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Kurzfassung

Die vorliegende Dissertation beschäftigt sich mit der Frage, inwieweit die öffentlich zugängli-
chen Wissensressourcen der Linked Open Data (LOD) Cloud besser für Empfehlungsaufgaben
genutzt werden können. Zwar setzen einige Empfehlungssysteme bereits RDF-Daten ein, um
die lokale Datenbasis anzureichern, allerdings nutzen diese noch nicht alle Möglichkeiten, die
das Datenweb aktuell zu bieten hat.
Ausgehend von den zentralen Stärken typischer LOD-Datensammlungen (Aktualität, Vollstän-
digkeit, sowie rechtliche und technische Offenheit der Daten) und der besonderen Eignung
des Technologie-Stacks der LOD Cloud für Empfehlungsaufgaben (Ausdrucksmächtigkeit der
graphbasierten Datenstruktur) auf der einen Seite, sowie den Herausforderungen der Verarbei-
tung verlinkter RDF-Daten (Quantität, Heterogenität und Verteilung der Daten) auf der anderen
Seite, wurde in der Arbeit eine Anforderungsspezifikation für ein LOD-Empfehlungsssystem
erstellt. Mit dieser Spezifikation sollen die Eigenschaften des öffentlichen Datenwebs adäquat
durch Systemfunktionalitäten beschrieben werden. Auf Basis der Literatur in diesem Themen-
feld und den geforderten Komponenten der Anforderungsspezifikation wurde das Empfehlungs-
system SKOSRecommender (SKOSRec) entwickelt. Zentraler Bestandteil dieses Systems ist,
neben der Nutzung von SKOS-Annotationen zur Identifizierung ähnlicher Objekte, eine graph-
basierte Abfragesprache (SKOSRec query language), die sich SPARQL-ähnlicher Konstrukte
bedient, um Daten aus LOD-Repositorien zu extrahieren. Durch die Verwendung des SKOS-
Standards können zudem zusätzliche ähnliche Deskriptoren in das Retrieval einbezogen wer-
den. In diesem Zusammenhang wurde ein neuartiges Verfahren der Anfrageerweiterung mit Na-
men Flexible Similarity Detection entwickelt. Zusätzlich zur Möglichkeit der Nutzung ähnlicher
Konzepte, hat der Einsatz von SKOS-Vokabularen auch den Vorteil, dass deklarierte Mapping-
Beziehungen zwischen Deskriptoren verschiedener Vokabulare für repositorienübergreifende
Anfragen verwendet werden können. Diese Daten werden im SKOSRec-System für die Erstel-
lung sogenannter Cross-Repository Recommendations eingesetzt.
Ein weiterer integraler Bestandteil des im Rahmen der Dissertation entwickelten Empfehlungs-
systems ist das Verfahren der Adhoc-Erstellung von Vorschlägen (Fast On-the-fly Retrieval)
auf Basis von Nutzervorlieben. Mit diesem Verfahren können durch effiziente Abfragen von
SPARQL-APIs zur Laufzeit LOD-Empfehlungen generiert werden. Auf diese Weise ist es mög-
lich, SPARQL-ähnliche Abfragemuster mit suchbasierten Verfahren flexibel zu kombinieren.
Die im Zuge der Arbeit entwickelte Retrievalsprache hilft dabei, die individuellen Präferenzen
eines Nutzers entweder in Form von konkreten Vorlieben für bestimmte Objekte oder mithilfe
abfragebasierter Elemente abzubilden. Außerdem können z.B. Empfehlungsergebnisse als Teil
einer graphbasierten Unterabfrage genutzt werden. Dies ermöglicht neuartige Anfragetypen und
fortgeschrittene Empfehlungsstrategien. Mittels graphbasierter Abfragemuster lassen sich be-
spielsweise ausdrucksmächtige Filterbedingungen für Ergebnislisten formulieren (Expressive

Constraint-based Queries). Des Weiteren ist es mit einer einzigen Anfrage möglich, zunächst



automatisch ein Nutzerprofil zu erstellen, dass dann für die Ermittlung von passenden Empfeh-
lungen verwendet wird (Preference Querying). Außerdem lässt es die SKOSRec-Sprache zu,
die verschiedenen Abfragemuster so zu kombinieren, dass semantisch ausdrucksstarke Emp-
fehlungsanfragen (Advanced Queries) an LOD-Repositorien gestellt werden können. Beispiele
für solche Anfragen sind das Rollup-Retrievalmuster oder Cross-Domain-Abfragen.
Die entwickelten neuartigen Empfehlungsstrategien wurden in einer Reihe von Offline- und On-
lineexperimenten vor dem Hintergrund passender LOD-basierter Empfehlungsszenarien (Rei-
seempfehlungen, Multimediaempfehlungen, Empfehlungen im Bereich der wissenschaftlichen
Publikationssuche) evaluiert. Dabei zeigte sich, dass die entwickelten Ansätze (z.B. Flexible

Similarity Detection, Expressive Constraint-based und Cross-Domain Queries) tatsächlich die
Empfehlungsqualität herkömmlicher content-basierter Verfahren verbessern konnten. Die Ef-
fekte kamen v.a. in den Performanzdimensionen Recall (dt. Trefferquote), der Diversität und
dem Neuigkeitsgehalt von Empfehlungen zum Tragen. Für andere Verfahren, wie z.B. für das
Rollup-Anfragemuster, konnten zwar keine signifikanten Verbesserungen erreicht werden, der
Ansatz erzielte aber zumindest gleichwertige Qualitätswerte, sodass er eine geeignete alternati-
ve Retrievalstrategie darstellt.
Mit den neuartigen Methoden der Empfehlungsgenerierung und den überwiegend positiven
Evaluationsergebnissen leistet die vorliegende Arbeit einen Beitrag zur Weiterentwicklung per-
sonalisierter Filtertechniken, die sowohl für das semantische Retrieval in LOD-Repositorien,
als auch für klassische Empfehlungsaufgaben geeignet sind.

Abstract

This thesis investigates the potential of Linked Open Data (LOD) for recommendation tasks.
Whereas some existing recommender systems (RS) already utilize RDF data to enhance the
local database, they do not yet take full advantage of the potential of the LOD cloud.
The work describes the strengths of LOD repositories (timeliness, comprehensiveness, legal and
technical openness), the suitability of the LOD technology stack (e.g., expressive data models)
and the challenges of RDF processing (data quantity, data quality, and data distribution) for
recommendation tasks. A requirements specification for a LOD-enabled RS was defined based
upon these features. The specification addresses the characteristics of the openly accessible data
web to utilize its full potential for personalized retrieval.
Based on a literature survey as well as on the statements of the requirements specification, a
recommendation engine, called SKOSRecommender (SKOSRec), was developed. Aside from
the usage of SKOS annotations, which are processed to determine similar items, a graph-based
query language is also part of the system’s components. The SKOSRec query language utilizes
SPARQL-like retrieval patterns to extract data from LOD repositories. The SKOS standard
facilitates usage of related descriptors to broaden retrieval. In this context, a novel concept ex-



pansion method (i.e., flexible similarity detection) is introduced. In addition to the provision of
similar concepts, SKOS vocabularies contain mapping relations to descriptors of other vocabu-
laries, which can facilitate cross-repository recommendations.
Another important feature is the engine’s capability to generate ad-hoc suggestions based on
item-specific user preferences (i.e., fast on-the-fly retrieval). With this method, the engine
calculates recommendations at runtime. Thus, it is possible to combine SPARQL-like query
patterns with search-based procedures flexibly. In this context, the SKOSRec query language
enables representation of individual user preferences either through explicit statements or by
using query-based elements. Additionally, the language facilitates application of recommenda-
tion results as part of a graph-based subquery. It enables novel query types as well as advanced
retrieval approaches. For instance, graph-based query patterns can be used to formulate pow-
erful filter conditions for result lists (expressive constraint-based queries). It is also possible to
generate a user profile with the help of a SPARQL-like request (preference querying). Besides,
the SKOSRec query language allows combinations of graph- and search-based query patterns
(i.e., advanced recommendation requests). Examples of such requests are rollup retrieval pat-
terns or cross-domain queries.
The author evaluated the novel approaches in a series of offline and online experiments in the
context of suitable scenarios for LOD-enabled recommendations, namely travel RS, multimedia
RS and scientific publication retrieval. The results show that some of the developed methods
(e.g., flexible similarity detection, expressive constraint-based queries, cross-domain queries)
improve the quality of conventional content-based recommendation methods in certain appli-
cation scenarios. Effects predominantly occurred in the performance dimensions of recall,
novelty, and diversity. Other retrieval approaches (e.g., rollup queries), while not achieving
significantly increased assessments, had similar scores. Hence, they are still a viable alternative
retrieval strategy.
With the novel recommendation methods and the predominantly positive evaluation results, the
present work contributes to the advancement of personalized search techniques, which can be
applied for semantic retrieval in LOD repositories as well as for classical recommendation tasks.
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1 Introduction

This chapter will motivate the research agenda of this thesis. It will provide examples on how
recommender systems (RS) are not yet fully equipped to handle certain personalization tasks
and will elaborate on the hypothesis that a suitable application of Linked Open Data (LOD) can
help to tackle this research gap (Sect. 1.1). Research objectives are derived from this hypothesis
(Sect. 1.2). They comprise the specification and prototypical implementation of a LOD-enabled
RS that improves and enhances existing approaches to recommendation retrieval. The chapter
ends with a description of the thesis structure (Sect. 1.3).

1.1 Motivation

The amount of information has dramatically increased with the emergence of e-commerce ap-
plications and other online portals on the Internet [5]. Often, users browse many sites before
they are able to decide on an item or service to consume. Whereas in the analog world gate-
keepers (e.g., travel agents) assist in finding an offer that matches the customer’s needs, in the
online world, even for experts it is usually impossible to keep track of all available products
without having access to software systems that can filter the data according to certain require-
ments. Users cannot process the wealth of information on the Internet on their own.
Fortunately, tools have been developed that help consumers find their way through the abun-
dance of information. Besides search engines, another type of filtering technology can fre-
quently be encountered. These are the so-called recommender systems. Researchers developed
the first RS in the 1990s, but the technology is still highly relevant today. RS are tools that
automatically generate suggestions based on known preferences of a person. Users express
preferences through their interaction with the system (i.e., in their profile). The user profile
contains information on how often a person has accessed an online article, or it stores the rat-
ings a user has given for movie items he/she has already watched. Based on this data, RS
generate personalized recommendations [204]. For this purpose, researchers have developed
different approaches. Collaborative filtering (CF) algorithms are the oldest and most widely
used method among them. They generate suggestions based on similar users. In these RS, users
are regarded as like-minded, when they have expressed similar tastes for the same items [5]. The
second largest group are content-based (CB) systems. CB algorithms calculate recommenda-
tions based on the similarity of items. These systems process metadata information to identify
matching features [7].
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All of these methods have in common that they rely on large amounts of data. A recommenda-
tion engine can only generate useful suggestions when it meets this requirement. Unfortunately,
in real-world scenarios, it is often the case that the underlying database does not contain the nec-
essary data. That is why users often receive either irrelevant or no suggestions at all (see Sect.
2.3). However, given the great importance of RS as tools that enable personalization, it would
be desirable if, despite the missing data in the local database, engines could still generate rec-
ommendations.
It is one of the reasons why in recent years, researchers have started to explore ways to en-
hance available data sources with additional information from openly accessible and interlinked
datasets (Sect. 5.2.2). The entirety of these public data collections is also known as the Linked
Open Data cloud. It consists of a large number of repositories, which can be accessed over the
web. The LOD cloud provides metadata descriptions for many real-world entities (e.g., multi-
media items or travel destinations) that link to each other by utilizing the Resource Description
Framework (RDF). RDF is a vocabulary language for structuring and publishing data sources
in a graph-like fashion. The result is a network in which the nodes represent entities and the
edges are the relations between these entities. Another advantage of this kind of markup is that
it describes data semantically, i.e., links have a meaning. RDF graphs are machine-readable and
can be freely used by software applications. Hence the data web is similar to the World Wide
Web (WWW) because of its open accessibility and decentralized nature. Additionally, it can be
processed without any manual interventions (Sect. 3.1). Over the last years, the LOD cloud has
grown into a huge knowledge graph (Sect. 3.2), containing valuable information about items
from many domains and data collections. It is a manifestation of the vision of a Semantic Web
that was introduced by Tim Berners-Lee in 2001 [34]. The most prominent data collection in
the LOD cloud is DBpedia. It contains structured information of Wikipedia articles. Hence,
any third party can access data from the prominent online reference repository and make use
of it [59]. Another positive feature of the data cloud is that it contains connections between
data collections. For instance, some real-world objects occur in more than one LOD repository.
Correspondence links between the collections identify matching objects. In this way, data can
be queried and aggregated across repositories, such that software agents can discover new con-
nections and interesting information (Sect. 3.2).
Given the abundance of metadata in the LOD cloud, it is not surprising that RS researchers
have begun to harness these data sources to tackle data sparsity issues. Recommender sys-
tems operating at least partly on RDF resources are called Linked Data Recommender Systems
(LDRS) or LOD-enabled recommender systems. Most existing LDRS are research prototypes.
Some studies have shown that they can compete with traditional systems and help to overcome
shortages in the local database. Researchers have applied content-based approaches by utiliz-
ing LOD metadata descriptions for offline computation of item similarities. This means that,
prior to the actual process of generating recommendations, data must be extracted from the
LOD cloud. Thus, the RS operator has to set up data models representing both the user pro-
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file and the features of the items before the system runs. It may happen that user preferences
are too simplistically represented in the system. Hence, despite the comprehensiveness and ex-
pressiveness of RDF graphs, metadata descriptions are still structured in the table-like format
of attribute-value pairs. Although this approach is effective in terms of data enrichment (after
all, it is possible to fill in the gaps in the local database), the consequence is that the central
strengths of the LOD cloud are not fully exploited. The flat data structure reduces the richness
of information from the RDF graph and prevents the full potential of LOD enhancement from
being realized for recommender systems (Sect. 5.2.2).
Consider the following example for illustration. Suppose a user has stated that he/she likes a
particular Indie rock band. A conventional LDRS would extract directly linked item features
for the given band from the LOD cloud and determine similar bands from the same item feature
table. However, it may well be that the descriptions contain irrelevant information, e.g., just the
founding place or founding year of the band, instead of the style of music they usually play.
Such metadata would not yield useful results in a purely content-based system and only achieve
a few random hits. On the other hand, a recommendation request, which takes into account
the band’s position in the RDF graph, has a higher chance of identifying relevant suggestions.
For instance, a graph-based query could explore the music items (e.g., albums or songs) re-
leased by the particular band and extract genre information for these items. Labeled links can
be exploited to determine the respective descriptions in the RDF graph. The data web can an-
swer such requests because the LOD technology stack provides the SPARQL Protocol and RDF
Query Language (SPARQL) and suitable query engines that enable fast retrieval (Sect. 3.1.4).
However, graph-based queries alone are not yet sufficient to generate personalized suggestions
since they do not consider user preferences. What is missing is a tool that can combine graph-
based query elements with similarity calculation. For this purpose, however, it is important
that recommendations can be generated on-the-fly. Only then will a system be able to switch
between processing of graph- and search-based query parts. To the best of the author’s knowl-
edge, there does not yet exist a recommendation engine that can perform these tasks on RDF
data. Instead, current LDRS rely on a fixed set of item features, for whom values have to be
extracted from the LOD cloud before suggestions can be generated. In this way, the strengths
of graph-based querying, unfortunately, remain largely unused.
A purely SPARQL-based request, on the other hand, only returns results for graph patterns that
exist in the repository. Consider the following example: Consumers may like to use recom-
mendation engines that work on multiple domains simultaneously. For instance, a user, who
has stated that he/she likes certain items from one domain may like to receive suggestions from
another domain as well. In case a user profile contains feedback information for books, it would
be desirable if the system could generate movie suggestions based on this data. While the ap-
proach of querying RDF graphs can be useful for this recommendation scenario, since it can
identify matching objects based on entity type declarations or typed link information, it may
also be the case that there are no direct links from a preferred book to a suitable movie in the
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RDF graph. A possible solution would be to identify books that are similar to the ones in the
user profile. In a subsequent processing step and through a graph-based query, the engine could
explore whether the similar books have any connections to movie items in the repository. This
approach can reveal implicit connections in the data and might help to return fewer empty result
sets to the user. The idea of combined retrieval is not only relevant as a recommendation strat-
egy, but also as a general (semantic) search method for LOD repositories because it unites the
paradigms of query- and similarity-based retrieval. Therefore, the system should process the
data online. This is because one processing step (e.g., identification of suitable movies through
graph pattern matching) relies on the outcome of a preceding one (e.g., computation of similar
book items). Almost none of the existing LDRS and LOD-enabled search systems address these
issues, which prevents effective usage of available knowledge sources for retrieval tasks (5.2).
The LOD cloud stands out for its open availability, the wealth of data sources and the expressive
power of the RDF data model. On the other hand, however, accessing LOD repositories also has
some challenges. It is a problem that many collections utilize different RDF-based vocabular-
ies. This causes data heterogeneity and complicates on-the-fly retrieval since the engine might
not be able to process all types of LOD resources right away (Sect. 3.3).
Only a few of the vocabularies in the LOD cloud have become a de-facto standard by now. The
usage of such standards is a vital prerequisite for retrieval from different collections. Fortu-
nately, there exist vocabularies that are widely used as well as applicable to ad-hoc item-to-item
similarity calculation. In this context, a key standard is the Simple Knowledge Organization
System (SKOS) vocabulary. SKOS vocabulary concepts often annotate items in LOD reposi-
tories and, thus, help to describe real-world entities. For instance, in the DBpedia repository,
an LOD resource representing a book is characterized by subject descriptors (e.g., stating the
topic or author of the book). The descriptors are part of the SKOS-based DBpedia category
graph. SKOS subjects are uniquely identified LOD resources. Therefore, they can be conve-
niently processed. Another advantage is that many SKOS vocabularies provide expressions for
knowledge representation. Hence, they declare the meaning of concepts and organize them in
a semantic network. These links comprise hierarchical and (non-)hierarchical connections and
can be exploited for similarity calculation as well (Sect. 6.1).
Another challenge of LOD-enabled on-the-fly recommendations is that the engine needs to pro-
cess many records simultaneously. In 2016, the LODStats crawl identified 290 billion triple
statements describing more than 54 million entities in the LOD cloud [149]. While a recom-
mendation request will only query a tiny subset of the data web, similarities might still have to
be computed for many item pairs. Thus, methods to speed up retrieval need to be investigated.
A further challenge of LOD processing is that resources reside in different repositories. Ad-
ditionally, they may be spread over several physical servers. For instance, the 2016 LODStats
crawl found that LOD resources can be found in more than 2900 datasets. However, in the
context of personalized search, users are often interested in obtaining results for a specific topic
rather than from a particular collection. Since LOD resources often describe the same real-
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world objects in different datasets, cross-repository recommendations are a highly desirable
feature. To the best of the author’s knowledge, there does not yet exist an LOD-enabled RS that
thoroughly addresses these challenges of LOD processing (Sect. 5.2).

1.2 Research Objectives

The previous paragraphs have shown that there is currently a research gap regarding effective
application of LOD for recommendation tasks. Aside from the use of LOD repositories for
metadata enrichment, existing RS neither address the strengths of graph-based RDF data nor
the challenges of LOD processing. It is a significant shortcoming since the LOD cloud holds
rich information sources on all kinds of topics, which should be accessible through end-user
applications. Therefore, novel approaches and technologies are needed. It was precisely the
vision of Tim Berners-Lee, the presumed inventor of the WWW, that software agents can work
seamlessly on a web of interconnected data [34]. His notion of the Semantic Web has partly
been realized with the emergence of the LOD cloud during the past years. However, many of
the tools that can make use of this data have yet to be developed.
The application of RDF data for current RS is limited to simple data enhancement, where LOD
is fed into an engine’s local database to account for issues of data sparsity. What is missing so
far is an RS that can process expressive, graph-based recommendation requests over large triple
stores. In addition to the strengths of LOD usage for recommendation tasks, the challenges of
RDF data processing have yet to be solved as well. Again, there is a lack of tools and tech-
niques that deal with phenomena such as data quantity, data heterogeneity or data distribution.
The research on LOD-enabled RS is still in its infancy and stuck in concepts of table-structured
data management commonly applied in relational databases. The adaptation of existing content-
based algorithms to the characteristics of the LOD cloud has not yet entirely taken place. While
there are a few systems that already address aspects of the above-described features of publicly
available RDF data, currently there is no LOD-enabled RS that realizes the full potential of
LOD resources for recommendation tasks (Sect. 5.2).
Hence, the research goal of this thesis is the development of a LOD-enabled recommender
system that takes into account the strength and challenges of Linked Open Data to im-
prove existing recommendation approaches. The use of RDF data is not an end in itself. The
to-be-developed system should deliver recommendations that are at least comparable in quality,
if not better, than suggestions produced by existing LOD-enabled content-based methods.
From the overall research objective, three subordinate goals are derived.

1. Requirements specification for a LOD-enabled recommender system which addresses the
strength, challenges and technical requirements of LOD processing.

2. Prototypical implementation of a LOD-enabled recommender system meeting the de-
mands of the requirements specification.
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3. Evaluation of the system’s performance (processing times, workloads, and recommenda-
tion quality) in example usage scenarios.

The implementation and subsequent evaluation ensure that the prototype satisfies the previously
defined requirements. The analysis will identify example use cases to demonstrate the general
applicability of the engine (see Sect. 6.2).

1.3 Thesis Outline

The thesis is structured as follows: Chapter 2 gives an overview on recommender systems. It
characterizes their purpose, their basic functionalities and the type of data sources that are usu-
ally processed by these systems. Additionally, the chapter describes the most widely used rec-
ommendation algorithms, namely collaborative filtering, content-based, hybrid and knowledge-
based approaches and presents the limitations of these algorithms.
Following this, Chapter 3 discusses how Linked Open Data could help to address some of the
weaknesses of existing RS. Thus, after a brief overview of the origins and basic components
of the LOD technology stack (e.g., RDF and SPARQL), the potential and challenges of LOD
processing in the context of recommendation retrieval are described in detail. Building on the
central findings of Chapters 2 and 3, Chapter 4 compiles a requirements specification for an RS
that reflects the previously specified issues in the form of clearly defined system functionalities
and properties. In addition to considering the central strengths and weaknesses of RDF process-
ing it takes into account the technical features of the LOD cloud.
In the related work section (Chapter 5) it is investigated whether and how existing real-world
recommender systems or LDRS research prototypes already provide any of the major features
of the requirements specification. In this context, solutions of adjacent retrieval paradigms, such
as query-based RS on relational databases or faceted search are taken into account as well.
In Chapter 6, suitable usage scenarios are described, based on which the system’s novel recom-
mendation techniques are explained. The approaches implement the requirements specification.
They are based on the state of the art of RS, LDRS and retrieval systems in general. The devel-
oped system utilizes SKOS vocabularies and is therefore called SKOSRecommender (SKOS-
Rec). In addition to a SKOS-based calculation of item similarities, the system implements other
features, such as (fast) on-the-fly retrieval, a SPARQL-like query language, and options to insert
processing steps of similarity calculation at different stages of the recommendation workflow.
Chapter 6 describes each one of these system features in detail.
Chapter 7 focuses on the evaluation of the SKOSRec engine in the previously defined usage
scenarios. In this context, it is determined whether the system provides quick responses to rec-
ommendation requests, and also whether it generates relevant suggestions. For this purpose,
the SKOSRec engine was evaluated with regard to different quality dimensions (i.e., accuracy,
novelty, diversity and perceived usefulness) in offline and online experiments using actual user
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preferences. Chapter 7 explains the methods and results of these studies.
Finally, Chapter 8 provides the key findings of the thesis. It will be clarified whether the novel
system features of the SKOSRec engine can provide added value for users as well as meet
the demands of the requirements specification. The chapter will also discuss limitations of the
findings and future research directions.
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2 Recommender Systems

After having presented the central research question and goals of the thesis, Chapter 2 outlines
the general characteristics of recommender systems (Sect. 2.1). It will describe the key ap-
proaches to recommendation retrieval, namely collaborative filtering, content-based, knowledge-
based and hybrid recommender systems (Sect. 2.2) and will summarize the limitations of the
different techniques (Sect. 2.3).

2.1 General Characteristics of Recommender Systems

Recommender systems are an integral part of today’s Internet landscape. Major e-commerce
sites, such as Amazon.com [11] or Netflix [172] cannot be imagined without an RS compo-
nent. For instance, users who have watched and liked a series or a movie on Netflix will receive
suggestions for other related films in a separate section on the screen, in which all items that
are similar to the previously preferred ones are listed. As a second example, think of an Ama-
zon customer who has bought a particular book. Based on this past purchase, the e-commerce
retailer will recommend additional books under a subheading that refers to „Customers who
bought this item also bought....“. End users only see the results of an RS’s key task: finding the
items which are most suited to be recommended to a customer [121]. The process of automati-
cally generating suggestions is at the center of RS research.
The need to automate recommendation retrieval arose at the beginning of the 1990s when the
first e-commerce applications and other Internet sites offered their services online. In these for-
mative years, providers were trying to come up with solutions to handle increasing quantities of
digital resources and to ensure that users found suitable items [5]. The explosive growth of dig-
ital content can still be witnessed today and is known under the term „information overload“. In
this context, recommender systems have proven to be effective tools that help users to navigate
tremendous amounts of online information [204].
Back then, the starting point of RS research was to mimic social interaction. Hence, system
developers focused on the observation that users tend to follow recommendations proposed by
their peers or a trusted individual when faced with a decision. A user, who does not know which
books or movies to consume next, might find it useful to consider suggestions by a friend or to
consult a critic’s list of recommendations in a magazine to make an informed decision [204]. A
software system often has to identify the right items from hundreds of thousands of products. In
this context, a straightforward approach would be to focus on best-selling items or most viewed
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items. However, this strategy does not at all address individual customer needs [121]. Addi-
tionally, it always refers customers to the same set of products, even when they have completely
different preferences. Although popularity-based approaches can be helpful under some cir-
cumstances, they are often not perceived as useful enough to trigger a purchase. Therefore, RS
researchers focused on personalization early on, whereby the engine bases recommendations on
a user’s previous interaction with the system. Behind this approach lies the assumption that past
preferences (e.g., as shown by purchase or by click behavior) are reliable indicators for future
choices. The prevalence of personalized RS on the Internet is evidence for this hypothesis [7].
Since the early systems, RS have fundamentally advanced the browsing experience in online
applications. On many platforms and besides general search functionalities, they are one of the
key entry points to a site’s content. Hence, the development of recommender systems is often
driven by application-specific demands [137].
RS have gained increasing interest during the past years as an independent research field both
in industry and academia. They are components of important highly frequented Internet sites,
and there exists a multitude of conferences, workshops, and journals that publish research ar-
ticles on the topic. The intertwining of industry demands and academic research in this field
also became evident when the streaming site Netflix held a competition for improving their rec-
ommender system. The company invited researchers to develop an algorithm that predicts user
preferences for their movie items. They granted a 1 million dollar prize to the winning team.
Within the scope of this competition, the company published a historical dataset that was used
by researchers to tune algorithms [204].
These examples illustrate the profound practical impact of research on recommender systems,
where improvements directly benefit both customers and service providers. On the side of the
service provider, the overarching goal is to increase product sales. Therefore, it is most natural
that retailers intend to boost the user experience. In addition to personalizing search tasks, the
purpose of RS is the promotion of products which might be otherwise hard to find. From the
application provider’s point of view, it is also vital that the engine supports customer loyalty.
In this regard, a well-functioning recommender system can help to ensure that customers fre-
quently return to the site to seek assistance when choosing products [107, 204].
Customers, on the other hand, primarily want to find good items with the help of the RS [107].
This kind of retrieval task is also known as the top-k recommendation problem, where only a
small fraction of items is displayed to the user. Therefore, the absolute values of predicted user
preferences are irrelevant, because only the relative item order constitutes the composition of
the recommendation list [7].
In some cases, however, users may want to find all good items that fit a certain query, e.g. when
the suggestions concern a crucial application context, such as the recommendation of medical
treatments or financial products. Additionally, RS may sometimes be useful to provide annota-

tions in context, such that users are assisted when deciding which items of a product series are
relevant (e.g., when selecting shows of a TV program). In other cases, users may want to obtain
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recommendations for a multitude of items. In this kind of mass retrieval case, typical scenarios
are recommendations for a sequence of items (e.g., music tracks) or recommendations for a

bundle of products that can be grouped together (e.g., suggesting a book and its movie adap-
tation). Additionally, RS can facilitate product browsing and explorative search tasks. Even
when users are not looking for a particular item, RS assist with serendipitous retrieval forms
thus helping users to discover unexpected items [107, 204]. Besides the multitude of potential
tasks, this thesis will focus on the find good items task, as it is the most common scenario [107].
Certain object types are involved in a typical recommendation workflow. Since RS provide
personalized suggestions to users, they have to keep track of users, items, and user-item-
interactions within the system [204]. One of the most natural forms of user modeling is to
store past preferences as a list of ratings or as a session history log [121]. Additionally, a profile
can contain sociodemographic attributes (e.g., age, gender or profession). Items are objects that
a user might consume, visit, lend or purchase (e.g., a news article, a travel destination or a music
album). As is the case with users, items have to be represented by specific features (e.g., the
genre of a movie or the author of a book). These features distinguish them from other items in
the system [204].
It is vital to the retrieval process that the engine has access to past user transactions. RS re-
searchers usually differentiate between two types of preference declarations. Users can express
their likings either explicitly or implicitly. Explicit feedback often has the form of a numerical
rating on a 1-5 scale, but users can state it as an ordinal, binary (e.g., „good“ or „bad“) or unary
rating (e.g., a Facebook „like“) as well [7, 121, 204]. However, consumers are usually reluctant
to provide explicit feedback because of the extra work required. That is why system providers
often use implicit feedback from a user’s past interaction with the system. It is assumed that by
processing data from purchasing transactions or by evaluating click behavior, user tastes also
become apparent [7, 40].
Since the development of the first systems, RS technology has spread to many application
domains. Entertainment RS are among the most widely encountered systems. They suggest
movies, books, music acts or TV programs to users [40]. E-commerce platforms also rec-
ommend entertainment articles. However, since these applications suggest items from other
product categories as well (e.g., electronics articles), RS components on commercial sites are
grouped into the category of E-Commerce RS. Another type of engines are Content RS. These
systems suggest digital documents, such as news/blog articles, web pages or scientific publica-
tions. When a system recommends items that refer to services (e.g., travel activities), it falls
into the category of Service RS. Recommendations can also be made in a social context. For
instance, suggestions in online social network communities help users to find other people they
might like to befriend. These systems are subsumed under the term Social RS [204].
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2.2 Recommendation Algorithms

2.2.1 Collaborative Filtering Recommender Systems

Given the diversity of application domains and the abundance of RS both in industry and
academia, it is astonishing that the underlying algorithms can be boiled down to a few dis-
tinctive approaches. One of the key methods is collaborative filtering. CF engines were the
pioneering recommender systems. The first of this kind was the GroupLens system. It automat-
ically suggested Usenet News articles [137, 201]. Another one of this early RS was the „Ringo
system“ that recommended music artists [137,225]. The researchers applied CF techniques but
did not call them by this name. Instead, they used the phrase „word of mouth“. This term
describes the technique fairly well: In CF systems, the real-world phenomenon is mirrored by
identifying like-minded peers through their ratings within a user community. Tastes of similar
peers are applied to predict whether a certain user might like an item he/she has not yet rated [5].
Aside from the assumption that past preferences determine future choices, this technique thrives
on time-independent user tastes. In its most basic form, CF works as follows: User ratings for
items are stored in a matrix. The matrix serves as input for the CF-based RS. The system pre-
dicts a numerical value that indicates a user’s potential interest for specific items. Based on
these results, a top-k recommendation list is generated that contains the items with the highest
preference scores [121].

Table 2.1: Example user-item rating matrix
Inception They Call Me Trinity The Terminator Bridget Jones’s Diary

Alice 5 4 2
Bob 3 5

Carol 5 5
Dave 4 4 2
Eve 3 2 1 5

Table 2.1 depicts an example user-item rating matrix. It contains known preferences of users
for certain movies in the database. For example, the 5-star rating of the user Alice for the movie
„Inception“ indicates that she strongly likes this item. Based on the matrix, the engine predicts
preferences for yet unrated movies. For instance, the engine would try to infer Alice’s rating
for the western movie „They Call Me Trinity“. If the calculation reveals a strong preference for
a particular movie; the item would show up in the final recommendation list. The preference
score is based on the most similar users (often referred to as peers or nearest neighbors) as well
as on the past rating behavior of these users.
The example can be formally described as follows: The set of users is denoted as U = {u1, ..., un}.
Movie items are represented as the set R = {r1, ..., rn} and user preferences are stored in a rat-
ing matrix Pref . For a particular user a, the engine identifies other users with similar rating
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behavior. For this purpose, common similarity measures, such as the pearson correlation co-

efficient (see Eq. 2.1) or the cosine similarity metric are applied. Like-mindedness between
a user a (e.g., Alice) and a user b (e.g., Bob) is determined from ratings. However, one user
might, on average, give lower ratings than another one, even though their tastes are more or less
congruent. To account for this potential bias, Equation 2.1 contains the average rating for each
user (e.g., prefa) as well [121].

userSim(a, b) =

∑
r∈R(prefa,r − prefa)(prefb,r − prefb)√∑

r∈R(prefa,r − prefa)2
√∑

r∈R(prefb,r − prefb)2
(2.1)

After having obtained user-based similarity scores, the engine selects a user’s most similar peers
and makes predictions for specific user-item pairs (e.g., Alice’s rating for the movie „They
Call Me Trinity“). For this purpose, the system includes preference information from the user
neighborhood (Nb). The more similar in taste a neighbor is, the more his ratings are taken into
account for the final prediction (Eq. 2.2).

pred(a, r) = prefa +

∑
b∈Nb userSim(a, b) · (prefb,r − prefb)∑

b∈Nb userSim(a, b)
(2.2)

Even though CF algorithms achieve good results, their application has some challenges. Major
e-commerce sites handle millions of users and therefore need to scan large amounts of data
for neighborhood selection. Additionally, CF systems require that items have been rated by a
sufficient number of users to predict future choices reliably. However, the profile overlap among
users is usually low, due to the sparsity of the user-item matrix. Therefore, some large online
retailers often revert to the method of item-based recommendation [121]. It is based on similar
items instead of on similar users. The idea behind this technique is to recommend objects that
are similar to items a user has liked in the past [5,212]. The item-based approach compares the
rating vectors of each item. For instance, to predict a user’s (u) preference for the movie „They
Call Me Trinity“, the system searches for other items in the database with similar ratings (e.g.,
„Inception “ or „Terminator“) that were given by all users (U ) (Eq. 2.3).

itemSim(i, j) =

∑
u∈U(prefu,i − prefu)(prefu,j − prefu)√∑

u∈U(prefu,i − prefu)2
√∑

u∈U(prefu,j − prefu)2
(2.3)

The final preference score of a user u for an item r is based on the similarity of this item with
the ratings of u for other objects (Eq. 2.4).

pred(u, r) =

∑
i∈ratedItems(u) itemSim(i, r) · prefu,i∑

i∈ratedItems(u) itemSim(i, r)
(2.4)
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In addition to the classification of CF approaches into user-based and item-based algorithms,
further distinctions can be made. For instance, a common categorization divides CF techniques
either into memory-based or model-based approaches. The beforementioned methods of near-
est neighbor selection fall into the category of memory-based algorithms. These approaches
process preference information directly, such that new ratings update result lists. In contrast,
memory-based approaches precompute a model from rating data. Models can quickly become
outdated when new ratings enter the database. However, these approaches provide quick re-
sponses, because models are already present before recommendation retrieval. Common tech-
niques in this category of RS are matrix factorization, association rule mining or Bayesian
classification [40, 121].

2.2.2 Content-based Recommender Systems

While CF algorithms rely on rating data, content-based approaches combine user preference
information with item metadata. This approach is especially helpful when score values are
incomplete. Table 2.1 shows that the movie „Inception“ does not have many ratings. Therefore,
the engine would most likely not recommend it, although some users might be interested in it.
In this regard, item descriptions (see Tab. 2.2) represent a possible solution [7]. A content-based
approach would reveal that users, who liked the movie „The Terminator“ in the past might also
be interested in the movie „Inception“, since both movies share some characteristics, such as
the genre (i.e., „Science fiction action films“). Whereas with a common CF approach, a user
like Bob would not have received a suggestion for the movie „Inception“ due to missing data,
content-based RS can counterbalance issues of rating sparsity [5]. A CB system does neither
need explicit feedback nor a huge user community to generate suggestions [152]. As long
as the system has information regarding past preferences, a user profile can be generated. In
combination with item descriptions, user profiles facilitate content-based retrieval [121].
Metadata characterizes an item within a certain domain. For instance, in the movie domain
a feature set typically consists of the director, the starring actors, and movie genres (see Tab.
2.2). Item descriptions are usually available in text form. In some domains, such as online
retailing, the manufacturers of the goods often provide the text content in a table-like format.
In these cases, the engine can easily process feature information. In other cases, however,
item descriptions have to be extracted from the raw text, e.g., when processing news articles
or scientific publications. Therefore, it is common to apply natural language processing (NLP)
techniques to extract the most important keywords [7, 121].

Once features have been identified, the easiest way to find similarities between an item in a user
profile and another one is to measure the overlap of their keywords [121]. Content-based simi-
larity detection closely resembles information retrieval (IR) approaches. In typical IR settings,
such as full-text retrieval, the engine matches search keywords against feature indices of doc-
ument collections. However, preferences are expressed differently in CB and IR systems. CB
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Table 2.2: Example item features of DBpedia movies [245]
Director Starring Subjects Music

Inception Christopher
Nolan

Leonardo
DiCaprio;
Joseph
Gordon-Levitt

American
films; Heist
films; Science
fiction action
films

Hans Zimmer

They Call Me Trinity Enzo Barboni Terence Hill;
Bud Spencer

Western genre
comedy films;
Spaghetti
films

Franco Mical-
izzi

The Terminator James
Cameron

Arnold
Schwarzeneg-
ger; Linda
Hamilton

American
films; Science
fiction action
films; Time
travel films

Brad Fiedel

Bridget Jones’s Diary Sharon
Maguire

René Zell-
weger; Hugh
Grant

British films;
Romantic
comedy films

Patrick Doyle

systems infer recommendations from the user profile. Search results of IR engines, on the other
hand, are generated by queries, which contain certain keywords. Despite this, both system types
apply the same techniques to identify relevant items. In IR research it has long been known that
text snippets need to be weighted to account for the fact that keywords do not describe a docu-
ment equally well [158].
CB systems apply common keyword weighting methods from IR. One of these techniques is
known as term frequency-inverse document frequency (TF-IDF). It projects term occurrences
to a multidimensional Euclidian space, from which similarity values are determined. Let K =

{key1, key2, ..., keyn} denote the set of available keywords. The weighted document vectors
are defined as ~dr = 〈w1,r, w2,r, ...wn,r〉, where wm,r denotes the weight of keyword keym in
document dr representing item r [152].
The idea of TF-IDF weighting is that the more frequent a term is, the better it is suited to de-
scribe a document’s content. However, a sole consideration of term frequency would corrupt
recommendation results in favor of items that are described by more keywords. Therefore, fre-
quency values are usually normalized with regard to the maximum frequency maxzfreq(z, r)

within a document (see Eq. 2.5) [121, 152].

TF (keym, dr) =
freq(m, r)

maxzfreq(z, r)
(2.5)

Term occurrence is not the only indicator of keyword importance since many terms might not
discriminate well between documents. For instance, in Table 2.2, the term „film“ frequently
appears in the metadata description of the movie „Inception“. It is a rather general term in the
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movie domain. Therefore, despite counting term occurrences, the inverse document frequency

(IDF) of a keyword is additionally important. IDF measures the ratio of term appearances
(freq(m)) among all recommendable items N in a database (Eq. 2.6). The TF-IDF values are
determined by multiplication of term frequency values with inverse document frequency scores
2.7 [152]. The weighting scheme assigns a high TF-IDF value, whenever a term frequently
occurs in an item’s description, but rarely appears in other item descriptions of the document
collection. Hence, a high TF-IDF score indicates that a keyword is well suited to describe an
item.

IDF (keym) = log
N

freq(m)
(2.6)

TFIDF (keym, dr) = TF (keym, dr) · IDF (keym) (2.7)

After having obtained TF-IDF values for item feature sets, similarities can be calculated. Typi-
cally feature vectors are used in conjunction with the cosine similarity metric. As for user-based
algorithms, this measure facilitates neighborhood selection. In contrast to CF systems, however,
the similarity is calculated using TF-IDF values instead of being based on rating data. For each
item pair, their weighted feature vectors di and dj are taken into account (Eq. 2.8) [152].

docSim(di, dj) =

∑
m∈K wm,iwm,j√∑

m∈K w2
m,i

√∑
m∈K w2

m,j

(2.8)

Afterward, the engine selects the most similar items (i.e., nearest neighbors) for preference
prediction. For this purpose, it applies a slightly modified version of Equation 2.4. Then, it
weights user ratings with similarity scores of each item from the nearest neighbor list [121].

