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Look up at the stars and not down at your feet.

Try to make sense of what you see,

and wonder about what makes the universe exist.

Be curious.

- Stephen Hawking (1942 - 2018)
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1. Introduction

Over the last two decades, the health care systems have encountered new challenges and
experienced severe pressure, mainly because of three factors. As the first factor, the spread
of infectious diseases has been dramatically sped up by the expanding global transport
network [1]. Additionally, chronic and lifestyle-related diseases appear to have increased in
prevalence, particularly due to the diet and lifestyle changes in industrial societies [2,3]. More
importantly, age-related diseases have become a major problem in developed countries as a
result of the rapid demographic change towards an aging society [1]. All three of these factors
make it urgently necessary to improve both disease care and individual health maintenance.
This improvement requires deeper knowledge about the origin and progression of diseases,
especially the understanding of chemical and biochemical processes on a molecular level [5].
The starting point is to capture signatures of chemical and biochemical components from

biological samples. One of the approaches to doing so is molecular imaging.

Molecular imaging has enabled the visualization of biological processes in living organ-
isms on a cellular and molecular level [5]. Existing molecular imaging techniques include,
but are not limited to, positron emission tomography (PET), single photon-emission com-
puted tomography (SPECT), magnetic resonance imaging (MRI), and optical imaging [0].
PET and SPECT can provide accurate quantitative information on molecules with high
sensitivity. However, their potential is restricted by the relatively low spatial resolution,
high cost, and risk of radiation exposure. MRI has gained attention in clinical use due
to its excellent spatial resolution, but it is limited by low sensitivity [7,&]. Optical imag-
ing is emerging as a more important molecular imaging technique with great potential in
real-time measurement, quantitative analysis, multiplexing, and endoscopy [9]. In this tech-
nique, molecular signatures are detected based on the optical properties of samples, such as
absorption, scattering, polarization, spectral characteristics, and fluorescence [10]. Typical
examples of optical imaging include fluorescence imaging, infrared (IR) imaging, and Raman
imaging [5,0, 11].

A large variety of biomolecules can be detected by fluorescence imaging, thanks to the

continuous discovery of fluorescent probes [12]. With elaborate techniques, fluorescence
imaging is able to provide sub-diffraction spatial resolution [10, [3-15], to trace dynamic
processes within cells [16-19], and to be applied in wvivo [20,21]. Like all other labeling
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Chapter 1. Introduction

imaging techniques, however, fluorescence imaging is hindered by the fluorescence probes
required. Information that can be accessed by fluorescence imaging is limited by the access
of probes, and it can be a very extensive process to develop novel probes. Even worse,
fluorescence probes may disturb the properties of biological molecules or be toxic to hu-
man subjects. Additionally, the reproducibility of probes and labeling procedures largely
influences the quality of measured data [5,22,23].

Therefore, label-free optical techniques, such as infrared (IR) absorption and Raman spec-
troscopy, are more attractive. Both techniques provide highly-specific molecular fingerprint
information and characterize the molecular environment in biological samples. However, IR
spectroscopy is often not applicable in biological applications due to strong water absorp-
tion [22]. In contrast, Raman spectroscopy is insensitive to water and ideally suitable for
biological investigations [24]. To understand the molecular fingerprints of biological samples
represented by Raman spectroscopy, it is necessary to briefly refer to the theory of Raman

spectroscopy.

1.1 Raman Spectroscopy

Raman spectroscopy is a spectroscopic technique based on Raman scattering, a phenomenon
discovered by C.V. Raman [25,20] and G. Landsberg [27] in 1928. The theory of Raman
scattering can be explained by investigating the interaction between light and molecules
[5,28]. The oscillating electric field £ = Eycos(wyt) of incoming light can displace the
electron cloud of a molecule against the atomic nuclei and induce a dipole moment within

the molecule. The strength of this induced dipole moment is shown by:
p=a-E=a- Eycos(wt), (1.1)

where the term « denotes the polarizability measuring how easily the electrons can be dis-
torted within a molecule. The polarizability is not constant but can change because of
molecular vibration. The dependence of the polarizability on the nuclear coordinate ¢ can
be expressed by a Taylor series expanded around the equilibrium nuclear geometry ¢ = 0:
Ja
a0,
q=0

A molecular vibration with the characteristic frequency wgr can be approximated as a

a=a(q) =a(0)+ ( gt (1.2)

harmonic oscillation around the equilibrium nuclear geometry:
q = qo - cos(wgt). (1.3)
Substituting Eq. (1.2-1.3) into Eq. (1.1) and omitting the nonlinear terms in Eq. (1.2),

the induced dipole moment is formulated by:

O

a(0) + (a—q) - Egcos(wot). (1.4)

- qo - cos(wgt)
q=0

lL[/:
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Eq. (1.4) can be rewritten as:

p = a(0) - Eycos(wot) + ; (g) - qo - cos((wo — wr)t)
: (‘30‘) a0 eos(len + )t (15)

Eq. (1.5) shows that the induced dipole oscillates at three frequencies. The first frequency
is equal to the excitation frequency wy. The other two frequencies, wyg — wr and wy + wg,
are the difference or the sum of the excitation frequency wy and the characteristic frequency
wg of the molecular vibration. The induced dipole, in turn, radiates scattered light at
these three frequencies. The radiation with frequency wy is called Rayleigh scattering. The
radiation with frequencies wy — wr and wy + wg is referred to as Stokes-Raman scattering
and anti-Stokes Raman scattering, respectively. It can also be derived from Eq. (1.5) that
Raman scattering only occurs if the polarizability a is changed by the molecular vibration
(i.e., g—f; # 0). Molecules showing Raman response are termed Raman-active molecules.
The Raman scattering of a Raman-active molecule represents the vibrational fingerprints of
this molecule because the frequency shift of the Raman scattering relative to the excitation
frequency is determined by the characteristic frequency wg of the molecular vibration [29,30].
It is thus possible to identify all Raman-active molecules contained in a sample by analyzing

Raman spectra of this sample.

1.2 Raman Spectroscopy-based Biological Applications

The previous section shows in theory how Raman spectra contain vibrational fingerprints of
Raman-active molecules. Since most biomolecules are Raman-active, rich molecular finger-
prints of biological samples can be delivered via Raman spectra. Moreover, Raman spectro-
scopic measurements of biological samples are not disturbed by water considering the low
Raman response of hydroxyl groups [21]. Hence, Raman spectroscopy is highly suitable for
measurements of biological samples.

The early biological application of Raman spectroscopy was reported in 1936 [31]. How-
ever, it took almost 40 years before Raman spectroscopy became popular in biological re-
search [30,32]. This slow development was the result of the intrinsically small cross-section
of Raman scattering and the low concentration of biomolecules [5]. It required long inte-
gration times to obtain a utilizable signal. This situation changed with the invention of
a laser that has higher excitation intensities [33]. Further, it became possible to acquire
large datasets with a wide wavenumber range thanks to the technical advances of effective
Rayleigh filters [31,35], computers, and low-noise detectors such as a charge-coupled device
(CCD) [36,37]. As a result, Raman spectroscopy could be successfully employed to study

biomolecules such as proteins, nucleic acids, and lipids [38,39] in the 1970s. Later, in 1976,
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Dick Lord reported the first-version strategy and tactics used to apply Raman spectroscopy
for biomolecules at the FACSS meeting in Philadelphia [10]. Recently, Butler and coauthors
published a standard protocol for employing Raman spectroscopy to study biological mate-
rials from the perspectives of instrumentation, spectral acquisition, sample preparation, and
data analysis [37].

Nowadays, Raman spectroscopy is widely applied in modern biological applications |11,

—13]. There are numerous studies available covering various fields, such as toxicology

[44,45], microbiology [16—18], drug discovery [19-51], metabolic investigations [52-55], and
forensic analysis [50,57]. Raman spectroscopy can also be applied in vivo and thus benefits
medical diagnostics and therapeutic interventions [58-63]. The most illustrative example is
the detection of early-state cancers, such as cancers of the skin [64, 65], mouth [66, (7],
brain [68=70], larynx [71,72], breast [73, 74], lungs [75, 76], lymph nodes [77, 78], blad-
der [79,80], colon [31,82], prostate [83], uterus [¢1], and so on. Raman spectroscopic ap-

plications for the detection of other diseases have been reported as well. Examples of such
applications include Raman spectroscopy-based studies of inflammatory bowel diseases [37]
and Alzheimer’s disease [30].

Nonetheless, the above-mentioned applications are only possible if the spectral signal is
effectively translated into high-level information such as disease levels [12]. The translation
is far from straightforward because the measured Raman spectra are often contaminated
by corrupting effects such as fluorescence emission. Another significant difficulty in the
translation is that the spectral variations caused by biological changes are very subtle and
cannot be detected by the naked eye or a simple database search. It is required to incorporate
more advanced analysis approaches into Raman spectroscopy-based techniques in order to
remove the corrupting effects and detect the subtle spectral variations of interest [5, 13].
This leads to the topic of chemometrics [37]. The general idea of chemometrics and its close

connection with Raman spectroscopy is described in the following section.

1.3 Chemometrics in Raman Spectroscopy-based Biological Ap-

plications

The term ‘chemometrics’ was first used in 1972 [$8], ten years after the first application of
multivariate methods in chemistry to determine the number of components for the fluores-
cence spectra of mixtures [39]. It took another decade before chemometrics became widely
used, thanks to the NATO-sponsored meeting held in Cosenza, Italy [90]. Since then, chemo-
metrics has been a cornerstone of analytical chemistry. The basic idea of chemometrics is
simple. A statistical model is built on a certain number of known samples, namely: the
training data. This trained model is then validated according to its prediction on a dataset

that is independent on the training data. The independent dataset is termed testing data.
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Finally, the model is saved and used for predicting unknown samples in the future.
Chemometrics plays an essential role in Raman spectroscopy-based biological investiga-
tions, which has been revealed from multiple aspects [5, 11,42]. Foremost, a manual spectral
inspection requires an expert’s interaction and is subjective. The same expert can make con-
troversial conclusions on the same sample at different times. On the contrary, chemometric
approaches do not require human interaction and can provide consistent and objective out-
put. Further, corrupting signals contained in Raman spectra, such as fluorescence emission,
can be removed by chemometric methods, leading to an improved data quality and better
prediction performance. Additionally, the datasets in biological applications are extensive
and impossible to be handled manually. Chemometric approaches make it possible to han-
dle a massive amount of data very fast, thanks to the powerful computation capabilities of

modern computers.
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Figure 1.1: An example illustrating the capability of chemometrics to extract subtle spectral
differences. The three cell types (leukocytes, MCF-7, and BT-20) are difficult to distinguish
by the naked eye according to the mean Raman spectra shown in the left panel. From the
LD scores calculated from the chemometric model (PCA-LDA), as are shown in the right
panel, the three cell types become clearly differentiable. The open and filled circles in the
right panel represent the scores of training (six out of nine replicates) and testing (the rest

three replicates) data, respectively.

More importantly, chemometric approaches can extract the subtle spectral variations
caused by biological changes of interest, which enhances the sensitivity of Raman spectroscopy-
based biological detection. This enhancement is proven by numerous studies [16, 62,70, 78,

—05]. An illustrative example is shown in Figure 1.1. In this example, the Raman spectra
of leukocytes and breast carcinoma-derived tumor cells (MCF-7 and BT-20) were measured.
Each cell type consists of nine replicates [92]. The three cell types are difficult to distinguish
by the naked eye according to the mean spectra shown in the left panel of Figure 1.1. By
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using a statistical model, which is composed of principal component analysis (PCA) and lin-
ear discriminant analysis (LDA), the three cell types can be easily distinguished, as shown
in the right panel of Figure 1.1. The clear separation of the three cell types shows that the
chemometric model can successfully extract the subtle spectral differences of the three cell
types.

Nonetheless, there are still unresolved issues in the application of chemometrics in Raman
spectroscopy-based biological investigations. Chemometric techniques are required to auto-
matically optimize the baseline correction [96,97], to effectively remove the extremely intense
fluorescence background [9%], to reliably optimize and evaluate a statistical model [99, 100],
and to adequately predict data measured from a new replicate with the trained model [101].
These open issues in chemometrics motivated the investigations in this thesis. Detailed ex-
planations of each topic, as well as the proposed approaches, will be provided in chapter 3,

following an overviewed state of the art of chemometric techniques in chapter 2.



2. State of the Art

Before presenting the work related to the aforementioned open issues, it is necessary to
overview the state of the art of chemometric techniques. A typical workflow of chemometrics
in Raman spectroscopy-based biological applications is illustrated in Figure 2.1. According
to this workflow, the overview is divided into four aspects: Raman spectral pre-processing,

statistical modeling, sampling, and prediction of new data.

2.1 Raman Spectral Pre-processing

Chemometrics in Raman spectroscopy often starts from Raman spectral pre-processing. The
reason for this is that measured Raman spectra are often contaminated by corrupting effects
such as cosmic spikes, fluorescence, and Gaussian and Poisson noise (Figure 2.2) [96]. They
can hamper subtle spectral variations caused by biological changes of interest and lead to
decreased performance of the subsequent analysis. The removal of these contaminations is
necessary and usually achieved by Raman spectral pre-processing steps including de-spiking,
spectrometer calibration, baseline correction, smoothing, outlier detection, and normaliza-
tion [12,96,102,103], as shown in Figure 2.1. The following text of this subsection will focus
on baseline correction and spectrometer calibration. Other steps are beyond the scope of

this thesis; details can be found in the references [12,96, 104, 105].

2.1.1 Baseline correction

Fluorescence emission manifests as a slowly changing baseline profile under Raman bands.
It is one of the most influential corrupting effects in measured Raman spectra because it can
be several orders of magnitude more intense than Raman scattering. The removal of such
fluorescence profile is the central aim of baseline correction. Existing baseline correction
methods are based on two mechanisms: mathematical baseline correction [106—-109] and
experimental baseline correction [110,111]. A brief overview of these two baseline correction
categories is provided in the following.

With mathematical baseline correction, the fluorescence baseline is estimated mathe-

matically and subtracted from the acquired Raman spectrum. Methods like polynomial
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Figure 2.1: Workflow of chemometrics in Raman spectroscopy-based biological applications:
The pre-processing removes corrupting effects within a measured Raman spectrum. Sta-
tistical modeling translates the spectral signal into high-level information, such as disease
levels, which usually consists of dimension reduction and model building. Two-layer cross-
validation (CV), composed of internal and external CV, is often necessary in order to achieve
both model optimization and evaluation. The model parameters are optimized with internal
CV, while external CV is used for model evaluations. Pre-processing parameters can also be

optimized by including the step to be optimized inside the internal CV loop.
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Figure 2.2: Contributions in a measured Raman spectrum: In addition to Raman signals,
a measured Raman spectrum is corrupted by cosmic spikes, the fluorescence baseline, and

noise. Raman spectral pre-processing is necessary to remove these corrupting components.

fitting [107], asymmetric least squares (ALS) [108], and extended multiplicative signal cor-
rection (EMSC) [109] fall into this category. Mathematical baseline correction is most widely
applied due to its flexibility and low cost. However, without carefully optimizing the parame-
ters, the baseline correction might lead to a significant loss of useful spectral information and
decrease in the performance of subsequent analysis [96,97,112]. A manual parameter adjust-
ment is possible but time-consuming and subjective, especially for biological investigations
with a massive amount of data. Automatic optimization has been achieved by model-based
methods, in which the baseline correction was optimized by seeking for the best perfor-
mance of the subsequent model such as a classifier [96,97,112]. The major drawback of these
optimization methods is that they require a large amount of training samples to build the
subsequent model. The result of such optimization is also dependent on the employed model.
A different procedure is necessary to realize a model-independent optimization, which will

be addressed in subsection 3.1.1.

With experimental baseline correction, the fluorescence baseline is removed via tech-

nical modification of the instruments. The related methods include Raman spectroscopy

with near-infrared (NIR) excitation [110], time-resolved Raman spectroscopy [l 11], and
polarization-resolved Raman spectroscopy [113]. All of these methods have certain limi-
tations, and the required instrumental modification can be very expensive [l 11]. An alter-

native method is shifted-excitation Raman difference spectroscopy (SERDS), in which two
Raman spectra are measured at two slightly different excitation wavelengths to obtain a
difference spectrum without fluorescence [958, 115-117]. However, the difference spectrum

does not directly show the Raman bands and is difficult to interpret. It is required to re-
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construct a fluorescence-free Raman spectrum from the two recorded Raman spectra. The
existing methods for such spectral reconstruction are based on numerical peak fitting, anti-
derivative, or Fourier transform [98, 118-121], of which all suffer from certain limitations.
The numerical peak fitting is inapplicable for severely overlapping Raman bands, as are of-
ten observed in biological applications. Spectral resolution is significantly degraded by the
anti-derivative-based reconstruction. The Fourier transform-based method is hampered by
the high-frequency artifacts due to the frequency leakage. In addition, reconstruction with
these methods is largely hindered by intensity variations between the two recorded Raman
spectra caused by unavoidable experimental changes. A new spectral reconstruction method

is required and proposed in subsection 3.1.2.

2.1.2 Spectrometer calibration

Another significant step of Raman spectral pre-processing is the spectrometer calibration,
which is performed to remove the influence of the response of an instrument on a measured
Raman spectrum. Because of the influence of the instruments, a measured Raman spectrum
can be significantly different from the true values in both wavenumber and intensity axes.
These spectral deviations can be removed by a spectrometer calibration: the response func-
tion of an instrument is calculated, and observed Raman shifts and intensities are related
to their true values according to the calculated response function. The procedure includes
wavenumber calibration and intensity calibration [28, 122 123].

The wavenumber calibration requires a reference Raman spectrum to be measured from
a standard material that has well-defined Raman bands [124]. The difference between the
measured and theoretical band positions of these known Raman bands is calculated and
used to fit a parametric function. This parametric function, which represents the relation-
ship between the observed and the true wavenumber axis, is then employed to correct the
wavenumber axis of measured Raman spectra.

The intensity calibration requires the measurement of a standard material with a known
emission at different frequencies [28]. The ratio between the measured and theoretical emis-
sion of this standard material is calculated, which is the intensity response function of the
instrument. The intensities of a measured Raman spectrum are divided by this intensity

response function for (linear) intensity calibration.

2.2 Statistical Modeling

After pre-processing, the corrected Raman spectra are used for statistical modeling to trans-
late spectral signals into high-level information like disease levels. Statistical modeling nor-
mally starts with a dimension reduction procedure, which helps not only to decrease com-

putational effort but also to improve the generalization performance of a model. Dimension

10
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reduction can be achieved in a supervised or unsupervised manner, such as with partial least
squares (PLS) and principal component analysis (PCA), respectively. Their difference is
whether or not the response variables are used during computation. Dimension reduction
methods can also be categorized into feature extraction and feature selection [125]. Feature
extraction methods transform the original data space into a new coordinate system with a
lower dimension. Typical examples include PCA [87], PLS [126], independent component
analysis (ICA) [127], and multivariate curve resolution alternating least squares (MCR-
ALS) [128]. In contrast, feature selection approaches pick ‘important’ variables according to
a chosen metric. Methods falling into this category include competitive adaptive reweighted
sampling [129], feature selection based on Fisher’s discriminant ratio (FDR) [130], Monte
Carlo based methods [131, 132], and many others [133, 131]. Over the last two decades,
dimension reduction has been facilitated by advanced algorithms (e.g., Isomap [135], lo-
cally linear embedding (LLE) [136,137], auto encoder, and other neural network-based tech-
niques [138, 139]).

After dimension reduction, the lower-dimensional data is fed into a statistical model [12],

be it clustering, classification, or regression. Frequently applied algorithms include k-means

[110] and hierarchical clustering analysis (HCA) [111] for clustering, linear discriminant
analysis (LDA) and random forest (RF) [112,113] for classification, and principal compo-
nent regression (PCR) [120] for regression. Moreover, intrinsic regression methods, such as

PLS, support vector machine (SVM), and artificial neural network (ANN), are applicable in
classification as well by codifying the class information as a dummy response variable (0 or
1) [93, 144, 145]. In particular, the statistical modeling can be conducted in a hierarchical
manner for multi-group tasks, as performed in the reference [94]. This makes it possible to
incorporate the biological information of samples into statistical modeling.

Statistical modeling has seen new developments from multiple perspectives. First, sparse

and fuzzy extensions of existing models are utilized to achieve faster computation, higher

stability, and better generalization [116]. Second, fusion techniques, including data fusion
(multi-block, multi-group analysis) [117], model fusion (decision trees, classifier ensemble)
[148], and decision fusion [119], have found their place to build a more powerful model

or to obtain a more stable evaluation of model performance. Third, local modeling has
been reported to tackle nonlinear problems more effectively [150]. Further advances are
possible with deep learning technologies, which can achieve nonlinear feature extraction and
classification [151,152].

Regardless of the methods applied, a common issue in statistical modeling is over-fitting.
It means the model fits training data too perfectly and cannot be generalized to new samples.
A common way to avoid over-fitting is to optimize the model by minimizing the prediction
error on a dataset different from the training data, namely: validation data. This optimiza-
tion ensures a trade-off between the training error and the generalization performance of

the model [153]. After the optimization, the optimized model also needs to be evaluated

11
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to estimate its performance in predicting new data. This is often carried out by using the
model to predict a dataset that is independent on the training and validation data. This
independent dataset is referred to as testing data. The model optimization and evaluation
are extremely important to ensure a high accuracy and robustness of Raman spectroscopy-
based biological detection. These two procedures can be conducted under a framework of
two-layer cross-validation (CV) (see Figure 2.1) [154], which is composed of internal and

external CV. Details of two-layer CV are outlined in subsection 3.2.1.

2.3 Sampling in Chemometrics

Aside from the aforementioned procedures, a hard prerequisite of chemometrics is that the
measured samples are good representatives of the population of interest. The related topics
fall into the field of design of experiment (DoE), which was first introduced into modern
statistical concepts by Fisher [155]. The central aspect of DoE is the theory of sampling
(TOS), which has two meanings in chemometrics: physical sampling and statistical sampling
[156,157].

Physical sampling occurs prior to data acquisition. The key is to design a proper protocol
so that the samples to be measured represent the population of interest well. Improper
physical sampling was reported to increase the error of statistical analysis by 10 ~ 1000
times [150]. One of the most critical parameters for proper physical sampling is the sample
size. The related topic, sample size planning (SSP), has been investigated in several studies
[158=160]. An extremely significant issue in SSP is that the properties of the samples have
to be well considered during the planning, especially in biological investigations. This is
because the biological experiment cannot be totally controlled and there are always unknown
variations in replicates or individuals. Therefore, the sample size should be counted as the
number of replicates/individuals rather than the number of measured spectra [160].

Statistical sampling (or resampling) refers to the procedure of drawing a subset from an
available dataset, which is often used in chemometrics for parameter estimation or model
validation [161,162]. The commonly applied resampling methods include Jacknife, hold-
out, bootstrapping, and cross-validation. Details of these techniques are provided in refer-
ences [163,164]. Similar to the case of SSP, proper resampling has to take the distribution
of the population into account. This point can never be over-stated when it comes to model
evaluation for Raman spectroscopy-based biological applications, in which new samples to
be predicted are often significantly different from the training data due to the inter-replicate
variations. By random resampling, the testing data used for model evaluation is not inde-
pendent on the training data. The difference between such testing and training data does
not represent the difference between the training and new data from real-world applications.
The model evaluation in this case does not truly reflect the performance of a model in future

prediction. Therefore, the resampling has to be conducted at the highest hierarchical level of
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samples instead of a random manner. If the dataset is composed of a large number of spectra
from multiple individuals, the spectra belonging to the same individual should be treated
altogether as ‘one’ data package [162, , , 166]. The influence of improper resampling

on model evaluation is unraveled in subsection 3.2.2.

2.4 Prediction of New Data

After a model is constructed and evaluated, it is saved and used to predict new data in order
to achieve tasks like disease diagnosis. Despite reliable model optimization and evaluation,
the prediction for new data is mostly worse than the prediction for training data. This
phenomenon is known as the shrinkage effect of predictors [167], caused by the unavoidable
difference between new and training data. The shrinkage effect can be very severe in Raman
spectroscopy-based biological investigations, in which difference between new data and train-
ing data can be comparable or even larger than subtle spectral variations originating from
biological changes of interest. Such undesirable spectral difference can be caused by inter-
replicate or inter-individual variations, as well as instrument-related changes. Instrument-
related spectral changes can be reduced by the above-mentioned spectrometer calibration.
However, the spectrometer calibration is incapable of reducing spectral variations caused by
inter-replicate variations. As a result, new data from a replicate/individual different from
the training data is impossible to be adequately predicted by the pre-trained model. One
solution is to rebuild a specific model for this new data. However, this requires a large
number of new training samples, which can be expensive or even impossible to measure.
An alternative technique of handling this failed prediction is model transfer, which aims
to enable the trained model to successfully predict the new data [101,168]. Existing meth-
ods for model transfer include procrustes analysis [109], piece-wise direct standardization
(PDS) [169], warping [170], global modeling [101], sample-wise spectral multivariate cali-
bration [171], model augmentation [172], and so on. These approaches are mostly applied
in near-infrared spectroscopy and regression problems [101, 168]. Model transfer of Raman
spectroscopy and classification tasks is scarce [173] and required to be developed. Details of

this topic and the proposed approaches are described in section 3.3.
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3. Selected Work and Results

This chapter presents the investigations and approaches to filling the gaps of applying chemo-
metrics in Raman spectroscopy-based biological studies, as were described in the last para-

graph of chapter 1. The related topics are briefly outlined in the following:

e Fluorescence emission in a measured Raman spectrum can be removed by a mathematical
baseline correction method, of which the parameters have to be carefully optimized to
preserve the useful spectral signals. In biological applications, such an optimization
must be done automatically in order to handle the massive datasets effectively. To do
so, a quantitative marker is defined in subsection 3.1.1 as a figure-of-merit of baseline
correction. An automatic baseline correction optimization procedure is established based

on the defined marker.

e Mathematical baseline correction is inapplicable if the fluorescence is too intense and
masks the Raman signal. The shifted-excitation Raman difference spectroscopy (SERDS)
can be employed as an alternative option, in which two Raman spectra are measured with
slightly different excitation wavelengths. A successful application of SERDS requires to
reconstruct the fluorescence-free Raman spectrum from the two measured Raman spectra.
Such spectral reconstruction is achieved by non-negative least squares (NNLS)-based

method in subsection 3.1.2.

e Model optimization and evaluation are two essential procedures in statistical modeling.
The model optimization helps to avoid over-fitting by seeking for a trade-off between the
training error and the generalization performance of a model. The model evaluation is
used to estimate the performance of an optimized model in predicting new data. Proper
model optimization and evaluation are extremely important to ensure a high accuracy and
robustness of Raman spectroscopy-based biological diagnostics. Therefore, a guideline is
necessary and proposed in section 3.2 showing how to reliably optimize and evaluate a

statistical model.

e A pre-trained model can be used to predict unknown (new) data in order to achieve

tasks such as disease diagnosis in Raman spectroscopy-based biological applications. The
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prediction can fail if new data is significantly different from training data due to the inter-

replicate spectral variations. One possible solution is to rebuild a specific model for the

new data. However, this requires a large number of new training samples, which can be

expensive or impossible to measure. An alternative strategy is model transfer, to which

the related approaches are developed and described in section 3.3.

The descriptions and discussions in the next sections will be based on the following

publications and manuscripts (in the order of their appearance in the text, reprints are

provided in chapter 7):
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3.1 Baseline Correction

As mentioned previously, the fluorescence baseline is one of the most influential corrupting
effects in a measured Raman spectrum and has to be removed prior to statistical modeling.
Existing approaches to removing this baseline can be categorized as mathematical baseline
correction and experimental baseline correction. The issues related to the two mechanisms

are investigated in the following subsections.

3.1.1 Automatic optimization of mathematical baseline correction

Mathematical baseline correction is widely applied due to its low cost and high flexibility.
However, improper baseline correction can degrade the quality of subsequent analysis. It is
important to carefully optimize the methods and the parameters for each specific dataset to
ensure a reasonable baseline correction [96,97,112]. Such optimization needs to be automatic
so that a massive amount of data in biological investigations can be handled effectively. The
approach to doing so is developed and presented in this subsection. The related work was
published in [A1].

The proposed optimization method is based on a quantitative marker R'? defined as a

figure-of-merit of baseline correction. The definition of R'? is shown by:

In(N,) N Agt
A, In(Ny)
my = Ap/(Aidt+ Ap)
max(lics — min(les))
(> L) /N
R = my/ms,. (3.1)

mp =

t

It is calculated from a baseline-corrected Raman spectrum on the basis of three spectral
regions: peak region (p), silent region (s), and region used for normalization (n). The
number of data points contained in these three regions is termed N, N, and V,,, respectively.
The variables A, and A, denote the area of the peak and silent region, respectively. Term [
represents the Raman intensity.

The idea of the definition is that a good baseline correction should yield the least intensity
loss for Raman bands (peak regions) and the least fluorescence residuals for silent regions.
By this definition, R'? is supposed to be smaller for a better baseline correction. The optimal
baseline correction is obtained when R'? reaches the minimum.

To verify the definition of R'?, a grid search procedure was employed to go through
three mathematical baseline correction methods and their parameters. Details of the grid
search are available in [A1]. The involved three mathematical baseline correction methods

are: sensitive nonlinear iterative peak (SNIP) clipping [174, 175], asymmetric least squares
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Figure 3.1: Baseline correction optimized by the marker R'? and the Euclidean distance
(ED) between true and corrected Raman spectra: The optimal baseline correction in the
latter case is considered to be the ‘gold standard’ The result of the R'?-based optimization
is consistent to this ‘gold standard’, demonstrating that R'? is a valid figure-of-merit for

baseline correction.

(ALS) [176,177], and modified polynomial (Modpoly) fitting [107]. Baseline correction was
performed using each combination of the method and its parameters over the grid search.

As the first step, the validity of R'? as a figure-of-merit for baseline correction was verified
with an artificial dataset. The artificial dataset was composed of three spectra constructed
by the same Raman spectrum and three different fluorescence baselines. Performing the grid
search yielded a series of baseline corrections. The optimal baseline correction was selected
according to two schemes: (1) the minimal R'? and (2) the minimal Euclidean distance (ED)
between the true and baseline-corrected Raman spectra. The second scheme was believed to
produce the ‘gold standard’ baseline correction. The results of one of the artificial Raman
spectra are shown in Figure 3.1, similar results were observed for the other two spectra.
Apparently, the baseline correction featuring the minimal R'? was almost the same as the
‘gold standard’. This proves that R'? is a valid figure-of-merit for baseline correction.

In the next step, the marker R'? was employed to optimize the baseline correction of
a real-world dataset. The dataset was composed of 1553 Raman spectra measured from
three cell types: breast carcinoma-derived tumor cells (MCF-7, BT-20) and acute myeloid
leukemia cells (OCI-AML3). Each cell type was measured in nine replicates.

The results from the grid search are shown in Figure 3.2. The bottom plot shows the
values of R'? calculated from the baseline-corrected spectra for each step of the grid search.

The upper two plots visualize the corresponding mean sensitivity of a three-group classifi-
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Figure 3.2: Results of R'? and classification from the grid search for a three-group task: The
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value of R'? and the mean sensitivity of the three-group classification are calculated after
each baseline correction over the grid search. It is evident that the classification performance
improves when the R'? decreases. The mean sensitivity corresponding to the minimal R!?

is comparable to the highest values for both linear and kernel SVMs.

cation. The classification was carried out by a combination of principal component analysis
(PCA) and support vector machine (SVM) with a linear or radial kernel. It is evident that
the mean sensitivity increases as R'? decreases. The minimal R'? corresponds to the mean
sensitivities of 72.7% for linear-kernel SVM and and 73.1% for radial-kernel SVM, which is
comparable to the respective highest values of 74.3% and 76.8%. That is to say, a baseline
correction optimized by minimizing R'? can lead to a classification comparable to the best
case.

The estimated baselines corresponding to the minimal R'? and the best classification are
plotted in Figure 3.3. The estimated baselines leading to the best classification are visibly
less reasonable than the baseline with the minimal R'2, because the estimated baseline
adapted too much to Raman peaks in the former case. That means, the baseline correction
selected according to the best classification (i.e., a classification-based optimization) is not

necessarily reasonable. In fact, an unreasonable baseline correction can introduce artifacts
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Figure 3.3: Results of estimated baselines corresponding to the minimal R'? and the best
classification: The R'2-based optimization is conducted under the framework of grid search
(GS) or genetic algorithm (GA). The two frameworks provide similar results. It is also
visible that the R!?-based optimization provides more reasonable baseline estimation than

the classification-based optimization.

that help the classification. This is the risk of optimizing baseline correction using model-
based optimization methods.

The aforementioned grid search can be replaced with a more advanced searching strat-
egy for a faster calculation. A genetic algorithm was utilized in this thesis, in which the
combinations of a baseline correction method and the parameters were represented by the
chromosomes. The estimated baseline after 150 generations, as shown in Figure 3.3, is con-
sistent with the result of the grid search. However, the genetic algorithm is much faster than
the grid search, which saves significant computational costs.

In conclusion, the R'2-based optimization provides reasonable baseline corrections and
ensures a satisfying classification at the same time. Unlike the classification-based optimiza-
tion, the R'2-based optimization is based on a quantitative marker calculated directly from
baseline-corrected spectra and does not require statistical models to be built. Therefore,
the R'2-based optimization is model independent and does not require a large number of
training samples. Last but not least, the R'2-based optimization is computationally efficient,

especially if an advanced search strategy like genetic algorithms is employed.
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3.1.2 Shifted-excitation Raman difference spectroscopy (SERDS)

The automatic optimization method described previously achieves a reasonable mathemati-
cal baseline correction. However, the mathematical baseline correction may not be applica-
ble if the fluorescence is too intense and masks the Raman signal. An alternative method
is shifted-excitation Raman difference spectroscopy (SERDS), in which two Raman spectra
are recorded at two slightly different excitation wavelengths [115]. Ideally, these two mea-
sured Raman spectra are composed of identical fluorescence but shifted Raman peaks. The
fluorescence is thus removed from the difference spectrum of the two recorded Raman spec-
tra. However, the difference spectrum is difficult to interpret and it is required to recover
a fluorescence-free Raman spectrum from the two measured Raman spectra. To deal with
this issue, an approach based on a non-negative least squares (NNLS) algorithm is proposed
in this subsection. The results are published in [A2].
The idea of the NNLS-based reconstruction is represented by the following equation:

L I .
(& & )T_{dr.lr d_ffIf]X(r F) (3.2)

In this equation, the terms §' and §° denote two Raman spectra measured with different
excitation wavelengths. The vectors ¥ and f represent a fluorescence-free Raman spectrum
and a fluorescence baseline, respectively. The identity matrices I, and Iy feature a dimension
of N x N, provided N data points are measured for §" and §°. The term I’ represents a shift
matrix of dimension N x N. The shift matrix has 1s on a semi-diagonal and 0Os elsewhere.
The offset from the semi-diagonal to the main diagonal is equal to the shift between §' and
5% counted in spectral data points, which is denoted as parameter m. The direction of the
offset (upper or lower to the main diagonal) depends on the direction of the shift from 5% to
s (right or left). The scalar dr and the vector d}' represent intensity variations of Raman
bands and fluorescence between § and 8%, respectively. These two variables are included in
order to tackle the influence of intensity variations between 8" and 8 on the reconstruction.

They are calculated by:

nosho li 1
dr — ;_1 8l2maxl : df _ Sp Zne(slmm)k‘ (33)

k : 2 .
i=1 Slmaxi Spllne(slmin)k

In order to deal with the singularity of I’ and improve the stability of the reconstruction,
the first m diagonal elements in the shift matrix I’ are assigned as 1s. The model after such
modification is visualized in Figure 3.4. According to this model, both the fluorescence-free
Raman spectrum 7 and the fluorescence baseline f can be directly calculated from the two
measured Raman spectra §' and §° via a non-negative least squares (NNLS) algorithm.

The spectral reconstruction was first verified by three real-world datasets. The raw data

is shown in Figure 3.5. The reconstructed results using NNLS-based method are provided
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Figure 3.4:

Graphic illustration

of NNLS-based SERDS spectral reconstruction:

A

fluorescence-free Raman spectrum and fluorescence baseline can be reconstructed from the

two measured Raman spectra via a non-negative least sqaures (NNLS) algorithm.
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Figure 3.5: The real-world SERDS datasets measured from 4-acetamedophenal (left and
middle) and a skin sample from a pig ear (right)

in Figure 3.6. The reconstruction via anti-derivative (antiD) and Fourier transform (FT)-
based [98, 118,120,
3.8, respectively. Clearly, the spectral resolution was severely degraded by the antiD-based

| approaches is displayed as a comparison in Figure 3.7 and Figure

method, because of the implicit average of the antiD-based method. It can also be seen that
the FT-based method was corrupted by high-frequency artifacts resulted from the frequency
leakage. Both antiD and F'T-based reconstructions are overwhelmed by the significant resid-
ual fluorescence. In contrast, the NNLS reconstruction is advantageous in terms of the
negligible fluorescence-residuals, the unchanged spectral resolution, and the absence of arti-

facts.

In addition to the real-world datasets, a series of artificial SERDS datasets were employed
to quantify the performance of the spectral reconstruction. The artificial datasets were
constructed using varying spectral parameters, including the full-width-at-half-maximum
(FWHM) of Raman bands, signal-to-noise ratio (SNR), maximal Raman intensity 7,4z, €x-
citation wavelength shift m, and the intensity difference of the fluorescence emission between
the two spectra. The simulation was composed of two parts: one without noise and the other

with noise. The performance of the reconstruction was quantified from four aspects: the pre-
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Figure 3.6: Reconstruction results on real-world datasets with NNLS-based method: The

reconstructed Raman spectra show negligible fluorescence-residuals and no artifacts. The

spectral resolution is almost unchanged after the reconstruction.
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Figure 3.7: Reconstruction results on real-world datasets with antiD-based method: The
spectral resolution is evidently degraded after the reconstruction, whereas the fluorescence-

residuals are still visible.
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Figure 3.8: Reconstruction results on real-world datasets with FT-based method: The
reconstructed spectra are hampered by significant high-frequency artifacts and the severe

fluorescence-residuals.
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cision of reconstruction, the spectral resolution, the SNR, and the fluorescence-residual.
Details of the simulation and results can be found in [A2]. To briefly summarize, the
NNLS-based method can reconstruct the Raman peaks well and with high precision. The
reconstructed spectral resolution is not significantly changed compared to the true values.
The SNR can be improved after the reconstruction, especially for extremely noisy SERDS
datasets. In addition, the NNLS-based reconstruction was almost tolerant to intensity vari-
ations between the two measured Raman spectra. Nonetheless, the spectral parameters of
the SERDS data are significant factors for the spectral reconstruction. The foremost request
is that the excitation wavelength shift m has to match the spectral parameter FWHM. In
particular, the NNLS-based approach is proven suitable for datasets with a small FWHM.
The antiD is superior to the NNLS-based reconstruction in the case of a larger FWHM,

provided the spectral resolution is acceptable after the antiD-based reconstruction.
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3.2 Statistical Modeling

After pre-processing, the corrected Raman spectra are used for statistical modeling. A
statistical model is built in order to relate the spectral signals to the response variables of
interest, such as the disease levels. The statistical model can be one of the following three
types: clustering, classification, and regression. The study in this section was focused on
classification models. The related work was composed of two parts. In the first part, the
framework of a two-layer cross-validation (CV) was established to achieve model optimization
and model evaluation. In the second part, a guideline for the application of CV for model
optimization and model evaluation was proposed. The investigation was based on 1553
single-cell Raman spectra measured from breast carcinoma-derived tumor cells (MCF-7, BT-
20) and acute myeloid leukemia cells (OCI-AML3). Each cell type contains nine technical
replicates. The results are published in [A3].

