance pupil diameter, the initial ray data of the mar-

ginal ray and chief ray at the first surface (EnP) are defined as in Table 4-2. 

Table 4-2 Initial ray data for paraxial on-axis ray tracing defined at the EnP 

Marginal ray 1 25.0000h mm=  1 0.0000u rad=  
Chief ray 1 0.0000h mm=  1 0.0436u rad=  

Using the Petzval curvature vanishing relation as Eq. (3-3), the curvature of M3 

can be expressed by the curvatures of M1 and M2. The unknown parameters are 

the three tilts of the mirrors, curvature of the first two mirrors, and two thicknesses 

1L  and 3L . Since the stop is located at M2, the thicknesses 2L  can be expressed 

by the imaging relation by M1 from the EnP to M2. The five primary aberrations 

of the central field, the condition to fulfill Coddington equations, the focal length, 

and the back focal length are defined as the nonlinear functions. The boundary 

values and the solutions of the nonlinear optimization are given in Table 4-3. The 



4 Examples and applications 83 

sign and boundary values of the tilts are defined in the range to avoid obscuration. 

When the structure is defined as zigzag, the tilts of M1 and M3 are positive and 

the tilt of M2 should be negative. 

Table 4-3 Boundary values and solutions of the nonlinear functions for the zig-

zag structure TMA system 

Parameter Lower limit Upper limit Solution 
2 2'i i=  13.4148 degree 53.1301 degree 40.6035 degree 

4 4'i i=  -53.1301 degree -13.4148 degree -19.3914 degree 

6 6'i i=  13.4148 degree 53.1301 degree 19.3914 degree 

2Radius  200.0000 mm 350.0000 mm 269.5010 mm 

4Radius  300.0000 mm 500.0000 mm 407.5147 mm 

6Radius  --- --- -795.7586 mm 

1L  -120.0000 mm -80.0000 mm -80.0000 mm 

2L  --- --- -196.8939 mm 

3L  200.0000 mm 300.0000 mm 200.0000 mm 

 

 

Figure 4-2 System performance of the zigzag structure TMA system (a) System 

layout; (b) Spot diagram with field; (c) RMS Spot radius map with field. 

In Figure 4-2, the layout of the initial setup, the spot diagram, and the RMS spot 

radius over the whole FOV are illustrated for initial setup of the zigzag structured 

TMA. The full-field-display of astigmatism by Zernike fringe coefficients 
2 25 6Z Z+ , coma by Zernike fringe coefficients 2 27 8Z Z+ , and grid distortion 

are shown in Figure 4-3. For the initial setup, one nodal point of astigmatism can 
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be seen in Figure 4-3 (a). The other nodal point of astigmatism is outside of the 

FOV due to the boundary conditions to achieve obscuration free. Due to the lim-

itations of the angles and focal power, the nodal point of coma is not obtained 

and the whole FOV is dominated by field-constant coma. Distortion is -1.5%, 

which is acceptable. Then we set the three radii of curvature and conic parame-

ters as variables. The third mirror is set as a Zernike fringe sag freeform surface 

with terms Z5, Z8, Z9, Z11, Z12, Z15, and Z16 as variables. The criterion is the 

resolution of the whole FOV. It can be seen in Figure 4-3(e) that the field-constant 

coma is reduced by the freeform surface after optimization. The nodal point of 

coma is obtained in the FOV. The value of astigmatism and coma are both im-

proved. 

 

Figure 4-3 Aberrations with field of the zigzag structure TMA system (a) Astig-

matism, (b) coma, and (c) grid distortion of initial setup; (d) Astigmatism, (e) 

coma, and (f) grid distortion of optimized setup; 

The second example is a TMA system with folding structure. As it is mentioned 

in the conic-confocal method, it is inconvenient to optimize the freeform surface 
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when there is a large off-axis use. The specifications are obtained from the pro-

ceeding of H. Zhu [35], in which the TMA was designed based on the conic-con-

focal method. Here, only spherical surfaces are used to establish the initial sys-

tem. Thus, the vertex of the surface is located at the intersection point of the OAR, 

which overcomes the inconvenience of off-axis use of the surfaces. The central 

part of the freeform surface will influence the aberrations in the optimization. In 

this example, the entrance pupil diameter and the focal length are both very large. 

Therefore, a folding structure is normally used to make the system compact. The 

design specifications are listed in Table 4-4. The initial ray data of the marginal 

ray and chief ray are defined as in Table 4-5 at the entrance pupil plane.  