2.2.3 Knowledge-based Recommender Systems

The previously introduced approaches of collaborative and content-based filtering are the two
most distinct types of RS mentioned in the literature [5,40,137,152]. Nevertheless, there are fur-
ther approaches to recommendation retrieval. One of them is the category of knowledge-based
(KB) recommender systems. These systems rely on a data repository that contains domain
knowledge. KB engines are independent of rating data. Therefore, they can still provide recom-
mendations even when new items or users enter the system (i.e., cold-start problem). Common
content-based and collaborative filtering RS, on the other hand, are severely affected by data
sparsity issues [7].
Additionally, item- or user-based recommendations might not suffice in certain application do-
mains. For instance, in areas with highly complex or customizable products (e.g., real estate,
automobiles, financial services or computers) users prefer to state their requirements directly
and therefore need to query specific sets of item properties [7, 121]. Products in higher price
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segments are rarely bought and often subject to frequent changes. For instance, in technical
domains, such as personal computer (PC) sales, preferences regarding processor power or main
memory storage quickly become obsolete over a period of several years. Therefore, past user
ratings are not as relevant for these domains as they are in other application areas [7].
While for CB and CF systems knowledge acquisition stops when the engine has obtained user
ratings/item features, this process is more laborious for knowledge-based RS. Aside from main-
taining detailed item descriptions, these systems often define additional rule sets. Rules either
specify how user requirements ought to be matched with product features or declare compati-
bility constraints for allowed combinations of item properties [121]. For instance, when users
require their computers to have advanced technical features (e.g., dozens of gigabyte [GB] of
random-access memory [RAM] storage), it is sometimes not feasible to recommend machines
from lower price segments. Therefore, KB systems heavily depend on the provision of domain
knowledge. Another characteristic of knowledge-based RS is that the preference elicitation pro-
cess is a key component of the recommendation workflow. Since users specify their needs in
great detail, systems need to provide interactive feedback mechanisms with which they can sub-
sequently get to know the available items. The interfaces that are required for these interactions
greatly depend on the algorithm used by the system [7].
Knowledge-based RS are commonly grouped into two major categories. One of them is constraint-
based RS. These systems match user requirements with the item features in the database. An
example is the specification of a maximum price for a PC. The engine queries all products that
fulfill this constraint. A constraint-based request consists of a couple of such specifications in
the form of a conjunctive query. It comprises a set of conditions that are connected by AND
operators. The solution set to this request contains all items of the product table that fit the
selection criteria [121]. Constraint-based RS regard recommendation tasks as constraint sat-
isfaction problems. They determine solutions according to a set of variables, finite domains
and acceptable value combinations. Additionally, compatibility constraints define permissible
instantiations of customer requirements (e.g., if 12 GB main memory is required for a desktop
PC, the price should not be below 600 Euro). Filter conditions specify the circumstances under
which the engine should select certain products (e.g., only PCs with high-end graphics boards
should be presented, upon receiving a request for a gaming PC). Aside from an internal logic
on how to select items according to user specifications, a constraint-based RS should provide
an interface, with which users can modify, add or relax their requirements during a retrieval
session. The interface should help users to learn enough about the available items. For instance,
it can present default options or property lists, with which consumers start a series of retrieval
requests [121].
The second major type of knowledge-based RS is case-based recommenders. They retrieve
items according to a given similarity metric. These metrics quantify the extent to which the
items in the database match the user specifications. Users start the retrieval process by spec-
ifying their favorite target cases. Similarly to CB RS, the engine identifies recommendation
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candidates through item attributes. However, the applied metrics are more advanced, since
the knowledge base often contains heterogeneous data sources (e.g., categorical vs. numerical
attributes, symmetric vs. asymmetric utility functions, properties to maximize vs. properties
to minimize). Hence, the configuration of such a measure is laborious and largely domain-
dependent. Additionally, the recommendation process does not stop with similarity calculation.
Once similar items have been found, users refine their requests by tuning certain properties.
This process of subsequent refinement is called critiquing and has to be supported by a power-
ful user interface as well. Unlike constraint-based RS, case-based RS do not as easily produce
empty result sets, because requirements are not formulated as hard constraints. Rather, they
help users in gaining an understanding of the item space through interactive browsing [7, 121].

2.2.4 Hybrid Recommendation Approaches

The previously presented approaches to recommendation retrieval rely on certain data sources
to provide automated suggestions. CF systems are based on user ratings, while CB systems
utilize metadata descriptions. In addition to user profiles and item features, KB engines require
a repository of domain knowledge [121]. Thus, each of the presented approaches has problems
when dealing with limited data sources. While CF systems perform poorly when rating data
is sparse, content-based recommendations tend to be worse as soon as item descriptions are of
low-quality [40]. Knowledge-based systems, on the other hand, require a repository of domain
knowledge which often needs to be manually maintained and is therefore prone to errors [7].
Besides this, they contain item metadata in relational form and thus need to process heteroge-
neous data sources [121].
Hence, neither of the presented approaches is superior to another one. Rather, it depends on the
available data sources and the particular application domain whether a certain method performs
well. Sometimes it might be even better to combine approaches to overcome the limitations of
the methods. These algorithms are called hybrid recommender systems. They fuse different
paradigms to boost recommendation quality [5, 40]. One frequently encounters mixings of CF
and CB techniques among the hybrid approaches [5]. However, it is also possible to take ad-
vantage of similar recommendation approaches (e.g., various CF algorithms) and combine them
within a single model [214].
Hybrid recommendation approaches are as manifold as recommendation algorithms. Several
authors have presented categorization schemes for hybrid RS [7,45,121]. For instance, Jannach
proposes grouping approaches into monolithic, parallel and meta-level hybridization designs.
A monolithic hybrid RS combines feature data from different recommendation paradigms. It is
done by either mixing item features directly (e.g., by using ratings and text-based features in the
nearest neighbor algorithm) or by applying a feature augmentation hybridization technique. In
the latter case, the engine feeds results from one recommendation paradigm into an algorithm
of another paradigm (e.g., as in content-boosted CF systems) [121].
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Parallel hybridization techniques, on the other hand, run several recommenders concurrently
and aggregate results after completion of the separate retrieval processes. The aggregation of
the results can be carried out by assigning weights to different scores. It is also possible to
generate separate recommendation lists whose results are then selected according to previously
defined rules. For instance, the problem of new and unrated items can be addressed by resorting
to CB recommendations until the amount of rating data is sufficient enough to provide helpful
suggestions. This parallel hybridization technique is called switching. Another parallelization
technique is the mixed representation, where the RS presents different recommendation lists
side by side within a single user interface. By this means, the user can compare the rankings
and decide which of the suggestions suits his/her interests most [121].
Another major category of hybrid RS is algorithms that apply meta-learning strategies (i.e.,
ensemble methods) [69]. Meta-level methods utilize out-of-the-box approaches to refine rec-
ommendation scores in a cascading fashion [7]. The system usually combines the results of
straightforward algorithms into an aggregated prediction model. A famous example of an en-
semble learning technique is „BellKors Pragmatic Chaos“, which was the winning solution of
the Netflix Prize in 2009. It applied a boosting strategy that trained several base learners to
minimize error rates [139].
The presented hybridization designs attempt to overcome limitations of existing recommenda-
tion paradigms. However, while hybrid RS often improve accuracy [139,249,256], they require
additional computational resources and engineering efforts. Hence, major online retailers, such
as Amazon or Netflix often hesitate to apply a hybrid recommendation strategy and rather rely
on a scalable conventional approach [147, 213].

2.3 Limitations of Recommender Systems

The previous sections have presented different recommendation paradigms. The approaches
work most efficiently when being utilized in a suitable application scenario. Hence, online
providers, such as commercial retailers, should choose a method according to the specific re-
quirements of their application as well as based on the quantity and quality of available data
sources. For instance, CF systems work best when the amount of rating data is sufficiently
high. When users have provided enough preference information, CF systems can give sugges-
tions across genres. They are also suited for items that do not have a text description [5, 45].
Additionally, CF-based suggestions do not require domain knowledge, and their quality often
evolves as new ratings tend to sharpen profiles [45].
On the downside, CF systems are heavily dependent on a critical mass of user ratings. Many
users are reluctant to give explicit feedback. Often, catalogs contain a significant amount of
items, of which many do not have a single score attached to them (data sparsity problem). Even
if there are enough ratings, the CF engine cannot identify similarities, whenever a new item
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(new item problem) or a new user (new user problem) enters the database. Thus, the system
might never recommend certain items even though there are users who would have an interest
in them [131]. CF systems are also susceptible to the lemming effect. The effect occurs when
the engine recommends items in a self-perpetuating cycle. Hence, users with niche interests
would most likely not find what they are looking for since they do not share interests with a
critical mass of like-minded peers [45].
CB systems, on the other hand, draw their strength from item descriptions and can be there-
fore tailored to special interest domains. Like CF recommenders, CB systems do not require an
elaborate knowledge base as long as user preferences can be related to the items in the database.
Similarly, suggestions from CB engines tend to get better over time.
The shortcomings of CB RS can be attributed to aspects of data quality and quantity accordingly.
New users, who have not yet set up a profile, will not be able to receive any suggestions [45].
Additional problems arise due to insufficient metadata descriptions. Whenever the quality or
quantity of item feature information falls below a certain standard level, RS performance deteri-
orates (limited content analysis) [5]. For instance, it is vital that keywords that refer to the same
entities are uniquely identified throughout a collection [181]. In a CB book RS, author names
should have an authority record entry. Thus, it is avoided that different text expressions, which
refer to the same entity (e.g., „J.K. Rowling“ vs. „Joanne K. Rowling“), distort the calculation
of item-to-item similarities. Another example of limited content analysis is that of too little
metadata content. With only a small set of item features, two rather unrelated items may be
described by the same keywords [5].
Another shortcoming of CB systems is the overspecialization problem. Although reliance on
user interests is useful, it bears the risk of suggesting items that are not new to the user. Whereas
in CF systems unexpected items have a higher chance of being identified, due to the diversity
of like-minded peer groups [5], CB systems can only resort to metadata information that might
point to items the user already knows of [131].
KB RS, on the other hand, can tackle non-product related aspects, e.g., by integrating contextual
factors, such as a vendors reliability (when buying a camera) or trending neighborhoods (when
purchasing a property) into the utility functions of their knowledge base [45]. Therefore, KB
systems are highly adaptive to customer needs and not as dependent on user preference infor-
mation and item feature data. In contrast to CF and CB systems, common cold-start problems

do not arise with KB engines as they obtain user preferences at runtime [7]. Usually, providers
apply KB engines in high-end product domains with infrequent purchases. As preferences for
higher priced products or services may change over time, historical datasets are not as valuable
for KB systems as for CF and CB engines. However, the knowledge engineering process often
requires manual creation of domain rules, which can be a laborious and error-prone undertak-
ing. On the user side, the required effort is equally high. Users might have to complete several
feedback rounds until they have set up their final set of preferences [45].
An additional problem of KB systems is their application-specific focus. It is most likely that
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the knowledge base for a particular product type cannot be transferred to other domains, while
CF or CB algorithms often can be utilized throughout different applications [7]. The combina-
tions of the paradigms in a hybrid approach might compensate for some of their shortcomings
as well as increase recommendation quality. However, hybrid RS also require considerable tun-
ing effort and computational resources. Table 2.3 summarizes major strengths and weaknesses
of the recommendation paradigms.
It is possible to address some of the previously outlined weaknesses of RS, such as the new item

problem, the overspecialization problem or the problem of limited content analysis by enhanc-
ing the local data with additional information from the LOD cloud. The data web offers valuable
sources from various domains that are openly available through public interfaces and could be
applied to improve content-based RS. In addition to the provision of metadata, the LOD cloud
might also facilitate more flexible and adaptive retrieval requests, such that the strengths of other
recommendation paradigms (e.g., cross-domain recommendations of CF systems or customized
requests of KB systems) can be leveraged for content-based approaches. The following chapter
will describe in more detail how the characteristics of the LOD cloud can help to address some
of the mentioned limitations of current recommendation methods.

Table 2.3: Strengths and weaknesses of recommendation paradigms
Paradigm Strengths Weaknesses
CF RS

• cross-domain recommendations

• no knowledge base required

• improve over time

• data sparsity

• new user problem

• new item problem

CB RS

• no knowledge base required

• improve with more preference
data

• new user problem

• limited content analysis

• overspecialization problem
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Paradigm Strengths Weaknesses
KB RS

• representation of non-product at-
tributes

• highly adaptive to user needs

• high user effort required for the
preference elicitation process

• required knowledge engineering

• often non-transferrable to other
application domains

Hybrid RS

• improvement of base learners • considerable tuning effort of rec-
ommendation models

• costly in terms of required hard-
and software resources
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3 Linked Open Data for Recommendation
Tasks

This chapter elaborates on the idea of applying Linked Open Data for recommendation tasks to
address some of the previously outlined limitations of existing systems. It describes the origins
of LOD publishing as well as the layers of the LOD technology stack (Sect. 3.1). Based on these
descriptions, Section 3.2 explains the opportunities of Linked Open Data for recommendation
retrieval, while Section 3.3 addresses the challenges that need to be handled by an RS when
processing LOD.

3.1 Emergence and State of the Linked Open Data

Cloud

3.1.1 Semantic Web

In 2001, Tim Berners-Lee, the father of the Internet, published a widely perceived article on the
limitations of the World Wide Web at that time. He proclaimed that most of the then available
content was designed to be consumed by humans. While the appropriate hard- and software for
message interchange, page loading, and layout interpretation had been developed, the infras-
tructure primarily supported the consumption of documents. Only human beings could inter-
pret the semantics of web data. However, the technology to derive meaning from web pages
was missing then [34]. Whereas systems for semantic processing already existed in the early
2000s, these tools had the disadvantage of being designed for a particular task. They could
only answer a limited amount of questions based on inference rules that had been defined for a
certain domain. Interchangeability of data and rules across systems was not a given. For these
reasons, Berners-Lee envisioned a decentralized web of semantic data, that could be accessed
by different applications instead of serving application-specific tasks [34,136]. The idea was to
add technological layers of meaning, logic, and trust to the already existing infrastructure of the
WWW (Fig. 3.1).

The vision was to turn the existing web into a platform that could answer questions by inferring
information from known facts. Therefore, software agents would exchange semantic informa-
tion without human intervention by making autonomous decisions based on available data [34].
The World Wide Web Consortium (W3C) adopted the proposal by Berners-Lee in the Semantic
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Fig. 3.1: Semantic Web technology stack [136]

Web technology stack [136]. One of the core building blocks of this conceptual framework was
the idea to use unique identifiers (URIs and IRIs) to refer to objects, which can, in turn, be con-
nected by the Resource Description Framework (RDF) vocabulary. RDF encodes facts as triple
statements thus creating a decentralized information space. Subsection 3.1.3 will describe the
exact syntax of RDF triples. However, to be able to infer meaning from RDF data, knowledge
representation systems have to be implemented on top of it. They state which things exist in a
domain and how they are related. These systems have long been known in artificial intelligence
research under the term ontologies. An ontology language can express a domain model, from
which facts can be derived that might not be explicitly stated [34]. Common ontology languages
are the schema language for RDF (RDFS) and the Web Ontology Language (OWL) [136].

3.1.2 Linked Open Data

Over the past decade, the standardization activities of the W3C towards a Semantic Web in-
frastructure have led numerous organizations to provide their information sources in machine-
readable formats. These sources stem from various domains and contain many facts about
people, places, scientific publications, and multimedia or life science items [38]. While at first,
advocates of an open web-based data space more frequently referred to the term Semantic Web,
the expression Linked (Open) Data became more prevalent in recent years. However, the two
words should not be confused. The Semantic Web vision describes a highly advanced state of
the web, which enables intelligent software agents to autonomously derive and process mean-
ingful information from openly accessible data sources. This vision requires a critical mass of
open data and assumes that scalable reasoning technology already exists. While current reason-
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ing systems have not yet achieved the latter requirement of web-scale performance, the former
can be said to have evolved as the so-called Linked Open Data cloud [188].
After his first Semantic Web paper, Tim Berners-Lee refined his original statements regarding
publication principles for data in an article published in 2006. He concretized his ideas by
stating the following rules [32], which are nowadays often referred to as „Linked Data princi-
ples“ [38]:

• „Use URIs as names for things

• Use HTTP URIs so that people can look up those names

• When someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL)

• Include links to other URIs, so that they can discover more things“

As envisioned by Semantic Web advocates, the web of data builds on the technology stack of
the classical document web by relying on unique identifiers and the HTTP protocol for resource
access.
Through the provision of open standards and active use of an existing decentralized infrastruc-
ture, the web of data shares many of the characteristics of the traditional WWW. Bizer et al.
state the following principles for Linked Data publishing [38]:

• „The Web of Data is generic and can contain any type of data.

• Anyone can publish data to the Web of Data.

• Data publishers are not constrained in choice of vocabularies with which to represent
data.

• Entities are connected by RDF links, creating a global data graph that spans data sources
and enables the discovery of new data sources.“

While the above-listed principles follow the original idea of web-based publishing, Tim Berners-
Lee later added a requirement that qualifies data for web-wide usage. Therefore, he made the
crucial distinction between Linked Data and Linked Open Data. Datasets adhering to Linked
Data standards (i.e., by being in RDF format and linking to other RDF datasets across the web)
may not be openly accessible. Therefore, he declared that publishers should provide Linked
Data under an open license [32].
The terms, under which a license is considered to be open, were specified by the Open Knowl-
edge Foundation. Central to this definition is that it requires licenses to ensure usage free of
charge and free redistribution and modification of data collections or any of their subsets. Ad-
ditionally, the license must allow datasets to be used in conjunction with other content and
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should guarantee that certain persons, groups or application areas are not excluded from using
the data [176]. Licenses conforming to these regulations are the Creative Commons Attribution
4.0 license (CC-BY-4.0) or the Open Data Commons Attribution license (ODC-BY).
Having made this distinction between Linked Data and Linked Open Data, it must be stated that,
to date, only a few openly accessible datasets possess licensing information [111]. Nevertheless,
the expression Linked Open Data cloud is used to refer to the vast collection of interconnected
resources freely provided (i.e., free of charge) on the Internet. Hence, the term Linked Open
Data refers to a much broader category of open data publishing, i.e., to any dataset that adheres
to „Linked Data principles“ and is accessible over the web [215]. Therefore, for the remainder
of this thesis, whenever the term Linked Open Data is mentioned, it refers to the broader cate-
gory.
The crawling activities of the LODStats project have revealed a tremendous growth of the LOD
cloud during the last decade (see Figs. 3.2 - 3.4) [148, 151]. One of the first milestones of
its evolvement was the start of the DBpedia project in 2007. It publishes structured data from
Wikipedia. Numerous data sets from diverse domains, such as geography, government, life
sciences, linguistics, media, social media or publication have joined the DBpedia in the LOD
cloud over the past ten years [148]. The key strength of this data web is that it connects resources
through incoming and outgoing links across datasets [215]. Thus, a decentralized information
infrastructure has emerged, which spans thousands of datasets that might be valuable for many
data-driven applications [149], such as recommender systems.

Fig. 3.2: LOD cloud 2007 Fig. 3.3: LOD cloud 2014 Fig. 3.4: LOD cloud 2017

3.1.3 RDF

The Resource Description Framework (RDF) is one of the central building blocks of the LOD
cloud. Almost all openly available datasets structure the data with the help of the RDF vocabu-
lary [215]. RDF is a language for expressing information about items, their interconnections and
for defining (semantic) data models. The structured representation of information enables au-
tomatic processing by software applications. Items can represent documents, persons, physical
objects or abstract concepts [216]. In an RDF graph, International Resource Identifiers (IRIs)
uniquely describe most LOD resources. Hence, entities can be consistently referred to in a
dataset [222]. Sometimes unique identification also implies the location and the means of access
to this resource (e.g., as for „Uniform Resource Locators“(URLs)) in other cases, it does not.
Therefore, URLs are a subcategory of IRIs. In Fig. 3.5, the DBpedia resource dbr:Django_
Unchained representing the corresponding movie item is a URL, since the namespace dbr:
indicates the location of the resource (i.e., http://dbpedia.org/resource). The IRI
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Fig. 3.5: Example RDF graph

specification can be found in the Requests for Comments (RFC) 3987 [77, 216].1

RDF graphs comprise triple statements in the form of <subject> <predicate> <object>
assertions, where an IRI either occurs in the subject or the object of the triple statement. The
RDF representation of the depicted graph of Figure 3.5 is given by the following statements:

dbr:Django_Unchained rdf:type dbo:Movie .

dbr:Django_Unchained dbo:director dbr:Quentin_Tarantino .

dbr:Django_Unchained foaf:name "Django Unchained"@en .

dbr:Quentin_Tarantino rdf:type dbo:Person .

dbr:Quentin_Tarantino foaf:name "Quentin_Tarantino"@en .

The example shows how RDF statements describe relationships between resources [216]. For
instance, one of the triple statements declares that the movie „Django Unchained“ was directed
by „Quentin Tarantino“. In this statement the resource dbr:Django_Unchained is the
subject and the resource dbr:Quentin_Tarantino is the object of the triple. However,
the latter LOD resource (dbr:Quentin_Tarantino) can also occur as a subject, e.g. in
the triple that declares „Quentin Tarantino“ to be a person (rdf:type2 dbo:Person3). The
example triples illustrate how data graphs are set up with RDF. They also show how RDF syntax
can be applied to describe and link entities. The structure enables identification of connections
between items [216]. Aside from a subject and an object, triple statements comprise a predicate,
which characterizes the nature of the relationship. The predicate is represented as a directed
arrow (from subject to object) and has a label attached to it (e.g., foaf:name4) [216]. The
link is often also called property. The subjects and objects constitute the nodes of an RDF
graph, while the predicates represent directed edges [216]. In addition to IRIs, triples can also

1Also note that the URI definition is a deprecated specification of unique identifiers. The IRI specification en-
hances the allowed character set of URIs [77].

2 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
3 PREFIX dbo: <http://dbpedia.org/ontology/>
4 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
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contain two other data types. One of them is blank nodes. Similarly to the application of
IRIs, one utilizes blank nodes to reference a particular item. In contrast to IRIs, blank nodes
are local identifiers that are only used in certain RDF stores [1]. They are applied when the
data modeler is not able or not in the position to declare a global identifier. Blank nodes are
syntactic placeholders marked by an underscore. For instance, the expression _:b is a blank
node. The third category of RDF terms is literals. They describe an LOD resource with base
type features [102, 222]. For instance, the movie title „Django Unchained“@en is a literal of
the type string. Strings often have a language tag attached to them. Literals can have other base
types, such as dates or numeric types (e.g., integer, double) [222]. IRIs, literals and blank nodes
each represent distinct and distinguishable groups of RDF terms. Hence, they denote different
types of data accordingly. For instance, the string literal „http://example.org“ is not the same as
the corresponding IRI http://example.org.
The W3C specification of „RDF 1.1 Concepts and Abstract Syntax“ describes the notion of an
RDF term formally [1]. A paraphrased version of this definition is shown below (Definition 1).

Definition 1 (RDF term). An RDF term is a member of the set I ∪ L ∪ B, where I denotes the

set of all IRIs, L the set of all RDF literals and B the set of all blank nodes.

RDF triples consist of a subject, a predicate, and an object. They are formulated with the help
of RDF terms. Different terms are eligible for each of the three parts. The following definition
is taken from Perez et al. [185] (Definition 2).

Definition 2 (RDF triple). An RDF triple consists of three components:

• „the subject s, which is an IRI or a blank node (s ∈ I ∪B)

• the predicate p, which is an IRI (p ∈ I)

• the object, which is an IRI, a literal or a blank node (o ∈ I ∪B ∪ L) “

Sets of RDF triples form RDF graphs. An RDF dataset (D) can be comprised of one to many
RDF graphs. The respective definition of the RDF 1.1 syntax specification for RDF datasets is
repeated below (Definition 3).

Definition 3 (RDF dataset). „An RDF dataset (D) is a collection of RDF graphs, and com-

prises:

• Exactly one default graph, being an RDF graph. The default graph does not have a name

and MAY be empty.

• Zero or more named graphs. Each named graph is a pair consisting of an IRI or a blank

node (the graph name), and an RDF graph. Graph names are unique within an RDF

dataset.“
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RDF graphs can be saved in different forms. There exist several RDF serialization formats,
such as Turtle, JSON-LD, RDFa or NTriples. When the data processor has serialized the RDF
dataset, it can be loaded into a triple store to serve as a LOD repository. Users and software
agents can access it with standard RDF query languages and engines. The most prominent and
widespread among these query languages is the SPARQL Protocol And RDF Query Language
(SPARQL).

3.1.4 SPARQL

SPARQL is a W3C Recommendation and the standard for querying RDF triple stores [102].
Numerous LOD engines provide a SPARQL API [231]. The latest version of the SPARQL syn-
tax specification is 1.1. It provides language constructs to formulate single as well as federated
requests [102]. A SPARQL query can be one of the following four types:

• SELECT

• CONSTRUCT

• ASK

• DESCRIBE

They match the graph pattern specification of the query’s WHERE clause against the RDF
dataset. The result set differs for each kind of query. The CONSTRUCT and the DESCRIBE
query type put out an RDF graph, while the ASK query simply returns a boolean value that
indicates whether the processor could match the specified graph pattern with the triple state-
ments in the LOD repository. SELECT requests represent the most important query form in the
context of this thesis. SPARQL SELECT requests are useful for LOD-enabled retrieval tasks
since they bind and return LOD resources to the variables occurring in query patterns. Hence,
an LOD-enabled recommendation engine might profit from the ability to identify suitable LOD
resources (i.e., recommendable items) [102, 222].
A SELECT query usually contains a prefix declaration, a SELECT statement and a WHERE

clause. The prefix defines shortcut namespaces. For instance, in the following example, the
namespace dbr: abbreviates the corresponding DBpedia IRI. Prefix specifications make SPARQL
queries more human-readable while increasing formulation efficiency as they are valid for the
entire query [102].

PREFIX dbr: <http://dbpedia.org/resource/>

The PREFIX declaration precedes the SELECT part of the request. In the SELECT part, users
specify a subset of the variables that occur in the query pattern of the WHERE clause. They state,
which bindings they want to obtain for each solution. In the SELECT as well as the WHERE
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section of the query, variables are marked as character strings that start with a question mark (?)
or a dollar sign ($) [222].
The WHERE clause specifies the graph pattern (P ) the processor should match with triple state-
ments in the LOD repository. The most simple form of a graph pattern (P ) is a triple pattern
(t). A SELECT query with a single triple pattern looks as follows:

Listing 3.1: Example SPARQL query (simple matching)
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>

SELECT ?movie
WHERE {
?movie dbo:director dbr:Quentin_Tarantino .
}

The query produces the result that is shown in Table 3.1, when issued against the RDF graph of
the previous subsection (Subsect. 3.1.3).

Table 3.1: Solution set of a simple SPARQL query
?movie
dbr:Django_Unchained

The WHERE clause can also contain multiple triple patterns. An example for this is given in
Listing 3.2. In this query, two conditions must hold to generate a match.

Listing 3.2: Example SPARQL query (multiple matchings)
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?movie ?person
WHERE {
?person rdf:type dbo:Person .
?person dbo:director dbr:Django_Unchained .
}

The query produces the following result (see Tab. 3.2).

Table 3.2: Solution set of a SPARQL query with multiple matchings
?movie
dbr:Quentin_Tarantino

Perez et al. describe the notion of a triple pattern formally. They use algebraic formalizations
of core SPARQL elements [185]. The authors define the union of the sets of IRIs and literals
(IL = I ∪ L) and denote RDF terms as T (T = I ∪ B ∪ L). Additionally, they assume the
presence of a set of variables, which is disjoint from IL and T . Given these preconditions, a
triple pattern is defined (Definition 4).
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Definition 4 (Triple pattern). A triple pattern consists of a subject, a predicate and an object.

IRIs, literals or variables are allowed in the subject and object positions of a triple pattern. The

predicate position must contain an IRI or a variable (Eq. 3.1).

t = (IL ∪ V )× (I ∪ V )× (IL ∪ V ) (3.1)

When executing a SPARQL SELECT query, the engine looks for mappings of the query vari-
ables to RDF terms that are present in the dataset (D). According to Perez et al., a mapping µ

from V to T can be defined as a partial function µ : V → T [185].

Definition 5 (Evaluation of a triple pattern). An evaluation of a triple pattern t over a dataset

D is obtained by determining triple mappings (µ(t)) and replacing all variables in the triple

according to the mapping function (µ). The expression var(t) denotes the set of variables that

is present in t. The domain of the mapping (dom(µ)) stands for the subset of variables V that

occurs in µ (Eq. 3.2).

[[t]]D = {µ | dom(µ) = var(t) and µ(t) ∈ D} (3.2)

The WHERE clause in a SPARQL query can also contain more advanced combinations of graph
patterns. For instance, it is possible to join triple (or graph) patterns (e.g. as in Listing 3.2), to
process additional SPARQL-based subqueries or to match optional graph patterns. The follow-
ing overview of WHERE clause components refers to the graph pattern definition of the W3C
SPARQL 1.1 syntax specification [102]:

• Conjunction of graph patterns (AND)

• Union of graph patterns (UNION)

• Optional graph patterns (OPTIONAL)

• SPARQL-based subqueries

• Negation of graph patterns (MINUS)

• Creation of values by expressions (BIND)

An example for the evaluation of a conjunction is shown in Equation 3.3.

[[(P1 AND P2)]]D = [[P1]]D ./ [[P2]]D (3.3)



32 3.2 Opportunities of Linked Open Data for Recommendation Tasks

The conjunction of two graph patterns P1 and P2 is recursively defined as a join, provided
that their respective mappings µ1 and µ2 are compatible. This is the case, when for all x ∈
dom(µ1) ∩ dom(µ2) the function returns the same value (µ1(x) = µ2(x)), such that the union
of the mappings is also a mapping. It follows from this that two mappings with disjoint domains
always fulfill the corresponding condition. Let Ω1 and Ω2 denote the two sets of mappings that
have been obtained through the evaluation of two respective graph patterns over a dataset. The
join of these mappings is defined by the union of compatible pairs of mappings [185] (see Eq.
3.4).

Ω1 ./ Ω2 = {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 are compatible mappings} (3.4)

Conjunction, as well as other types of advanced pattern matching, enables a wide variety of
expressive queries. These query options are useful when obtaining data from RDF graphs. It
is one of the reasons why the retrieval of information from LOD repositories bears excellent
potential for recommendation tasks (Sect. 3.2.4). The following sections will describe the
advantages of LOD in more detail.

3.2 Opportunities of Linked Open Data for

Recommendation Tasks

3.2.1 Openness

As outlined before, limited access to high-quality data is one of the key problems of RS tech-
nologies. Users are often either reluctant to provide ratings or do not share enough preferences
with other users in the database (data sparsity). A possible workaround for these problems
would be to base recommendations on metadata information of potentially relevant items exclu-
sively by applying a content-based approach. Thus, automatic suggestions could be decoupled
from rating data. However, metadata might also be sparse or of low quality, such that the CB
algorithm produces unfitting or biased recommendations.
The LOD cloud contains rich information sources from various domains. Recommendation en-
gines can use these data sources without being hindered by cost, technological or legal barriers
that might otherwise prevent access [176]. Since LOD datasets utilize standard protocols of the
document web [119], technological openness is guaranteed. Any organization can publish and
interlink data on the Internet in a machine-readable format. Additionally, the requirement to
publish data under an open license ensures free of charge usage [32,176]. While many datasets
do not have a license, the majority of datasets still adheres to the beforementioned Linked Data
publishing principles [215]. Hence, the LOD cloud in its current state can be described as an
open data web. This characteristic might be especially helpful for organizations who do not
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have the time or funds to maintain a high-quality database. Thus, even small online retailers
might be able to offer helpful suggestions. Thereby, the application of Linked Open Data could
potentially help to level the playing field in e-commerce.

3.2.2 Comprehensiveness

Over the last decade, the LOD cloud has grown into a giant interconnected knowledge graph
containing billions of triple statements on a wide range of domains both within and across
datasets [104]. One of the most prominent examples of comprehensiveness of a single dataset
is probably DBpedia. It started as a grassroots movement that published data from Wikipedia
in machine-readable format [22, 188] and is now one of the biggest cross-domain datasets in
the LOD cloud [148]. The online encyclopedia Wikipedia is the largest reference site on the
Internet. As of March 2017, the platform listed more than 70,000 active contributors and 41
million articles in more than 290 languages. Contributors write and edit entries collaboratively,
such that chances are higher that articles cover a wide range of domains. Researchers found
out that the crowd-based approach of the Wikipedia can compete with the centralized editing
of the Encyclopedia Britannica. This finding was made in 2005 when Wikipedia was still in an
early state and contained only 1% of the content it contains today [90]. Even if one assumes
that the massive growth led to poorer article quality during the past years, the sheer quantity of
information outperforms any centrally edited cross-domain reference source. It is this quantity
and comprehensiveness that qualifies Wikipedia as a tremendously useful source for recom-
mendation retrieval. Ten years ago, data from Wikipedia articles could only be retrieved by
performing full-text searches and were thus hardly accessible for CB RS.
Now, it has become possible to query Wikipedia data in a database-like fashion because of the
DBpedia project. The project extracts Wikipedia content by automatic identification of markup
snippets from full texts, infoboxes, categories or geo-coordinates which are attached to the ar-
ticles. The data is expressed in RDF [22, 144]. By these means, the project can keep up with
the steady growth of Wikipedia. DBpedia has evolved into a large-scale knowledge graph com-
prised of structured multi-domain and multi-lingual data resources. The 2014 release contained
more than 3 billion triple statements in 125 languages describing things from a wide range
of domains. The English version holds machine-readable descriptions for 4.58 million items.
Among them, the most frequently used item categories are persons, places, disease types and
creative works [22].
Besides serving as a data mirror of Wikipedia articles, DBpedia is a central interlinking hub
within the Linked Open Data cloud [144]. It is connected to all kinds of LOD datasets from var-
ious domains by more than 66 million incoming and outgoing links. However, DBpedia is not
the only cross-domain dataset in the LOD cloud. Others are also based on Wikipedia (e.g., Free-
base by Google [85] or YAGO by the Max Planck Institute for Computer Science [258]). Ad-
ditionally, there exist general-purpose collections, such as the Integrated Authority File (GND)
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of the German National Library, which is a registry for persons, organizations, events, topics or
geographic information [88].
In addition to cross-domain datasets, there are all kinds of domain-specific collections in the
LOD cloud, which could potentially serve various recommendation scenarios. In 2014, Schmacht-
enberg et al. identified eight significant domains as being most prevalent in the data web besides
the cross-domain datasets [215]. Table 3.3 lists these domains and some example datasets ac-
cordingly.

Table 3.3: Overview of LOD domains in reference to [215]
Domain Examples
Cross-Domain DBPedia, Freebase, YAGO, GND
Geography GeoNames, FAO geopolitical ontology
Government Eurostat RDF dataset, World Bank Linked Data, data.gov.uk
Life Sciences MeSH Thesaurus, Gene Ontology
Linguistics WordNet, Lexvo
Media New York Times LOD, DBTune
Publication EconStor, AGRIS, data.bnf.fr
Social Networking statusnet-quitter, statusnet-fragdev (GNU social)
User-generated Revyu, flickrTM wrappr

For instance, in the geography domain, RDF collections characterize geographic entities by la-
bels and geocoordinates (e.g., GeoNames) [88]. Others relate geopolitical terms to each other
(e.g., the geopolitical ontology of the Food and Agriculture Organization of the United Nations
[FAO]) [89].
Governmental datasets were published by federal or local authorities (e.g., data.gov.uk) or by
intergovernmental organizations (e.g., the Eurostat RDF dataset or World Bank Linked Data).
Often, they contain statistical information.
Life sciences collections typically describe biological entities from the subfields of medicine,
zoology or biotechnology [215]. Prominent examples in this category are the Medical Subject
Headings (MeSH). They serve as a thesaurus for indexing biomedical publications [46]. An-
other example from the life sciences domain is the Gene Ontology (GO). It is a knowledge
representation system that was developed to describe how genes determine biological func-
tions [87]
Other endeavors make linguistics resources publicly available. For instance, WordNet is the
LOD version of an important lexical-semantic resource for the English language. It includes
over 117.000 concepts [64]. Another undertaking of LOD publishing in the linguistics domain
is Lexvo. This project offers word expressions in different languages and links them via seman-
tic relations [145].
In datasets from the media domain, LOD resources describe movies, music, news-related enti-
ties or TV and radio programmes. A typical repository for news items is the New York Times
dataset. The dbtune.org collection is a useful reference source for music information [215].
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Bibliographic collections that contain publication metadata constitute another category of the
LOD cloud. Often, they were produced by transferring library catalogs to RDF [188,228]. The
bibliographic dataset of the National Library of France (data.bnf.fr) is a prominent example in
this category. By this means, the general public can benefit from nationally funded administra-
tion activities [2]. While library-based RDF descriptions often refer to printed documents, there
are also collections that were directly derived from online document servers. For instance, the
EconStor LOD dataset contains bibliographic information of the corresponding Open Access
repository for papers in economics and business studies [79]. The LOD version of AGRIS is
an example of a dataset, which is comprised of bibliographic descriptions for both printed and
online material. AGRIS is one of the most extensive collections of references for agricultural
publications. It contains bibliographic data for more than 5 million records. This data has been
collaboratively generated by various agricultural information providers worldwide [12].
Crowd-based datasets were also gathered from open social networking sites, such as GNU-
social (i.e., formerly known as statusnet). The Linked Data cloud contains several social mi-
croblogging graphs from servers running statusnet/GNU-social software [92].
Some RDF collections contain user-generated content. An example in this category is the LOD
edition of the site revyu.com, where users can write reviews [203, 215]. Another representative
dataset of user-generated content is „flickrTM wrappr“. It links DBpedia concepts to photos on
Flickr [28].
The previous examples illustrated the topical diversity of the web. It covers a wide range of
domains and subdomains which can potentially be applied to many information needs and rec-
ommendation requests.

3.2.3 Timeliness

The decentralized structure and the open technology stack of the LOD cloud are essential pre-
conditions that enable publishers to update their data frequently. Providers might either syn-
chronize collections with their local databases or directly publish new data. Just as the WWW
architecture has accelerated the pace of document publishing, Linked Data principles provide
a suitable framework for frequent update cycles of RDF repositories. This infrastructure facili-
tates the generation of relevant and up-to-date content-based recommendations from fresh data
sources. The tremendous growth of the LOD cloud during the past decade might be an indicator
that LOD collections are being frequently updated already. Nevertheless, there are two signifi-
cant limitations to this assumption. One is that, as the LOD cloud evolves, data sources change
and so do RDF links. Links, especially those between different datasets, can become outdated.
Even though the architecture of the web is relatively tolerant to this, an overload of dead links
can prevent unhindered data consumption [38]. Another limitation is that organizational sur-
roundings and software tools for RDF conversion and web-based data publishing are not yet
as advanced as the processes and software systems that help to generate web pages. Within
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the WWW ecosystem there exist all kinds of tools, such as blog software or content manage-
ment systems, which facilitate web-based online publishing. For LOD, on the other hand, each
organization has its own approach and frameworks in place [12, 22, 144, 173]. Processes and
software tools for LOD generation and maintenance are not yet standardized and thoroughly
explored. Even though the LOD cloud provides the necessary preconditions for timely data
updates, its full potential has yet to be realized.
Nevertheless, there already exists a software system which accelerates the process of auto-
matically extracting and publishing RDF data on the web. It is called „DBpedia Live Ex-
traction Framework“. It tackles the tension between the frequent update cycles of Wikipedia
and the slow and laborious conversion to RDF. On average, Wikipedia articles get revised
3.3 million times per month. The framework enables live synchronizations with these edits.
Therefore, it processes the changes of the Wikipedia update stream in an ad-hoc fashion and
propagates these changes to a repository containing the latest DBpedia version. Through this
piecemeal approach, the DBpedia is kept updated without imposing a substantial delay for
changes [144,169]. The opportunity to use machine-readable data snippets of recent Wikipedia
articles has excellent potential for recommendation tasks. For instance, an online retailer could
enhance information on the newest items with additional information from the knowledge
repository. It is likely that the retailer can enrich his data with the most current Wikipedia
information without having to tie up too many of his human resources for data maintenance
tasks.
In summary, although LOD datasets do not by nature contain the most current information on
any topic, the decentralized and convenient publication infrastructure of the data web enables
frequent updates, which are a prerequisite for content-based recommendation retrieval on fresh
data sources.

3.2.4 Data Expressiveness & Inference

The previous sections have shown that the LOD cloud has evolved into a massive knowledge
graph. While classical relational databases organize data through tables, columns and foreign
key relationships, graph-based RDF storage approaches are more flexible, since entities can link
to one another in various ways. This also has implications for query processing. While a rela-
tional database has to perform numerous resource-intensive join operations to access multiple
tables, link-based queries over graphs are often more efficient [44].
SPARQL is the standard query language for extracting data from RDF triple stores. As a graph-
based language it is well suited to pose highly adaptive queries, which might be useful for
RS tasks when users have specific information needs. For illustration purposes, consider the
following example (Example 1):

Example 1. Suppose an online shop customer is in search of female rappers from European

countries. A relational database query for this request requires a profound knowledge of the
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underlying schema. Additionally, the product catalog of the retailer might be primarily based

on a search engine index (e.g., as in Amazon’s product search [205]). In this case, it is likely

that the request cannot be matched with the attribute-level metadata in the index. For the given

query, this can be exemplified by looking at the usage constraint of requiring music acts to be

European female rappers. It is more likely that the musician is associated with her country of

origin, rather than with a particular continent. Thus, the query might not produce any search

results. Hence, a SPARQL-based approach might be a useful alternative to improve search

results for this information need. The corresponding query illustrates this example (Listing

3.3):

Listing 3.3: Expressive SPARQL query
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
PREFIX dbc: <http://dbpedia.org/resource/Category:>
PREFIX dbp: <http://dbpedia.org/property/>

SELECT DISTINCT ?rapper
WHERE {
?rapper dct:subject dbc:Female_rappers .
?rapper dbp:origin ?subject .
?subject skos:broader* dbc:Europe .
}

The request matches not only directly linked item features, but also the surrounding graph

structure of the item in question. The middle part of the last triple statement contains a prop-

erty path (skos:broader*) that marks a sequence of properties of arbitrary length. By

these means, the query processor can retrieve different possible routes from one resource to

another [218]. The property path does not require precise knowledge of the RDF graph but

can match different versions of it. At the same time, the query defines a precise feature (i.e.,

dbc:Female_rappers) to identify suitable items.

The ability of SPARQL to express precise constraints as well as parts that invoke matchings of
different triple patterns helps to query RDF graphs more extensively. In the given example, the
property paths facilitate the generation of a more comprehensive result set than simple querying
of item-level metadata. The LOD technology stack does not only provide options to query ex-
isting graph patterns but also enables inference of additional facts from available data sources
by making use of ontologies that sit on top of RDF. For instance, RDFS is a light-weight ontol-
ogy language which allows defining classes and subclass relations as well as class assignments.
With RDFS it is also possible to declare domains and ranges for subjects and objects of a triple
pattern [37]. By these means, RDFS ontology declarations can be used to infer additional triple
statements. Thus, a more comprehensive RDF graph can be generated by obtaining its so-called
RDFS closure. An example RDFS rule is shown in Equation 3.5. This example was taken from



38 3.2 Opportunities of Linked Open Data for Recommendation Tasks

a survey on LOD reasoning by Polleres et al. [190].