3.2.1 Model construction and validation

The first part of the investigation was conducted on the basis of two binary classification
tasks: MCF-7 against BT-20 and MCF-7 against OCI-AML3. The classification model was
composed of a dimension reduction using either principal component analysis (PCA) or
partial least squares (PLS) and a classifier using either linear discriminant analysis (LDA)
or support vector machine (SVM, linear kernel). The classification was performed under the
framework of a two-layer cross-validation (CV). As illustrated in Figure 3.9 (left), the two-
layer CV was composed of internal and external CV. The internal CV was used to optimize
the model parameter (i.e., the number of principal components for PCA (nPC') and the
number of latent variables for PLS (nLV)). The external CV was performed for model
evaluation. To start CV, the dataset was split into nine folds, each replicate as one fold. For
each iteration of the external CV loop, a different fold was taken out as the testing data.
The remaining folds were fed into the internal CV loop, where each fold was used once as
validation data and predicted by the statistical model built with the remaining folds. The
results of the external CV are shown in Figure 3.10. The displayed p values resulted from a
paired Wilcoxon test, which was carried out to compare the performance of different models.
Only those p values below 0.05 are shown in the plot.

As is shown in Figure 3.10, the four models (PCA-LDA, PCA-SVM, PLS-LDA, and PLS-
SVM) performed differently for the task of MCF-7 against OCI-AML3 but almost equally
for the task of MCF-7 against BT-20. That is to say, the performance of a model is task
dependent. No one single statistical model is superior to the other for all tasks, and model
selection (optimization) is always required for each specific application. For the task of MCF-
7 against OCI-AML3, PCA-SVM is inferior to PCA-LDA, while PLS-SVM and PLS-LDA

are comparable. This means that the employed dimension reduction method is a significant
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optimization and evaluation: The statistical model is composed of a dimension reduction
(PCA or PLS) and a classifier (LDA or SVM). The two-layer CV is composed of external
and internal CV. To conduct CV, the whole dataset is split into multiple folds. For each
iteration of the external CV loop, a different fold is taken out as the testing data. The
remaining folds are fed into the internal CV loop, where each fold is used once as validation
data and predicted by the statistical model built with the remaining folds. The internal CV
can be conducted in two manners: inside CV (left panel) and outside CV (right panel). For
inside CV, the dimension reduction is carried out excluding the validation data. For outside

CV, both training and validation data are employed during the dimension reduction.
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Figure 3.10: Results of testing accuracy from external CV for the two binary tasks. The
classification was conducted with different dimension reduction methods (PCA or PLS) and
classifiers (SVM or LDA). The model parameter, nPC or nLV, was optimized by internal
CV. The displayed p values resulted from a paired Wilcoxon test, which was performed to
compare the performance of different models. Only those p values below 0.05 are shown in
the plot.

factor for the performance of a classifier. Hence, the model evaluation should be conducted
for the dimension reduction and the classifier together. This fact can be further revealed by

the investigation in the following subsection.

3.2.2 Common mistakes in cross-validation

Despite the wide application of CV in statistical modeling, it is very common in chemometrics
that CV is performed with mistakes [99,100]. The mistakes are mainly manifested from two
aspects: improper data splitting and a wrong position of dimension reduction relative to
the CV loop. In order to unravel the influence of these two aspects, the internal CV was
performed in different cases: k-fold CV, k-replicate CV, inside CV, and outside CV. The
k-fold and k-replicate CV corresponded to two different schemes of data split. In the k-
fold case, the dataset was split randomly and evenly into k folds. In the k-replicate case,
each replicate was used as a different fold. The inside and outside CV represented different
positions of the dimension reduction relative to the internal CV loop. As shown in Figure
3.9, the dimension reduction was carried out excluding the validation data for inside CV. In
contrast, both training and validation data were employed during the dimension reduction
for outside CV. Regardless of the different cases of internal CV, external CV was carried

out by taking out each replicate once as testing data. This ensured that the testing data
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Figure 3.11: Results of the testing accuracies and the validation accuracies in different cases
of internal CV: The classification is performed for the task of MCF-7 against BT-20 using
LDA combined with PCA or PLS. The labels at the x-axis represent different cases of the
internal CV. ‘R’ and ‘F’ represent the k-replicate CV and k-fold CV, respectively; while ‘I’
and ‘O’ denote the inside CV and outside CV, respectively. The p values are computed by
a Wilcoxon test comparing testing accuracies of the models optimized by different internal
CVs. The Wilcoxon test was carried out for k-fold CV against k-replicate CV (R-F) and
inside CV against outside CV (I-O).

was independent on the training and validation data, hence the testing accuracy reliably
benchmarked the performance of the model. The dimension reduction was performed by
PCA or PLS, while the classification was conducted using LDA or SVM. The validation
accuracy from the internal CV and the testing accuracy from the external CV are plotted
in Figure 3.11. Only the results from the task of MCF-7 against BT-20 using LDA are
visualized. The results of the other task and SVM are similar and can be found in [A3].
The influence of the two afore-mentioned aspects was unraveled according to the validity
of internal CV in terms of model evaluation and model optimization. The validity of internal
CV in model evaluation was verified by comparing the validation accuracy to the testing
accuracy. As shown in Figure 3.11, the validation accuracy was consistent to the testing
accuracy in the case of the k-replicate CV combined with the inside CV (‘pca.R.I’ and
‘pls.R.I"). That is to say the model was reliably evaluated by the internal CV in this case.
In all other cases, the validation accuracy was higher than the testing accuracy, meaning the
model was over-estimated by the internal CV. The over-estimation was more severe for PLS, a
supervised method. Therefore, the dimension reduction must be included inside the internal
CV loop, especially for supervised dimension reduction methods. To state differently, the

dimension reduction and classifier have to be evaluated together, which is consistent with
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the conclusion in the previous subsection. The other important factor for reliable model
evaluation is that the data split has to be done considering the hierarchy of samples. Data
from the same replicate should be treated as one data package (i.e., k-replicate CV).

The validity of internal CV in model optimization was verified by comparing the testing
accuracies of the models optimized by different internal CVs (k-fold CV, k-replicate CV,
inside CV, and outside CV). To do so, a Wilcoxon test was conducted for each pair of the
internal CVs (i.e., k-fold against k-replicate CV and inside against outside CV). The p values
are shown in Figure 3.11. The ‘p value R-F’ corresponds to the comparison between the k-
fold and k-replicate CV, while the ‘p value I-O’ relates to the comparison between the inside
and outside CV. The p values are all above 0.05, indicating that the models optimized by the
different internal CVs performed almost equally. To state more straightforwardly, the data
split scheme and the position of the dimension reduction are less influential if the (internal)

CV is used for model optimization compared to model evaulation.
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3.3 Model Transfer

The previous sections focused on the issues in chemometrics including pre-processing, statis-
tical modeling, and reliable model evaluation. This section will focus on the model transfer
technique. It aims to tackle failed prediction of a constructed model for new data if the
new data is severely different from the training data. Such failed prediction is often ob-
served in Raman spectroscopy-based biological investigations, in which spectral differences
between new and training data are usually comparable to or larger than spectral variations
caused by biological changes of interest. These undesirable spectral differences originate from
inter-individual or inter-replicate variations and cannot be removed by the spectrometer cal-
ibration. It is infeasible to build a new model on the new data because of the requirement of
a large amount of new training samples, especially if new training samples are inaccessible.
Instead, model transfer can be employed to enable the trained model to successfully predict
the new data [101,168].

In the context of model transfer, training data and new data is denoted as primary and
secondary data, respectively. A model trained with primary data is called primary model.
The capability of a primary model to predict secondary data is termed model transferability.
The proposed model transfer approaches are outlined in subsection 3.3.1. The verification
of these approaches is described in subsection 3.3.2. The related work can be found in
publications [A4-A6].

The investigation described in this section was based on a Raman spectral dataset mea-
sured on four devices from bacterial spores belonging to three species (B. mycoides, B.
subtilis, and B. thuringienses). All Raman spectra were calibrated by a spectrometer calibra-
tion and were baseline-corrected. The wavenumber and intensity calibration were conducted
using the standard material 4-acetamidophenol and SRM 2242, respectively [28, , 123].
With this dataset, the model transfer approaches were applied to transfer the trained model
from device to device. However, they can also be employed to transfer the trained model
from patient to patient or from replicate to replicate. Such application was demonstrated
by the work of [B3] (see chapter 4) [55], in which the model transfer was performed between

different biological replicates.

3.3.1 Model transfer approaches

The model transfer approaches proposed herein can be divided into two categories: data-
based and model-based model transfer. Data-based approaches aim to eliminate undesired
spectral variations between primary and secondary data so that the secondary data can be
predicted by the primary model as well. Model-based approaches aim to build a primary
model that is robust to the undesired spectral differences between primary and secondary
data.

30



Chapter 3. Selected Work and Results

3.3.1.1 Data-based model transfer

As a straightforward way of model transfer, data-based model transfer works by eliminat-
ing the spectral differences between primary and secondary data. One of the examples is
replicate extended multiplicative signal correction (replicate EMSC) [109, 178, 179]. In this
method, the term ‘replicate’ can refer to data measured from different replicates/individuals
(patients), or with different devices. Herein a replicate refers to the dataset measured on the
same device, unless otherwise stated.

The model of replicate EMSC is shown by:

N
L=a+b-m,+di-v+d- "+ +dy V" + > gp P+ €0 (3.4)
k=1

This equation models a spectrum [, around a reference spectrum (m,) and represents
the residuals with a constant offset (a), polynomial profiles (d; - v*), and gy, - pr,. The
reference spectrum I, is usually the mean spectrum of the dataset. The polynomials (d; -
V') are used to fit the fluorescence baseline within the Raman spectrum. Term g - pr,
represents the spectral variations over different replicates, which is calculated as the first N
loadings of PCA constructed on the mean spectra of different replicates. The coefficients
a, b, d(dy,ds,- -+ ,dy), and g(g1, 92, -+ ,gn) are fitted for each spectrum by a least squares

algorithm and the corrected spectrum is obtained via:

N
=, —a—dy-v—dy 12— —dy-v" =3 gi-pro)/b. (3.5)
k=1

In this way, the inter-replicate spectral variations are eliminated from the corrected Ra-
man spectra.

It is particularly noteworthy that the polynomial terms in Eq. (3.4) were omitted in
this thesis since the Raman spectra were already baseline corrected. The reference spectrum
m, was calculated as the mean spectrum of all replicates. To calculate the inter-replicate
spectral variations (pg,), the mean Raman spectrum was computed for each replicate and
collected into one matrix. A PCA was performed on this matrix following column-wise mean

centering. The first N loadings were used as py, of Eq. (3.4).

3.3.1.2 Model-based model transfer

In addition to data-based methods, model transfer can also be achieved with model-based
approaches. One such approach is based on Tikhonov regularization (TR) [172], in which
the training (primary) dataset (X, y) is augmented with a few secondary samples (L, y*)
(transfer spectra). The augmentation can be done in two ways: TR, in Eq. (3.6) and TRy

in Eq. (3.7).
y B X
( Ay ) = ( \L ) b. (3.6)
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y X
0 =| nI |b. (3.7)
Ay* AL

In these equations, parameter \ is introduced to balance the sample sizes of primary and
transfer datasets. Variable 1 and identity matrix I in TRy are used to tackle the singularity
problem of TR, caused by the possible linearity between primary and transfer spectra. In
the study of this thesis, the matrix L was composed of six transfer spectra randomly selected
from the secondary dataset, every two belonging to one group. The matrix X was composed
of primary data, which consists of the Raman spectra from the devices other than the
secondary device. In addition, fifteen spectra were randomly selected from the secondary
data as optimization spectra, every five belonging to one group. Variables A and n were

optimized by maximizing the prediction of the optimization spectra.

The TR-based methods require the group information of transfer and optimization data.
Therefore, they are categorized as supervised model transfer methods. Such model transfer
cannot be applied if the group information of secondary data is not accessible. Instead, an
unsupervised model transfer is needed, such as the methods based on spectral augmentation

(SA) and score movement of principal component analysis (MS) described in the following.

The idea of SA-based model transfer is to enlarge the training space by enforcing wavenum-
ber shifts and intensity variations into training data. The amount of wavenumber shifts
(sh,) is formulated by sh, = a1 + aov + azv® + agv® + asv* (a; € [—1,1]), where the
coefficients (a) are generated randomly. The intensity modification function R is a poly-
nomial R, = ¢ + cov + csv? + cu/? fitted from 20 randomly selected wavenumbers 5™
(min(v) < ;"™ < mazx(v), i = 1,2,3,---,20) and 20 random values b (b; € [0.5,2],
i=1,2,3,---,20). sh and R are recalculated using newly generated a, b, and v*"? for
the modification of each primary spectrum. The primary model is trained with modified

primary spectra.

MS-based model transfer corrects undesired spectral variations between primary and
secondary data in the score space of PCA. A PCA model is first constructed with primary
dataset and used to predict secondary dataset. The scores of primary dataset are moved
according to Eq. (3.8), where X, X, T, and V represent the spectral matrix, mean spectrum,
scores, and loadings, respectively. The superscripts pr, sc, and trs stand for the primary,
secondary, and transfer datasets, respectively. The prefix m means the average spectrum of
the corresponding dataset.

XPr — TprvT7 Ts¢ — X5V
~-trs

T = XUV, T = X7V
Tpr — Tpr o (Tmpr - Tmtrs>‘ (38)

32



Chapter 3. Selected Work and Results

3.3.2 Validation of model transfer approaches

To verify the proposed model transfer approaches, a three-group classification was performed
based on a partial least squares regression (PLSR) to separate the three bacterial species.
In addition, a classifier composed of PCA and SVM (PCA-SVM) was constructed to verify
the MS and SA methods. The classification was carried out with a leave-one-device-out
cross-validation. That is, each device was used once as the secondary dataset and predicted
by the model built with the other three devices. The results of the prediction are visualized
in Figure 3.12. The first two columns show the prediction without model transfer, where the
classifiers PCA-SVM and PLSR were employed, respectively. The other columns correspond
to the prediction using different model transfer methods, as labeled along the z-axis.

As demonstrated in Figure 3.12, the spectrometer calibration provided better transfer-
ability than the case without spectrometer calibration, but the improvement was limited.
With addition model transfer by the proposed methods, the model transferability was fur-
ther enhanced by a large scale. The prediction of the first device was generally worse than
the prediction of the other devices. The reason for this is that the samples measured on this
device were cultivated on a different substrate, leading to severe spectral differences in the
data measured on the first and the other three devices. However, the prediction for the first
device was still satisfying using the TR-based method. The performance of replicate EMSC
was better if more loadings were involved in the replicate EMSC model (3.4).

The model transfer methods were further verified by comparing the prediction after
model transfer (i.e., primary prediction) with the prediction by a model built directly on
the secondary data (i.e., secondary prediction). To do so, the data from the first device was
employed to train the model. The secondary prediction was obtained by a leave-one-batch-
out cross-validation and visualized in the first two columns in Figure 3.13, corresponding
to the models of PCA-SVM and PLSR, respectively. The solid line represents the mean
sensitivity over the three species, while the gray shade denotes the maximum and minimum of
the three sensitivities. The dashed line marks to the best results of the secondary prediction.
The other columns in Figure 3.13 show the results of the primary prediction using different
model transfer methods, i.e., the model was built on the other three devices and used to
predict the first device. It is evident that the primary prediction is comparable or even
superior to the best secondary prediction when replicate EMSC and TR-based model transfer
methods are employed. The primary prediction via the MS-based method is less adequate
in this case, due to the large spectral variations between the Raman spectra from the first
(secondary) and other devices.

Overall, all the model transfer approaches can improve the model transferability. TR-
based methods offer adequate prediction but require the group information of the secondary
dataset. Thus, they are inapplicable if the group information of the secondary data is

unknown. On the contrary, the unsupervised methods (SA, MS, and replicate EMSC) offer
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very promising results and do not require the group information of the secondary data.
These unsupervised approaches make it possible to transfer the primary model to unknown

patients, which is very useful in Raman spectroscopy-based biological diagnostics.
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Figure 3.12: Prediction of the secondary dataset in different cases of model transfer: Each
device is predicted once by the model built with the other three devices. The prediction
is improved by all model transfer methods. The replicate EMSC performs better if more
loadings are involved in the replicate EMSC model.
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Figure 3.13: Comparison between the results of the primary and secondary prediction for
the first device: The first two columns show the secondary prediction obtained by a leave-
one-batch-out cross-validation on the first device. The other columns represent primary
prediction of the first device by the model built based on the other three devices when
different model transfer approaches are employed.
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4. Additional Work

In addition to the work being discussed in chapter 3, publications from other investigations

during PhD study are listed in the following (ordered by year of publishment):

[B1]

[B2]

[B4]

S. Guo, S. Pfeifenbring, T. Meyer, G. Ernst, F. von Eggeling, V. Maio, D. Massi,
R. Cicchi, F. S. Pavone, J. Popp and T. Bocklitz

Multimodal image analysis in tissue diagnostics for skin melanoma
Journal of Chemometrics, 2018, 32, €2963.

O. Chernavskaia, S. Guo, T. Meyer, N. Vogler, D. Akimov, S. Heuke, R. Heintz-
mann, T. Bocklitz and J. Popp
Correction of mosaicking artefacts in multimodal images caused by un-

even illumination
Journal of Chemometrics, 2017, 31, e2901.

V. Kumar B.N.; S. Guo, T. Bocklitz, P. Résch and J. Popp

Demonstration of carbon catabolite repression in naphthalene degrading
soil bacteria via Raman spectroscopy based stable isotope probing
Analytical Chemistry, 2016, 88, 7574-7582.

T. Bocklitz, S. Guo, O. Ryabchykov, N. Vogler, and J. Popp

Raman based molecular imaging and analytics: a magic bullet for biomed-
ical applications!?

Analytical Chemistry, 2016, 88, 133-151.
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5. Summary

As mentioned in the chapter 1, chemometrics has become an essential tool in Raman
spectroscopy-based biological investigations and significantly enhanced the sensitivity of
Raman spectroscopy-based detection. However, there are some open issues on applying
chemometrics in Raman spectroscopy-based biological investigations. An automatic proce-
dure is needed to optimize the parameters of the mathematical baseline correction. Spectral
reconstruction algorithm is required to recover a fluorescence-free Raman spectrum from the
two Raman spectra measured with different excitation wavelengths for the shifted-excitation
Raman difference spectroscopy (SERDS) technique. Guidelines are necessary for reliable
model optimization and rigorous model evaluation to ensure high accuracy and robustness
in Raman spectroscopy-based biological detection. Computational methods are required to
enable a trained model to successfully predict new data that is significantly different from
the training data due to inter-replicate variations. These tasks were tackled in this thesis.
The related investigations were related to three main topics: baseline correction, statistical

modeling, and model transfer.

Baseline Correction

Baseline correction refers to the removal of fluorescence emission in measured Raman spec-
tra. The related investigations were conducted from two aspects: mathematical baseline

correction and experimental baseline correction.

For mathematical baseline correction, the fluorescence baseline is estimated mathemati-
cally and subtracted from the acquired Raman spectrum. In this type of baseline correction,
parameters of the methods have to be carefully optimized for each specific dataset. Im-
proper baseline correction can degrade the performance of subsequent analysis. A manual
parameter selection is possible but time-consuming and subjective. Therefore, an automatic
optimization procedure was proposed, which was based on a quantitative marker R'? de-
fined as the figure-of-merit of baseline correction. The marker R'? was first verified by three
artificial Raman spectra, with which the R'2.-optimized baseline correction was compared
to the ‘gold standard’. The ‘gold standard’ referred to the baseline correction providing

the smallest Euclidean distance between the true and baseline-corrected Raman spectrum.
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The R'2-optimized baseline correction was shown to be consistent with the ‘gold standard’,
demonstrating that the marker R'? is a valid figure-of-merit for baseline correction. In ad-
dition, the R'? was employed to optimize the baseline correction for a real-world dataset
measured from three cell types (MCF-7, BT-20, and OCI-AML3). The R'?-based base-
line correction optimization was benchmarked by a three-group classification. According
to the results, the R'2-based optimization led to a reasonable baseline correction, as well
as a satisfying classification performance. Since the marker R'? is calculated directly from
baseline-corrected Raman spectra, R'2-based optimization does not require to build a classi-
fication model. Therefore, the optimization is model independent and does not need a large
amount of training data. Last but not least, the R'2-based optimization is computationally

efficient, especially if a fast-searching strategy such as genetic algorithms is used.

For experimental baseline correction, the fluorescence baseline is removed via instrumen-
tal modification. SERDS is one of the examples, in which two Raman spectra are recorded
at two slightly different excitation wavelengths and the fluorescence is removed from the
difference between these two Raman spectra. The difference spectrum is difficult to inter-
pret and it is necessary to reconstruct a fluorescence-free Raman spectrum from the two
measured Raman spectra. Existing spectral reconstruction approaches, which are based on
anti-derivative and Fourier transform, suffer from drawbacks such as fluorescence residual,
spectral resolution loss, and high-frequency artifacts. Therefore, a new spectral reconstruc-
tion algorithm was developed based on non-negative least squares (NNLS). According to
the results of the three real-world datasets, the NNLS-based method was shown to provide
fluorescence-free spectral reconstruction without significantly losing spectral resolution or
introducing artifacts. In addition, the performance of the NNLS-based reconstruction was
quantified on the basis of artificial datasets. The quantification included four aspects: the
precision of reconstruction, spectral resolution, signal-to-noise ratio (SNR), and residual fluo-
rescence. The artificial datasets were constructed with varied SNR, full-width-half-maximum
(FWHM), maximal Raman intensity, excitation wavelength shift, and fluorescence variations
between the two spectra. It was demonstrated that the NNLS-based method can recover
Raman peaks with high precision, unchanged spectral resolution, and improved SNR. The
NNLS-based reconstruction was almost tolerant of intensity variations between the two mea-
sured Raman spectra. Moreover, it was proven that the excitation wavelength shift has to

match the spectral parameter FWHM in order to ensure good spectral reconstruction.

Statistical Modeling

Statistical modeling means to translate Raman spectral signal into high-level information
like disease level. The investigation in this thesis was based on Raman spectra measured

from three cell types, with which two binary classifications were constructed: MCF-7 against
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BT-20 and MCF-7 against OCI-AML3. The statistical model was composed of dimension
reduction and classification. Dimension reduction was conducted with either principal com-
ponent analysis (PCA) or partial least squares (PLS), belonging to supervised and unsuper-
vised methods, respectively. The classification was carried out with either linear discriminant
analysis (LDA) or support vector machine (SVM). A two-layer cross-validation (CV) was es-
tablished, in which the internal CV was used to optimize the model parameters (n PC'/nLV)
and the external CV was used for evaluating the optimized model. It was demonstrated that
the performance of a statistical model is data dependent. No one single statistical model is
always superior to the other. In addition, the employed dimension reduction method is a
significant factor for the performance of a classifier. The model evaluation should be done
for both dimension reduction and the classifier together. Subsequently, a guideline of reliable
model optimization and evaluation was proposed. It is related to two significant factors of
applying CV in statistical modeling: the data splitting scheme and the position of dimension
reduction relative to the CV loop. In the case of model evaluation, the dimension reduction
has to be done inside the CV loop, especially if a supervised dimension reduction method is
used. More importantly, the data split has to be performed at the highest hierarchy of the
sampling. Data from the same biological replicate should be treated as one data package.

Both aspects are less influential in the case of model optimization.

Model Transfer

The aim of model transfer is to enable the primary model to successfully predict new (sec-
ondary) data that is significantly different from training (primary) data. This is extremely
necessary in Raman spectroscopy-based biological applications, where new data often bears
significant spectral changes compared to training data due to inter-replicate/individual varia-
tions. The model transfer approaches developed in this thesis were based on two mechanisms:
data-based model transfer and model-based model transfer. In the former case, undesirable
spectral variations between secondary and primary data were estimated and removed. The
related approach is replicate extended multiplicative signal correction (replicate EMSC).
In the latter case, statistical models resilient to undesirable spectral differences were con-
structed, as was done by Tikhonov regularization (TR), score movement (MS), and spectral
augmentation (SA) methods. In particular, the approaches based on MS, SA, and replicate
EMSC belong to unsupervised model transfer and do not require the response information
of new data. They have especially great potential in biological diagnostics where the la-
bel information of new patients is to be predicted and unknown. The verification of these
model transfer methods was based on the classification of Raman spectra from three bacte-
rial spore species (B. mycoides, B. subtilis, and B. thuringienses) measured on four devices.
The prediction was obtained via leave-one-device-out cross-validation (i.e., data from each

device was used once as secondary data and predicted with a model built based on the other
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three devices). As was shown, all of the proposed model transfer methods could significantly
improve the prediction on secondary data comparing to that without model transfer. Sub-
sequently, the model transfer approaches were verified by comparing the primary prediction
with the secondary prediction. The primary prediction refers to predict data of one device
by a model built with the other devices. The secondary prediction means to predict data of
one device with a model built on this device. Accordingly, the primary predictions using TR
and replicate EMSC-based model transfer were comparable or even superior to the secondary

prediction.

Above all, this thesis is a step further in resolving the open issues of chemometrics in Ra-
man spectroscopy-based biological investigations. The benefits of the work are four-fold: (1)
Automatic parameter optimization helps to effectively handle a massive amount of data and
build a ‘one-key’ system for Raman spectroscopy-based biological diagnosis without human
intervention. (2) Spectral reconstruction in SERDS technique makes it more convenient to
investigate biological samples featuring extremely intense fluorescence emission. (3) Guide-
lines of model evaluation can help to build robust statistical models and hence to reduce the
risk of false diagnosis and improve the reliability of medical diagnosis. (4) Model transfer
enables statistical models to predict new data measured from a different individual /replicate,
which largely reduces the cost and time required to measure new training samples. In the
meantime, model transfer makes it easier to handle data measured by different laboratories.
All these benefits are important and highly useful to push Raman-related techniques into

the clinical environment.
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6. Zusammenfassung

Wie im Kapitel 1 erwahnt, ist die Chemometrie zu einem essentiellen Werkzeug fiir biolo-
gische Untersuchungen mittels der Raman-Spektroskopie geworden und hat die Sensitivitat
der Raman-spektroskopischen Detektion erheblich verbessert. Es gibt jedoch einige offene
Fragen, welche die Anwendung der Chemometrie in Raman-spektroskopischen Untersuchun-
gen biologischer Proben betreffen. Zum Beispiel wird eine automatische Prozedur benétigt,
um die Parameter einer mathematischen Basislinienkorrektur zu optimieren. Ein SERDS-
Rekonstruktionsalgorithmus ist erforderlich, um ein Fluoreszenz-freies Raman-Spektrum aus
den zwei Raman-Spektren zu extrahieren, welche bei der Shifted-ezcitation-Raman-Differenz-
Spektroskopie (SERDS) gemessen werden. Des Weiteren sind Richtlinien erforderlich, welche
eine zuverlassige Modelloptimierung und eine rigorose Modellevaluation erlauben. Durch
diese Richtlinien wird eine hohe Genauigkeit und Robustheit der Raman-spektroskopischen
Detektion biologischer Proben gewéhrleistet. Computergestiitzte Methoden sind nétig, um
mit einem trainierten Modell erfolgreich neue Daten, die sich aufgrund von Inter-Replikat-
Variationen signifikant von den Trainingsdaten unterscheiden, vorherzusagen. Diese vier
Probleme sind Beispiele fiir offene Fragen in der Chemometrie und diese vier Probleme wur-
den in dieser Arbeit behandelt. Die damit verbundenen Untersuchungen bezogen sich auf
drei Hauptthemen: die Basislinienkorrektur, die statistische Modellierung und der Modell-

transfer.

Basislinienkorrektur

Die Basislinienkorrektur wird eingesetzt, um den Fluoreszenz-Untergrund aus gemessenen
Raman-Spektren zu entfernen. Die damit verbundenen Untersuchungen wurden hinsichtlich
zweier Korrekturtypen durchgefiihrt: den mathematischen Basislinienkorrekturen und den

experimentellen Basislinienkorrekturen.

Bei der mathematischen Basislinienkorrektur wird die Basislinie mathematisch geschatzt
und von den gemessenen Raman-Spektren subtrahiert. Bei dieser Art der Basislinienkor-
rektur miissen die Parameter der Methoden fiir jeden Datensatz sorgfiltig angepasst und
optimiert werden. Werden nicht adaquate Paramater gewéhlt, resultiert eine ungeeignete

Basislinienkorrektur, welche die Leistung der nachfolgenden Analyse beeintrachtigen kann.
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Eine manuelle Parameterauswahl ist moglich, jedoch zeitaufwendig und subjektiv. Daher
wurde in dieser Arbeit ein automatisches Optimierungsverfahren erforscht, welches auf einem
quantitativen Marker R'? basiert. Dieser Marker ist definiert, um als Qualititsmarker der
Basislinienkorrektur verwendet zu werden. Der Marker R'? wurde zuerst durch drei kiin-
stliche Raman-Spektren getestet, indem die mittels R'?-optimierte Basislinienkorrektur mit
dem ,Goldstandard* verglichen wurde. Der ,Goldstandard® wurde als die Basislinienkorrek-
tur definiert, welche den kleinsten euklidischen Abstand zwischen dem wahren und dem
basislinienkorrigierten Raman-Spektrum lieferte. Die R'2-optimierte Basislinie erwies sich
als konsistent mit dem ,Goldstandard‘, was zeigt, dass der Marker R'? ein gutes Qualitits-
maf fiir eine Basislinienkorrektur ist. Zusétzlich wurde der Marker R'? verwendet, um die
Basislinienkorrektur fiir einen realen Datensatz, der aus Raman-Spektren von drei Zelltypen
(MCF-7, BT-20 und OCI-AML3) bestand, zu optimieren. Die auf R'2-basierende Basis-
linienkorrekturoptimierung wurde durch eine Drei-Gruppen-Klassifizierung evaluiert. Den
Ergebnissen zufolge, resultierte die R'2-basierende Optimierung in einer Basislinienkorrek-
tur, welche zu einer zufriedenstellenden Klassifikationsleistung fithrte. Da der Marker R'?
direkt aus den Basislinien-korrigierten Raman-Spektren berechnet wird, erfordert die R'2-
basierende Optimierung keine Konstruktion eines Klassifikationsmodells. Daher ist die Op-
timierung modellunabhéngig und benotigt keinen grofien Trainingsdatensatz. Nicht zuletzt
ist die R'?-basierende Optimierung rechnerisch effizient, insbesondere wenn eine schnelle

Suchstrategie wie ein genetischer Algorithmen verwendet wird.

Bei einer experimentellen Basislinienkorrektur wird die Fluoreszenzbasislinie durch in-
strumentelle Modifikation des Messgerats entfernt. SERDS ist eine experimentelle Ba-
sislinienkorrektur bei der zwei Raman-Spektren mit zwei leicht unterschiedlichen Anre-
gungswellenléngen aufgenommen werden. Die Fluoreszenz wird dann durch Differenzbildung
zwischen diesen beiden Raman-Spektren entfernt. Das Differenzspektrum ist aber schwer zu
interpretieren. Daher muss aus den beiden gemessenen Raman-Spektren ein fluoreszenzfreies
Raman-Spektrum rekonstruiert werden. Vorhandene SERDS-Rekonstruktionsverfahren, wie
die Integration und die Fourier-Transformations-basierende Rekonstruktion, besitzen Nach-
teile, wie zum Beispiel das die Fluoreszenz nicht vollsténdig korrigiert werden kann, das
die spektrale Auflésung sich verschlechtert und das es zum sogenannten Frequency-Leakage
kommt. Daher wurde ein neuer SERDS-Rekonstruktionsalgorithmus basierend auf dem Non-
Negative-Least-Square-Algorithmus (NNLS) entwickelt. Basierend auf den Ergebnissen fiir
drei reale Datenséitze konnte gezeigt werden, dass die NNLS-basierende Methode eine fluo-
reszenzfreie Rekonstruktion ermoglicht, ohne dass die spektrale Auflésung signifikant abn-
immt oder offensichtliche Artefakte auftreten. Zusétzlich wurde die Leistungsfahigkeit der
NNLS-basierenden Rekonstruktion anhand von kiinstlichen Datensidtzen quantifiziert. Die
Quantifizierung umfasste vier Aspekte: die Genauigkeit der Rekonstruktion, die spektrale

Auflésung, das Signal-zu-Rausch-Verhéltnis (SNR) und die Restfluoreszenz. Die kiinstlichen

42



Chapter 6. Zusammenfassung

Datensiatze wurden mit unterschiedlichem SNR, verschiedenem Full-width-half-maximum
(FWHM), unterschiedlicher maximalen Raman-Intensitét, verschiedener Anregungswellen-
langenverschiebung und verschiedener Fluoreszenzvariation zwischen den beiden Raman-
Spektren konstruiert. Es konnte gezeigt werden, dass das NNLS-basierende Verfahren Raman-
Banden mit hoher Prézision, unverdnderter spektraler Auflosung und verbessertem SNR
wiederherstellen kann. Die NNLS-basierende Rekonstruktion war stabil gegeniiber Inten-
sitdtsschwankungen zwischen den beiden gemessenen Raman-Spektren. Dariiber hinaus
wurde nachgewiesen, dass die Anregungswellenldngenverschiebung mit dem spektralen Pa-
rameter FWHM tibereinstimmen muss, um eine gute spektrale Rekonstruktion zu gewahrleis-

ten.

Statistische Modellierung

Die statistische Modellierung wird bendttigt, um die Raman-Spektren in High-Level-Infor-
mationen, wie das Krankheitsniveau oder den Zelltyp, zu iibersetzen. Die Untersuchungen
in dieser Arbeit basierten auf Raman-Spektren, welche an drei Zelltypen gemessen wur-
den. Mit diesen Raman-Spektren wurden zwei bindre Klassifikationssysteme konstruiert:
MCF-7 gegen BT-20 und MCF-7 gegen OCI-AML3. Dabei bestand das statistische Mod-
ell aus Dimensionsreduktion und einem Klassifikationsmodell. Die Dimensionsreduktion
wurde entweder mit einer Hauptkomponentenanalyse (PCA) oder einer Partial-Least-Square-
Regression (PLS) durchgefiihrt, die jeweils zu den iiberwachten und nicht iiberwachten Di-
mensionsreduktionsmethoden gehoren. Die Klassifizierung wurde entweder mit einer lin-
earen Diskriminanzanalyse (LDA) oder mit einer Support Vector Machine (SVM) durchge-
fihrt. Es wurde eine zweistufige Kreuzvalidierung (CV) etabliert, in der die interne CV
zur Optimierung der Modellparameter (nPC'/nLV’) und die externe CV zur Evaluation des
optimierten Modells verwendet wurde. Es konnte gezeigt werden, dass die Qualitat eines
statistischen Modells datenabhéangig ist. Kein statistisches Modell ist dem anderen Modell
immer tberlegen. Dariiber hinaus ist das verwendete Dimensionsreduktionsverfahren ein
wesentlicher Faktor fiir die Leistungsfahigkeit eines Klassifikators. Es konnte auch gezeigt
werden, dass die Modellevaluation immer fiir die Dimensionsreduktion und den Klassifikator
zusammen durchgefiihrt werden sollte. Die Resultate dieser Untersuchungen wurden ab-
schliefend zu einer Leitlinie fiir eine zuverlassige Modelloptimierung und -evaluation zusam-
mengefasst. Dabei sind die wichtigsten Faktoren, welche die Anwendung einer CV bei der
statistischen Modellierung beeinflussen, das Datenaufteilungsschema und die Position der
Dimensionsreduktion relativ zur CV-Schleife. Bei der Modellevaluation muss die Dimen-
sionsreduktion innerhalb der CV-Schleife erfolgen, insbesondere wenn eine iiberwachte Di-
mensionsreduktionsmethode verwendet wird. Noch wichtiger ist, dass die Datenaufteilung
auf der hochsten Stufe der Proben-Hierarchie durchgefithrt werden muss. Daten aus dem-

selben biologischen Replikat oder demselben Patient sollten als ein Datenpaket behandelt
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werden. Bei der Modelloptimierung haben das Datenaufteilungsschema und die Position der

Dimensionsreduktion relativ zur CV-Schleife einen kleineren Einfluss.