Table 4-4 Specifications of the folding structure TMA system 

Parameter Specification 
Focal length 310 mm 

Entrance pupil diameter 200 mm 
FOV 1.774°×1.331° 

F-number 1.55 
Stop position Before the first mirror 

Table 4-5 Initial ray data for paraxial on-axis ray tracing defined in the EnP 

Marginal ray 1 100.0000h mm=  1 0.0000u rad=  
Chief ray 1 0.0000h mm=  1 0.0194u rad=  

Table 4-6 Boundary values and solutions of the nonlinear functions for the fold-

ing structure TMA system 

Parameter Lower limit Upper limit Solution 
2 2'i i=  11.5369 degree 30.0000 degree 11.5369 degree 

4 4'i i=  11.5369 degree 30.0000 degree 27.3373 degree 

6 6'i i=  11.5369 degree 30.0000 degree 11.5369 degree 

1Radius  -12500.0000 mm -12000.0000 mm -12499.9999 mm 

4Radius  -800.0000 mm -770.0000 mm -790.7689 mm 

6Radius  --- --- -844.1725 mm 

1L  710.0000 mm 750.0000 mm 750.0000 mm 

2L  -640.0000 mm -620.0000 mm -637.7265 mm 

3L  620.0000 mm 640.0000 mm 640.0000 mm 
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Figure 4-4 System performance of the folding structure TMA system (a) System 

layout; (b) Spot diagram with field; (c) RMS Spot radius map with field. 

 

Figure 4-5 Aberrations with field of the compact folding structure TMA system 

(a) Astigmatism, (b) coma, and (c) grid distortion of initial setup; (d) Astigma-

tism, (e) coma, and (f) grid distortion of optimized setup; 

In this case, the stop is located before M1, which means it is located at the en-

trance pupil. Therefore, 2L  cannot be represented by other parameters. It is also 

one of the unknown parameters. The boundary values and the solutions after 
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nonlinear function optimization are presented in Table 4-6. The three tilts should 

be all positive to obtain the folding structure. 

The layout, the spot diagram, and the RMS spot radius over the whole FOV of 

the initial system with the folding structure are shown in Figure 4-4. The third 

mirror is set as a Zernike fringe freeform surface and the initial setup is further 

optimized. The full-field-display of astigmatism by Zernike fringe coefficients 
2 25 6Z Z+ , coma by Zernike fringe coefficients 2 27 8Z Z+ , and grid distortion 

of both the initial setup and the optimized setup are shown in Figure 4-5. M3 is 

the freeform surface, and the variables are the same as the zigzag example. The 

criterion is also the resolution of the whole FOV. In the initial setup, the second 

nodal point for astigmatism is also out of the field of view. However, although the 

field-constant coma is not completely corrected, the FOV is closer to the nodal 

point of coma. The system suffers from keystone distortion. After adding the 

freeform polynomials to the system, the aberrations are improved. 

4.2 Yolo telescope 

The Yolo telescope is an unobscured off-axis reflective system with no symmetry 

due to the tilts of the mirrors in both tangential and sagittal planes. The original 

Yolo telescope is formed by two mirrors. In 1970s, it is extended with the third 

mirror to deal with wide field [41]. Therefore, we name the Yolo telescope with 

three mirrors as extended Yolo telescope. The extended Yolo telescope designed 

by Arthur S. Leonard has a large f-number of 13.32. In this work, the extended 

Yolo telescope is improved to an f-number of 2.24 with freeform surface [42]. 

Since the system size should not be too large and still free of obscuration, the tilt 

range of the surfaces is quite tight. When the initial system is designed, the spher-

ical aberration and coma are the main selected aberrations to be corrected, due 

to the large numerical aperture and limited tilt range. Astigmatism is not selected 

as one of the nonlinear functions in the Gaussian brackets method. After the initial 

system is obtained, the surfaces are optimized with biconic surfaces, since it is 

mentioned that biconic surfaces provide large ability to correct astigmatism.  

The procedure to design the initial setup is similar with the steps to design a TMA 

system as in Section 4.1. The only difference is that the x-component of the field 
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shift vector is also an unknown parameter. The design specifications are listed in 

Table 4-7. 

Table 4-7 Specifications of the small f-number Yolo telescope system 

Parameters Value 

Entrance pupil diameter 270 mm 

F-number 2.24 

Focal length 600 mm 

FOV 1°× 1° 

Working spectrum 3 µm to 5 µm in MWIR 

Pixel size 12.5 µm 

Stop position First mirror 

 

Figure 4-6 (a) Layout of the initial extended Yolo telescope; (b) Total spherical 

aberration; (c) Total coma; (d) Total astigmatism 
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The first mirror of the system is only tilted in x-direction. Thus, the y-component 

of the field shift vector equals zero. The field shift vectors of the other two mirrors 

have both x- and y-components. The range of the tilt angles should be modified 

by several iterations in the boundary condition in order to achieve obscuration 

free condition when solving the nonlinear equations. The layout of the initial setup 

and the full-field-display of spherical aberration, coma and astigmatism based on 

NAT are illustrated in Figure 4-6. It can be seen that the nodal point of coma is 

obtained in the center of the FOV. Compared with astigmatism, the value of 

spherical aberration and coma is much smaller. 

The strategy to obtain the nodal point of coma is discussed in Section 3.5.1. The 

main idea is to correct the field-constant coma. It is known from Eqs. (3-25)-(3.26) 

that the field-constant coma of each surface equals the product of the Seidel ab-

erration coefficient of coma and the field shift vector. It is shown in Figure 4-7 (a) 

that the Seidel coefficients of coma have the same sign for the three mirrors. 