(?s, ?p2, ?o)← (?p1, rdfs:subPropertyOf, ?p2), (?s, ?p1, ?o) (3.5)

The antecedent of the rule declares that whenever a property ?p1 occurs in a triple statement
(?s, ?p1, ?o) and it is a sub-property of another property ?p2, the rule’s consequent is that the
super-property ?p2 can also be assumed to be a property in the same triple statement.
Reasoning over such rules marks an interesting extension for query-based retrieval. For RS,
rule engines or SPARQL query rewriting techniques could be applied to overcome issues of
data incompleteness both in data repositories and in user queries. Example 2 illustrates this
argument:

Example 2. Suppose a user is going on a city trip to London. He has already skimmed through

his tour guide in search of points of interest (POI) that might be worth a visit during the stay.

Although the tour guide lists exciting locations, the user still would like to obtain far more

suggestions for POIs that are not as frequently visited by other tourists. Therefore, he issues a

SPARQL query against DBpedia asking for all places that are known to be located in London

and are thus interesting enough to be mentioned by a Wikipedia article. However, by merely

using the triples patterns shown in Listing 3.4, the user will not receive a single search result.

Listing 3.4: SPARQL query for POI retrieval
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dbo: <http://dbpedia.org/ontology>

SELECT DISTINCT ?poi
WHERE {
?poi dul:hasLocation dbr:London.
?poi rdf:type dbo:Place .
}

This has to do with how DBpedia declares place-related triple statements. POIs in a city,

region or country are usually not linked to the property dul:hasLocation, but to one of

its sub-properties (e.g., dbo:city or dbo:location). By applying the RDFS rule from

Equation 3.5) additional triple statements can be inferred. While the query of Listing 3.4 would

not produce any search results, its rewritten version (Listing 3.5) returns many LOD resources

when issued over DBpedia. Hence, the SPARQL engine would retrieve further LOD resources

upon query rewriting, even though the RDFS closure of location-specific subproperty relations

is not materialized in DBpedia.

Lightweight-reasoning in the context of query formulation may positively contribute to the
quality of recommendation results. In concordance with the proposal of Polleres et al. to
conduct LOD reasoning either on small RDF subgraphs (i.e., context-dependent reasoning) or
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Listing 3.5: SPARQL query after RDFS query rewriting
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX dbo: <http://dbpedia.org/ontology>

SELECT DISTINCT ?poi
WHERE {
?poi ?p dbr:London .
?p rdfs:subPropertyOf dul:hasLocation .
?poi rdf:type dbo:Place .
}

solely with regard to a particular vocabulary/set of rules (i.e., authoritative reasoning), it is
assumed that tailoring inference rules to a specific request can help to address challenges of
scalability and vocabulary inconsistencies [190].
In this context, it is hypothesized that inference through SPARQL querying is better suited
for LOD-enabled RS than materializing triple statements as the strengths of fresh data sources
(Subsect. 3.2.3) would be undermined by the latter approach.

3.3 Challenges of Linked Open Data for

Recommendation Tasks

3.3.1 Data Quantity

Even though the LOD cloud provides interesting opportunities for recommendation tasks, it
also has some shortcomings. A system residing on top of the LOD technology stack needs to
address these issues as well. In Subsect. 3.2.2, it was explained how the vastness of machine-
readable data could be of value for recommendation retrieval. However, this abundance of data
also has a downside: The more triple statements are available, the more the recommendation
engine needs to process. Ziegler anticipated this problem even before the growth of the Linked
Data cloud took place. In his 2004 article „Semantic Web Recommender Systems“ he explains
that centralized systems have the advantage that computational costs can be estimated based on
the number of items/users in the local database [261]. They allow for restrictions on community
and item sizes when identifying neighborhoods. Such limits are critical regarding performance
since similarity calculation is usually computationally expensive. He correctly points out that a
data cloud containing millions of items can only be efficiently processed once there are suitable
filtering mechanisms available to reduce data throughput [261].
During the last decade and as anticipated by Ziegler, the LOD cloud has reached an extent
that cannot be easily handled by available recommendation algorithms. Research projects have
revealed a tremendous growth of the LOD cloud. For instance, in their 2014 report on the
adoption of Linked Data best practices, researchers of the „LOD cloud diagram“ project stated



40 3.3 Challenges of Linked Open Data for Recommendation Tasks

that the data web at that time consisted of more than 8 million resources [215]. The LODStats
project, on the other hand, has found more than 54 million entities from its recent data crawl in
2016. It remains unclear, both whether the terms „resource“ and „entity“ refer to the same type
of IRI declaration and whether these numbers were derived from analyzing the same datasets.
However, it can still be assumed that the LOD cloud has considerably grown since its beginnings
in 2007. The number of available datasets backs this assumption. From 2007 to 2017 the
amount of LOD collections has risen from a total of 12 datasets in 2007 to 1.146 datasets in
2017 with an average growth rate of 48, 5% [148].
While the number of resources and datasets serves as an indicator for the state of the LOD cloud,
this information can bias quantity estimation, given the fact that a single IRI can occur multiple
times within and across datasets and that dataset sizes can vary tremendously. Therefore, the
number of triple statements in the current data cloud is important as well. For this purpose,
the LODStats project determined some figures. In 2016, within the course of their latest data
crawl, the researchers identified more than 290 billion triple statements [148]. Whereas some of
these statements might as well be duplicates, this number is still impressive when considering
LOD-enhancement for RS.
Against the background of the data quantity in the LOD cloud, a LOD-enabled system would
have to identify suitable strategies to handle data throughput efficiently.

3.3.2 Data Heterogeneity

A LOD-enabled recommendation engine will also have to tackle the heterogeneity of RDF
resources. For instance, item descriptions can contain diverse elements which need to be
treated differently by the engine to calculate item-to-item similarity values [1]. LDRS re-
searchers have proposed methods for handling common data types in the LOD cloud. However,
these methods imply additional challenges. For instance, while IR metrics can easily consume
IRIs [66, 67, 165, 186], string literals need to undergo natural language processing (NLP) oper-
ations, such as tokenization, stemming and character removal before any similarity metric can
be applied [206]. In addition to well-structured IRI resources and text data, numerical values
can also be part of item descriptions. The choice of an appropriate similarity metric and corre-
sponding preprocessing operations depends on the nature of the particular item feature [186].
As such, the LOD-enabled engine would have to handle data type diversity. However, this can
cause problems in the workflow as item features might require different processing steps and
individual similarity values need to be aggregated accordingly.
The second problem regarding LOD heterogeneity concerns the diversity of metadata models,
which can be attributed to the web of data’s history of origin. The LOD project started as a
grassroots movement of research labs and organizations. Being decentralized and having been
collaboratively built by different parties, the LOD cloud offers a wide variety of data mod-
els [38]. While RDF is the central building block of the LOD cloud with more than 98% of
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datasets using it, it does not contain any domain-specific terms [215]. Additional vocabularies
need to provide them instead. The LOD community strongly encourages usage of well-known
terminologies, such as the Friend of a Friend Ontology (FOAF), the Simple Knowledge Or-
ganization System (SKOS) vocabulary or the set of expressions of the Dublin Core Metadata
Initiative (DCMI) [104]. These vocabularies are among the ten most widely used terminology
sets within the LOD cloud [215].
Even though some vocabularies have become de-facto standards, there still exist numerous
datasets that apply different vocabularies or proprietary terms to describe items [38]. Within
the course of their latest web crawl, the researchers of the LODStats project identified 2593
different vocabulary namespaces in the LOD cloud [150]. This is a tremendous amount of vo-
cabularies to consider when intending to develop a generic recommendation framework that can
process sources from different LOD datasets and repositories. Item features have to be selected
and processed to generate CB suggestions. Because of the various vocabularies in place, fea-
ture data might have been declared according to diverging conventions, e.g., through different
properties. For instance, the LOD project Bio2RDF, which provides bibliographic metadata
for publications from the life sciences domain, utilizes the property dct:title to describe
a resource’s title [36]. In the LOD repository EconStor, on the other hand, a title is either
declared with the help of the property rdfs:label or with the property dc:title. This
small example alone illustrates that datasets may use various vocabularies for the same entities
and that different namespaces can describe semantically similar item features. Additionally,
the LOD cloud contains resources that describe real-world entities from a wide variety of top-
ics. As a result, typical item features and the range of allowed data types for these features
will vary for different item types. For instance, according to the DBpedia ontology, a person
(i.e., dbo:Person) has a completely different set of attributes than a movie resource (i.e.,
dbo:Film). Whereas a person should have a dbo:birthDate or a dbo:birthPlace, a
movie will be characterized by its director or actors that are associated through properties, such
as dbo:director or dbo:starring [61, 138].
Due to the heterogeneity of the LOD cloud, a generic approach of similarity calculation will
have to be identified to be able to execute recommendation workflows for different datasets and
target domains.

3.3.3 Data Distribution

The challenge of distributed LOD collections is related to the issue of data heterogeneity. Since
the data web resides in over 2973 datasets which can either be downloaded or accessed via
SPARQL endpoints, data sources are spread over numerous datasets and repositories [149].
While it is a strength of the LOD technology stack that it enables decentral publication of data,
this imposes challenges for data processing. For an engine to produce automatic suggestions
based on decentralized repositories, triple statements should be unified during the process of
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recommendation retrieval. One solution would be to collect, preprocess, index and store the
data into a central triple store. This materialization-based approach facilitates fast query re-
sponse times at the expense of data freshness. However, it leads to high preprocessing work-
loads and undermines the original vision of a web that can be accessed on-the-fly [240].
Therefore, in the context of SPARQL querying, there exist other approaches that facilitate multi-
dataset access. One approach is that of client-side virtual data integration, where heterogeneous
data sources are translated into an integrated local target representation. Client-side data inte-
gration is especially suited for distributed datasets that contain many proprietary terms or IRI
aliases. Differing terms among datasets are matched and replaced with an unambiguous target
expression in the integrated local schema, such that resources can be queried without explicit
knowledge of the different underlying schemas. By this means, aspects of data translation and
identity resolution can be addressed. The most prominent example of virtual LOD integration
is the Linked Data Integration Framework (LDIF). The web-based systems group at the Freie
Universität Berlin developed this framework during a research project [217]. It applies the R2R
Mapping Language to translate different terms into a unified target representation. However,
the generation of LOD mappings and subsequent integration in a local schema is cumbersome
and can only be partly automatized [39].
It might not be necessary to maintain a local unified representation for certain data sets and ap-
plication scenarios. Rather, queries can be executed by solely relying on the individual schemas
that are present within the distributed repositories. Currently, the LOD cloud contains bil-
lions of triple statements from various domains. As previously mentioned, there will be cases
where the same IRI identifiers are found in different datasets. Additionally, at least in some do-
mains, the web of data is highly connected through cross-dataset relations (e.g., owl:sameAs,
skos:exactMatch), which are often referred to as entity resolution links [215,217]. Cross-
dataset links and matching IRIs can be processed to query remote repositories on-the-fly with-
out requiring any preprocessing operations. These so-called distributed query processing (DQP)
approaches decompose a request into its subparts and issue them against the respective reposi-
tories [240].
Distributed SPARQL querying can be categorized into two groups, namely link traversal and
federated systems. Link traversal approaches are based on IRI access and runtime retrieval
[200]. Link traversal systems profit from key Linked Data design principles, where IRI identi-
fiers should be dereferenceable through the HTTP protocol, such that an HTTP GET operation
provides useful RDF descriptions and additional links to other IRIs. By this means, an agent
can navigate from entity to entity [32]. LOD traversal shares features of common web crawling,
since it is facilitated by the same technologies. One central advantage of this access method is
that it can retrieve the most up-to-date resources currently available in the LOD cloud. Never-
theless, this comes at the cost of response times, since the dereferencing of highly connected
IRIs might lead to an overload of resource accesses. Additionally, in scenarios that involve
loosely connected resources, dead ends will be reached too soon, even though there still exist
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more resources that would fit a query [240].
The other category of DQP systems retrieves pre-indexed data from remote triple stores through
sending SPARQL queries to different endpoints, instead of traversing LOD resources [198,200].
Federated querying usually diminishes response times, but may sometimes come at the cost of
slightly outdated data sources. However, as of 2017, the SPARQL endpoint infrastructure is
quite advanced. Even though only a small proportion of linked datasets is accessible via re-
mote RDF stores [215], the vast majority of triple statements can be retrieved from SPARQL
endpoints [149]. This may seem contradictory at first, but the assumption that the largest and
therefore most prominent datasets are published through endpoints, helps to gain an understand-
ing of the nature of the current data web as a rich information space that can be easily accessed
through Application Programming Interfaces (API) for RDF data.
Therefore, of all the presented data distribution methods, the approach of federated querying
seems to be the most promising in terms of computational cost and feasibility [200]. The
importance of this approach is further underlined by the fact that the W3C has issued a rec-
ommendation for a SPARQL 1.1 federation syntax [191].
Bearing the prominence of federated querying in mind, it must be noted that these approaches
can only execute SPARQL queries over triple stores. What still remains unclear, however, is
how federated data repositories can be integrated into the context of recommendation retrieval.
Clearly, there are already effective approaches for extraction and unification of LOD resources
in place, but suitable methods for integrated similarity calculation and resource ranking still
have to be identified.
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4 Requirements Analysis

This chapter presents a requirements specification that is based on the limitations of existing
approaches to recommendation retrieval as well as on the characteristics of Linked Open Data.
It will elaborate on the determining factors of developing a specification for a LOD-enabled RS
(Sect. 4.1). It defines functionalities that are aimed at making the most of LOD for recommen-
dation tasks, while at the same time addressing the challenges of RDF data (Sects. 4.2 and 4.3).
The requirements specification also takes into account qualitative performance aspects since
the to-be-developed engine should improve and enhance existing approaches to recommenda-
tion retrieval (Sect. 4.4).

4.1 Characteristics of a Requirements Analysis for a

Linked Open Data-enabled Recommender System

The central objective of this thesis is to develop a recommendation engine that addresses the
strengths, weaknesses and technological characteristics of the LOD cloud. Standard software
engineering methods are applied to ensure that the to-be-developed system is fit for purpose.
The systematic approach is chosen to minimize the risk of designing an engine with useless
functionalities. The previously identified opportunities and challenges of LOD processing will
guide the requirements elicitation process, thereby making sure that the final system reflects the
characteristics of Linked Open Data as well as the requirements of recommendation tasks and
potential stakeholders [118].
The term stakeholders refers to all persons who influence the system specification. It includes
individuals that use, operate or run a system (e.g., end users, administrators, developers or soft-
ware testers) [209]. In the requirements elicitation process at hand, however, aspects of system
maintenance will not be addressed because they do not reflect the main purpose of this thesis.
The analysis is carried out by considering potential system users at the back- or front end of
the LOD-enabled RS, instead. An end user may be a visitor or customer of an online platform
(e.g., an online shop or a web-based information platform). A backend user is an administra-
tor that adapts recommendation workflows or retrieval patterns to recommendation scenarios.
Therefore, besides addressing all technical aspects of LOD, the set of requirements should con-
tain specifications targeting the ease of retrieval as well as the nature of suggestions, since the
engine should provide an added-value regarding recommendation generation and quality.
Before implementation, general goals have to be broken down into specific requirements that
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address certain characteristics of the recommendation engine. A requirement is a feature or
ability which is needed to solve a problem or to reach a goal. It should be unambiguously for-
mulated in written form such that requirement fulfillment can be checked at a later point of the
development process. This verification is necessary to ensure that the recommendation engine
meets the specified demands [118]. For some requirements, a prototypical implementation will
suffice to demonstrate the feasibility of the feature, whereas for others a more profound analysis
needs to be conducted (e.g., measurement of computational times) [209].
According to the Software Requirements Specification (SRS) of the Institute of Electrical and
Electronic Engineers (IEEE), requirements can be divided into the following categories: func-
tional, performance, interface, design, process and non-functional requirements. Of these cat-
egories, the ones referring to interface, design, and processes will not be looked at, as they
concern minor aspects in the context of the software engineering process at hand. Since the
main focus of this thesis is to develop a system that can improve existing approaches through
LOD usage, interface and design requirements should be the focus at a later stage of the imple-
mentation. Requirements in the process category will not be looked at because they refer to the
conduction of the software engineering process (e.g., by demanding that the process complies
with national legislation) [118].
This requirements analysis will focus on functional, performance and non-functional require-
ments since they reflect the research agenda of this thesis. Functional requirements refer to all
specifications that state the tasks the system needs to perform. From a quantitative perspective,
performance requirements specify the speed or effectiveness of certain operations that must be
guaranteed by the system. Non-functional requirements refer to all specifications that are re-
lated to quality aspects or human factors. By defining requirements in this category rather than
specifying what should be done, it is stated how the engine should perform its tasks. Features
can be expressed by using characteristic terms, such as flexibility, portability or user satisfac-
tion [118]. In the following subsections, requirements for each category will be defined and
described in detail.

4.2 Functional Requirements

4.2.1 Requirements to Similarity Detection

Sections 3.2 and 3.3 have outlined strengths and weaknesses of LOD for recommendation tasks.
Suitable approaches to similar resource retrieval should be identified to take advantage of these
characteristics for content-based suggestions. CB systems process text data and thus resem-
ble information retrieval (IR) systems. In most standard IR systems, however, query results
are generated from a closed document collection. The engine usually indexes these documents
before live application to facilitate fast responses [158]. Since fast processing is a desirable
feature in any retrieval context, the engine should be able to generate recommendations quickly.
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However, since resources are not contained in closed collections, but are available from open
repositories, other retrieval strategies have to be identified. Pre-indexing is time-consuming,
and it might undermine the timeliness aspect of LOD. Therefore, the system should perform
ad-hoc similarity calculations. Another reason for this requirement is that the LOD infrastruc-
ture should be remotely accessible by small application providers since they might not be able
to afford the human and technical resources to set up and maintain an index of several LOD
repositories. Hence, RS providers should be able to retrieve recommendations for an input
user profile through an API. The ability to generate on-the-fly recommendations has another
advantage: While traditional retrieval systems mostly deal with attribute-level metadata [93],
the graph structure facilitates expressive filter conditions which cannot be as easily indexed.
It is thus more promising to combine similarity calculation with graph-based constraints in an
ad-hoc fashion to allow for flexible customizations at runtime.

Requirement 1 (RQ1: On-the-fly similarity calculation from LOD repositories). The system

shall retrieve similar items to a profile on-the-fly from a LOD repository. A user profile can

contain one to many preferences for items (LOD resources), which are uniquely identified by an

IRI.

The vocabulary heterogeneity of the LOD cloud (Subsect. 3.3.2) hinders broad applicability
of recommendation algorithms. For the similarity calculation to be executable over different
collections, metadata descriptions should conform to the same data model. Since some LOD
vocabularies have become de-facto standards by now, they should be applied to overcome prob-
lems of data heterogeneity.

Requirement 2 (RQ2: Applicability to numerous LOD datasets (breadth of retrieval possi-
bilities)). The recommendation engine shall be able to perform similarity calculation for a

significant amount of LOD datasets and a wide range of domains. Similar resource retrieval

shall rely on de-facto standard LOD vocabularies and shall not be impeded by the proprietary

specificities present in datasets.

Besides the aspect of broad applicability, the similarity detection procedure should also be able
to use available knowledge sources more extensively. Since the framework is required to be
executable over various datasets by relying on a few vocabularies, some form of information
loss will have to be tolerated. Therefore, despite its generic applicability, similarity calculation
should be adaptable such that users can browse collections from different angles. The intention
is to develop a method that can re-rank resources according to various user inputs concerning
the depth of similarity analysis. This requirement aims at enabling users to browse knowledge
graphs more comprehensively.

Requirement 3 (RQ3: Flexible similarity detection - Applicability to different granularity lev-
els of similarity (depth of retrieval possibilities)). The system shall provide recommendations
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according to different item similarity thresholds. Therefore, resources shall be re-ranked, when-

ever specifications regarding similarity values change.

4.2.2 Requirements to Linked Open Data Integration

Despite aspects regarding similarity calculation, the technological infrastructure of the LOD
cloud has to be taken into account as well. In Subsection 3.3.3, it was discussed that the dis-
tribution of RDF collections represents an obstacle for generating recommendations that ac-
curately reflect the current state of the data web. In this context, two different strategies of
distributed processing were introduced, namely federated endpoint querying and link traversal.
It is hypothesized that the points made in favor of SPARQL endpoint queries over link traversal
strategies can be transferred to the context of LOD-enabled RS as well. Thus, the ability to
perform SPARQL query processing over potentially remote and federated endpoints is a vital
prerequisite for on-the-fly recommendations because it creates convenient retrieval options for
RS administrators and users.

Requirement 4 (RQ4: SPARQL endpoint integration). The system shall provide an interface

to openly accessible SPARQL endpoints. It shall retrieve, extract and process data from these

endpoints to identify similar items for a given user profile.

The SPARQL API requirement only refers to the aspect of similarity calculation. In addition
to that, it is equally important to specify a system component that integrates user filters into
the process of recommendation retrieval. Since the expressivity of the RDF data model bears
excellent potential for personalizing requests, a LOD-enabled RS should provide a feature that
facilitates the formulation of powerful user queries as well. For this purpose, user constraints
should be expressible via graph patterns that the engine then maps to RDF resources. A query
language that utilizes SPARQL 1.1 syntax elements could meet this demand. SPARQL applies
graph pattern matching and is thus suited for expression of highly individual filter conditions
[192]. By this means, user constraints can be combined with similarity calculation during the
process of metadata extraction from SPARQL endpoints. The provision of a query language
requires processing units (i.e., a parser and a compiler) which verify the syntactic and semantic
correctness of queries and process the SPARQL-like language constructs. By these means, RS
administrators and users can formulate recommendation requests that can be answered right
away.

Requirement 5 (RQ5: Query language and processing units to formulate and execute recom-
mendation requests with SPARQL syntax elements). The recommendation engine shall provide

a language that can express SPARQL-based queries such that recommendation requests are

executable over openly accessible SPARQL endpoints. The language shall provide constructs

to formulate preferences and filter conditions (i.e., constraint-based retrieval). In conjunction
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with the query language, the system shall provide a parser and a compiler to process recom-

mendation requests correctly.

While Requirement 5 requests that the language is able to formulate recommendation queries,
it does not define the extent of its expressiveness. Even though a pre-selection of items through
SPARQL filters may already enable advanced requests, retrieval possibilities are not thoroughly
exploited by compliance to this specification. Instead, queries over RDF graphs might be even
better suited for retrieval, when an engine can combine workflow steps of graph-pattern match-
ing and similarity calculation at different stages of the retrieval process. SPARQL-like filters
should be applicable for user profile generation and pre- and post-selection of LOD resources.
Depending on the workflow stage, reduced item sets could be either fed into the similarity
engine (prefiltering) or joined with similar items past to the process of similarity calculation
(postfiltering). The possibility to flexibly combine these techniques facilitates advanced recom-

mendation requests that are not yet expressible with existing LOD-enabled RS. Naturally, both
the parser and the compiler of the query language need to be able to process advanced queries
as well.

Requirement 6 (RQ6: Ability of the query language to express advanced recommendation
requests). The query syntax shall contain language constructs such that advanced recommen-

dation requests can be formulated. The term „advanced“ refers to the ability of the language

to define combinations of user constraints and similarity calculation at different stages of the

retrieval process. Hence, the language shall contain constructs that apply SPARQL-like filter

patterns for profile generation, pre-selection of metadata descriptions or postfiltering of similar

items.

4.2.3 Requirements to Virtual Data Integration

Challenges of LOD-enabled retrieval concerning the distributed nature of the web of data have
already been outlined in Subsection 3.3.3. Therefore, the system should provide retrieval tech-
niques that generate cross-repository recommendations. Data integration strategies affect differ-
ent features of the system. One is the query language, which needs to provide syntax elements
that trigger distributed resource retrieval. Additionally, the recommendation engine should fa-
cilitate adaptation of recommendation requests to the characteristics of other datasets than the
default dataset. This requirement assumes that each running instance of the to-be-developed
system is configured to generate recommendations from a specific SPARQL endpoint contain-
ing a major RDF dataset (e.g., DBpedia). By these means, data models and vocabulary speci-
ficities are familiar to the user (e.g., to the system administrator). Additional LOD resources
should be extractable from further SPARQL endpoints which provide access to related datasets.
Hence, it becomes possible to generate recommendations from other repositories to supplement
results whenever this is necessary. The engine should generate cross-repository recommenda-

tions through basic techniques in which a user profile and potential filters guide the retrieval
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process. More advanced retrieval patterns, such as distributed preference queries or postfilter

requests (Requirement 6) are not covered by the specification at hand because they would, in
turn, require advanced data integration techniques. Since the main focus of this thesis is the
generation of customizable LOD-enabled on-the-fly recommendations, cross-repository sug-

gestions are a subtopic, for which only preliminary investigations will be conducted. However,
even simple cross-repository requests require adjustments in terms of query language constructs
(Requirement 7) as well as similarity calculation (Requirement 8).

Requirement 7 (RQ7: Ability of the query language to formulate cross-repository requests).
The query syntax shall provide language constructs to express cross-repository queries. In these

queries, the user profile refers to items from the default source repository, based on which the

retrieval of similar items from a specified target repository is triggered.

Requirement 8 (RQ8: Ability of the recommendation engine to process cross-repository re-
quests). Upon receiving a parsed cross-repository query, the engine shall direct requests for

metadata descriptions to the specified target SPARQL endpoint and generate recommendations

based on this data.

4.3 Performance Requirements

In any recommender system, computational performance is critical. While for CF systems,
the number of required operations is often reduced by low profile overlap among users, item
matrices in CB systems are usually not sparse. Hence, the engine has to determine item-to-
item similarities for almost every item pair, as live systems need to provide fast response times.
Therefore, similarity values are often calculated offline to be quickly available at runtime [152].
However, this undermines ad-hoc queries since filter constraints have to be known beforehand.
In these cases, the recommendation model is „hard-wired“ into the system and users cannot
customize their requests [250]. However, as user requirements cannot be foreseen, recommen-
dation models should be adaptable at runtime as was specified in Section 4.2 .
Hence, efficient and scalable processing strategies have to be identified. Query-based RS may
not operate as fast as RS, which utilize pre-computed similarity values. However, the engine’s
response times should still be reasonable. They do not only depend on the system, but also on
the network load and the performance of the (remote) SPARQL endpoints. Assuming that these
factors may vary, the actual time that is required to generate recommendations should be kept
as short as possible. Regardless of the external aspects, the workload of the engine is subject to
the size of the user profile and the size of the queried datasets. User profiles can contain many
items, based on which the engine assembles the final result list. Therefore, response times for a
separate single-item request should be on the scale of seconds to keep processing times within
a manageable time span.
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Requirement 9 (RQ9: Ability of the recommendation engine to provide quick responses to
single-item on-the-fly recommendation requests). The recommendation engine shall answer

single-item requests on average within a couple of milliseconds. Additionally, response times

shall not be longer than a few seconds for queries that involve larger datasets.

Given the fast growth of the LOD cloud during the last decade (see Sect. 3.2.2), the recom-
mendation engine should be scalable to increasing data sources. In this context, response times
should not grow exponentially when new RDF triples are added to a dataset. Instead, the system
is expected to adapt reasonably to changes, preferably with linear growth of response times.

Requirement 10 (RQ10: Ability of the recommendation engine to handle large datasets well).
Response times of the recommendation engine shall increase reasonably for a growing number

of triple statements. The exponential growth of processing periods shall be avoided.

4.4 Non-functional Requirements

The IEEE Software Requirements Specification divides non-functional requirements into qual-
ity requirements and human factor requirements. Quality requirements refer to typical system
characteristics, such as portability or reusability. These requirements should already be taken
into account when specifying functional requirements. Human factor requirements refer to the
perceived outcome of a user’s interaction with the system. In general, this concerns abstract
concepts, such as safety, maintainability or user satisfaction [118].
The requirements analysis at hand primarily focuses on the aspect of user satisfaction, because
the key goal of this thesis is to develop an engine, which can process LOD data sources in such a
way, that suggestions have an added-value to the user. Therefore, the focal point of the analysis
is to invent techniques that improve common recommendation strategies.
User satisfaction can refer to different dimensions, such as to algorithmic performance or to
the usability of the interface [193]. However, in the course of this thesis, the term satisfaction

directly concerns the quality of recommendation lists (see Subsect. 7.1.4). Hence, other dimen-
sions, such as the user interface, are left out of the analysis.
The previous sections have introduced system features that refer to novel recommendation
strategies. These strategies should improve the quality of conventional content-based recom-
mendation approaches. For instance, Requirement 3 addresses the aspect of flexible similarity

detection, which focuses on enhancing possibilities of knowledge graph exploration. Therefore,
recommendations resulting from this approach should provide an added value to users.

Requirement 11 (RQ11: Ability of the recommendation engine to improve recommendation
quality through flexible similarity detection methods). The flexible similarity detection feature

of the system shall provide better recommendations, than a regular content-based strategy.
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Requirement 5 specifies that SPARQL syntax elements shall be combinable with similarity
calculation. In consequence, the application of SPARQL query constraints (i.e., constraint-

based retrieval) should lead to recommendation lists of higher overall quality.

Requirement 12 (RQ12: Ability of the recommendation engine to improve recommendation
quality through SPARQL query constraints). The possibility to formulate SPARQL query con-

straints shall provide an added-value to users. Therefore, filtered results shall be of higher

quality, than non-filter recommendations.

One of the key arguments for executing SPARQL query elements in conjunction with similar
resource retrieval is that the expressiveness of RDF knowledge graphs may enable powerful
recommendation strategies. While filtering options have already been successfully implemented
in faceted search systems, they mostly only match the direct attributes of an item [93]. However,
it is assumed that RDF-based filters provide an added-value since they can be formulated as
expressive graph constraints. By this means, query rewriting and lightweight reasoning can be
applied to infer additional facts from LOD repositories (see Subsect. 3.2.4).

Requirement 13 (RQ13: Ability of the recommendation engine to improve constraint-based
recommendation retrieval through expressive SPARQL queries). The possibility to formulate

expressive queries shall improve recommendation results. The term „expressive“ refers to filters

that go beyond simple attribute-level metadata descriptions by including the surrounding RDF

graph structure of an item. Hence, for constraint-based queries, the engine shall achieve better

recommendation results when applying expressive instead of simple user filters.

Requirement 6 specifies that the system should facilitate the formulation of advanced queries
by enabling users to apply filters at different stages of the recommendation workflow. It is
assumed that advanced query patterns can sometimes help to grasp a user’s information need
better than a simple recommendation request. According to Manning et al. the term information
need refers to a topic that is of interest to a user and is different from the actual query. The
query is the tool with which a user conveys what his/her interests are [158]. Hence, enhanced
query options might equip users with more possibilities to accurately state their preferences.
Additionally, advanced query patterns might not only be useful regarding information need
translation but could also enhance LOD retrieval possibilities to explore RDF graphs better.
Both the aspects of improved LOD navigation and information need expression are assumed
to increase recommendation quality. Therefore, the engine should be able to enhance user

satisfaction through advanced retrieval options.

Requirement 14 (RQ14: Ability of the recommendation engine to improve recommendation
quality through application of advanced query patterns). The recommendation engine shall im-

prove the quality of recommendation lists through the application of advanced query patterns

for application contexts, where either user requirements or the nature of the LOD cloud demand

enhanced retrieval possibilities.
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5 Related Work

Based on the requirements specification for a LOD-enabled RS that was detailed in Chapter
4, this chapter presents the results of a literature survey on approaches in the fields of IR,
recommender and Linked Data-enabled retrieval systems. The review takes into account the
functional requirements of the specification and determines whether they can be found in ex-
isting non-Linked Data (Sect. 5.1), or Linked-Data enabled engines (Sect. 5.2). The chapter
concludes with a summary of the most important findings and identifies the research gaps that
should be addressed by the to-be-developed recommendation engine (Sect. 5.3).

5.1 Non-Linked Data Systems

5.1.1 Search Systems

Researchers have been investigating suitable approaches to process advanced search requests
over databases for many decades. In the context of computer-aided retrieval, early systems
adopted a strategy that is often classified under the term parametric search [239]. This technique
relies on bibliographic metadata and can still be found in many online public access catalogs
(OPACs) of libraries [13, 25, 71].

Fig. 5.1: Online public access catalog (OPAC) of the Thuringian University and Regional Li-
brary (ThULB) Jena

A parametric search interface provides retrieval capabilities with which users can restrict search
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results to specific aspects (e.g., author, subject or year of publication) by using Boolean opera-
tors (see Fig.5.1). Hence, the engine matches search terms that are specified by the user against
the metadata values of the document collection and combines result sets according to the speci-
fied logical AND/OR operators of the query. However, leaving the constraint selection process
entirely up to the user may impede efficient retrieval because it is likely that users either do
not know which values to define or they might specify constraint combinations that lead to a
dead end during a search. That is why researchers have proposed utilizing faceted navigation,
where possible values for each facet are shown in the interface and thus help users to select only
constraints that do not lead to empty result sets [239].
The strategies of parametric search and faceted navigation have the drawback of not being exe-
cutable over unstructured text data. Additionally, the amount of documents has exponentially in-
creased with the evolution of large domain-specific electronic repositories (e.g., arxiv.org [19])
as well as with the tremendous growth of the WWW. Besides, users rarely utilize boolean oper-
ators. They prefer to issue keywords as their initial access point [13,25]. Therefore, researchers
developed more advanced approaches to search fulltexts [47]. Retrieval systems that enable
fulltext search are usually classified under the term „information retrieval engine“. The term
refers to any system that can identify relevant documents from a large corpus of texts whenever
a user poses a keyword query that represents his/her information need [47]. A similar definition
was proposed by Manning et al., who in their textbook on the topic characterized IR engines as
follows [158].

„Information retrieval (IR) is finding material (usually documents) of an unstruc-
tured nature (usually text) that satisfies an information need from within large col-
lections (usually stored on computers).“

IR engines primarily process documents and therefore need to provide natural language pro-
cessing (NLP) units that identify relevant terms from unstructured text data. An index is set up
with these terms, based on which user queries are answered.
One of the first steps of a common NLP workflow is the deconstruction of the char sequences
of a document into separate units. This process is called tokenization and serves the purpose of
omitting irrelevant chars, such as punctuation, as well as identifying semantically meaningful
groups of chars. In the next stage, stopword removal is performed. It encompasses the exclu-
sion of unnecessary words (e.g., „and“, „or“, „the“) which would not be of help during retrieval.
Additionally, the engine eliminates superficial term differences which would otherwise prevent
term-document matches. This process of token canonization is called normalization. Other
normalization operations concern the handling of inflectional or derivational forms of a word.
These differences can either be handled by stemming or by lemmatization. When stemming is
applied, the system simply chops off a certain number of characters at the end of the word.
Lemmatization, on the other hand, is a morphological analysis based upon which the base word
form is returned for document indexing [158].
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Upon execution of the beforementioned preprocessing steps, inverted indices are set up. An
inverted index is the most frequently applied data structure in IR engines. It matches keyword
queries with documents. The index lists document IDs for each item [47]. Upon matching
keyword terms with index entries, the system determines how similar this match is. Thus, the
system can rank search results according to relevance instead of showing an unordered set of
items. IR engines often utilize a vector space model in combination with a TF-IDF weighting
scheme (see Subsect. 2.2.2). This model represents each text document as a vector of words or
phrases based upon which the system calculates the similarity between a document and a user
query. TF-IDF weighting generates fairly good results [239].
Similarity-based document ranking is applicable to situations where users pose ad-hoc queries
to a retrieval system. However, for some domains, such as digital library (DL) search, users
might have standing information needs for which the system should be able to provide alerts or
updates that indicate which of the newly added documents fall into their areas of interest. This
kind of retrieval task can be modeled as a classification problem. Typical techniques in this
category are naïve Bayes, support vector machines and other machine learning classifiers, such
as decision trees, logistic regression approaches or neural networks [158].
However, these classification approaches are not particularly well-suited to tackle the task of
on-the-fly retrieval from LOD repositories since they require a classification model before be-
ing able to answer user requests. TF-IDF ranking, on the other hand, does not depend on model
building. Additionally, the application of IRIs allows relinquishing some of the previously men-
tioned NLP tasks of text-based preprocessing since IRIs uniquely identify resources.
Another technique from IR research is faceted search. Up until the 1990s, IR tasks could be
either carried out with exact matching of user filters and document features or by calculating
the similarity between user queries and document content. However, while the former approach
does not provide any information on the relevance of the results, the latter lacks the possibility
to filter items with regard to user preferences. Hence, faceted search systems were developed.
They provide the missing link between the dichotomic approaches of faceted navigation and
similarity-based retrieval, as they combine these techniques in a single user interface. When
utilizing a faceted search system, users typically issue a keyword query. The IR engine matches
these terms with the documents contained in the collection by accessing the inverted index of
the system. Upon having identified matching items, similarity values between the documents
and the user query are calculated for the final ranking. Additionally, for certain predefined and
typical features (i.e., facets) of the document collection, the system displays how many of the
matching results fall into each facet category [239]. This allows users to inspect a breakdown
of their search hits with regard to certain features of the retrieved items. For instance, when
searching for job postings, users can pose a query that attempts to capture the job title of the
advertisements (i.e., „software engineer“). Afterwards, they are shown a ranked list of match-
ing search results with additional filter options (e.g., city, industry, company name) and the total
number of times this value occurs among the set of selected items [93].
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Faceted search represents a powerful retrieval technique since it allows formulation of semi-
structured queries that can capture a user’s inherent information need from different angles
[239]. However, certain performance issues can occur when the engine processes multidimen-
sional data. While the generation of single-valued facets is rather straightforward and can be
facilitated by inverted index structures, the provision of multidimensional facets requires ad-
vanced indexing. For instance, to display pivot facets (e.g., the number of postings in a certain
industry among the set of matching job postings at a specified location), the search engine li-
brary Apache Solr/Lucene needs to precache facet counts. Often, the precache takes up too
much RAM and can potentially lead to performance losses. Another shortcoming of faceted

systems is that they do not facilitate the search of multiple entity types, as they apply a lim-
ited data model of documents and facets. For instance, if the company type constitutes a facet,
the job search engine can only query the corresponding features (e.g., no. of employees, sales
range), when they have been assigned to the documents (i.e., job postings) as well. Hence, di-
verse query types need to be prepared by comprehensive indices and cannot be answered right
away [93].
An additional drawback of faceted search systems is the limited expressiveness of filter condi-
tions. While nested facets [93] as well as boolean facet combinations [239] are possible, more
advanced query patterns, such as graph-based filters are not supported, due to the underlying
table-like data structure. However, despite these limitations, faceted search systems offer help-
ful strategies for resource access and assist users in finding relevant items. In fact, scientists did
not only prove the usefulness of faceted systems [25,141,239], but their high prevalence among
major commercial applications, such as Amazon or eBay is also impressive evidence for the
effectiveness of this retrieval approach [239]. The method could be extended to graph-based
data and LOD-enabled RS as well.
Table 5.1 summarizes the previously mentioned aspects with regard to the system features of
the requirements specification of Chapter 4. RQ5-A denotes an engine’s ability to apply sim-
ple filters, while RQ5-B stands for expressive query constraints. Apart from the possibility to
formulate filter conditions for similarity-based results, there are no IR approaches that can be
seamlessly transferred to the software engineering process of this thesis.

Table 5.1: Summary of IR approaches
Similarity Calculation Query Facilities Virtual Data Integr.

Approach RQ1 RQ2 RQ3 RQ4 RQ5-A RQ5-B RQ6 RQ7 RQ8
Faceted Navigation / Parametric Search 7 7 7 7 3 (3) 7 7 7

Ranked Retrieval 7 7 7 7 3 (3) 7 7 7

Faceted Search 7 7 7 7 3 (3) 7 7 7

5.1.2 Query-based Recommender Systems

While IR systems are an interesting research direction to be investigated for LOD-enabled RS,
other valuable approaches can be found in query-based recommendation. Researchers have



5 Related Work 57

long been concerned with the limitations of CB, CF and KB systems in terms of customized
recommendation retrieval [140]. Common approaches usually follow a user-item model and do
not take other contextual aspects, such as the time or a user’s companionship, into account [4].
For instance, a travel RS would probably have to suggest different destinations to the user in
summer and winter [6]. While KB systems might be able to address this requirement, they lack
the feature of adaptability to different domains. The LOD cloud, on the other hand, offers rich
information sources, which could be applied as ready-to-use knowledge bases.
The requirements analysis stated that the LOD-enabled RS should provide a SPARQL-like
query language that can formulate expressive recommendation requests. In the field of non-
LOD RS, the idea of query-based recommendation retrieval has been around for some time
now. Real-world RS usually operate on databases whose information could be of value for rec-
ommendations tasks. Koutrika et al. report that numerous students and administrators of their
course RS, which runs on an e-learning database at Stanford University, requested customiz-
able recommendations [140]. Other researchers have pointed out that query-based suggestions
might not only be helpful for end users, but also for system providers [6].
Consequently, users (e.g., customers or administrators) should be enabled to express requests in
the same way as they would query a conventional relational database. Hence, the recommenda-
tion model is not „hard-wired“ into the system, but users can retrieve suggestions using ad-hoc
queries that resemble Structured Query Language (SQL) requests [4].
To this date, there only exists a small number of query-based RS. The first of this kind was the
multidimensional RS, which was proposed by Adomavicius et al. in 2001. The central idea of
the approach is to retrieve recommendations from multiple dimensions and aggregation hier-
archies. The corresponding data schema resembles that of schemas commonly used in Online
Analytical Processing (OLAP) cubes. However, the processor of a query-based RS has to be
supplemented with an additional recommendation engine. The system of Adomavicius et al.
can navigate along product hierarchies or can group customers thus basing recommendations
on different granularity levels of typical RS parameters (i.e., users or items) as well as additional
contextual factors (e.g., time or place) [4].
In addition to their application of the OLAP model for RS, Adomavicius et al. were also the
first to introduce a recommendation query language (RQL). The RQL engine operates on top
of an OLAP cube and retrieves recommendations through the execution of subsequent queries
on database tables [4]. Ten years later, scientists from the same research group refined the
approach by transforming RQL into the full-fledged query language REQUEST with a Backus-
Naur form (BNF) syntax specification and additional algebra semantics. In their 2011 paper, the
researchers elaborate on their reasons for developing an entirely new query language instead of
relying on a non-integrated approach where SQL queries are combined merely with similarity
calculation. They reasonably point out that SQL is a general-purpose language, with which
users cannot express recommendation requests. Instead, they would have to formulate multiple
SQL queries to identify items that might be of interest to them. In addition to producing cum-
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bersome SQL queries, this requires additional cognitive effort on the side of the user [6]. As
RQL, REQUEST is based on the OLAP paradigm and relies on dimensions (e.g., users, items,
time or place), attribute hierarchies (e.g., product categories) and quantitative measures (e.g.,
ratings or implicit feedback information) to generate automated suggestions. Listing 5.1 shows
an example REQUEST query from the paper by Adomavicius et al. [6]. It specifies a user’s
interest for movies that fit personal preferences and that are in line with certain conditions, such
as the genre of the movie (Movie.Genre = „Action“) or the composition of the community of
like-minded peers (User.Age >= 18).