Modelltransfer

Das Ziel des Modelltransfers besteht darin, das Primarmodell in die Lage zu versetzen,
neue Sekundérdaten, welche sich signifikant von den Trainingsdaten (Primérdaten) unter-
scheiden, erfolgreich vorherzusagen. Dies ist bei biologischen Anwendungen der Raman-
Spektroskopie extrem wichtig, da neue Daten hiufig signifikante spektrale Anderungen im
Vergleich zu den Trainingsdaten aufweisen. Diese Anderungen resultieren aus Replikat-
Variationen und der immer existenten biologischen Variation. Die in dieser Arbeit en-
twickelten Modelltransfer-Ansétze basieren auf zwei Mechanismen: dem datenbasierenden
Modelltransfer und dem modellbasierenden Modelltransfer. Im ersten Fall werden uner-
wiinschte spektrale Schwankungen zwischen sekundaren und primaren Daten geschatzt und
entfernt. Der in dieser Arbeit verwandte Ansatz ist die Replikat- Extended-multiplicative-
signal-correction (Replikat-EMSC). Beim modellbasierenden Modelltransfer werden statis-
tische Modelle konstruiert, die gegeniiber unerwiinschten spektralen Unterschieden stabil
sind, wie dies durch die Tikhonov-regularization (TR)-, Score-movement (MS)- und Spectral-
augmentation (SA)-Methode durchgefiihrt wird. Insbesondere gehoren die MS-, SA- und
Replikat-EMSC-basierenden Methoden, zu den nicht-iiberwachten Modelltransfer-Methoden
und benotigen keine Label-Informationen der sekundaren Daten. Damit haben sie ein beson-
ders grofles Potenzial um in der biologischen Diagnostik eingesetzt zu werden, da bei diesen
Anwendungen die Label-Informationen eines neuen Patienten vorhergesagt werden sollen und
somit unbekannt sind. Das Testen dieser Modelltransfermethoden basierte auf der Klassi-
fizierung von Raman-Spektren von drei bakteriellen Sporenarten (B. mycoides, B. subtilis
und B. thuringienses), die mittels vier Messgeraten gemessen wurden. Die Vorhersage wurde
durch eine Leave-one-device-out-Kreuzvalidierung durchgefiithrt. Dabei werden Daten von
jedem Gerét einmal als sekundére Daten verwendet und mit einem Modell vorhergesagt, das
basierend auf den Daten der anderen drei Geréte erstellt wurde. Es konnte gezeigt werde,
dass alle vorgeschlagenen Modelltransfermethoden die Vorhersage der sekundédren Daten im
Vergleich zu der Vorhersage ohne Modelltransfer signifikant verbessern. Anschliefend wur-
den die Modelliibertragungsansatze mit einander verglichen, indem die primére Vorhersage
mit der sekundéren Vorhersage verglichen wurde. Die priméare Vorhersage bezieht sich auf die
Vorhersage von Daten eines Gerats durch ein Modell, das mit den Daten der anderen Geréte
erstellt wurde. Die sekundare Vorhersage bedeutet, dass Daten eines Gerats mit einem Mod-
ell vorhergesagt werden, welches mit Daten dieses Geréts erstellt wurde. Es konnte gezeigt
werden, dass die priméare Vorhersagen unter Verwendung von TR- und Replikat-EMSC-
basierendem Modelltransfer der sekundédren Vorhersage vergleichbar oder sogar iiberlegen

war.
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Diese Arbeit ist ein weiterer Schritt, um offenen Probleme der Chemometrie in Raman-
Spektroskopie-basierenden biologischen Untersuchungen zu lésen. Die in der Arbeit vor-
gestellte Losungen haben verschiedene Vorteile: (1) Die automatische Parameteroptimierung
fiir mathematische Basislinienkorrekturen hilft eine grofle Menge an Daten effektiv zu ve-
rarbeiten und ein vollautomatisierte Analysesysteme fiir die auf der Raman-Spektroskopie
basierende biologischen Diagnostik aufzubauen. (2) Die spektrale Rekonstruktion fir SERD-
Spektren macht es einfacher, biologische Proben mit extremer Fluoreszenz zu untersuchen.
(3) Die Leitlinien fiir die Modellevaluierung koénnen dazu beitragen, robuste statistische
Modelle zu erstellen und somit das Risiko falscher Diagnosen zu verringern. Auch kann
die Zuverlassigkeit der medizinischen Diagnostik basierend auf der Raman-Spektroskopie
verbessert werden. (4) Der Modelltransfer ermoglicht es mit statistischen Modellen neue
Daten, die von einem anderen Individuum oder Replikat stammen, genauer vorherzusagen.
Dadurch muss kein neues Modell konstruiert werden, was die Kosten- und den Zeitaufwand
erheblich reduziert.
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Introduction

Optimization of Raman-spectrum baseline
correction in biological applicationt

Shuxia Guo,? Thomas Bocklitz**° and Jurgen Popp®®©

In the last decade Raman-spectroscopy has become an invaluable tool for biomedical diagnostics.
However, a manual rating of the subtle spectral differences between normal and abnormal disease states
is not possible or practical. Thus it is necessary to combine Raman-spectroscopy with chemometrics in
order to build statistical models predicting the disease states directly without manual intervention. Within
chemometrical analysis a number of corrections have to be applied to receive robust models. Baseline
correction is an important step of the pre-processing, which should remove spectral contributions of
fluorescence effects and improve the performance and robustness of statistical models. However, it is
demanding, time-consuming, and depends on expert knowledge to select an optimal baseline correction
method and its parameters every time working with a new dataset. To circumvent this issue we proposed
a genetic algorithm based method to automatically optimize the baseline correction. The investigation
was carried out in three main steps. Firstly, a numerical quantitative marker was defined to evaluate the
baseline estimation quality. Secondly, a genetic algorithm based methodology was established to search
the optimal baseline estimation with the defined quantitative marker as evaluation function. Finally,
classification models were utilized to benchmark the performance of the optimized baseline. For com-
parison, model based baseline optimization was carried out applying the same classifiers. It was proven
that our method could provide a semi-optimal and stable baseline estimation without any chemical
knowledge required or any additional spectral information used.

samples are heterogeneous mixtures of different biomolecules,
biological Raman-spectra have a complex structure.>® This

Raman-spectroscopy is a non-invasive, label-free technique
which reveals molecular fingerprints based on vibrational
information. Raman-spectroscopy possesses properties, like its
insensitivity to water, making it an ideal method for biological
applications. Further advantages are the high spatial and tem-
poral resolution, which can be easily realized."™ Due to an
improvement of the measurement equipment in the last decade
Raman-spectroscopy has been widely applied for medical
diagnosis,*™® for bacteria identification,” for tissue injury detec-
tion,” and even for surgical resection and decision making.®
However, Raman-spectroscopic measurements result in a
mixture Raman-spectrum from all components, which feature a
Raman-resonance within the laser focus. Because biological
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University, Jena, Helmholtzweg 4, D-07743 Jena, Germany

PInfectoGnostics Research Campus Jena, Centre of Applied Research, Philosophenweg
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complex structure reflects the biochemical composition of the
sample. If Raman-spectra of different biological states are
measured and compared, only subtle spectral differences are
visible. A manual differentiating and rating of these subtle changes
is not possible or practical. To overcome this issue, chemometrical
methods and statistical models are applied if Raman-spectroscopy
should be utilized for biological applications.®°

In order to apply chemometrical methods a careful spectral
pre-processing is necessary, which should remove corrupting
effects and standardize the measured Raman-data. Within this
pre-processing disturbing effects like comic spikes, white
noise and baseline have to be removed. The baseline removal
is an important correction, because the baseline is a few
orders more intense as compared with Raman-bands."" If the
baseline contribution is not properly corrected for, the result-
ing artefacts may hinder further data analysis. Such baseline
artefacts would result in quite low generalization perform-
ances of the classification and regression models.

There are two basic approaches for baseline rejection, a
physically and a mathematically motivated approach. Physical
methods such as sample purification, shifted excitation, pico-
second pulsing and gating require instrumental modifications.

This journal is © The Royal Society of Chemistry 2016
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Mathematical methods, including derivative calculation, poly-
nomial fitting, and frequency-domain filtering, do not need
hardware modifications and therefore have been widely uti-
lized. Recently, two automatic methods were proposed, which
are based on iterative reweighted quantile regression’> and
iterative exponential smoothing,"? respectively. However, none
of these computational procedures can exactly separate the
baseline from the measured Raman-spectrum. This results
from the fact that the sum of the two quantities, the Raman-
spectrum and the baseline, is measured during Raman-spectro-
scopic measurements. Usually, the baseline correction pro-
cedures estimate the baseline and subtract this estimation from
the measured Raman-spectrum.’’ Thus the estimating pro-
cedure plays an important role for the performance of a base-
line correction. In practice, analysts need to manually select an
estimation method and choose its optimal parameters each
time when they want to analyse a new dataset. This work is
tedious, time-consuming, and experience dependent. Thus, an
automatic optimization method is required, which performs the
selection of estimation methods and parameters.

As it was reviewed in ref. 14, an automatic spectral pre-
processing optimization can usually be realized by two
approaches including the ‘trial and error method and a
quality parameter based method. The former approach was
applied in ref. 15 and 16, in order to optimize the pre-proces-
sing procedures, based on the output of regression and classi-
fication models.">'® In order to apply this scheme supervised
statistical models are needed. It needs more data because an
additional optimization of the statistical models is carried out.
With the quality parameter based method no statistical
models are required. Instead, a quality parameter is defined to
evaluate the performance of the pre-processing procedures. By
now parameters such as the ‘simplicity value’, the ‘Pearson
correlation coefficient’, and the ‘peak factor’ have been
employed in chromatographic and NMR (nuclear magnetic
resonance) data processing. However, none of them performed
well for the mid-infrared data."* The so-named ‘super para-
meter’ was utilized for NIR (near-infrared) spectra by combin-
ing the explained variance of PC1 (the first principal
component), number of outliers, and a coefficient of vari-
ation.” Within this scheme, several numeric thresholds are
required, which have to be adapted and therefore specific
prior spectral information is needed.

To the authors’ knowledge, no similar parameters are used
for Raman-spectral pre-processing. Therefore a method is
needed, which allows to optimize the Raman-baseline correc-
tion only using spectral features within the Raman-spectrum
itself. Therefore, we proposed an approach to automatically
optimize baseline correction given a certain dataset. We
decided to investigate the baseline correction separately, as it
has the highest impact on the chemometrical analysis.

This manuscript is structured into three sections. First, a
quantitative marker for the quality of baseline estimations was
defined. Through a grid search process, every combination of
a baseline estimation method with its parameters was tested
and the defined marker was calculated. Thereafter we built an

This journal is © The Royal Society of Chemistry 2016
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optimization framework based on a genetic algorithm (GA),
with the defined marker as evaluation function, and the com-
bination of a method with its parameters as the chromosome.
Finally, classifiers based on a principal component analysis
(PCA) and support vector machine (SVM) applying the linear
and radial kernel were utilized. Raman-spectra, which were
corrected with our optimized baseline estimation, were ana-
lysed with these classifiers. The mean sensitivities were investi-
gated to test the performance of our optimized baseline
estimation. For comparison the baselines featuring the highest
mean sensitivities were inspected and compared with the
results of our proposed method.

Experimental
Raman-spectroscopy

The Raman-spectroscopic measurements were published by
our group in ref. 10, which would be only briefly summarized
in this section. Breast carcinoma derived tumor cells (MCF-7,
BT-20) and acute myeloid leukemia cells (OCI-AML3) were
grown. Raman-spectra were measured with an excitation wave-
length of 785 nm (model xtra, Toptica, Germany) under an
upright Raman-microscope (Microprobe, Kaiser Optical
Systems, USA) with a 60x/NA 1.0 water immersion objective
(Nikon, Japan) and 75 mW power at the sample. In total, 1553
cells (558 MCF-7, 477 BT-20, 518 OCI-AML3) were measured.

Computation

All computations were done in statistical programming
language Gnu R.'® The packages ‘signal’,'® ‘Peaks’,** ‘base-
line’,*" ‘simecol’,”” ‘genalg’® and ‘e1071’>* were utilized. The
functions from the packages were complemented by in-house

written procedures.

Data analysis

Baseline correction. In this contribution, three baseline cor-
rection methods were applied, including sensitive nonlinear
iterative peak (SNIP) clipping,®® asymmetric least squares
(ALS), and modified polynomial (Modpoly) fitting.>* The SNIP
gradually clips out a Raman-peak region by replacing its values
with the minima within this region. The ALS estimates base-
lines by a combination of an iterative least squares smoothing
with asymmetric weights for positive and negative intensity
values. The Modpoly produces a baseline by a polynomial
fitting based on the original Raman-spectrum and an iterative
procedure. All these methods depend on the values of their

Table 1 Baseline methods and parameters

Method Paral Range Para2 Range
SNIP order 2, iterations [1,100]
ALS Y [3.5,10.5] P [0.001,0.1]
Poly degree [3,10] / /

Analyst, 2016, 141, 2396-2404 | 2397
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parameters. Thus their parameters are tabled and the ranges,
which were investigated, are summarized in Table 1.

max(I, — min(1,))
mean(Iy)
B log(np) Ayt
T4, log(n) (1)
4p
(At +Ap)

R =my/m,

my =

Quantitative marker. To define a reasonable marker for the
baseline estimation’s quality a few considerations about fea-
tures of an optimal baseline are necessary. A baseline correc-
tion should result in a small intensity loss for regions
featuring Raman-peaks. Also should the corrected Raman-
spectrum be flat without artefact peaks for regions where no
Raman-information is expected. Thus an optimal baseline cor-
rection should provide a maximal A,/A4,, the ratio of peak area
to area of the region with no Raman-information. However, it
is not straightforward to automatically optimize baseline cor-
rection according to Ap/A,. During an iterative peak clipping
process, the value of A,/A, is quite small in the beginning and
it increases when the estimated baseline is becoming flatter.
However, the value of A,/A, may be almost stable from some
point on, even if the baseline estimation becomes flatter as
required. This makes the automatic optimization rather chal-
lenging since a too flat baseline estimation would be selected
by maximizing Ap/A,. To deal with this issue, we defined a
quantitative marker for a baseline estimation as formula (1),
where the terms I, A, n denote the Raman-intensity, the area,
and the number of wavenumber positions, respectively. The
subscripts p, z, and n represent Raman-peaks positions,
positions without Raman-bands and regions for spectral
normalization.

Within these definitions, the term ¢ represents the normal-
ized difference between the maximum and minimum within
the no-Raman-information region. Here a region is selected
and the mean intensity of this region (mean(l,)) is used as a
normalization term. This region can be the combination of the
regions with and without expected Raman-peaks. ¢ is calcu-
lated as a penalty for negative values in a Raman-spectrum
after baseline correction. A larger ¢ is expected if such negative
values exist. The term m; is defined as a sum of the inverse
mean intensity of the peak region and the mean intensity of
the no-information region. We used the mean intensity
instead of the area in case the area of peak regions dominates
the area of no-Raman-information region. The mean intensity
of the peaks region is inversed for the first term to make sure
m, will become a minimum for an optimal baseline correction.
Here A, is multiplied by ¢, thus the second term becomes
larger, if the aforementioned negative values exist. To compen-
sate the large difference between the amplitudes of n, and n,
in comparison with A, and 4,, the logarithm is computed.
Otherwise m; would be dominated by n, if it is large.
Generally, for a Raman-spectrum, after a perfect baseline
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correction, the area where no Raman-information is expected
(4,) should be minimal, while the area where Raman-peaks
might occur (4,) should be maximal. Therefore, m, is expected
to be the minimum for a good baseline estimation. The term
m, represents the proportion of A, to the sum (4,¢ + Ap). 4, is
also multiplied by ¢ as a penalty for negative values. m, is
expected larger for better baseline corrections and should be
close to one in the best cases. R'?, the ratio of m, to m,, is the
final quantitative marker and should be minimal for an
optimal baseline estimation.

To validate this definition and our hypothesis, we per-
formed a simulation on three artificial spectra, constructed
with eight exactly known peaks and three different baseline
profiles. The baseline correction was optimized according to
two mechanisms, (1) the minimal R'* value, (2) the minimal
Euclidean distance between the reference (true) spectrum and
the corrected spectrum. As is shown in ESI, we obtained quite
consistent baseline correction results by these two mecha-
nisms. That is to say, the baseline correction giving the
minimal R'? value is reasonable, with ignorable over- or under-
corrections.

Before the value of R'* can be calculated, spectral proces-
sing should be carried out, as is shown in Fig. 1. The proces-
sing steps include calibration (block in yellow), pre-processing
(blocks in green), and finding local minima within the Raman-
spectra (block in blue). The last step is necessary for the defi-
nition of peak and no-peak regions. It can be done automati-
cally, like we describe it here, or by manual definition in order
to incorporate spectral expert knowledge.

First of all, the wavenumber of all Raman-spectra were cali-
brated using the CaF, peak at 322 em™" and all Raman-spectra
were interpolated to an equidistant wavenumber grid of
1 em™".'** The mean Raman-spectra of each cell type (MCF-7,
BT-20, OCI-AML3) were calculated and plotted in Fig. 2. All
computations afterwards were carried out with the help of
these three mean Raman-spectra.

For pre-processing, white noise was removed by a Savitzky-
Golay filtering with a window width of 11 and an order of
2. Then the baseline correction was carried out with a combi-
nation of a baseline estimation method and its parameters

Calibration

Mean
Spectra

Local Minimum

Fig. 1 Workflow of the R*2 calculation: The mean Raman-spectrum of
each cell type is computed after wavenumber calibration. Afterwards,
the mean Raman-spectrum is pre-processed including smoothing,
baseline correction, wavenumber truncation and normalization. Finally,
local minima within the Raman-spectra were searched and utilized as
regions, which exhibit no Raman-information.
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Fig. 2 Mean Raman-spectra of the three investigated cell types, which
were used for R'? calculation. The grey and green shades mark the
Raman-peak area and regions not containing Raman-information,
respectively. Here both regions were determined automatically by local
minimum searching.

listed in Table 1. Afterwards, the baseline corrected mean
Raman-spectra were truncated to the wavenumber regions
from 675 to 1785 ecm ™" and from 2815 to 3020 cm™."° Finally,
the Raman-spectra were normalized based on the spectral
region from 675 to 1785 cm™", which was also selected as the
normalization region for term ¢ in formula (1). Within this
region, even bad baseline estimations give acceptable correc-
tion results. This is important as the spectral normalization is
not introducing a strong bias. This is not the case if the region
from 2815 to 3020 cm ™" is also used for the normalization.

After the pre-processing was carried out, wavenumber posi-
tions featuring local minima of the Raman-intensity have to be
found. This can be done automatically or by manual selection.
In this contribution, an automatic searching algorithm was
applied, from which the results were shown in green vertical
lines in Fig. 2.

The found wavenumber positions were considered as posi-
tions where no Raman-information is present. The wave-
number positions not belonging to the defined no Raman-
information region were defined as Raman-peak region
(shown in grey shades). According to formula (1), the marker
R'* was calculated for all three mean Raman-spectra, resulting
in three values. The averaged value was stored as the final
result of the quantitative marker for a certain combination of
baseline estimation methods and parameters.

In order to check the influence of the estimation algo-
rithms and the parameters on the marker R'?, a grid search
was utilized. It calculates the marker R for every combination
of the three mentioned baseline correction methods with their
parameters. The corresponding searching ranges are listed in
Table 1. R'? was calculated for each combination. Therefore,
the marker R'*> was known for all combinations.

Baseline optimization. Within a grid search we have tried
all possible combinations of baseline correction methods and
the corresponding parameters. Theoretically the optimal base-

This journal is © The Royal Society of Chemistry 2016
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line correction can be obtained by grid search. For practical
applications, however, this is not reasonable, as it is time-con-
suming and needs a lot of calculation power. Therefore we
used a genetic algorithm to optimize the baseline correction
without trying all possibilities.

Genetic algorithm, a special evolutionary algorithm, starts
from a random population of solutions and optimizes the
solutions according to Charles Darwin’s evolution theory.
Firstly, an evaluation function needs to be defined as a cri-
terion of fitness. Secondly, a number of combinations of para-
meters, namely chromosomes, have to be created. Afterwards,
values of the defined evaluation function from each chromo-
some are calculated. According to these values the chromo-
somes are evolved by selection, crossover, mutation, and dying
in order to generate a new generation. This new generation is
tested applying the evaluation function and evolved again.
Genetic algorithm keeps this iteration of evolution-and-test to
search better chromosomes with a better value of evaluation
function. The algorithm stops if some termination conditions
are reached (Fig. 3). The best chromosome in the last gene-
ration is selected as the optimum.>®

In our investigation, the target of the optimization was a
combination of a baseline estimation method and its para-
meters. The optimal baseline estimation can be determined by
the minimal R'? value. Thus the genetic algorithm was estab-
lished with the quantitative marker R'> as the evaluation func-
tion. Chromosomes were composed of three genes. The first
gene represents the index of baseline correction methods. The
second gene represents the parameter ‘order’ for SNIP, ‘1’ for
ALS, and ‘degree’ for Modpoly. The third gene represents ‘iter-
ations’ for SNIP and 1000 times of ‘p’ for ALS. It is ignored in
the case of the Modpoly method. Chromosomes and the evolu-
tion ranges for each gene are summarized in Table 1 and
Fig. 3.

The function ‘rbga’ in the package ‘genalg’ was used with
the population size of 5, the mutation rate of 1/6 and the

150 Generation

Elitism (0.2) |
|

Chromosome2 Chromosome2’

Crossover

Chromosome3 Chromosome3’

R12

Chromosome4 [ Chromosomed4’

Mutation(1/6) [ Chromosomes’

B method(1,3.9999)
B parameteri(3, 10.5)(order/A/degree)
W parameter2 (1, 100)(iteration/p*1000)

Fig. 3 Flowchart of the genetic algorithm: Three genes within the
chromosomes were applied, representing the baseline correction
method and its two parameters, respectively. For the Modpoly method
the third gene was ignored. A generation with population size of 5 was
randomly created in the beginning. The algorithm developed for
150 generations based on the evolutional theory. If a chromosome had
lower R*? values, the probability to survive increases.

Analyst, 2016, 141, 2396-2404 | 2399

66




Chapter 7. Publications

Paper

elitism rate of 20%. The algorithm evolved for 150 generations
before it is terminated.

Classification. To check the performance of the optimal
baseline correction, we applied statistical models to classify
the Raman-spectra of three cell types (MCF-7, BT-20 and
OCI-AML3). Firstly the dimension of the dataset was reduced
by a principal component analysis with the first 40 PCs kept.
The number was chosen quite high in order to avoid an indir-
ect correction of baseline drifts. Afterwards classifiers based
on a support vector machine were constructed, applying a
linear and a radial kernel function, respectively. A batch-out
cross-validation was used, with Raman-spectra from each
batch taken out once and the averaged mean sensitivities were
stored.

Results and discussion
Grid search

The result of grid search is visualized in false-colours in
Fig. 4a and the five lowest R'? values are marked. Their corres-
ponding baseline estimations are plotted in Fig. 4b together
with the raw spectrum. It can be seen that these five baselines
are looking reasonable and have the least intensity losses
within the Raman-peak region. Besides this, the baseline with
the maximal R'? value and two baselines with moderate R'*
values are plotted in Fig. 4c. The baseline corresponding to the
maximal R'> value almost clipped out all the Raman-peaks,
while the two baselines with the moderate R'? values were
either under-fitted or over-fitted. Particularly, for an over-fitted
baseline estimation, for instance, the red and green baselines
in Fig. 4c, the first term of m, in eqn (1) would be much larger
than the second term. On the contrary, for an under-fitted
baseline estimation such as the blue baseline in Fig. 4c, the
first term of m, in eqn (1) would be quite smaller than the
second term. In both over- and under-fitted cases, m; is not
the minimum and a large R'* value is generated. Besides, m,
decreases for under-fitted baseline estimations, producing a
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higher R">. The optimal baseline can be found only if both
terms of m, in eqn (1) are small while m;, is close to one. This
behaviour indicates the good performance of the defined
quantitative marker. Specifically, the five baseline estimations
corresponding to the five minimal R'? values are quite similar
thus any of them can be used. Hence it is not necessary to
search for the exactly lowest R'?, which is actually not possible
in practice.

Genetic algorithms

After carrying out the genetic algorithm, the best chromosome
in every generation and its value of R'? are plotted in Fig. 5a
and b. The value of R*> decreased from 5.93 in the first gene-
ration to 5.24 in the last generation. From Fig. 5a, it can be
concluded that the value of R'* converged within fifty gene-
rations. This behaviour is obvious in Fig. 5c. The optimal base-
lines within the first and last generation are plotted in Fig. 5d.
The baseline in the first generation was under-fitted in the
spectral regions of 675-1214 cm™" and 2815-3020 cm™". This
results in an artificial envelope and an increase of the Raman-
peaks after baseline correction. Nonetheless, the baseline in
the last generation fits better within the whole spectral region
of interest (675-1785 cm™, 2815-3020 cm™"). It is noteworthy
that after optimization, satisfactory baseline corrections were
observed for peaks with various widths. This means with our
method baseline correction parameters can be well balanced
for wide and narrow peaks. Moreover, the optimal baseline in
the fiftieth generation (Fig. 5d) is quite similar to the one of
the last generation, proving the convergence of R'? value
within fifty generations. As shown in Fig. 5e, the best
baseline optimized by the genetic algorithm was comparable
to the one from grid search, indicating a good performance of
the genetic algorithm based method. However, with this
method, the optimization was faster without trying all combi-
nations of baseline correction method with its parameters. An
advantage of the GA method is that an optimization of not
only three but also much more baseline correction methods
and their respective parameters is possible. Furthermore an
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Fig. 4 Results of a grid search: (a) R'? results from grid search of the three-background estimation methods and their parameters. All values higher
than twelve were clipped to twelve allowing a convenient visualization. The first five minimal R*? values are marked. (b) Baseline estimations corres-
ponding to the lowest five R'2 values are plotted. (c) Baseline estimates with the maximum R'2 value and two moderate R'? values are shown. These

estimations are either over-fitted or under-fitted.
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Fig. 5 Results from the genetic algorithm: (a) plot of the values of the genes from the best chromosome through 150 generations are visualized.
The algorithm started from the points in red and developed until termination at the point in blue. (b) R*? value from the first to 150th generation,
which decreased from 5.93 to 5.24, is plotted. (c) R*2 value within the first to 50th generation is visualized, indicating the algorithm converged within
50 generations. (d) Baselines from 1st, 50th and 150th generation are depicted. The baseline estimation was under-fitted in the beginning (1st gene-
ration). The baseline from the 50th generation was similar to the one in the last generation (150th), indicating the convergence within 50 generations.
(e) The optimal baseline estimations through grid search and the genetic algorithms are comparable. Their similarity prove the good performance of

the genetic algorithm based method.

effective searching of good baseline methods for large-size
datasets can be achieved.

Validation and discussion

So far, a marker for quantifying the quality of a baseline esti-
mation has been defined and is proven to perform well. Now we
investigate if the optimal baseline estimation with respect to the
minimal R features optimal classification results as well. In
order to test this, a classification was carried out after the whole
pre-processing was performed and the mean sensitivity was cal-
culated to check the performance. A grid search was carried out
again and the baseline correction with the best classification
result is selected as the benchmark. The corresponding mean
sensitivity was compared with the value resulting from the base-
line correction optimized with the GA based methodology.

The results are plotted in Fig. 6a, where the R'? values of
the grid search were converted to a vector and plotted in a
decreasing order. Correspondingly, the mean sensitivities of
the both classifiers were plotted. It is obvious that the mean
sensitivities of both classifiers were increasing when R'?

This journal is © The Royal Society of Chemistry 2016

decreased. The highest mean sensitivities were 74.3% and
76.8% for the linear and radial kernel SVM, respectively. While
the respective mean sensitivities were 72.7% and 73.1%, if our
optimized baseline estimation is applied. Despite of the small
differences, the classification results from our optimized base-
line is comparable with the highest mean sensitivities.
Remarkably, our method prevents operators from selecting a
bad baseline estimation and not optimal parameters.

The baseline estimations with the highest mean sensi-
tivities were shown in Fig. 6b. In comparison the optimal base-
line estimation based on our method is plotted as well.
Apparently, the two baselines with the highest mean sensitivity
feature a higher intensity loss within the Raman-peak regions
compared with our optimized baseline. That is to say, despite
of the highest mean sensitivity, the baselines are from a
spectroscopic point view sub-optimal. Furthermore, the mean
sensitivities from the two classifiers are similar but not identi-
cal, leading to slightly different selected baselines. Even
though not strongly proved in this experiment, it could be
deduced that different baselines are selected, if different
statistical models or classifiers are used. This means the
selected baseline is model dependent, which is a drawback.
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Fig. 6 Results of three-class classification: (a) R'? and mean sensitivities from both classifiers are visualized. The distribution of mean sensitivities
from both classifiers differed slightly. (b) Baselines with the highest mean sensitivity for both classifiers are visualized. Compared to the baseline esti-
mation with the lowest R'? value (in red), they featured a higher intensity loss in the peak region.

Besides the above mentioned three-class classification task,
a two-class (MCF-7, OCI-AML3) classification task was carried
out using PCA (with 40 PCs kept) and linear kernel SVM. The
results are shown in Fig. 7. Here the baseline with the highest
mean sensitivity (88.6%) also resulted in the lowest R'* value.
Nonetheless the baselines with the second and third highest
mean sensitivity featured a high R'?. This means even bad
baselines would possibly produce very good classification
results. It is probably because not well adapted baseline correc-
tions would introduce additional information such as artificial
envelopes and increase the differences between Raman-
spectra. This may also be the case if residual fluorescence is
used for separating the classes. It may be concluded from this
fact that model based optimization of the baseline correction
has to be used with caution.

Moreover, comparing the baseline results shown in Fig. 6b
and 7b, the same baseline estimation was obtained for the two
classification tasks with our proposed method. It is not the
case for the model based optimization approach. Therefore,

Mean Sensitivity of Linear Kernel SVM
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R"2

1 200 300

ordered baseline correction index
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15

the latter optimization method is not only model but also task
dependent.

To summarize, the baseline estimation selected according
to the highest classification mean sensitivity is model and
task dependent and is not always a good choice. Besides
this, it is computationally expensive and time-consuming
because for every combination of baseline estimation
method and parameters a statistical model has to be con-
structed. In contrast our proposed method could produce a
stable and reliable baseline with comparable classification
results. As shown in Fig. S21 the baseline optimized by our
method is close to the true baseline for a simulated case.
These simulations strongly indicate that an application is
also possible in quantitative analyses. Furthermore, the pro-
posed method prevents scientists from selecting a not
optimal baseline as an over-correction and under-correction
can be avoided. Last but not the least its computational
expense is much less since no additional statistical models
have to be constructed.
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Fig. 7 Results of two-class classification: (a) R*2 and mean sensitivity for a linear SVM classifier is plotted. (b) Baseline with the highest mean sensi-
tivity also gave the lowest R>. However, the baselines with the second and third highest mean sensitivities featured high R*? values. This demon-
strates the instability of baselines selected according to the highest mean sensitivity. The baseline estimations with the lowest R%in Fig. 6b and 7b
are the same, which indicates the stability of our method and our optimization is not task dependent.
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Conclusions

We report a methodology to automatically optimize the base-
line correction within Raman-spectral pre-processing. We
demonstrated how an automatic selection of a baseline algo-
rithm from a set of three routine baseline correction methods
and their parameters can be achieved. Raman-spectra from
three cells types were investigated as a benchmark dataset.

As an important point of the proposed method, a quantitat-
ive marker R'> for baseline estimations was defined. A grid
search among all combinations of the three baseline methods
with their parameters was carried out in the beginning. To do
so the mean Raman-spectra were pre-processed and the R
value was calculated. Afterwards, the optimal baseline esti-
mations with the minimal R'? values were selected. To realize
these procedures more effectively, a genetic algorithm based
method was established with the R'? as the evaluation func-
tion. The GA based method converged within fifty generations
and gave similar baselines as those from the grid search, e.g.
by checking all possible combinations.

In order to check if optimal baselines lead to optimal statis-
tical models, two classifications were carried out using
PCA-SVM models. Again, the Raman-spectra were corrected by
three baseline correction methods with different parameter
values, the classification models were constructed and the
mean sensitivity was calculated to check the classification per-
formance. It was proven that with the proposed optimization
method, a stable and reliable baseline could be obtained with
a comparable classification performance. With no statistical
methods needed, our method is computationally cheaper and
faster compared with a grid search or a model based optimi-
zation. Additional benefits of our method are its stability,
robustness, and the fact that our optimization prevents an
operator from selecting a not optimal baseline correction.
Therefore the method can be applied fully automatically,
which allows an application not only in a research laboratory
by spectroscopists, but also in real-world applications by scien-
tists from other professions.
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In the last decade Raman-spectroscopy has become an invaluable tool for bio-medical diagnostics. However, a manual
rating of the subtle spectral differences between normal and abnormal disease states is not possible or practical. Thus it is
necessary to combine Raman-spectroscopy with chemometrics in order to build statistical models predicting the disease
states directly without manual intervention. Within chemometrical analysis a number of corrections have to be applied to
receive robust models. Baseline correction is an important step of the pre-processing, which should remove spectral
contributions of fluorescence effects and improve the performance and robustness of statistical models. However, it is
demanding, time-consuming, and depends on expert knowledge to select an optimal baseline correction method and its
parameters every time working with a new dataset. To circumvent this issue we proposed a genetic algorithm based
method to automatically optimize the baseline correction. The investigation was carried out in three main steps. Firstly, a
numerical quantitative marker was defined to evaluate the baseline estimation quality. Secondly, a genetic algorithm
based methodology was established to search the optimal baseline estimation with the defined quantitative marker as
evaluation function. Finally, classification models were utilized to benchmark the performance of the optimized baseline.
For comparison, model based baseline optimization was carried out applying the same classifiers. It was proven that our
method could provide a semi-optimal and stable baseline estimation without any chemical knowledge required or any
additional spectral information used.

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 1
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Simulation

Spectra construction

To allow an understanding of the working of our proposed method artificial spectra were constructed within the wavenumber
range from 300 to 3000 em™.

Firstly, we combined eight Gaussian peaks at arbitrary wavenumber positions 500, 700, 900, 970, 1050, 1500, 2000 and 2600
cm™. The maximum intensities of these peaks varied within the range 800-2200, while the full width at half maximum (FWHM)
varied within the interval 50-120 cm™. The three peaks at 900, 970, and 1050 cm™ were chosen so close that they overlapped to
generate a complex structure (See Fig. S1 (a)).

Secondly, three series of curves were prepared to construct baseline profiles. Each series contains a second-order polynomial
and five Gaussian peaks with large bandwidth. Details about the related parameters are listed in Tab. S1. Accordingly, three
baseline profiles were created by adding up all compositions within each curve series, which are plotted in Fig. S1 (b).

Finally, the pure spectrum (Fig. S1(a)) was added up with the three baseline profiles (Fig. S1(b)), generating three spectra.
Additionally, Poisson distributed noise was generated and added up to these three spectra. In this way, three simulated spectra
with different baseline patterns were created, as shown in Fig. S1 (c).

Tab. S1. Parameters of the three curve series for constructing baseline profiles

Gaussian 1 Gaussian 2 ian3  Gaussian 4 ian5 2" order Polynomial

Series 1 A 1500 -750 1125 1125 1875 OA00015*(><-600)Z

u 500 1000 1500 2300 2800

o 900 900 900 900 900
Series2 A 2250 375 1125 1875 1500  0.00015%*(x-1500)

u 400 800 1200 1800 2800

o 1000 1000 1000 1000 1000
Series 3 A 1875 -1125 1500 -1125 1875  0.00015*(x-2500)°

u 600 1200 1700 2000 2700

o 1100 1100 1100 1100 1100

Grid search

All simulated spectra were smoothed by a Savitzky-Golay filtering with a window width of 11 and an order of 2. Reference
spectra were obtained by subtracting the true baseline profiles from the smoothed spectra. The subtracted spectra were used
as reference spectra instead of the pure spectrum shown in Fig. S1(a). This was done to make the reference spectra comparable
to baseline corrected spectra, which were also generated from the smoothed spectra.

The same grid search procedure as for the real Raman spectra was performed on the smoothed spectra. The Euclidean distance

s 8 a

© o T

-~ &

= - c

2 g 8

£ 27 S

c — - + speci

g g T + spec2

8 o -+ © 8 + spec3
z 8

5 . 7

g I~ -

s 8 2 5

: ® P g1

C ;

£ 8 ] e .

g« 8

2 n - T T T T T T

g o

28 500 1000 1500 2000 2500 3000

— T 1 I I T I
500 1500 2500 b Wavenumber/cm ™"

Wavenumber/em™'

Fig. S1 Constructed Spectra for simulation. (a) Pure spectrum containing eight peaks with various intensities and FWHMs. A wide peak was

constructed by an overlap of the three peaks at 900, 970, and 1050 cm™. (b) Three baseline profiles were generated by combination of one

second order polynomial and five Gaussian peaks with large bandwidth. (c) Simulated spectra, created from three parts, pure spectra, baseline,

and Poisson distributed noise.
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between the baseline corrected spectra and the reference spectra (||S. — S,||,;) was computed and employed as the benchmark
of baseline correction. Here we assume that a ‘correct’ baseline correction provide a minimal Euclidean distance. Meanwhile,
the R' values were calculated according to eq. (1). The grey shaded regions shown in Fig. S1(c) were used as peak region, while
the rest was utilized as no-Raman-information region. All three Raman spectra were vector normalized within the whole
wavenumber range. According to our purposed method, an optimal baseline correction can be expected at the minimum of R™
Afterwards, the optimal baseline corrections were selected according to two mechanisms, i.e., the minimal R* value and the
minimal Euclidean distance. The results were plotted in Fig. S2, where the region with the overlapped peak was highlighted in a
zoomed image. As shown for the first two simulated spectra, the two mechanisms yielded an identical baseline correction.
While a slight difference was observed for the third simulated spectrum. Besides this neither of mechanism can exactly
eliminate the baseline, demonstrated by the mismatch between the reference and the baseline corrected spectra. This also
indicates the impossibility to exactly separate baselines and Raman signals. Nevertheless, a high consistency was observed
between the baseline corrections optimized by these two mechanisms. That is to say, the R™ value can indeed reflect the
goodness of baseline correction without knowing the reference spectra, which means a feasibility to optimize baseline
correction according to R™ values.
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Fig. S2. The reference spectra (black) and optimal baseline corrections obtained by the minimal R™ value (red) and minimal Euclidean distance
(green). The three overlapped peaks are highlighted in a zoomed version on the right. For the first two simulated spectra, the two mechanisms
yielded the identical optimal baseline correction. A slight difference was observed for the third simulated spectrum. Nevertheless, a high
consistency was observed between the baseline corrections optimized by the two mechanisms. Besides, a mismatch between the reference
and the baseline corrected spectra is observed, indicating the impossibility to exactly separate baselines and Raman signals.

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3
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ARTICLE INFO ABSTRACT

Fluorescence emission is one of the major obstacles to apply Raman spectroscopy in biological investigations. It
is usually several orders more intense than Raman scattering and hampers further analysis. In cases where the
fluorescence emission is too intense to be efficiently removed via routine mathematical baseline correction

Keywords:
Raman spectroscopy
Shifted excitation Raman difference

SSPECUOTCOPY . algorithms, an alternative approach is needed. One alternative approach is shifted-excitation Raman difference
Cieecr::m:;i:“mcm“ spectroscopy (SERDS), where two Raman spectra are recorded with two slightly different excitation wave-

lengths. Ideally, the fluorescence emission at the two excitations does not change while the Raman spectrum
shifts according to the excitation wavelength. Hence the fluorescence is removed in the difference of the two
recorded Raman spectra. For better interpretability a spectral reconstruction procedure is necessary to recover
the fluorescence-free Raman spectrum. This is challenging due to the intensity variations between the two re-
corded Raman spectra caused by unavoidable experimental changes as well as the presence of noise. Existent
approaches suffer from drawbacks like spectral resolution loss, fluorescence residual, and artefacts. In this
contribution, we proposed a reconstruction method based on non-negative least squares (NNLS), where the
intensity variations between the two measurements are utilized in the reconstruction model. The method
achieved fluorescence-free reconstruction on three real-world SERDS datasets without significant information
loss. Thereafter, we quantified the performance of the reconstruction based on artificial datasets from four
aspects: reconstructed spectral resolution, precision of reconstruction, signal-to-noise-ratio (SNR), and fluores-
cence residual. The artificial datasets were constructed with varied Raman to fluorescence intensity ratio (RFIR),
SNR, full-width at half-maximum (FWHM), excitation wavelength shift, and fluorescence variation between the
two spectra. It was demonstrated that the NNLS approach provides a faithful reconstruction without significantly
changing the spectral resolution. Meanwhile, the reconstruction is almost robust to fluorescence variations
between the two spectra. Last but not the least the SNR was improved after reconstruction for extremely noisy
SERDS datasets.

Fluorescence background

1. Introduction [18,19], microbe identification [5,20,21] and many other biological
investigations. However, biological samples often show a significant

Raman spectroscopy is a label-free and non-destructive technology, auto-fluorescence contribution [22], which is more intense compared to

which provides rich fingerprint information of almost all biomolecules
and features a weak signal of water. Therefore, the technique is ideally
suited to measure biological specimens and highly potential for in-vivo
diagnostics [1-4]. The combination of chemometrics and Raman
spectroscopy further improves the sensitivity, accuracy, and speed of
Raman based detection [1,5]. All these benefits lead to the fast devel-
opment of Raman spectroscopy in medical diagnostics [6-14], in-
vestigations of metabolism [15-17], intraoperative decision making

the Raman spectra and hampers further qualitative and quantitative
analysis.