Thus, the field shift vector should have different sign in x- and y-direction, which 

can be seen in Figure 4-7 (b). 

 

Figure 4-7 Surface contribution of the Yolo telescope (a) Seidel coefficient of 

coma; (b) Field shift vectors. 

The full-field coma contribution of the three mirrors are shown in Figure 4-8 indi-

vidually.  Each of the mirrors introduces a large field constant coma to the system. 

If the field-constant coma contribution in total do not vanish, it will end up with a 

very large total field-constant coma. 
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Figure 4-8 Full-field-display of coma surface contribution in the initial setup.    

(a) M1, (b) M2, and (c) M3. 

The initial setup is further optimized with three freeform surfaces with biconic 

basic shape and Zernike standard polynomials. The surface type is called Biconic 

Zernike in OpticStudio. M1 and M2 are both optimized with Zernike polynomials 

up to the 25th term, and M3 is optimized up to the 16th terms. The final system 

layout is shown in Figure 4-9(a). The modular transfer function (MTF) is shown in 

Figure 4-9(b) for wavelength of 4 μm. The MTF is above 0.4 at 40 lp/mm. 

 

Figure 4-9 (a) 3D System layout of extended Yolo telescope after optimization; 

(b) MTF of the extended Yolo telescope system for the wavelength 4 μm. 

The total coma and astigmatism are shown in Figure 4-10 based on Zernike fringe 

coefficients of wave aberration. Due to the use of freeform surfaces, the distribu-

tion of aberrations over the FOV is non-rotationally symmetric. But it is seen that 

the coma distribution of the FOV locates in a valley around the nodal point. From 

the scale bar, it is seen that the aberrations are tremendously improved compared 
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with the initial setup in Figure 4-6. The RMS value over the whole FOV is 0.083 

Waves of the total coma and 0.251 Waves of the total astigmatism.  

 

Figure 4-10 Full-field-display of aberrations of the final design of the extended 

Yolo telescope. (a) Coma by Zernike fringe coefficients 2 27 8Z Z+ ; (b) Astig-

matism by Zernike fringe coefficients 2 25 6Z Z+ . 

4.3 Scheimpflug system 

In a Scheimpflug system, the object plane is not perpendicular to the optical axis. 

In paraxial approximation, the sharp image of the tilted object plane locates on 

an oblique image plane as shown in Figure 4-11.  

 

Figure 4-11 Scheimpflug imaging condition in paraxial approximation 
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If we assume that the angle between the object plane and the front principal plane 

is θ , the tilted angle 'θ  of the image plane with the back principal plane follows 

the relation as 

 
0

tan ' ,
tan

m θ
θ

=  (4-2) 

where 0m  denotes the transverse magnification of the axial field, which is point 

B in Figure 4-11. 0m  is named the axial transverse magnification. In the tangen-

tial plane (Y-Z plane), when the object or image plane is tilted clockwise, the tilt 

angle is defined as negative. On the contrary, when it is tilted counterclockwise, 

the tilt angle is defined as positive. 

However, due to the shift of object distance from point A to point B, the magnifi-

cation is not constant. It is a function of the object height in Y*-axis [43]. Thus, the 

system suffers from keystone distortion, non-uniform resolution, and non-uniform 

intensity distribution. Keystone distortion is normally corrected by image 

processing techniques. In this work, the aim is to reduce the aberrations and im-

prove the uniformity of aberrations with freeform surfaces in order to improve the 

performance of the whole FOV.  

Table 4-8 Design specifications of the Scheimpflug system 

Parameters Values 
Wavelength 632.8nm 
Focal length 41.32 mm 

Measurement range 20mm×100mm 
Size of lens components 7mm~15mm 

Size of sensor 9mm×9mm 
Size of pixel 5µm×5µm 

Object tilt angle -70° 
Working distance 90 mm 

Total length  150 mm 
Object space NA (axial field point) 0.055 
Image space NA (axial field point) 0.268 

Axial transverse magnification -0.205 

The design specifications are listed in Table 4-8. It is a scanning system with the 

scanning range of 20mm×100mm. The tilt angle of the object plane with the prin-

cipal plane is -70 degree, which leads to a large object distance shift of 93.97mm 
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compared with the focal length 41.32 mm. The illumination is monochromatic with 

wavelength of 632.8nm. The free working distance is 90 mm from the axial field 

to the front surfaces. The total system length from the axial field to its image point 

is 150 mm. The object and image space numerical apertures are both defined for 

the axial field. 

 

Figure 4-12 3D layout of the Scheimpflug system 

The initial setup is obtained using the Gaussian brackets method with spherical 

surfaces. From the cost and manufacturing point of view, it is expected that the 

number of elements in the system is small, and materials are supposed to be 

cheap. Since the system is monochromatic, we construct the system using three 

single lenses with the glass BK7. According to the measuring range and the axial 

magnification, it is selected that the focal length is 41.32mm. The maximum and 

minimum fields are 30 mm and -70mm in Y* direction.  