Listing 5.1: Example REQUEST query
RECOMMEND Movie TO User
Using MovieRecommender
RESTRICT Movie.Genre = ’Action’ AND User.Age >= 18
BASED ON PersonalRating(AVG)
SHOW TOP 5 BY PersonalRating

Koutrika et al. proposed another approach to integrated recommendation retrieval over rela-
tional databases. They introduced the FlexRecs system, which provides automated suggestions
for courses in a university e-learning system. Koutrika et al. do not rely on an entirely new
query language. Instead, they complement the SQL syntax with an „extend“ operator that cre-
ates a virtual nested relation. By these means, it is possible to adapt the search to specific
requirements and to combine different RS approaches (e.g., CB and CF). Their approach de-
couples the actual retrieval process from the meta-level workflow specification that lies at the
foundation of a complex recommendation request. FlexRecs can flexibly combine results from
different recommendation algorithms, and users can define sequences of operations, with which
items and users can be filtered both before and after the actual retrieval process [140]. While
the query languages of Adomavicius et al. [4, 6] simply enable preference-based filtering with
certain user specifications, Koutrika et al. introduced a new type of request that merges user
constraints and common RS operations at different stages of the recommendation workflow.
This is in line with Requirement 6 of the specification from Chapter 4.
However, the approaches of Koutrika et al. and Adomavicius et al. have the downside that they
depend on rating data or comprehensive metadata descriptions, which makes empty result sets
not unlikely due to data sparsity issues. Data is even sparser when the recommendation engine
has to operate on a reduced set of items or users from a local database. Although Adomavicius
et al. have pointed out that there exist possible workarounds for this shortcoming (e.g., appli-
cation of matrix factorization to fill cells with missing ratings) this problem might still exist for
highly selective recommendation requests and can produce low-quality results [6].
An additional point concerns the integration of data sources. Each of the presented approaches
to query-based retrieval relies on the assumption that metadata, as well as user preferences,
reside in the same repository. Nevertheless, this might not always be the case and would, there-
fore, require data migration.



5 Related Work 59

Another shortcoming of the presented approaches is that they are limited to relational data and
SQL-like queries. The strengths of LOD and expressive SPARQL queries (Sect. 3.2), on the
other hand, might be even better suited for flexible query-based retrieval. Table 5.4 summa-
rizes the key features of the approaches. In addition to the functional limitations, none of the
presented query-based RS has been evaluated in a user study. Even though it seems reason-
able to hypothesize that expressive queries improve recommendation results, it still has to be
empirically verified.

Table 5.2: Summary of query-based RS
Similarity Calculation Query Facilities Virtual Data Integr.

Paper Domain RQ1 RQ2 RQ3 RQ4 RQ5-A RQ5-B RQ6 RQ7 RQ8
[4], [6] General Purpose 7 7 7 7 3 7 7 7 7

[140] University Courses 7 7 7 7 3 7 3 7 7

5.2 Linked Data-enabled Systems

5.2.1 Linked Data Search Systems

There exist also some retrieval approaches that have been developed for Linked Data. Upon
the publication of the first openly accessible datasets, researchers argued that indexing these re-
sources would help users to find suitable vocabularies. Swoogle was among the first IR systems
for the Semantic Web. The engine crawls and indexes ontological RDF data thus enabling the
retrieval of vocabularies by keyword queries. It also provides simple filter options for query
refinement [72].
Subsequent LOD search engines were designed to search instance data. However, during the
mid-2000s, when the LOD cloud was still in an early state, RDF resources were rare. That is
why Huynh et al. proposed a browser extension called PiggyBank which can be used to turn web
documents into RDF data. The documents are stored in an Apache Solr/Lucene index and can be
accessed by a common faceted browsing interface [114]. Both Swoogle and PiggyBank provide
a similarity detection feature for Semantic Web resources. Other Linked Data search engines,
such as Tabulator, Humboldt, mSpace, the facet and gFacet browsers or the VisiNav system are
based on visual interfaces that assist users in exploring RDF graphs [33,103,105,109,135,254].
Another example in this category is Aemoo. It extracts and displays RDF data using encyclo-
pedic knowledge patterns (EKP). EKPs are fixed sets of properties [171]. The browsers help
users navigate RDF graphs. Hence, even though these systems neither provide advanced search
engine technology nor SPARQL syntax elements, they can assist in the formulation of expres-
sive filter requests.
Aside from visual data browsers, researchers developed native Linked Data search engines with
facet interfaces [53, 58, 96, 115, 246]. Some researchers have advanced the idea of faceted
search in LOD repositories by accounting for the fact that semantic data allows for advanced
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retrieval options. Oren et al. propose applying graph-based facet patterns (e.g., join operations
or conjunctions) instead of simple item filters. They evaluated the feasibility of the approach
in a small user study with 15 participants. It showed promising results in favor of graph fil-
ters [178]. Arenas et al. took the notion of expressive facets one step further: They developed
OWL 2 reasoning options for RDF annotations. The approaches of Arenas et al. and Oren et
al. are interesting because they make use of the strengths of ontological data (i.e., expressivity,
and deductive reasoning capabilities) [17]. However, they fall short regarding ad-hoc querying.
Other engines tackle LOD search with large-scale technologies. These research prototypes rely
on parallel processing frameworks, such as Hadoop [177] and mimic cluster infrastructures of
document-based web search engines (e.g., Google) to process RDF data efficiently [110]. Ad-
ditionally, the engines provide strategies for large-scale reasoning tasks and are thus able to
infer and index additional triple statements [110, 177]. However, these systems do not provide
special data access strategies, since their focus lies more on backend design.
Other Linked Data search solutions were developed to facilitate cross-repository retrieval [97,
219]. For instance, the scientific retrieval engine by Sean et al. can generate query hits from
different LOD repositories. The engine computes results in an ad-hoc fashion by matching the
user’s keywords with publication annotations from distributed collections. For this purpose,
they apply cross-concordance links between different knowledge organization systems.
There are also systems that tackle the task of LOD search through spreading activation algo-
rithms. Hence, depending on the similarity between the entities contained in a user request and
their counterparts in the repository, RDF graphs are traversed by subsequently activating nodes
and subgraph structures, which are likely to be relevant [81,86,128,142,162,233]. Among these
systems, the most interesting approach is Discovery Hub. This query engine accesses the DB-
pedia dataset through a random walk technique thus facilitating ad-hoc queries [162]. However,
the downside of spreading activation engines is the randomness of search results [86,142,233].
The graph traversal engine may only be able to detect similar items if the triple processor hap-
pens to follow a fitting path. The Discovery Hub system considers this aspect to only some
extent. While the interface allows users to define, which item features are most important to
them, it does neither provide the possibility to specify the desired item types nor to formulate
expressive filter conditions [73].
To have more control over the search process, system providers could follow the approach by
Kaminskas and Fernández who have proposed executing search tasks over manually crafted
RDF subgraphs. Their prototype provides cross-domain search results from DBpedia. How-
ever, with this approach, system providers would have to extract suitable RDF subgraphs from
LOD repositories beforehand, which prevents ad-hoc recommendations.
In summary, it can be stated that existing Linked Data search engines already offer highly useful
features. However, while visual data browsers lack the sophistication of native search systems
and conventional index-based engines are not able to perform on-the-fly similarity calculation,
spreading activation approaches might sometimes produce random results, due to insufficient
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filter options and the unpredictability of their path traversal algorithms. Table 5.3 gives an
overview of the findings from the literature survey on LOD search engines.

Table 5.3: Summary of Linked Data search engines
Similarity Calculation Query Facilities Virtual Data Integr.

Paper Domain RQ1 RQ2 RQ3 RQ4 RQ5-A RQ5-B RQ6 RQ7 RQ8
[10] Music 7 7 7 7 7 7 7 7 7

[114] Web Documents 7 3 7 7 3 7 7 7 7

[72] Ontologies 7 3 7 7 3 7 7 7 7

[33] General Purpose 7 7 7 3 3 (3) 7 7 7

[135] General Purpose 7 7 7 7 3 (3) 7 7 7

[254] Music 7 7 7 7 3 (3) 7 7 7

[109] Arts 7 7 7 7 3 (3) 7 7 7

[105] General Purpose 7 7 7 7 3 (3) 7 7 7

[103] General Purpose 7 7 7 7 3 (3) 7 7 7

[171] General Purpose 7 7 7 7 3 (3) 7 7 7

[58] General Purpose 7 3 7 7 3 7 7 7 7

[96] General Purpose 7 3 7 7 3 7 7 7 7

[53] General Purpose 7 3 7 7 3 7 7 7 7

[115] General Purpose 7 3 7 7 3 7 7 7 7

[246] Videos 7 3 7 7 3 7 7 7 7

[178] General Purpose 7 3 7 7 3 3 7 7 7

[177] General Purpose 7 7 7 7 7 7 7 7 7

[110] General Purpose 7 7 7 7 7 7 7 7 7

[219] Scientific Publications 7 3 (3) 3 7 7 7 3 3

[86] General Purpose (3) 3 7 7 7 7 7 7 3

[142] General Purpose (3) 3 7 7 7 7 7 7 3

[233] Keywords (3) 3 3 7 7 7 7 7 7

[128], [81] POI, Music 7 7 3 7 7 7 7 7 7

[162] General Purpose (3) 3 7 3 3 7 7 7 3

5.2.2 Linked Data Recommender Systems

Another research direction related to LOD-enabled retrieval are Linked Data Recommender
Systems. Scientists developed the first LDRS with a different purpose than LOD search en-
gines. While research on LOD search focuses on finding a better way for users to explore RDF
resources, the initial LDRS utilized LOD resources to enhance the metadata of conventional
content-based RS [66, 67, 168]. These systems match items from the user profile with their
counterparts in the LOD cloud. Providers of music, movie or book RS can find a vast amount
of metadata in DBpedia when mapping items with the corresponding IRI [52, 67, 186]. This
process can be facilitated by matching discriminative features (e.g., a movie’s title) with the re-
lated properties (rdfs:label) and literal values in the DBpedia [67]. By these means, certain
widely used datasets from the RS community, such as the Lastfm and the MovieLens datasets,
have been matched to DBpedia IRIs [57, 67, 179].
Researchers, who enhanced feature data with LOD, claim that they were able to boost the
recommendation quality of their systems [66, 67, 127, 168]. Thus, common problems of CB
RS, such as limited content analysis, could be tackled with additional resources from the web
of data. Most LDRS determine similarity values for each item pair offline by applying nat-
ural language processing (NLP) techniques. Some researchers propose utilizing topic model-
ing approaches, such as Latent Dirichlet Allocation (LDA) [127] or Latent Semantic Indexing
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(LSI) [168], on RDF data to detect the underlying concepts, which characterize the respective
items. However, one of the strengths of the LOD cloud is that item features are often uniquely
identified by IRIs. Hence, common problems of traditional text-based IR systems, such as syn-
onymous words or polysemy do not necessarily have to be handled by the recommendation
engine [66, 152].
For this reason, other researchers propose relinquishing the laborious process of topic identifi-
cation and to rely on the term-document matrix of certain item features instead. In this context,
a common strategy is to count the number of matching features among the set of all features
of two items [106, 112, 234, 259] and apply a TF-IDF weighting scheme on feature data. With
this approach, the similarity value is high when two items share many features which rarely
occur in the repository [66,67,97,129,208]. The TF-IDF scheme takes into account the number
of times a term is mentioned in the metadata descriptions (i.e., the TF-value). However, many
LOD resources are annotated with IRIs, which mostly occur once in a single feature set of an
item. Hence, in many cases, TF-values can be omitted without influencing the outcome. In
concordance with that, Meymandpour et al. propose simply computing item-to-item similarity
values through the summation of the information content (IC) (i.e., a metric, which closely re-
sembles IDF) of matching item features [165].
Items are usually characterized by different feature types (e.g., the genre vs. the record label of
a music album) which might not be equally relevant for predicting user interests. Therefore, re-
searchers developed approaches to determine the predictive strength of properties. For instance,
Peska et al. maximize a linear regression model that predicts item similarity to assign appro-
priate weights to each property [186]. Other LDRS apply meta-learning and meta-heuristic
approaches, such as genetic algorithms, particle swarm optimization or stacking to determine
the best weight configuration [67, 129, 206, 249].
Aside from NLP methods, item-to-item similarities can also be detected by graph-based metrics.
The Linked Data Semantic Distance (LDSD) was one of the first measures of this kind. It tracks
the number of direct/indirect and incoming/outgoing links between two RDF resources [182].
However, the application of the metric might be too expensive for on-the-fly retrieval. In
performance experiments, the generation of recommendations often took up dozens of sec-
onds with LDSD, even though the similarity detection engine operated on a reduced DBpedia
dataset [182]. Hence, more advanced graph-based metrics, e.g., by Grouès et al. [94], Maedche
et al. [156] or Harispe et al. [99] may be even less scalable.
Apart from NLP- and graph-based approaches to similarity calculation, there exists another type
of LOD-enabled RS, which predominantly relies on pure SPARQL-based enhancement. For in-
stance, the RS by Ahn et al. and Ozdikis et al. utilize LOD resources to complement metadata
information of result lists that are presented to the user to help him/her make an informed de-
cision about the relevance of the recommended items [10, 180]. Mannens et al. apply LOD
enrichment after similarity calculation. They use RDF resources to facilitate simple faceted fil-
tering of recommendation lists. The travel RS by Varga et al. retrieves geo-related data snippets
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from a SPARQL endpoint to identify potential locations in a certain region, but derives its actual
automated suggestions through opinion mining of text-based reviews [243].
A couple of LDRS even omit the processing step of automated retrieval. They relate user prefer-
ences to potentially relevant LOD items by executing SPARQL queries thus enabling extensive
filtering. However, they cannot navigate RDF graphs with imprecise parameters, as it is the
case in similarity-based approaches [52, 84, 183, 247].
Aside from the three major LDRS categories, i.e., SPARQL-, NLP- or graph-based methods,
advanced machine learning algorithms are also sometimes applied. For instance, for their LOD-
enabled music RS, Bannwart and his colleagues utilize classifiers from the Weka Machine
Learning library to predict a user’s interests [248]. Another example is the SPrank algorithm,
which applies decision trees to learn a function for ranking potentially interesting items [129].
Additionally, the 2014 Linked Open Data-enabled Recommender Systems Challenge revealed
that approaches which aggregate recommendation strategies achieved the lowest prediction er-
rors [27,206]. Hence, as in regular RS, hybrid approaches can boost recommendation accuracy
of LDRS [65]. However, these techniques often require offline tuning and therefore prevent
on-the-fly recommendations and runtime application of user filters.
The survey of LDRS has shown that most LOD-enabled recommender systems calculate item-
to-item similarities offline. Frameworks that generate ad-hoc suggestions as well as fully exploit
the expressiveness of RDF do not yet exist. Table 5.4 presents a summary of the literature re-
view on LDRS.

Table 5.4: Summary of Linked Data recommender systems (LDRS)
Similarity Calculation Query Facilities Virtual Data Integr.

Paper Domain RQ1 RQ2 RQ3 RQ4 RQ5-A RQ5-B RQ6 RQ7 RQ8
[10] News 7 7 7 7 7 7 7 7 7

[180] POI 7 7 7 7 7 7 7 7 7

[243] Music 7 7 7 3 7 7 7 7 7

[183] Music 7 (3) 7 3 (3) (3) 7 7 7

[247] Music 7 (3) 7 3 (3) (3) 7 7 7

[52] Music 7 (3) 7 3 7 7 7 7 7

[84] Music 7 (3) 7 (3) 7 7 7 7 7

[157] News 7 7 7 7 3 7 7 7 7

[26] Movies 7 7 7 7 7 7 7 7 7

[127] Music 7 7 7 (3) 7 7 7 7 7

[168] Movies 7 7 7 (7) 7 7 7 7 7

[112] Movies, Actors 7 7 7 7 7 7 7 7 7

[106] Music 7 7 7 (3) 7 7 7 7 7

[259] Scientific Publ. 7 7 7 (3) 7 7 7 7 7

[234] Experts 7 7 7 (3) 7 7 7 7 7

[67], [66] Movies 7 7 (3) (3) 7 7 7 7 7

[129] Events 7 7 7 (3) 7 7 7 7 7

[97] Scientific Publ. 7 7 (3) 3 7 7 7 3 3

[208] Museum objects 7 7 (3) 3 3 3 7 3 3

[165] Multimedia Items 7 7 7 (3) 7 7 7 7 7

[186] Books 7 7 7 3 7 7 7 7 7

[182] Music 7) 3 7 7 7 7 7 7 7

[94] Movies 7 3 7 7 7 7 7 7 7

[99] Music 7 (3) 3 7 7 7 7 7 7

[179] Music 7 7 7 7 7 7 7 7 7
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5.2.3 Query-based Linked Data Recommender and Search
Systems

In addition to IR engines for LOD and LOD-enabled RS, there exist some systems that utilize
SPARQL in combination with similarity calculation for retrieval tasks. An early and interesting
example for such a system is the Corese Search Engine. It consists of an RDF query language
and an IR engine. The system can retrieve items, even if they do not exactly match the spec-
ified user requirements [55]. Another query-based LDRS is the iSPARQL engine by Kiefer
et al. It was initially developed to facilitate data integration tasks, but can also be applied for
preference-based search. Kiefer et al. extend the SPARQL syntax with a pattern that defines
operations to identify similar items [130].
However, with both Corese and iSPARQL, users cannot specify their preferences. There-
fore, other researchers focus on the integration of more nuanced profile information into the
SPARQL-based retrieval process. Siberski et al. propose extending the SPARQL syntax with
an additional solution modifier with which end users can personalize the search [227]. Guer-
oussova et al. demonstrate that qualitative preference information can be integrated into native
SPARQL queries without modifying the SPARQL 1.1 syntax by merely using OPTIONAL
graph patterns [95]. Nevertheless, each of these approaches relies on exact matchings of pref-
erence specifications. Hence, user conditions can quickly become too restrictive, which is a
significant shortcoming, as profile data is still only an approximation of what the user might
want to retrieve [207].
Therefore, Rosati et al. propose to group preference data into hard or soft constraints. While
hard constraints strictly filter result sets, soft constraints contribute to the ranking of items, in-
stead of excluding them. In this context, the researchers introduce a lightweight ontology, with
which users can express their preferences concerning different attribute-value configurations.
From these preferences, a ceteris paribus (CP) network is constructed and matched with the
triple statements in the repository. The method ranks resources and favors items that are most
in line with the preference statements of the user. The query system by Rosati et al. represents
a highly advanced approach in the area of preference-based LOD retrieval, but also has some
limitations. Since the system works with CP-networks, lengthy processing times have to be
expected [43]. Another aspect concerns the preference elicitation process. It requires both a lot
of effort and domain proficiency on the side of the user. As has been argued before, knowledge-
based RS perform best in rarely-occurring decision situations with highly specialized items.
The LOD cloud, on the other hand, provides metadata for many domains (e.g., multimedia re-
trieval) where a straightforward CF or CB recommendation strategy often fully suffices.
In another line of research on query-based LDRS, scientists propose storing user preference
data in conjunction with triple statements from RDF repositories [23, 189]. These systems do
not provide options for ad-hoc access of LOD datasets since they require integration of prefer-
ence data and RDF-based information before executing the recommendation tasks. An example
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for this category of RS engines is the system by Policarpio et al. It can generate CB- or CF-
based suggestions from RDF data, but it still lacks an integrated SPARQL-like query language
which can pose recommendation requests in a single query statement [189]. Ayala et al. address
this research gap with their RecSPARQL system. It provides a query language that relies on
SPARQL elements and RS operators to generate suggestions. To this date, the RecSPARQL
system is the only one that transfers the idea of query-based recommendation retrieval from
the context of relational databases to RDF repositories [23]. However, it does not yet take full
advantage of the expressiveness of the RDF data model and the potential to formulate advanced
retrieval requests. For instance, the notion of workflows [140], which enables execution of
similarity calculation at different stages of the retrieval process is not realized in this approach.
Additionally, from the examples the researchers give in their RecSPARQL paper, it can be seen
that the data is stored in a table-like fashion [23]. On top of that, the distributed nature of the
LOD cloud demands an API-based solution to leverage the richness of the data web. In this
context, the integration of user preference with item feature information before recommenda-
tion retrieval is a cumbersome additional processing step required by the RecSPARQL system.
Table 5.5 shows the key findings of the literature survey on query-based LDRS.

Table 5.5: Summary of query-based LDRS and search systems
Similarity Calculation Query Facilities Virtual Data Integr.

Paper Domain RQ1 RQ2 RQ3 RQ4 RQ5-A RQ5-B RQ6 RQ7 RQ8
[55] General Purpose 3 3 3 7 3 3 7 7 7

[130] Data Integration (3) 3 3 3 3 3 7 7 7

[227] General Purpose 7 7 7 3 3 3 7 7 7

[95] General Purpose 7 7 7 3 3 3 7 7 7

[207] General Purpose 7 7 7 3 3 3 7 7 7

[189] General Purpose 7 3 7 (3) 3 7 7 7 7

[23] General Purpose 7 3 3 3 3 7 7 7 7

5.3 Summary & Research Agenda

The survey on RS and retrieval systems has shown that there are already methods for person-
alized search in place that are relevant for the requirements of this thesis. In the category of
non-Linked Data systems, there exist text-based search engines that perform relevance rank-
ings for unstructured resources and offer means to state filter conditions to complement search
queries. On the other hand, some systems can issue personalized SQL queries over relational
databases to provide recommendations. Both retrieval strategies can execute customized user
requests. The strength of search engines is their ability to quickly perform query matchings
and similarity-based rankings due to extensive preprocessing and indexing of resources before
runtime execution. However, low latency of recommendation results comes at the cost of a
„hard-wired“ data model, which prevents individual customizations and causes limitations con-
cerning up-to-date retrieval.
The strengths of query-based RS, on the other hand, are their expressive filtering options. How-
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ever, these approaches have the drawback of data sparsity since the data space of users and
items can be tremendously reduced when only extracting information from a local database.
Despite the strengths and weaknesses of the discussed approaches, it also has to be taken into
account that they are not designed to consume LOD. Many Linked Data-enabled retrieval en-
gines, on the other hand, already leverage some of the hidden potentials of openly available
RDF resources to generate automated suggestions. In the category of LOD search engines,
the systems that enable expressive graph-based facet filters are promising examples. Another
interesting research direction involves techniques of on-the-fly retrieval that apply a spreading
activation algorithm to process the RDF graph. Despite these approaches, conventional LOD
search engines are not designed to consume profile data (i.e., explicit/implicit preferences for
specific items). Hence, it is not surprising that they do not adequately address the system re-
quirements that were specified in Chapter 4. However, most of the existing LOD-enabled RS do
not tackle many of the specified requirements either. Besides enhancing user profile information
with RDF data from open repositories, these systems often do not address other strengths of the
LOD technology stack, such as expressive query options or remote cross-repository retrieval.
In the category of query-based LDRS, only a few systems take advantage of the query capa-
bilities of SPARQL as well as the richness of RDF repositories. Nevertheless, these systems
fall short regarding scalable on-the-fly similarity calculation and profile-based retrieval from
SPARQL endpoints. Both shortcomings can be attributed to the fact that in most query-oriented
LDRS, user preferences and metadata information reside in the same repository. However, this
goes against the notion of the LOD cloud as a decentralized and openly accessible data space
which can be queried through API-like interfaces.
In summary, existing retrieval and RS engines already provide useful features for personalized
resource access. Nevertheless, in terms of using the LOD infrastructure to leverage recommen-
dation effectiveness, there does not yet exist an approach which provides all of the required
features in a single solution. Additionally, some of the previously specified requirements have
only been researched to a limited extent (e.g., on-the-fly similarity calculation), while the de-
mand to facilitate LOD-enabled advanced recommendation requests has not been tackled at all.
The following chapter will introduce a recommendation engine which draws upon some of
the presented approaches but also seeks to address the open research question of efficient and
effective LOD retrieval through the fulfilment of the requirements of Chapter 4.
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6 The SKOS Recommender

This chapter introduces the SKOS Recommender that implements the requirements specifica-
tion of Chapter 4. It presents the foundation of the system (Sect. 6.1) as well as the usage
scenarios and LOD repositories with which it will be tested during the development process
(Sect. 6.2). Sections 6.3-6.8 explain the functioning of the system features and provide results
for example recommendation requests. Section 6.9 gives details on the implementation of the
engine.

6.1 Simple Knowledge Organization Systems

As has been outlined in the previous section, many LDRS apply content-based recommendation
methods on item feature data. Similar items are identified by processing triple statements from
an RDF dataset. Items are mostly represented by IRIs and item features are either an element
of the set of literals (L) or the set of IRIs (I) [66,67,129,168,179,186,206,259]. Many authors
have contrasted traditional recommendation strategies with LDRS approaches [182,186,259] to
validate the suitability of LOD for these tasks. Others have also attempted to compare several
Linked Data-enabled approaches against each other. Some tests showed that subject annotations
(e.g., as indicated by the property dct:subject or dc:subject) are often the best feature
type for content-based recommendations [66, 67]. This finding might be rooted in the long-
standing tradition of subject indexing to describe an item in such a way, that the user will most
easily find it [113].
Usually, LOD resources are annotated with numerous different feature types. Consider the
example in Figure 6.1 for illustration. It shows the DBpedia resource dbr:Lord_of_the_
Flies. The resource represents a real-world book item. Different kinds of terms (literals or
IRIs) and base types (i.e., date and string) serve as metadata features for this LOD resource.

This diversity requires identification of suitable features because not every feature type might
be relevant for similarity calculation. However, the selection process can be error-prone and
time-consuming [249]. Additionally, on-the-fly retrieval is hindered when item features have
to be manually selected. Thus, reliance on subject annotations is a viable approach to generate
recommendations from heterogeneous data sources in an ad-hoc fashion (RQ1 and RQ2). Often,
datasets declare subject annotations with the help of the DCMI terms [62]. Besides vocabularies
such as RDF and OWL, the DCMI vocabulary has become a de-facto standard for describing
resources thereby adhering to LOD best practices. DCMI terms occur in more than half of
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Fig. 6.1: Item features of an example LOD resource

the datasets in the LOD cloud [215]. The definition states that data publishers should use the
properties dct:subject and dc:subject1 for resource description as follows [62]:

„Typically, the subject will be represented using keywords, key phrases, or classi-
fication codes. Recommended best practice is to use a controlled vocabulary.“

In libraries and other information-providing institutions, controlled vocabularies have long been
used to organize and facilitate access to large document collections. Different subcategories of
these vocabularies or knowledge organization systems (KOS) have evolved and are known as
thesauri, classification schemes, taxonomies, subject heading systems or taxonomies. IR sys-
tems apply them to search for both printed and electronic document collections [166]. Although
differing slightly in nature, these subcategories share important features and engines utilize
them in similar use cases [117]. For instance, all knowledge organization systems distinguish
between concepts and terms. A concept represents an idea that is unambiguously identified and
characterized by terms [158]. Thus, annotations conforming to the DCMI recommendation to
use KOS concepts enable efficient similarity calculation [67]. In contrast to that, natural text
annotations require time-consuming preprocessing operations [168,206], which prevent ad-hoc
retrieval. Hence, it is proposed to take advantage of KOS annotations to meet the functional
requirement of on-the-fly recommendations (RQ1).
In the LOD cloud, the Simple Knowledge Organization System (SKOS) vocabulary is a de-facto
standard for expression of controlled vocabularies in machine-readable form. SKOS systems are
RDF-based terminologies that can be published and accessed on the web. SKOS concepts are
uniquely identifiable IRI resources with each member being an instance of OWL:Class. They
have a scope, a meaning, and concept label descriptions (i.e., skos:prefLabel, skos:

1The namespaces PREFIX dct: <http://purl.org/dc/terms/> and PREFIX dc: <http://
purl.org/dc/elements/1.1/> refer to sets of terms that can be used for metadata descriptions. The
former namespace comprises all metadata terms maintained by DCMI, while the latter only contains a subset
of this standard [62].
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altLabel). Thus, vocabularies can distinguish homonymous as well as synonymous terms.
Additionally, the SKOS standard provides expressions to relate concepts to each other, either in
a hierarchical (i.e., with skos:broader, skos:narrower links) or in a non-hierarchical
fashion (i.e., with skos:related links) [166]. This feature can be exploited for term expan-
sion, as the similarity processing unit may incorporate topically related SKOS concepts. Thus,
recommendation retrieval can be flexibly adapted to explore the RDF dataset more deeply with
changing sets of subject descriptors (RQ3). SKOS vocabularies adhere to key principles of
LOD publishing because they facilitate mappings of concepts across different SKOS systems
(i.e., with skos:exactMatch, skos:broadMatch links), [38]. These cross-concordance
links can leverage retrieval possibilities since they help to identify relevant resources across
collections that apply different SKOS vocabularies [163] (RQ7). Figure 6.2 depicts the key
components in the SKOS data model according to Baker et al. [24].

Fig. 6.2: Main elements of the SKOS data model [24]

During the last decade, data providers have released dozens of SKOS systems to the general
public. Some of them facilitate bibliographic control for general-purpose collections (e.g., Li-
brary of Congress Subject Headings (LCSH)) [235], while others are domain-specific. Domain-
specific vocabularies exist in various areas, such as economics (e.g., the Standard Thesaurus
Economics (STW) [173]), social sciences [229] or life sciences (e.g., the AGROVOC Agricul-
tural Thesaurus [48]).
The Linked Open Data crawl of 2014 found that the SKOS namespace occurred in more than
140 datasets (14%) of the entire LOD cloud, thereby being among the ten most frequently
used vocabularies at that time [215]. In November 2016 the author issued a search query in
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the Open Data repository Datahub and found that more than 2,400 datasets were tagged with
„skos“ [220]. Additionally, DBpedia as one of the largest and most well-connected datasets in
the LOD cloud applies concepts from a category graph in SKOS format to annotate its page
resources [74]. Hence, it can be claimed that SKOS is a widely adopted standard in the LOD
cloud which might be exploited to target challenges of data heterogeneity (RQ2). On top of
that, through unique identification of subject descriptors, recommendations can be computed
on-the-fly without requiring NLP operations.

6.2 Usage Scenarios

6.2.1 Scenario Selection

The to-be-developed technologies need to be applicable to numerous LOD collections and
should provide helpful recommendations throughout different domains. Only then can it be
assumed that the system offers an added value to users. Hence, conclusions concerning rec-
ommendation effectiveness are subject to evaluations within the context of several application
scenarios. In this line of argumentation Aggarwal points out that [7]:

„Testing over multiple data sets is particularly important for assuring greater gen-
eralization power of the RS so that one can be assured that the algorithm works
under a variety of settings.“

If subsequent evaluations will be carried out in multiple usage scenarios, it is better to consider
the applicability of the methods in different domains throughout the development process as
well. Hence, system features can be immediately tested for particular recommendation requests.
Therefore, adequate usage scenarios have to be selected. Ricci et al. categorize RS into the
following five types of recommender systems that were already presented in Section 2.1:

• Entertainment RS

• Content RS

• E-Commerce RS

• Service RS

• Social RS

Naturally, it would be desirable to have access to example datasets for these categories of RS
in the LOD cloud. However, the data web does not contain representative collections for each
RS type. For instance, there exist no high-quality RDF resources that would enable social RS
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for networking sites. Firstly, most social LOD collections do not use the DCMI standard [215].
Another reason is that these datasets predominantly describe connections between agents (e.g.,
persons or organizations) [83]. Thus, they lack the required metadata descriptions for similar-
ity calculation. Due to these shortcomings, social RS cannot be covered by an example usage
scenario.
Fortunately, the LOD cloud provides high-quality data sources for service RS. For instance,
DBpedia contains comprehensive metadata descriptions for places, which can be applied in the
example usage scenario of travel destination search [204, 245].
Suitable use cases for entertainment and e-commerce RS are multimedia retrieval tasks. While
in entertainment RS consumption of multimedia items (e.g., movies, music or books) is pro-
moted, e-commerce RS are applied to increase product sales. For these cases, the LOD cloud
holds rich metadata descriptions in the DBpedia repository. Hence, the domain of multimedia
recommendations is a suitable usage scenario, since it both represents the RS landscape and is
well covered by the web of data [245].
The usage scenario of digital library (DL) search can serve as an excellent example for content

RS. While other potential application areas in this category would be news article or web page
recommendations, there exist no suitable LOD resources for these domains. On the other hand,
the LOD cloud holds many bibliographic datasets for DL retrieval [215], of which the search
for economics publications can serve as an example. There are several reasons for this choice.
Firstly, there exists a digital repository that provides access to openly available economics pa-
pers (i.e., EconStor) and corresponding metadata descriptions in the LOD cloud. Hence, the
evaluation of the engine can be directly carried out for the real-world scenario of publication
search. Another reason is that the EconStor dataset represents a well-maintained and up-to-date
LOD repository, whose resources are annotated with concepts of the Standard Thesaurus Eco-
nomics (STW) [41]. The STW is a SKOS thesaurus and openly available in the LOD cloud.
It provides concept matchings that link from the STW Thesaurus to other SKOS vocabularies,
such as the AGROVOC Thesaurus [173]. Indexing terms from the AGROVOC thesaurus are, in
turn, used in other LOD repositories, such as the bibliographic database AGRIS [24,48]. Hence,
subsequent evaluations can test the system in the context of cross-repository recommendations

(RQ7 and RQ8) as well.
In addition to being representative of typical RS tasks and LOD repositories, the literature
survey on LDRS has shown that LOD enhancement in the specified domains is beneficial for
content-based recommendations (Sect. 5.2). Each of the selected usage scenarios can accom-
pany the development process and provide example queries that demonstrate the feasibility of
the novel approaches to LOD-enabled retrieval. The multi-scenario approach avoids domain-
specific biases and ensures that the engine’s ability to offer useful suggestions is validated from
different points of view. Hence, conclusions about system performance are based on a diver-
sified set of requests. Thus, the author can explore the to-be-developed technologies from a
broad range of information needs which are likely to differ among the selected usage scenar-
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Table 6.1: Overview of the usage scenarios
Domain Subdomain LOD repository
Digital Library Economics EconStor

Agriculture AGRIS
Travel DBPedia

Multimedia
Movie DBPedia
Music DBPedia
Book DBPedia

ios. Consequently, test queries will be adapted to the respective domains. The multi-scenario
setup additionally requires the application of different datasets for recommendation retrieval to
increase the generalizability of the results. Table 6.2 lists each domain and the corresponding
LOD repository to be used in subsequent evaluations.

6.2.2 LOD Repositories

This subsection will describe the LOD repositories of the usage scenarios in detail. The DB-
pedia dataset is the most important among them. DBpedia resources are freely available on the
data web. As advocated by the LOD community, its resources are uniquely identified by deref-
erenceable HTTP IRIs, which enables users to retrieve triples for entities through any browser.
Users can also obtain DBpedia information from SPARQL endpoints [253].
However, dependence on a public API is not desirable for test runs. For instance, the DB-
pedia providers limit the number of queries that can be posed by a single IP address within
24 hours [197]. In addition to query limits, the public web server is sometimes unavailable
throughout the day [245]. Hence, to ensure that system tests could be carried out uninter-
ruptedly during the development process, a local mirror was set up for the present study. The
DBpedia community releases current versions of the dataset on a regular basis. At the time of
writing of this thesis, the last data extraction took place in October 2016. It can be downloaded
from the DBpedia site. The dataset contains more than 23 million triple statements from 125
language versions of Wikipedia. The English version alone describes 6.6 million entities [75]. It
represents the most extensive version among all DBpedia language editions [60]. However, for
test runs and experiments, a less recent release of the English DBpedia was applied, since the
research project of this dissertation began in 2013 and initial tests were carried out on the latest
English edition at that time (i.e., DBpedia 3.9). Hence, because of compatibility reasons, this
version was utilized throughout the entire development process. It contains fewer data sources,
than the most current version, but it is still very extensive. The author loaded the English DBpe-
dia into a local OpenLink Virtuoso server [3]. Table 6.2 lists the number of available DBpedia
entities with SKOS annotations in the respective domains.

2PREFIX swc: <http://data.semanticweb.org/ns/swc/ontology#>
3PREFIX purl: <http://purl.org/dc/elements/1.1/>
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Table 6.2: Entity types in the usage scenarios
Domain Subdomain Entity Type

(rdf:type)
# Entities

Digital Library Economics swc:Paper
2 81,598

Agriculture purl:Article
3 7,635,333

Travel dbo:Place 725,546

Multimedia
Movie dbo:Film 90,063
Music schema:MusicGroup

4 86,013
Book dbo:Book 31,172

The author identified entity types by rdf:type class assignments. In this context, it was en-
sured that classes were generic enough. For instance, the DBpedia Ontology provides classes
for the three entity types movie (i.e., dbo:Film), book (i.e., dbo:Book) and place (i.e.,
dbo:Place), but not for music acts. Instead, it lists solo artists (dbo:MusicalArtist)
and bands (dbo:Band) at different points in the class hierarchy [61]. Fortunately DBpedia
entities are linked to classes from other ontologies as well. For instance, another type hierarchy
provides the class schema:MusicGroup, which annotates both music groups and solo mu-
sicians. For this reason, this type was chosen to identify musical acts.
A multitude of attributes describe DBpedia entities. Depending on the type and the respec-
tive Wikipedia infobox template, attributes can range from geo-coordinates (e.g., for locations)
to birth dates (e.g., for persons) or genres (e.g., for multimedia items) [76]. In addition to
the different property types, DBpedia contains SKOS-based annotations for almost all its en-
tities [169]. By default, the property declaration dct:subject is utilized for this purpose.
Thus, for subject annotations the dataset adheres to the DCMI standard [76]. Subject categories
originate from Wikipedia. Categories describe what an article is about and they help users to
find related articles on similar topics [252]. DBpedia stores the hierarchical structure of the
Wikipedia category system as a loose, polyhierarchic SKOS thesaurus without transitive depen-
dencies [76, 166].
Both the article annotations and the SKOS-based structure of DBpedia can be utilized for sim-
ilarity computation. However, there exist some quality issues in the DBpedia category graph
(e.g., cyclic dependencies [155]) which need to be handled during runtime execution.
The DBpedia dataset is available under the Creative Commons Attribution-ShareAlike 3.0 Li-
cense (CC BY-SA) and the GNU Free Documentation License [60]. Both licenses are typical
„Open Data“ copyleft licenses, i.e., they allow users to share and modify data sources, but re-
quire that derived works are republished under the same terms [21, 91].
Aside from DBpedia, the LOD repository EconStor was applied during the development pro-
cess. The repository provides bibliographic data for the DL usage scenario. It contains metadata
descriptions of research papers and is the LOD edition of the corresponding fulltext Open Ac-

4PREFIX schema: <http://schema.org>
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cess server. As of July 2017, the EconStor repository made more than 140.000 fulltexts publicly
available [78] It is one of the largest Open Access repositories in the domain of economics, as
it enables self-archiving and ensures long-term access to pre- and postprint publications from
the domain of economics. The Leibniz Information Centre for Economics (ZBW) in Kiel (Ger-
many) provides the technical infrastructure and takes care of metadata maintenance tasks for
both EconStor and the LOD edition [41]. EconStor LOD has a Public Domain license [79].
The license ensures that third parties can use and modify the data collection for their purposes
without being bound to any copyright or copyleft regulations or restrictions regarding commer-
cial use [195]. EconStor LOD was loaded into a local OpenLink Virtuoso server as well. The
dataset is in beta status because the providers want to demonstrate that the release is still in
development stage. At the time of writing of this thesis, the latest version of the EconStor LOD
data dump was from May 2016. It contains metadata descriptions for thousands of papers [42].
EconStor LOD resources are annotated with the property dc:subject and link to STW de-
scriptors [41]. The vocabulary covers the fields of (business) economics, industry sectors and
related areas, such as politics and geography. The ZBW gradually transferred the thesaurus into
a SKOS vocabulary in 2009 [173]. The SKOS system is published under the terms of the Open
Database License (ODbL) [232]. The ODbL is a typical copyleft license that allows for free
sharing as well as modifications, as long as derived versions are redistributed under the same
terms [175]. As of July 2017, the thesaurus contained 6.000 descriptors and more than 20.000
synonymous expressions which can facilitate topic retrieval in economics databases. In contrast
to the SKOS category graph of DBpedia, the STW defines transitive hierarchical relationships.
Hence, the concept graph can be explored more extensively than its DBpedia counterpart (see
Sect. 6.5). In addition to transitive relationships, the thesaurus also contains concordance links
to other SKOS vocabularies on the LOD cloud.
Among them are links that connect STW concepts to AGROVOC descriptors [173]. AGROVOC
is a comprehensive multilingual thesaurus. It was originally developed in the 1980s by the Food
and Agriculture Organization of the United Nations (FAO) to enable indexing and retrieval of
publications from the domains of agriculture, economics, and rural development.
With the advent of the Semantic Web, the FAO provided the AGROVOC thesaurus as a pub-
licly accessible SKOS vocabulary [48]. AGROVOC is published under the Open Data Creative
Commons 4.0 license [9]. It allows free redistribution and sharing of datasets even for com-
mercial purposes, as long as the new version mentions both the original creator and potential
changes [20].
In its current version, AGROVOC describes 33,038 entities in 33 languages. It is an impor-
tant tool for knowledge organization in its field. Among others, the International System
for Agricultural Science and Technology (AGRIS), which is a major bibliographic reference
source for publications on agriculture, fisheries, forestry and environmental research, applies
the AGROVOC thesaurus [24, 48, 51, 242]. The technical infrastructure of the FAO serves as a
data hub for AGRIS, which receives data from more than 150 third party providers in over 65
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Table 6.3: LOD repositories to be applied in the usage scenarios
LOD repository Version Annotat.

property
SKOS Vocabulary License

DBpedia 3.9 (2013) dct:subject SKOS Article Cate-
gories

CC BY-SA

EconStor 2016 dc:subject STW Public Domain,
ODbL

AGRIS 2015 dct:subject AGROVOC CC BY

countries [51]. At the time of writing of this thesis, the latest public release of AGRIS registered
metadata on more than 7.5 million articles (see Tab. 6.2). Since 2013, AGRIS data has been
made publicly available in the LOD cloud. Hence, bibliographic information from AGRIS can
be retrieved from the web of data including AGROVOC subject annotations [51]. These data
sources can be exploited in conjunction with the SKOS mappings from the STW thesaurus to
facilitate cross-repository recommendation retrieval. The latest edition of AGRIS is from 2015.
It is available under the Creative Commons license 3.0 (CC BY 3.0) [8]. The AGRIS dump
was loaded into an OpenLink Virtuoso server as well. Table 6.3 lists the features of the LOD
repositories that were accessed throughout the development process and the evaluation.
The following sections will introduce the technologies of a novel LOD-enabled RS, named
SKOSRecommender (SKOSRec). The engine implements the functional features of the re-
quirements specification from Chapter 4 by taking advantage of SKOS vocabularies and LOD
repositories.