Up to date, instrumental and mathematical approaches have been
proposed to overcome fluorescence background [23]. First, fluores-
cence can be suppressed via an excitation with near-infrared (NIR) laser
sources because electronic transitions responsible for fluorescence are
reduced by NIR excitation [24]. However, this requires longer in-
tegration time because Raman scattering decreases at a rate of A*.
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Second, time-resolved Raman was reported to detect Raman scattering
before fluorescence can take place [25]. Its wide application was yet
hampered due to the high cost of short-pulse lasers. In the meantime,
this technology is ineffective if the lifetime of fluorescence is compar-
able to the pulse length. Third, considering the different polarization
properties of Raman scattering and fluorescence emission, polarization-
resolved Raman was proven useful in gas-phase systems but fails for
large molecules or matter in condensed phase [23,26]. On the other
hand, mathematical baseline correction algorithms, like polynomial
fitting [27], least squares [28], and extended multiplicative scatter
correction (EMSC) [29], are widely applied due to their low cost and
high flexibility. However, the parameters for the correction must be
tuned specifically for different data, which is a crucial task. More im-
portantly, if Raman bands are masked by an intense fluorescence
background, the baseline correction might distort Raman peaks and
mask important chemical information.

An alternative approach is shifted-excitation Raman difference
spectroscopy (SERDS) [30-33], where two Raman spectra are measured
with two slightly different excitation wavelengths. The shift between
the two excitation wavelengths is kept small enough that the fluores-
cence remains unchanged but large enough that the Raman spectrum
exhibits obvious shifts according to the excitation [31]. The fluores-
cence is removed in the difference of the two Raman spectra. However,
the difference spectrum is hard to be interpreted because it does not
directly show Raman bands. Meanwhile, the noise level of the differ-
ence spectrum is increased by a factor of /2 compared to the noise level
of the two single spectra [34]. As shown in Fig. 1, the noise is higher in
the difference spectrum (Fig. 1b) than within a single Raman spectrum
(Fig. 1a) and the Raman bands are hardly visible in the difference
spectrum. For this reason, spectral reconstruction is required to recover
the fluorescence-free Raman spectrum, which can improve the SNR and
its interpretability. Reconstructed examples are given in Fig. 1, from
anti-derivative (antiD) method (Fig. 1c¢) and our new approach based
on non-negative least squares (NNLS) (Fig. 1d). Both reconstruction
methods are described in the subsection ‘spectral reconstruction’.
Comparing to the difference spectrum, the noise in the reconstructed
spectrum is apparently decreased and the Raman bands are clearly
visible. It is also shown that the reconstructed SNR depends on the
reconstruction approach. From Fig. 1, the anti-derivative method pro-
vided better SNR than the NNLS. Nonetheless, SNR is not the only
criterion to evaluate a reconstruction approach, as will be present in
this manuscript.

Already published reconstruction algorithms suffer from fluores-
cence residual, spectral resolution loss, or high-frequency artifacts
[32,35-37]. Among those the fluorescence residual is a common issue
of all reconstruction approaches. In fact, the intensities of the two re-
corded Raman spectra are often not identical due to experimental
changes like fluctuations of laser power and photo-bleaching of mole-
cules. The difference spectrum is hence not fluorescence-free, which
contributes to fluorescence residual after reconstruction. A suitable
intensity normalization could improve this issue [38], however, to a

Simulated Data Difference Spectrum

Talanta 186 (2018) 372-380

limited level. Therefore it is necessary to develop approaches capable of
handling the undesirable intensity variations between measurements
and allow to inspect the (estimated) fluorescence spectrum.

This contribution proposes a reconstruction procedure via non-ne-
gative least squares (NNLS), where we involved the experimental de-
duced intensity variations in the reconstruction model. The method was
verified with three real-world SERDS datasets and we compared the
results to the reconstruction by anti-derivative (antiD) and Fourier
transform (FT) based methods. Thereafter, the performance of the re-
construction was quantified on the basis of artificial datasets from four
aspects: reconstructed spectral resolution, precision of reconstruction,
reconstructed signal to noise ratio (SNR), and fluorescence residual.
The artificial SERDS datasets were constructed with varying values of
spectral parameters including Raman to fluorescence intensity ratio
(RFIR), SNR, full-width at half-maximum (FWHM), excitation wave-
length shift, and fluorescence variation between the two spectra.

2. Material and methods
2.1. Experimental and Raman spectroscopy

The spectroscopy was based on different samples including 4-acet-
amedophenal and skin sample sectioned from pig ear. The measure-
ment was performed using the excitation of a tunable laser source
(785 + 1nm) with laser power of 20 mW. The Raman scattering was
dispersed by a grating with 830 lines/mm and detected with a CCD
camera (Andor iDus). Particularly, considering the largely different
peak widths of Raman bands for 4-acetamedophenal, the measurement
was split into two parts with different wavenumber regions:
640-1800 cm !, and 2600-3385 cm ~ . The three datasets are given in
Fig. 2. In all three cases, the intensities varied significantly between the
two recorded Raman spectra, resulted from the experimental changes.
The influence of such variations on the spectral reconstruction will be
revealed in the following context.

2.2. Simulation details

Besides the three real-world datasets, artificial SERDS datasets were
constructed with varying FWHM, SNR, maximal Raman intensity (fiax ),
excitation wavelength shift (m), and fluorescence variations between
the two spectra. Each spectrum contained 1024 data points (N = 1024).
The excitation wavelength shift represents the shift between Raman
spectra measured with two excitation wavelengths counted in (spectral)
data points. The fluorescence intensity was unchanged during the si-
mulation while the intensity of Raman spectrum was changed by
varying the maximal Raman intensity (fmax ). This equivalently changed
the value of RFIR. For this reason, the two items, maximal Raman in-
tensity and RFIR will be used interchangeably in this contribution.

The Raman spectrum was composed of five Gaussian peaks (Eq. (1a,
b)) with various maximal intestines (?) sharing the same standard
deviation (0,). The standard deviation (0,) corresponds to

Reconstruction via antiD Reconstruction via NNLS
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Fig. 1. The necessity of spectral reconstruction: without reconstruction, the difference spectrum (b) of two Raman spectra (a) is difficult to interpret and bears severer
noise than the single measurement. Both interpretability and SNR were improved after reconstruction with antiD (¢) and NNLS (d). The notation ‘specl’ and ‘spec2’
refers to the first and second Raman spectrum in a SERDS dataset, respectively. The details of the antiD and NNLS are given in the following text.
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Fig. 2. Raw SERDS spectra measured from 4-acetamedophenal (a and b) and skin sample (c).
Table 1 spectrum. It is based on a one-dimensional integration for the difference
investigated values of spectral parameters for simulation. spectrum, as shown in Eq. (2).
Parameters Values dem = Skam — Sk
k
Tmax 250, 500, 1000 _
SNR 3,4,5,6, 8, 10, 15, 20 e = Z diem @
a, 5, 10, 15, 20, 25, 30, 35 i=1

11, 23, 35, 47, 58, 70, 82

5, 8,11, 14, 17, 20, 24, 26
29, 32, 35, 38, 41, 44, 47, 50

FWHM (2,/21n(2)-0,)
Excitation wavelength shift (m)

FWHM = 2,/21n(2)-0p. The fluorescence was simulated by an ex-
ponential function shown in Eq. (1c). To simulate the case where the
fluorescence differs between the two spectra, Tl and TZ (Eq. (1e))
were used instead of T, with p; = 0.97 (Eq. (1d)). More importantly,
the simulation was performed with or without noise. For the former
case, white noise with standard deviation of o, was generated sepa-
rately for the two spectra. 0, was determined by ¢, = fina/SNR for a
given SNR. Noteworthy, to overcome the randomness of generating
noise, the simulation was repeated for 50 times by regenerating the
noise using the same parameters. This led to 50 artificial datasets with
the identical simulation parameters. The values of each parameter used
for the simulation were summarized in Table 1. Fig. S1 visualizes ex-

ample datasets constructed with o, =10, m =11,
SNRe(3, 4, 5 6, 8 10, 15 20), and Fnax€
(250, 500, 1000). As it was shown, the simulated datasets ranged

from very poor quality to relatively good quality. This ensured us to
obtain a faithful evaluation of the reconstruction.

k +m — p)?
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3. Results and discussion
3.1. Spectral reconstruction

The existent spectral reconstruction approaches roughly include
four categories: numerical peak fitting, anti-derivative, frequency ma-
nipulation, and shift matrix [36,39]. The numerical peak fitting suffers
from the significant uncertainty especially for Raman bands over-
lapping with each other like in biological Raman-spectra. Hence only
the other three strategies are investigated in this contribution. Anti-
derivative is the most straightforward way to reconstruct a Raman
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The Fourier transform based reconstruction is expressed in Eq. (3).
Ideally, two Raman spectra of a SERDS dataset can be formulated as Eq.
(3)(a-b), where m is the excitation wavelength shift counted by spectral
data points (index). From mathematical point of view, a pure shift of a
vector in spatial domain is equivalent to a multiplication with a phase
factor exp(—i2km/N) in the frequency domain. This corresponds to Eq.
(3)(c-d) after the Fourier transform of the two spectra. The frequency
component of a pure Raman spectrum is given in Eq. (3)(e), where the
Raman spectrum 7 can be recovered with an inverse Fourier transform.
One of the major problems of Fourier transform based reconstruction is
the high-frequency artefacts caused by the frequency leakage during the
Fourier transform of a data series with limited length. The artefacts can
be decreased by applying a cosine apodization after Fourier transform,
but this sacrifices the reconstructed spectral resolution [35].

@:st=f +n

®): 8¢ = f, + n(->m)
©:5=F + 7

(d): 5% = f; + Feexp(—i2mkm/N)
SF— 52

©): % = 1 — exp(—i2zkm/N) 3)

Unlike the frequency manipulation with Fourier transform, another
approach is to formulate the excitation wavelength shift in original
spectral domain. In principle, shifting of a vector v’ by m points is
equal to multiply the vector with a matrix: ¥'" =1 x ¥ . Here, I is a
binary matrix with ones at the semi-diagonal and zeros elsewhere. The
offset between this semi-diagonal and the main diagonal is equal to m
(as shown by I in Fig. 3). The direction of the offset (lower or upper to
the main diagonal) corresponds to the shift direction (right and left). In
order to avoid the instability of the reconstruction caused by the sin-
gularity of I, we modified matrix I, by assigning the first m diagonal
elements to ones. This is equivalent to keep the first m elements of the
identity matrix unchanged when constructing the shift matrix I,. On the
other side, a measured Raman spectrum (3) is composed of pure
Raman spectrum (7) and fluorescence emission (7), which
can be mathematically described by a matrix multiplication:
5= [T, L] x [7,?]7. I, and I; are identity matrices with dimension
N x N, for N data points within each spectrum. Consequently, the
SERDS dataset can be modeled as Eq. (4), where (?1, ?Z)T is a column
vector concatenated by the two recorded Raman spectra. Hereby the
spectral reconstruction problem is transferred into a problem of inverse
linear regression, where Eq. (4) should be solved for 7 and T This was
achieved via least squares algorithm with non-negative constraints, i.e.,
non-negative least squares (NNLS). Noteworthy, the method
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Fig. 3. Workflow of NNLS based spectral reconstruction: the identity matrices I, and I, are multiplied with regularization parameters representing the intensity
variations between the two recorded Raman spectra. Specifically, the value dr was determined as the ratio of the sum of the local maxima of the two recorded spectra.

Meanwhile, the fluorescence of both spectra was obtained by interpolating its local minima into the whole spectral region. The values of df; (i= 1, 2, ...,

N) were

calculated as the ratio between fluorescence intensities of the two spectra at each data point. Moreover, the artefacts after reconstruction is estimated by subtracting
the reconstructed fluorescence signal (Fl.rec) with its smoothed signal (med(Fl.rec)) based on a strong median filter. Artefact-free Raman spectrum (R.Final) is
obtained by adding the estimated artefacts (Artefact) to the reconstructed Raman signal (R.rec).
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simultaneously recovers the pure Raman spectrum () and fluores-
—

cence emission (f ).
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The matrix shift based method is not new and has been reported in
reference [40], which employed a series of measurements at more than
two excitation wavelengths. Reconstruction from only two excitations
would lead to significant fluorescence residual, as demonstrated in re-
ference [39]. In fact, with Eq. (4), it was implicitly assumed that the
spectral intensities remain the same between the two measurements,
which rarely holds in practice. To take the intensity variations into
consideration, we modified the matrices in Eq. (4) by introducing a

scalar dr and a vector df, as visualized in the upper row of Fig. 3. dr

and df were calculated via the following steps. First, one spectrum was
shifted spectrally to match the other one. Second, the local maxima and
minima were located on the mean spectrum of the two matched spectra.
Third, intensities of local maxima belonging to either spectrum were
summed up. The intensity variation of the two Raman spectra was
calculated as the ratio dr between the summed intensities. Meanwhile,
the fluorescence of each spectrum was obtained by extrapolating its
local minima into the whole spectral region. The df; (i = 1, 2, ..., 1024)
was computed as the ratio between fluorescence signals at the corre-
sponding data point.

Another problem of the NNLS method is the high-frequency arte-
facts caused by the computational approximate and the presence of
noise. This is displayed in ‘R.rec’ and ‘Fl.rec’ in Fig. 3. Fortunately, the
artefacts can be estimated from the reconstructed fluorescence
(‘FLrec’), providing the frequency of the fluorescence is extremely
lower than that of the artefacts. Thereafter, the estimated artefacts were
compensated in the reconstructed Raman spectra (‘R.rec’) to get an
artefact-free Raman spectrum (‘R.Final’). In our investigation, the ar-
tefacts were estimated by subtracting the reconstructed fluorescence
with its smoothed signal by a strong median filtering (med(Fl.rec)).
Noteworthy, the reconstruction is degraded at the boundary of the
spectrum due to the modification of matrix I, as shown in Fig. 3 (‘R.rec’
and ‘Fl.rec’), which can be corrected with the previously mentioned
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‘artefacts correction’, as shown by Fig. 3 (‘R.Final’).

After introducing the spectral reconstruction approaches, it is im-
portant to evaluate their performance. This was accomplished based on
real-world and artificial datasets. Qualitative evaluation was achieved
with the real-world dataset, while the artificial datasets were
applied for quantitative evaluation. In the latter case, quantitative
markers of FWHM, SNR, and R'? [41] were calculated from the re-
constructed spectrum. The Pearson's correlation coefficient (PCC,
p(X,Y) = cov(X, Y)/(ox-oy)) was computed between reconstructed
and true Raman spectrum. Each of the markers evaluated the perfor-
mance from a different aspect. The FWHM benchmarks the spectral
resolution after reconstruction. The PCC represents the precision of the
reconstruction with respect to the true spectrum. The SNR indicates the
noise level after reconstruction. The R'? evaluates the fluorescence re-
sidual after the reconstruction, which was introduced to quantify the
performance of computational baseline correction methods. A lower
value of R'? represents a better baseline correction with less fluores-
cence residual but remaining Raman bands [41].

3.2. Qualitative comparison of reconstruction methods: Real-world dataset

The reconstructed results of the real-world datasets with the three
approaches are given in Fig. 4. Fluorescence residual was obviously
observed for antiD and FT based methods, due to intensity variations.
The fluorescence residual was largely reduced and ignorable by NNLS
reconstruction. The antiD method on the other side led to visibly
broadened Raman bands or even completely lost bands highlighted by
arrows in Fig. 4a. That means the spectral resolution was degraded by
antiD method. In addition, the reconstruction by the FT based method
was corrupted by high-frequency artefacts due to the frequency leakage
[35]. Neither peak broadening nor the high-frequency artefacts were
observed for NNLS approach, indicating the adequate performance of
NNLS reconstruction.

Noteworthy, the reconstructed Raman peak positions are observed
on different positions for the three reconstruction methods. The Raman
peaks reconstructed with antiD lie in the middle of the corresponding
peaks of the two recorded spectra. The FT and NNLS based approaches
shift Raman bands to the positions of the Raman spectrum without
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Fig. 4. Reconstructed spectra by three approaches. Obviously, FT and antiD based approaches failed to completely remove fluorescence. Meanwhile, the peaks were
broadened or completely lost via antiD reconstruction (see blue arrows). On the other side, the FT based reconstruction was corrupted by severe high-frequency
artefacts. NNLS gave the best reconstruction with ignorable remaining fluorescence and artefacts. Besides this, the peak widths were almost the same as the peak
widths in the raw spectra after reconstruction and small peaks were also well reconstructed. Noteworthy, the reconstructed Raman peak positions were different for
the three methods, dependent on which spectrum was treated as the spectrum without ‘shift’ during the calculation. (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

‘shift’, which in our implementation was the first and the second
spectrum for FT and NNLS, respectively.

3.3. Quantitative comparison of reconstruction methods: Artificial datasets

The previous subsection gave a qualitative overview of the perfor-
mance of the three reconstruction approaches. In this subsection a
quantitative evaluation of the reconstruction methods is carried out
with four markers based on artificial datasets. To do so, the markers
including FWHM, PCC, SNR, and R'? were calculated after the re-
construction. The quantification of the FT reconstruction was not in-
volved considering its inadequate performance caused by severe fre-
quency leakage artefacts. In particular, the evaluation was based on two
cases: noise-free and noise-containing simulation. The evaluation of
spectral resolution (FWHM) and precision (PCC) was based on the
noise-free artificial datasets in order to calculate FWHM and PCC more
accurately without noise influence. In particular, the PCC and FWHM
were calculated after an additional baseline correction on the re-
constructed Raman spectrum in order to remove eventual influence
caused by the fluorescence residual.

3.3.1. Noise-free artificial datasets: FWHM and PCC
The FWHM was calculated from the most intense Raman band. The
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other peaks were not used for the calculation because of two reasons.
First, the five peaks within the same artificial spectrum possess the
same FWHM. Second, the peaks with low intensities might be invisible
after reconstruction and it is difficult to calculate the FWHM accurately
based on these peaks. To calculate FWHM, the maximal Raman band in
the reconstructed spectrum was fitted as a Gaussian profile. The FWHM
was computed as 24/2 In(2) -g,, where o, was the standard deviation of
the fitted Gaussian profile. Thereafter, the ratio between the re-
constructed FWHM and the value of FWHM used for the simulation was
calculated to detect the change of the spectral resolution. The logarithm
of the ratio was visualized in Fig. 5 relative to the values of FWHM and
excitation wavelength shift used for the simulation. Each subplot pro-
vides a simulation with a different maximal Raman intensity (RFIR).
Columns (a)-(c) and (e)-(f) correspond to results of NNLS and antiD,
respectively. The first and second row corresponds to the simulation
with identical and different fluorescence between the two spectra, re-
spectively. The positive values, encoded as yellow and red, represent
larger reconstructed FWHMs than the values used for simulation, i.e. a
decreased spectral resolution. The negative values, encoded as blue,
representing a smaller reconstructed FWHM than the true values, i.e.,
improved spectral resolution. The zeros, encoded as transparent re-
vealed unchanged spectral resolution after the reconstruction.

As it is shown in Fig. 5, the reconstructed FWHM was increased with
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the reconstructed FWHM was largely dependent on true FWHM and excitation wavelength shift. Nonetheless, the reconstructed FWHM was generally comparable to

the true FWHM if a NNLS reconstruction was applied print in color.

antiD reconstruction especially for datasets with smaller FWHMs. That
means the spectral resolution is decreased by antiD for these datasets.
This is consistent with the results of the real-world datasets. Meanwhile,
comparing the two rows of Fig. 5, the reconstructed FWHM was only
slightly affected by the fluorescence variations. This was true for both
approaches. If the maximal Raman intensity (RFIR) of the simulation
was varied, the reconstructed FWHM changed for NNLS reconstruction
but was almost stable for antiD reconstruction. On the other hand, the
reconstructed FWHM was proven dependent on the FWHM and ex-
citation wavelength shift, especially for antiD reconstruction. This can
be explained by the theoretical background of SERDS technology. As it
was discussed in ref [38], an unreasonable combination would lead to
severe loss of spectral information. A reasonable combination of FWHM
and excitation wavelength shift is thus an essential precondition for a
usable SERDS measurement. Nonetheless, referring to the values shown
in Fig. 5, the NNLS could reconstruct the Raman spectrum without
significantly changing the spectral resolution as the ratio was generally
very close to zero.

Besides the spectral resolution, the precision of the reconstruction
was also verified. This was done by calculating the PCC between the
reconstructed and the true spectra, which varies between zero and one.
A higher PCC means a better precision. The results were visualized in
Fig. S2, where the two rows correspond to simulations with identical
and different fluorescence signals, respectively. The PCC was almost
always above 0.8 for the NNLS reconstruction approach, demonstrating
a satisfying reconstruction quality for different FWHMs and excitation
wavelength shifts. This was different for the antiD reconstruction
method, where the PCC was extremely low for data with a small FWHM
due to the peak broadening after antiD reconstruction. Second, the PCC
was dependent on the maximal Raman intensity, FWHM and excitation
wavelength shift used for the simulation. The PCC increased for higher
maximal Raman intensity (RFIR). An exception occurred for the antiD
reconstruction on datasets simulated with identical fluorescence, where
the PCC did not change with the maximal Raman intensity. Third, the
PCC was dramatically dependent on true FWHM and excitation wave-
length shift. Hereby, the antiD and NNLS behaved differently. The antiD
performed better for larger FWHM and smaller excitation wavelength
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shift; while the NNLS gave better results for smaller FWHM and was less
dependent on the excitation wavelength shift. To compare the results of
the two rows shown in Fig. S2, the NNLS reconstruction is still slightly
influenced by the fluorescence variations. This is because the simulated
data contains very few Raman bands (local minima), leading to in-
adequate spline interpolation (see workflow in Fig. 3). Hence the values
of df; i=1, 2, ..., N) for fluorescence variations correction are not
accurate.

3.3.2. Noise-containing artificial datasets: SNR and R'?

Another important aspect for the performance evaluation is the
reconstruction on noisy datasets. The details of the simulation can be
found in the ‘material and methods’ section. Noteworthy, the excitation
wavelength shift above 26 was not included in this subsection, because
these values rarely occur in real-world measurements providing the
wavelength shift between the two excitations is very slight. Figs. S3 and
S4 visualize the reconstructed results based on NNLS and antiD pro-
cedures for datasets with ry,,x = 250 and SNR = 3. Each sub-plot re-
presents a different FWHM and excitation wavelength shift, involving
50 repetitions. The solid lines represent the average of the 50 re-
constructed spectra, while the standard deviations over the 50 repeti-
tions were plot as red shade. Obviously, the antiD was superior to NNLS
by giving better reconstructed SNR. However, the fluorescence residual
was smaller for NNLS than antiD. This fact is more obvious for data
with higher SNR or higher rq.. The fluorescence residual for NNLS
reconstruction originated in the inadequate spline interpolation as
stated above. Nonetheless, the fluorescence residual is ignorable for
datasets with large number of local minima like it is the case in real-
world datasets (Fig. 4 (right)). In the following discussion, the perfor-
mance of the reconstruction was evaluated with reconstructed SNR and
R'2. These two markers were calculated for each repetition and the
evaluation was based on the averaged values over the 50 repetitions.

As the first aspect, we compared the SNR of the reconstructed and
the true Raman spectrum. To do so, we firstly estimated the noise level
within the reconstructed spectrum by filtering the reconstructed spec-
trum with a S-G filter (p = 2, n = 51) and subtracting the result from
the reconstructed spectrum. Thereafter, the reconstructed SNR was

81



Chapter 7. Publications

S. Guo et al. Talanta 186 (2018) 372-380
In(SNR(rec.)/ SNR(true))
SNR=3 SNR=4 SNR=5 SNR=6
e ;
0
= = =
2 W, o— -

1 .
5 8111417202326 5 8 111417202326

o 5 8 111417 20 23 26 5 8 11141720 2326
m Shift Shift Shift Shift 169
Il :
>
E SNR=8 SNR=10 SNR=15 SNR=20
- 82 82
;g = ;g = 0.32
23 23
S8 111411202528 e 1141720252 e 1141720252 -1.04
Shift Shift Shift
SNR=3 SNR=4 SNR=5 SNR=6
82 82 441
= =2 =
23 M 23 E a 3.06
8 115311141 115(;11141 15(511141
n Shift Shift Shift
">n<| 1.71
LE SNR=8 SNR=10 SNR=15 SNR=20
82 82
;g = ;g = 0.36
a7 é 47 é
2 = »
S 811141720258 N e 1114172002 e 11417202 e 141720758 -0.99
Shift Shift Shift Shift
SNR=3 SNR=4 SNR=5 SNR=6
82 82 446
70 70
58 = 58 =
23 23 3.09
o
8 s 8 111417202520 Hsam "55% ”5511@
'ﬁ' Shift Shift Shift Shift 172
L .
(1)
f SNR=8 SNR=10 SNR=15 SNR=20
82 82
70 70 0.35
= = =
35 35 I
23 ! 23
s e 1114t e 1 1a e a7 e a7 -1.02

Shift Shift Shift Shift

Fig. 6. The logarithm of the ratio between SNR of reconstructed and true Raman spectrum. The positive values are encoded as yellow and red, while the negative
values are encoded as blue. With reasonable combinations of FWHM and excitation wavelength shifts, the reconstructed SNR could be comparable or equal to that of
the single spectrum. For the datasets with extremely low SNR levels (SNR = 3, 4, 5, and 6), the reconstructed SNR was significantly improved comparing to the single
spectrum. On the other hand, for cases of original SNR > 10, the reconstructed SNR demonstrated no further improvement. The reconstructed SNR was more likely
to be improved than that of single spectrum for lower FRIR.
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computed as the ratio between mean intensity of Raman peak region
(highlighted in red color in Fig. S5) and the standard deviation of the
estimated noise. Similarly, the SNR of the simulated Raman spectrum
was calculated by (% > epeaks r)/g,, where g, was the standard deviation
of the simulated white noise. The logarithm of the ratio between re-
constructed SNR and that of the single spectrum was plot in Fig. 6. The
color code was similar as Fig. 5.

Clearly, the FWHM and excitation wavelength shift of the simulated
spectra influenced the reconstructed SNR. With reasonable combina-
tions, the reconstructed SNR could be comparable or equal to that of the
single spectrum. In addition, the SNR level of the original single spec-
trum greatly influences the reconstructed SNR. For datasets with ex-
tremely low SNR levels (SNR = 3, 4, 5, and 6, for instance), the re-
constructed SNR was significantly improved comparing to the single
spectrum. On the other hand, for the single spectrum with large enough
SNR, the reconstructed SNR exhibited no further improvement. Besides
this, the value of maximal Raman intensity (RFIR) also matters for the
reconstructed SNR. The reconstructed SNR was more likely to be in-
creased for lower RFIR. Overall, it can be concluded that the SNR is
possibly increased after reconstruction comparing to the single spec-
trum for extremely noisy datasets. However, according to the values
shown in Fig. 6, the reconstructed SNR is not better than the mean
spectrum of the two single Raman spectra.

A second aspect to check about reconstructions is the fluorescence
residual. Ideally, the fluorescence is supposed to be completely re-
moved from the reconstruct spectrum while all useful spectral in-
formation is retained. The verification of this point was done based on
the quantitative marker R'?[41]. The regions with and without Raman
bands were used for calculation of R'2, which were termed as peak and
zero regions, respectively. The peak and zero regions used for calcu-
lating R'? were visualized in Fig. S6. According to the definition, a
smaller R'? represents a better baseline correction, i.e., less fluores-
cence residual after reconstruction. Herewith we treated the original
Raman spectrum as the perfect case where the fluorescence was com-
pletely removed, i.e., the ground truth. Any fluorescence residual after
reconstruction will lead to larger reconstructed R than the ground
truth. Accordingly, we calculated the logarithm of the ratio between the
reconstructed and true R'? and visualized the results in Fig. S7.

The logarithm of the ratio was positive in general. That means the
reconstruction could not completely remove the fluorescence. Also, the
fluorescence residual was dependent on the parameters including
FWH)M, excitation wavelength shifts, RFIR of the simulated datasets.
First, each sub-block in Fig. S7 displays simulations with a different
SNR levels but the same RFIR. Apparently, the reconstruction was in-
ferior for spectra with unreasonable combination of FWHM and ex-
citation wavelength shift. Nonetheless, given a reasonable combination
of FWHM and excitation wavelength shifts, the reconstruction was sa-
tisfying even for cases of low SNR. Second, comparing the results of
datasets with the same SNR level but different RFIR, it was demon-
strated that the reconstruction was superior for higher RFIR.

Besides the simulations using identical fluorescence contributions,
the simulations containing fluorescence variations were carried out as
well. The results were visualized in columns b, d, f of Fig. S8 and Fig.
S9. Hereby the SNR was varied between 3, 5, and 10. The results from
the identical fluorescence were re-plotted in columns a, ¢, and e for an
easy comparison. Obviously, the reconstructed SNR was decreased
while the R'? was increased comparing the results of identical fluor-
escence. For either marker, however, the changes were slight. That is to
say, by involving fluorescence variations into the model, the NNLS re-
construction was almost tolerant to fluorescence variations.

3.4. Benchmark the reconstruction by the classification performance of an
artificial task

Besides the quantitative analysis described above, we additionally
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benchmarked the performance of the SERDS reconstruction according
to the classification performance. This was done based on a simulated
binary classification task (Fig. S10 (a-c)). The details of the simulation
and the results are included in the supporting information. Briefly, the
dataset included five batches, each constructed with slightly different
fluorescence. Meanwhile, the Raman intensity was varied slightly and
randomly from spectrum to spectrum. The fluorescence of the two
Raman spectra of each dataset varied according to Eq. (1). The mean
spectrum of the difference spectra, the antiD reconstructed spectra and
the NNLS reconstructed spectra are visualized in Fig. S10 (d-f), re-
spectively. We constructed a partial least squares (PLS) classification
and evaluated the classification performance based on a leave-one-
batch-out cross-validation [42]. The mean sensitivity of the prediction
was plotted in Fig. S11 relative to the number of latent variables used
for PLS. The difference spectra and the antiD reconstruction produced
the similar results. NNLS reconstruction led to much better prediction
than the difference spectra and antiD reconstruction. That means the
NNLS reconstruction enables to handle the fluorescence variations from
batch to batch, even if the fluorescence was not completely removed
after reconstruction.

4. Conclusion

This contribution revealed the limitations of SERDS reconstruction
approaches based on antiD and Fourier transform, including fluores-
cence residual, spectral resolution loss, and severe artefacts. Thereafter,
a spectral reconstruction approach based on NNLS was present. The
intensity variations were estimated and modeled within the re-
construction, leading to a fluorescence-free reconstruction. Meanwhile,
the high-frequency artefacts occurring via direct NNLS computation
could be corrected without losing spectral resolution. The performance
was benchmarked with three real-world SERDS datasets and a series of
artificial datasets constructed with varying spectral parameters. It was
demonstrated that the NNLS could provide almost fluorescence-free
reconstruction without significantly changing the spectral resolution. In
addition, SNR could be improved after reconstruction for extremely
noisy raw SERDS datasets. The reconstructed SNR can be improved via
antiD, because the noise contribution can be averaged during the in-
tegration. Moreover, the classification performance was better for NNLS
reconstruction than antiD reconstruction.

Nonetheless, the spectral parameters are important and limiting
factors for the reconstruction methods. Especially the FWHM and ex-
citation wavelength shift of the original dataset are important for the
reconstruction methods. Particularly, for Raman bands with small
FWHM, the NNLS approach is highly advantageous by providing un-
changed spectral resolution and less fluorescence residual. In addition,
the performance of NNLS is less dependent on the excitation wave-
length shift compared to antiD reconstruction. On the other hand, for
larger FWHM, antiD can lead to better PCC than NNLS. In addition, the
reconstructed SNR can be improved via antiD by averaging the noise
contributions during the integration. However, antiD degrades the
spectral resolution obviously.
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Abstract

Fluorescence emission has been one of the major obstacles to apply Raman spectroscopy in biological

investigations. It is usually several orders more intense than Raman scattering and hampers further analysis.

In cases where the fluorescence emission is too intense to be efficiently removed via routine mathematical
baseline correction algorithms, an alternative approach is needed. One alternative approach is shifted-
excitation Raman difference spectroscopy (SERDS), where two Raman spectra are recorded with two
slightly different excitation wavelengths. Ideally, the fluorescence emission at the two excitations does not
change while the Raman spectrum shifts according to the excitation wavelength. Hence the fluorescence is
removed in the difference of the two recorded Raman spectra. For better interpretability a spectral
reconstruction procedure is necessary to recover the fluorescence-free Raman spectrum. This is challenging
due to the intensity variations between the two recorded Raman spectra caused by unavoidable
experimental changes, as well as the presence of noise. Existent approaches suffer from drawbacks like
spectral resolution loss, fluorescence residual, and artefacts. In this contribution, we proposed a
reconstruction method based on non-negative least squares (NNLS), where the intensity variations
between the two measurements are utilized in the reconstruction model. The method achieved
fluorescence-free reconstruction on three real-world SERDS datasets without significant information loss.
Thereafter, we quantified the performance of the reconstruction based on artificial datasets from four
aspects: reconstructed spectral resolution, precision of reconstruction, signal-to-noise-ratio (SNR), and
fluorescence residual. The artificial datasets were constructed with varied Raman to fluorescence intensity
ratio (RFIR), SNR, full-width at half-maximum (FWHM), excitation wavelength shift, and fluorescence
variation between the two spectra. It was demonstrated that the NNLS approach provides a faithful
reconstruction without significantly changing the spectral resolution. Meanwhile, the reconstruction is
almost robust to fluorescence variations between the two spectra. Last but not the least the SNR was
improved after reconstruction for extremely noisy SERDS datasets.
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Figure S1 examples of artificial datasets simulated with parameters 6,=10, m=11, SNR € (3,4,5, 6,8, 10, 15, 20), and
Tmax € (250,500,1000). the investigated values of SNR and MRI led to datasets from very poor quality to relatively
good quality.
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Figure S3 reconstructed results for datasets constructed with 7;,,,=250, SNR=3. The white noise was regenerated 50
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reconstructed spectra, while the red shade visualizes the variations over the 50 reconstructed spectra.
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Figure S7: The logarithm of the ratio between the reconstructed and true R™. Each sub-block separated by dash lines
displays results of datasets with different SNR levels but the same maximal Raman intensity. The reconstruction was
worse for spectra with higher noise levels, or unreasonable combination of FWHM and excitation wavelength shifts.
However, for reasonable combinations of FWHM and excitation wavelength shifts, the reconstruction was satisfying
even for extremely low SNRs. Further, the reconstruction was improved by a high RFIR.
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Figure S8 The SNR results of the reconstruction on noise-contained artificial datasets. The positive values are encoded
as yellow and red, while the negative values are encoded as blue. Columns (a, c, e) correspond to the datasets
constructed with identical fluorescence. The other columns refer to the datasets constructed with different
fluorescence signals. The simulation was done for 7,,,,=250, 500, or 1000, and SNR=3, 5, or 10. Obviously the
reconstructed SNR was decreased due to the presence of fluorescence variation. However, the changes were rather
slight. That is to say, the NNLS reconstruction was relatively tolerant to fluorescence variations.
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Figure S9 The R™ results of the reconstruction on noise-contained artificial datasets. The positive values are encoded
as yellow and red, while the negative values are encoded as blue. Columns (a, c, e) correspond to the datasets
constructed with identical fluorescence. The other columns refer to the datasets constructed with different
fluorescence signals. The simulation was done for r,,=250, 500, or 1000, and SNR=3, 5, or 10. Obviously the
reconstructed R'? was increased due to the presence of fluorescence variation. However, the changes were rather
slight. That is to say, the NNLS reconstruction was relatively tolerant to fluorescence variations.
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Simulation of binary classification

In order to check the performance of the SERDS reconstruction, we constructed a binary classification task
based on artificial SERDS datasets constructed using the following parameters: r,,=250, SNR=3. The
fluorescence for the two spectra of each SERDS dataset was varied according to Eq. (1). In particular, each
group was composed of 100 spectra. The intensities of Raman bands slightly varied from spectrum to
spectrum. Besides this, the 100 spectra were split into 5 batches and different fluorescence intensities were
used for each batch. The mean spectra of the two groups are plotted in Figure S10 (a-c). The average of the
difference spectrum and the reconstruction with antiD and NNLS methods for both groups were given in
Figure S10 (d-f).

On this basis, we conducted a classification with partial least squares (PLS), where the number of the latent
variables varied from 3 to 30. The classification performance was evaluated using a leave-one-batch-out
cross-validation. The mean sensitivities corresponding to different reconstruction methods are shown in
Figure S11. The classification results of the difference spectra and the antiD reconstruction were the same.
The NNLS reconstruction led to much better prediction than the other two methods, despite the obvious
fluorescence residual after the reconstruction.
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Figure S10 Mean spectra of the simulated data and the reconstructed results. (a-b) average of the two spectra of the
SERDS dataset belonging to both groups. (c) mean spectrum of the two groups. (d) average of the difference spectrum
for both groups. (e) average of the antiD reconstruction for both groups. (f) average of the NNLS reconstruction for
both groups.
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Figure S11 Mean sensitivities of the classification relative to the number of latent variables used for PLS. The results of
difference spectra and antiD reconstruction were the same. The NNLS reconstruction led to much better prediction
than the other two methods.
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Common mistakes in cross-validating classification
modelst

Shuxia Guo, © £°° Thomas Bocklitz, © $** Ute Neugebauer®®®
and Jiirgen Popp 269

The common mistakes of cross-validation (CV) for the development of chemometric models for Raman
based biological applications were investigated. We focused on two common mistakes: the first mistake
occurs when splitting the dataset into training and validation datasets improperly; and the second
mistake is regarding the wrong position of a dimension reduction procedure with respect to the CV
loop. For the first mistake, we split the dataset either randomly or each technical replicate was used as
one fold of the CV and we compared the results. To check the second mistake, we employed two
dimension reduction methods including principal component analysis (PCA) and partial least squares
regression (PLS). These dimension reduction models were constructed either once for the whole training
data outside the CV loop or rebuilt inside the CV loop for each iteration. We based our study on
a benchmark dataset of Raman spectra of three cell types, which included nine technical replicates
respectively. Two binary classification models were constructed with a two-layer CV. For the external
CV, each replicate was used once as the independent testing dataset. The other replicates were used for
the internal CV, where different methods of data splitting and different positions of the dimension
reduction were studied. The conclusions include two points. The first point is related to the reliability of
the model evaluation by the internal CV, illustrated by the differences between the testing accuracies
from the external CV and the validation accuracies from the internal CV. It was demonstrated that the
dataset should be split at the highest hierarchical level, which means the biological/technical replicate in
this manuscript. Meanwhile, the dimension reduction should be redone for each iteration of the internal
CV loop. The second point is the optimization of the performance of the internal CV, benchmarked by
the prediction accuracy of the optimized model on the testing dataset. Comparable results were
observed for different methods of data splitting and positions of dimension reduction in the internal CV.
This means if the internal CV is used for optimizing the model parameters, the two mistakes are less
influential in contrast to the model evaluation.

identification®*™* and intraoperative decision making."* A

Raman spectrum of a biological specimen is composed of the

Raman spectroscopy features properties such as being non-
invasive, free of labels, and insensitive to water, which are
ideal for biomedical applications. Due to the improvement of
Raman spectroscopic devices, these biomedical applications
have been steadily growing over the last few decades.'”
Consequently, Raman spectroscopy is widely applied for disease
detection,®** investigations of the metabolism,” bacteria
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4410 | Anal. Methods, 2017, 9, 4410-4417

Raman spectra of all Raman active biomolecules. This fact leads
to quite similar Raman spectra, even if they are measured on
different (biological) samples. The described similarity of the
spectra makes it impossible to manually distinguish spectral
differences resulting from biomedical changes. Thus,
Raman spectroscopy is usually combined with chemometric
methods®**"” to extract biomedical information. In a regres-
sion/classification scenario, statistical models are constructed
to correlate spectral changes with independent variables such
as responses, concentrations, or group information. Afterwards
these models can be used to predict a new dataset and extract
the corresponding independent variables.'®"” In this way diag-
nostics or analytics based on Raman spectroscopy can be
achieved.