According to the conclusion of C. G. Wynne mentioned in [44], it is impossible to 

correct all the aberrations for two different object distances with only spherical 

surfaces. As mentioned in Chapter 3, each object distance of the Scheimpflug 

system can be seen as a centered system individually, but the difference in ab-

errations along the object shift is large. It is known that in centered systems, the 

five primary aberrations are coupled. We select only the spherical aberration and 

distortion of three selected points A, B and C in Figure 4-12 together with the 

focal length as the nonlinear functions to be optimized. When those two aberra-

tions are optimized to be uniform, the non-uniformity of other aberrations will be 

also reduced. The initial setup is obtained and further optimized according to the 

constraint of the components size, which is shown in Figure 4-13(a).  
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Before adding freeform surfaces, the system is further optimized with the conic 

parameter on each surface. However, due to the coupling of astigmatism and 

coma, additional aspherical terms are not effective to improve the system perfor-

mance. Therefore, the system with conic surfaces as shown in Figure 4-13(b) is 

used as the intermediate system before adding freeform surfaces. 

 

Figure 4-13 Design layout of the Scheimpflug system (a) Starting system with 

spherical surfaces; (b) Intermediate system with conic surfaces; (c) Final design 

with two Zernike fringe surfaces 

According to the surface position selection rules mentioned in Section 3.6, the 

aberrations generated by the Zernike fringe freeform deformation depend on the 

Zernike fringe coefficients, the normalization radius, the separation of the ray bun-

dles of different fields, which is the ratio /h h  of each surface. The ratio /h h  of  
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each object distance corresponding to points A, B and C is calculated and shown 

as bar diagram of all the surfaces in Figure 4-14. The three points A, B, and C 

correspond to fields of 30mm, 0mm and -70mm in Y* direction. 

 

Figure 4-14 Bar diagram of the ratio /h h  on each surface 

Due to the large variance of aberrations over the shift of object distance, the 

Scheimpflug system suffers from large field-dependent aberrations. Even the 

spherical aberration is not constant over the FOV. Thus, surfaces 2 and 3 located 

at the stop position are not the good choices for freeform surfaces. The two 

freeform surfaces should have large impact on field-dependent aberrations and 

the difference between the two ratios of /h h  should be large. Thus, surface 1 

and 6 are selected as the freeform surfaces. Both are optimized with the x-direc-

tion symmetric Zernike fringe polynomials from term 5 to term 36. The final image 

quality is evaluated in terms of MTF values of the defined fields as in Figure 

4-15(a), which is higher than 0.3 at 100lp/mm. The grid distortion in Figure 4-15(b) 

shows that the distortion contribution of individual object distance is neglectable 

compared with the keystone distortion, since the locations of the fields at the 

same object distance are at the same image height. 

The freeform contribution of the surface sag of the two freeform surfaces are 

shown in Figure 4-16. It is seen that the freeform deviation of both surfaces is 

smaller than ±3mm, which is comfortable for manufacturing. 
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Figure 4-15 (a) MTF performance of the final Scheimpflug system; (b) Grid dis-

tortion of the final Scheimpflug system 

 

Figure 4-16 Freeform contribution to surface sag of surface 1 (left) and surface 

6 (right) 

 

Figure 4-17 RMS spot radius vs field map of the system (a) Starting system with 

spherical surfaces; (b) Intermediate system with conic surfaces; (c) Final design 

with two Zernike fringe surfaces 
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Figure 4-18 (a) Average RMS spot radius vs field height in Y*; Bar diagram of 

average Zernike fringe aberration coefficients vs field height in Y* for (b) the 

starting system, (c) the intermediate system, and (d) the final system 

The RMS spot radius map with the FOV of the three systems in Figure 4-13 are 

shown in Figure 4-17. It is seen that the resolution is greatly improved by adding 

the freeform surfaces. The improvement of the resolution and the uniformity over 

the object distance shift are observed by calculating the average RMS spot radius 

and the average magnitude of the Zernike fringe aberrations as astigmatism 

(Z5/6), coma (Z7/8), trefoil (Z10/11), and spherical aberration (Z9) of the three 

systems in Figure 4-13 with respect to different object distances. The magnitude 

of the aberration is calculated as the square root of sum of squares of the two 

components as 

 2 2
a/b .a bZ Z Z= +  (4-3) 



98  4 Examples and applications 

The whole field is sampled with I points in X direction and J points in Y* direction. 

For the sampling of the RMS spot radius, I=J=200. For the sampling of the aber-

rations, I=100 and J=21. The value of each sampling point is defined as ,i jV .  The 

average value of each object distance is calculated following: 

 
i, j

1
.

I
Average

j
i

V V I
=

=∑  (4-4) 

The plots of the average values with respect to different object distance are 

shown in Figure 4-18. The average spot radius of the whole FOV is also 

calculated and listed in Table 4-9 to show the improvement of resolution. 