6.3 On-the-Fly Recommendations

One of the fundamental features of the SKOSRecommender is the ability to generate on-the-

fly recommendations from LOD repositories. The approach is based on SKOS annotations.
The engine identifies annotations by matching corresponding annotation properties in the RDF
dataset (Definition 6).

Definition 6 (Annotation property). An annotation property is an IRI, that is defined in the

DCMI specification for subject annotations (Listing 6.1). It can occur in conjunction with one

of the two namespaces, which are stated by the standard [62].

Listing 6.1: Annotation property
<ANNOT.PROP> ::= dc:subject | dct:subject

These properties retrieve SKOS annotations for items preferred by a user (Definition 7).
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Definition 7 (SKOS annotation triple). A SKOS annotation triple (st) is a triple that is com-

prised of an IRI in the subject position, an annotation property (ANNOT.PROP) as predicate

and a concept c in the object position. The concept is part of a knowledge organization system

S in SKOS format (C = {c | c ∈ S}) (Eq. 6.1).

st ∈ I × <ANNOT.PROP>× C (6.1)

SKOS annotation triples can quickly retrieve potential similar items. Therefore, the engine
evaluates shared features between resources from the SKOS annotation dataset (Definition 8).

Definition 8 (SKOS annotation dataset). A SKOS annotation dataset (AD) is a subset of an

RDF dataset that contains SKOS annotation triples (Eq. 6.2).

AD ⊂ I × <ANNOT.PROP>× C (6.2)

Before the similarity calculation process starts, the engine determines SKOS annotations for
each item (r) from the user profile. The notion of SKOS annotations is specified in Definition
9.

Definition 9 (SKOS annotations). In the annotation graph, LOD resources directly link to con-

cepts of a SKOS system via a predefined annotation property. SKOS annotations for an input

resource r are defined as in Equation 6.3.

Annot(r) = {c ∈ S| ∃(r,<ANNOT.PROP>, c) ∈ AD} (6.3)

The corresponding SPARQL query that obtains SKOS annotations for a given LOD resource is
depicted in Listing 6.2

Listing 6.2: Annotation query
1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
3
4 SELECT DISTINCT ?c
5 WHERE
6 {
7 <r> <ANNOT.PROP> ?c .
8 ?c rdf:type skos:Concept .
9 }

Upon extraction of SKOS annotations for the input resource, the system determines which of
the other resources in the dataset shares annotations with it. The engine identifies similar LOD
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resources after having performed the before mentioned operations. In a database context, the
system would calculate item-to-item similarity values in offline mode, since this procedure typi-
cally represents a performance bottleneck. However, in CB engines the feature matrix is usually
sparse. Thus, similarities only have to be computed for items that share data points [67, 212].
This approach can be improved upon in LOD-enabled RS. Triples can be efficiently joined along
item features, since native RDF storage systems usually index triples rather than columns [174].
Thus, the quick identification of mutual annotations through SPARQL requests facilitates ad-
hoc similarity calculation. The query matches potentially relevant resources by finding items
that share SKOS annotations with the input resource. By this method, the engine calculates
similarity values on a reduced item set.
LOD resources are relevant when they share at least one feature (SKOS annotation) with the
input resource. This approach follows the notion of standard metrics (such as pearson corre-

lation or cosine similarity), which base similarity on matching features. However, in contrast
to the mentioned measures, the SKOSRec engine does not consider all annotations of related
resources, but only those that match the SKOS annotations of the input resource. The method
reduces the number of triple statements to be processed and prevents high throughput rates.
Hence, unlike conventional feature-based metrics, such as cosine similarity, similarity values
are not normalized. Against the background of the requirement of on-the-fly retrieval (RQ1),
the performance aspect is more critical than normalization. This assumption is in line with
findings from other authors. For instance, Meymandpour and Davis propose a hybrid similarity
metric for LOD. It computes the summated IC of the intersection of annotations of two LOD
resources [165]. Mistry and Pavlidis conducted a comprehensive study on the performance of
several metrics for computation of gene similarities. Their investigation revealed that a sim-
ple non-normalization measure named term overlap measure (TO) was competitive with the
corresponding normalized metric (NTO) regarding accuracy, while being faster at the same
time [167]. Hence, in the SKOSRec engine, non-matching SKOS annotations are omitted from
similarity calculation in favor of quick processing times. Definition 10 specifies the notion of
relevant resources and their annotations that are needed to identify similar items.

Definition 10 (Relevant resources and their annotations). The conjunctive graph pattern Pr

matches all items and subjects that are potentially relevant for recommendation retrieval (Eq.

6.4).

Pr = (r,<ANNOT.PROP>, ?c) AND (?q,<ANNOT.PROP>, ?c) (6.4)

The mapping Ωr of relevant resources and their SKOS annotations is obtained by retrieving

all resources q that share at least one SKOS concept c with resource r from AD (Eq. 6.5).

The corresponding result set contains mappings for all variables (i.e., ?c and ?q) in the triple
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statements of Pr.

Ωr = [[Pr]]AD (6.5)

The SKOSRec engine extracts relevant resources and annotations from SPARQL endpoints.
However, the OpenLink Virtuoso server enables definition of upper bounds for the number of
records that can be retrieved with a single query [255]. Thus, SPARQL endpoint providers
can control consumption of their resources. While this is a helpful feature on the provider’s
side, it requires the SKOSRec system to perform multiple queries. For on-the-fly retrieval, the
engine needs to extract all resources with matching features to guarantee that the ranking can be
properly conducted. Therefore, the system has to determine the number of records the endpoint
holds for a given item. In this process, the input resource from the user profile (r) is excluded
from retrieval (Listing 6.3).

Listing 6.3: Row query
1 SELECT (COUNT(DISTINCT ?q ?c) as ?count)
2 WHERE
3 {
4 VALUES ?c { <ANNOT(r)>}
5 ?q <ANNOT.PROP> ?c .
6 FILTER (?q != <r>)
7 }
8 GROUP BY ?q

After sending the row query to a SPARQL endpoint, the SKOSRec engine performs the before
mentioned extraction of resources and annotations through multiple endpoint accesses, in case
the result size exceeds the maximum number of rows specified by the provider. For this purpose,
certain SPARQL expressions are applied to extract ordered slices of the final solution. One
of these expressions is the OFFSET keyword. It marks the starting point of the intermediate
solution from the entire sequence of solutions. The LIMIT expression is applied to restrict
the result size to the defined maximum number of rows. Listing 6.4 presents the respective
SPARQL query for ordered subset processing. This query follows the Virtuoso documentation
for handling SPARQL endpoint constraints. The documentation also proposes the application
of subqueries to circumvent sorting limitations [255].

Both row and multiple access queries are embedded in a well-defined procedure that subse-
quently extracts slices of the overall solution. This procedure iteratively increments the current
offset point with the maximum row limit. Algorithm 1 lists the respective pseudocode.

Upon extraction of relevant resources and annotations, the process of similarity calculation can
start. The calculation is based on the IC of the shared SKOS annotations of two resources. This
approach is based on the hybrid similarity metric proposed by Meymandpour and Davis for
LOD-enabled RS [165]. However, while their measure considers all types of IRI resources for
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Listing 6.4: Relevant resource query (simQuery)
1 SELECT ?q ?c WHERE
2 {
3 VALUES ?c { <ANNOT(r)>}
4 ?q <ANNOT.PROP> ?c
5 {
6 SELECT ?q (COUNT(?subject) as ?c) WHERE
7 {
8 VALUES ?c { <ANNOT(r)> }
9 ?q <ANNOT.PROP> ?c .

10 FILTER (?q != <r>)
11 }
12 GROUP BY ?q
13 ORDER BY ASC(COUNT(?c))
14 }
15 }
16 OFFSET <CURRENT.OFFSET>
17 LIMIT <MAX.ROWS>

Algorithm 1 Multiple access procedure
1: function PROCESSRESULTS(rowQuery, simQuery,maxRows)
2: T ← getT imes(rowQuery)
3: currentOffset← 1
4: Declare results
5: Declare slice
6: for t ∈ {1, ..., T} do
7: rowString ← OFFSET currentOffset LIMIT maxRows
8: slice← getSlice(simQuery + rowString)
9: results.add(slice)
10: currentOffset← currentOffset+maxRows

return results

the retrieval, the similarity metric in this thesis purely relies on SKOS annotations (Definition
11).

Definition 11 (SKOS similarity). Let Annot(r) be the set of SKOS features of resource r and

Annot(q) the set of SKOS features of resource q and q ∈ {µ(?q) | µ ∈ Ωr}, then their similarity

can be derived from the IC of their shared concepts Cshared = Annot(r) ∩ Annot(q)

sim(r, q) = IC(Cshared) (6.6)

The IC of a set of SKOS concepts is measured by the sum of the inverse logarithms of each con-
cept’s frequency in relation to the maximum frequency among all relevant resources (Definition
12).

Definition 12 (SKOS Information Content). The SKOS IC is defined as an aggregation of the in-

dividual IC values of each concept that is contained in the set of shared features (c ∈ Cshared),

where freq(c) is the frequency of c among all relevant resources and n is the maximum fre-

quency among these resources. The final similarity score of two resources r and q is determined
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by summating the IC values of each concept of the shared feature set.

IC(Cshared) = −
∑

c∈Cshared

log

(
freq(c)

n

)
(6.7)

By considering the maximum frequency (n) instead of the number of LOD resources as was
proposed by Meymandpour and Davis [165], it is ensured that IC scores have an upper bound.
The determination of concept frequencies is straightforward. For this purpose, a SPARQL query
(see Listing 6.5) is issued against the dataset.

Listing 6.5: Concept count
1 SELECT ?c (COUNT(DISTINCT ?x) as ?count)
2 WHERE
3 {
4 VALUES ?c {<Annot(r)>}
5 ?x <ANNOT.PROP> ?c .
6 }
7 GROUP BY ?c

After having obtained resource annotations as well as IC values, similarity scores between the
input resource r and each potentially relevant resource q can be calculated (Algorithm 2).

Algorithm 2 Computation of similarity scores for all relevant resources
1: function COMUPTESCORES(Ωr , Annot(r), ICV alues)
2: Declare icV alue
3: Declare scores
4: for q ∈ Ωr do
5: score← 0
6: Annot(q)← Ωr.getAnnotations(q)
7: for c ∈ Annot(r) do
8: if Annot(q).contains(c) then
9: icV alue← ICV alues.get(c)
10: score← score+ icV alue

11: scores.put(q, score)

12: return scores

When a user profile contains more than a single item, similarity values are aggregated through
summation to determine the final recommendation score (Definition 13).

Definition 13 (Recommendation score). The recommendation score of a potentially relevant

resource q is quantified by the sum of similarities with each resource r that can be found in the

profile (Pr).

score(Pr, q) =
∑
r∈Pr

sim(r, q) (6.8)

Upon calculation of similarity values for each potentially relevant item q, the engine ranks the
retrieved resources based on a given limit (k) that is specified by the user (Algorithm 3).
The workflow steps are executed as successive SPARQL queries and the system processes the
corresponding solutions to identify LOD resources that have the highest similarity with the
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Algorithm 3 Extraction of k recommendations
1: function GETRECOMMENDATIONS(scores, k)
2: Declare recommendations
3: sortedScores = scores.sortByScoreDesc()
4: for q ∈ sortedScores do
5: if recommendations.count() < k then
6: recommendations.add(q)
7: else
8: break
9: return recommendations

user profile. It has to be ensured that favored items do not show up in the recommendation
list (Algorithm 4, line 18). Additionally, the engine needs to execute all previously described
workflow steps for each LOD resource in the profile (Pr) thereby determining a global list of
recommendation scores based on the sum of similarity values for each resource q that has been
extracted from the SPARQL endpoint (Algorithm 4, lines 5-23).

Algorithm 4 Recommendation procedure
1: Declare scores
2: Declare recommenderJob
3: Declare simEngine
4: function GETRECOMMENDATIONS(Pr)
5: for r ∈ Pr do
6: Declare Annot(r)
7: Declare ICcounts
8: Declare ICvalues
9: Declare Ωr

10: Declare localScores
11: Declare recommendations
12: Annot(r)← recommenderJob.getAnnotations(r)
13: ICcounts← recommenderJob.getConceptCounts(Annot(r))
14: ICvalues← recommenderJob.getICscores(ICcounts)
15: Ωr ← recommenderJob.getRelevantResources(r,Annot(r))
16: localScores← simEngine.computeScores(Ωr, Annot(r), ICvalues)
17: for q ∈ localScores do
18: if !Pr.contains(q) then
19: if Scores.contains(q) then
20: newScore← scores.get(q) + localScores.get(q)
21: scores.put(q, newScore)
22: else
23: scores.put(q, localScores(q))

24: recommendations← simEngine.getRecommendations(scores, k)
25: return recommendations

This chapter has presented key methods of on-the-fly retrieval, with which recommendations
can be generated from LOD repositories through an API interface without requiring local meta-
data or excessive preprocessing operations other than the mapping of profile items with LOD
resources.5

5Di Noia et al. describe, how a mapping procedure can be conducted for a real-world implementation. For their
LDRS, they matched movie titles with the corresponding LOD resources in DBpedia. The authors extracted
IRIs, labels and publication dates for all movie resources. They applied the Levenshtein distance on these
resources to identify matching movies items [67].
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6.4 Fast On-the-Fly Recommendations

Recommendation requests may encounter long processing times, especially when certain SKOS
annotations are frequently used in a collection. Consider the DBPedia category dbc:Living_
People, which in the 3.9 version of the dataset occurs in 49.6% of entities typed as music
groups. To identify similar items for an input resource being annotated with this category, the
engine would have to process hundreds of thousands of triple statements. Thus, the approach
has to be complemented with an efficient technique that reduces the number of triple statements
during runtime retrieval without corrupting the ranking. A possible solution is to check, which
resources can be omitted without changing the order of results based on the number of recom-
mendations (k). Therefore, an estimation query (Listing 6.6) retrieves all resources (?q) that
have the same annotations (?c) as the input resource in descending order of matching annota-
tions.

Listing 6.6: Estimation query
1 SELECT ?q (COUNT(DISTINCT ?c) as ?count)
2 WHERE
3 {
4 VALUES ?c { <ANNOT(r)> }
5 ?q <ANNOT.PROP> ?c .
6 FILTER (?q != <r>)
7 }
8 GROUP BY ?q
9 ORDER BY DESC(COUNT(?c))

10 OFFSET <CURRENT.OFFSET>
11 LIMIT <MAX.ROWS>

Upon extraction of the result set for the given query, the system initializes its optimization
procedure. It obtains the number of matches (m) at the kth position of the sorted result list.
Thus, it is made sure that the final ranking is not corrupted by excluding too many resources
from retrieval.
The number of shared annotations is subsequently decremented to test whether the sum of
the m least informative item features is higher than the m − 1 most informative item features
(Algorithm 5). If this is the case the engine does not have to retrieve LOD resources with less
than m matching SKOS annotations, since this would not change the final ranking.

Algorithm 5 Computing the cut value
1: function COMPUTECUT(m)
2: minScore← getScore(m, false)
3: cut← m
4: m−−
5: if m > 0 then
6: maxScore← getScore(m, true)
7: if maxScore >= minScore then
8: computeCut(m)
9: else
10: return cut
11: else
12: return cut
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The process of similarity computation is imitated by calculating potential scores for all known
subject annotations of the input resource (Algorithm 6). As soon as the maximum potential
score for a certain number of shared features is smaller than the minimum score for a higher
number of shared features, the cut value is set to m and the process of optimized similarity
calculation can start.

Algorithm 6 Computing potential similarity scores
1: icV alues.sort() . Sort IC values in ascending order
2: size← icV alues.length()
3: function GETSCORE(m, max)
4: sum← 0
5: if max == true then
6: sublist← icV alues.sublist((size− 1)−m, size− 1)
7: else
8: sublist← icV alues.sublist(0,m)

9: for icV alue ∈ sublist do
10: sum← sum+ icV alue

11: return sum

The reduced result set is extracted by a SPARQL query that omits all resources which only share
the number of subject annotations with the input resource that is equal to or below the threshold
cut value. The remaining resources (Ωreduced) are joined with the non-optimized result set (Ωr)
(see 6.9 and 6.10) in the WHERE part of the query.

Ωcut = {µ|?q | µ ∈ Fcount(?c)>cut(Ωr)} (6.9)

Ωreduced = Ωr ./ Ωcut (6.10)

The corresponding SPARQL query obtains Ωreduced with an aggregated subquery containing the
calculated cut value in the HAVING condition (Listing 6.7).
The optimized workflow is illustrated by Example 3 and Fig. 6.3. They describe the functioning
of fast retrieval for an input movie resource from DBpedia.

Example 3. A user stated that he likes the Western movie „They Call Me Trinity“ (dbr:

They_Call_Me_Trinity) and would like to receive 20 suggestions for this preference (1).

The SKORec engine extracts DBpedia categories from the SPARQL endpoint for this LOD re-

source via the property dct:subject (2). Additionally, IC scores are calculated based on

category occurrences in the dataset (3). An estimation query identifies the starting point of the

optimization process. In the case of the movie „They Call Me Trinity“ each resource sharing

only two annotations with the input resources can be excluded from similarity calculation be-

cause there exist at least 20 movies with three matching annotations and even the three least

informative concepts can achieve a higher similarity score than the two most informative con-

cepts. Thus, the final ranking would not be changed by the exclusion of resources with fewer
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Listing 6.7: Query for optimized retrieval of relevant resources and annotations
1 SELECT ?q ?c
2 WHERE
3 {
4 VALUES ?c { <ANNOT(r)>}
5 ?q <ANNOT.PROP> ?c .
6 {
7 SELECT ?q (COUNT(?c) as ?count)
8 WHERE
9 {

10 VALUES ?c { <ANNOT(r)>}
11 ?q <ANNOT.PROP> ?c.
12 }
13 GROUP BY ?q
14 HAVING (COUNT(?c)) >= <CUT>
15 ORDER BY ASC(COUNT(?c))
16 }
17 }
18 OFFSET <CURRENT.OFFSET>
19 LIMIT <MAX.ROWS>

annotations (5). Then, the engine calculates similarity values on a by 99.99 % reduced set of

resources and annotations (6), based upon which the final ranking list is compiled (7).

This procedure is assumed to scale to large data spaces, i.e., LOD repositories with millions
of annotated items and frequently occurring subject annotations, such as DBpedia [60] as it
can considerably reduce the set of resources that have to be extracted from SPARQL endpoints
(RQ10). Thus, the approach may decrease computational effort (RQ9).

6.5 Flexible Similarity Detection

6.5.1 Concept Expansion

While the ad-hoc retrieval approach is a useful feature of the SKOSRec engine, it does not
take advantage of the semantic relations in the SKOS annotation graph, which may be help-
ful to explore RDF graphs more comprehensively (RQ3). In IR systems, KOS-based semantic
expansion has a long tradition. Automatic query expansion (AQE) dates back to the 1960s.
AQE addresses the problem of brief user queries and natural language ambiguity [49]. It is
commonly applied to augment keywords with additional terms of similar meaning to improve
retrieval results. Thus, document keywords that fit a user’s underlying information need, but are
not contained in the original query can still be found. KOSs have shown to be a viable tool for
query expansion in IR systems [49]. Hence, it is no wonder that SKOS vocabularies have been
recently adopted for concept expansion in RDF-based retrieval contexts as well [97, 226].
Because of the similarity of IR systems and CB RS, ideas of AQE approaches can be transferred
to recommendation tasks to improve results and to help users better explore knowledge graphs.
The authors of [67] and [66] provide evidence for this hypothesis. In their LDRS, they enhanced
SKOS annotations with related concepts by following skos:broader links. The method im-
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Fig. 6.3: Fast on-the-fly recommendations

Fig. 6.4: Example subordinate/superior relations in the STW vocabulary

proved accuracy values. Additionally, Ruotsalo et al. quantified relatedness of annotations by
a taxonomy-based similarity metric [208].
Based on the previous work, it is suggested to facilitate incorporation of taxonomically related
concepts into the retrieval process of the SKOSRec engine. This approach might allow a more
comprehensive exploration of the semantic space of the SKOS annotation graph. The author
follows the idea of Ruotsalo et al., who assume that a quantified concept-to-concept value is
better suited to reflect concept relatedness than an exploration of direct semantic relationships
on skos:broader links. Consider the following example from the STW vocabulary: The
SKOS pairs „Economics“/„Business economics“ and „Income distribution“/„Regional income
distribution“ (Fig. 6.4) are connected by a skos:broader property indicating a subordinate/-
superior relation in the SKOS graph.

While in plain sight, it is evident that the SKOS concepts „Income distribution“/„Regional
income distribution“ are more similar than the SKOS concepts „Economics“/„Business eco-
nomics“, this difference is not detected, when only direct relations are considered because the
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concepts’ positions in the SKOS system are not taken into account. Therefore, concept-to-
concept similarity scores are often applied to quantify relatedness in a taxonomy.

6.5.2 Concept-to-Concept Similarity

Concept-to-concept similarity metrics calculate scores based on the notion of the relative in-
formativeness of a concept in a knowledge graph. Knowledge-based similarity metrics take
advantage of the fact that most KOS systems are directed acyclic graphs (DAGs) or can at
least be converted into a model that resembles a DAG [64, 187]. This structure evolves be-
cause domain-specific concepts tend to be organized as a tree-like structure with a root concept
and multiple inheritances. Concepts are more specific the further down they are positioned in
a taxonomy [64, 153]. These principles equally apply to Linked Data-enabled KOS. A qual-
itative analysis of numerous SKOS vocabularies revealed that most of these taxonomies de-
fine root concepts (skos:hasTopConcept) and do not contain cyclic hierarchical relation-
ships [155].
Hence, general knowledge-based similarity metrics can be applied to SKOS vocabularies as
well. The majority of these measures base concept-to-concept similarity calculation on the
specificity of the concept(s) in question. Hence, the more specific two concepts are and the
closer they are positioned in the taxonomy graph, the more similar they are.
The best-performing metrics compared to human judgment proved to be those that rely on the
notion of the most informative common ancestor of two concepts v and z (MICAv,z), i.e., the
concept in the set of common ancestors of v and z (CAv,z) that has the maximum informa-
tiveness value (θ(c)) of all informativeness values (Θv,z) of common ancestors (Eqs. 6.11 and
6.12) [30, 98, 202, 257].

Θv,z = {θ(c) | c ∈ CAv,z} (6.11)

MICAv,z = {c | θ(c) = max
θ(c)∈Θv,z

Θv,z} (6.12)

Since DAG-like taxonomies contain multiple inheritances, the cardinality of MICAv,z can be
higher than one [30]. However, this does not represent a problem, as only the maximum infor-
mativeness value is needed for similarity calculation.
Concept informativeness can be calculated as a function of different parameters. It can be either
derived from an external text corpus (extrinsic approach) or through exploration of the semantic
structure of the taxonomy graph itself (intrinsic approach) [98]. When applying the intrinsic ap-
proach, specificity is often indicated by the depth of a concept in the hierarchy. In graph theory,
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common ancestors with maximum depth are called lowest common subsumers [30, 146].
For instance, Wu and Palmer invented a concept-to-concept similarity metric based on concept
depth (θdepth(c)) [257]. Because taxonomies typically have a root node, concept depth can be
measured by the shortest path from the root to the concept [98]. Another intrinsic method to
measure concept specificity is to determine the number of concepts that are subsumed by the
concept in question (Desc(c)) in comparison to the overall number of concepts (C) that are
contained in the taxonomy graph (Eq. 6.13) [221].

θdesc(c) = 1− log(Desc(c))

log(|C|)
(6.13)

Concept-to-concept similarity values can be calculated based on the above-listed informative-
ness metrics. Often, this is done by setting the MICAv,z in relation to the sum of the informa-
tiveness of v and z (Eq. 6.14) [146, 257].

conceptSim(v, z) =
θ(MICAv,z)

θ(v) + θ(z)
(6.14)

The previous paragraphs have introduced approaches to concept-to-concept similarity calcula-
tion in taxonomy graphs. They have to be applied with caution on SKOS vocabularies since
they only work well on transitive relationships. However, the SKOS specification does not re-
quire hierarchical relations (skos:broader/skos:narrower) to be transitive by default.
Instead, data providers have to specify entailment explicitly through declaration of skos:
broader/skos:narrower links as sub-properties of skos:broaderTransitive/skos:
narrowerTransitive [24, 155, 166]. Thus, it is open to publishers to include entailment
regimes, when necessary. Quality assessments of existing SKOS vocabularies have shown that
only a few thesauri declare transitive relationships [24,155]. Among the SKOS vocabularies of
the usage scenarios, just the STW thesaurus has transitive connections, whereas in AGROVOC
and the DBpedia category graph hierarchical links are simple relations. For this reason, the
aforementioned concept-to-concept similarity metric can only be applied to the STW thesaurus.
Transitivity is not the only problem when considering to use SKOS vocabularies for similarity-
based concept expansion. For instance, quality assessments on the DBpedia category system
have shown that the graph contains more than 1,000 cycles [155]. Therefore, Stankovic et
al. introduced an alternative approach that can compute concept-to-concept similarities on the
category graph. The corresponding metric is called hyProximity (hyP ) [233]. In contrast to
approaches that rely on the specificity of lowest common ancestors, it utilizes a modified path-
based metric. This method goes back to Rada et al., who propose to take the shortest path length
between two concepts as an indicator of similarity [199].
Stankovic et al. identify similar concepts for a set of initial seed concepts by traversing chains
of skos:broader links. Concepts that are found within a shorter distance of the initial
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seed concepts are more alike. Additionally, the authors assume that concepts appearing in the
proximity of many seed concepts are more similar than those in the proximity of a single seed
concept [233]. Hence, for a set of initial concepts and another concept, similarity is calculated
as the sum of inverted shortest-path distances. Distance values (d(v, z)) are determined accord-
ing to the first common ancestor when going along skos:broader relations. The hyP metric
can be adapted to cases with only a single initial concept, such that it can be applied as an alter-
native concept-to-concept measure for concept expansion on cyclic vocabularies. This version
of the metric (Eq. 6.15) will be used for the flexible similarity detection method of the SKOS-
Rec engine on the DBpedia SKOS graph. The conceptSimhyP (v, z) metric does not consider
lowest common ancestors because concept specificity cannot be unambiguously determined in
a cyclic taxonomy.

conceptSimhyP (v, z) =
p(v, z)

d(v, z)
(6.15)

While it would be possible to delete circles in the SKOS graph, it might not be clear which
relations could be omitted without inflicting information loss. A heuristic shortest-path-based
approach is the only option to obtain semantically related concepts from a low-quality vocab-
ulary. Therefore, Stankovic et al. introduce a pondering function to account at least a little for
the idea of concept depth in the conceptSimhyP (v, z) metric (Eq. 6.16) [233]. The function
decreases the final similarity score, the further away a common ancestor is positioned from two
concepts.

p(v, z) = e−γd(v,z) (6.16)

The following section will explore, how taxonomy-based similarity metrics can be applied for
concept expansion in the context of on-the-fly recommendation retrieval.

6.5.3 Item Similarities with Concept Expansion

The SKOSRec engine performs concept expansion by identifying all concepts that are similar
to the annotations of the LOD resource from the user profile (i.e., proximate concepts). The
notion of proximate concepts (Prox(c, r)) is specified in Definition 14.

Definition 14 (Proximate concepts). For a single SKOS annotation c of a user profile item,

proximate concepts are those that are sufficiently similar to it, i.e., the SKOS-based concept-to-

concept similarity score (conceptSim(c, prox)) exceeds a specified threshold ε (Eq. 6.17).

Prox(c, r) = { prox ∈ AD | c ∈ Annot(r), conceptSim(c, prox) ≥ ε} (6.17)
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Fig. 6.5: RDF representation of a similarity object of two STW concepts

Concept-to-concept similarity values usually range between 0 and 1 with higher scores indi-
cating higher proximity between concepts [35]. Favorably, the threshold level ε should be set
reasonably high (i.e., with a minimum value of 0.5 ) to ensure that only relevant concepts are
considered for similarity calculation. Additionally, since on-the-fly retrieval requires low com-
putational costs, it is advisable to at least precompute concept-to-concept similarities, which
can be saved in a local RDF triple store to be available at runtime. The data should adhere to
LOD publishing principles and favorably be modeled according to a suitable LOD ontology in
order to be conveniently processable by the SKOSRec engine. One such vocabulary is the Mu-

sic Ontology by Jacobson et al. [120]. It was originally developed to store similarity values for
music items, but can be applied for SKOS-based scores as well. Figure 6.5 shows an example
similarity object. It stores the similarity values of two concepts from the SKOS-based STW
Thesaurus.

When the local triple store contains concept-to-concept similarity values, they can be extracted
with a SPARQL request during execution. Listing 6.8 shows the respective query for the RDF
graph depicted in Figure 6.5.6,7

Listing 6.8: Extraction of similar concepts
1 PREFIX sim: <http://purl.org/ontology/similarity/>
2
3 SELECT DISTINCT ?exact ?prox ?weight
4 WHERE
5 {
6 VALUES ?exact { <Annot(r)> }
7 ?id sim:element ?exact .
8 ?id sim:element ?prox .
9 ?id sim:weight ?weight .

10 FILTER (?weight >= <EPSILON>
11 FILTER (str(?exact) != str(?prox))
12 };

6 PREFIX stw: <http://zbw.eu/stw/descriptor/>
7 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>



90 6.5 Flexible Similarity Detection

The request obtains all concepts that are similar to the annotations of the input resource. It also
contains two SPARQL filter conditions. The first filter ensures that scores are above the speci-
fied concept-to-concept similarity threshold and the second filter excludes matching concepts.
Formally, the set of all similar concepts for an input resource r from the user profile is the union
of all proximate concept sets of the annotations (Eq. 6.18).

Prox(r) =
⋃

c∈Annot(r)

Prox(c, r) (6.18)

Upon having extracted suitable concepts for expansion, the retrieval process for annotations and
relevant resources is started with an enhanced set of annotations.

Definition 15 (Relevant resources and annotations (concept expansion)). The expanded solu-

tion set comprises mappings for resources and their SKOS annotations that share at least an

annotation with either the original annotations of the input resource (exact matches) (Ωr) or

with one of the previously identified similar concepts (proximate matches) (c ∈ Prox(r)). The

processor evaluates the specified graph patterns and returns the mapping Ωexp (see Eqs. 6.19

and 6.20).

Pexp = (?q,<ANNOT.PROP>, ?c) (6.19)

Ωexp = { µ ∈ [[Pexp]]AD | µ(?c) ∈ Prox(r) } ∪ Ωr (6.20)

After having obtained the result set, resources need to be ranked thereby considering proximate
concepts as well. The following considerations drove the development of the scoring model.

• Exact matchings of LOD resources should have priority since they are the best indica-
tors of item-level similarity. Thus, as long as resources share an annotation, proximate
concepts are excluded.

• When two resources r and q do not share an annotation, the system should look for
proximate concepts to make sure that all available information about resource similarity
is taken into account. In case resource q is annotated with more than a single concept that
is similar to the original annotation in question; the maximum score is selected.

The importance of a single annotation c (i.e., descriptor score), when calculating the similarity
score of two resources r and q, is determined by both the IC of the respective annotation and the
similarity score between annotation c and annotations of q. The notion of the descriptor score
is specified in Definition 16.
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Definition 16 (Descriptor score). When an exact annotation is present in the set of annotations

of q, its score is represented by the IC of c. If this is not the case and c has similar concepts

that are present in the annotation set of q; the concept-to-concept similarity value is utilized to

decrease the IC. Hence, the respective annotation is contributing slightly less to the final simi-

larity score of the two resources. When an annotation neither appears in the set of annotations

of q nor has similar concepts that are present in the annotation set of q, the descriptor score is

set to 0 (Eq. 6.21).

descScore(c, r, q) =


IC(c), c ∈ Annot(q)

simMAX(c, r, q) · IC(c), c /∈ Annot(q), Scores(c, r, q) 6= ∅

0, otherwise

(6.21)

The engine identifies expansion candidates for an annotation (c ∈ Annot(r)) by looking at the
annotations of a resource q, whose similarity score with r needs to be determined. The final
concept-to-concept similarity value (simMAX(c, r, q)) is based on the scores of proximate
descriptors (Definition 17).

Definition 17 (Concept-to-concept similarity score). When a proximate concept (prox) appears

in the set of similar concepts of the input annotation (Prox(c, r)) as well as in the annotations of

q (Annot(q)), its concept-to-concept similarity score is added to the set of relevant values (Eq.

6.22). From these values, the maximum similarity score is selected as the concept-to-concept

similarity score (Eq. 6.23).

Scores(c, r, q) = { conceptSim(c, prox) | prox ∈ Prox(c, r) ∩ Annot(q)} (6.22)

simMAX(c, r, q) = max
s∈Scores(c,r,q)

Scores(c, r, q) (6.23)

The recommendation score of two items r and q in concept expansion mode is specified in
Definition 18

Definition 18 (Recommendation score (concept expansion)). The scores of each concept of the

annotation set of r are aggregated by summation to determine the final similarity value of two

resources r and q in concept expansion mode.

scoreexp(r, q) =
∑

c∈Annot(r)

descScore(c, r, q) (6.24)
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Algorithmically, this procedure does not differ much from the computation of similarity scores
in the execution mode of on-the-fly retrieval. The only difference is that for each LOD resource
q ∈ Ωexp the engine takes into account the concept-to-concept similarity scores of related con-
cepts as well (see Algorithm 7).

Algorithm 7 Computation of recommendation scores (concept expansion)
1: function COMUPTESCORES(Ωr , Annot(r), simConcepts, ICV alues, Ωexp)
2: Declare scores
3: Declare icV alue
4: for q ∈ Ωexp do
5: score(r, q)← 0
6: Annot(q)← Ωexp.getAnnotations(q)
7: for c ∈ Annot(r) do
8: if Annot(q).contains(c) then
9: icV alue← ICV alues.get(c)
10: score(r, q)← score(r, q) + icV alue
11: else
12: simMAX(c, r, q)← 0
13: Prox(c)← simConcepts.getSimilarConcepts(c)
14: for p ∈ Prox(c) do
15: if Annot(q).contains(p) then
16: if simConcepts.getSimilarity(c, p) > simMAX(c, r, q) then
17: simMAX(c, r, q)← simConcepts.getSimilarity(c, p)

18: score(r, q)← score(r, q) + icV alue · simMAX(c, r, q)

19: scores.put(q, score(r, q))

20: return scores

Consider Example 4 that is depicted in Figure 6.6. It illustrates a flexible similarity detection

procedure for the usage scenario of DL search in the LOD repository EconStor.

Example 4. A user has accessed the paper econstor:215558 and would like to receive

recommendations through flexible similarity detection (i.e., concept expansion). Therefore, he

specifies a similarity threshold (ε > 0.75). Hence, even though the input paper (econstor:

21555) does not share the SKOS concept „Wealth distribution“ (stw:11751-0) with the

LOD resource (econstor:34662), the related concept „Savings“ is incorporated into the

retrieval process. This is because the precalculated concept-to-concept similarity value for

„Wealth distribution“ and „Savings“ is sufficiently high (conceptSim = 0.816). The concept

„Overlapping generations“ (stw:10179-0) is considered to be related as well but is not

taken into account, because its similarity with the concept „Wealth distribution“ is smaller

than the similarity value of the „Savings“ concept. Additionally, the fact that the SKOS concepts

„Wealth distribution“ and „Savings“ do not match exactly is modeled through multiplication of

the IC value of „Wealth distribution“ with the concept similarity score of „Wealth distribution“

and „Savings“ (0.816 · 0.7131). Thus, related concepts contribute less to the final similarity

score of two resources than matching concepts.

By application of the flexible similarity detection method, it may be possible to change the
composition of result lists thus enabling users to explore RDF graphs more comprehensively.

8 PREFIX econstor: <http://linkeddata.econstor.eu/beta/page/publications/>
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Fig. 6.6: Similarity detection with concept expansion

6.6 Constraint-based Recommendations

6.6.1 Prefiltering

To facilitate exploratory search in LOD repositories, users should also have the option to for-
mulate conditions in their queries. A possible way to enable filters during retrieval is before
similarity calculation. Thus, users can adjust recommendation lists according to their needs.
Due to the expressiveness of RDF data, filter conditions cannot only be applied on attributes
that are directly connected to potentially relevant items but can also be declared as a graph pat-
tern (P ). By this means, it is possible to retrieve LOD resources that are similar to the user
profile and match an advanced condition. Before the extraction of relevant resources and an-
notations, the recommendation engine identifies the resources that satisfy the filter (Definition
19).

Definition 19 (Prefiltered resources). The mappings of filtered resources Ωprefilter are obtained

by matching a specified graph pattern (P ) to the RDF graph of a dataset D (Eq. 6.25).

Ωprefilter = { µ|?q | µ ∈ [[P ]]D} (6.25)

After pre-selection, resources are brought together with user profile data to retrieve the final set
of recommendations (Definition 20).
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Definition 20 (Annotations and relevant resources (prefiltered retrieval)). The solution map-

pings of annotations and relevant resources in prefiltered retrieval mode are obtained by joining

the set of prefiltered resources with the mappings Ωr of all relevant resources and annotations

as determined from the user profile.

Ωpre = Ωprefilter ./ Ωr (6.26)

The SPARQL query that is needed to perform the previously mentioned operations is given in
Listing 6.9. Note that, in the provided query example, the user filter is contained in the graph
pattern P (Listing 6.9, line 10) and can itself comprise several triple statements or subgroups of
graph patterns. The grammar of the SKOSRec query language (Sect. 6.8) defines the allowed
expressions for P in the RecGroupGraphPattern construct.

Listing 6.9: Query for prefiltered constraint-based recommendation retrieval
1 SELECT ?q ?c
2 WHERE
3 {
4 VALUES ?c { <ANNOT(r)>}
5 ?q <ANNOT.PROP> ?c .
6 {
7 SELECT ?q (COUNT(?c) as ?count)
8 WHERE
9 {

10 <P>
11 VALUES ?c { <ANNOT(r)> }
12 ?q <ANNOT.PROP> ?c .
13 }
14 GROUP BY ?q
15 HAVING (COUNT(?c)) >= <CUT>
16 ORDER BY ASC(COUNT(?c))
17 }
18 }
19 OFFSET <CURRENT.OFFSET>
20 LIMIT <MAX.ROWS>

Additionally, the system must ensure that the graph pattern contains a variable declaration that
resembles the variable for potentially relevant resources in the surrounding query (i.e., ?q).
The compiler of the SKOSRec engine performs this consistency check. After retrieving an-
notations and relevant resources in prefiltering mode, the system generates constraint-based

recommendations. In this context, the ranking procedure is adapted to the restricted set of
relevant resources and annotations. Hence, IC values of matching annotations and respective
SKOS similarities are quantified according to the user filter (Definitions 21 and 22). By this
means, recommendation scores reflect the similarity of items for the actual set of filtered LOD
resources.

Definition 21 (Conditional SKOS similarity). Let Annot(r) be the set of SKOS features of r

and Annot(q) the set of SKOS features of resource q, which is contained in the filtered set of
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annotations and relevant resources (q ∈ {µ(?q)| µ ∈ Ωpre}), then the similarity can be derived

from the IC of their shared concepts (Ccond = Annot(r) ∩ Annot(q)) (Eq. 6.27).

simcond(r, q) = IC(Ccond) (6.27)

Definition 22 (Conditional SKOS Information Content). The conditional IC of a set of SKOS

annotations is defined by the sum of the IC of each concept c ∈ {µ(?c) | µ ∈ Ωpre}, where

freqcond(c) is the frequency of c among all filtered resources and n is the maximum frequency

among these resources (Eq. 6.28).

IC(Ccond) = −
∑

c∈Ccond

log

(
freqcond(c)

n

)
(6.28)

The system carries out the calculations (i.e., determination of similarity values, the ranking of
LOD resources) in the same way as in non-filtering mode (Sect. 6.3). The strengths of the
approach are illustrated in the context of the travel usage scenario for a place resource from
DBpedia. Example 5 and Fig. 6.7 show the effects of filtering.

Example 5. A user profile contains a preference for the Lake Baikal (dbr:Lake_Baikal)

region (e.g., as indicated by a positive rating on a travel community site). With simple on-

the-fly retrieval, the user would receive a recommendation list that primarily consists of travel

destinations that are similar to this geographical area. However, a filter facilitates more specific

recommendations. In the example, the user could require suggestions for travel destinations

that are known to be nature reserves, which changes the ranking of recommendation results

accordingly.