A model with an optimal predictive performance can be
constructed if the training dataset is complete and contains the

This journal is © The Royal Society of Chemistry 2017
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entire space of the population. However, in real applications
this cannot be realized and the population space must be esti-
mated by the sample space. Because of this fact a trade-off
between the training error (bias) and the testing error (vari-
ance) exists. Thereby the testing error benchmarks the gener-
alization performance of a model*®?® and it is necessary to
evaluate the aforementioned trade-off. A good solution for this
task is to check the prediction of the model on an independent
dataset. Unfortunately, it is expensive, time-consuming, or even
impossible to generate enough independent data in most bio-
logical applications. Therefore, cross-validation (CV) has
become a routine method to evaluate the models with limited
data at hand. For CV, the available dataset is split into several
parts, so called folds. Each fold is utilized as a test set once and
predicted by the model developed on the basis of the other
folds, which form the training data set.*

However, the CV is commonly performed with mistakes,
which can lead to wrong results.”” The first common mistake,
which has a large influence on the result of a CV, is a wrong data
splitting procedure. The methods for splitting the data have
been widely investigated.>>* Based on the data splitting
methods, a CV can be categorized into two types: exhaustive and
non-exhaustive CVs. The methods belonging to the former type
use all possible data splits and thus are computationally
expensive. Therefore, they are less frequently applied, especially
for large-size datasets.** The non-exhaustive CV is not complete
because not all possible splits are tested. Hence, the results of
this type of CV vary between different runs of the CV.**** In this
case, a proper data splitting is important, especially if signifi-
cant variations exist within the groups of interest and between
measurements. The results of a CV can be misleading, if the
dataset is split improperly. This behaviour is demonstrated in

Training Set Validation Set jJ§ Testing Set

k-Fold CV k-Replicate CV

Fig. 1 Example of a binary classification task, with different data
splitting methods. The overall training set (black and red) includes two
replicates and an additional replicate acts as the independent testing
dataset (blue). On the left, the overall training set was split randomly
into the training and the validation datasets (k-fold CV), while on the
right, this splitting was done according to the replicate information (k-
replicate CV). The two separate planes represent the linear classifiers,
which ensure the largest margin between the two groups in the
training dataset (black) in both the cases.

This journal is © The Royal Society of Chemistry 2017
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Fig. 1, where a binary classification task is shown. The overall
training dataset (black and red) includes two replicates for each
group and an additional replicate acts as the independent
testing dataset (blue). On the left side, the overall training
dataset was split randomly into training and validation datasets
(k-fold CV), while on the right, this splitting was done according
to the replicate information (k-replicate CV). The two dotted
lines represent the linear classification models, which ensure
the largest margin between the two groups of the training
dataset (black). For the k-fold CV, the model prediction on the
validation dataset was perfect. In contrast, for the k-replicate
CV, errors occur for the prediction on the validation dataset.
If evaluated by the validation accuracy, the model on the left
side is better. However, if the same classifiers are used to predict
an independent test set, e.g. the real application case, the
results will be reversed. This means that the classifier on the
right side outperforms the other one with respect to the
generalization performance. Therefore, the k-fold CV results in
a misleading evaluation of the classifier on the left. In this
contribution, this mistake is investigated based on real data;
both the data splitting methods were applied and the results are
compared.

The second common mistake is the improper position of
dimension reduction with respect to the CV loop.** It was shown
by Burden et al. that the pre-processing should be performed
excluding the test set,”® which means the respective test fold in
the CV case. For this aspect, we utilized two dimension reduc-
tion methods: principal component analysis (PCA) and partial
least squares regression (PLS). We compared the positions of
the dimension reduction with respect to the CV loop. In one
case we performed the dimension reduction once for the whole
dataset outside the CV loop. In comparison, we applied the
dimension reduction inside the CV loop and only used the
actual training set to construct the dimension reduction model.
These two CV types are termed outside-CV and inside-CV,
respectively.

In this contribution we investigated both common mistakes
and summarized our findings as guidelines to properly cross-
validate classification models. We based our investigation on
the Raman spectra of three cell types (MCF-7, BT-20, and OCI-
AML3), which included nine replicates. Two binary classifica-
tion models were developed and validated to separate MCF-7
from the other two cell types (BT-20 and OCI-AML3).

Experimental
Raman spectroscopy

The Raman spectroscopic measurements were described by
Beleites et al.?” and are briefly summarized in this section. The
cells under investigation included two breast carcinoma derived
tumour cells (MCF-7 and BT-20) and acute myeloid leukemia
cells (OCI-AML3). Each cell type was cultivated five times and
measured on nine days, which formed five biological replicates
and nine technical replicates. We based our investigation on the
nine technical replicates to have more folds for cross-validation
with the k-replicate data splitting method. Raman spectra were
measured with an excitation wavelength of 785 nm (xtra model,
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Toptica, Germany) and a power of 75 mW at the sample. An
upright Raman microscope (Microprobe, Kaiser Optical
Systems, USA) with a 60x/NA 1.0 water immersion objective
(Nikon, Japan) was used. In total, 1553 cells (558 MCF-7, 477 BT-
20, and 518 OCI-AML3) were measured in single-cell mode. The
mean Raman spectra of the three cell types are plotted in
Fig. S1.}

Computational

All computations were carried out in the statistical program-
ming language Gnu R. The packages “signal”,*® “baseline”,*
“MASS”* and “e1071”** were utilized. The functions from these
packages were complemented by in-house written procedures.

Data pre-processing

Before a classification model was constructed, the Raman
spectra were pre-processed to remove spectral interferents and
artefacts. The wavenumber axis was calibrated with a method
described in ref. 32. The Raman band of CaF, at 322 cm ™' was
used as a wavenumber standard. Afterwards, the wavenumber
axis was interpolated on an equidistant grid with a step size of 1
em . Next the spectral background was removed by an asym-
metric least squares baseline correction. The function

Paper

‘baseline.als’ within the R package ‘baseline’ was utilized and
the parameters were set to lambda = 5 and p = 0.001. There-
after, a 2-order Savitzky-Golay smoothing with a window width
of 21 was applied. Finally, the wavenumber regions from 675 to
1785 em ™' and from 2815 to 3020 cm ™' were used for classifi-
cation after a vector normalization.

Models and validation

Classification. After the pre-processing, we developed two
binary classification models: MCF-7 against BT-20 and MCF-7
against OCI-AML3. This was done by combining a dimension
reduction technique with a classifier. The dimension was
reduced by either principal component analysis (PCA) or partial
least squares regression (PLS), without centring or scaling. The
number of principal components (nPC), or latent variables
(nLV) was varied from three to fifty. In particular, the PLS
regression was applied using a dummy response variable (0 or
1) codifying the class belonging of the samples. To make the
conclusions more general, we employed two methods for clas-
sification: a linear discriminant analysis (LDA) and a support
vector machine (SVM) with linear kernel. A two-layer CV
procedure was established as described below.

Cross-validation. A two-layer CV was used, as shown by the
graphic workflow in Fig. 2 and the pseudo-code in Fig. S2.1 The

External CV

DOOOOBEE
- e

External CV

OOOE0ERE
- >

Internal CV

al-JERRnRElE ]S
-
¥ s l D | D

® predict PCA/PLS
nPC/nLV
: predict
H .
validation
, accuracy Inside-CV

Internal CV

DRUO0O0O0
B Of

predict
<ePrEdiCt

validation
accuracy

Fig.2 Workflow of the applied two-layer CV. The classification model was a combination of a dimension reduction by PCA or PLS and a classifier
(LDA or SVM). In detail, each replicate of the dataset was used once as the testing dataset (vs;) within the external CV loop. The remaining
replicates were used as the training dataset (ts;) and split into the internal training dataset (ts;) and validation dataset (vsy) within the internal CV.
The split was done either randomly or according to replicate information. In addition, the PCA or PLS model was built either only with ts; inside
the internal CV loop (inside-CV) or once for the whole training dataset (ts;) outside the internal CV loop (outside-CV). For each value of nPC (nLV),
the model was rebuilt and validated by the internal CV, and the resulting eight validation accuracies were averaged. Thereafter, the optimal nPC/
nLV featuring the highest average validation accuracy was used to build the model with the whole training dataset (ts;) to predict the testing

dataset (vs)).
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internal CV was used to construct and validate the model, while
the external CV was used to test the prediction performance of
the model on independent data. For the external CV, each of the
nine replicates was taken out once as an independent testing
dataset (vs;). The other eight replicates were used as the training
datasets (ts;) and an internal CV was carried out on the training
datasets. In detail, ts; was split into eight folds; each fold was
used as a validation dataset (vs;) and predicted once. The
resulting eight accuracies were averaged and used as validation
results. The internal CV was repeated for each value of nPC
(nLV). Afterwards, nPC (nLV) featuring the highest average
validation accuracy of the internal-CV was used to construct
a statistical model based on the overall training dataset (ts;).
This model was used for predicting the corresponding inde-
pendent testing dataset (vs;) and the testing accuracy was
calculated.

The internal CV was carried out in four different ways. First,
the training dataset (ts;) was split either randomly into 8 folds or
each biological replicate was used as one fold. Secondly, the
position of the dimension reduction was varied. The PCA or PLS
was performed either inside the internal CV or outside the
internal CV but inside the external CV (see Fig. 2). For the
inside-CV, the PCA (PLS) was rebuilt for each iteration of the
internal CV loop based on the internal training dataset (ts;;).
The validation dataset (vs;;) was predicted by this model. For the
outside-CV, the PCA (PLS) model was built based on the overall
training dataset (ts;). Then the scores were split into the internal
training dataset and validation dataset for the internal CV.

Results and discussion
Dataset characteristics

Before the discussion of the results can be done, it is necessary
to describe the samples and the sampling hierarchy. We
investigated 1553 single cell Raman spectra (558 MCF-7, 477 BT-
20, and 518 OCI-AML3). These three cell types were derived
from three cell lines and cultivated in five (biological) replicates
and measured on nine days. Besides the differences between
cell types, there exist significant variances between the repli-
cates. This makes the dataset ideally suited to investigate the
influence of the dataset splitting mechanisms used in the CV. In
addition, MCF-7 and BT-20 are breast carcinoma cells and OCI-
AML3 is acute myeloid leukemia cells, which means that they
feature different similarities. Accordingly, the binary task MCF-
7 against BT-20 is more difficult than the task of MCF-7 against
OCI-AML3. This fact allowed us to study two classification tasks
with different difficulty levels.

Performance

With the help of this complex dataset, we compared k-replicate
CV with k-fold CV. The position of the dimension reduction
(inside-CV and outside-CV) was studied as well, of which the
workflow and the pseudo code are shown in Fig. 2 and S2,t
respectively. In most applications, the validation accuracies are
used for evaluating the performance of the model. Therefore,
we plotted the validation accuracies from the first iteration of
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the external CV against nPC (nLV) in Fig. 3 as an example.
Hereby the LDA was utilized for classification. The results of the
SVM are shown in Fig. S3. Apparently, the validation accura-
cies varied among different data splitting methods and posi-
tions of the dimension reduction in the internal CV loop. That is
to say, these two aspects play an important role in the evaluation
of the model. To get an idea of the reliability of the model
evaluation, we performed an external CV for each case of
internal CV. The independent testing dataset was predicted
with the model giving the highest average validation accuracy.
The testing and validation accuracies were compared. The idea
behind this is that the testing and the validation accuracy are
supposed to be consistent if the model is reliably evaluated. We
visualized the testing accuracies (Test Acc) with LDA and a SVM
as classifiers with black boxes in Fig. 4 and S4,f respectively.
Meanwhile the highest average validation accuracies (Val Acc)
were plotted as grey boxes. The applied data splitting methods,
dimension reduction methods and their position for the
internal CV are given as x-axis labels, where ‘R’ and ‘F’ represent
the k-replicate CV and k-fold CV, respectively. The labels ‘I' and
‘O’ denote the inside-CV and outside-CV, respectively. The
marked p-values were obtained from a Wilcoxon-test, which is
described in the following text.

A first aspect to discuss is the validity of the internal CV in
the case of model evaluation. The most important criterion for
this aspect is that the validation accuracies should be consistent
with the testing accuracies. According to Fig. 3, the average
validation accuracies were very high, if the dimension reduction
was applied outside the internal CV (outside-CV). However, the
values decreased for the inside-CV. This holds true for both data
splitting methods. To understand this phenomenon, we need to
refer to Fig. 4, where we compared the validation and testing
accuracies. For the inside-CV, the two types of accuracies coin-
cided, indicating that the validation accuracies fairly evaluated
the model. In contrast, for the outside-CV, the testing accuracies
were much lower than the validation accuracies. This means
that the validation accuracies from the outside-CV were too high
and the model was over-estimated. On the other hand the
behaviours of PCA and PLS were different. In Fig. 3 the devia-
tions of the validation accuracies between outside-CV and
inside-CV are much larger for PLS than for PCA. This behaviour
resulted from the different theoretical backgrounds of the two
dimension reduction methods. As per PLS, a supervised
method, the projection vectors are optimized according to the
class labels to ensure the maximal separability among different
classes. In the case of the outside-CV with PLS, the optimized
projection vectors include the class label information of both
the training and validation datasets. Therefore, the model is
seriously over-estimated. To avoid such mistakes, the PLS
should always be performed inside the internal CV. This is
different for PCA, an unsupervised method. The eigenvectors of
the PCA are extracted excluding the class information of the
samples to capture the main sources of variability within the
dataset. Thus the model evaluation for PCA is more robust to its
mistaken position in the CV loop compared to PLS. However,
there is still a possibility of over-estimation for PCA with
outside-CV. In the outside-CV the PCA is performed on more
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samples, and thus the resulting eigenvectors tend to be closer to
the population (true) eigenvectors.*® This leads to higher vali-
dation accuracies compared to the values of an inside-CV.
However, the improvement depends on how complete the
training dataset represents the population. In an extreme case,
if the training dataset is complete, the prediction of the testing
dataset would not be improved by including the testing dataset
into the PCA model. This means that the outside-CV with PCA
does not necessarily lead to higher validation accuracies, i.e., an
over-estimation. However, the result of the outside-CV may vary
significantly for different validation datasets, since the valida-
tion dataset is involved in the model construction. Especially,
a serious over-estimation is more likely to occur, if the valida-
tion datasets bear significant variances compared with the
training dataset. Above all, an inside-CV is highly recommended
for the internal CV as a model evaluation approach.

4414 | Anal. Methods, 2017, 9, 4410-4417
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Fig.3 Validation accuracies of the internal CV for the first iteration of the external CV. The two binary classification tasks (MCF-7 vs. BT-20 (m vs.
b) and MCF-7 vs. OCI-AML3 (m vs. 0)) were achieved by LDA. In both tasks, the outside-CV yields higher accuracies than the inside-CV. This is
more obvious if supervised dimension reduction methods, such as PLS, are applied. On the other hand, the validation accuracies are always
higher if a k-fold CV is used compared with a k-replicate CV. This effect is more enhanced for supervised dimension reduction.

A second aspect to discuss is the influence of the data
splitting on the validity of the internal CV in the model evalu-
ation case. According to Fig. 3, the k-fold CV always yields
higher validation accuracies than the k-replicate CV, no matter
which or where the dimension reduction method was per-
formed. This is because an over-estimation occurs with k-fold
CV, as demonstrated in Fig. 4, where the testing accuracies
are lower than the validation accuracies for k-fold CV. In
contrast, a kreplicate CV gave reliable model evaluation,
demonstrated by the consistence of the two types of accuracies
as shown in Fig. 4. The reason for this behaviour is that in a k-
fold CV the dataset was split randomly without considering the
hierarchical properties of the dataset. The information within
the validation dataset has been implicitly used during the
model construction. The independence condition for the
training and the validation datasets was violated. Moreover, the
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Fig.4 Validation accuracies from the internal CV and the independent testing accuracies from the external CV. Hereby, the LDA was utilized for
classification. The results of the SVM are shown in Fig. S4.1 The applied data splitting methods, dimension reduction methods and the position for
the internal CV are represented by the x-axis labels, where ‘R and ‘F’ represent the k-replicate CV and k-fold CV, respectively; while ‘I'and ‘O’
denote the inside-CV and outside-CV, respectively. The validation and testing accuracies were consistent for the k-replicate inside-CV, which
means that the model was evaluated reliably. In contrast, the validation accuracies were significantly higher than the testing accuracies for k-fold
CV and outside-CV. This demonstrated an over-estimation of the model. However, the over-estimation of k-fold-CV and outside-CV was
ignorable, if PCA was used for dimension reduction, demonstrated by the comparable validation and testing accuracies. To check the influence
of the investigated mistakes of CV with respect to model optimization, we compared the testing accuracies for k-fold CV against k-replicate CV
(RF) and inside-CV against outside-CV (I0). The comparison was done by applying a Wilcoxon-test. According to the p-values marked in the plot,
no significant difference was observed. This means that the investigated two mistakes were less influential, if a CV was used for model parameter

optimization.

k-fold CV doesn't reflect the real applications, where the dataset
to be predicted is usually a different replicate compared with
the training datasets. When it comes to the k-replicate CV, the
validation dataset was a different replicate and not included in
the training dataset. The procedure was like the real application
scenario and the independence condition of CV was satisfied.
Therefore, the dataset should be split at the highest hierarchical
level to avoid the over-estimation of classification models.

It is noteworthy that the two data splitting mechanisms led
to comparable results for PLS in the case of outside-CV, which is
shown in Fig. 3. This results from the fact that PLS is a super-
vised method and the label information is already used during
the model construction. For the outside-CV, both the training
and validation datasets were used to create the dimension
reduction model. Therefore, the information of the validation
dataset was already utilized by the PLS model. Consequently,
the validation dataset is not independent of the training dataset
regardless of the used data splitting methods. The situation was
different for PCA, where the data splitting mechanism made
a large difference regardless of the position of PCA. In fact, the
dataset splitting was more influential than the position of PCA.
As previously explained, the outside-CV for PCA does not
necessarily result in an over-estimation since no label infor-
mation is used for PCA. Similarly, the eigenvectors of PCA do
not necessarily vary with different data splitting methods.
However, the influence of data splitting occurs during the
following classifier training. With k-fold CV, the label infor-
mation of the validation dataset was involved during the
training of the classifier. This behaviour is similar to the PLS
with outside-CV and definitely leads to an over-estimation
compared to the k-replicate-CV.

Therefore, in the case of model evaluation, an improper
dataset splitting always leads to severe mistakes and an unre-
liable model evaluation by CV. The second important point is
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the position of dimension reduction, especially for a supervised
method like a PLS, which should be applied in the inside-CV.
Until now, we checked the validity of the internal CV in the
case of model evaluation. The validation accuracy was used as
a benchmark of the generalization performance of the model,
while the testing accuracy was calculated to check the reli-
ability of the benchmark. Another important aspect is the
validity of the internal CV in the case of model parameter
optimization. Here the internal CV was used to optimize the
model parameters, the nPC or nLV in our investigation. The
model was built with the optimal parameter based on the
overall training dataset. The external CV, where the testing
dataset was predicted, was used to verify the goodness of the
optimization. In order to check the two mistakes of internal
CV with respect to model optimization, we compared the
testing accuracies that resulted from the different cases of the
internal CV. The internal CV differed in data splitting
methods, positions of the dimension reduction, and methods
of dimension reduction. We compared the testing accuracies
in the case of the ‘PCA.R.I’ and ‘PCA.F.I', where the data
splitting method was varied within the internal CV. Mean-
while the testing accuracies from the ‘PCA.R.I’ were compared
to those from ‘PCA.R.O’ to check the influence of positions of
PCA in the internal CV. The comparisons were done by
a Wilcoxon-test. All the calculated p-values are higher than
0.05, as shown in Fig. 4, demonstrating no significant differ-
ence for all the comparisons. Therefore, the two common
mistakes of CV are less influential for model optimization
than for model evaluation. This is because for optimization
the average validation accuracies for varying model parame-
ters are compared. An over-estimation caused by mistakes
in application of the CV increases all the validation
accuracies over the possible values of the checked parame-

ters. Therefore, the relative comparison between the
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parameters can still be meaningful, which finally leads to
a satisfactory optimization.

Conclusions

In this contribution, we studied two common mistakes of cross-
validating classification models. The first mistake is related to
the data splitting methods, where we compared the k-replicate
CV and k-fold CV. The second mistake relates to the position of
the dimension reduction in terms of the CV loop. To do so, we
compared the outside-CV and inside-CV for the dimension
reduction methods including PCA and PLS. Two binary classi-
fication tasks were performed by LDA or SVM. A two-layer CV
was utilized to study the CV for model evaluation and parameter
optimization. The validation accuracies were calculated from
the internal CV, while the testing accuracies were estimated by
the external CV. As per these investigations, several important
conclusions can be drawn and used as guidelines to avoid
mistakes when applying a CV. These points are summarized in
the following:

(1) If the internal CV is applied for model evaluation, the
supervised dimension reduction techniques should always be
included in the CV loop. Otherwise, the models are seriously
over-estimated. As per unsupervised methods the over-
estimation is less obvious, because the label information is
not used to construct the dimension reduction projection.
However, an inside-CV is still highly recommended.

(2) To correctly evaluate the classification models, the divi-
sion of the dataset into training and validation datasets should
always be carried out at the highest hierarchical level of the
dataset such as biological/technical replicates.

(3) If the internal CV is used for optimizing model parame-
ters, the above-mentioned two points are less influential.
Nevertheless, caution is still recommended.

In conclusion, only if the above-mentioned points are care-
fully considered while applying a CV, the results from CV are
reliable and robust. Only in this way a reliable model optimi-
zation and estimation can be carried out.
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In this contribution we investigated the common mistakes of cross-validation (CV) for the development of chemometric
models for Raman based biological applications. We focused on two common mistakes: the first mistake occurs when
splitting the dataset into training and validation data sets improperly; and the second mistake is regarding the wrong
position of a dimension reduction procedure with respect to the CV loop. For the first mistake, we split the dataset either
randomly or each technical replicate was used as one fold of the CV and compared the results. To check the second
mistake, we employed two dimension reduction methods including principal component analysis (PCA) and partial least
squares regression (PLS). These dimension reduction models were constructed either once for the whole training data
outside the CV loop or rebuilt inside the CV loop for each iteration. We based our study on a benchmark dataset of Raman
spectra of three cell types (MCF-7, BT-20, and OCI-AML3), which included nine technical replicates respectively. Two
binary classification models were constructed with a two-layer CV. For the external CV, each replicate was used once as
the independent testing data set. The other replicates were used for the internal CV, where different methods of data

splitting and different positions of the dimension reduction were studied.

The conclusions include two points. The first point is related to the reliability of the model evaluation by the internal CV,
illustrated by the differences between the testing accuracies from the external CV and the validation accuracies from the
internal CV. It was demonstrated that the dataset should be split at the highest hierarchical level, which means the
biological/technical replicate in this manuscript. Meanwhile, the dimension reduction should be redone each iteration of
the internal CV loop. The second aspect relates to the optimization performance of the internal CV, benchmarked by the
prediction accuracy of the optimized model on the testing data set. Comparable results were observed for different
methods of data splitting and positions of dimension reduction in the internal CV. That means if the internal CV is used for
optimizing the model parameters, the two mistakes are less influential in contrast to the model evaluation.
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Fig. S1. Mean Raman spectra of the investigated three cell types.
////inside-CV ////outside-CV
fori=1:N //external CV fori=1:N //external CV
ts;=data without ith replicate ts;=data without zth replicate
vs,=data of ith replicate vs;=data of /th replicate
fold=split(ts, replicate, nFold=N-1) //split randomly or as replicate fold=split(ts;, replicate, nFold=N-1) //split randomly or as replicate
for nDim=3:50 for nDim=3:50
for j=1:(N-1) //internal CV scores=predict(PCA(ts;, nDim),ts))
tsy=ts;[fold[-j],] ///th training set for ih iteration of external CV for j=1:(N-1) //internal validation
vs;=tsj[fold[j],] //jth validation set for ith iteration of external CV tindex,=fold[-j] //jth training set for ith iteration of external CV
pca=PCA(ts;, nDim) vindex;=fold[j] //jth validation set for ih iteration of external CV
classifier=LDA(predict(pca, ts;)) classifier=LDA(scores|tIndex;,])
accy=accuracy(predict(classifier, predict(pca, vs;))) acc,=accuracy(predict(classifier, scores[tIndex;,]))
End End
End End
optDim=nDim with the maximum in rowMeans(acc) optDim=nDim with the maximum in rowMeans(acc)
pca=PCA(ts; optDim) pca=PCA(ts;, optDim)
acc;=accuracy(predict(classifier, predict(pca, vs;))) acc=accuracy(predict(classifier, predict(pca, vs;)))
End End

Fig. S2. . Pseudo code of the applied two-layer CV. Models with different component numbers nPC (nLV) were
built and validated with an internal CV. Each replicate was taken out once and predicted within the external CV.
For each iteration of the external CV, the model was built based on the overall training set with the nPC (nLV)
featuring the highest averaged validation accuracy. (1) Within the Inside-CV, a dimension reduction method
(PCA/PLS) was redone each iteration of the internal CV loop. Thus the PCA or PLS was executed after removing
the validation set. The scores of the validation sets were predicted and then classified by the classification model
(LDA or SVM). (2) For the Outside-CV, the dimension reduction method was carried out once for all data outside
the internal CV loop. Therefore the validation set was involved in constructing the PCA/PLS model. Afterwards,
the scores were split into training and validation sets for internal CV.
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Fig. S3. Validation accuracies of the internal CV within the first iteration of the external CV, for two binary
classification tasks (MCF-7 vs BT-20 (m vs b) and MCF-7 vs OCI-AML3 (m vs 0)) based on SVM. In both tasks, the
outside-CV yields higher accuracies. This is more obvious if supervised dimension reduction methods, such as PLS,

are applied. The validation accuracies are always higher if a k-fold CV is used compared with a k-replicate CV. The

over-estimation of the k-fold CV is due to the violated independence criteria between the training and validation

sets. This effect of over-estimation is more enhanced for supervised dimension reduction.
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Fig. S4. Validation accuracies resulted from the internal CV and the independent testing accuracies from the
external CV. Hereby the SVM was utilized for classification. The applied data splitting methods, dimension
reduction methods and the position for the internal CV are referred to the x-axis labels, where ‘R’ and ‘F’
represent the k-replicate CV and k-fold CV, respectively; while ‘I’ and ‘O’ denote the inside-CV and outside-CV,
respectively. The validation and testing accuracies were consistent for the k-replicate inside-CV, which means the
model was evaluated reliably. On the contrary, the validation accuracies were significantly higher than the testing
accuracies for k-fold CV and outside-CV. This demonstrated an over-estimation of the model. However, the over-
estimation of k-fold-CV and outside-CV was ignorable if PCA was used for dimension reduction, demonstrated by
the comparable validation and testing accuracies. In addition, in order to check the influence of the investigated
two mistakes of CV with respective of model optimization, we compared the testing accuracies for k-fold CV
against k-replicate CV (RF), and inside-CV against outside-CV (10). The comparison was done by Wilcoxon-test.
According to the p-values marked in the plot, no significant difference was observed. That means the investigated
two mistakes were less influential if CV was used for model parameter optimization.
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One of the most important issues for the application of Raman spectroscopy for biological diagnostics is
how to deal efficiently with large datasets. The best solution is chemometrics, where statistical models
are built based on a certain number of known samples and used to predict unknown datasets in future.
However, the prediction may fail if the new datasets are measured under different conditions as those
used for establishing the model. In this case, model transfer methods are required to obtain high
prediction accuracy for both datasets. Known model transfer methods, for instance standard calibration
and training models with datasets measured under multiple conditions, do not provide satisfactory
results. Therefore, we studied two approaches to improve model transferability: wavenumber
adjustment by a genetic algorithm (GA) after the standard calibration and model updating based on
the Tikhonov regularization (TR). We based our investigation on Raman spectra of three spore species
measured on four spectrometers. The methods were tested regarding two aspects. First, the wavenumber
alignment is checked by computing Euclidean distances between the mean Raman spectra from different
devices. Second, we evaluated the model transferability by means of the accuracy of a three-class
classification system. According to the results, the model transferability was significantly improved by
the wavenumber adjustment, even though the Euclidean distances were almost the same compared with
those after the standard calibration. For the TR, method the model transferability was dramatically
improved by updating current models with very few samples from the new datasets. This improvement
was not significantly lowered even if no spectral standardization was implemented beforehand.
Nevertheless, the model transferability was enhanced by combining different model transform
mechanisms.

Keywords:

Raman spectroscopy
Model transfer
Spectrometer calibration
Chemometrics

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, Raman spectroscopy has been widely used in
biological applications [1-4] including disease detection [5-9],
investigations of metabolism [10], bacteria identification [11-15],
intraoperative decision making [16] and forensic analysis [17].
These applications benefit from developments of not only
instrumentation and computation, but also chemometrics
[17,18]. The sensitivity of Raman spectroscopy is enhanced by
chemometrics, which is capable of distinguishing subtle between-
class spectral differences, even if this is not possible with the naked

* Corresponding author.
E-mail address: thomas.bocklitz@uni-jena.de (T. Bocklitz).

http://dx.doi.org/10.1016/j.vibspec.2016.06.010
0924-2031/© 2016 Elsevier B.V. All rights reserved.

eye [19,20]. Moreover, chemometrical methods make biological
diagnostics more objective since little or even no human
intervention is required. Last but not least, chemometrics
dramatically speeds up biological diagnostic procedures and it
becomes possible to deal with large-size Raman spectral datasets
within an acceptable time.

The basic idea of chemometrics is quite simple. First statistical
models are built based on a certain number of known Raman
spectra, namely a training set. The models can be qualitative or
quantitative, depending on the tasks. Afterwards these models are
saved to be used for predicting Raman spectra of unknown
samples. These unknown samples may be measured with different
instruments or under different conditions as the training samples.
In this case, the unknown Raman spectra feature wavenumber
shifts and intensity variations caused by changes of experimental
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conditions [21,22]. Such spectral changes may be tolerated by the
current statistical models, if they are smaller compared to the
between-group differences. However, there is always the risk of
failure, especially if wavenumber positions are important for the
statistical model, for example those involving wavenumber
selection techniques. More caution is required for biological
applications, because the between-group spectral differences are
usually tiny. Thus the statistical models are strongly affected by the
spectral changes caused by environmental changes. Consequently,
the prediction accuracy significantly degrades for a new dataset
measured under different conditions compared with the con-
ditions of the training set [23,24,22]. Unfortunately, it requires a
large number of samples to build a new model for this new dataset,
which may be expensive or even impossible. Therefore a model
transfer problem comes up, where the training set and the new
dataset is respectively termed as primary and secondary set [25].
The corresponding methods intend to achieve precise predictions
for both datasets by either making the two datasets more similar or
reinforcing the current models to tolerate variations caused by the
conditions changes. There are two mechanisms for model transfer
problems [23,21]: spectral standardization and model updating.

For the mechanism of spectral standardization, the primary and
secondary Raman spectra are standardized to make them as
similar as possible. The most frequently used method is standard
calibration, including calibration of both the wavenumber and the
intensity axis [24]. For details of this method the reader is referred
to ref [24]. The performance of the standard calibration can be
affected by several factors including statistical fluctuations during
the measurement of the standard samples. Specifically, the
calibration of the wavenumber axis may fail if the standard
material features only a few Raman bands or if these Raman bands
are unevenly distributed. Even if these cases are not occurring, it is
impossible to make the two Raman spectral datasets completely
indistinguishable by a standard calibration [25]. Therefore, the
improvement of model transferability by the standard calibration
is limited. Besides standard calibration, other approaches like
linear transformation [21], spectral standardization or direct
standardization (DS) [26] can be employed for Raman spectra.
In these cases, identical samples are required to be measured
under both the primary and secondary conditions, which is usually
not possible in biological applications. Besides this general issue,
the calculation of a large number of transfer parameters may lead
to an overfitting especially if limited number of data is accessible.
This may introduce additional noises into Raman spectra
compared with the original condition, which would hinder the
model transferability.

Therefore, model updating is applied, which establishes a
robust and transferable model performing well for both the
primary and secondary dataset. A straightforward method is to
build a model based on training sets including Raman spectra of
both conditions [21,23]. Thus, the statistical models are forced to
tolerate the variations between the two datasets and possess a
better transferability. Yet the model transferability depends on
how many conditional variations are represented by the training
sets. In addition, a comparable number of samples are required
from the two datasets; otherwise the established models may
prefer the condition with more data. Another strategy for model
updating is to establish models based on features that are shared
by both datasets and which are insensitive to the conditional
changes [21,23]. However, the spectral differences between normal
and altered biological samples are quite small in most applications.
Hence, there is a very tiny possibility that such a conditionally
insensitive feature is simultaneously effective for biological tasks.
Therefore, such feature extraction methods are not as feasible as
being expected.

In order to deal with the above mentioned limits and to improve
the model transferability in biological applications of Raman
spectroscopy, we investigated two approaches within this manu-
script, each belonging to one of the two mechanisms. The first
approach is named genetic algorithm (GA) based wavenumber
adjustment [27], aiming to achieve a better wavenumber
alignment than the standard calibration. The second method is
based on the Tikhonov regularization (TR), intending to update
current models with very few Raman spectra from the secondary
dataset[22,23,28]. We based our investigation on Raman spectra of
three endospore building species including Bacillus mycoides,
Bacillus subtilis, and Bacillus thuringiensis, each measured with four
Raman spectrometers. The wavenumber alignment was assessed
by a Euclidean distance of the mean Raman spectra from different
devices, while the model transferability was evaluated by the
accuracy of a three-class classification using a partial least square
regression (PLSR).

2. Experimental
2.1. Cell cultivation and Raman spectroscopy

B. mycoides DSM 299, B. thuringiensis DSM 350, B. subtilis DSM
347 and B. subtilis DSM 10 strains were grown on nutrient agar (NA,
peptone 5.0g/l, meat extract 3.0g/l, agar 15g/l, distilled water
1000 ml, pH 7.0) over 7d under DSMZ cultivation conditions, with
Mn?* for faster sporulation. The cells were scratched from the
plates, suspended and washed 3 times with 800 wl distilled water
and filled up with 1ml distilled water. The samples almost
completely sporulated after 24 h’s rest. 1 ml of the solution was
dropped on a substrate for single-cell measurement. Four micro
Raman devices were employed (BioPartikelExplorer, BPE, rap.ID
Particle Systems GmbH, Berlin, Germany), which differed by the
thermoelectrically cooled CCD camera (Andor Technology, BPE-0,
1, 3 DV401A-BV; BPE-2 DU420A-BV). Besides, a substrate of quartz
was used for BPE-0, while nickel foil was applied for the other three
devices. A solid-state frequency-doubled Nd:YAG laser with
wavelength of 532 nm was used. An Olympus MPLFLN-BD 100 x
objective was utilized to focus the laser beam on the sample,
leading to a spot size of less than 1 wm. The Raman scattered light
was diffracted by a 920 lines/mm grating (HE 532; Horiba Jobin
Yvon) and recorded by the above mentioned CCD camera. The
resolution of the received Raman spectra was around 7 cm™ . The
integration time varied within a range from 3 to 6 s per endospore.
The laser power varied between 1-2 mW to avoid sample burning.
The Raman spectra from B. subtilis DSM 347 and B. subtilis DSM 10
were assigned to the same class. Overall, respectively 1592, 624,
654, 848 Raman spectra were measured on the four devices, almost
equally distributed over the three spore species.

2.2. Computation

All computations were done in the statistical programming
language Gnu R [29]. The packages ‘signal’ [30], ‘Peaks’ [31],
‘baseline’ [32], ‘simecol’ [33], ‘genalg’ [34] and ‘pls’ [35] were
utilized. The functions from the packages were complemented by
in-house written procedures.

2.3. Data analysis

2.3.1. Standard calibration

The wavenumber axis was calibrated according to the Raman
spectrum of 4-Acetamidophenol. The calibration of the intensity
axis was carried out based on the measured and the theoretical
signal of the standard reference material SRM 2242 (National

109



Chapter 7. Publications

S. Guo et al./Vibrational Spectroscopy 91 (2017) 111-118 113

Institute of Standards & Technology, Gaithersburg, MD 20899,
USA).

2.3.2. Pre-processing

Raman spectra were interpolated to an equidistant wave-
number grid of 1 cm~! and smoothed by a 2-order Savitzky-Golay
filtering with a window width of 11. Baseline correction was
performed by the asymmetric least squares (ALS) method in R
package ‘baseline’ (lambda=7, p=0.01). Vector normalization was
carried out to remove the interference of variation of the
integration time.

2.3.3. Classification

A three-class classification was performed by partial least
square regression (PLSR) based on the first fifteen components. The
averaged accuracy of a 5-fold cross-validation was employed as an
evaluation of the performance of models.

2.3.4. Genetic algorithm

As it was mentioned above, the standard calibration cannot
eliminate completely the spectral differences between the primary
and secondary datasets. This leads to limited model transferability.
To improve the result, we attempted to obtain a better wave-
number alignment, which is described in this section. To be
differentiated from the standard wavenumber calibration, this
procedure is termed as wavenumber adjustment in the manu-
script.

From a mathematic point of view, the task is similar with the
standard wavenumber calibration. The Raman spectra of primary
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and secondary datasets are aligned to a standard spectrum. This
standard Raman spectrum could be the mean Raman spectrum of
either the primary or secondary dataset, or both datasets. In
principle, the wavenumber alignment can be realized by an
identical process as the standard wavenumber calibration. That is
to say, the adjustment over the whole wavenumber axis is obtained
according to certain positions such as the positions of Raman
bands. However, in this way the final result is optimal only for
these certain positions instead of the overall wavenumber axis.
This may lead to a sub-optimal alignment. To deal with this issue,
we developed a genetic algorithm, aiming to search for wave-
number adjustments resulting in the highest similarity between
the Raman spectrum under-investigation and the standard
spectrum. Fig. 1 shows the workflow. All Raman spectra should
be pre-processed at first, but it does not matter whether or not the
standard calibration is implemented beforehand.