Table 4-9 Analysis of RMS spot radius for the three systems 

 Starting  
system 

Intermediate 
system (conic) 

Final  
system 

Minimum value of  
the whole FOV (µm) 33.8 5.0 1.8 

Maximum value of  
the whole FOV (µm) 73.2 16.7 3.2 

Average value of 
 the whole FOV (µm) 43.6 8.0 2.2 

It is shown in Figure 4-18(b) that the starting system suffers from large and non-

uniform astigmatism and coma. For the far object distance (Y*=-70mm), it suffers 

more from astigmatism, while for near object distance (Y*=30mm), it suffers more 

from coma due to the larger NA and larger angle of the chief ray, which are the 

main problems of classical Scheimpflug systems. Spherical aberration is 

optimized in the initial design procedure. Thus, it is smaller and more uniform 

compared with coma and astigmatism. Using conic surfaces, spherical aberration 

and coma are better corrected as shown in Figure 4-18(c). However, coma and 

astigmatism of generated by a conic surface are coupled. When coma is 

compensated, the conic surfaces also generate large astigmatism. Since 

freeform surfaces allow decoupling in coma and astigmatism, all the primary ab-

errations are better corrected and uniformed in the final system as in Figure 

4-18(d). The aberration analysis explains the improvement of system perfor-

mance and the uniformity in Figure 4-18(a). The final system has uniform RMS 

spot radius along the object distance shift, which is smaller than the Airy radius.  



5 Conclusions 99 

5 Conclusions 

In this work, several goals are accomplished for the design of non-rotationally 

symmetric systems.  An initial system design method based on Gaussian brack-

ets and NAT is proposed, which has no limitation of surface number and concern-

ing the refractive or reflective surface types. This method can be applied to both 

non-rotationally symmetric systems and centered systems. The stop position can 

be defined arbitrarily in this method. The initial setup is designed with spherical 

surfaces. When adding freeform surfaces, the vertex of geometry can be selected 

at an arbitrary point on the surface. The primary aberrations and first-order prop-

erties are derived analytically and optimized by nonlinear least-squares solver. 

By setting proper boundary values of the tilt angles in the optimization procedure, 

it is possible to avoid obscuration.  

The already existing design method using confocal conic surface is also further 

investigated and extended in this work. The whole design procedure is introduced 

in detail. The Petzval vanishing condition is added to the method. The condition 

to obtain no obscuration is also discussed. Following the steps, it is possible to 

design an initial setup of the off-axis mirror system with sharp image in the center 

of the field of view and the linear astigmatism corrected.   

It is necessary to understand the system performance by analyzing the aberra-

tions in the system. In traditional systems, the surface contributions of aberrations 

are presented by Seidel aberration coefficients. Instead of Seidel coefficients, in 

non-rotationally symmetric systems, the aberration contribution of each surface 

can be obtained by the vectorial representation. The aberrations are related with 

both the field height and the tilt of the surface, since the tilt introduces a shift factor 

to the field. The field shift vectors have different impact on each aberration. In this 

work, the design strategies are concluded by proper rotating the surfaces to ob-

tain nodal points based on NAT. In recent years, NAT is extended to the applica-

tions with freeform surfaces. Thus, the impact of freeform surfaces at different 

locations of the system can be analyzed. In this work, the surface selection rules 

of freeform surfaces are concluded based on the extension of NAT. For different 

types of systems, the design strategy and surface selection are completely differ-

ent.  
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The biconic surface shape is used nowadays in anamorphic systems and as the 

basic shape in the freeform surface representations. In this work, the primary ab-

errations of biconic surfaces are derived following the Seidel aberration theory, 

vectorial aberration theory, and the extension of NAT of freeform surfaces. The 

biconic surface is converted into a traditional freeform surface representation with 

spherical part, conic part (or aspherical part), and the freeform part up to the 4th 

order. The total influence on the wavefront is the sum of the aberrations gener-

ated by the different parts of the surface. The aberrations are given in vectorial 

representation. Compared with the conventional conic surface, the biconic sur-

face provides two additional degrees of freedom with different curvatures and 

conic parameters in x- and y-direction, which allow the possibility to correct pri-

mary aberrations as spherical aberration, coma, and primary astigmatism as well 

as secondary astigmatism. It is shown that only freeform surfaces allow a decou-

pling of coma and astigmatism.  

With the design procedure following the initial setup establishment, system aber-

ration analysis, surface position evaluation, and surface selection, the non-rota-

tionally symmetric system with freeform surfaces is designed more effectively. 

The behavior of the system performance is better studied. The system structure 

can be simplified according to the request to reduce the cost and difficulty in man-

ufacturing. It is shown in the applications that a small f-number of an extended 

Yolo telescope system can be achieved, and in Scheimpflug systems the uni-

formity of the performance over the object distance shift can be balanced only 

with freeform surfaces.  