In the previous example, the filter is only applied to direct attributes of travel destinations. How-
ever, as has been argued before, the RDF data model enables more expressive constraints. For
instance, when users formulate filters imprecisely, a graph pattern could enhance the query to
match more attributes. Furthermore, expressive filter requests can address data quality issues by
inferring additional triple statements. Simple filters, on the other hand, have a limited scope. In
the example, they lead to recommendations for travel destinations that are located in proximity
to the location specified in the user profile. In contrast, Example 6 and Figure 6.8 illustrate how
graph patterns can help when a user has stated a preference for a destination in one region but
intends to travel to a different geographical area.

Example 6. The profile contains a preference for the Lake Baikal region. Additionally, the user

specifies that he is interested in Southeast Asian travel destinations. With only a simple filter,

the engine would not be able to generate a recommendation, since the resource dbr:Lake_
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Fig. 6.7: On-the-fly vs. constraint-based retrieval (travel domain)

Baikal is not connected to any destination with the annotation dbc:Southeast_Asia.

The system can only identify relevant items for this filter condition when it queries a couple of

additional triple statements (see green nodes in Fig. 6.8). Similarity calculation is facilitated

by matching SKOS annotations (as is shown by the blue node in Fig. 6.8). The remaining SKOS

annotations in the figure are either connected to the DBpedia resource dbr:Lake_Baikal

or the resource dbr:Tonlé_Sap. The concepts do not have IC scores (IC: NaN) because

they do not appear in the set of filtered relevant resources and annotations.

Example 6 has shown how expressive filtering can help to make the most of the available data
sources in LOD repositories. Thus, by specifying graph-based filter conditions, users may be
assisted in finding relevant recommendations that fit their interests (RQ13).

6.6.2 Preference Querying

In addition to prefiltering, the engine can apply graph pattern matching to generate entire user
profiles. In the previous sections, it was assumed that users express their tastes in the form of
preference statements for concrete items. However, it may also be the case that likings are only
vaguely known, for instance, when a user has not yet interacted with an online platform but can
just provide general information while creating a profile (e.g., regarding genre preferences for
movies). Another example is when users prefer products with specific features but are not able
or willing to specify the actual items. For instance, consumers are often fans of particular movie
directors or book authors. However, on popular online platforms, such as Amazon [11] or Net-
flix [172] common retrieval strategies either search items by their creators or obtain recommen-
dations from past consumption behavior. A novel and potentially interesting search paradigm
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Fig. 6.8: Contraint-based retrieval with graph pattern matching (travel domain)

would be to combine both methods in a unified approach. With this approach, a profile is cre-
ated based on a single user statement, upon which the engine extracts the required information
from the LOD repository. This method is equally applicable to databases. However, they might
lack persistent authority control (see Sect. 2.3), which, in turn, hinders extraction of all the
relevant data for a particular entity. On top of that, the data may not be available in the local
database, in which case LOD repositories can offer valuable additional information sources.
Therefore, the SKOSRec engine can use graph-based queries for profile generation from RDF
collections.

Definition 23 (Queried profile). A queried profile is a user profile that has been compiled by

retrieving all LOD resources r that are part of an annotation graph AD and are contained in

the solution mappings resulting from the evaluation of a specified graph pattern (Ppref ) over a

dataset D (Eq. 6.29).

Pr = { µ(?r) | µ ∈ [[Ppref ]]D, ?r ∈ dom(µ), r ∈ AD} (6.29)

The engine can obtain such a profile by issuing a SPARQL query that contains the preference
graph pattern (Ppref ) in the WHERE condition (Listing 6.10).
In this case, the compiler has to make sure that Ppref contains the variable declaration (i.e.,
?r) that denotes the LOD resoures to be extracted for the user profile. Regardless whether the
user profile has been obtained through querying or by explicit preferences for specific items, it
consists of a set of LOD resources that can be applied for recommendation retrieval. Example
7 illustrates a typical scenario for profile querying.
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Listing 6.10: Preference query
1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2 PREFIX skos: <http://www.w3.org/2004/02/skos/core#>
3
4 SELECT ?r
5 WHERE
6 {
7 <P_pref>
8 ?r <ANNOT.PROP> ?c .
9 ?c rdf:type skos:Concept .

10 }

Fig. 6.9: Preference querying (movie domain)

Example 7. Suppose a user is interested in Quentin Tarantino movies, but does not specify

the precise items he likes. He could send a preference query to the SKOSRec engine. The

graph pattern in the request would match all movies that are connected to dbr:Quentin_

Tarantino with the properties dbo:director or dbo:producer (see Fig. 6.9) and add

them to the user profile.

6.6.3 Postfiltering

The SKOSRec engine cannot only combine similarity calculation and graph pattern matching
to prefilter relevant LOD resources, it can also apply user constraints after similar items have
already been determined. By these means, recommendations are filtered ex-post to the similarity
detection process. This feature enables novel retrieval patterns, in which suggestions are part
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of a subquery. Definition 24 specifies the notion of SKOSRec recommendations that undergo
postfiltering.

Definition 24 (SKOSRec recommendations). SKOSRec recommendations (R(Pr)) are the set

of suggestions generated by processing the solution mappings (Ω.) obtained from recommenda-

tion retrieval. They can be a result of simple on-the-fly retrieval, flexible similarity detection,

prefiltering or a result of a combination of these techniques. Pr represents the input profile

that contains at least one preference for an item. The cardinality of R(Pr) is the intended

number of recommendations (k) that is specified by the user, based on which the engine selects

the resources with the highest recommendation scores that are not contained in the profile (Eq.

6.30).

R(Pr) = {x | x ∈ {q | score(Pr, q) ≥ kmax
q∈Ω.

score(Pr, q), q /∈ Pr}} (6.30)

The approach of subquerying with recommendation results builds on the idea that SKOSRec
suggestions R(Pr) can be joined with any graph pattern Ppost past to the process of similar-
ity calculation (Definition 25). It does not make a difference how the engine obtained these
recommendations.

Definition 25 (Postfiltered recommendation mapping). The postfiltered recommendation map-

ping is obtained by joining solution mappings generated from SKOSRec recommendations with

the results of matching a postfilter graph pattern (Ωpost) (Eqs. 6.31 and 6.32).

Ωpostfilter = {µ | µ ∈ [[Ppost]]D, ?x ∈ dom(µ)} (6.31)

Ωpost = {µ|?x | x ∈ R(Pr)} ./ Ωpostfilter (6.32)

As the prefilter, Ppost can be comprised of triple statements that are eligible in the RecGroup-
GraphPattern part of the SKOSRec grammar. The only precondition is that the recom-
mendation variable (e.g., ?x) is contained in the graph pattern to facilitate join operations. The
compiler has to check this condition during recommendation retrieval. The SPARQL query in
Listing 6.11 shows how a postfiltered recommendation mapping can be extracted from a LOD
repository.
The set of projection variables of the corresponding SKOSRec query must contain the recom-
mendation variable, because the final solution is ranked according to the similarity score of the
suggestions. In case, users additionally specify a LIMIT clause, it refers to the total number
of records to be retrieved for the recommendation request (see Sect. 6.8). When no LIMIT is
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Listing 6.11: Query for postfiltered recommendation mapping
1 SELECT *
2 WHERE
3 {
4 VALUES ?x { <R(Pr)> }
5 <P_post>
6 }

specified, it may be that individual recommended items are linked to many other LOD resources
via the specified Ppost graph pattern. Hence, the size of the result set can become unpredictably
large, which has to be handled by an appropriate output interface.
The complementary case of a single LOD resource being linked to numerous suggested items
requires a different approach to postfiltered retrieval. For instance, a user would like to receive
suggestions for a superordinate item that is based on preferences for sublevel entities (e.g., when
generating travel recommendations for cities based on the POIs, a user visited in another city).
These cases of aggregation-based retrieval have to be treated differently than a regular postfilter

request. Apart from excluding sublevel items of the profile from the set of similar resources,
the engine should also omit any connections between the preferred superordinate item (a) and
similar sublevel entities. Additionally, the user has to specify the variable in his profile (e.g.,
?y) that represents the aggregation-based suggestions within the postfilter graph pattern Ppost

(Definition 26).

Definition 26 (Resources for aggregation-based retrieval). The set of resources for aggregation-

based retrieval is obtained by retrieving LOD resources that have a connection to a previously

generated suggestion thereby excluding all resources that are linked to the specified superordi-

nate item a in the profile (Eq. 6.33).

Ragg(a) = {µ(?y) | µ ∈ Ωpost, ?y ∈ dom(µ), a /∈ µ(?y)} (6.33)

For each potential aggregation-based suggestion (y), similarity scores of connected entities (x)
have to be considered for the final ranking. In this context, different approaches to aggregation
can be applied. In cases when both similar items and aggregation-based recommendations are
entities on comparable levels of granularity (e.g., as in cross-domain requests, see Sect. 6.8),
then choosing the maximum similarity score might be the best way to represent the relatedness
of the resource to the user profile. On the other hand, when postfiltered recommendations are
based on similarity scores of their sublevel entities (e.g., as in rollup requests, see Example 8),
the scores of related suggestions should be aggregated by the sum or the average of individual
scores.

Definition 27 (Aggregation-based ranking score). The ranking score of an LOD resource y that

is connected to a set of recommended items is determined by aggregating scores of connected
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entities either by the maximum (Eq. 6.34), the sum (Eq. 6.35) or the average (Eq. 6.36) of

individual scores.

scoreaggMAX(y) = max
x∈µ(?x,y)

score(Pr, x) (6.34)

scoreaggSUM(y) =
∑

x∈µ(?x,y)

score(Pr, x) (6.35)

scoreaggAV G(y) =

∑
x∈µ(?x,y) score(Pr, x)

|x ∈ µ(?x, y)|
(6.36)

In the case of the aggregation-based retrieval mode, the engine makes sure that the correspond-
ing SKOSRec query contains the aggregation variable in the postfilter section of the request be-
cause the final result set is ranked according to the aggregated score. If users specify a LIMIT
clause in this section as well, the number of aggregation-based recommendations is restricted
to this limit (see Sect. 6.8).
Example 8 illustrates the previous statements.

Example 8. Suppose a user went on a city trip to London. He visited and liked certain

POIs (e.g., Oxford Street) there. The user states these preferences in his profile and issues a

corresponding request, based upon which the engine executes a fixed recommendation work-

flow. First, the system determines other similar POIs and extracts cities (rdf:type yago:

UrbanArea1086759679) that are connected to these places in the LOD repository via sub-

properties of the property dul:hasLocation. An additional condition in the postfilter sec-

tion of the query requires urban area LOD resources. During the aggregation of similarity

scores, the engine omits sublevel entities that are connected to preference information in the

user profile. Hence, London-based POIs are excluded from retrieval. The more relevant POIs

a city shares with the POIs of the input profile, the higher it is ranked. Hence, in the example,

Oxford is assumed to be more relevant, since it has more in common with the user profile than

Lechlade.

6.7 Cross-Repository Recommendations

The SKOSRec engine enables another type of retrieval pattern. It can obtain recommenda-
tions from distributed repositories, as mapping relations in SKOS vocabularies facilitate cross-

repository requests. For this purpose, the engine utilizes the property skos:exactMatch.

9 PREFIX yago: <http://dbpedia.org/class/yago/>
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Fig. 6.10: Postfiltered recommendation (aggregation-based)

The property specifies concordance links between descriptors in different SKOS concept schemes
(see Sect. 6.1). A skos:exactMatch relation indicates that two concepts share the same
semantic meaning. For instance, in the Standard Thesaurus for Economics the concept stw:
12945-3 („Agriculture“) points to a corresponding descriptor in the AGROVOC thesaurus
(agrovoc:c_20310). Since the approach of on-the-fly retrieval is based on concept annota-
tions in a data collection, mapping links can facilitate detection of related resources from other
repositories. The SKOS version of the STW thesaurus is used to describe publications from
EconStor LOD [173], while AGROVOC descriptors are applied in the AGRIS LOD repository
to annotate publications from the field of agriculture and agricultural economics [12]. Based
on a user profile that contains preference information for items from a default repository that
is stated in the standard configuration of the SKOSRec engine (e.g., EconStor LOD), the en-
gine determines the annotated SKOS concepts of these items and looks for mappings to another
vocabulary (e.g., AGROVOC). For the mapped concepts, potentially relevant items are deter-
mined from a target repository (e.g., AGRIS). Thus, the processing step of similarity calculation
is based on the target repository’s SKOS annotations. Hence, any pre- or postfilter condition
needs to be defined according to the specificities of the target repository.
Cross-repository recommendations depend on the existence of mapping relations between two
SKOS vocabularies. When this precondition is met, the SKOSRec engine generates recom-
mendations from distributed collections such that repositories are virtually integrated during
retrieval. In this way, the system can handle the decentralized nature of the LOD cloud with-

10 PREFIX agrovoc: <http://aims.fao.org/aos/agrovoc/>



6 The SKOS Recommender 103

Fig. 6.11: Cross-repository retrieval

out requiring additional data integration tasks (RQ8). Example 9 describes a recommendation
procedure for a particular request.

Example 9. An economics researcher is interested in environmental and agricultural issues

in the geographical region of Southeast Europe. The publication „Agriculture in the West-

ern Balkan countries“ (econstor:46070) can be found in his user profile. The user is

already familiar with all related publications in EconStor but would like to determine whether

the AGRIS repository holds additional interesting material on this topic. However, he is only

interested in English publications (dc:language = ’en’). For this query, the engine re-

trieves all SKOS annotations of econstor:46070, determines the matches of these anno-

tations with the AGROVOC thesaurus and looks for potentially relevant publications in the

AGRIS repository. Based on the specified filter condition (dc:language = ’en’) and the

AGROVOC descriptors, the engine generates suggestions from the AGRIS repository (e.g.,

agris:GB9708724) and presents it to the user. Figure 6.11 illustrates this showcase sce-

nario graphically.

The example has shown how cross-repository retrieval can be carried out over LOD datasets. It
is a straightforward approach that takes advantage of the knowledge structures of SKOS vocab-
ularies. By these means, users are enabled to obtain recommendations from a target repository
which are based on a user profile that only contains items from a source repository.
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6.8 The SKOS Recommender Query Language

6.8.1 Syntax

The previous section described different ad-hoc retrieval techniques for LOD repositories. They
build the technical foundation of the SKOSRecommender query language. The language facil-
itates the formulation of recommendation requests. While there already exist language exten-
sions that combine SPARQL with similarity-based retrieval, these systems have some short-
comings that prevent full exploitation of the potential of LOD [23, 130]. The major drawback
of these languages is that they do not facilitate advanced queries that execute recommendation
workflows. Such a workflow is a precisely defined sequence of operations, of which a sin-
gle processing step either involves similarity calculation or query-based retrieval. The goal is
to generate personalized suggestions that provide an added-value to regular recommendations
resulting from simple content-based retrieval. While other researchers have already explored
the positive impact of recommendation workflows in the context of SQL-based RS [140], a
powerful LOD-enabled query language has yet to be developed. Apart from this aspect, it has
to be made sure that the new language correctly extends and combines elements of the latest
SPARQL specification (i.e., SPARQL 1.1) and offers language constructs to express individual
preferences (RQ4 and RQ5). Additionally, the syntax needs to provide statements that facili-
tate combinations of central system features of the SKOSRec engine, such as flexible similarity

calculation or constraint-based queries in order to enable advanced recommendation requests

(RQ6). Listing 6.12 shows the syntax of the SKOSRec query language. Each integral part of
the language will now be explained in detail. In the given grammar, underlined parts represent
SPARQL syntax elements that have been directly taken from the latest W3C specification [102].
Expressions in capital letters denote query keywords.

Listing 6.12: Grammar of the SKOSRec query language
1 SKOSRecQuery ::= Prologue SelectPart? SimProjection PREF ItemPart+ RecWhereClause?

2 SelectPart ::= SELECT (DISTINCT | REDUCED)? Var+ RecWhereClause

3 ::= LimitClause? Aggregation?

4 Aggregation ::= AGG IRIREF Var (SUM | MAX | AVG )

5 SimProjection ::= RECOMMEND Var TOP INTEGER ServiceIntegration?

6 ServiceIntegration ::= FROM SERVICE IRIREF

7 ItemPart ::= (VarPart | IRI) Sim?

8 VarPart ::= [ Var RecWhereClause ]

9 Sim ::= SIM Relation DECIMAL

10 Relation ::= ( > | >= | = )

11 RecWhereClause ::= WHERE RecGroupGraphPattern

12 RecGroupGraphPattern ::= ’{’ RecGroupGraphPatternSub ’}’

13 RecGroupGraphPatternSub ::= TriplesBlock? (RecGraphPatternNotTriples ’.’ ? TriplesBlock?)*
14 RecGraphPatternNotTriples ::= RecGroupOrUnionGraphPattern | RecOptionalGraphPattern |

15 RecMinusGraphPattern | Filter | Bind | InlineData

16 RecGroupOrUnionGraphPattern ::= RecGroupGraphPattern ( ’UNION’ RecGroupGraphPattern)*
17 RecOptionalGraphPattern ::= ’OPTIONAL’ RecGroupGraphPattern

18 RecMinusGraphPattern ::= ’MINUS’ RecGroupGraphPattern
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SKOSRecQuery (line 1) As a regular SPARQL SELECT query, a SKOSRec query always
generates a table-like result set that contains at least a mapping to a single variable. A
SKOSRec query can be comprised of up to six elements, of which the parts SimProjection

and ItemPart are obligatory. Hence, users need to state at least their preferences and
how many recommendations they would like to receive. Advanced retrieval patterns can
be formulated as well. For instance, similar resource retrieval can be combined with
prefiltering (RecWhereClause) and/or postfiltering (SelectPart) of LOD resources. As
in SPARQL, the query can start with a prologue that abbreviates IRIs with namespace
declarations [102].

SelectPart (line 2-3) The SelectPart part enables subquerying with recommendation results.
The surrounding query is a SELECT query with a slightly simplified WHERE clause (i.e.,
RecWhereClause), with which postfilter conditions can be formulated. In this section
users have the option to formulate aggregation-based retrieval requests (Aggregation).

Aggregation (line 4) This query part handles aggregation-based postfiltering. Users specify
the IRI (IRIref ) resource, for which similarity scores of sublevel entities are summarized.
Additionally, it is stated how the data should be aggregated (i.e., SUM, MAX or AVG)
as well as which variable (Var) represents the aggregation-based recommendations in the
postfilter section. The compiler makes sure that this variable is actually contained in the
RecWhereClause of the SelectPart.

SimProjection (line 5) This part of a SKOSRec query refers to the list of generated sugges-
tions. It defines the recommendation variable to which all similar LOD resources are
mapped. In case pre- and postfilter conditions are set in the other sections; the compiler
checks whether the variable (Var) appears in these sections as well. Otherwise, the re-
quired join operations cannot be executed. It is specified how many recommendations
should be displayed (Integer) and whether the request will be issued against a default
repository or as a cross-repository request (ServiceIntegration).

ServiceIntegration (line 6) This section indicates that a user intends to receive recommen-
dations from a different SPARQL endpoint than the default endpoint that is stated in the
standard configuration of the SKOSRec engine. It specifies the target SPARQL endpoint
(IRIREF), from which a user wants to receive recommendations. Upon extraction of
SKOS annotations from the default source endpoint, a subsequent request is sent to the
specified target endpoint.

ItemPart (line 7) This section of a SKOSRec query represents a single preference in the user
profile. However, recommendation queries can contain a couple of preference statements.
A preference is either expressed as a LOD resource (IRIREF) or as a variable, which is
bound to a preference query (VarPart). In the latter case, the resources are obtained by
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matching the graph pattern in the VarPart with the triple statements in the repository. The
ItemPart statement can be additionally supplemented with a concept-to-concept similarity
threshold (Sim) that triggers concept expansion by means of flexible similarity detection.

VarPart (line 8) The construct initiates preference querying. Individual likings are expressed
as a graph pattern in a RecWhereClause. The variable (Var) is a placeholder for the LOD
resources that will be used to set up the user profile. The compiler has to make sure that
the specified variable occurs in the RecWhereClause as well. Otherwise, the extraction of
LOD resources cannot be carried out correctly.

Sim (line 9) The Sim part of a SKOSRec query denotes the threshold of concept-to-concept
scores for flexible similarity detection. Even though knowledge-based similarity val-
ues usually range between 0 and 1, the specification allows a broader range of digits
in the Decimal datatype to enable application of other similarity metrics, in case they are
needed.

Relation (line 10) This section specifies, how concept-to-concept similarity scores should be
determined. Users can state whether scores should be „larger“ , „larger than“ or „equal
to“ the threshold value.

RecWhereClause (line 11) This clause can occur in three different sections of a SKOSRec
query, i.e., either in the prefilter (ItemPart), the postfilter (SelectPart) or the preference fil-

ter section (VarPart). The RecWhereClause closely resembles the „WhereClause“ of the
SPARQL 1.1 specification with all its subsequent parts [102]. Hence, it enables different
combinations of graph pattern matching. However, the RecWhereClause of the SKOSRec
language allows fewer pattern matching expressions than the „WhereClause“ of the regu-
lar SPARQL syntax specification [102]. For instance, it is neither permitted to formulate
subqueries nor to direct filter requests to more than one repository (see RecGraphPat-

ternNotTriples for further explanations). This modification has been made to simplify
similarity calculation. After parsing this section, the compiler makes sure that recom-
mendation, preference or postfilter variables occur at least once in the RecWhereClause

to guarantee that subsequent steps of the recommendation workflow can be applied on
existing LOD resources. In case the RecWhereClause comprises a RecMinusGraphPat-

tern, it also has to be checked that the variable is not only contained in the MINUS part
of the group.

RecGroupGraphPattern (line 12) A RecGroupGraphPattern can contain one to many basic
graph patterns which can be differently combined according to RecGroupGraphPattern-

Sub.

RecGroupGraphPatternSub (line 13) This section defines the graph patterns that are ap-
plied to identify suitable LOD resources. User filters can be either expressed as basic
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graph patterns (TriplesBlock) or as combinations of them (RecGraphPatternNotTriples).
The sequence of different kinds of patterns can be flexibly specified.

RecGraphPatternNotTriples (line 14-15) This query part closely resembles the similar
named „GraphPatternNotTriples“ of the SPARQL 1.1 specification [102]. The only dif-
ference to SPARQL is that the RecGraphPatternNotTriples section is a little more re-
stricted in terms of admissible graph patterns than the „GraphPatternNotTriples“ section
of the regular SPARQL specification. For instance, it does not allow to retrieve LOD
resources other than from the default graph that is specified in the configuration of the
SKOSRec engine. While the ability to perform cross-repository retrieval is a central re-
quirement of the system specification, filter patterns have to be applied to datasets that
contain SKOS annotations. Hence, they need to be specified before runtime execution to
ensure that similarity calculation can be carried out correctly. If a user were able to for-
mulate filter conditions that referred to different RDF graphs and endpoints accordingly,
this would not be possible.

RecGroupOrUnionGraphPattern (line 16) This query section marks an alternative graph
pattern in the style of the „GroupOrUnionGraphPattern“ of the SPARQL syntax specifi-
cation [102]. However, as explained before, it neither allows SPARQL-like subqueries,
nor federated queries for filtered resources, because this would complicate similarity cal-
culation.

RecOptionalGraphPattern (line 17) In this part of a SKOSRecQuery users are enabled
to specify additional graph patterns which might extend the query solution but do not
necessarily have to match the data.

RecMinusGraphPattern (line 18) This section handles exclusion of LOD resources for
cases when users want to omit certain triple statements from the solution.

6.8.2 Examples

The following paragraphs will present example SKOSRec queries. They illustrate the differ-
ent ways, in which the language’s syntax elements can be applied to formulate novel types of
recommendation requests.

6.8.2.1 On-the-Fly Recommendations

A simple on-the-fly request is the most basic form of a SKOSRec query. Listing 6.13 shows
the corresponding query to the recommendation task that was introduced in Section 6.4. It
retrieves movie recommendations based on the Western movie „They Call Me Trinity“. The
request contains a single preference statement, namely the DBpedia resource (dbr:They_
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Call_Me_Trinity), a prefix with a namespace declaration and a specification regarding the
number of suggestions the engine should generate.

Listing 6.13: A simple SKOSRec query for the movie domain (Q1)
PREFIX dbr: <http://dbpedia.org/resource/>

RECOMMEND ?movie TOP 5
PREF dbr:They_Call_Me_Trinity

In this basic form, the query does not contain any pre- or postfilter conditions. Thus, the engine
simply determines all movies that are similar to the preference in the profile. When executed
over the 3.9 DBpedia dataset, the query returns the solution set that is depicted in Table 6.4.

Table 6.4: Result set of Q1
?movie
dbr:God_Forgives...’_I_Don’t!
dbr:Ace_High_(1968_film)
dbr:Boot_Hill_(film)
dbr:Trinity_Is_Still_My_Name
dbr:Troublemakers_(1994_film)

6.8.2.2 Recommendations from Flexible Similarity Detection

In contrast to simple on-the-fly requests, concept expansion queries rely on the broader seman-
tic space of SKOS vocabularies. For this purpose, concepts that are semantically similar to
SKOS annotations of profile items are incorporated into the recommendation model as well. A
statement in the request triggers these operations. The DL search scenario of Sect. 6.5 serves
as an example for this query type. The request specifies that all SKOS concepts which have
a concept-to-concept similarity value higher than 0.75 with the annotations of the input paper
will be included in the retrieval procedure (Listing 6.14). As a point of reference, the SKOS-
Rec query in Listing 6.15 is only based on direct annotations of the input paper. According
to the grammar, simple on-the-fly requests do not necessarily need a similarity specification
(i.e., conceptSim = 1.0), since non-expanded retrieval is the default setting. This statement is
optional. Also note that the paper title is not part of the actual SKOSRec query.

Listing 6.14: A SKOSRec query that triggers flexible similarity detection in the domain of DL
search (Q2)

PREFIX econstor: <http://linkeddata.econstor.eu/beta/page/publications/>

RECOMMEND ?paper TOP 3
PREF econstor:21555 (Status Aspirations, Wealth Inequality & Economic Growth) SIM >= 0.75

Tables 6.5 and 6.6 list the corresponding solution mappings for each SKOSRec query. The
requests were executed over EconStor LOD. From the examples, it can be seen that the spec-
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Listing 6.15: A simple SKOSRec query in the domain of DL search (Q3)
PREFIX econstor: <http://linkeddata.econstor.eu/beta/page/publications/>

RECOMMEND ?paper TOP 3
PREF econstor:21555 (Status Aspirations, Wealth Inequality & Economic Growth) SIM = 1.0

ification of a similarity threshold leads to a re-ranking of results. Section 7.4 will investigate
whether this changes user perceptions of recommendation quality.

Table 6.5: Result set of Q2
?paper
econstor:31661
(Consumer heterogeneity evolving from social group dynamics)
econtor:19892
(Risky human capital investment, income distribution and macroeconomic dynamics)
econstor:24983
(Do legal standards affect ethical concerns of consumers?)

Table 6.6: Result set of Q3
?paper
econstor:22657
(Inequality and growth: A joint analysis of demand and supply)
econtor:34662
(Distribution of wealth and interdependent preferences)
econstor:56403
(Wealth concentration over the path of development : Sweden, 1873-2005)

6.8.2.3 Constraint-based Recommendations

The principles of constraint-based retrieval have been outlined in Section 6.6. The section also
described example requests from different domains, such as multimedia RS or travel destination
search. It will now be shown how these requests can be formulated as SKOSRec queries. In
addition to separate execution of either pre- or postfilter conditions, the SKOSRec syntax allows
combining them in a single query with a further option to obtain preference statements through
graph-based retrieval.

Prefiltered recommendations Prefilter requests extract suitable LOD resources prior to
the process of similarity calculation. Queries with a simple prefilter condition retrieve items
that are linked to a specific attribute. Example 5 of Section 6.6 can be transferred to the SKOS-
Rec syntax as depicted in Listing 6.16. This request resembles a faceted search query since
it combines IR with attribute matching. The user looks for destinations that are similar to his
profile and meet the condition of being a place (rdf:type dbo:Place) and a nature reserve
in Russia (dct:subject dbc:Biosphere_Reserves_of_Russia). For comparison,
almost the same recommendation query is shown in Listing 6.17 without the respective filter
condition.
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Listing 6.16: A SKOSRec query with a prefilter condition to retrieve Russian nature reserves
(Q4)

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbc: <http://dbpedia.org/resource/Category:>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dct: <http://purl.org/dc/terms/subject>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

RECOMMEND ?destination TOP 3
PREF dbr:Lake_Baikal
WHERE
{

?destination dct:subject dbc:Biosphere_Reserves_of_Russia .
?destination rdf:type dbo:Place .

}

Listing 6.17: The SKOSRec query of Listing 6.16 without the prefilter condition (Q5)
PREFIX dbr: <http://dbpedia.org/resource/>

RECOMMEND ?destination TOP 3
PREF dbr:Lake_Baikal

Both queries produce different outputs accordingly (Tabs. 6.7 and 6.8).

Table 6.7: Result set of Q4
?destination
dbr:Golden_Mountains_of_Altai
dbr:Volga_Delta
dbr:Katun_Nature_Reserve

Table 6.8: Result set of Q5
?destination
dbr:Golden_Mountains_of_Altai
dbr:Lake_Oron
dbr:Ogoy_Island

Apart from filter conditions that are formulated as faceted search queries, the SKOSRec syntax
facilitates the formulation of far more expressive constraints because of the RDF data model. By
these means, known but hidden facts can be better extracted from the data. Consider Example
6 from Section 6.6: Besides the preference for the Lake Baikal region, the user specifies that
he would like to receive recommendations for travel destinations in Southeast Asia. However,
the DBpedia does not contain any place resources that are annotated with the category dbc:
Southeast_Asia, even though there exists information on Southeast Asian locations in the
dataset. The SKOSRec syntax tackles this quality issue by expressive query constraints. In the
example, suitable destinations are identified by specifying a graph pattern that matches locations
in Southeast Asian countries. Listing 6.18 depicts the corresponding SKOSRec query.

Table 6.9 shows the solution to this query. It contains travel destinations that are both simi-
lar to the previously liked destination dbr:Lake_Baikal and are located in Southeast Asia.
Ecoregions around lakes, rivers or mountains from Southeast Asian countries, such as Cambo-
dia, Vietnam or Malaysia are presented to the user. Hence, by combining similarity calculation
with graph-based retrieval, it is possible to identify interesting locations that reflect the infor-
mational needs of the user.

Once a retrieval pattern has been found to produce useful results, it can serve as a template for
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Listing 6.18: SKOSRec query with an expressive prefilter condition to retrieve Southeast Asian
destinations (Q6)

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbc: <http://dbpedia.org/resource/Category:>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dct: <http://purl.org/dc/terms/>
PREFIX skos: <http://www.w3.org/2004/02/skos/core#>

RECOMMEND ?destination TOP 5
PREF dbr:Lake_Baikal
WHERE
{

?destination dbo:country ?country .
?country dct:subject ?countrySubject .
?countrySubject skos:broader* dbc:Southeast_Asia .
?destination rdf:type dbo:Place .

}

Table 6.9: Result set of Q6
?destination
dbr:Tonle_Sap
dbr:Mekong
dbr:Mount_Kinabalu
dbr:Laguna_de_Bay
dbr:Lake_Toba

other related constraint-based recommendation tasks (RQ5).

Postfiltered recommendations In contrast to filtering recommendations before similar-
ity calculation, it is possible to apply user constraints after suitable items have been identified.
Therefore, a postfilter operation joins the recommendation list with graph patterns. Suggestions
are integrated into a SPARQL-like subquery and can thus be modified. By these means, pre-
viously identified similar items can be displayed in conjunction with other resources or they
might not appear in the final result table at all.
To illustrate the functioning of postfiltered retrieval, Section 6.6 has introduced a rollup request

(Example 8), in which recommendations for city trip destinations were derived from the POIs
a user has visited and liked in London. Listing 6.19 shows the corresponding SKOSRec query.

The SKOSRec request contains subquery commands that refer to the user’s preferred POIs.
It specifies, how similarity scores of the generated suggestions should be aggregated (i.e., by
summation). The retrieval is based on the 100 POIs that are most similar to the ones in the pref-
erence section. Additionally, the subquery part refers to the DBpedia resource that represents
London (AGG dbr:London ?city) thus indicating that the list of recommendations should
not contain any POIs in this city. The engine displays the three cities, for whom the highest ag-
gregated scores have been detected. In contrast to the rollup request, a simple on-the-fly query

(Listing 6.20) for the same item will in most cases generate entirely different results.

The engine generated two solutions from DBpedia depending on the executed request. While
the output table of the postfilter query (Tab. 6.10) lists cities that are located near the river
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Listing 6.19: SKOSRec query to generate postfiltered recommendations (aggregation-based) for
a preference profile containing the city of London and related POIs (Q7)

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dul: <http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?city
WHERE
{

?poi ?property ?city .
?city rdf:type dbo:City .
?property rdfs:subPropertyOf dul:hasLocation .

}
LIMIT 3
AGG dbr:London ?city SUM
RECOMMEND ?poi TOP 100
PREF
dbr:Oxford_Street
dbr:Notting_Hill
dbr:South_Bank

Listing 6.20: SKOSRec query to generate simple on-the-fly recommendations for a preference
profile containing the city of London (Q8)

PREFIX dbr: <http://dbpedia.org/resource/>

RECOMMEND ?city TOP 3
PREF dbr:London

Thames, the solution for the regular SKOSRec query shows other capital cities in the United
Kingdom. The disparity between the lists is because other sets of SKOS annotations were fed
into the engine. The results indicate that the possibility to choose between different recom-
mendation strategies may be valuable for adopting a query to a specific usage context. The
evaluation in Section 7.6 will clarify, whether one method is superior to the other.

Table 6.10: Result set of Q7
?city
dbr:Oxford
dbr:Abingdon-on-Thames
dbr:Wallingford,_Oxford

Table 6.11: Result set of Q8
?city
dbr:Belfast
dbr:Edinburgh
dbr:Cardiff

6.8.2.4 Combinations

The previous paragraphs showed how queries can be formulated with the retrieval approaches
of the SKOSRec engine. In some cases, it might be necessary to apply concept expansion
to change the ranking of results. In others, it will be better to filter similar items with specific
constraints either prior or past to the process of recommendation retrieval. While in the previous
examples, these techniques were utilized in separate requests, it is possible to combine them
into a single SKOSRec query. The following requests will fuse different retrieval methods
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into advanced query forms (RQ6). The next paragraph will showcase scenarios, where the
SKOSRec engine only accesses the default LOD repository (i.e., single point of access). After
this passage, another paragraph will list two additional recommendation requests as examples
for cross-repository retrieval.

Single point of access One way to integrate different retrieval approaches is to combine
preference querying with constraint-based retrieval. Consider Example 7 (Section 6.6), that
involved the movie director Quentin Tarantino. Since the SKOSRec query language offers the
possibility to join query patterns, the engine can better mimic real-world scenarios, where peers
ask each other for relevant suggestions. In the SKOSRec query in Listing 6.21 the user states
that he liked Quentin Tarantino movies in the past and would like to receive recommendations
for directors that shot similar films. Usually, this kind of question can typically only be an-
swered by another human being, e.g., in a personal interaction among friends or in an online
forum. The fact that the language facilitates these kinds of queries is one of its key advantages.
As Q7, the request represents a rollup retrieval pattern that aggregates scores by summation,
since a director who created more relevant movies should be ranked higher. Other aggregation
strategies could be applied as well. For instance, the average-based aggregation scheme is a
feasible alternative. It can account for the fact that directors with many movies may distort the
results.

Listing 6.21: SKOSRec query to generate postfiltered recommendations based on a preference
query in the movie domain (Q9)

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX yago: <http://dbpedia.org/class/yago/>

SELECT ?director ?movie
WHERE
{

?movie dbo:director ?director .
?director rdf:type yago:Director110014939 .

}
LIMIT 50
AGG dbr:Quentin_Tarantino ?director SUM
RECOMMEND ?movie TOP 100
PREF [ ?prefMovie
WHERE
{

{ ?prefMovie dbo:director dbr:Quentin_Tarantino . }
UNION
{ ?prefMovie dbo:producer dbr:Quentin_Tarantino . }

}
]

Another way to find out about interesting movie directors is to execute a query based on the
characteristics (i.e., SKOS annotations) of a preferred director. Then, the engine retrieves all
movies that are connected to similar directors via the property dbo:director in the postfilter

section of the query (see Listing 6.22).
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Listing 6.22: SKOSRec query to generate simple postfiltered recommendations in the movie
domain (Q10)

PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX yago: <http://dbpedia.org/class/yago/>

SELECT ?director ?movie
WHERE
{

?movie dbo:director ?director .
?director rdf:type yago:Director110014939 .

}
LIMIT 50
RECOMMEND ?director TOP 5
PREF dbr:Quentin_Tarantino

Table 6.12: Result set of Q9
?director ?movie
dbr:Steven_Spielberg dbr:Indiana_Jones...
dbr:Steven_Spielberg dbr:Jurrasic_Park_(film)
... ...
dbr:Francis_Ford_Coppola dbr:The_Godfather_Part_II
dbr:Francis_Ford_Coppola dbr:The_Godfather_Part_III
... ...
dbr:Christopher_Nolan dbr:The_Prestige_(film)
dbr:Christopher_Nolan dbr:The_Dark_Knight
... ...
dbr:Robert_Rodriguez dbr:Planet_Terror
dbr:Robert_Rodriguez dbr:Machete_(film)
... ...
dbr:Kevin_Smith dbr:Clerks
dbr:Kevin_Smith dbr:Clerks_II

Table 6.13: Result set of Q10
?director ?movie
dbr:Kirk_Douglas dbr:Scalawag_(film)
dbr:Kirk_Douglas dbr:Posse_(1975_film)
dbr:Kevin_Costner dbr:The_Postman_(film)
dbr:Kevin_Costner dbr:Dances_with_Wolves
... ...
dbr:Gene_Kelly dbr:Hello,_Dolly!_(film)
dbr:Gene_Kelly dbr:Invitation_to...
... ...
dbr:Alan_Alda dbr:Goodbye,_Farewell...
dbr:Alan_Alda dbr:Margaret’_s_Engagement
... ...
dbr:Steve_Buscemi dbr:Interview_(2007_film)
dbr:Steve_Buscemi dbr:Animal_Factory

However, this approach has its weaknesses. For instance, the engine only considers the metadata
descriptions of the director, whereas related movies have to be retrieved anew, upon execution
of the postfilter section. Another weakness is the biased semantics of the query. Usually, when
a person favors a movie director, this preference refers to the movies this director has shot and
not to the personal features of the person. Two directors might be similar according to certain
features such as birth year, nationality or received awards, but the style and genre of the movies
they have created can still be different. The queries in Listings 6.21 and 6.22 were executed
over DBpedia. Tables 6.12 and 6.13 show the corresponding solution sets.

The ellipses in the displayed tables indicate excluded records. The author omitted them on
purpose to improve readability. Both queries returned recommendations lists that are ordered
according to the ranking scores of directors, but produced highly different suggestions. While
Q9 (Listing 6.21) generated a list of directors who have mostly created action and thriller
movies with a twist (i.e., Tarantino’s unique filmmaking style [196]), Q10 (Listing 6.22) pro-
duces a completely different output. It shows US American actor-directors, whose movies
range from musical films (e.g., dbr:Hello,_Dolly!_(film)) to western movies (e.g.,
dbr:Dances_with_Wolves) or drama films (e.g., dbr:Interview_(2007_film)).
Thus, the directors in the solution table of Q10 (Tab. 6.13) seem rather arbitrary and not ex-
ceptionally helpful concerning the initial user request. However, the evaluation (Sect. 7.6) will
have to verify whether this assumption can be confirmed for a multitude of user requests.
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The previous example illustrated, how filtering techniques can be combined to enable novel
retrieval strategies that might improve recommendation quality. Another sophisticated retrieval
pattern facilitates cross-domain recommendations. Listing 6.23 shows an example request
that generates movie suggestions based on the preference for a music band (i.e., dbr:The_
Jackson_5).

Listing 6.23: SKOSRec query to generate cross-domain recommendations (Q11)
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?movie ?participated ?musicalAct
WHERE
{

?movie rdf:type dbo:Film .
VALUES ?participated { dbo:basedOn dbo:musicComposer dbo:genre dbo:starring }
{ ?musicalAct ?participated ?movie . }
UNION
{ ?movie ?participated ?musicalAct . }

}
LIMIT 5
AGG dbr:The_Jackson_5 ?movie MAX
RECOMMEND ?musicalAct TOP 100
PREF dbr:The_Jackson_5
WHERE
{

VALUES ?actType { dbo:MusicalArtist dbo:Band }
?musicalAct rdf:type ?actType .

}

Listing 6.24: SPARQL query to generate cross-domain recommendations (Q12)
PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?movie ?participated ?musicalAct
WHERE
{

?movie rdf:type dbo:Film .
VALUES { dbo:basedOn dbo:musicComposer dbo:genre dbo:starring }
{ dbr:The_Jackson_5 ?participated ?movie . }
UNION
{ ?movie ?participated dbr:The_Jackson_5 . }

}
LIMIT 5

The query contains a prefilter condition that triggers retrieval of music artists and bands. After-
ward, the scores of the top 100 suggestions are summarized with maximum-based aggregation.
Thus, the highest similarity value among the set of music acts determines the ranking score of
the film. Also, note because of the aggregation-based retrieval procedure, connections between
movies and the LOD resource dbr:The_Jackson_5 from the profile are excluded from sim-
ilarity calculation.
The scenario exemplifies how semantic relationships can help to generate suggestions for a tar-
get domain (i.e., movies) that are based on a profile containing items from a different source do-
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main (i.e., music acts). While regular SPARQL queries perform exact matching of triple state-
ments, the SKOSRec syntax facilitates the integration of similarity- and graph-based retrieval to
enrich result lists with potentially relevant items. As a point of reference, consider the SPARQL
query for the given cross-domain scenario (Listing 6.24). The query omits the similarity calcu-
lation part. Thus, it only retrieves movies linked to the resource dbr:The_Jackson_5. By
this method, the SPARQL results have a better chance of being closely related to the initial user
preference. On the other hand, empty result lists can occur when the preferred LOD resource
does not have any direct connections to recommendable items. This assumption is backed up
by the result lists of the two queries (Tabs. 6.14 and 6.15): The SKOSRec request produces a
more comprehensive solution than a regular SPARQL query. Further analyses will have to be
conducted to confirm this finding for a sufficient quantity of test cases (see Sect. 7.6).