To begin with, the Raman spectra of the primary and secondary
datasets are averaged to generate the standard spectrum, termed
as reference spectrum. Simultaneously, the respective mean
Raman spectrum of the two datasets is calculated and marked
as target spectrum. The wavenumber alignment is executed
between the target spectrum and the standard spectrum. To avoid
overfitting, the Raman peak positions are located on the reference
spectrum, marked as control points. The adjustment of wave-
number at each control point from the target to the reference
spectrum is represented by a gene. Thus the length of each
chromosome is the same as the number of control points. The
numerical range of the genes is from —10 to 10cm ™. The first
generation is created randomly, with a population size of 20. With
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Fig.1. Workflow of a genetic algorithm based wavenumber adjustment: To begin with, the primary and secondary datasets were averaged to generate a reference spectrum.
Peaks were localized in this reference to receive the control points. Mean Raman spectra were computed separately for primary and secondary datasets and used as target
spectra. Each gene represents an estimation of wavenumber adjustment at one control point, ranging from —10 to 10. The first population with 20 chromosomes is created
randomly. The values of each chromosome are fitted to the whole wavenumber axis. Accordingly, the target Raman spectrum can be corrected similarly as standard
wavenumber calibration, generating a new Raman spectrum. The hit-quality-index (HQI) between this new spectrum and the reference spectrum was calculated, where only
the shaded spectral region was used. The algorithm evolved for 150 generations to increase the HQI value (Eq. (1)). The best chromosome in the last generation was used for
wavenumber adjustment of all Raman spectra measured under the same condition as the target.
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each chromosome, we receive a new wavenumber axis by fitting
the values of the genes, i.e., the wavenumber adjustments of the
control points, onto the whole wavenumber axis similarly as the
standard wavenumber calibration. Afterwards, the hit-quality-
index (HQI) [36] between the reference and the new Raman
spectrum is calculated according to Eq. (1). This HQI is used as the
evaluation function, which should be maximized during the
algorithm evolvement. The best chromosome in the last generation
is applied for the wavenumber adjustment of all Raman spectra
measured under the same condition as the target spectrum.

2
HQI = (S Srer)

(1)

In our experiment, the wavenumber alignment was employed
after the standard calibration and pre-processing. The calculations
of the new wavenumber axis were carried out on the Raman
spectra of 4-Acetamidophenol measured by the four devices. The
mean Raman spectrum of all devices was used as the reference
spectrum. The mean spectrum of each device was employed as the
target spectrum. The flat and noisy wavenumber range from 1785
to 2815cm ™! was excluded during the computation of HQI. Thus
only the shaded regions shown in Fig. 1 were used. Finally, the
Raman spectra of the spore species, after standard calibration and
pre-processing, were interpolated according to the corresponding
new wavenumber axis. The genetic algorithm stopped after 150
generations. During the evolution, the best 20% parent individuals
are kept in the next generation. The other 80% of child individuals
are obtained by cross-over between any two of the parent
individuals, with a mutation rate of 0.01.

It is noteworthy that this wavenumber alignment can also be
utilized in cases where the standard calibration is not accessible, by
performing the calculations on the pre-processed Raman spectra
of real samples.

2.3.5. Tikhonov regularization

One of the drawbacks of spectral standardization methods is
the risk of introducing artefacts into Raman spectra. This can be
avoided with the other model transfer mechanism, which aims to
update current statistical models with secondary datasets, as
shown by Eq. (2). Here X is a m x n Raman spectral matrix with
spectra in rows, representing the training set from the primary
dataset. y is the corresponding output matrix of X, with the size of
m x k for a k-class classification. y,; equals one if the Raman
spectra belong to class j and otherwise y,; is zero. L and y* is
respectively a matrix composed of Raman spectra from the
secondary dataset and the output matrix.

)0

Due to measurement expenses, there are usually more data
used to construct X compared with the construction of the L
matrix. This leads to a bad performance of the updated models
when predicting the secondary data. Therefore, Eq. (2) is further
developed into Eq. (3) by multiplying a numerical parameter X\ to
the L matrix. In this case, the secondary dataset possesses a larger
weight than the primary dataset, which to some extent corrects for
the lower sample size in the L matrix. Eq. (3) is a basic form of
Tikhonov regularization (TR), which is referred as TR;.

(3)- ()

Despite of the improvement, there are still drawbacks for TR;.
The matrix L is non-diagonal and may be collinear with X, which
would enhance the singularity of the multivariate calibration in
Eq. (3) and eventually decrease the stability of the model [28]. To

Device O +2 +2 +2 L

Device 1
Device2 = C;,k=1,2,3 X
Device 3 _

Fig. 2. Framework for forming matrices within TR: L was composed of six Raman
spectra from the device to be predicted, each two belonging to one species. X was
composed of Raman spectra measured by any one of the seven combinations of the
other three devices. Therefore, Raman spectra from each device were predicted by
seven models corresponding to seven X matrices.

tackle this issue, an additional term m is introduced, as shown in
Eq. (4). Here I is an identity matrix used to ensure the non-
singularity of the calculation. This is another form of TR, termed as
TR,.

y X
(3)-(3)
Ay* AL

In terms of these two TR forms, the first problem is how to
construct the related matrices. Fig. 2 shows the basic procedure in
our experiment. Assuming Raman spectra measured with device 0
are the secondary data to be predicted. Then six Raman spectra
were selected randomly from this dataset to construct L, each two
belonging to one species. The training set, or matrix X, was
composed of Raman spectra from any possible combinations of the
other three devices. Therefore, there were totally C} + C2 + C = 7
possible training sets, which resulted in seven models to predict
Raman spectra from device 0. The prediction of datasets from the
other three devices was performed similarly. The second problem
of TR methods is the optimization of the parameters, which is
described in the ‘Results and discussion’ section of the manuscript.

3. Results and discussion

Fig. 3 shows the mean Raman spectra of B. mycoides measured
with the four devices, before and after the standard calibration. To
make it clearer, we displayed the marked region in a zoomed
version on the right side of Fig. 3. Apparently, the spectral
differences among the four mean Raman spectra were decreased
by the standard calibration. However, we can still observe obvious
wavenumber and intensity variations. This proves the limit of the
standard calibration to remove spectral variations originating from
the measurement condition. The situation was similar for the
mean Raman spectra of the other two species, which are not shown
herein. A large difference was observed between BPEO and the
other three devices because of the different substrates utilized.

3.1. Euclidean distance
Fig. 3 provides an intuitive assessment of the spectral

alignment. To quantify this, we computed the Euclidean distance
as a quantitative evaluation of the spectral standardization.
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Fig. 3. Mean Raman spectra of B. mycoides measured with four devices, before and after the standard calibration: The marked regions are zoomed in the right plot. The
spectral differences between devices are decreased after calibration, but far from being completely removed, which is clearer in the zoomed plot. This proved that the
standard calibration cannot completely remove spectral variations caused by conditional changes. The large difference was observed between BPEO and the other three

devices because of the different substrates used.

Specifically, the mean Raman spectrum was computed for each
species and each device. Euclidean distances were calculated
between the mean Raman spectra belonging to the same species
but measured on different devices. This calculation was done
between each two out of the four devices, yielding six distance
values for each species. We calculated these distances of Raman
spectra before spectral standardization, after the standard
calibration, and after the standard calibration plus the wave-
number adjustment. The Raman spectra were always pre-
processed in the same manner.

The results are shown in Fig. 4, where the species are encoded
with different colors. Generally, the results are quite similar among
different species. The Raman spectra without any spectral
standardization display a serious spectral discrepancy, which is
reflected not only by high mean values of the Euclidean distances,
but also by large variations. Such large variations indicate
considerable between-device spectral differences. The spectral
discrepancy was decreased after the standard calibration. Howev-
er, the following wavenumber adjustment did not make further
improvement. This is because the most part of spectral variations
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Fig. 4. Euclidean distances between the mean Raman spectra of three species were
plotted in different colors. For each species, the distances were calculated for three
cases: no spectral standardization, standard calibration, standard calibration plus
wavenumber adjustment. The results are quite similar for different species. The
distance was large, if no spectral standardization was applied, which decreased
after the standard calibration. However, there was no further decrease by following
wavenumber adjustment.

had been removed by the standard calibration, while the genetic
algorithm only adjusted the wavenumber axis in a slight extend.

3.2. Parameter optimization

Besides the spectral standardization, the TR methods were
investigated to update the current models. As it was mentioned
before, an important task of TR methods is to optimize \ and m. To
get an overview of the relationship between the model transfer-
ability and the parameters we firstly carried out a grid search based
on the Raman spectra without spectral standardization. A\ and m
were changed exponentially on the basis of 10; the exponent was
increased from —2 to 5 with a step size of 0.25 for \, and from —5 to
5 with a step size of 0.5 for m. The matrices were constructed as
aforementioned. To search optimal parameters an internal
validation workflow was applied. Fifteen Raman spectra each five
from one species were randomly chosen. These Raman spectra
were termed as optimization sets. At each search step, we
predicted the Raman spectra of the optimization sets of each
device by seven models. Thus 28 accuracies were generated. The
averaged value is saved as the results of the search step.

The overall results are plotted in logarithm coordinates in
pseudo-color in Fig. 5. The first column shows the results of TRy,
while the other columns belong to the results of TR,. In
comparison, TR, is superior to TR;. This results from the
aforementioned instability of TR;. Obviously, the model perfor-
mance depends greatly on the value of N\. However, the exact value
of m did not significantly affect the final results of TRy, as long as n
was a positive small value compared to the spectral intensity.
Actually, this was predictable since m is just a numeric scaling in
Eq. (4).1f ) was too large compared to the Raman spectral intensity,
the multivariate calibration in Eq. (4) would be dominated by the
identity matrix, decreasing the model transfer performance.
Nevertheless, it is possible to simplify the two-parameter
optimization by assigning m as a small positive value considering
the large flat response of the model transferability to m.
Additionally, this optimization can be sped up by heuristic
optimization algorithms such as a genetic algorithm. This was
achieved in our experiment with the logarithms of A and m as
genes. The averaged classification accuracy of the optimization sets
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Fig. 5. Averaged accuracy of a classification model for different values of the
parameters v} and A: The first column represents the result of TRy The
following columns are the results of TR,. It is seen that TR; performs worse
than TR,. Meanwhile, given a positive number below 107", the exact value of
m does not make a great difference to the final results. However, the
accuracy decreases when m becomes larger than 10~". On the other hand, the
accuracy greatly depends on the value of A.

was used as the evaluation function. The population size was set to
10 and the mutation chance was set to 0.75. The mutation rate was
set high considering the fact that N and m are not highly related.
Therefore the crossover cannot ensure a fast convergence. The
algorithm evolved for 30 generations before termination. Fig. S1
shows the values of A, 1, and the accuracy of the best chromosome
within each generation in different cases of spectral standardiza-
tion. The algorithm converged within 30 generations according to
the value of the accuracy.

3.3. Classification performance

By now we have introduced two mechanisms of model transfer.
For each mechanism, we have three alternatives: no spectral
standardization, standard calibration, or the standard calibration
plus the wavenumber adjustment for the spectral standardization.
For the model updating we can use no model update, TR;, or TR,
method. In this section, we intend to evaluate the performance of
these methods. The model transfer was achieved by either
applying the two mechanisms separately or in combination.
Accordingly, we studied nine combinations of model transfer
procedures. As an evaluation, the accuracy of a three-class
classification among the Raman spectra of the three spore species
was calculated, as described in the section ‘Data Analysis’. No
matter which model transfer method was applied, Raman spectra
from each device were predicted by seven models, which was
similar to the grid search mentioned above. Only Raman spectra,
which were not used for the L matrix or as optimization sets were
predicted. For the TR methods, the parameters N and m were
always optimized by the GA method. Accordingly, the optimal
values of TR; were \ =10"124 10055, 109956 respectively for three
above mentioned spectral standardization cases. m=10"%034
10-4293, 10~4197, X =10°701 10920, 10%9% were used for TR,
correspondingly. The results of the four devices are plotted in
Fig. 6. The model transfer methods were labeled on the abscissa.
‘None’ means neither the spectral standardization nor the model
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Fig. 6. Results of the prediction of Raman spectra measured on different
spectrometers, with different model transfer approaches: ‘None’ on the abscissa
means neither the spectral standardization nor the model updating was
implemented. ‘STD’ represents standard calibration. The accuracy was disappoint-
ing if no model transfer procedure was applied, which is reflected by low mean
values and high variations. This situation was improved by the standard calibration.
By a following wavenumber adjustment, the model transferability was improved
further. Additionally, the model transferability was improved by TR methods.
However, the results of TR, were inadequate if no spectral standardization was
performed. On the contrary, TR, performed always better than TR;, given the same
spectral standardization procedure. Comparable results as those after wavenumber
adjustment were produced with TR, even without spectral standardization.
Meanwhile, the performance of the TR, method was not greatly influenced by the
conditional spectral variations. However, spectral standardization does improve the
stability of TR,.

updating was implemented; while ‘STD’ represents the standard
calibration. Detailed results for each combination were plotted in
Fig. S2. With the results, several conclusions can be drawn.

Firstly, the accuracy was disappointing if no model transfer
approach was used. Most accuracies were below 80%. It does not
make a big difference, if the model is built based on data from
multiple devices. The standard calibration greatly improved the
accuracy: the lowest value was increased to 66.38%; the variation
also was reduced. However, as was shown in Fig. S3, the accuracy
may be decreased, for instance, the prediction of Raman spectra
from device 3. This was possibly caused by the experimental
deviations when measuring the standard materials on device 3,
causing the poor performance of the standard calibration.
Nevertheless, the accuracy was further improved by the wave-
number adjustment: accuracies were generally higher than the
values after the standard calibration. The failure of standard
calibration for the dataset of device 3 was corrected by the
additional wavenumber adjustment. This shows the capability of
the wavenumber adjustment for suppressing the influence of the
experimental deviations during standard calibration, which leads
to a higher stability of the model. Even though the Euclidean
distances are only slightly reduced, a standard calibration in
combination with an additional wavenumber adjustment signifi-
cantly improved the model transferability.

Second, we performed the wavenumber alignment after the
standard calibration in order to get a better wavenumber
alignment. But the wavenumber alignment can also be used as a
replacement of the standard calibration if the latter is not
accessible. However, it is remarkable that the results of the
wavenumber alignment greatly depend on the quality of the
reference spectrum. If a standard calibration was not carried out
beforehand, the model transferability would be not as good as it is
shown in our experiment.

Third, the model transferability was improved by TR methods in
all three cases of the spectral standardization, proven by higher
accuracies than those of the model transfer without TR.
Specifically, a large variation was observed for TR; without spectral
standardization, which was probably caused by the abovemen-
tioned instability of TR;. The results were much better if a spectral
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standardization was performed at first. On the other hand, TR,
always performed better than TR;, given the same spectral
standardization procedure. Moreover, comparable results as those
after wavenumber adjustment were produced with TR, even
without spectral standardization. This is quite important especially
if a standard calibration is not accessible. The performance of the
TR, method is not greatly influenced by the change of spectral
variations, at least in our experiment. Nevertheless, the variation of
the accuracy decreased and the lower outlier margin increased by
combining spectral standardization with TR,, indicating an
enhancement of model transferability.

To challenge the TR methods, only seven Raman spectra of each
species were picked out from the secondary datasets during the
model establishment, two for the L matrix and five for optimiza-
tion sets. With such small number of new samples, we can already
obtain quite satisfactory model transferability, especially with the
TR, method. This indicates the great potential of TR, for model
transfer problems, which is cheap and effective. Nonetheless,
relatively low accuracies are still observed, which are probably
caused by the sub-optimal values of N and m. These results can be
improved if more data are involved either for the L matrix or the
optimization sets.

Finally, the accuracies were generally lower if X was con-
structed by Raman spectra of device 0 or 1 alone, which is shown in
Fig. S2. A better performance was achieved by building models
based on multiple devices, which means it is helpful to deal with a
model transfer problem based on more than one primary datasets.

3.4. Model Stability

Besides the classification accuracy, we also evaluated the
stability of the TR, method when using different Raman spectra for
the L matrix. In detail, we classified Raman spectra of B. mycoides
and B. subtilis measured by device 0, composed of three batches for
each species. We did the experiment only with this two-class task,
because only on device 0 were three batches of two species
measured. X was constructed in a similar way as shown in Fig. 2,
yet with only two species involved. We composed the L matrix
with four Raman spectra, each two belonging to one species and
picked randomly from any of the three batches. Thus nine L
matrices were generated. Accordingly, we performed nine
predictions for each X matrix. Parameters A and n within TR,
were optimized by the GA method every time with a new L matrix.
The optimal values of the parameters are shown in Table S1. The
accuracies are shown in the boxplots of Fig. 7. The device indices
forming the X matrix were labeled on the abscissa. The two series
correspond to the results with different Raman spectra of B. subtilis
from batch 3 used for the L matrix. The correlation (|[s; — s2||,)
between the mean spectra of the selected Raman spectra of B.
subtilis from different batches is shown in Fig. S3. For series 1, the
variance of the classification accuracy is generally below 3%. An
exception occurred if the X matrix was composed of the Raman
spectra from device 1 alone, because three low accuracies were
produced when employing the two Raman spectra of B. subtilis
from batch 3 in the L matrix. As shown by the left plot of Fig. S3,
these two Raman spectra demonstrated an obviously lower
correlation compared with those from the other two batches.
Therefore, we performed the classification again using other two
Raman spectra of B. subtilis from batch 3 for the L matrix, which
possessed a higher correlation (see the right side of Fig. S3). The
results are plotted in series 2 in Fig. 7. Apparently, the variation of
the accuracy greatly decreases. Thus a careful selection of the L
matrix is helpful to ensure the stability of TR,.

Nevertheless, the variation was not necessarily decreased by
utilizing a better L matrix, comparing the two series of boxplots in
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Fig. 7. Classification accuracy for Raman spectra of B. mycoides and B. subtilis
measured on device 0: the device indices used to form the X matrix were labeled
on the abscissa. Meanwhile, the L matrix was constructed by four Raman
spectra from device 0, each two belonging to one species from any of the
three batches. Thus nine possible L matrices were generated. Accordingly,
nine classifications were performed for each X matrix, of which the
accuracies were shown by boxplots. The two series correspond to results
with different Raman spectra of B. subtilis from batch 3 selected for the L
matrix. For series 1, the selected two Raman spectra of B. subtilis from batch
3 bear obvious variance compared to those from the other two batches (see
Fig. S3). For series 2, we replaced these two Raman spectra with another two
of B. subtilis from batch 3, featuring a higher correlation with the other two
batches (see Fig. S3). Apparently, the variance of the accuracy is generally
higher for series 1 than series 2, especially if X was composed from device 1
alone. Furthermore, the classification varied greatly with the X matrix, given
the same L matrix. If the X matrix was composed of data from more than
one device, the accuracy becomes much stable regardless of the goodness of
the L matrix.

Fig. 7. On the other hand, by re-checking the accuracy of the first
boxplot, the variation of the accuracy was already dramatically
decreased if Raman spectra from other devices or multiple devices
were used for the X matrix. Thus the stability of TR, is more
dependent on the X than the L matrix.

4. Conclusion

We reported an investigation to improve the model transfer-
ability for Raman spectroscopy in biological applications. Two
mechanisms were studied including spectral standardization and
model updating. For spectral standardization, we performed the
wavenumber adjustment based on a genetic algorithm after the
standard calibration. Current statistical models were updated by
TR based methods. The different combinations of the two model
transfer mechanisms were investigated and compared. To evaluate
the spectral alignment, the Euclidean distances between mean
Raman spectra of different devices were computed. To assess the
model transferability, the classification accuracy of a three-class
classification by PLSR was calculated. As was shown by the
Euclidean distances, the standard calibration could dramatically
decrease the between-device spectral differences. This improved
the classification accuracy but the results are not adequate. By the
following wavenumber alignment, the between-device spectral
distances were almost the same but classification accuracy was
observed to increase significantly. Meanwhile, the TR methods,
especially the TR, method, yielded promising model transferabili-
ty, even if no spectral standardization was carried out. However, a
spectral standardization beforehand could help improve the
stability of TR,. Furthermore, the stability of TR, was strongly
dependent on the X and less dependent on the L matrix.

With this investigation, we expect to step further in the model
transfer problem for Raman spectroscopy. Despite of the demon-
strated improvement, the results were not perfect. Actually, the
accuracy of the statistical model was around 96%, if an
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independent dataset from the same device as the training set is
predicted. This is better than the prediction of datasets from a
different device to the training set after a model transform with the
shown methods. Hence, more advanced model transfer
approaches have to be developed. On the other hand, the model
update was realized by TR in combination with a PLSR as a
classifier. Other classifiers including linear discriminant analysis
(LDA), support vector machine (SVM) and artificial neural net-
works (ANN) could also be potential alternatives to a PLSR.
However, it is not straight forward to generalize the TR method to
these classifiers, because the properties of the classifiers are
different. For example, the parameter A cannot be used for a LDA as
for a PLSR. This is an open tissue and subject of our further
investigations. Further research will also be related to the influence
of the data size of the L matrix and optimization sets on the model
transferability. Further research will be related to the influence of
the data size of the L matrix and optimization sets on the model
transferability.
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Abstract

One of the most important issues for the application of Raman spectroscopy for biological diagnostics is how to
deal efficiently with large datasets. The best solution is chemometrics, where statistical models are built based
on a certain number of known samples and used to predict unknown datasets in future. However, the prediction
may fail if the new datasets are measured under different conditions as those used for establishing the model. In
this case, model transfer methods are required to obtain high prediction accuracy for both datasets. Known
model transfer methods, for instance standard calibration and training models with datasets measured under
multiple conditions, do not provide satisfactory results. Therefore, we studied two approaches to improve
model transfer: wavenumber adjustment by a genetic algorithm (GA) after the standard calibration and model
updating based on the Tikhonov regularization (TR). We based our investigation on Raman spectra of three
spore species measured on four spectrometers. The methods were tested regarding two aspects. First, the
wavenumber alignment is checked by computing Euclidean distances between the mean Raman spectra from
different devices. Second, we evaluated the model transferability by means of the accuracy of a three-class
classification system. According to the results, the model transferability was significantly improved by the
wavenumber adjustment, even though the Euclidean distances were almost the same compared with those
after the standard calibration. For the TR, method the model transferability was dramatically improved by
updating current models with very few samples from the new datasets. This improvement was not significantly
lowered even if no spectral standardization was implemented beforehand. Nevertheless, the model
transferability was enhanced by combining different model transform mechanisms.
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Figure S 1 Results of parameter optimization for TR, by genetic algorithm. The GA was carried out with population size of 10,
evolving for 30 generations. The chromosome was composed of two genes, corresponding to the logarithm of the two
parameters, A and n. The gene values varied within [-2, 5] and [-5, 5] for A and n, respectively. For each chromosome, 28
classifications were performed, in the same way as described for grid search. Their averaged accuracy was calculated as the
evaluation function for GA, which was intended to be increased.
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Figure S 2 False-color plots of classification accuracy for the three-class classification: different cases of model transfer were
labeled on the ordinate, while the device indices of which the Raman spectra were used as training set were labeled on the
abscissa. It was demonstrated that the accuracy was quite low if none model transfer approaches were used. The accuracy
was not greatly increased by training model with Raman spectra measured on different devices, especially when predicting
dataset measured by device 0 and 2. The standard calibration could improve the accuracy, which was yet not always
successful. In some cases, for instance device 3, the accuracy declined after standard calibration. However, by further
wavenumber adjustment, the accuracy could be generally increased. On the other hand, the TR; worked not as well as TR,,
given the same spectral standardization procedure. Furthermore TR, performed comparably when different spectral
standardization progresses were carried out, all yielding promising results. Besides, the accuracy was quite low when
predicting device 2 with TR, with a model trained by device 0. This was improved by performing spectral standardization
before TR,. It was also noteworthy that the accuracy was generally lower when only one device was used as training set.
This indicated an advancement of model transform based on more than one primary datasets. Further improvement of TR
can be expected by using more data during model establishment.
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Table S 1 Optimal values of n and A within TR, method for different L matrices. Subscripts of L represents the nine different
combination of Raman spectra for composing L matrix. While n,, Ay, n,, A, refer to the parameters when different Raman
spectra of batch 3 were used for L.

logio(ni) logio(Ay) logio(n2) logio(A2)
Ly -3.527 1.549 -3.527 1.549
L, -2.983 0.722 -2.983 0.722
Ly -2.749 0.794 -4.767 2.849
L, -0.352 1.344 -0.352 1.344
Ls -4.886 0.569 -4.886 0.569
Lg -2.749 0.641 -3.269 2.597
L; -0.935 3.700 -0.935 3.700
Lg -4.490 0.687 -4.490 0.687
Ly -3.370 0.809 -2.983 2.211
Correlation Correlation

)

* &
D
or <k g
o o |$
BT B2 B3 B1 B2 B3 =

Figure S 3 Correlation of the mean spectra of the three groups of Raman spectra belonging to B. subtilis for constructing L
matrix. For the first case, a big deviation was observed from batch 3 to other two batches, which is improved after using
another two Raman spectra within batch 3.
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Abstract

Raman spectroscopy has gained increasing attention in biomedical diagnostics
thanks to instrumental developments and chemometric models that enhance
the accuracy and speed of this technique. In particular, a model transfer proce-
dure is needed if the chemometric models are utilized to predict a new dataset
measured under (secondary) conditions different to the training data (primary).
The model transfer methods try to achieve satisfactory prediction on the sec-
ondary dataset with minimal or no training samples measured under secondary
conditions. Model transfer methods that have been reported are mostly applied
for near-infrared spectroscopy and in regression problems. The investigation of
model transfer in Raman spectroscopy and classification is rare. Our recently
reported Tikhonov regularization based on partial least squares regression
(TR-PLSR) was utilized for model transfer of Raman-based classification
models for spore species. In the present work, we show that the TR-PLSR also
works for Raman spectra of vegetative bacteria, even though the Raman spectra
of 3 species of bacteria were acquired on 3 different Raman spectrometers.
Additionally, we report 2 newly developed model transfer methods for Raman
spectra: movement of principal components scores and spectral augmentation.
Both methods were validated based on the Raman spectra of bacterial spores
and vegetative bacteria, where a significant improvement of the model transfer-
ability was observed. The movement of principal components scores method
yielded results comparable with those of the TR-PLSR. However, the new
methods are superior to TR-PLSR in 2 ways: No training samples in the second-
ary conditions are necessary, and the methods are not restricted to partial least
squares regression but can also be applied to other models. Both advantages are
important in real-world applications and represent a large step for improving
the model transfer of Raman spectra.

KEYWORDS

biological applications, classification, model transfer, Raman spectroscopy

J Raman Spectrosc. 2018;1-11.
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1 | INTRODUCTION

The field of chemometrics has developed dramatically
within the past two decades, especially in biological
diagnostics based on Raman spectroscopy. This is because
chemometric methods can distinguish subtle Raman
spectral differences related to biological changes, which
is impossible by naked eye. The improvement of
chemometrics for Raman spectral data led to two benefits:
The sensitivity of biological diagnostics is significantly
increased, and large-sized datasets can be analysed. These
facts make the combination of Raman spectroscopy
with chemometrics a versatile technique for biological
applications,'! including disease detection,’*** metabolic
proﬁling,m‘m bacterial identification,*>*! intraoperative
decision making,™ and forensic analysis.[?>2!]

Beyond the outlined biological application, it is well
known in chemometrics that the prediction of an unknown
dataset is mostly worse than the prediction of training data.
This is known as shrinkage of predictors.m] The shrinkage
can be severer if the unknown data are measured under
different conditions compared with the condition of the
training data. The conditional changes, which manifest in
Raman spectroscopy as wavenumber shifts and intensity
variations, can be larger than the variations related to
chemical or biological changes of interest. Consequently,
the trained model completely fails to predict new data.
The most straightforward solution is to construct a new
model. However, this needs a large amount of new training
samples and is not preferred. On the other hand, model
transfer has emerged as an extremely important technique
to improve the prediction of an existing model for new data
with minimal or no requirement of new training samples
measured under the changed conditions. Herein, the train-
ing dataset and the new dataset are termed as primary and
secondary datasets, respectively. The aforementioned con-
ditional changes could be experimental and instrumental
changes or measurements of different individuals (e.g.,
patients) or biological replicates.

The existing model transfer approaches, including
spectral standardization>2°! and model updating,?’-%"!
were mostly developed for near-infrared spectroscopy
and for regression models. Related investigations can
be found in publications from the group of Professor
Kalivas.*®32] The model transfer for classification is
rarel®®! and often based on spectral standardization
methods such as Procrustes analysis and piecewise direct
standardization.** Particularly, orthogonal signal correc-
tion was applied to remove variations in the near-infrared
spectra unrelated to the class property.**! In addition,
modified slope and bias correction was utilized by Myles
et al.®! to correct the difference between primary and
secondary datasets in the score domain of a partial least

squares model. However, both orthogonal signal correc-
tion and slope and bias correction required secondary data
including metadata. This is often not possible in biological
diagnosis, where the label of a new patient (e.g., the dis-
ease) needs to be predicted and is unknown. Spectral stan-
dardization of Raman spectroscopy is not trivial, especially
in biological investigations. This is because the Raman
spectra of biological samples are very complicated and
spectral variations related to biological changes are tiny.
Any artefacts introduced during the standardization might
dramatically degrade the quality of further analysis.

Recently, model transfer for Raman-based classification
was reported by Guo et al.,** where a Tikhonov-regulari-
zation-based partial least squares regression (TR-PLSR)
method was developed. With TR-PLSR, the model was
updated with a number of Raman spectra measured under
secondary conditions. Despite the promising performance
of TR-PLSR, it has two limitations. First, several secondary
samples with known label information are required to
transfer the model. Second, the TR-PLSR is developed for
partial least squares regression (PLSR), which is a linear
(regression) model. Its capability in nonlinear models is
still an open issue. This limits its application for tasks
where advanced classification or regression models are
needed.

To tackle the aforementioned limitations, we report two
new model transfer methods: movement of principal com-
ponents scores (MS) and spectral augmentation (SA). The
investigations were based on two datasets. The first dataset
consists of Raman spectra of bacterial spore species (Bacil-
lus mycoides, Bacillus subtilis, and Bacillus thuringiensis)
measured on four spectrometers. The second dataset was
composed of Raman spectra of vegetative bacteria of the
same three species acquired on three spectrometers. As
the Raman spectra of vegetative bacteria are normally more
difficult to classify compared with those of spores, the
vegetative bacterial dataset was used to further verify the
TR-PLSR method. To evaluate the new model transfer
methods, a three-class classifier was established based on
a support vector machine (SVM) following a principal com-
ponent analysis (PCA). The model transferability of the two
new methods was compared with the standard wavenum-
ber calibration and the TR-PLSR. The model transferability
was benchmarked by the predictive performance of the
models with respect to the secondary dataset.

2 | MATERIALS AND METHODS
2.1 | Spore cultivation and Raman
spectroscopy

The information on cultivation and measurement of three
spore species B. mycoides DSM 299, B. thuringiensis DSM
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350, B. subtilis DSM 347, and B. subtilis DSM 10 strains
can be found in our previous publications.[15’36] In sum-
mary, 1,592, 624, 654, and 848 Raman spectra were mea-
sured on four Raman spectrometers, almost equally
distributed among the three bacteria species. The mean
spectra of different species and the interspecies and
interdevice Pearson correlation coefficients are visualized
in Figure 1. Accordingly, the spectral variations between
devices are larger than those between species. Moreover,
the data measured on the first device are extremely
dissimilar to those measured on the three other devices.

2.2 | Bacteria cultivation and Raman
spectroscopy

The bacillus strains were cultivated on nutrient agar (pep-
tone 5.0 g/L, meat extract 3.0 g/L, agar 15 g/L, distilled
water 1,000 ml) for 24 hr at 30 °C. After cultivation, bac-
teria were washed three times with distilled water, and
10 pl of the bacteria solution was dropped on a nickel foil
and dried.

The Raman spectra of a single bacterium on nickel

_RAMAN
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foil were collected by a micro-Raman device (Bio
Particle Explorer, rap.ID Particle Systems GmbH, Berlin,
Germany) under ambient conditions. A 100X objective
(MPLFLN 100xBD, Olympus Corporation, Tokyo, Japan)
was used to focus the 532-nm excitation laser onto the sam-
ple with a spot diameter <1 pum. The laser power at the sam-
ple was 1 mW, and every Raman spectrum was integrated
over 10 s. The 180° back-scattered Raman light was
diffracted by a single-stage monochromator (HE 532, Horiba
Jobin Yvon, Munich, Germany) with a 920 line/mm grating
and collected with a thermoelectrically cooled charge-
coupled device camera (DV401-BV, Andor Technology,
Belfast, Northern Ireland) with a spectral resolution of
~8 cm™. The mean Raman spectra of different species
and interspecies and interdevice Pearson correlation coef-
ficients were visualized in Figure 2. In comparison with
Figure 1, the Raman bands of spores are sharper than
those of vegetative bacteria.’”) The standard deviations
of the Raman spectra are smaller for the spores than for
vegetative bacteria, demonstrating that spores are more
reproducible than vegetative bacteria. Moreover, the
Raman bands at 1,565, 1,440, 1,383, and 1,007 cm™*, which
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= © | m Bmycoides
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§ o | B Bthuingiepsis @
< e I 9
g s o
g o | -
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FIGURE 1 Overview of spore dataset. (a) Mean (solid line) and standard deviations (shade) of the Raman spectra measured on the first
device. (b) Pearson correlation coefficients between the mean spectra of different species measured on the same device (first row) and

those between the mean spectra of the same species measured on different devices (second row). Apparently, the spectral variations between
devices are larger than those between species. Moreover, the data measured on the first device are extremely different to the data of the other

three devices [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 2 Overview of the bacterial dataset, visualized similarly as in Figure 1. Obviously, the Raman bands of vegetative bacteria are
wider and less intense than the Raman bands of spores. Moreover, smaller standard deviations of the spore dataset represent a higher
reproducibility compared with the vegetative bacteria. According to the interspecies correlation coefficients (first row in Plot b), the spectra
measured on the first two devices are easier to separate than the spectra measured with the third device. Meanwhile, the interdevice
correlation coefficients (second row in Plot b) demonstrated that the third device is more similar to the first than to the second device [Colour
figure can be viewed at wileyonlinelibrary.com]
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appeared in the spore dataset and belonged to calcium
dipicolinate, did not appear for vegetative bacteria.>”!
Meanwhile, according to the interdevice correlation coeffi-
cients shown in the second row of Figure 2b, the third
device is more similar to the first than to the second device.

2.3 | Spectral preprocessing

All Raman spectra were preprocessed before being classi-
fied. After the wavenumber axis was interpolated to a grid
of 1 cm™" and smoothed with a 2-order Savitzky-Golay
filtering, the baseline was corrected by an asymmetric
least squares method in the R package “baseline” (A = 7,
p = .01).1*%%°! Vector normalization was carried out for
the wavenumber ranges of 675-1,785 and 2,815-
3,020 cm ™}, which were used for further analysis. Specifi-
cally, the Raman spectra of the spores were despiked
before the interpolation. This was not performed for the
Raman spectra of the vegetative bacteria because no
spikes were observed. Furthermore, no standard calibra-
tion (wavenumber and intensity calibration) was per-
formed, unless stated otherwise. If standard calibration
is carried out, wavenumber axis was calibrated according
to the Raman spectrum of 4-acetamidophenol before
interpolation and after despiking. All computations were
done with Gnu R.1*"!

2.4 | Tikhonov-regularization-based PLSR

The model with the TR-PLSR approach is shown in Equa-
tion 1. X is an m X n matrix composed of m Raman
spectra of the primary dataset. Y is an m X k matrix for
a k-class classification task representing the class belong-
ing of the samples with a dummy response variable (0 or
1). L and Y" are matrizes composed of several Raman
spectra of the secondary dataset (denoted transfer sam-
ples) and the corresponding output matrix, respectively.
Additionally, identity matrix I is used to ensure the
nonsingularity of the calculation. In this way, the model
is updated with the secondary dataset, and the prediction
on the secondary dataset is improved.

X
0 =|nl |b (1)
Y AL

2.5 | Optimal number of principal
components

Before quantitative and qualitative analyses can be car-
ried out, a dimension reduction is usually required to
improve the generalization performance of a model.

PCA is frequently used for this task.l*”) A basic problem
when applying PCA is to determine how many principal
components (PCs) to be used in further analysis. The solu-
tion is dependent on the specific task under investigation.
In biological applications, for example, a cross-validation,
preferably a leave-one-individual-out cross-validation, is
widely used.[***!! However, if the number of individuals
is not large enough, the optimization would be possibly
biased.!*?! Additionally, a cross-validation is computation-
ally expensive. Therefore, we proposed an optimization by
maximizing the similarity between the scores of training
and testing datasets, as shown in Equation 2. To start,
the PCA model is built on the training dataset and used
to predict the testing dataset, generating the scores §""
and S™' Given a certain number of PCs (nPC), an
eigendecomposition is performed on the covariance
matrix of the scores of the training dataset (S), yielding
eigenvectors (V) and eigenvalues (p). Afterwards, the
covariance matrix of the scores of the testing dataset (S’)
is projected on V to get the pseudo-eigenvalues p’. Finally,
the Euclidean distance between p and p’ is calculated.

__ Qtrain
S =8"" je1,nPC
S =S8 je1,nPC]
S’s = vpv~! ®)
p =V (sTs)v

dist,pc = ?jf(Pi_p’i)z/nPC

The distances are shown in Figure S1 against the value
of nPC, which ranged from 2 to 100 with a step size of 1.
The distance decreased dramatically as nPC increased
and became stable after nPC was higher than a certain
value. The optimal nPC was determined as the one where
the decrease was no larger than 5% of the minimal
distance.

2.6 | Movement for principal component
scores

After the optimization of nPC, the corresponding PC score
vectors are used for further classification tasks. A prereg-
uisite for a successful prediction with the built classifier is
that scores from the same group, no matter training or
testing dataset, are closer to each other than to those from
different groups. However, a Raman spectrum contains
not only chemical information of the sample but also
physical information, including environmental factors,
physical states of the sample (solid or liquid), and so
on.2**] Thus, the testing dataset may differ from the
training dataset if the environmental condition changes,
even though the chemical components are identical.
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Therefore, the scores of the testing datasets are shifted
compared with the scores of the training dataset, leading
to a failed prediction of the classifier. This is severer if
the inter-group differences are smaller compared with
the spectral impact of the condition changes. A direct
solution is to eliminate the spectral differences related to
the physical information, for instance, by a spectral
standardization. However, this is difficult for Raman-
based biological applications because Raman spectral
variations related to biological changes are very slight
and can be corrupted by the artefacts possibly introduced
by the standardization, which degrades further analysis.

XPr — TprVT" T = X5V

™ — X7V, Tl — XV ©)
k)

T — T — (Tmpr_Tmref )

To avoid the drawback of spectral standardization, we
corrected the shifts in the score space instead of the orig-
inal spectral space. The scores of the training dataset were
moved to match those of the testing dataset, which was
done according to the differences between the scores of
the mean spectra of the primary dataset and a reference
dataset. The reference dataset was composed of spectra
from the secondary dataset to be predicted. The calcula-
tion is shown in Equation 3, where X, X, T, and V repre-
sent the spectral matrix, mean spectrum, scores, and
loadings, respectively. The superscripts pr, sc, and ref
stand for the primary, secondary, and reference datasets,
respectively. The additional prefix m represents the aver-
age spectrum of the corresponding datasets.

2.7 | Spectral augmentation

Whereas a model transfer procedure is achieved in the
score space for MS method, the SA method aims to
augment the original spectral space. The basic idea is to
enlarge the spectral space of the training dataset, where
the probability to successfully predict new data is
increased. One of the possible options for such augmenta-
tion is to construct numerous spectra with the Raman
spectra of pure substances composing the sample.
However, there are a large number of pure components
contained in a single biological sample, and this construc-
tion is hardly possible. Therefore, instead of simulating
the chemical components, we imposed the spectral
changes between the primary and secondary datasets
resulting from physical (conditional) changes into the
primary dataset. This was realized by enforcing certain
wavenumber shifts and intensity variations into the
primary dataset. First, the shift of each wavenumber (s,)
was calculated from a fourth-order polynomial with
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randomly generated coefficients (a) ranging from —1 to
1(sy = a1 + av + ap® + a’ + as’, a; € [-1, 1)).
Second, we randomly sampled 20 wavenumber positions
(min(v) < ¥ < max(v)) and generated 20 random b
values ranging from 0.5 to 2. The intensity response R
at each wavenumber was obtained as a three-order
polynomial (Ry, = ¢1 + c2¥; + ¢3v7 + ¢4v}), where coeffi-
cients ¢ were fitted from b and »*"P. The intensity of the
primary Raman spectrum was multiplied with R.