The work in this dissertation solves some of the problems in the design of non-

rotationally symmetric systems. In the future, the aberrations in more types of 

systems can be studied. The aberrations generated by other freeform surface 

representations can also be derived. Although it is mentioned that the same 

freeform surface sag can be represented by different polynomials, the impact of 

different terms is different. During the design process, the freeform terms are 

added step by step. Thus, the final system could end up with different perfor-

mance after local optimization, if different freeform surface representations are 

used. The reason of the difference will be clearer if the aberrations generated by 

the terms are derived, which also gives certain hints in the selection of freeform 

surface representations.  
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Appendix A: Vector relations 

As mentioned in Section 2.2 and Section 2.3, in order to unify the definition of the 

azimuthal angle in the vectorial wave aberration representation and in the 

freeform surface representation, the definition of the azimuthal angle is illustrated 

as in Figure 2-4. Thus, the vector representation in Euler's formula is modified. 

The properties of the vector dot product and the vector multiplication are modified 

as follows. 

The two components of the vectors can be represented as: 

 i ji
x yA ae a aα= = +



         ( cosxa a α= ;  sin )ya a α=  (A-1) 

 i ji
x yB be b bα= = +



         ( cosxb b α= ;  sin )yb b α=  (A-2) 

a) Dot product:   

 2A A a⋅ =
 

 (A-3) 

 ( )cos x x y yA B ab a b a bα β⋅ = − = +
 

 (A-4) 

b) Vector Multiplication:  

 ( ) ( ) i ( ) ji
x yAB abe AB ABα β+= = +

  

   (A-5) 

 ( )( ) cos cos cos sin sinx x x y yAB ab a b a b a b a bα β α β α β= + = ⋅ − ⋅ = −


 (A-6) 

 ( )( ) sin sin cos cos siny y x x yAB ab a b a b a b a bα β α β α β= + = ⋅ + ⋅ = +


 (A-7) 

c) Squared Vector: 

 2 2 2
2 2 ( ) i ( ) ji

x yA a e A Aα= = +
  

   (A-8) 

 ( )
2

2 2 2 2 2 2 2( ) cos 2 cos sinx x yA a a a a aα α α= = − = −


 (A-9) 

 ( )
2

2 2( ) sin 2 2 sin cos 2y x yA a a a aα α α= = =


 (A-10) 

d) Cubic Vector: 

 3 3 3
3 3 ( ) i ( ) ji

x yA a e A Aα= = +
  

   (A-11) 

 ( )
3

3 3 3 3 2 3 2( ) cos 3 cos 3 sin cos 3x x y xA a a a a a aα α α α= = − = −


 (A-12) 

 ( )
3

3 3 2 3 3 2 3( ) sin 3 3 sin cos sin 3y y x yA a a a a a aα α α α= = − = −


 (A-13) 

e) Vector conjugates: 

 * i ji
x yA ae a aα−= = −



   (A-14) 
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 ( )* ( *) i ( *) ji
x yAB abe AB AB A Bα β−= = + = ⋅

    

   (A-15) 

 ( *) cos( ) abcos cos absin sinx x x y yAB ab a b a bα β α β α β= − = + = +


 (A-16) 

 ( *) sin( ) absin cos abcos siny y x x yAB ab a b a bα β α β α β= − = − = −


 (A-17) 

f) Vector Identities: 

 ( )( ) ( )( ) 2
2 A B A C A A B C A BC⋅ ⋅ = ⋅ ⋅ + ⋅
         

 (A-18) 

 *A BC AB C⋅ = ⋅
   

 (A-19) 

 ( )( ) ( )( ) ( )( )2 2 2 2 2
2 A B AB C A A B C B B A C⋅ ⋅ = ⋅ ⋅ + ⋅ ⋅
           

 (A-20) 

 ( )( ) ( )( )2 2 2 3 2
2 A B A C A A AB C A BC⋅ ⋅ = ⋅ ⋅ + ⋅
         

 (A-21) 
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Appendix B: Aberrations generated by Zernike fringe 
freeform polynomials  

When the freeform surface is located away from the pupil, the aberrations gener-

ated by the term from 2 to 16 of Zernike fringe polynomials are derived following 

the relations of Eqs. (3-33)-(3.37) and Eq. (3-31) and listed below. The piston 

term is always neglected in the tables. 

Terms 2 and 3: 

 ( )2/3 2/3 2/32/3
norm norm norm

tilt

h h hW M h M M H
r r r

∆ ρ ρ
    = ⋅ + ∆ = ⋅ + ⋅    

     

      

 (B-1) 

Table B-1 Wavefront deformation generated by terms 2 and 3 

Deformation Vectorial representation 

Tilt 2/3
norm

h M
r

ρ  ⋅ 
 

 

 

 

Term 4: 

 

( ) ( )

( ) ( ) ( )

2

4 4

22

4 4 4
2

2

2 4 2

norm

norm norm norm
defocus change of magnification

hW M h h
r

h hh hM M H M H H
r r r

∆ ρ ρ

ρ ρ ρ

 = + ∆ ⋅ + ∆ 
 

    = ⋅ + ⋅ + ⋅    
     

   

     

 (B-2) 

Table B-2 Wavefront deformation generated by term 4  

Deformation Vectorial representation 

Defocus ( )
2

42
norm

hM
r

ρ ρ  ⋅ 
 

 

 

Change of 
magnification ( )4

2
4

norm

hhM H
r

ρ
 

⋅ 
 

 
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Terms 5 and 6: 

 