Table 6.14: Result set of Q11
?movie ?participated musicalAct
dbr:Moonwalker dbo:musicComposer dbr:Michael_Jackson
... ...
dbr:The_Wiz_(film) dbo:musicComposer dbr:Ashford_&_Simpson
dbr:Garfield_Gets_a_Life dbo:musicComposer dbr:The_Temptations
dbr:Pipe_Dreams_(1976_films) dbo:musicComposer dbr:Gladys_Knight_&_the_Pips
dbr:The_Jacksons:_An_American_Dream dbo:starring dbr:Jermanine_Jackson

Table 6.15: Result set of Q12
?movie ?participated musicalAct
dbr:The_Jacksons:_An_American_Dream dbo:starring dbr:The_Jackson_5

Cross-repository recommendations The following two requests will illustrate, how the
engine retrieves results from distributed repositories with the help of SKOSRec syntax. The first
query refers to Example 9 from Section 6.7. Listing 6.25 shows the corresponding SKOSRec
request. The preference section specifies a LOD resource that is contained in EconStor. The
engine is only able to process preferences for items from the default LOD repository, i.e., the
one that is specified as the standard dataset in the configuration (see Sect. 6.9). The config-
uration can also list other LOD repositories and their SPARQL endpoints. They are queried
when the engine receives cross-repository requests. This is the case when a query contains a
ServiceIntegration statement. The engine looks up the corresponding SPARQL endpoint URL
in the configuration and determines the necessary SKOS mappings. Upon extraction of SKOS
annotations for the preferred items in the user profile, the system sends a query with mapped
concepts to the SPARQL endpoint providing access to the target collection.
The example cross-repository request in Listing 6.25 (Q13) was executed over a single SPARQL
endpoint, which contained both the source (i.e., EconStor LOD) and the target repository (i.e.,
AGRIS). It specifies a language constraint (dc:language = ‚eng‘) to filter relevant items
from AGRIS.
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Listing 6.25: SKOSRec query to retrieve cross-repository recommendations for a single prefer-
ence statement (Q13)

PREFIX econ: <http://linkeddata.econstor.eu/beta/resource/publications/>
PREFIX xsd: <http://www.w3.org/2001/XML#>
PREFIX dc: <http://purl.org/dc/terms/>

SELECT ?item ?title
WHERE
{

?item dc:title ?title .
}
RECOMMEND ?item TOP 5 FROM SERVICE <http://localhost:8890/sparql>
PREF econ:46070
WHERE
{

?item dc:language ?lang .
FILTER (str(?lang) = ’eng’)

}

Users need to formulate filter conditions for the target repository as prefilter constraints. When
similar items have been identified, they can only be processed by a postfilter, as long as the rec-
ommended items are contained in the source collection as well. While it would be desirable to
be able to apply user constraints on both the source and the target collections at different stages
of the similarity calculation process, this feature is a desideratum that has to be implemented in
future versions of the SKOSRec engine. Table 6.16 lists the results for Q13.

Table 6.16: Result set of Q13
?item
agris:GB9708724
(Balance of average annual fresh water inflow into the Adriatic Sea)
agris:XF2002399151
(Training in [...] Future Multilateral Trade Negotiations on Agriculture for Central and Eastern European Countries)
agris:CZ2002001053
(Incidence of bovine tuberculosis in cattle in seven Central European countries during the years 1990-1999)
agris:SE19960095231
(Numerical analysis of vegetation complexes and community diversity of major coastal Dinaric mountains)
agris:GB1997043830
(Immune suppression [...] of commercial broilers in Croatia, Slovenia, and Bosnia and Herzegovina from 1981 to 1991)

In the execution mode of cross-repository retrieval, suggestions can also be obtained by a pref-

erence query. For instance, when a researcher has frequently accessed items from a particular
series of publications (e.g., a working paper series by a research institute), the profile can be
based on the preference for this collection. Listing 6.26 depicts an example SKOSRec request
with a preference query part for this test scenario. It represents the information need of an
economics researcher who is interested in environmental and agricultural issues in Southeast
Europe and has often read papers from the EconStor collection econColl:263 („Studies on
the Agricultural and Food Sector in Central and Eastern Europe, IAMO“). The query triggers
profile generation from EconStor. Afterward, the profile encompasses all items that are part of
the working paper series. For each one of these items, the SKOSRec engine retrieves annota-
tions from the EconStor repository as well as corresponding SKOS mappings to the AGROVOC
thesaurus. Upon retrieval of relevant SKOS concepts, the similarity calculation is executed with
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LOD resources from AGRIS. As in the previous example, only English publications are con-
sidered. Table 6.17 lists the recommendation results for Q14.

Listing 6.26: SKOSRec query to retrieve cross-repository recommendations from a preference
profile (Q14)

PREFIX econColl: <http://linkeddata.econstor.eu/beta/resource/collections/>
PREFIX dc: <http://purl.org/dc/terms/>

RECOMMEND ?item TOP 5 FROM SERVICE <http://localhost:8890/sparql>
PREF [ ?pref
WHERE
{

?pref dc:isPartOf econColl:263
} ]
WHERE
{

?item dc:language ?lang .
FILTER (str(?lang) = ’eng’)

}

Table 6.17: Result set of Q14
?item
agris:RS2007001152
(Harmful fauna on oilseed rape fields and integral pest management)
agris:XF19960022736
(Proceedings of the International Workshop on Harmonization of Soil Conservation Monitoring Systems)
agris:XF9550373
(Proceedings of the International Workshop on Harmonization of Soil Conservation Monitoring Systems)
agris:CZ2002000513
(International comparison of food consumption and expenses in the Czech Republic, Balkan and other postsocialist countries)
agris:GB9708724
(Balance of average annual fresh water inflow into the Adriatic Sea)

6.9 Implementation

The SKOSRec engine is written in Java. The programming language was chosen because it is
platform independent [123] and provides useful software libraries for processing RDF data. For
instance, to retrieve LOD resources from SPARQL endpoints, the author applied classes from
the Apache Jena framework (version 2.11.2) [14]. Apache Jena is an open source software li-
brary that offers ready-to-use tools for the development of Linked Data applications. It provides
packages for SPARQL query processing from local or remote LOD repositories. The SPARQL
processor for Jena is called ARQ [18].
The libraries supported the development process. Besides of their functionalities, many of the
engine’s components had to be developed anew to meet the system specification. For instance,
the concept of advanced recommendation requests required a from-scratch-implementation of
certain features. Some system functionalities, such as the SKOSRec compiler, had to be devel-
oped as a standalone component. It regulates the correct execution of critical operations of the
engine (e.g., graph-based filtering, result set joins, similarity calculation) (Appendix A.4).
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An additional feature is the SKOSRec parser. It checks the syntactic correctness of recommen-
dation queries. Since the SKOSRec parser utilizes SPARQL 1.1 syntax elements, a SPARQL
grammar definition served as the skeleton for the grammar of the parser. Therefore, the author
adapted and enhanced existing components of the SPARQL specification, which can be found
in the software package ARQ [230]. The JavaCC (Java Compiler Compiler) library was applied
for this purpose. It is a tool that generates Java parsers by conversion of grammar specifications
to Java source code [124]. Thus, the SKOSRec parser was semi-automatically developed from
a respective syntax specification (Appendix A.2 and A.3).
The engine’s similarity calculation unit is almost as equally important as the parser and compiler
since it generates suitable suggestions for user preferences (Appendix A.5). Besides the query
processing and similarity calculation features, other system components are utility tools. They
help to alleviate the retrieval process. Features such as the ranker (ordering recommendations
according to similarity scores) (Appendix A.6), the optimizer (implementation of fast on-the-fly

retrieval) (Appendix A.7) and data processor help to quickly handle LOD resources. Figure
6.12 depicts the overall architecture of the SKOSRec engine with all major and supplementary
system features. It can be seen that the engine can interact with both local and remote LOD
servers.

Fig. 6.12: Architecture of the SKOSRec engine

In the standard configuration, the system processes RDF data from a SPARQL endpoint that
is accessed over HTTP. For external LOD repositories, this architecture is necessary since it
represents the only reliable access method for remote Linked Data collections. Nevertheless,
the LOD repository which is queried by default (execution mode of single point access) should
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preferably be set up on the same server or local network where the SKOSRec engine is run-
ning to speed up response times. However, since the LOD cloud is distributed and decentral by
nature, HTTP access of remote SPARQL endpoints is built into the architecture. Aside from
the LOD repositories containing item feature data, the engine needs to process SKOS vocabu-
lary information (i.e., SKOS thesauri, SKOS mappings and similarity values of SKOS concept
pairs). These data sources either reside in local or external repositories and can be accessed
through SPARQL endpoints over HTTP as well. It is expected that, in many cases, SKOS vo-
cabularies reside in the same repository as the respective LOD items.
Each SKOSRec instance loads a configuration object (Appendix A.1). It defines the means of
access to the default LOD repository. It is also specified, with which SKOS vocabularies the
LOD repository is associated and where the engine can obtain SKOS concept similarities. In
case the system processes cross-repository requests, the configuration object states additional
(potentially remote) LOD repositories and the location of the corresponding SKOS mappings.
Thus, the engine can correctly execute similarity calculation for distributed LOD repositories.
The architecture does not dictate a particular SPARQL server implementation (e.g., Apache
Jena TDB, Fuseki, Joseki, Sesame or OpenLink Virtuoso) since the system is decoupled from
the SPARQL endpoint [231]. The prototypical implementation of the SKOSRec engine utilizes
the OpenLink Virtuoso server.
Depending on the type of SKORec query, the system executes operations in varying sequences.
Each of the presented retrieval approaches and their possible combinations can lead to a differ-
ent workflow. In theory, many workflows could be triggered by a SKOSRec query. However, it
is only worth taking a look at the significant differences that can occur in workflow execution.
They are caused by the three recommendation approaches of on-the-fly, constraint-based and
cross-repository retrieval. Even though these methods can also be combined, their characteris-
tics are best illustrated when describing them as separate workflow instantiations. Figure 6.13
shows the sequence of processing steps for a simple on-the-fly recommendation request.

Upon issuing a SKOSRec query, the system parses and compiles it. The engine retrieves rec-
ommendations based on the items in the preference part of the query. In case the query contains
a flexible similarity detection statement; similar SKOS concepts are determined and processed
as well (see Tab. 6.18, steps 5. and 7. in italics). If necessary, the optimizer can perform these
operations through fast on-the-fly retrieval (see Tab. 6.18, step 6. in italics). The engine uses the
returned results for item-to-item similarity computation. Afterward, LOD resources are ranked
according to their recommendation score. The number of recommendations specified in the
query is returned to the user. Table 6.18 outlines the central processing steps of the on-the-fly

recommendation workflow.

Constraint-based filtering requires some changes in the workflow (Fig. 6.14). For instance, if
the SKOSRec query contains all three kinds of filter constraints (a preference filter, a prefilter,
and a postfilter), the engine will access the LOD repository more often. Upon parsing, a prefer-

ence query is sent to the SPARQL endpoint determining all items that belong to the user profile.
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Fig. 6.13: Workflow of on-the-fly retrieval

Table 6.18: On-the-fly recommendation workflow
Step Operation
1 Issuing a SKOSRec query
2 Parsing the SKOSRec query
3 Compiling the SKOSRec query
4 Loading information on the LOD repository to be queried

from the configuration (default repository)
5 Retrieval and processing of relevant LOD resources and an-

notations.
6 If the SKOSRec query contains a statement on flexible sim-

ilarity detection: Determining similar SKOS concepts with
regard to the input annotations. Enhancement of the re-
trieval query with additional SKOS concepts

7 Optimization of the retrieval process (Fast on-the-fly re-
trieval)

8 Determination of item similarities based on the user profile.
If the SKOSRec query contains a statement on flexible sim-
ilarity detection: Accounting for decreased concept-level
similarities

9 Ranking of LOD resources
10 Output of the result set

After retrieval of preferred items, the multiset of potentially relevant LOD resources and their
SKOS annotations is determined by querying the SPARQL endpoint a second time. The engine
applies the prefilter on the triple statements in the repository. Afterward, it identifies similar
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LOD resources (i.e., recommendations). The engine sends them to the compiler where they are
joined with the postfilter statements of the SKOSRec query. The resulting SPARQL query is
then issued to the LOD repository to obtain the final solution set.

Fig. 6.14: Workflow of constraint-based retrieval

Table 6.19 shows the workflow steps of constraint-based recommendation retrieval. In case
postfilter commands are formulated as an aggregation-based request, similarity scores need to
be summarized before outputting the final result mapping.
In contrast to the previously presented retrieval approaches, cross-repository workflows are
characterized by the fact that they acquire information from two different LOD collections. The
processor determines SKOS annotations upon receiving the SKOSRec request. The ServiceIn-

tegration statement in the original query triggers the execution of a distributed recommenda-
tion workflow. Hence, for each of the determined SKOS annotations from the default source
repository, the engine looks for mappings to the SKOS vocabulary of the (remote) target LOD
repository.
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Table 6.19: Constraint-based recommendation workflow
1 Issuing a SKOSRec query
2 Parsing the SKOSRec query
3 Compiling the SKOSRec query
4 Loading information on the LOD repository to be queried

from the configuration (default repository)
5 Retrieval of preferred items and setting up of the user profile
6 Retrieval and processing of relevant LOD resources upon

application of prefilter conditions.
7 Optimization of the retrieval process (Fast on-the-fly re-

trieval)
8 Determination of item similarities based on the user profile
9 Ranking of LOD resources
10 Sending of recommendation results to the compiler and

joining them with postfilter statements
11 Retrieval of the final result set. If the SKOSRec query con-

tains an Aggregation part: Aggregation of similarity scores
for sublevel entities.

12 Output to the user

Fig. 6.15: Workflow of cross-repository retrieval

The system determines the set of relevant resources and annotations from the target collection
when these mappings have been obtained (see Fig. 6.15). The steps that come after this op-
eration are the same as for on-the-fly recommendations. Table 6.20 gives an overview of the
cross-repository workflow.
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Now that the technologies and the architecture of the SKOSRec engine have been presented,
the following chapter will clarify whether the developed system meets the demands of the re-
quirements specification.

Table 6.20: Cross-repository recommendation workflow
1 Issuing a SKOSRec query
2 Parsing the SKOSRec query
3 Compiling the SKOSRec query
4 Loading information on the LOD repositories to be queried

from the configuration (default source repository and re-
mote target repository)

5 Retrieval of SKOS annotations from the default source
repository

6 Retrieval of SKOS mappings to the SKOS vocabulary used
by the dataset in the (remote) target LOD repository

7 Retrieval and processing of relevant LOD resources from
the target repository.

8 Optimization of the retrieval process (Fast on-the-fly re-
trieval)

9 Determination of item similarities based on the user profile
10 Ranking of LOD resources
11 Output of the result set
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7 Evaluation of the SKOS Recommender

After having presented the SKOSRecommender, this chapter will clarify whether the recom-
mendation engine meets the demands of the requirements specification. Therefore, suitable
evaluation methods have to be identified. Section 7.1 will present common approaches for RS
testing and will outline their advantages and disadvantages. The section also introduces the
performance dimensions and metrics that will be applied throughout the evaluation. Sections
7.2-7.6 will then describe the specific evaluation methods that have been utilized for testing the
SKOSRec engine’s performance with regard to different retrieval strategies as well as present
the results of these performance tests.

7.1 Evaluation Methods

7.1.1 Prototypical Implementation

The previous section has introduced the SKOSRec engine. The development of the system was
based on the requirements detailed in Chapter 4. This process also took into account existing
successful approaches to personalized retrieval (Chapter 5). The goal was to adequately address
the thesis agenda of harnessing the potential of LOD for RS by applying a systematic approach.
Thus, a comprehensive evaluation of the SKOSRec system needs to take into consideration
the requirements specification. In detail, the three main categories, namely functional, perfor-
mance and non-functional specifications have to be evaluated separately. Regarding functional
specifications, the SKOSRec engine can serve as a proof-of-concept prototype since extensive
examples have demonstrated the successful operation of the separate components in Chapter 6.
The SKOSRec engine provides (fast) on-the-fly recommendations, flexible similarity detection

and cross-repository retrieval capabilities and a SPARQL-enabled query unit that can process
constraint-based and advanced requests. The detailed technical description of the system, as
well as the successfully answered queries, can be regarded as evidence that the prototype fulfills
the functional demands [184].
For the two remaining requirement categories (i.e., performance and non-functional specifica-
tions) tests have to be carried out differently. For this purpose, suitable evaluation methods
need to be identified. The following subsections will present the advantages and downsides
of the most common approaches to RS assessment. It will then be described how the engine
was evaluated in terms of performance and non-functional specifications with the help of these
methods.
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7.1.2 Offline Experiments

A comprehensive and statistically sound evaluation of novel recommendation approaches re-
quires access to online platforms with a large user base. Unfortunately, in most cases, re-
searchers are not able to obtain data from a running live application. For this reason, scientists
often use historical datasets to simulate recommendation scenarios in offline evaluations [7].
In fact, the majority of research on RS performance has been done offline [133]. Within those
experiments, researchers utilize a collection of past user ratings from an existing online plat-
form [7]. Due to the rare number of openly available datasets, extensive research has been
conducted with them. Among the most widely used rating collections are the dataset of the
Netflix contest and the MovieLens database [107]. In case of utilizing a historical dataset, the
focus is on algorithmic performance [133]. Usually, researchers compare two or more recom-
mendation approaches regarding predictive performance [224]. The procedure in these tests
is similar to the evaluation of classification tasks, where subsets of user ratings are utilized as
training and test data to measure performance. The only difference is that in RS evaluation,
separation of data is done entry-wise, instead of row by row. Thus, for each user of the rating
matrix, a percentage of the ratings is excluded and a training model is built from the remaining
data points [7].
If researchers select training and test samples arbitrarily, evaluation results may be biased.
Cross-validation can be applied to avoid these distortions. In this case, user ratings are di-
vided into equal sets that are utilized as a test sample once, while the remaining subsets are
applied for training. Evaluation results of the test rounds are finally averaged.
The critical advantage of offline evaluations and the main reason for their popularity is that
they represent the most comfortable and most economical form of RS experiments. Historical
datasets enable large-scale evaluations on a variety of different test cases. Thus, the reliability
of results is increased since the robustness of an algorithm’s performance can be tested in vari-
ous settings [7, 107, 224].
There exist also some downsides to offline evaluation. One is the natural sparsity of RS datasets,
which limits the set of items or users that can be tested [107]. Additionally, tests on historical
data rely on the assumption that past preferences will resemble future choices [224]. However,
user tastes can evolve over time and may thus thwart the accuracy of predictions [7]. Another
downside concerns the potential bias of historical collections. Since users usually provide feed-
back for items they liked, researchers should not automatically conclude that the RS accurately
predicts preferences for random items, even when performance results are good [5]. The most
severe downside of offline evaluations is their limited explanatory power. They can only grasp
the performance of an RS for a particular aspect, such as accuracy or diversity, but fall short,
when assessing system performance holistically [107,224]. Researchers have argued that look-
ing at simple metrics only provides an incomplete approximation of recommendation quality.
Instead, when it comes to assessing RS performance, the key defining factor should be user
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satisfaction [107, 133]. However, user satisfaction cannot be measured by a single metric but
depends on a variety of factors, which cannot be grasped by an offline evaluation. Hence, to get
a comprehensive idea of recommendation quality, evaluations should be complemented with
user experiments.

7.1.3 User experiments

User experiments are either carried out in a laboratory setting or on a live platform. In live
experiments, a fully deployed commercial system serves as the technical platform. Usually,
users are randomly assigned to receive recommendations from two different algorithms [224].
This approach is commonly referred to as A/B testing and resembles experimental setups of
clinical trials, where one-half of the subjects gets a gold standard treatment (control group) and
the other half experiences a new therapy [7].
Since RS researchers conduct live experiments in a real-world setting, the results provide sub-
stantial evidence on the actual quality of recommendations because participants are observed
in a natural environment [107, 224]. However, scientists often do not have access to live ap-
plications and even if so they might only be able to obtain user data from a single platform.
Nevertheless, a comprehensive evaluation requires performance results from diverse usage sce-
narios and datasets [7]. Additionally, if the algorithm provides low-quality recommendations,
the experiment might drive customers away from the live application [224].
An alternative approach is to test the novel retrieval strategies in laboratory experiments, which
is the chosen method for the user experiments in the context of the SKOSRec evaluation since
the author did not have access to a live application. For laboratory experiments, researchers
need to recruit participants actively [132]. The recruited test subjects have to represent the de-
mographic features of real system users as closely as possible to ensure that the experiment
provides reliable results. It is also vital to hide the research questions as well as the labeling of
the algorithms to avoid biased results. Aside from these requirements, researchers should con-
duct a pilot study to ensure that the system does not show malfunctions or contains misleading
instructions [224].
Laboratory experiments can have a between- or a within-subjects design. In between-subjects
designs, users only test a single system (i.e., A/B testing) and researchers compare the evalua-
tion results of the two groups afterward. The between-subjects design more closely resembles
a real-world setting since it does not require subjects to interact with more than one engine at
a time [224]. Nevertheless, even though participants are randomly assigned to experimental
conditions, their differences (e.g., regarding demographics or topic expertise) can potentially
have a considerable impact on quality judgments. Hence, when applying a between-subjects
design one does not know whether differences in performance are caused by the approaches or
the variability among study subjects. Therefore, researchers need to conduct between-subjects
experiments with a sufficient number of study subjects to level out these differences.
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In within-subject studies, on the other hand, participants test and rate a set of candidate algo-
rithms in a single session. These experiments require fewer participants, while still achieving
the same level of statistical power since between-subject variability is not an issue [133]. More-
over, for the evaluation of the customized suggestions of the SKOSRec engine, it is vital to
keep the experimental setup as stable as possible in order to only capture differences resulting
from different retrieval approaches [29]. That is why the within-subjects design is the primary
test method in the user experiments of the SKOSRec evaluation. However, the within-subjects
design has some disadvantages as well. When asking participants for their opinions on mul-
tiple methods, it is harder to conceal the actual research question. Users might perceive it as
unnatural to interact with several engines, which may cause biased evaluations. Additionally,
the order in which recommendation lists are presented to users can also have a tremendous ef-
fect on the results. For instance, the second time users walk through the evaluation they might
be less enthusiastic due to the fact they had already performed a similar task before [133, 224].
Therefore, the result sequence of different algorithms should be chosen randomly to avoid order
effects [236].
Besides carefully choosing the experimental design, researchers also have to interpret the user
assessments correctly. Even if one algorithm seems to be superior to the other, there is still a
possibility that the sample was uniquely suited for a particular approach. Therefore, hypotheses
should be formulated before the experiment and significance tests should be conducted after-
ward to avoid misinterpretations. In this context, it is usually tested whether the Null hypothesis
(H0) that algorithm A does not achieve better results than algorithm B can be rejected. With
a significant test, the researcher ensures that observed differences are systematic. Statistical
significance is achieved, if the p-value of dismissing H0 exceeds a certain threshold level. In
most cases, the value is set to 0.05 [224].
Experiments may answer a wide range of questions since users are observed while interact-
ing with the system. Additionally, researchers can survey opinions on recommendation quality
comprehensively [5, 7, 107]. In contrast to offline simulations, online studies are not limited
to the evaluation of one-dimensional metrics but can instead focus on abstract concepts, such
as user satisfaction [194]. Hence, to determine whether the new approaches of the SKOSRec
engine can boost the overall quality of suggestions, user studies should be applied in addition to
offline experiments. However, they also have some limitations. For instance, it is often difficult
and expensive to recruit large cohorts of participants [5,224]. Additionally, the recruitment pro-
cess itself can generate a biased sample since users that agree to participate might have entirely
different characteristics than those that do not. Thus, it is likely that recruited study subjects do
not form a representative sample of the target population [7, 224]. Therefore, the evaluation of
the SKOSRec engine will be conducted as multi-domain tests to level out some of these effects.
Aside from the application of suitable methods, appropriate evaluation dimensions have to be
defined to ensure that the engine’s performance is correctly measured. The following subsection
will present the dimensions that play a role in the evaluation of the SKOSRec engine.
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Table 7.1: Contingency table for relevance prediction
Recommended Not Recommended

Relevant true positive (tp) false negative (fn)
Not Relevant false positive (fp) true negative (tn)

7.1.4 Performance Dimensions

7.1.4.1 Accuracy

To date, the majority of scientists has focused on the measurement of accuracy values to de-
termine RS performance [5, 7, 107, 194, 224]. An accuracy metric detects how good the engine
predicts true preferences. It is measured by comparing recommendations with real choices. The
more the results resemble each other, the likelier it is that the engine provides accurate recom-
mendations. There exists a wide variety of accuracy metrics, such as the mean absolute error
(MAE), the root mean squared error (RSME) or precision and recall [107].
Herlocker et al. claim, that for the find good items task, which is at the center of this thesis, it
is most important to determine the engine’s capability to distinguish between relevant and non-
relevant items through classification metrics like precision and recall. They are better suited
when users either implicitly or explicitly express their likings through unary ratings (e.g., as
preferences for items) as it is done in a SKOSRec query. In the RS literature, classification
accuracy is often measured in offline evaluations. These experiments determine how many of
the recommended items have been marked as relevant by a user in the past (see Tab. 7.1).

In this context, precision measures the portion of relevant items among all recommended items
(see Eq. 7.1) and recall (see Eq. 7.2) indicates the percentage of relevant and recommended
items among all relevant items [224]. Recall cannot be easily determined in a user experiment,
since it is not possible to ask participants to state all relevant items. A possible workaround is
to determine the average result list size generated by a particular RS algorithm. The size can
serve as an indicator for actual recall values, provided that the majority of suggested items is
relevant.
There exists a trade-off between precision and recall which depends on the length of the rec-
ommendation list. For instance, if the number of suggestions is too small, many relevant items
may be overlooked by the algorithm (i.e., low recall), while if this number is too high, it is more
likely that the result list contains too many irrelevant items (i.e., low precision). That is why
precision/recall values are often determined for varying lengths of the recommendation list [7].
However, real-world RS usually fix the number of items to be recommended. Hence, it is rea-
sonable to set the size of the result list to medium length (e.g., 10-20 items) in the evaluation of
the SKOSRec engine as well [224].
The two measures are often combined in a single metric, called f-measure (f1 score) (Eq. 7.3).
It is the harmonic mean of precision and recall and is used to quantify the overall performance
of an algorithm with regard to its classification accuracy [107].
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prec =
#tp

#tp+#fp
(7.1)

rec =
#tp

#tp+#fn
(7.2)

f1 =
prec · rec
prec+ rec

(7.3)

Precision and recall are based on a binary relevance model. However, a wide range of score
values can reflect the true relevance of a suggestion. For instance, one item may be only slightly
relevant, while another one is perfectly in line with the information needs of the user. Hence, to
differentiate between nuances of relevance, it is beneficial to let users assess an item’s relevance
on a scale. Relevance sliders are an established tool in IR evaluations. They capture user
judgments on a scale from 0 to 100, where 0 indicates the lowest and 100 the highest relevance
[158, 210]. Therefore, an additional accuracy metric, called mean relevance score (mrs), will
be calculated during online experiments to grasp user opinions more comprehensively. Mrs is
based on slider assessments and measures the average relevance of a recommendation list.

mrs =
k∑

i=1

scorei
k

(7.4)

A disadvantage of the previously mentioned metrics is that they do not capture the ranking
ability of recommendation approaches. That is why the set of accuracy metrics of the evalua-
tion should also contain a ranking measure. Such a metric measures how well the ordering of
the suggestions matches the actual user ranking [107]. One option to capture this performance
dimension is to compare the engine’s predicted item order with the user’s choices through cor-
relation analysis. For this purpose, Spearman’s ρ or Kendall’s τ can be applied [224]. However,
these metrics neither take into account that recommendations are usually limited to a certain
number of items nor do they model the tendency of users to focus on top-ranked items. Hence,
correlation metrics are not particularly well suited for assessments of top-k recommendation

tasks that are performed by the SKOSRec engine.
That is why utility-based ranking metrics are better applicable for the evaluation in this thesis.
These measures assume that higher ranked items are of greater use as they are more likely to
be examined by the user. They assign the highest scores to relevant items that are among the
top-ranked positions of a result set. Consequently, utility decays, if items are positioned further
down the list [7]. The measure normalized discounted cumulative gain (ndcg) is one of the most
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widely applied rank metrics. It rewards accurate item sequences, while only slowly decreasing
utility values for low-rank positions through the application of a logarithmic function [7, 224].
Ndcg also measures the user gain (dcg) (Eq. 7.5). Therefore, the presented ranking (G) is set in
proportion to the gain a person would receive, when being confronted with a result list in ideal
order (idcg) [122] (Eq. 7.6).

dcg = G[1] +
k∑

j=2

G[j]

log2 j
(7.5)

ndcg =
dcg

idcg
(7.6)

While accurate recommendations are useful because they build trust in a system [236], they only
capture a narrow aspect of performance [164]. Consumers tend to give feedback on prominent
items thus perpetuating item popularity even further. Therefore, accuracy scores only measure
the ability to recommend frequently used items. Suggestions for random items are often not
considered. However, researchers and practitioners should also cover this aspect in RS evalu-
ations as the promotion of infrequently used/purchased products (i.e., long tail items) is often
as equally important. For instance, an online retailer can tremendously profit from an RS that
provides both relevant and unobvious recommendations, since it enables users to explore the
product catalog more thoroughly. On the other hand, in the case of an RS only suggesting
popular products, it is likely that the user already knows them [7, 107]. A pure accuracy-based
evaluation disregards these aspects, which is why other performance indicators, such as novelty,
should be measured as well.

7.1.4.2 Novelty

A novel suggestion is a recommendation for an item the user has not yet rated, used or known
about [224]. Novelty metrics can be applied in offline as well as online evaluations. In on-
line experiments, researchers directly ask whether a certain recommendation seems familiar.
Statements on novelty have to be checked against the accuracy dimension because users might
perceive an item as new but irrelevant [224]. Hence, in concordance with the authors of [236]
and [80], novelty will be measured as the ratio of relevant documents not familiar to the user
(#nov) among the total number of relevant documents (#tp) (Eq. 7.7).

nv =
#nov

#tp
(7.7)

In offline experiments, users cannot be directly asked about their opinions. In these tests, the
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SKOSRec evaluation has to capture the notion of novelty either by determining the popularity
of recommended items or by measuring their similarity with the user profile [224]. Castells pro-
poses to calculate the likelihood of the user to choose a certain item i to determine popularity-
based novelty scores (Eq. 7.8). The likelihood is determined by the ratio of occurrences of a
particular item among all user preferences in the database [50]

novpop =
k∑

i=1

−log2p(i)
k

(7.8)

On the other hand, similarity-based novelty metrics measure the concordance of recommended
items and the user profile [50]. However, the author decided to skip this metric for the evaluation
of the SKOSRec engine. The meaningfulness of similarity-based novelty scores would have
been limited because the engine generates content-based suggestions. Naturally, novelty scores
would have gone down, whenever the engine identified items that are highly similar to the user
profile. However, this is the whole point of using a CB recommendation strategy. Additionally,
concordance between the recommendations and the profile might not necessarily indicate that
the suggestions are known to the user.

7.1.4.3 Diversity

Whereas in CB RS, the engine generates suggestions that are similar to a user’s profile, it can
also be beneficial, if result lists are topically diversified. Consider the following example by
Ziegler et al.: Suppose a user has stated that he is interested in books written by a certain
author. While a recommendation list primarily consisting of books by this author may be per-
ceived as accurate, it is likely that the user is interested in suggestions for other authors. Such
homogeneous results can frequently be encountered in CB RS. In Chapter 2 this phenomenon
has been described as the overspecialization problem. It characterizes the phenomenon that
users get easily saturated when being exposed to the same items over and over again [262].
Researchers have proposed to tackle result homogeneity by looking at the recommendation list
as a whole since the utility of a result set is more than the sum of the utilities of the individual
items. In this line of research, scientists enhanced common RS algorithms with topic diversi-
fication features to improve the composition of the recommendation list. They found out that,
despite high accuracy scores, diversification increases overall user satisfaction [134, 262].
However, a one-sided optimization of diversity scores will mostly decrease accuracy values.
Therefore, diversity improvements should only cause small accuracy losses [260, 262]. In the
RS literature, the most widely explored diversity metrics are the ones that measure the similar-
ity between each item pair in the recommendation list. The more the items are alike; the less
diverse is the result set [224]. The evaluation of the SKOSRec engine will apply the similarity
metric (divC) by Castells et al. [50]. It determines item-to-item similarity values with the co-
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sine similarity metric. Scores are then converted to distance values (Eq. 7.9) and averaged for
the entire recommendation list (Eq. 7.10)

dist(il, im) = 1− cos(il, im) (7.9)

divC =
2

k(k − 1)

∑
l<m

dist(il, im) (7.10)

In the online evaluations of the SKOSRec engine users will be additionally asked to assess
recommendation list diversity with the help of Likert statements (Sect. 7.3). Score values of
these assessments will then be summarized in a user-based diversity value (divU ) in order to
ensure that the evaluation comprehensively grasps this performance aspect.

7.1.4.4 Perceived Usefulness

Some researchers argue that the aforementioned quality dimensions are not sufficient to eval-
uate the performance of an RS [107, 132, 134, 193]. Herlocker et al. point out, that a test can
only correctly measure RS performance if the particular recommendation task has been defined
before the evaluation. For the find good items task, accuracy, novelty and diversity scores may
not fully reflect the actual quality. It is assumed that users prefer to receive good suggestions
instead of recommendations that have been optimized for a particular metric. Therefore, RS
should be judged based on their ability to provide useful results. That is why in recent years,
there has been a shift towards a more user-centric evaluation of RS [132, 134, 193].
For instance, Knijnenburg et al. have developed a conceptual framework that intends to im-
prove the understanding of the interplay between an RS and its users. The authors claim that
system designers can apply this model to evaluate the effects of certain RS features on user
opinions, the user experience and user-system interaction patterns. The framework takes into
account both personal characteristics of the consumer and situational characteristics [132,134].
However, other researchers argue that this framework has not been empirically validated [193].
Pu et al. developed another evaluation model, called ResQue. In addition to building upon prior
work in the field of RS testing, the researchers utilize ideas from common usability evaluation
methodologies, such as the Technology Acceptance Model (TAM) or the Software Usability
Measurement Inventory (SUMI). The framework by Pu et al. is a statistically validated model
for RS evaluation in online experiments [193]. The researchers apply psychometric constructs
to capture user interaction with RS. Pu et al. propose to ask a few questions for each construct.
The multi-question approach increases the reliability of survey responses. Pu et al. developed a
questionnaire containing Likert items for each construct and formulated hypotheses regarding
the causal relations between them. They empirically verified their ideas in large-scale online ex-
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periments. Therefore, consumers of various RS platforms assessed the constructs of the frame-
work (Fig. 7.1). The results revealed how the dimensions of algorithmic performance (i.e.,
accuracy, novelty, and diversity) impact opinions on overall recommendation quality. They
showed that accuracy is the most critical aspect. However, as argued before, novelty and diver-

sity have to be taken into account as well [193].
Since the framework by Pu et al. has been empirically verified, it represents a robust methodol-
ogy to assess the SKOSRec engine. However, the evaluation in this thesis will only focus on a
few aspects, because it is primarily concerned with the improvement of RS technology through
LOD. Therefore, it is important to measure algorithmic performance (i.e., accuracy, novelty,
and diversity) and its impact on the perceived usefulness of suggestions. The construct of per-

ceived usefulness will be added to the online experiments, because simple quantitative metrics
may not fully capture user perceptions. The results by Pu et al. support this assumption., as they
found out that algorithmic metrics are considerably correlated with perceived usefulness [193].
It is the only construct in the user beliefs dimension of the model, that will be considered for
the evaluation of the SKOSRec engine because the aspects of perceived ease of use and control

and transparency are related to interface and interaction design.
Additionally, the remaining two dimensions of the model (i.e., user attitudes, behavioral inten-

tions) (Fig. 7.1), will not be surveyed in the online experiments, as they are only transitively
correlated with the perceived usefulness of an algorithm. Hence, when the engine provides
high-quality recommendations, users will eventually turn to the system, whenever they are in
need of a suggestion.

7.2 Evaluation of Performance Requirements

7.2.1 Methods for Performance Evaluation

The previous subsections have presented common metrics and methods for RS evaluation. How-
ever, regarding computational performance, the literature does not suggest a standard experi-
mental setting since in many RS, similarity values are calculated offline, which is why runtime
performance is not an issue [56, 107, 224]. However, the query-based retrieval approach of the
SKOSRec engine requires ad-hoc similarity calculation to enable customized requests. Hence,
the evaluation of the system should also include investigations into response times and work-
loads (RQ9 and RQ10). For this purpose, the approach of fast on-the-fly retrieval has been eval-
uated in all usage scenarios with the help of performance tests. The LOD repositories EconStor
and DBpedia that were presented in Section 6.2 were applied for simulation runs. Table 7.2
provides an overview of the number of items and the average amount of SKOS annotations per
item in each repository.

While the travel collection is the largest dataset regarding item size, the average number of
annotations per item is the smallest in this domain. The other datasets comprise fewer items,
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Fig. 7.1: Evaluation framework by Pu et al. [193]

Table 7.2: Overview of the LOD repositories applied in computational simulation runs
Domain Media Travel DL

Movie Book Music
rdf:type dbo:Film dbo:Book schema:MusicGroup dbo:Place swc:Paper

# items 90,063 31,172 86,013 725,546 36,634
(∅) # annotions
per item

7.207 4.410 6.060 2.422 6.462

but more annotations than the travel collection. The simulations utilized the local mirrors of
DBpedia and EconStor. The tests were set up as follows: The author created user profiles by
extracting 100 random LOD resources from each dataset. The SPARQL query in Listing 7.1 was
sent to the local database server thereby using the built-in function RAND() to randomly select
items. A recommendation request was issued to the query processor for each item representing
a user profile, upon which the SKOSRec engine generated 20 recommendations. System times
were measured for regular and fast on-the-fly retrieval on an Intel Core i5 2500, clocked at 3.30
GHz with 8 GB of RAM. The author restarted the database after each simulation run, since
the virtuoso server caches query results [223]. Hence, preceding query tables were deleted and
execution times could be measured correctly.
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Listing 7.1: SPARQL query to create user profiles
1 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
2
3 SELECT DISTINCT ?item
4 WHERE {
5 ?item rdf:type ?type .
6 ?item <ANNOT.PROP> ?subject .
7 }
8 ORDER BY RAND()
9 LIMIT 100

7.2.2 Results of the Performance Evaluation

Response times and workloads (i.e., number of records to be processed) were measured in
the regular (i.e., on-the-fly retrieval) and the optimized execution mode (i.e., fast on-the-fly

retrieval) of the SKOSRec engine. Table 7.3 shows that the proposed optimization approach
considerably diminished workloads, as is indicated by the reduced number of triple statements
in each (sub-)domain.

Table 7.3: Results of the performance test (workloads)
Dataset t-test (∅) # records

(regular)
(∅) # records
(optimized)

(∅) reduction
ratio

DL t(8.372) = 99, p < 0.001 3812 1459 44.8%
Travel t(3.830) = 99, p < 0.001 621 218 36.0 %
Movie t(5.828) = 88, p < 0.001 23542 20305 42.6%
Music t(7.202) = 99, p < 0.001 7662 4145 52.1%
Book t(8.956) = 99, p < 0.001 1206 303 51.9 %

The mean reduction ratio was determined by averaging single reduction scores (Eq. 7.11) for
each recommendation request.

reduction ratio =

(
regular − optimized

regular

)
· 100 (7.11)

Additional t-tests on the differences in means of the two methods confirmed that the fast re-
trieval approach significantly minimizes data transmission. Figures 7.3-7.6 also show that the
optimized approach helps to avoid exponential growth of processing periods (RQ10).
Moreover, the experiment investigated whether the system running in optimized mode provides
quick answers to single item requests (RQ9). Table 7.4 reveals that the fast retrieval method, on
average, generated recommendations in under a second in 4 out of 5 domains. The system took
longer only in the movie domain. Here, responses were mostly provided in under 2 seconds,
which is still within reasonable limits. The simulation runs also showed that fast on-the-fly re-

trieval reduced processing times compared to regular retrieval. Subsequent t-tests were carried
out to examine whether the reduction of mean scores could be statistically confirmed.
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Table 7.4: Results of the performance test (execution times)
Dataset t-test (∅) exec. time

in ms (regular)
(∅) exec.
time in ms
(optimized)

(∅) reduction
ratio

Dig. Library t(1.264) = 99, p = 0.105 630 196 -1.5%
Travel t(0.899) = 99, p = 0.186 134 73 -16.5%
Movie t(4.921) = 88, p < 0.001 9961 1910 65.2%
Music t(2.146) = 99, p < 0.05 1022 501 4.4%
Book t(1.879) = 99, p < 0.05 834 92 23.2%

The test verified the hypothesis for the majority of domains (i.e., the multimedia domains).
However, it was not confirmed for the travel and DL datasets. Here, even though mean pro-
cessing times were considerably smaller when applying the optimized execution mode, the
statistical analysis found no significant differences. The corresponding runtime diagrams (Figs.
7.3-7.6) explain these results further. In these domains, there were only a few test cases for
which the fast retrieval approach tremendously reduced processing times. While the remaining
simulation runs led to reduced workloads, the optimized approach induced some overhead that
decreased computational performance. The reduced number of records in the respective data
collections may have caused this outcome. In DBpedia, location-specific LOD resources, on
average, only have a few SKOS annotations, while EconStor is a small dataset, from which the
engine can extract records more quickly.
In summary, it can be concluded that fast on-the-fly retrieval improves scalability, especially,
if large workloads are involved (RQ10). However, in domains, in which only a small amount
of data is processed, the regular approach already provides fairly quick responses (RQ9). Ad-
ditionally, fast on-the-fly retrieval can help to reduce processing times, when datasets contain
many items and SKOS annotations.