Due to the randomness of the procedure, the
resulting spectral changes may be unreasonably large,
leading to invalid augmentation. To deal with this issue,
we calculated the mean spectra from the primary and
secondary datasets and located known Raman bands.
Wavenumber shifts d and intensity ratios r of these
Raman bands between the two mean spectra were calcu-
lated. Thereafter, the abovementioned wavenumber shift
s, was enforced into range [max(quantile(d, 0.1), —5),
min(quantile(d, 0.9), 5)] via a linear transformation.
Similarly, an intensity response R was scaled to the range
[max(quantile(r, 0.1), 0.5), min(quantile(r, 0.9), 2)]. The
quantile calculation helps eliminate possible spectral
outliers. Additional boundaries [—5, 5] and [0.5, 2] for s,
and R, respectively, are used to avoid values that are too
large for d and r. In this way, the augmentation was
done by taking the differences between the primary and
secondary datasets into consideration. The calculations
were repeated for each spectrum of the primary dataset
with different randomization of a, b, and »*"P. The group
information was kept as it was. Unlike the model update,
where the model was augmented with secondary samples,
the proposed SA was done based on the primary dataset
and does not require secondary samples during the model
construction.

3 | RESULTS AND DISCUSSION

After introducing the theoretical background, in this sec-
tion, we validate the model transfer methods with the
two Raman spectral datasets described beforehand. The
performance of the classifier was evaluated on the pri-
mary datasets by cross-validations, as described in the fol-
lowing sections. In particular, the k-fold cross-validation
refers to splitting the training dataset randomly into k
folds, and the distribution of different groups in a fold is
kept the same as the overall training dataset. On the other
hand, leave-one-batch-out cross-validation (LOBCV)
refers to a splitting according to the information of biolog-
ical replicates. By doing so, the data of different biological
replicates are utilized as different folds. To check the
model transfer methods, Raman spectra were split into
primary and secondary datasets based on the devices they
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were measured on. A three-class classifier was built with shown in the black series, termed Primary CV, which
an SVM (linear kernel, cost = 1) after a dimension reduc- demonstrated the satisfactory performance of the classi-
tion by PCA. The model transferability was estimated  fier. The predictions of the secondary datasets were
according to the predictions for the secondary datasets. shown in the other series, each including 28 values.

In addition to MS and SA, the standard wavenumber Note that the suffix CV means the nPC was optimized
calibration and the TR-PLSR were also performed for by a 5-fold cross-validation on the training data;
comparison. All predictions were benchmarked by the  otherwise, the optimization method optimal number of
mean sensitivity of the three groups. principal  components (OptNew) was used. The

Before the results are presented, it is worth noting that ~ predictions on the secondary datasets without performing
besides an SVM with a linear kernel, other classification any model transfer methods were termed as None CV
models could also be applied. We utilized an SVM with ~ and OptNew, with mean sensitivities of 0.692 + 0.180
a linear kernel instead of a simpler linear discriminant  and 0.687 + 0.193, respectively. The results of the two
analysis because linear discriminant analysis is more nPC optimization methods were similar, indicating
suitable for normal distributed data with comparable  that they performed almost equally. However, the speed
covariance matrices for different groups, which was hard ~ of OptNew was significantly enhanced because it did
to ensure in our investigation. not require performing the classification for each nPC
value.

To perform MS, the reference dataset was constructed
with the first certain number of spectra of each species in
the secondary dataset. The nPC was optimized by OptNew
A PCA-SVM classification was performed on the spore  after the movement of the scores. The mean sensitivities
Raman spectra measured by all devices with a 5-fold  were shown by the blue series in Figure 3a respective to
cross-validation. To do so, Raman spectra from the four  the number of reference samples from each species (MS
devices were merged and randomly split into five folds without Group). The values, for example, 0.830 + 0.084,

3.1 | Spore dataset

for a cross-validation. Afterwards, the model transfer-  using 2 reference samples of each species, were signifi-
ability was tested, where the Raman spectra acquired  cantly higher compared with those without model trans-
by each device were used once as the secondary dataset. fer procedures (0.692 + 0.180). Furthermore, the

The primary dataset was composed of Raman spectra  performance of MS was almost independent of the num-
of all possible combinations of the other three devices ber of spectra in the reference dataset.

(C} + C% + C3 =7 total possibilities). The mean sensitiv- Until now, we did not use the group information of
ity of each prediction on each secondary dataset was the reference dataset, and the movement was done for
recorded, which resulted in 28 sensitivity values. The  all groups simultaneously. This suits applications where
details are presented in Figure 3 and discussed in the the group information of the secondary dataset is not

following text. accessible, such as for a diagnostic task. However, it is
Figure 3a visualised mean sensitivities in different  valuable to check if the group information can enhance
cases of prediction. The result of the 5-fold cross-valida- the model transfer performance. To do so, we utilized

tion using Raman spectra from all four devices was  the group information of the reference dataset and moved
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FIGURE 3 Results of the model transfer methods for the spore dataset. (a) The black series presents the prediction on all of the four
devices with a five-fold cross-validation. The following two series represent the prediction of the secondary datasets without the model
transfer procedure, where nPC was optimized with the two procedures described above. The other series represent the prediction with the
movement of principal component scores (MS) method using varying numbers of spectra in the reference dataset. The blue and red series
show the no-group and with-group MS, respectively. (b) Comparison of different model transfer methods. TR-PLSR and MS are comparable
and superior to the standard wavenumber calibration (StdCali CV) and the spectral augmentation (SA) [Colour figure can be viewed at
wileyonlinelibrary.com]
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each group separately. The results were shown as the red
series in Figure 3a (MS with Group). Apparently, the
mean sensitivities were comparable with the sensitivities
of the no-group MS if more than five reference samples
of each group were utilized. Otherwise, the with-group
MS was inferior and only provided mean sensitivities of
0.693 + 0.049 if two reference samples of each species
were used. This was because for the no-group MS, the
mean spectrum was obtained from all spectra of the refer-
ence dataset, whereas this was computed from one group
of the reference dataset for the with-group MS. Nonethe-
less, the group information is not necessary for the MS
method, making it applicable for model transfer problems
where the group information of the secondary dataset is
unknown. This is advantageous to the bias and slope
correction of Myles et al.,*™ where known secondary
samples are required.

Afterwards, the SA method was tested with the same
classifier. The PCA model was built on the original train-
ing dataset. The augmented training dataset and the test-
ing dataset were predicted by this PCA model to receive
their scores. The SVM was built on the scores of the aug-
mented training dataset, with nPC ranging from 2 to 100.
The predictions by the SA method and without any model
transfer method are given in Figure S2. The predictions
on the primary dataset based on a 5-fold cross-validation
were plotted as a benchmark. For any value of nPC, the
prediction on the secondary data was no better than
the prediction on the primary dataset. Nonetheless, the
prediction on the secondary dataset featured an obvious
improvement with SA for model transfer compared with
that without SA. For instance, given nPC = 40, the mean
sensitivities with and without SA were 0.788 + 0.110 and
0.696 + 0.172, respectively. This demonstrated signifi-
cantly enhanced model transferability by the SA method.

In addition to MS and SA, the standard wavenumber
calibration and the TR-PLSR were performed as a com-
parison. It is worth noting that the two parameters of
the TR-PLSR, 4 and 1, were optimized with a genetic algo-
rithm by maximizing the mean sensitivity of the optimiza-
tion samples instead of the accuracy as in a previous
work.®! The results were shown in Figure 3b. The stan-
dard wavenumber calibration led to a mean sensitivity
of 0.773 + 0.161, which was inferior to the other three
model transfer methods for this dataset. The model
transferability was comparable for the MS method and
TR-PLSR method, which have mean sensitivities of
0.830 + 0.084 and 0.869 + 0.056, respectively. However,
the MS method is superior in two ways. The group infor-
mation of the reference dataset is not necessary for MS,
and it can be applied to statistical models other than the
PLSR. On the other hand, the mean sensitivities obtained
with the SA method (0.779 + 0.162) were lower than those
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obtained with MS and TR-PLSR. Nevertheless, this

method provides a possibility of model transfer without
knowledge of the secondary dataset as long as the ranges
of the wavenumber shifts and intensity variations
between two devices are roughly known.

Another important verification is to compare the pre-
diction after model transfer with the local prediction by
the model trained by the secondary dataset itself. To do
so, we took the Raman spectra from the first device as
the secondary dataset and performed classification with
LBOCV. The sensitivities of the three species averaged to
0.864 and were plotted in the black series of Figure S3.
The following series represented the results of the predic-
tion if the Raman spectra from the other three devices
were used as the primary (training) dataset. Apparently,
the mean sensitivity was improved by all model transfer
methods compared with the mean sensitivity without
model transfer (0.484). The highest mean sensitivities of
0.806 and 0.787 were obtained with the TR-PLSR and
no-group MS methods, respectively, which were yet
inferior to the local prediction. This illustrated the limit
of the model transfer methods and the requirement of
further investigation.

3.2 | Bacterial dataset

To allow for a general conclusion, the model transfer
methods were also verified by a second dataset, which
contains the Raman spectra of three vegetative bacterial
species collected by three Raman spectrometers. Specifi-
cally, one batch for each species was measured on the first
two devices, whereas four batches for each species were
measured on the third device. The Raman spectra from
the third device were always used as the primary dataset,
whereas the others were used as secondary datasets. The
performance of PCA-SVM was verified on the primary
dataset with LOBCV as well as 5-fold cross-validation. In
terms of model transferability, five primary datasets were
constructed with the Raman spectra of either all four
batches or three out of the four batches measured on the
third device.

Before the investigation of the MS and the SA, the TR-
PLSR method was performed on this dataset, wherein the
first 10 components were used for the PLSR. Two and five
secondary spectra from each species were used as the
reference dataset and optimization dataset, respectively.
Parameters 4 and 1 were optimized with a genetic
algorithm by maximizing the mean sensitivity of the
optimization dataset.*®! The results were presented in
Figure S4. The mean sensitivities without TR-PLSR
were 0.789 + 0.120 and 0.698 + 0.128 for the first and
second devices, respectively, which were increased to
0.857 + 0.009 and 0.857 + 0.058, respectively, by the
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TR-PLSR method. In particular, the predictions of the represented better stability of the prediction with MS.

secondary datasets with TR-PLSR were even better Meanwhile, the no-group and with-group MS performed
than those of the primary dataset with LOBCV similarly if more than five reference samples were used.
(0.765 + 0.077). This could result from two factors. First, Nonetheless, as shown in Figure S4, the results of the
the primary dataset features small interspecies variances  with-group MS were inferior to those of the no-group
(first row in Figure 2b), whereas the interbatch variances MS for Device 1. This was because the utilized reference
are larger (Figure 4). Second, according to the first row of ~ spectra were not good representatives of the correspond-
Figure 2b, the secondary datasets possess quite large inter- ing group and their mean scores were largely biased from
species differences compared with the primary dataset. the centre of the whole group, as shown in Figure S7.

The MS and SA were carried out analogously to the ~ Such bias can be decreased by the average of all groups
datasets of the spores. The overall results for the two together in the no-group MS. On the other hand, if such
secondary devices were displayed in Figures 5. Detailed  bias did not occur, the with-group MS could lead to better
results were presented in Figures S5 and S6. Again, the = model transferability than the no-group MS, as for Device
OptNew gave similar results as a cross-validation for score 2 in Figure S4. This told us that the no-group MS is supe-
determination. The prediction of the secondary dataset rior to the with-group MS in terms of stability. A similar
from Device 1 was slightly better than that for the primary  performance was observed for SA as for the spore dataset
dataset. This was due to the same factors described above and thus is not further discussed; those results are given
for the results of TR-PLSR. in Figure S8.

With respect to the MS method, the mean sensitivity The results of the two devices predicted by the four
of the prediction on the secondary dataset was improved model transfer methods were plotted in Figure 5b for
from 0.778 + 0.148 to 0.831 + 0.075 by the no-group MS  comparison. The prediction with MS (0.831 + 0.075) was
method using two reference samples of each species comparable to the TR-PLSR (0.857 + 0.039). The SA
(Figure 5). The improvement was not as much as it was  significantly improved the model transferability in this
for the spore dataset, because the interdevice changes dataset from 0.778 + 0.148 to 0.818 + 0.111. In summary,
were smaller than those for the spore data, as shown in  a good transferability is possible without the requirement
Figures 1b and 2b. However, the decreased variance  of label information from the secondary dataset with the
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FIGURE 4 Pearson correlation coefficients between the mean spectra of different batches measured on the third spectrometer belonging to

the same vegetative bacterial species. Compared with those in the first row in Figure 2b, the interbatch variations are larger than interspecies

differences [Colour figure can be viewed at wileyonlinelibrary.com]
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MS and SA methods. In addition, it is clear that the MS
method can be generalized to other factor analysis
methods such as partial least squares, independent com-
ponent analysis, and so on. The capability of SA is limited
due to its random procedure.

3.3 | Stability test for MS

By now, we already checked the capability of MS for
model transfer problems. In this section, we test its stabil-
ity in two aspects: repeated samplings for the reference
dataset and the number of groups included in the refer-
ence dataset. The validation was done based on the
Raman spectra of the spores. Raman spectra measured
on the first device were used as the secondary datasets,
because we have three batches of species B. mycoides
and B. subtilis for this device, which makes the repeated
sampling more meaningful. Seven possible combinations
of the other three devices were used as primary datasets.
Both the no-group and with-group MS methods were
investigated.

First, to check the influence of the number of refer-
ence spectra, we randomly selected a certain number of
the Raman spectra from the first device as reference spec-
tra. The number of samples taken from each species was
the same and ranged from 2 to 15 with a step of one.
For each reference spectra number, the sampling was
repeated 100 times. After each sampling, the MS was car-
ried out to predict the secondary dataset with the model
trained on the seven primary datasets. The resulting seven
mean sensitivities were averaged. The 100 repetitions
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resulted in 100 values for each reference spectra number,
as shown in Figure 6b. The mean sensitivities of the pre-
diction on the primary and secondary datasets without
model transfer were given in Figure 6a. Both the no-group
and with-group MS improved the model transferability
dramatically with high stability. The with-group MS was
statistically superior to the no-group MS according to
the higher mean sensitivities. However, the with-group
MS featured an inferior stability shown by the larger stan-
dard deviations over different samplings.

Second, we investigated the influence of the number
of groups included in the reference dataset. To do so, the
reference dataset was sampled from different numbers of
groups (one, two, or three). Additionally, the overall num-
ber of reference spectra was varied among 5, 10, 15, and
20. We repeated the sampling 50 times for each possible
combination of number of groups and spectra and
performed both no-group and with-group MS. For the
with-group MS, the scores of the groups not included in
the reference dataset were moved according to the
averaged movement of all reference spectra. The results
of no-group and with-group MS were presented in
Figure 6¢ as boxes without and with coloured fillings,
respectively. Generally, model transferability was signifi-
cantly improved regardless of the number of groups or
the number of spectra included in the reference dataset.
However, the number of groups did influence the perfor-
mance, especially for the no-group MS. In this case, the
performance of model transfer dramatically decreased if
the reference spectra were from only one group. Never-
theless, the performance can be improved by increasing
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FIGURE 6 Results of the stability test for movement of principal components scores (MS) on the spore dataset. (a) The prediction of the
primary datasets and the secondary datasets without model transfer procedure. (b) Results of the 100 repeated samplings, with different
number of spectra used in the reference datasets. Both no-group and with-group MS methods demonstrate high stability. The with-group MS
is superior to the no-group MS if more than five spectra are selected from each species as the reference dataset. (c) Results of MS with different
numbers of groups included in the reference datasets. The results of no-group and with-group MS are plotted as boxes without or with fillings,
respectively. Different numbers (5, 10, 15, and 20) of spectra were sampled as the reference dataset. The model transferability is significantly
improved by MS, regardless of the number of groups or the number of spectra in the reference dataset. However, the model transfer
performance is dependent on the number of groups; for instance, the no-group MS performs worse if the reference dataset is composed of
spectra from one single group only. Nevertheless, the model transfer performance can be improved if more spectra are used as a reference
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the number of reference spectra. In principle, all testing
spectra can be used as references because no label
information is required. Third, the performance of with-
group MS was independent of the number of groups in
the reference dataset, as long as more than five spectra
were used in the reference dataset.

Even though the results shown above are quite
promising, there is one important issue to be kept in mind
regarding the MS method. The distribution of the PC
scores is assumed to not change significantly between
the primary and secondary datasets. If this is violated, a
with-group MS is preferred to the no-group MS.

3.4 | Method comparison

The model transfer performance was compared among
the abovementioned methods on the basis of the results
of prediction on the secondary datasets shown in Figures 3
and 5. The sum of ranking differences was utilized, which
is capable of achieving a fair model comparison.[* More
details and the results are given in Figure S9, which gives
conclusions consistent with those of Figures 3 and 5.

4 | CONCLUSION

We reported about two new model transfer methods (MS
and SA) to deal with model transfer problems in Raman
spectroscopy, especially if label information of the
secondary dataset is absent. Their performance was
benchmarked by a three-group bacterial classification
task and compared with the recently published TR-PLSR
approach for model transfer. All carried out validations
showed that both methods were able to significantly
improve model transferability. For the dataset from bacte-
rial spores, the mean sensitivity of the prediction on the
secondary dataset was improved from 0.692 + 0.180

to 0.830 + 0.084 with the no-group MS and to
0.779 + 0.162 with SA. For the dataset from vegetative
bacteria, the mean sensitivity of the prediction on the
secondary dataset was improved from 0.778 + 0.148

to 0.831 + 0.075 with the no-group MS and to
0.818 + 0.111 with SA. The performance was slightly
inferior but comparable with TR-PLSR. However, the
new methods are superior to TR-PLSR in two aspects:
First, MS and SA do not need group information of the
secondary datasets, which is extremely important for
biological applications where the group information of
the new samples (secondary dataset) is unknown, for
example, in medical diagnosis. Second, the proposed
methods are not limited to certain classification or
regression models, whereas TR-PLSR being limited to
PLSR. This makes it possible to tackle the model transfer

problem for advanced statistical models, which are often
required in biological applications of Raman spectros-
copy. In addition, MS features the potential to be general-
ized to other factor analysis methods such as nonnegative
matrix factorization or independent component analysis.
However, the methods are still limited because they are
designed specifically for classification tasks and are not
applicable for regression methods. Investigating advanced
approaches to tackle this limitation is the topic of future
research.
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ABSTRACT: Raman spectroscopy has gained increasing attention in biomedical diagnostics thanks to
instrumental developments and chemometric models that enhance the accuracy and speed of this technique. In
particular, model transfer procedure is needed if the chemometric models are utilized to predict new dataset
measured under (secondary) conditions different to the training data (primary). The model transfer methods try
to achieve satisfactory prediction on the secondary dataset with minimal or no training samples measured under
secondary conditions. Model transfer methods that have been reported are mostly applied for near-infrared
spectroscopy and in regression problems. The investigation of model transfer in Raman spectroscopy and
classification is rare. Our recently reported Tikhonov regularization based on partial least squares regression (TR-
PLSR) was utilized for model transfer of Raman based classification models for spore species. In the present
work, we show that the TR-PLSR also works for Raman spectra of vegetative bacteria, even though the Raman
spectra of three species of bacteria were acquired on three different Raman spectrometers. Additionally, we
report two newly developed model transfer methods for Raman spectra: movement of principal components
scores (MS) and spectral augmentation (SA). Both methods were validated based on the Raman spectra of
bacterial spores and vegetative bacteria, where a significant improvement of the model transferability was
observed. The MS method yielded comparable results to the TR-PLSR. However, the new methods are superior
to TR-PLSR in two ways: No training samples in the secondary conditions are necessary and the methods are not
restricted to PLSR but can also be applied to other models. Both advantages are important in real-world

applications and represent a large step for improving the model transfer of Raman spectra.

Keywords: model transfer; Raman spectroscopy; biological applications; classification;
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Figure S1 Euclidean distance between the clusters of PC scores from training and testing sets varying with the
value of nPC.
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Figure S2 Prediction of spore dataset with varied nPC values: the green series shows the results of 5-fold cross-
validation on all the Raman spectra measured on the four devices. The red series present the results of
prediction on the secondary sets without model transform. The blue series demonstrates the results of
prediction on the secondary sets using SA for a model transform.
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Figure S3: The sensitivities of the three species from the local prediction (first column) and the prediction with
model transfer (the other columns), where the Raman spectra from the first and the other three devices were
used as the secondary and the primary dataset, respectively. The mean, maximum, and the minimum of the
three sensitivities were visualized for each case of prediction. The local prediction was achieved with a leave-
one-batch-out cross-validation on the secondary dataset, of which the results indicated the best classification
can be possibly achieved. Apparently, the model transfer method could significantly improve the prediction from
the primary dataset to the secondary datasets. However, none of the methods could achieve the ‘best’
classification.
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Figure S4 Results of PLSR on the bacterial datasets. The first two columns are prediction of the spectra measured
on the third device, used as the primary set, with a LOBCV and a normal 5-fold cross-validation. The following
columns show the prediction on the secondary set, i.e., spectra measured on the first two devices. ‘none’ means
results with no model transform, while ‘TR’ means prediction using TR-PLSR as a model transform.
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Figure S5 the similar results as shown in Figure 2c. Here the results of bacterial Raman spectra measured on the
first and second devices are plotted separately in a and b, respectively.
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Figure S6 the similar results as shown in Figure S2, from the bacterial datasets. The prediction of the primary set
(in green) was obtained by a LOBCV instead of a normal 5-fold cross validation as in Figure S2.
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Figure S7 PC plots of the primary, the secondary, and the reference datasets. As shown in the plot on the left set,
the reference samples of B. subtilis were strongly different as the center of the whole secondary dataset of the
same group. This leads to unsatisfactory model transfer.

o o
o o
= - = .
2 >
7 0~ 7 0~
5 © g ©
2] | » |
c c
§ . 5 o
S S = o 7
B None B None
- W SA — b H SA
o | a ® Primary BV o | B Primary BV
< T T T T T T e T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100
nPC nPC

Figure S8 Similar results as shown in Figure 2d. Here the results of bacterial Raman spectra measured on the first
and second devices are plotted separately in a and b, respectively.
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Figure S9. Results of SRDs: The SRD matrix was constructed with each column representing one model transfer
method and each row corresponding to prediction from a different case of primary and secondary dataset.
Finally, a 28%8 and 10x8 SRD matrix was obtained for spore and bacterial dataset, respectively. The SRD
calculation was performed with the maxima of rows as target vector. a: Results from spore datasets. b: Results
from bacterial datasets. The power of model transfer was shown in both cases for TR-PLSR, MS and SA methods.
TR-PLSR gave superior prediction to MS and SA. In addition, MS without group achieved better model transfer
than MS with group.

138




Chapter 7. Publications

7.6 EMSC based Model Transfer for Raman Spectroscopy in Bi-
ological Applications (A6)

S. Guo, A. Kohler, B. Zimmermann, R. Heinke, S. Stockel, P. Résch, J. Popp, and T. Bock-
litz, Analytical Chemistry, 2018, 90, 9787-9795.
(https://pubs.acs.org/doi/full/10.1021 /acs.analchem.8b01536)

Der Nachdruck der folgenden Publikation erscheint mit freundlicher Genehmigung von
Analytical Chemistry, Copyright [2018] American Chemical Society. Reproduced with per-
mission from Analytical Chemistry, Copyright [2018] American Chemical Society.
(https://pubs.acs.org/doi/full/10.1021 /acs.analchem.8b01536)

Erklarungen zu den FEigenanteilen der Promovendin sowie der weiteren Doktoran-

den/Doktorandinnen als Koautoren an der Publikation

EMSC based model transfer for Raman spectroscopy in biological
applications, S. Guo', A. Kohler?, B. Zimmermann?, R. Heinke*, S. Stockel®, P.
Rosch®, J. Popp’, and T. Bocklitz®, Analytical Chemistry, 2018, 90, 9787-9795.

Beteiligt an (Zutreffendes ankreuzen)

Konzeption des Forschungsansatzes X X X
Planung der Untersuchungen X X X X X X X X
Datenerhebung X X X

Datenanalyse und -interpretation X X X X
Schreiben des Manuskripts X X X X X X

Vorschlag Anrechnung Publikation- | 1.0

saquivalente

139



Chapter 7. Publications

Downloaded via THURINGER UNIV LANDESBIBLIOTHEK on November 15, 2018 at 14:45:46 (UTC).
See https://pubs.acs.org/sharingguidelines for options on how to legitimately share published articles.

analygi\%alal‘listry

@ Cite This: Anal. Chem. 2018, 90, 9787-9795

pubs.acs.org/ac

Extended Multiplicative Signal Correction Based Model Transfer for
Raman Spectroscopy in Biological Applications

Shuxia Guo,T’i‘Achim Kohler,® Boris Zimmermann,§ Ralf Heinke, " Stephan Stockel,” Petra Rosch,’

Jiirgen Popp, *!'® and Thomas Bocklitz**

"Institute of Physical Chemistry and Abbe Center of Photonics, Fri
Jena, Germany

edrich Schiller University of Jena, Helmholtzweg 4, D-07743

*Leibniz Institute of Photonic Technology, Member of Leibniz Research Alliance ‘Health Technologies’, Albert-Einstein-Strafie 9,

D-07745 Jena, Germany
SFaculty of Science and Technology, Norwegian University of Life

Sciences, P.O. Box 5003, NO1432, As, Norway

InfectoGnostics, Forschungscampus Jena, Philosophenweg 7, D-07743 Jena, Germany

© Supporting Information

ABSTRACT: The chemometric analysis of Raman spectra of
biological materials is hampered by spectral variations due to the
instrumental setup that overlay the subtle biological changes of
interest. Thus, an established statistical model may fail when
applied to Raman spectra of samples acquired with a different
device. Therefore, model transfer strategies are essential. Herein
we report a model transfer approach based on extended
multiplicative signal correction (EMSC). As opposed to existing
model transfer methods, the EMSC based approach does not
require group information on the secondary data sets, thus no
extra measurements are required. The proposed model-transfer
approach is a preprocessing procedure and can be combined with
any method for regression and classification. The performance of
EMSC as a model transfer method was demonstrated with a data

—— replicate 1
—— replicate 2

—
v

replicate EMSC

Raman Intensity / arb.u.

S
>

Wavenumber / cm”

set of Raman spectra of three Bacillus bacteria spore species

(B. mycoides, B. subtilis, and B. thuringiensis), which were acquired on four Raman spectrometers. A three-group classification by
partial least-squares discriminant analysis (PLS-DA) with leave-one-device-out external cross-validation (LODCV) was

performed. The mean sensitivities of the prediction on the inde;

pendent device were considerably improved by the EMSC

method. Besides the mean sensitivity, the model transferability was additionally benchmarked by the newly defined numeric
markers: (1) relative Pearson’s correlation coefficient and (2) relative Fisher’s discriminant ratio. We show that these markers
have led to consistent conclusions compared to the mean sensitivity of the classification. The advantage of our defined markers
is that the evaluation is more effective and objective, because it is independent of the classification models.

O ver the last decades, Raman spectroscopy has become

one of the most versatile analytical techniques in biology

and biomedicine, with applications in medical diagnostics,l_x

. . e 9-12
microbe identification,

. 13—1
lism,"*~"*

investigations of the metabo-
and intraoperative decision making.'® The fast
development of Raman techniques is driven by several
favorable properties of Raman spectroscopy.'’ "> First,
Raman spectroscopy provides molecular fingerprint informa-
tion on all biomolecules, making it ideally suitable for
biological measurements. Second, Raman spectra can be easily
obtained from aqueous solutions since water does not cause
large interference, as opposed to infrared spectroscopy. Third,
label-free and nondestructive measurements are possible with
Raman spectroscopy, providing a great potential for in vivo
investigations. Last but not the least, chemometric methods are
able to distinguish the subtle spectral variations caused by

A4 ACS Publications  © 2018 American Chemical Society 9787

biological changes, which is important to enhance the accuracy
and speed of Raman based detections.

However, Raman-based biological applications can be
hampered by measurement related variations, which make it
difficult to establish robust models for classification. First,
natural variations between the samples, such as patients or
biological replicates, often create large spectral differences.
This often hinders detection of biological effects of interest,
such as effect of cancer, pathogens, or toxins on tissues and
cells. Second, differences in measurement conditions often
cause significant variations between the Raman spectra, even if
they are from the same sample. Typical factors that cause
variability are sample preparation and measurement protocols,
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Table 1. Information of the Investigated Raman Dataset and Notations Used in Equations 6—9
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background noise and artifacts, human operators, or
interinstrument variability. Ideally, a robust classification
model should be able to cope adequately with spectra that
are measured from different biological replicates or under
different measurement conditions than the training samples.
Unfortunately, large undesirable spectral variations often pose
great challenges for chemometrics, manifested as failed
prediction of the trained model for newly measured data
sets.”*>

Therefore, robust model transfer procedures are necessary to
tackle problems related to the above-mentioned undesirable
variations. In the model transfer terminology, the data set for
the model construction and the one to be predicted are called
primary and secondary data sets, respectively. It is worth to
note that the primary and secondary data sets may refer to data
from different biological replicates, different individuals,
measurements performed at different time points, and
measurements with different devices. Existing model transfer
approaches are categorized into three groups: The first group
consists of spectral standardization methods,”** which aim at
removing spectral variations between the primary and
secondary data set. Examples for spectral standardization
methods are Procrustes analysis (PA), orthogonal signal
correction (OSC), parametric time warping (PTW), and
piecewise direct standardization (PDS).***° These methods
are still limited in Raman spectroscopy because the Raman
peaks are very sharp and sensitive to noise introduced by the
numeric calculation. The second mechanism of model transfer
is to build a model robust to undesired spectral variations.””
One of such methods is to involve metadata of measurements
into model construction,” which is largely limited by the
availability of the metadata. An alternative is to build a model
with features that are not disturbed by changes of the
measurements.”” Nevertheless, it is extremely difficult to find
such spectral features in Raman spectroscopy based biological
investigations due to the intrinsically subtle spectral differences
caused by biological changes of interest. The third group of
model transfer approaches updates the model that was
constructed using the primary data set with the secondary
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data set.”” The aim is to achieve a new model which is updated
by the differences between the primary and the secondary data
set and which thus tolerates interfering variations. Recently,
partial least-squares regression (PLSR) based on Tikhonov
regularization (TR)* was reported as a model transfer
approach for Raman spectroscopy. In the report, a model
based on the primary data set was updated by extending the
primary data set by the secondary data set. Each classification
group of the primary data set was extended by several samples
from the secondary data set and the model was recalibrated.
This considerably improved the prediction for the secondary
data set. However, this method requires that the group
information is available for a subset of the secondary data set.
Therefore, the method fails in applications where the group
information on the secondary samples is not accessible. A
typical example is medical diagnostics, where the secondary
data set is often measured from patients to be diagnosed thus
the group information on the secondary data set is unavailable.
In this case, unsupervised model transfer, for example, methods
based on score movement and spectral augmentation were
reported in ref 31. Nonetheless, the methods are either
applicable only for factor analysis methods or limited in model
transfer performance.

It has been shown that spectra preprocessed with extended
multiplicative signal correction (EMSC) resulted in simpler
and better models for PLSR calibration.>™*° In this
contribution, we propose to apply EMSC as a new model
transfer method. This method allows model transfer without
knowing the group information on the samples from the
secondary data set.

The new model transfer method is evaluated with Raman
spectra obtained from spores of three Bacillus species (B.
mycoides, B. subtilis, and B. thuringiensis). Classification of
bacterial spores is important for applications such as an anthrax
detection system based on Raman spectroscopy.'' A general
overview of genus Bacillus can be found in our previous
s'cudy,37 where 66 strains from 13 Bacillus and Bacillus-related
species were discriminated via Raman spectroscopy. In the
present study, the data was obtained using in total four
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different Raman spectrometers. A classification model was
established by partial least-squares discriminant analysis (PLS-
DA) that classified the samples into three groups. Validation
was performed by leave-one-device-out cross-validation
(LODCV). The model transferability was benchmarked by
calculating the mean sensitivity of the prediction for each
independent device. In addition, numeric markers were
defined, which have the potential to be new benchmarks of
the model transferability.

B MATERIALS AND METHODS

Spores Cultivation and Raman Spectroscopy. The
details on the cultivation and measurement of spores of B.
mycoides, B. thuringienses, and B. subtilis can be found in our
previous publication.”” In summary, measurements were done
on four micro Raman devices, which differed in their CCD
detectors. Quartz was used as substrate for the samples
measured on the first device, while nickel foil was utilized as
substrate for the other three devices. The sample sizes of
different species were relatively similar. Details are given in
Table 1, where information on biological replicates were
represented with different colors. To make the description
clearer, we will refer to “biological replicate” as “batch”
henceforth. Three batches of B. mycoides and B. subtilis, as well
as one batch of B. thuringienses were measured with the first
device, while only one batch per species was measured with the
other three devices. In addition, the measurement with the
latter three devices was done on the identical batches. An
additional batch of B. subtilis (DSM 347) was measured on the
fourth device.

This data set is suitable to investigate model transfer
problems because of the following reasons. The three species
feature very similar Raman spectra. The interspecies spectral
differences are very subtle and smaller than interdevice
differences (see Figure S1). Hence, a model transfer between
different measurements is necessary. Meanwhile, the biological
changes of the samples are negligible during the measurements
because of the high stability and tolerance of the spores. This
makes it possible to verify model transfer methods without
being influenced by changes of the samples.

Spectral Analysis. The data analysis started with the
spectral pretreatment. All Raman spectra were despiked with
in-house written algorithms. The wavenumber axis was
calibrated with the method described in ref 38 with 4-
acetamidophenol as the standard material. Thereafter the
baseline was corrected with two approaches, including the
automatic optimization pipeline based on the previously
defined marker R'>* (denoted as R'? optimization henceforth)
and the basic EMSC.* Thereafter, an optional replicate
correction was performed by the replicate EMSC, which was
used as a model transfer procedure as described in the
following section. As the last step of the preprocessing pipeline,
all Raman spectra were vector normalized within the regions
from 600 to 1750 cm™" and 2800 to 3150 cm ™. These regions
were afterward used to construct a partial least-squares
discriminant analysis (PLS-DA) model to classify the three
spore species. A leave-one-device-out cross-validation
(LODCYV) was utilized as an external cross-validation, while
the optimal number of latent variables (nLV) was optimized by
a S-fold internal cross-validation based on the training data set.
The mean sensitivity of the prediction for each independent
device was investigated as a benchmark of the model
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transferability. All computations were accomplished in
statistical programming language Gnu R.*

Extended Multiplicative Signal Correction. The multi-
plicative signal correction (MSC)** model is given by

I(D) = a + b-m(D) + () (1)

where a measured spectrum I(¥) is modeled around a
reference spectrum m(D). The parameter a designs a baseline
effect and the unmodeled, mainly chemical effects, are
contained in the residual e(Z). As a reference spectrum, a
mean or a typical scatter-free standard spectrum can be used.
The parameters a and b are computed by a least-squares fitting
procedure, where nonuniform weights may be used for
different wavenumbers 7 or spectral regions. A baseline-
corrected and scaled spectrum is obtained according to

1(0) = (I(D) — a — e(D))/b )

where I(D) is the corrected spectrum. The division by b aims
to correct multiplicative scattering effects. In eq 2, this step
may be omitted and replaced by a normalization that follows
the MSC correction procedure. In the parameter estimation in
eq 1, the reference spectrum is crucial and cannot be omitted.
The MSC was applied for calibration transfer of NIR
spectroscopy in ref 25 and was proven to perform comparably
to PDS and OSC. A more advanced version of MSC is
extended multiplicative signal correction (EMSC),*" in which
the MSC model is extended by additional terms such as
polynomials or principal components. The addition of
polynomials allows the correction of nonconstant baselines.
When adding polynomial terms 7Y, P2, ... 7", the EMSC model
is written as

(D) = a + bm(@) + dp + dyt* + ... + d 7" + (D)

()
where the parameters d|...d, may be estimated by least-squares
as for MSC. The spectra are thereafter corrected according to
the same lines as shown in eq 2. The basic EMSC model refers
to the case, where polynomials up to quadratic order are
utilized for modeling in eq 3.

1(0) = a + bm(D) + dp + dp” + ... + d 7"

N
+ 2 gn,(0) + (D)

k=1 (4)
The EMSC model features a potential of further extension to
remove other undesirable interferences. One of these
extensions is the so-called replicate EMSC, which aims to
decrease the inter-replicate spectral variations. As given in eq 4,
the inter-replicate spectral variations are represented with the
additional loading vectors p,(¥) obtained from, for example, a
principal component analysis (PCA) on data from multiple
replicates. After removing inter-replicate spectral variations, a
model trained on certain replicates can be used to predict new
replicates successfully. Herein “replicate” may refer to different
batches (biological replicates), different individuals, or
measurements from different devices. In this study, we term
measurements from different devices “replicate” and ignore the
batch information (see Table 1), unless otherwise stated. The
loadings p;(¥) were computed according to two schemes in
our investigation, as shown in Figure la,b.

(a) For the scheme of Figure la, data obtained from the
same spore type with the same device were treated as one
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Figure 1. Graphic workflow of the two schemes to calculate loadings
used in replicate EMSC model. (a) Replicate EMSC with group
information: data measured from the same group and with the same
device are used as one replicate. Each replicate is corrected with a
basic EMSC using the mean spectrum of this replicate as the
reference. Afterward the mean spectrum is calculated for each
replicate and the difference between the mean spectra is computed for
each two replicates belonging to the same group. These difference
spectra are combined into a matrix and a PCA model was performed
on this matrix. The resulted loadings are used as py(D) for the
replicate EMSC model. (b) Replicate EMSC without group
information: data measured on the same device are treated as one
single replicate ignoring the group information. A basic EMSC is
performed on each replicate using the mean spectrum of this replicate
as the reference. Thereafter, the mean spectrum of each replicate is
collected into a matrix and a PCA model is built with this matrix after
column-wise mean-centering. The resulting loadings are used as p;(D')
in the replicate EMSC model.

replicate. A basic EMSC correction is performed for each
replicate using the average of this replicate as the reference
spectrum in eq 3. The mean spectrum of the resulting spectra
is then calculated for each replicate. Thereafter the difference
spectrum was calculated between every two mean spectra
belonging to the same spore type but measured on different
devices. At the end, all difference spectra were combined and a
PCA was performed.

(b) For the scheme of Figure 1b, data measured on the same
device were considered as one single replicate, regardless of
which spore type they belonged to. Similar as for Figure 1a, the
mean spectrum of each replicate was calculated after
conducting a basic EMSC. Afterward all the mean spectra
were combined and a PCA was performed after a column-wise
mean-centering.