( )
2

5/65/6

2 2
2

5/6 5/6

22
2

5/6

2
2

5/6
2

,

2

2

norm

norm norm

norm

norm norm
astigmatism primary

hW M h
r

h h hM M H
r r h

h h M H
r h

h hhM
r r

∆ ρ

ρ ρ

ρ

  = ⋅ + ∆    
    = ⋅ + ⋅    

     

  + ⋅  
   

  = ⋅ +  
   

  

   

 

  *
5/6

2
2

5/6

change of magification

norm

M H

h M H
r

ρ⋅

 
+ ⋅ 
 

  

 

 (B-3) 

Table B-3 Wavefront deformation generated by terms 5 and 6  

Deformation Vectorial representation 

Astigmatism 
2

2
5/6

norm

h M
r

ρ  ⋅ 
 

 

 

Change of 
magnification 

*
5/6

2
2

norm

hh M H
r

ρ
 

⋅ 
 

  

 

 

Terms 7 and 8: 

 

( ) ( ) ( )

( )

( )( ) ( )( )

2

7/87/8

7/8

3 2

7/8 7/8
3

3

2

3 6

norm norm

norm

norm norm
focal  plane m of mco a  

h hW h h M h
r r

hM h
r

h hhM M H
r r

∆ ρ ρ ρ

ρ

ρ ρ ρ ρ ρ

      = + ∆ ⋅ + ∆ ⋅ + ∆           
  − ⋅ + ∆    

  = ⋅ ⋅ + ⋅ ⋅  
   

      

  

       

( ) ( )( )

( ) ( )( )

2
2 2

7/8 7/8
3 3

32
2 *

7/8 7/8
3

3 6

3 3

2

norm norm
astigmatism distortion

norm norm

distortion

no

edial astigmatism

rm

hh h hM H H H M
r r

h h hH M H H M H
r r

h
r

ρ ρ

ρ

  
 + ⋅ + ⋅ ⋅      

   
 + ⋅ + ⋅ ⋅     

−

      

      

( )7/8 7/82
norm

tilt

hM M H
r

ρ
  ⋅ − ⋅  

   

   

 

(B-4) 
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Table B-4 Wavefront deformation generated by terms 7 and 8  

Deformation Vectorial representation 

Coma ( )( )
3

7/83
norm

h M
r

ρ ρ ρ  ⋅ ⋅ 
 

   

 

Astigmatism ( )2 2
7/8

3
3

norm

hh M H
r

ρ
 

⋅ 
 

  

 

Focal plane of medial 
astigmatism ( )( )

2

7/8
3

6
norm

hh M H
r

ρ ρ
 

⋅ ⋅ 
 

   

 

Distortion 
(including tilt) 

( )( )

( )

2

7/8
3

2
2 *

7/8 7/8
3

6

3 2

norm

norm norm

h h H H M
r

h h hH M M
r r

ρ

ρ ρ

 
  ⋅ ⋅
 
 
    + ⋅ − ⋅     

   

    

 

 

Term 9: 

 

( ) ( )

( ) ( )

( ) ( )

( )

4 2

9 9

2

9

24 22 2 2
9 9

4

4
32

9 9

6

6

6 12

6 24

norm

norm

norm norm
spherical aberration

astigmatism

norm nor

hW M h h
r

hM h h
r

h h hM M H
r r

h hhM H H M
r r

∆ ρ ρ

ρ ρ

ρ ρ ρ

   = + ∆ ⋅ + ∆    

 − + ∆ ⋅ + ∆ 
 

    = ⋅ + ⋅      

 
+ ⋅ + 

 

   

   

   

  ( )( )

( )( ) ( )( )

( )

4

3 2
2

9 9
4 4

2

9 9
2

24 24

6 12

m
coma

norm norm

distortion focal plane of medial astigmatism

norm norm
defocus

H

h h h hM H H H M H H
r r

h hhM M H
r r

ρ ρ ρ

ρ ρ ρ

ρ ρ

 
⋅ ⋅ 

 

   
   + ⋅ ⋅ + ⋅ ⋅
   
   

  − ⋅ −   
   

   

       

  ( ) ( )
2

96
norm

change of magnification

hM H H
r

ρ
 

⋅ − ⋅ 
 

   

 

(B-5) 
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Table B-5 Wavefront deformation generated by terms 9 

Deformation Vectorial representation 

Spherical aberration ( )
4

2
96

norm

hM
r

ρ ρ  ⋅ 
 

 

 

Coma ( )( )
3

9
4

24
norm

hhM H
r

ρ ρ ρ
 

⋅ ⋅ 
 

   

 

Astigmatism ( )
2

2 2 2
9

4
12

norm

h hM H
r

ρ
 
  ⋅
 
 

 

 

Focal plane of medial 
astigmatism ( )( )

2
2

9
4

24
norm

h hM H H
r

ρ ρ
 
  ⋅ ⋅
 
 

   

 

Distortion ( )( )
3

9
4

24
norm

h hM H H H
r

ρ
 
  ⋅ ⋅
 
 

   

 