In both schemes of Figure la,b, the resulting loadings of the
first N components are used as loading vectors (pi(?) in eq 4
and a replicate EMSC model is constructed with all the spectra
not corrected by basic EMSC. After estimation of the
parameters in eq 4 by least-squares, the spectra are corrected
according to

1L(0) = |I(?) — a — dp — dyo* — ... — d, 7"

N
- X gn@ |
k=1 (5)

The reason that both schemes in Figure lab were
investigated is the following. In principle, different spores of
the same type contain almost identical biological characteristics
if they were cultivated under the same growth conditions.
Therefore, the inter-replicate spectral variations are mainly
caused by the measurement conditions, device change in our
case. On this basis, the inter-replicate spectral variations were
calculated for each spore type separately in Figure la.
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However, the scheme of Figure la is limited because it
requires knowing the group information of data from all
replicates. Hence it becomes incapable for model transfer
problems of biological diagnostics, where the group
information on a new patient (replicate) is unknown and
should be predicted. Such limitation was tackled by the scheme
of Figure 1b, which ignores the group information when
conducting replicate EMSC. This is feasible in most biological
investigations because the spectral variations caused by
biological changes of interest are very subtle and typically
smaller than inter-replicate deviations. This fact was indicated
in Figure S1, where the inter-replicate spectral variations
dominated the interspecies spectral differences according to
the Pearson correlation coefficients. Therefore, the compo-
nents pi(¥) calculated according to Figure 1b are dominated
by the inter-replicate deviations. As a consequence, the inter-
replicate variations are removed via replicate EMSC without
significantly losing biological related information. Figure 1b is
inapplicable if inter-replicate spectral changes are smaller than
the interspecies spectral variations. This can be proven by the
three batches (biological replicates) measured on the first
device, if we use each batch as one replicate (see Figure S2). In
this case, however, model transfer becomes not necessary since
adequate prediction is highly possible even without model
transfer, as shown by the prediction from leave-one-batch-out
cross validation given in Figure S3. Hereafter, we will denote
the two schemes in Figure 1ab as replicate EMSC with group
information and replicate EMSC without group information,
respectively. The results of the two schemes were compared
and presented in the Results and Discussion section.

Definition of Numeric Markers. When a data set includes
multiple replicates, it is of great importance to evaluate the
influence of the inter-replicate variations on the prediction
results. This information can be used to judge if the inter-
replicate variations are acceptable for a given classification task
or if a model transfer is necessary. The most straightforward
way to perform this evaluation is to construct a classification
model with certain replicates and predict independent
replicates. A successful prediction demonstrates that the
inter-replicate variation is low compared to the intergroup
variation and the model transfer is not necessary. This
approach requires the construction of a classification model
and therefore, the conclusion is largely dependent on the
performance of the utilized classification model. To overcome
this issue, we defined two markers to evaluate the inter-
replicate variations with respect to intergroup differences. The
definitions are based on Pearson’s correlation coefficient and
Fisher’s discriminant ratio.*>*

Before the markers are introduced, it is necessary to clarify
the notations used in the definitions. Table 1 summarizes the
information on the data sets used in this investigation. Ignoring
the information on batches, we denoted the spectra from group
m (m =1, 2, 3) measured on the ith (i = 1, 2, 3, 4) device (i.e.,
ith replicate) by a matrix S}, with each spectrum as a row. The
corresponding mean spectrum is termed s.,. On this basis, the
definitions of the markers are the following.

(1) Relative Pearson’s correlation coefficient

Pearson’s correlation coefficient between vectors x and y is
defined as

COV(x, y) + 1 /2
00y (6)

p(x, J’) =
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where cov(x, y) denotes covariance between vectors x and y,
while 6, and o, represents the standard deviation of x and y,
respectively. Accordingly, the relative Pearson’s correlation
coefficient (p},,) between group m (m = 1, 2, 3) and group n
(n=1,2,3 n#m) from the ith (i = 1, 2, 3, 4) replicate is
defined as

i /7(5:": 5;)
Pon = . : . :
\/p(s,’", 541()%1))%(5’11, S'{(l%r))
(mn=1,2,3,m#ni=172,34) @)

where §/0 # ) and §/ # ) represents the mean spectrum of group
m and n from all replicates except the ith replicate, respectively.
In this way, we normalized the similarity between group m and
group n for the ith replicate (p(s}, s,)) by the inter-replicate
similarity of the two groups (p(sh, s/t # [)) and p(s!, s{,O # ‘))).

(2) Relative Fisher’s discriminant ratio

Fisher’s discriminant ratio between matrices X and Y is
calculated by

2xIX-YI,
T X, — XL /Ny + X0 1Y, — T, /Ny
(8)

where X, X;, and Ny denotes the column-mean (mean
spectrum), the kth row (spectrum), and the number of rows
(spectra) related to matrix X, respectively. The denotations are
the same for Y, Y}, and Ny in terms of matrix Y. The relative
Fisher’s discriminant ratio (d,,,) between group m (m =1, 2,
3) and group n (n =1, 2, 3, n # m) from ith (i = 1, 2, 3, 4)
replicate is defined as

d(X,Y)

i (s, $,)
T s, s d(s, si9)
(mn=1,2,3,m#ni=1234) )

where $Y#? and §/0 77 gives the spectral matrix of group m
and group n from all replicates except the ith replicate.
Apparently, the d,,, is derived by normalizing the Fisher’s
discriminant ratio between group m and group n of the ith
replicate (d(S!,, S)) by the inter-replicate Fisher’s discriminant
ratio discriminant of the two groups (d(si,819# D) and
d(s,, 8,97 1)).

Methods Validation. The proposed approaches were
validated based on the Raman spectra of bacterial spores of
three species measured with four devices. The EMSC was
performed with the mean spectrum of the involved data as the
reference spectrum. The mean intensity of the reference
spectrum within the region 1800—2800 cm™" was subtracted
from the reference spectrum before EMSC modeling,‘j’z since
this region does not show any significant Raman peaks of
biological samples. The corrected spectra were used for a
three-group classification by PLS-DA with LODCV. The
prediction was benchmarked by mean sensitivity, which is
defined as the average of the sensitivities of the three spore
types (see Table S1).

As the first verification, the performance of model transfer
was compared for different replicate EMSC mechanisms
shown in Figure lab. The impact of the replicate EMSC
without group information on the spectra was investigated
according to the interdevice and intergroup Pearson’s
correlation coefficients. A paired Mann—Whitney test was
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performed in both cases to compare the results before and after
replicate EMSC.

Afterward, the performance of replicate EMSC as a model
transfer tool was evaluated and compared to other preprocess-
ing methods as well as the TR-based model transfer. The
employed preprocessing approaches included R'? optimiza-
tion,” basic EMSC, replicate EMSC,>* and R optimization
combined with replicate correction. The prediction from these
methods was compared according to p values of a paired
Mann—Whitney test and the values of sum of ranking
difference (SRD).** The paired Mann—Whitney test was
conducted between R'> optimization (ie., without model
transfer) and the other methods based on the 12 sensitivities
(three sensitivities for each device). The null hypothesis was
that the results of the R'> optimization were not less than the
model transfer methods. The major pitfall of the hypothesis
test was that the p value of a hypothesis test is strongly
influenced by the sample size.”> Given the 12 sensitivities in
our investigation, the p value would be above 0.05, even if one
single value satisfies the null hypothesis. To prove this
statement, we split the Raman spectra of each device into
five folds by a statistical resampling and calculated the
sensitivities for each fold separately based on the prediction
from LODCYV. This resulted in 60 sensitivities (15 X 4), which
were used for an additional Mann—Whitney test (namely,
resampled test). In comparison to hypothesis test, SRD was
less influenced by sample size and was proven to provide
unambiguous results for comparing different methods.** The
values were calculated on the basis of the 12 sensitivities for
each method. A lower SRD demonstrated a better performance
of the method.

Additional to the previous evaluation, replicate EMSC was
also compared to PDS. PDS has been successfully applied for
calibration transfer in NIR spectroscopy but not applied to
Raman spectroscopic data. It works by standardizing primary
and secondary spectra using piecewise principal component
regression. In this contribution, the number of principal
components was optimized automatically while the window
size was manually selected to ensure an optimal stand-
ardization. Details of the computations are provided in the
Supporting Information.

Another important validation is to compare the prediction
after model transfer with the prediction by the model built on
the secondary data set itself. To do so, we used the Raman
spectra from the first device as the secondary data set, because
it contained multiple batches (see Table 1). The classification
was performed with leave-one-batch-out cross validation. The
resulting sensitivities of the three species were compared to
those from the prediction with the model built on Raman
spectra from the other three devices.

Stability Test of Replicate EMSC. According to eqs 4 and
S, it is clear that the performance of the replicate EMSC is
dependent on the reliability of p(2). Therefore, it is necessary
to test the stability of the replicate EMSC, if p,(¥) is calculated
from varying number of secondary samples belonging to
different groups. This is extremely important for real world
application, because the secondary data set to be predicted can
be composed of a single group, or very few samples. Herewith
we denote the secondary samples used for calculating p,(¥) as
transfer samples.

For verification, we utilized the Raman spectra of the second
device as the primary data set. The Raman spectra from the
first device were used as secondary data set. The first device
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Figure 2. Graphic workflow and results of stability test. (a) Raman spectra from the second and the first devices were used as primary and
secondary data set, respectively. Different numbers of transfer samples (nSmp) were selected from different group combinations. The transfer
samples and all the primary samples were used to build a replicate EMSC model, which was utilized to correct the primary and the secondary data
set. Thereafter, a PLSR model was trained with the corrected primary samples and utilized to predict all the secondary samples. These steps were
repeated for SO times giving each combination of nSmp and nGroup. (b) Mean sensitivities of the prediction on the secondary data set. Each
subplot represents a different nSmp, where each series corresponded to the same nGroup with various group combinations. The average and the
standard deviation of the results are visualized as solid lines and shades, respectively. The prediction of the secondary data set without replicate
correction was provided for comparison. Accordingly, the replicate EMSC could increase the mean sensitivities regardless of the selected nSmp and
nGroup. However, a strong improvement was observed, if transfer samples are composed of multiple groups. On the other hand, the value of nSmp
did not have a strong influence on the prediction, given the same nGroup. Nevertheless, the performance was more stable over the repeated

samplings for larger nSmp.

was utilized as secondary data set because the samples
measured on the first device were composed of multiple
batches (Table 1). This provided larger intragroup diversity
than those from the other three devices. Thus, the repeated
sampling for the transfer samples is more meaningful.

The workflow of the test is visualized in Figure 2a. Hereby,
we randomly selected different number of transfer samples
(nSmp) from the secondary data set composed of different
number of groups (nGroup). There are seven possible group
combinations: Cj for nGroup = 1, C} for nGroup = 2, and C3 for
nGroup = 3. The value of nSmp was varied within [S, 10, 15,
20, 25, and 100]. We repeated the sampling 50 times for each
combination of nSmp and nGroup. The p,(¥) were calculated
with all the primary samples and the transfer samples. Then the
coefficients of the replicate EMSC model were calculated with
all primary samples and the transfer samples. The replicate
correction was done for all primary and secondary data sets
using the resulted replicate EMSC model. Thereafter a PLSR
model was trained with the corrected primary data set and the
corrected secondary data set was predicted. All these steps
were repeated for 50 times giving each combination of nSmp
and nGroup.

B RESULTS AND DISCUSSION

The results from the aforementioned experiments are
presented and discussed in this section.

Model Transferability. In this subsection, the perform-
ance of the replicate EMSC for model transfer was validated.
First, the replicate EMSC was performed according to the two
schemes shown in Figure 1, using the first loading of the PCA
in both cases. The corrected Raman spectra were used for the
three-group classification. The results of the prediction on the
data of each device are visualized in Figure S4. Apparently, the
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results from the replicate EMSC without group information are
comparable to the results obtained from the replicate EMSC
with group information. The two schemes led to similar PCA
loadings p(¥). Additionally, the mean Raman spectra of each
group measured on each device as well as the interspecies and
interdevice Pearson’s correlation coefficient were plotted in
Figure SS, before and after replicate EMSC using the scheme
of Figure 1b. The intensity was obviously changed after the
replicate EMSC for the Raman spectra measured on the first
device. This was because the substrate used in the measure-
ments with this device was different from the substrates used
for the measurements with the other three devices, leading to
large intensity differences between Raman spectra of the first
device to the others. After the replicate EMSC, these
differences were removed, resulting in noticeable spectral
changes. On the other hand, no significant spectral changes
were caused by the replicate EMSC for the other three devices.
Therefore, the scheme of Figure 1b, which does not need the
group information, is a feasible alternative to Figure 1a, which
requires the group information. The hypothesis test on the
correlation coefficients (Figure SS) demonstrated that both
interspecies and interdevice spectral differences were decreased
after replicate EMSC. However, as is shown in subsection
“values of the markers”, the replicate EMSC is able to increase
relative Pearson’s correlation coefficient, i.e., the decrease in
interdevice difference is larger than the decrease in interspecies
difference. This ensures a successful model transfer with
replicate EMSC. In the following, we will apply the replicate
EMSC without group information, unless otherwise stated.
The mean sensitivities of the prediction resulted from
replicate EMSC and other methods are summarized in Table 2.
The first two columns show the results where the baseline was
removed with the R'? optimization and basic EMSC,
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respectively. The third column gives the results of the TR,
where the baseline was corrected with the R'? optimization.
The fourth column presents the results from the replicate
EMSC using the first loading of the PCA in the replicate
EMSC model. The p values from the Mann—Whitney test
without and with resampling were given by “p valuel” and “p
value2”, respectively. The last row shows the results of SRD.
The “p valuel” were generally above 0.0S, because of the small
sample size.** This statement can be proven by the “p value2”,
where a resampling was conducted to enlarge the sample size.
In this case, the p values were all below 0.0029, demonstrating
a significant improvement of the prediction after model
transfer. This experiment shows that the hypothesis test is
not optimal to compare different model transfer methods in
our case. The superiority of replicate EMSC was further
evident according to SRD, which was the minimal for replicate
EMSC method.

The results of the fourth column were obtained by only
including one loading in the replicate EMSC model. The
satisfying results demonstrated that a model transfer is possible
even if only two replicates are measured, ie., two different
devices are used. In order to study the prediction as a function
of the number of loadings included in the replicate EMSC
model, we varied the number of loadings from 2 to 4 for the
replicate EMSC model. Since our data was obtained from four
devices, four components was the maximum number of
components and corresponded to a full rank model. The
results of PLS-DA with a LODCV are displayed in Table 2,
labeled as “repEMSC n” (n = 2, 3, 4). It can be observed, that
the prediction results improved when using more than one
loading. Nonetheless, including too many loadings in the
replicate EMSC model may lead to loss of biological related
information and lead to reduced prediction ability.

In practice, the number of loadings for replicate EMSC
model can be optimized by cross-model-validation, as
visualized in Figure S6. Thereby one device is taken out as a
secondary device. A replicate EMSC is performed based on
both primary and secondary data sets with a given number of
loadings (nComp). Afterward, the corrected primary data set is
used to train a PLS-DA model, where a cross-validation (CV)
is performed and the number of latent variables is optimized.
The averaged validation mean sensitivity is recorded as a
benchmark of nComp. The classification is repeated for each
possible value of nComp. The nComp corresponding to the best
averaged validation mean sensitivity is selected as optimal
value. The calculations are repeated using each device once as
secondary device.

Table 2 also shows that the basic EMSC featured better
predictions compared to the baseline correction by R'?
optimization. That means, the basic EMSC improved the
model transferability. To check the efficiency of the replicate
correction terms sz: 1 &P(P) in model transfer, we replaced
the implied basic EMSC in the replicate EMSC model with the
R'? optimization. Again, we varied the number of loadings in
the replicate EMSC model. The results of the LODCV were
shown in Table 2 labeled as “R'> EMSC n” (n = 1, 2, 3, 4),
which were only slightly inferior to the normal replicate
EMSC. That means the pure replicate correction is highly
efficient in model transfer. This provides the possibility to
combine a pure replicate correction with other baseline
correction methods superior to the basic EMSC.

In addition, the results of comparison between replicate
EMSC and PDS were visualized in Figure S7 and Table S2. It

R'? EMSC4
0.892
0.931
0.934
0.947
0.060
3.04 x 1075
0.531

R'> EMSC3
0.893
0.929
0.934
0.947
0.060
2,90 x 1075
0.532

R'> EMSC2
0.864
0915
0.929
0.947
0.071
8.70 x 1075
0.681

R'> EMSC1
0.812
0.765
572 x 107*
1.386

0.916
0.926
0.093

rep EMSC4
0.924
0.959
0.934
0.958
0.051
513 x 1075
0.321

rep EMSC3

0.916
0.959
0.934
0.958
0.051
513 x 1075
0.346

rep EMSC2
0.857
0.957
0.886
0.968
0.063
2.08 x 107
0.642

rep EMSC1

0.833
0.865
0.891
0.960
0.049
2.70 x 107
0.999

TR
0.859
0.775
0.877
0.833
0.175
295 x 1073
1.613

0.833
0.894
0.010
342 % 1077
1112

basic EMSC
0.821
0.962

R2
0.642
2.766

0.671
0.916
0.730

device 3
device 4
p valuel
p value2
SRD

Table 2. Mean Sensitivity from Different Model Transfer Methods
device 1
device 2
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was shown that the PDS led to obvious signal loss of Raman
bands and inferior prediction of the classification model than
the replicate-EMSC. No improvement was seen by changing
the window size of the piecewise regression. This fact indicates
that PDS works better for broad NIR-peaks than for sharp
peaks in Raman spectra.

The results of the leave-one-batch-out cross-validation on
the first device and the prediction with the model built on
Raman spectra from the other three devices were shown in
Figure S3, where the mean, maximum, and minimum of the
three sensitivities were visualized for each case of prediction.
Surprisingly, the replicate EMSC achieved even better
prediction than the local model built on the first device,
especially if multiple loadings were included in the replicate
EMSC model.

Noteworthy, the reference spectrum in the EMSC models
was calculated from the mean spectrum without baseline
correction in the previous experiments. When additional
baseline correction was performed on the reference spectrum,
the model transferability was slightly improved as can be seen
in Figure S8.

Results of Stability Test. The mean sensitivities calculated
according to the workflow in Figure 2a were plotted in Figure
2b, where each subplot represents a different value of nSmp.
Every subplot includes three series, each corresponding to
different group combination with the same value of nGroup.
Solid lines and the shades represent the average and the
standard deviation of the results, respectively. Compared to the
prediction without replicate EMSC, the prediction was
significantly improved by replicate EMSC regardless of the
value of nSmp and nGroup. However, the improvement was
dramatically enhanced, if the transfer samples were composed
of two or more groups. On the other hand, the results were
almost independent of nSmp, given the same nGroup.
Nevertheless, the stability over the repeated samplings was
enhanced by larger nSmp.

Values of the Markers. In the sections above, it was
shown that the Raman spectra that were preprocessed by
different preprocessing methods led to different model
transferability (see Table 2). In this section, the model
transferability was additionally evaluated with the defined
markers. The markers d),, (relative Fisher’s discriminant ratio)
and pi,, (relative Pearson’s correlation coefficient) were
calculated based on the Raman spectra that were corrected
by different preprocessing methods. The results are visualized
in Figures S9 and S10. For the sake of clarity, classification
results corresponding to different preprocessing methods were
replotted in Figure S9f. As it can be observed, d,,, increased
from Figure S9a—e, indicating an improvement of model
transferability. The results of the marker p},, led to a similar
conclusion, where decreased values illustrated higher model
transferability. It is obvious that the markers defined in this
paper are able to judge the model transferability independent
of the applied classification model. Therefore, the markers may
be used as potential benchmarks for preprocessing procedures
from a model transfer perspective. Noteworthy, it is possible to
first perform a PCA on the data sets and calculate d.,,, and p,,
from the score vectors. The results are shown in Figure S11,
which lead to similar conclusions as Figures S9 and S10.

B CONCLUSION

We reported about a model transfer approach based on
replicate EMSC and verified its capability for Raman
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spectroscopy in biological applications. The model trans-
ferability was dramatically improved using the replicate EMSC
approach. Applications of this EMSC based model transfer
method to other spectroscopic data are possible and will be
researched. Comparing to the Tikhonov regularization (TR)
method, the new method is superior in three aspects. First, a
better model transferability was achieved by the replicate
EMSC according to the mean sensitivities of the studied
classification model. Second, the replicate EMSC does not
require label information on the samples measured on the
secondary device. Third, the replicate EMSC is a preprocessing
method and is independent of the afterward applied statistical
analysis techniques. Moreover, we defined two numeric
markers, namely, the relative Pearson correlation coefficient
and the relative Fisher’s discriminant ratio, which gave
consistent evaluation of the model transferability compared
to the mean sensitivities of the classification. This means that
the influence of inter-replicate variations on classification
systems can be estimated by these markers without training a
classification model. Furthermore, the markers can be utilized
in two aspects: (1) The markers can evaluate the goodness of a
spectral preprocessing from the perspective of model trans-
ferability. (2) The influence of inter-replicate deviations on the
classification tasks can be estimated. In both cases the
developed markers are useful and should be applied in the
design phase of an experiment.

In further studies we will elucidate the performance of the
replicate-EMSC as a model transfer tool encountering large
inter-replicate spectral variations. These issues are important if
the measurement devices feature strongly differing optical
characteristics such as numerical aperture, excitation wave-
lengths, and groove density of the grating.
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Figure S9 Results of relative Fisher’s discrimination, with Raman spectra corrected by different pre-processing
procedures.

Figure S10 Results of relative Pearson’s correlation coefficient, with Raman spectra corrected by different pre-
processing procedures.

Figure S11 Results of the markers, with Raman spectra corrected by different pre-processing procedures.
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Fig. S1 Inter-species and inter-device differences benchmarked with Pearson correlation coefficients: The first
row gives the results between the mean spectra of different species measured on the same device. The second
row shows the results between the mean spectra of the same species measured on different devices. Apparently,
the inter-device spectral variations are larger than inter-species variations.
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Fig. S2 Inter-species and inter-batch differences benchmarked with Pearson correlation coefficients calculated
on the data measured with the first device: The first row gives the results between the mean spectra of different
species belonging to the same batch. The second row shows the results between the mean spectra of the same
species from different batches. The inter-batch spectral variations are smaller than the inter-species spectral

variations for this dataset.
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Fig. S3 Sensitivities of the three species in different cases of prediction for the Raman spectra measured on the
first device, with the mean, maximum, and minimum visualized. The first column resulted from the prediction
with model trained on the first device with a leave-one-batch-out cross-validation. The following columns are
the prediction by the model built on Raman spectra of the other three devices with different model transfer

methods.
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Table S1 calculation of mean sensitivity. Term n{ means there are n samples of group i classified as group j

Predicted
B. mycoides B. subtilis B. thuringiensis
B. mycoides n} n? n3
3 B. subtilis ni n3 n3
= B. thuringiensis nd n3 n}

nt
sensitivity(i) = : - % 100%
j=1"
3

mean sensitivity = 3 Z sensitivity(i)
i=1
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Fig. S4 Comparison of the two schemes for calculating the loadings in the replicate EMSC model, as shown in
Fig. 1. The first loading was used for the replicate EMSC, which were quite similar for the two schemes.
Meanwhile, the mean sensitivities of the prediction for each independent device were comparable; Mean
sensitivity is depicted as a function of number of latent variables (nLV) in the PLS-DA model.
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(a) Mean spectra of each group measured on each device, before and after replicate EMSC procedure.
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(b) Inter-species and inter-device Pearson’s correlation coefficients after replicate EMSC

Fig. S5 Results before and after replicate EMSC procedure. (a) The four spectra of each subplot are plotted with
intensity offset to get clearer view. From bottom to up, the four spectra correspond to the four devices. No
significant changes were observed for Raman spectra measured on the latter three devices. The changes for
Raman spectra of the first device were much larger, because the samples and the substrate were different on this
device as the others. Thus the original Raman spectra on the first device were greatly different to those of the
other devices. (b) The first row gives the results between the mean spectra of different species measured on the
same device. The second row shows the results between the mean spectra of the same species measured on
different devices. The results were compared to Fig. S1 by a paired Mann-Whitney U test, with a null hypothesis
of ‘the correlation coefficient is decreased after replicate EMSC’. It was demonstrated that both inter-group and
inter-device spectral variations are significantly decreased, with p values of 2.441e-4 and 3.815e-6, respectively.
This is reasonable, since replicate EMSC works by making all spectra similar to the signal reference spectrum.
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»

Fig. S6 Graphic workflow of cross-model-validation, where the number of loadings for replicate EMSC was
optimized similar as the parameter of a classifier. Here the fourth device was used as the secondary device as an
example. For each possible number of loadings (nComp), the replicate EMSC was performed on both the
primary and the secondary datasets. Thereafter, a PLSR model was constructed on the primary dataset with a 5-
fold cross-validation using different number of latent variables (nLV). The highest validation mean sensitivity
was recorded. All these procedures were repeated for a new value of nComp. The optimal nComp was the one
featuring the maximum average validation mean sensitivity. The procedures were the same if a new device was

used as a secondary device.
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Comparison of replicate EMSC to PDS and PTW

Piecewise direct standardization (PDS) removes inter-device spectral variations by transforming spectra
measured by one device to those measured by the other device. This requires measuring a certain number of
standard samples on both primary and secondary device. These spectra are referred to as reference spectra and
are used to calculate the transformation matrix. Thereafter, the transformation matrix is applied on spectra of real
samples to complete the spectral standardization. Because the transformation matrix is calculated with a moving
window at local scale (piecewise), PDS can achieve better standardization than global approaches. Details of
PDS can be found in Chemom. Intell. Lab. Syst. 32, (1996) 201-213.

In our investigation, where more than two devices were involved, the reference spectra were calculated by
averaging the spectra of all devices for each species separately. The standardization was conducted for each
device individually, where the query spectra were composed of mean spectrum of each species measured by this
device. The number of principal component for the piece-wise regression was optimized automatically so as to
minimize the residual between the reference and corrected spectra. The width of the moving window was
optimized by visual inspection.

Noteworthy, the Raman spectra from device 1 were excluded in this experiment because the substrate of the
samples measured on this device are different as on the other devices. By using only the data from the other
three devices, we could assume that differences between the reference and query spectra are merely from
instrumental changes, which is an important assumption for PDS. The average of the reference spectra, average
of the query spectra, and average of spectra after PDS were visualized for each device in Fig. S7. Obviously, the
PDS led to severe signal loss of Raman bands for the fingerprint region (500-1800 cm™) and the C-H stretching
region (2800-3150 cm™). This originates from two possible reasons: the spectral differences between the
reference and query spectra are too large to be standardized reasonably; the Raman peaks are much sharper than
near-infrared (NIR) spectroscopy and hampers the performance of PDS. For the silent region (1800-2800 cm™),
where there are only broad Raman bands changing slowly, a good match is achieved between the query and
corrected spectra.

After PDS, the corrected Raman spectra were used to build a three-group classifier, in which a leave-one-device-
out cross-validation was applied to get the prediction. The mean sensitivities (see Table S2) were calculated to
benchmark the prediction. The results were summarized in Table S2, in which the results without model transfer
and with replicate EMSC were provided as a comparison. It is evident that the PDS resulted in a decrease of the
prediction comparing to the results without PDS. The performance of replicate EMSC is obviously superior to
PDS, regardless how many loadings (py (¥)) were included in the EMSC model.

Table S2 Mean sensitivity for the prediction of Raman spectra measured on different devices.

RY PDS repEMSC1 repEMSC2 repEMSC3
Device 2 0.881 0.807 0.835 0.961 0.956
Device 3 0.875 0.745 0.909 0.951 0.942
Device 4 0.810 0.776 0.961 0.926 0.926
59
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Fig. S7 Average of the reference spectra, average of the query spectra, and average of spectra after PDS for each
device.
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Fig. S8 Comparison of the mean sensitivities for the prediction of each independent device, if different reference
spectra were used for the EMSC models. (left) The mean spectrum was used as the reference spectrum, with no
baseline correction; (right) the mean spectrum was used as the reference spectrum, with a baseline correction. The
latter procedure gave slightly better results as the former case.
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Relative Fisher's Discriminant
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Fig. S9 Values of relative Fisher’s discriminant ratio for Raman spectra corrected with different pre-processing
procedures. The mean sensitivities of the classification with the same pre-processing approaches were visualized
for comparison in subpanel (f). The increasing relative Fisher’s discriminant ratios indicate a decrease of inter-
replicate deviations (a-e). This was consistent with the improved mean sensitivities of the prediction plotted in
false-colors (f). Therefore, the defined markers can be used to evaluate the relative inter-replicate deviations
without training a classification model.
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Fig. S10 Results of relative Pearson’s correlation coefficient, with Raman spectra corrected by different pre-
processing procedures: baseline correction by R'? optimization (a) or basic EMSC (b), R™ optimization
combined with replicate correction (c), replicate EMSC (d), and replicate EMSC using baseline corrected mean
spectrum as reference (e).
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Fig. S11 Results of the relative Fisher’s discriminant (a-€) and relative correlation coefficient (a;-e;). The
calculation was conducted in different cases of pre-processing: baseline correction by R* optimization (a, a;) or
basic EMSC (b, by), R*? optimization combined with replicate correction (c, c,), replicate EMSC (d, dy), and
replicate EMSC using baseline corrected mean spectrum as reference (e, e;). A PCA was performed on the
Raman spectra after pre-processing. The markers were calculated on the scores of the PCA.

S-14

162



Peer-Reviewed Publications

10.

T. Bocklitz, S. Guo, O. Ryabchykov, N. Vogler and J. Popp, Raman based molecular
imaging and analytics: a magic bullet for biomedical applications!? Analytical Chemistry,
2016, 88(1): 133-151.

. V. Kumar B.N., S. Guo, T. Bocklitz, P. Rosch and J. Popp, Demonstration of carbon

catabolite repression in naphthalene degrading soil bacteria via Raman spectroscopy based
stable isotope probing. Analytical Chemistry, 2016, 88(15): 7574-7582 .

S. Guo, T. Bocklitz, and J. Popp, Optimization of Raman-spectrum baseline correction
in biological application, Analyst, 2016, 141: 2396-2404.

S. Guo, R. Heinke, S. Stockel, P. Rosch, T. Bocklitz and J. Popp, Towards an improvement
of model transferability for Raman spectroscopy in biological applications, Vibrational
Spectroscopy, 2017, 91: 111-118.

. 8. Guo, T. Bocklitz, U. Neugebauer and J. Popp, Common mistakes in cross-validating

classification models, Analytical Methods, 2017, 9: 4410-4417.

O. Chernavskaia, S. Guo, T. Meyer, N. Vogler, D. Akimov, S. Heuke, R. Heintzmann, T.
Bocklitz and J. Popp, Correction of mosaicking artefacts in multimodal images caused by

uneven illumination, Journal of Chemometrics, 2017, 31(6): ¢2901.

S. Guo, S. Pfeifenbring, T. Meyer, G. Ernst, F. von Eggeling, V. Maio, D. Massi, R.
Cicchi, F. S. Pavone, J. Popp, and T. Bocklitz, Multimodal image analysis in tissue
diagnostics for skin melanoma, Journal of Chemometrics, 2018, 32(1): €2963.

S. Guo, R. Heinke, S. Stockel, P. Rosch, J. Popp, and T. Bocklitz, Model transfer for
Raman spectroscopy based bacterial classification, Journal of Raman Spectroscopy, 2018,

49(4), 627-637.

S. Guo, O. Chernavskaia, J. Popp, and T. Bocklitz, Spectral reconstruction for shifted-
excitation Raman difference spectroscopy (SERDS), Talanta, 2018, 186, 372-380.

S. Guo, A. Kohler, B. Zimmermann, R. Heinke, S. Stockel, P. Rosch, J. Popp, and T.
Bocklitz, Analytical Chemistry, 2018, 90, 9787-9795.

163






Conferences

Talks

1. S. Guo, T. Bocklitz, and J. Popp, New approach for SERDS spectral reconstruction, Con-
ferentia Chemometrica 2017, Budapest, Hungary, 3-6, September, 2017.

2. S. Guo, S. Pfeifenbring, T. Meyer, G. Ernst, F. von Eggeling, V. Maio, D. Massi, R. Cicchi,
F. S. Pavone, J. Popp, and T. Bocklitz, Multimodal image analysis for tissue diagnosis of

skin melanoma, Winter Symposium on Chemometrics (WSC 11), St Petersberg, Russia,
26. Feburary-2. March, 2018.

Posters

1. S. Guo, R. Heinke, T. Bocklitz, and J. Popp, Model transfer problems in biological Raman
spectroscopy, Dokdok 2015, Eisenach, Germany, 11-15, October, 2015.

2. S. Guo, R. Heinke, T. Bocklitz, and J. Popp, Model transfer for Raman spectroscopy
in biological applications, XVI Chemometrics in Analytical Chemistry, Barcelona, Spain,
6-10, June, 2016.

165






Workshops

1. Research data management, Graduate Academy, Universitat Jena, 29-30/04/2015.
2. Public speaking for scientists, Graduate Academy, Universitit Jena, 06/05/2015.
3. Speech and vocal training, Graduate Academy, Universitat Jena, 30-31/10/2015.
4. Scientific presentations, Graduate Academy, Universitiat Jena, 09/11/2015.

5. Good scientific practice, Graduate Academy, Universitit Jena, 17-18/05/2016.

6. Teaching natural science in higher education, Graduate Academy, Universitdt Jena,
21/06/2016.

7. Teaching natural science in higher education, OSA Chapter Jena, 09/03/2017.

167






Acknowledgement

I would like to thank Prof. Dr. Jiirgen Popp for giving me the opportunity to carry out my
Ph.D study in this highly interdisciplinary working group and for all his intensive support.

I would like to express my great gratitude to PD Dr. Thomas Bocklitz. I am grateful that
he is always there for discussions, is open to listen to my ideas, and offers many opportunities
for my improvement. His endless patience, continuous support, invaluable suggestions, and
kind encouragement during my Ph.D study are forever appreciated.

My special gratitude goes to Prof. Dr. Achim Kohler and Dr. Boris Zimmermann for
their warm host and kind support during my short-term exchange in Norwegian University of
Life Sciences. I benefit a lot from all the constructive discussions for my research of replicate
EMSC-based model transfer. 1 am expecially grateful to them for their kind suggestions
on the related manuscript. I also thank all members in Prof. Kohler’s group for their
friendliness.

I sincerely thank Dr. Petra Rosch for all her suggestions and advice on my three publica-
tions of model transfer. Great thanks go to Ralf Heinke, Dr. Stephan Stokel, Prof. Dr. Ute
Neugebauer, and Dr. Olga Chernavskaia for their measured datasets, which have largely
supported my PhD research.

The cooperations with Dr. Vinay Kumar Bangalore Narayana, Dr. Tatiana Kirchberger-
Tolstik, Dr. Anuradha Ramoji, Jing Huang, Dr. Anna Miihlig, and Bjorn Lorenz have
largely contributed to my improvement and are highly acknowledged.

I thank Oleg Ryabchykov, Dr. Michael Kiithnert, Dr. Evelyn Kammer, and Vlad Iancu,
for their warm welcome to me joining the working group, and their generous help, especially
in the early days of my PhD study. I especially thank Oleg Ryabchykov for patiently an-
swering many scientific questions. I equally thank Nairveen Ali, Pranita Pradhan, Mehul
Chhallani, and Rola Houhou for their kindness, friendship, help, and the nice constructive
working environment.

For the correction of my thesis and the German summary I greatly thank PD Dr. Thomas
Bocklitz. My gratitude also goes to Prof. Dr. Michael Schmitt for his kind suggestions on
my thesis.

For financial support I acknowledge the China Scholarship Council.

I specially thank my friends in Jena, Dongmei, Guangrui, Jingjing, and Xiaoyang, who

169



Chapter 7. Acknowledgement

have strongly supported me during my stay in Germany. My sincere thanks also go to all
my dearest friends in China, they have literally been together with me and made me brave
all this time. I thank my beloved parents and brother. They are always loving, caring,
supporting, and understanding. Words are far less to express my gratitude. I thank them

from the deepest inside of my heart.

170



Erklarungen

Selbstandigkeitserklarung

Ich erklére, dass ich die vorliegende Arbeit selbstandig und unter Verwendung der angegebe-
nen Hilfsmittel, personlichen Mitteilungen und Quellen angefertigt habe.

Name der Verfasserin Datum Ort Unterschrift

171



Chapter 7. Erklarungen

Erkliarung zu den Eigenanteilen der Promovendin sowie der weit-
eren Doktoranden/Doktorandinnen als Koautoren an den Publika-
tionen und Zweitpublikationsrechten bei einer kumulativen Disser-

tation (in die kumulative Dissertation aufzunehmen).

Fiir alle in dieser kumulativen Dissertation verwendeten Manuskripte liegen die
notwendigen Genehmigungen der Verlage ("Reprint permissions") fiir die Zweit-

publikation vor.

Die Co-Autoren der in dieser kumulativen Dissertation verwendeten Manuskripte
sind sowohl iiber die Nutzung, als auch iiber die oben angegebenen Eigenanteile
der weiteren Doktoranden/Doktorandinnen als Koautoren an den Publikationen
und Zweitpublikationsrechten bei einer kumulativen Dissertation informiert und

stimmen dem zu.

Die Anteile der Promovendin sowie der weiteren Doktoranden/Doktorandinnen als Koau-
toren an den Publikationen und Zweitpublikationsrechten bei einer kumulativen Dissertation

sind in der Anlage aufgefiihrt (Musterbeispiel).

Name der Promovendin Datum Ort Unterschrift

Ich bin mit der Abfassung der Dissertation als publikationsbasierte, d. h. kumu-
lative, einverstanden und bestitige die vorstehenden Angaben. Eine entsprechend
begriindete Befiirwortung mit Angabe des wissenschaftlichen Anteils der Dok-
torandin an den verwendeten Publikationen werde ich parallel an den Rat der
Fakultit der Chemisch-Geowissenschaftlichen Fakultat richten.

Name Erstbetreuer(in) Datum Ort Unterschrift

Name Zweitbetreuer(in) Datum Ort Unterschrift

172



	List of Figures
	List of Abbreviations
	Introduction
	Raman Spectroscopy
	Raman Spectroscopy-based Biological Applications
	Chemometrics in Raman Spectroscopy-based Biological Applications

	State of the Art
	Raman Spectral Pre-processing
	Baseline correction
	Spectrometer calibration

	Statistical Modeling
	Sampling in Chemometrics
	Prediction of New Data

	Selected Work and Results
	Baseline Correction
	Automatic optimization of mathematical baseline correction
	Shifted-excitation Raman difference spectroscopy (SERDS)

	Statistical Modeling
	Model construction and validation
	Common mistakes in cross-validation

	Model Transfer
	Model transfer approaches
	Data-based model transfer
	Model-based model transfer

	Validation of model transfer approaches


	Additional Work
	Summary
	Zusammenfassung
	Bibliography
	Publications
	Optimization of Raman-Spectrum Baseline Correction in Biological Application (A1)
	Spectral Reconstruction for Shifted-Excitation Raman Difference Spectroscopy (SERDS) (A2)
	Common Mistakes in Cross-Validating Classification Models (A3)
	Towards an Improvement of Model Transferability for Raman Spectroscopy in Biological Applications (A4)
	Model Transfer for Raman Spectroscopy based Bacterial Classification (A5)
	EMSC based Model Transfer for Raman Spectroscopy in Biological Applications (A6)

	Peer-Reviewed Publications
	Conferences
	Workshops
	Acknowledgement
	Erklärungen