Change of magnification ( )9
2

12
norm

hhM H
r

ρ
 

− ⋅ 
 

 

 

Defocus ( )
2

96
norm

hM
r

ρ ρ − ⋅ 
 

 

 

 

Terms 10 and 11: 

 

( )

( )

3
3

10/1110/11

3 23 * 2
10/11 10/11

3

32 2* 3
10/11 10/11

3

3

3

norm

norm norm
trefoil astigmatism

norm norm

distortion

hW M h
r

h hhM M H
r r

h h hM H M H
r r

∆ ρ

ρ ρ

ρ

 = ⋅ + ∆ 
 

  = ⋅ + ⋅  
   

   
 + ⋅ + ⋅     

  

    

    

 
(B-6) 

Table B-6 Wavefront deformation generated by terms 10 and 11  

Deformation Vectorial representation 

Trefoil 
3

3
10/11

norm

h M
r

ρ  ⋅ 
 

 

 

Astigmatism 
2 * 2

10/11
3

3
norm

hh M H
r

ρ
 

⋅ 
 

  

 

Distortion ( )
2 2*

10/11
3

3
norm

h h M H
r

ρ
 
  ⋅
 
 

  
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Terms 12 and 13: 

 

( ) ( ) ( )

( )

( )( )

2 2
2

12/1312/13

2

12/13

4 2
2

12/13 12

,

4

3

4 3

norm norm

norm

norm norm
Astigmatism Secondary

h hW M h h h
r r

hM h
r

h hM M
r r

∆ ρ ρ ρ

ρ

ρ ρ ρ

      = ⋅ + ∆ + ∆ ⋅ + ∆      
         

  − ⋅ + ∆    

   = ⋅ ⋅ −   
   

      

  

    

( )( )

( )( )

( )

2
/13

3 *
12/13

4

3 3
12/13

4

2
2 2

12/13
4

*
12/13

2

12

4

12

6

astigmatism

norm
coma
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Table B-7 Wavefront deformation generated by terms 12 and 13  

Deformation Vectorial representation 
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Table B-8 Wavefront deformation generated by terms 14 and 15  

Deformation Vectorial representation 
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Appendix C: Verification of the aberrations generated 
by the biconic surface  

A single centered biconic reflective surface is demonstrated as an example to 

verify the theoretical aberrations. The surface is located away from the pupil with 

the data as in Table C-1. The two fields are with field angles 0° and 1° (in y). The 

object is assumed to be at infinite distance.  

Table C-1 Data of the biconic reflective surface  

Parameter Value 
( )1

xc mm −  -0.0100 

( )1
yc mm −  -0.0125 

xκ  -1.0000 

yκ  -0.8000 

Due to the large astigmatism of the biconic surface, the circle of least blur is used. 

The image plane is located at a distance of -43.89mm from the biconic mirror, 

where the axial field has the minimum spot radius. The system layout in Y-Z plane 

is illustrated as in Figure C-1. 

 

Figure C-1 Biconic reflective mirror 

The theoretical aberration values are compared with the Zernike fringe wave ab-

erration coefficients. The theoretical values are calculated according to the aber-

rations derived in Subsection 3.5.3. If the corresponding wave aberration coeffi-

cient of ith term is defined as iZ , since the higher order Zernike terms also contain 

lower order terms, the values of higher orders terms are also taken into consid-

eration, which are listed in Table C-2. Then the wave aberration coefficients in 
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Zernike fringe polynomials and the theoretical values of spherical aberration, 

coma and astigmatism of the off-axis field of 1 degree are listed in Table C-3. The 

aberration values are all in wavelength unit. The wavelength is set as 1μm in the 

system. 

Table C-2 Calculation of wave aberration coefficients using the Zernike fringe 

coefficients   

Aberration Value in terms of  
Zernike fringe coefficients 

Spherical aberration 9 16 256 30 90Z Z Z− +  

Coma (in y) 8 15 243 12 30Z Z Z− +  

Astigmatism (axis in 0°) 5 12 213 6Z Z Z− +  

Table C-3 Comparison of the wave aberration value using Zernike fringe poly-

nomials and the theoretical value calculated based on extended nodal aberra-

tion theory (in wavelength unit) 

Aberration Zernike fringe wave 
aberration 

Extended nodal  
aberration (theoreti-

cal) 

Spherical aberration 0.0282 0.0281 

Coma (in y) -0.239 -0.274 

Astigmatism 
(axis in 0°) 30.915 31.278 

It is known that the wave aberration value in terms of Zernike fringe polynomials 

depends on the image plane position. Here, the error in coma and astigmatism is 

much larger compared with spherical aberration, because the biconic surface has 

very large field-constant astigmatism. Since the spot size is always very large 

even for the on-axis field, it is hard to find the corresponding image plane location, 

which gives the accurate wave aberration value for coma. However, if we locate 

the image plane at the middle position between the tangential and sagittal focal 

plane, which is -44.44 mm from the biconic mirror, the astigmatism value in terms 

of Zernike fringe wave aberration will be 31.247, which is much closer to the the-

oretical value. 
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