7.3 Evaluation of General Recommendation Quality

7.3.1 Methods for the Evaluation of General Recommendation
Quality

Apart from performance simulation runs, quality tests are equally necessary for the assess-
ment of the SKOSRec engine. As has been outlined before, user experiments are a well-suited
method for RS validation. In the context of the SKOSRec evaluation, they were carried out as
web-based studies since the author did not have access to a real-world application. The web
setting helped to reach out to more participants with diverse demographic backgrounds, which
would not have been possible in a laboratory.
The experiments were conducted for the defined usage scenarios with the corresponding LOD
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Fig. 7.2: Exec. time in the travel domain
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Fig. 7.3: Exec. time in the DL domain
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Fig. 7.4: Exec. time in the
movie domain
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repositories. The database containing the local mirrors of DBpedia and EconStor LOD ran on
a virtual machine. The machine had one CPU core and 14 GB of RAM allocated to it. Besides
the triple store, a web application was developed and hosted on the server. The website ran
on an Apache Tomcat 7 application server and was implemented with the help of Java servlet
technology [16, 125].
The author conducted the online experiments between April 2016 and January 2017. The study
series started with an experiment on LOD-enabled retrieval in the domain of DL search. Upon
setting up the web application, a pretest was carried out to check for potential pitfalls, such as
misleading navigation. Two users ran step by step through the web interface. Based on their
feedback, the author slightly modified the interface (e.g., through rephrasing user instructions)
to increase the chances of successful completion.
Afterward, the recruitment process started. The author posted a link to the study alongside some
additional information in two online forums for economics in higher education. Additionally,
the experimenters (i.e., the author and an assistant) contacted economics researchers by phone
and e-mail. For this purpose, a list of major German institutions in this field, e.g., economics
chairs at universities, was compiled. The experimenters worked down the list and contacted
affiliated researchers. Participation was incentivized with five 20.00e Amazon gift vouchers.
Study subjects were entered into a prize draw upon successful completion of the survey. The
experiment took place between April and June 2016. In total, 39 subjects with an economics
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background participated.
The remaining studies (i.e., the experiments on multimedia and travel RS) were carried out
differently. While for the usage scenario of DL search, participants had to be directly con-
tacted, due to their specified field of interest, this was not necessary for the other domains. It
was assumed that the Wikipedia-based experiments would appeal to a broader audience and
that most participants of a randomly selected sample would be able to generate an individ-
ual profile containing LOD resources from DBpedia. The author recruited subjects through
clickworker.com [54]. The crowd working platform advertised the experiments. Participants
received a compensation fee (i.e., between 1.00e and 1.50e for a completed survey). 103 par-
ticipants took part in the study on travel destination search. In the multimedia domains, 154
subjects evaluated the SKOSRec engine.
The travel experiment took place in August 2016. The study on movie RS was conducted in
October 2016, and the two remaining experiments on music and book RS were both carried out
in January 2017. Table 7.5 shows the organizational details of the study series.

Table 7.5: Details of the study series
Experiment Time of Conduction Participants
Digital Library April - June 2016 39
Travel 26.08.16-01.08.16 103
Movie 22.10.16 50
Music 11.01.17 53
Book 13.01.17 51

The first part of the experiment collected data on participants’ demographics and their con-
sumption and search habits (see Fig. 7.7). This was primarily done in order to prepare subjects
for the test cases to be completed during the study.

After the experiment in the domain of DL search had already been carried out, the author added
a page to the survey template of the first section. It informed participants about the context and
the procedure of the study. The web form also assured subjects that no deception was involved
in survey completion and underlined the participants’ right to refrain from the experiment at
any time. Additionally, participants were asked to confirm that they were 18 years or older.
The web form obtained the subjects’ direct consent to take part in the experiment under the
provided conditions thereby helping to carry out the study in an ethically sound manner [244].
The majority of the form’s content was taken from a template consent form [211]. The author
adapted it slightly to the different usage scenarios. Figure 7.8 shows the consent form of the
experiment on music RS. In the sequence of survey pages, the template was placed before the
demographic section and served as a gateway for participation.
In the DL study, the experimenters provided context information either over the phone or via e-
mail. For the DL experiment, it is assumed that, through their participation, subjects implicitly
gave their consent. They were comprehensively informed about the study during the recruitment
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Fig. 7.7: Music - Demographics section (page 2)

process. In case they had any reservations they could have withdrawn from it right away.

After the preparation phase, participants started with the first test case (TC1) in each usage sce-
nario. In this test case, the performance of the SKOSRec engine was assessed in the simple
execution mode of on-the-fly retrieval. It was done to gather data on the usefulness of sug-
gestions resulting from a baseline CB recommendation method, with which more advanced
strategies could be compared at a later stage. The author investigated, how accuracy, novelty

and diversity affect perceived usefulness. In TC1, users stated their favorite items through a web
form. In the DL experiment, participants only had to enter one publication that reflected their
research interest. This approach was taken because, even though EconStor is among the largest
Open Access servers in its field, it is still merely a repository server for grey literature [78].
Consequently, it could not be presumed that participants would find numerous research papers
on their specific topics of interest easily. Thus, the user profile was limited to one item to prevent
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Fig. 7.8: Music - Consent form (page 1)

that potential study subjects withdrew from the experiment. For the DBpedia experiments, the
author assumed that participants would find more than one item that reflected their preferences.
Thus, subjects had to specify three of their favorite items in these studies (Fig. 7.10). However,
since withdrawal from DBpedia experiments should be also prevented, error messages were not
thrown, even if participants provided fewer objects than required. Hence, despite the three-item
input form of the website, participants could carry on with only 1 or 2 favorite items in their
profile. The initial statements regarding user tastes represented a vital step, because personal-
ized recommendations were based on these items. Thus, in cases, where users did not state any
items, the application showed an error page to the user (Fig. 7.9).

The process of profile generation was facilitated by a specifically tailored interface (see Fig.
7.10), where subjects could search for items through an autocomplete field that applied the
technology of Asynchronous JavaScript and XML (AJAX) [126].

It enabled users to type in keywords (e.g., the name of a music act or the author of a book), for
which matchings were instantaneously displayed without reloading the site. Hence, participants
could quickly find and select their items of interest. Whenever a user entered a query through
the AJAX interface, the system matched the query keywords against an Apache Solr/Lucene
search index [15]. The index was built with item metadata, which had been extracted from the
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Fig. 7.9: Error page

Fig. 7.10: Music - User profile generation, TC1 (page 2)

respective LOD repositories prior to setting up the website. For the web experiment in the usage
scenario of DL search, the index comprised the author, title and abstract of economics research
papers, while the index for DBpedia resources was set up with the names and abstracts of items.
Whenever available, information on thumbnail pictures were saved in the index to be ready
for display in the AJAX interface. In case the Apache Solr/Lucene search engine found index
keywords that matched the user query, metadata information for these items were immediately
shown on the screen. This information was displayed to help participants make an informed
decision on whether the result list contained suitable items for profile generation.
Aside from the AJAX feature, the appeal of the interface was increased by a progress bar at
the top of the webpage (see Fig. 7.10). In conventional paper-based studies, subjects usually
see their current advancement level, while in a web survey they cannot check their progress
immediately. This is especially true for studies that apply a screen-by-screen navigation, which
was the chosen approach for the web experiments of this thesis. Progress bars can be applied to
handle this problem. They prevent users from tiring of the questionnaire and withdrawing from
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the study altogether by showing, how close participants are to complete the experiment [70].
Upon profile generation, the SKOSRec engine calculated on-the-fly recommendations, which
were shown to users in a separate screen. Suggestions were displayed with a sufficient amount
of information e.g., thumbnails, labels or a short description to help participants assess the qual-
ity of the recommendation. In addition to this information, users could also access the respective
Wikipedia article or the EconStor URL by following the hyperlink on the label. Item-level as-
sessments of recommendation results were partly carried out with the help of relevance sliders.
They let participants state a degree of relevance for each item, instead of asking them to make
a binary decision on item relevance. Scores were handled as points on a 0 to 100 scale of the
relevance slider (outer left side: lowest relevance, outer right side: highest relevance, see Fig.
7.11). This approach was taken because it conveniently enabled calculation of the accuracy

metrics presented in Subsection 7.1.4.
In addition to relevance sliders, the evaluation interface also contained a section, where subjects
had to tick a radio button that indicated, whether an item was new. In concordance with the nov-

elty definition from Subsection 7.1.4, novel items were assumed to have not yet been consumed
by the user or were not familiar or both. No distinctions were made between these subnotions
of novelty to avoid confusion as well as to keep the number of questions as low as possible.
This trade-off between comprehensively capturing users’ opinions on recommendation quality
and the maintenance of a clear questionnaire had to be carefully balanced out during the study
series.
Once participants had stated their item-level assessments with regard to accuracy and novelty,
they were asked to judge the quality of the recommendation list as a whole. In this section, par-
ticipants stated their agreement for several Likert questions measuring the concept of perceived

usefulness. When the first two experiments of the study series (i.e., the web experiments on DL
search and travel RS) were carried out, only two Likert questions were posed, in order to keep
the required user effort at a minimum level. The following list shows the questions that were
posed in the experiment on DL search.

• The recommendations [...] better fit my research interests than what I may receive from
a research fellow.

• I feel supported to find relevant publications with the help of the recommendations.

The questions were only slightly adapted to reflect the specificities of the travel domain. After
the first two experiments had been carried out, Cronbach’s α values for the two Likert items
reached only acceptable levels (see Subsect. 7.3.2), which is why for subsequent web experi-
ments further questions were added to this section to increase the reliability of the scale. The
questions were formulated in reference to the Likert items by Pu et al., which are assumed to
measure the concept of perceived usefulness. They were adpated to each of the three remain-
ing multimedia usage scenarios accordingly [193]. Figure 7.12 shows an example collection of
Likert questions for the domain of music RS.
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Fig. 7.11: Music - Results part I, TC1 (page 4)

In addition to Likert statements on perceived usefulness, the author included two items that cap-
tured the notion of recommendation list diversity (divU ). Hence, even though in the backend of
the web application, diversity was determined through calculation of content-based dissimilar-
ity scores (divC), user assessements on diversity (divU ) were additionally measured with the
following Likert items:

• The recommendations of the list are diverse.

• The recommendations of the list are similar to each other.

Analogously to the Likert items for perceived usefulness, the above mentioned statements were
taken from the RS evaluation framework by Pu et al. The scoring is reversed in the second item
to increase the reliability of the scale [193].
After participants had provided the required information, their answers were saved in a log file
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Fig. 7.12: Music - Results part II, TC1 (page 4)

and they were navigated to subsequent test cases (i.e., TFlex, TC2-TC4), where they worked
on other more advanced retrieval tasks. Table 7.6 provides an overview of all test cases of
the experimental series. Sections 7.4-7.6 will elaborate on the test settings for these kinds of
recommendation requests.

Table 7.6: Test cases in the web experiments
Test
Case

Evaluation Purpose DL Travel Movie Music Book

TC1 On-the-fly Recommendations (Baseline) 3 3 3 3 3

Tflex Flexible Similarity Detectiion 3 7 7 7 7

TC2 Constraint-based Recommendations 3 3 3 3 3

TC3 Advanced Recommendation Queries
(Roll-up)

7 3 3 3 3

TC4 Advanced Recommendation Queries
(Cross-Domain)

7 7 3 3 3
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7.3.2 Results of the Evaluation of General Recommendation
Quality

In total, 296 persons participated in the web experiments. The demographics were as follows:
The sample contained answers from both genders with a slight overrepresentation of male par-
ticipants (53.7%). Male subjects were the majority in the studies on DL search, movie and book
RS ( Fig 7.13). The prevailing number of participants was between 20 and 40 years of age. The
domain-wise age distribution is depicted in Figure 7.14. Participants younger than 20 or older
than 60 years formed only a tiny proportion of the sample.
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Fig. 7.13: Domain-wise gender distribution

Aside from the small percentage of young study subjects (< 20 years), which can be explained
by the age barrier for participation, the samples can be regarded as representative of regular
Internet users both in terms of gender and age.1

Besides the demographic questions, in each usage scenario the questionnaire contained a section
on the consumption behavior of participants. This section attuned subjects to the experimen-
tal setting. It also gathered answers to the statement „Finding interesting items in my domain
of interest/expertise is...: 1 („very easy“), 2 („easy“), 3 („manageable“), 4 („hard“), 5 („very
hard“)“. Response rates for the corresponding categories are depicted in Figure 7.15. The dia-
gram shows that the vast majority of participants perceives the search as at least „manageable“
of which many even call it „easy“ or „very easy“Ȧn interesting finding is that subjects, who
took part in the DL experiment regard the search as more easy as in the other domains. This
is surprising, since retrieval tasks in the context of scientific research are mostly carried out
as a vocational endeavor, while in the remaining domains, a search is most often conducted to
organize leisure activities.

1Cf. the following webpage for an overview on gender and age distribution of Internet users: [116].
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Fig. 7.14: Domain-wise age distribution
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Fig. 7.15: User perceptions of the search in their domains of interest

Throughout the experiments, participants completed between 3 to 4 retrieval tasks during a
single session. This amount of test cases was considered as the maximum that subjects could
be asked to work on in relation to the reward they received (i.e., prize draw participation or
monetary compensation). Figure 7.16 visualizes the distribution of session durations in seconds
(s). The domain-specific box-whisker plots show that participants in the movie experiment, on
average, took the longest to complete the study. The mean (M ) duration in the movie sessions
was 1448s (standard deviation [SD] = 1299s), which corresponds to approximately 32 minutes
(min). In other studies, such as in the experiments on book or movie RS, participants needed
less time for completion (book RS: M = 1077s [~18min], SD = 604s; movie RS: 1448s
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[~24min], SD = 1080s). Although the movie experiment was not comprised of more retrieval
tasks, it might have required longer processing times due to the larger dataset. It is also assumed
that, since the study on movie RS was the first in the sequence of the multimedia experiments,
it may have caused more interest among potential participants, because of the topic of the study.
The server-side workload may have been increased, such that response times were slowed down.
This effect is also illustrated by the comparably high rate of study withdrawals: only 15.9% of
started sessions were finished in the movie experiment. The completion rate in other studies
was much higher. For instance, in the travel experiment, 42.2% of users, who accessed the start
screen, finished the survey.
Despite these findings, further investigations are required to fully assess the SKOSRec engine’s
performance in a live setting. Due to financial constraints, the web application ran on a hardware
infrastructure, which was not equipped to handle numerous concurrent accesses. The effect of
prolonged response times may be mitigated by adding more hardware resources (e.g., more GB
of RAM or multi-core processors) to prepare the engine for live deployment.
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Fig. 7.16: Distribution of session durations in the different domains

Besides server access statistics, it was investigated how participants perceived the general per-
formance of the SKOSRec engine in the execution mode of on-the-fly retrieval. The analysis
of score values for this retrieval task served two purposes. The first was to ensure that the
LOD-enabled recommendation approach produces results that are helpful to consumers. Oth-
erwise, it would be questionable if performance improvements from other retrieval methods
(i.e., constraint-based or advanced recommendation requests) are of actual use to recipients.
Slight increases in the quality of a badly performing system may not have a big impact on the
advancement of RS research. The second purpose of the first test case (TC1) was to gather
baseline performance scores with which other recommendation approaches of the SKOSRec
engine could be compared.
Prior to analyzing assessments, it was checked whether the respective Likert items correctly
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measured the construct of perceived usefulness through reliability testing. For this purpose,
Cronbach’s α values were determined. As has been mentioned in the previous section, in the
studies on DL search and travel RS, the set of Likert items was comprised of two questions,
whereas in the subsequent multimedia experiments five questions were utilized to increase α

values. Table 7.7 shows that the enhancement improved the reliability of the scale. Since the
scores achieved an at least acceptable level of reliability (α > 0.7) throughout the experiments,
the construct of perceived usefulness can be treated as an interval-scaled variable in the entire
analysis [238].

Table 7.7: Cronbach’s α values for the concept of perceived usefulness
Domain Cronbach α

Digital Library 0.7038
Travel 0.7002
Movie 0.8579
Music 0.8515
Book 0.8949

Besides usefulness, user-based diversity (divU ) scores were also measured by multiple Likert
items. However, Cronbach’s α values for this concept did not reach acceptable levels. In or-
der to avoid that valuable user assessments remained unused, agreements to the statement „The
recommendations of the list are diverse “ were taken into account as an ordinal variable.
Once, Cronbach’s α values had been detected, subsequent test were carried out. The first analy-
sis concerned the general quality of recommendations resulting from simple on-the-fly retrieval.
Figure 7.17 depicts the distribution of score values for the concept of perceived usefulness

throughout the different domains. The diagram shows that participants mostly perceived the
results as useful. The vast majority of subjects in the studies on travel and multimedia RS ei-
ther clicked 5 („strongly agree“), 4 („agree“) or at least 3 („neutral“), when confronted with
positive Likert statements on recommendation quality. Thus, it can be concluded that on-the-

fly suggestions can assist users in searching for interesting items. Despite the positive findings
in the DBpedia experiments, the diagram reveals a mediocre performance of the approach in
the DL domain. Here, most participants were not quite as convinced of the quality of sugges-
tions. Numerous subjects did not agree to the positive statements on the results. One reason for
this outcome might be that EconStor LOD offers too little bibliographic data in order to meet
highly specialized information needs. Another reason can be that researchers are proficient in
searching through concept descriptors and were therefore already familiar with the papers that
were presented to them. This argument is backed up by the results of the demographics section,
which indicate that most of the participants in the DL experiment perceive the search for sci-
entific publications as rather easy. Hence, because of the effectiveness of existing tools in this
domain or the proficiency of users, a simple LOD-enabled recommendation request might not
improve the search experience. However, in terms of quantity, the DL sample represents only a
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small proportion of the collected user assessments.
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Fig. 7.17: User agreement to positive statements on the perceived usefulness of on-the-fly rec-
ommendations

The overall performance results confirm that the on-the-fly approach represents a viable retrieval
strategy. Tables 7.8 and 7.9 show the mean2, standard deviation and number of participants
for each performance dimension and metric. It can be seen that users assessed the engine’s
performance in almost each quality dimension to be above mediocrity. Despite the positive
user evaluations with regard to perceived uselfulness, related quality aspects, such as accuracy,
novelty and diversity received good assessments as well. For instance, in each domain mean

relevance scores (mrs) were higher than 50 score points. It means that participants were often
convinced of the relevance of the results. This outcome is also supported by fairly high precision

scores. Given these positive user assessments with regard to item relevance, it seems to be
justified to consider the mean of result list sizes as an indicator of recall. The engine was able
to generate the required number of recommendations in almost every test case (Tab. 7.8). Aside
from high precision and recall values, the ranking performance of the approach (ndcg) also
achieved above-average results. However, it must be noted that recommendation lists were not
particularly long in the experiments, as result sets contained a maximum number of 10 items
in the DBpedia experiments and a maximum number of 6 items in the DL experiments.3 It is
assumed that high ndcg values are even more useful for larger recommendation lists.

The on-the-fly retrieval approach was also tested with regard to the novelty dimension. Table
7.9 shows the mean novelty scores (nv) for this recommendation approach. The values indicate
that the majority of items in a result list were deemed to be novel in the experiments on DL,

2In case of the user-based diversity score (divU ), M denotes the median, because of the ordinal scale of the
variable.

3The lower maximum number of suggestions in the DL experiment was chosen because the author assumed that
the assessment of the relevance of scientific publications would take up more time than judging the quality of
multimedia or travel destination recommendations.
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Table 7.8: Performance results of regular on-the-fly retrieval, part I
Dimension (Metric) Domain Results

M SD N

Accuracy (size)

DL 5.74 0.44 39
Travel 10.00 0.00 103
Movie 10.00 0.00 50
Music 10.00 0.00 53
Book 9.80 1.40 51

Accuracy (mrs)

DL 50.25 23.29 39
Travel 56.49 18.55 103
Movie 62.25 19.15 50
Music 55.70 21.13 53
Book 57.47 15.55 50

Accuracy (prec)

DL 0.59 0.32 39
Travel 0.69 0.29 103
Movie 0.78 0.27 50
Music 0.67 0.33 53
Book 0.73 0.24 50

Accuracy (ndcg)

DL 0.89 0.11 39
Travel 0.86 0.13 103
Movie 0.90 0.16 50
Music 0.88 0.16 53
Book 0.89 0.10 48

travel and book RS, whereas in the experiments on movie and music RS only one third of the
recommendation list was unfamiliar to users. In contrast to that, content-based diversity scores
(divC) were rather high in each domain. Hence, it can be concluded that items in a result set
usually have a low rate of matching SKOS annotations. This is an interesting finding, given
that recommendations are based on concept descriptors that can be found in the user profile.
In addition to content-based scores, user assessments of recommendation list diversity (divU )
were also taken into account. The median level of agreement to the diversity-related Likert item
stating that recommendations are diverse was 3 („neutral“) in the multimedia domains and 4
(„agree“) in the DL and travel domain.
In summary, the baseline approach achieved fairly good performance results. The findings
demonstrate that LOD-enabled recommendations can potentially enhance a user’s search expe-
rience. They also allow for subsequent tests of more advanced retrieval techniques, which can
be compared to this standard method.

In addition to the evaluation of the engine’s baseline performance, interdependencies between
the different performance metrics were measured. The author investigated whether the scores
in the quality dimensions of accuracy, novelty and diversity had an impact on the perceived

usefulness of recommendations, as was claimed by Pu et al. [193]. For this purpose, one-sided
Spearman’s correlations were run. Table 7.10 shows the outcome.
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Table 7.9: Performance results of regular on-the-fly retrieval, part II
Dimension (Metric) Domain Results

M SD N

Novelty (nv)

DL 0.71 0.32 36
Travel 0.60 0.34 101
Movie 0.36 0.31 50
Music 0.36 0.39 52
Book 0.61 0.29 47

Diversity (divU)

DL 4 - 39
Travel 4 - 102
Movie 3 - 50
Music 3 - 53
Book 3 - 50

Diversity (divC)

DL 0.64 0.15 39
Travel 0.80 0.16 103
Movie 0.87 0.12 50
Music 0.86 0.10 50
Book 0.92 0.08 50

Usefulness

DL 2.55 1.00 39
Travel 3.34 0.85 103
Movie 3.55 0.73 50
Music 3.18 0.85 53
Book 3.43 0.81 50

In a subsequent two-sided correlation analysis, dependencies among presumably related quality
metrics in the accuracy (mrs, prec, ndcg) and diversity (divC, divU ) dimensions were inves-
tigated. The results are listed in Table 7.11. This was done to identify variables that can be
excluded from subsequent statistical tests because of their high correlation, since a reduction
of statistical comparisons decreases the probability of making a type I error (i.e., detecting a
significant difference when there is none).

It was also decided to counterbalance effects of multiple testing with an α-level adjustment.
Whenever significance tests were conducted for the results of the web experiments, the false
discovery rate (FDR) was applied. Thus, the author limited the probability of conducting a type
I error, while controlling for type II errors (i.e., overseeing an effect in the data) as well [31].

Table 7.10: Spearman’s ρ for evaluation metrics correlation with perceived usefulness, TC1
Domain Accuracy Novelty Diversity

size mrs prec ndcg nv divU divC
DL - 0.493*** 0.355* - - - -

Travel NA 0.346*** 0.287*** - - 0.406*** -
Movie NA - - - - -
Music NA 0.651*** 0.442*** - 0.409*** - -
Book NA - - - - - -
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Table 7.11: Spearman’s ρ for dependencies among evaluation metrics, TC1
Accuracy Diversity

Domain ρmrs,prec ρmrs,ndcg ρprec,ndcg ρdivU,divC
Digital Library 0.887*** 0.515*** 0.580*** -

Travel 0.801*** 0.504*** 0.702*** -
Movie 0.636*** 0.135* 0.637*** -
Music 0.559*** - 0.637*** 0.376***
Book 0.415** 0.328* 0.741*** -

A-level adjustments were applied for the correlation tests with the FDR rate set to 0.05. Tables
7.10 and 7.11 show correlations with adapted significance levels. It can be seen that, despite
the FDR adjustments, some significant dependencies were detected (∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001). The results of Table 7.10 confirm the findings from previous research on RS
evaluation that accuracy, novelty and diversity have an impact on the perceived usefulness of
recommendations [194]. As it was claimed by Pu et al., accurate suggestions are most likely
to be perceived as useful by consumers. The mrs metric proved to be the best predictor of
usefulness among the set of accuracy metrics. It is closley followed by precision (prec). This
finding also occurred in subsequent test cases (TC2-TC4) of the study series (Appendix B.3,
Tabs. B.1, B.3 and B.5), where scores for mrs and prec were moderately correlated with the
concept of perceived usefulness. Additionally, the correlation analysis revealed that increased
ndcg values only have a weak direct impact on recommendation quality. They are highly corre-
lated with precision scores, which are in turn strongly dependent on mrs (Tab. 7.11, Appendix
B.3, Tabs. B.2, B.4 and B.6). Therefore, it seems reasonable to reduce the set of accuracy

metrics to mrs scores, since the metric has the highest impact on perceived usefulness. Addi-
tional metrics would not add explanatory power, but only increase the number of tests to be
performed. Hence, the accuracy metrics prec and ndcg will be excluded from statistical com-
parisons for subsequent test cases (TC2-TC4) (Sects. 7.5-7.6). The offline experiments, that
were conducted to evaluate the flexible similarity detection approach (TFlex) (Sect. 7.4) are
an exception to this rule, since no mrs scores could be collected in the simulations. For these
experiments, the author utilizes prec values instead. In terms of recall (as indicated by size),
participants gave higher usefulness scores for lists that contained more items (Appendix B.3,
Tabs. B.1, B.3 and B.5). Hence, the size should be included in subsequent analyses.
Aside from the accuracy dimension, the relative importance of novelty and diversity was eval-
uated as well. The analysis showed that increased scores in these dimensions can improve rec-
ommendation quality. However, in comparison to accuracy, the correlation values were lower
and only occurred occassionally (Tab. 7.10, Appendix B.3, Tabs. B.1, B.3 and B.5). It also
became clear that diversity is slightly more relevant for recommendation quality than novelty.4

4Compare results for nv and divU in TC2, TC3 and TC4 (Appendix B.3, Tabs. B.1, B.3, B.5). In each test
case, more one-sided dependencies were identified between divU and perceived usefulness than between nv
and perceived usefulness
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This is in contradiction to the results of Pu et al., who found novelty to be more relevant than
diversity [194]. The difference in the relative ranking of diversity and novelty may be due to
the fact that novelty was measured differently in the two empirical studies. Pu et al. applied
Likert-type questions to let users assess the entire recommendation list. The present study, on
the other hand, surveyed this aspect at the item level, since this method enables a more fine-
grained evaluation of novelty. It remains open whether one of these methods is superior to the
other.
Another interesting finding of the correlation analysis is that user-based diversity scores (divU )
are a more reliable predictor of usefulness than content-based diversity scores (divC). Sig-
nificant positive correlations occurred in none of the test cases in terms of divC (Tab. 7.10,
Appendix B.3, Tabs. B.1, B.3, B.5). To the contrary, in TC3, even a negative correlation was
found. On the other hand, the two diversity metrics (divU and divC) are moderately positively
correlated in the music domain (see Tab. 7.11). Given these ambiguous findings and the fact
that in offline simulations (TFlex) the researcher had to resort to the divC metric anyway the
variable is kept in the evaluation.
Upon having identified baseline scores and suitable test variables, the SKOSRec engine’s novel
recommendation approaches will now be comprehensively evaluated.

7.4 Evaluation of Flexible Similarity Detection

7.4.1 Methods for the Evaluation of Flexible Similarity Detection

The flexible similarity detection method was tested in both online and offline experiments. The
author chose this mixed method approach due to economic restrictions. In the web-based ex-
periments, users had to carry out a variety of user tasks, starting with the assessment of general
recommendation quality (TC1) and ending with the evaluation of other types of recommen-
dation queries (TC2-TC4). Although subjects were given an incentive for participation, there
were some limitations with regard to the time span users could be requested to devote to the
study. Thus, experiments were carried out on historical datasets, if possible. However, it would
not have been feasible to evaluate the SKOSRec engine’s ability to generate useful suggestions
for customized recommendation requests with historical data. The development of a query lan-
guage brings it about that user opinions on the language’s queries do not yet exist. Offline
evaluations, on the other hand, are dependent on session logs of RS. Hence, the performance of
the system cannot be assessed for the novel query patterns that the SKOSRec engine provides.
However, it was possible to evaluate the flexible similarity detection approach (TFlex) with his-
torical data. A suitable offline dataset for the evaluation of the TFlex test case should have
mappings between the item IDs and the respective IRI in the LOD cloud. In the multimedia
domains, there are some historical RS datasets providing these information (Tab. 7.12).

No datasets exist for the usage scenarios of LOD-enabled DL and travel destination search.
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Table 7.12: Historical Dataset Features
Dataset # Users # Items LOD Mappings # Prefs.
Movie: MovieLens1M
[101, 170]

6,040 3,952 3,300
[68, 82, 160]

1,000,209

Music: LastFM [108] 1,892 17,632 11,180 [68, 159] 92,834
Book: LibraryThing 7,279 37,232 8,170

[68, 82, 161]
2,056,487

Therefore, a section of the DL experiment was devoted to the evaluation of suggestions re-
sulting from flexible similarity detection utilizing the STW SKOS vocabulary. Since the travel
experiment focused on the assessment of advanced query patterns, there was no extra room for
tests of another method, because of the limited attention span of participants. Hence, a section
on flexible similarity detection was excluded from the travel experiment. This was considered
legitimate as the characteristics of the respective SKOS are more decisive for the TFlex test case
than the usage scenario. Additionally, the DBpedia SKOS category graph was already covered
by the multimedia scenarios.
In case of the multimedia datasets, researchers from the Information Systems Laboratory at the
University of Bari have set up links between multimedia items and DBpedia thus facilitating
offline evaluations of LOD-enabled recommendation approaches. The collection of mapped
datasets comprises the MovieLens1M (movie domain), the LastFM (music domain) and the
LibraryThing (book domain) dataset [57]. The collections have been gathered from real-world
recommender systems. Table 7.12 lists the number of users and items in each dataset. It also
shows, how many LOD mappings could be created.
The author applied the LOD-enabled RS datasets in offline simulation runs to test the flexible

similarity detection method. First, the datasets were prepared for cross-validation. Preferences
from the first 100 users of each collection were divided into 5 equally large subsets on which
simulations were performed. In each run, one fifth of the preference information from users
was applied as test and four fifths as training data. The simulations were implemented in Java
code (see Appendix B.1). The application processed user profiles with the SKOSRec engine
and compared the predicted values with the actual feedback data stated in the test set thereby
determining the degree of concordance between the engine’s predictions and the user’s true
preferences. By this means, accuracy (prec, rec) values were calculated. Additionally, the test
measured the content-based diversity (divC) of recommendation lists and calculated item nov-
elty scores based on the popularity-based approach (novpop).
The different metrics were used to compare the flexible similarity detection method with the
baseline method of simple on-the-fly retrieval (i.e., exact concept matching) and a concept ex-
pansion on skos:broader links. As outlined before, it was assumed that users can profit
from the flexible approach by changing the composition and ranking of the recommendation
list to explore knowledge graphs better. The script also measured the overlap between two rec-
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ommendationlists(AandB)resultingfromdifferentretrievalapproachesbytheJaccardindex

(JI)(Eq.7.12)totestwhetherthisassumptionwascorrect[237].

JI(A,B)=
|A∩B|

|A∪B|
(7.12)

Itisfurtherhypothesizedthatflexiblesimilaritydetectionisbettersuitedforon-the-flyretrieval

thanasimpleexpansiononskos:broaderlinks.

TheauthorappliedtheconceptSimhyPmetricbyStankovicetal.tocalculateconcept-to-

conceptsimilarityvaluesontheDBpediaSKOSgraph.AshasbeenmentionedinSection6.5

thismeasurereliesonaponderingfunctionthatdecreasesthesimilarityvaluethefurtheraway

theconceptislocatedfromtheinitialconcept[233].Stankovicetal.proposeanexponential

functionforthispurpose(seeEq.6.16ofSect.6.5).However,theresearchersdonotspecify

theexactvaluefortheparameterγ,whichregulateshowstronglythesimilaritydecreaseswith

anincreasingshortestpathdistancebetweentwoconcepts.Sincetheauthorsdonotprovide

anyempiricalevidenceregardingthebestparameter,preliminarysimulationshadtoberunto

identifytheoptimalconfiguration.Fig.7.18showsthef1scoresindicatingrecommendation

qualityfordifferentγ

0.02

0.04

0.06

0.08

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
γ

F
1 
S
c
or
e

domain

Book

Movie

Music

Prediction Acuracy

valuesinthemultimediadomains.
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Afterdeterminationoftheoptimalγparameter,theauthortestedconfigurationswithvarying

shortestpathdistancesfromtherespectiveseedannotation.Thus,itwasinvestigatedwhether

adjacentconcepts(d(u,v)=1,d1inFig.7.19)orthewiderneighbourhoodofanannotated

seedconcept(d(u,v)=2,d2inFig.7.19)shouldbetakenintoaccount(seeEq.6.16of

Sect.6.5).Thesimulationsdidnotincludelongerpathdistances,since,witheachincrement

ofthedistancevalue,theamountofdatatobeprocessedrosebyamultitudeduetothecyclic
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dependencies of the SKOS graph. Two-step distances were deemed to be manageable in the
context of a real-world ad-hoc recommendation scenario. Figure 7.19 shows the results of
preliminary distance-based simulations runs. It can be seen that the incorporation of a wider
concept neighborhood (d(u, v) = 2) only increased performance results in the music domain.
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Fig. 7.19: Results of the experiments on parameter configuration (distance parameter)

These pretests identified the best parameters for the conceptSimhyP metric to be used to com-
pare the flexible similarity detection method with the baseline approach in offline experiments
on multimedia RS.
In the DL domain, users evaluated the concept expansion method in the online experiment (i.e.,
TFlex test case). Because of the restricted time frame in the live study, the author reduced
the number of test conditions by omitting the method of skos:broader concept expansion.
Instead, the experiment focused on the identification of the best concept-to-concept similar-
ity configuration, which was then compared to the approach of simple on-the-fly retrieval at
a later stage of the analysis (see Subsect. 7.4.2). While this approach led to a loss of infor-
mation, it was nevertheless necessary due to the limited attention span of participants. Hence,
in the DL domain, it was not investigated whether flexible similarity detection can outperform
skos:broader concept expansion, but only examined whether the proposed method is in
and of itself a viable alternative retrieval strategy to exact concept matchings. Future experi-
ments will have to clarify if there exist performance differences between the skos:broader
and the similarity-based concept expansion method in the context of this usage scenario.
While the multimedia simulation runs utilized the DBpedia SKOS graph, the flexible similar-

ity detection method in the DL experiment was tested with the STW vocabulary. As has been
mentioned before, the STW graph contains transitive relationships and no cyclic dependencies.
Thus, it resembles a DAG-like structure that is suited for application of a standard concept-
to-concept similarity metric based on the information content of the MICA [146]. For the
STW, concept specificity was determined according to the number of descendants a concept
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subsumes [221] (see Eqs. 6.13 and 6.14 in Sect. 6.5). The metric was chosen because it is well
suited to measure corpus-independent concept relatedness in a directed acyclic graph exploiting
skos:broader and skos:narrower links. For each concept pair of the STW thesaurus
concept similarities were calculated with the help of the Semantic Measures Library [100]. The
values were saved in the default LOD repository to be ready for use during the study. In this
way, the web application could quickly present suggestions resulting from flexible similarity

detection to participants. In the DL experiment, users were asked to assess the quality of three
differently ranked lists. As in TC1, users stated a publication that represented their research
interests well and the SKOSRec engine processed this information accordingly. The system
generated each list with a different inter-concept similarity threshold (ε ∈ {0.5, 0.75, 1.0}).
Once automated suggestions had been generated, participants were asked to judge the quality
of the lists individually. To avoid order effects, the sequence of the recommendation lists result-
ing from the different methods was chosen randomly in each user session. The user interface for
the separate assessments was similar to the evaluation screen used in TC1. Subjects stated their
opinions on the relevance of suggestions both on the item level (through the relevance slider
and novelty statements) and for the recommendation list as a whole. After they had rated each
result set, they were asked to rank the lists according to diversity and perceived usefulness (see
Fig. 7.20).

Fig. 7.20: DL - Results, TFlex (page 6)

The similarity configuration with ε set to 0.5 achieved, on average, higher ranks regarding
usefulness than the setup with ε = 0.75.5 Hence, the author selected the results of the flexible

similarity detection method obtained with ε = 0.5 to be compared with exact concept matching
(ε = 1.0). As in the offline simulation runs, concordance between recommendation lists was
measured by the Jaccard index in the backend of the application.
The following section will present the results of the statistical analysis comparing simple on-

the-fly retrieval with the method of flexible similarity detection in the different usage scenarios.

5In total, the approach with the lower similarity threshold outperformed the other one in 23 out of 39 user sessions
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7.4.2 Results of the Evaluation of Flexible Similarity Detection

The main results of the offline simulation runs for the usage scenarios of movie, music and
book RS are depicted in Figures 7.21 and 7.22. Comparisons can be made between exact
concept matching (on-the-fly retrieval), skos:broader expansion and the flexible similarity

detection approach applying the best-performing similarity configuration that was determined
by preliminary simulation runs (Subsect. 7.4.1). It can be seen from these results that the flex-

ible similarity detection method does, in fact, improve accuracy values. This approach almost
always achieved the best precision (prec) and recall (rec) scores, judging from the diagrams.
The sole exception is the precision value in the book domain which indicates a slightly weaker
performance of the method in comparison to the approach of exact concept matchings. One can
further draw the conclusion that a concept expansion on skos:broader links is not partic-
ularly well suited for on-the-fly recommendation scenarios in the multimedia domain since the
diagrams show a weak performance of this approach in the accuracy dimension. The scores
of the skos:broader approach are far lower than the scores of the other two approaches.
Tables 7.13-7.15 give an overview of the evaluation results from the simulation runs in the mul-
timedia domains. Table 7.13 lists mean values and standard deviations. The author conducted
additional Friedmann tests to verify any differences between the methods. Friedmann tests pro-
vide lower statistical power than a repeated measures ANOVA but according to Demšar et al.
nonparametric tests should be applied on cross-validated data [63]. In case of significant dif-
ferences, the ranking of the approaches regarding mean scores is marked accordingly (the best
performing approach in bold, the second best in underlined and the worst approach in dotted
underlined figures).
Similarly to previous statistical tests, α-levels were adjusted with the false discovery rate. In
terms of precision, Friedman tests confirmed significant differences in the movie domain and
the book domain (Tab. 7.14). In the movie domain, additional Wilcoxon pairwise post-hoc tests
(FDR-adjusted) verified the superiority of the flexible similarity detection method over the other
approaches, whereas in the book domain post-hoc tests only confirmed that skos:broader
concept expansion performs worse than the other retrieval strategies (Tab. 7.15).
For the performance metric of recall (rec), Friedman tests confirmed significant differences
in each multimedia domain (Tab. 7.14). Subsequent post-hoc analyses revealed a compara-
bly weaker performance of the skos:broader concept expansion method in comparison to
the other two recommendation approaches. In the domains of movie and book RS, no sig-
nificant differences could be identified between exact concept matching and flexible similarity

calculation. In the music domain, however, the flexible similarity detection method performed
significantly better than the other two approaches in terms of recall (Tab. 7.15).
In summary, these findings indicate a poor performance of the skos:broader concept ex-
pansion method with regard to accuracy values, whereas the other two approaches mostly per-
formed equally well. Additionally, in the movie and music domains significance tests even
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confirmed the superiority of the flexible similarity detection method with regard to either preci-

sion (prec) or recall (rec).
In the novelty dimension almost no meaningful differences were identified between the three
retrieval approaches. Despite the small variations in novelty scores that are depicted in Figure
7.22, Friedman tests confirmed their significance only for the movie domain dataset (Tab. 7.14),
where Wilcoxon post-hoc analyses revealed that skos:broader concept expansion, on av-
erage, produced the most novel recommendations, followed by the approach of exact concept
matching (Tab. 7.15). The flexible similarity detection method, while generating highly precise
results, often recommended rather popular items.
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Fig. 7.21: Results of offline simulation runs regarding accuracy

For diversity scores, Friedman tests confirmed significant differences in each multimedia do-
main (Tab. 7.14). The ranking of the methods in terms of divC scores, as is shown in Figure
7.22, was confirmed by statistical tests in the movie and in the book domain. The increased
divC scores of the concept expansion methods are not surprising, given the fact that they in-
corporate additional item features into the similarity calculation process, thereby diversifying
recommendation lists.
The results of the simulation runs show that the flexible similarity detection method can have a
positive effect on recommendation quality. In some domains, the method proved to be signifi-
cantly better regarding accuracy scores. In other cases, flexible similarity detection did not lead
to any significant improvements of precision or recall in direct comparison to exact concept
matching, but still had a positive impact on diversity values. It needs to be kept in mind, how-
ever, that the diversification of result lists according to divC scores does not necessarily lead to
improvements of perceived usefulness. Concept expansion on skos:broader links seemed
to have had the same positive impact on diversity, but at the same time led to significantly worse
accuracy values. Hence, improvements in the diversity dimension came at the cost of precision

and recall.
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Fig. 7.22: Results of offline simulation runs regarding novelty and diversity

In summary, it can be stated that the flexible similarity detection approach is a viable alter-
native strategy for LOD-enabled retrieval tasks in multimedia usage scenarios. It diversifies
recommendation lists while providing at least the same level of accuracy (RQ11). A concept
expansion on skos:broader links, however, proved to be not as valuable.

Table 7.13: Performance results of the simulation runs (multimedia domain)
Dim. (Metric) Domain broader exact sim

M SD M SD M SD Sig.

Accuracy (rec)
Movie 0.0694 0.0581 0.0866 0.0576 0.0870 0.0638 3

Music 0.0466 0.0445 0.0552 0.0529 0.0588 0.0445 3

Book 0.0334 0.0458 0.0663 0.0750 0.0673 0.0765 3

Accuracy (prec)
Movie 0.0960 0.1084 0.1120 0.1046 0.1269 0.1267 3

Music 0.0552 0.0566 0.0597 0.0587 0.0607 0.0581 7

Book 0.0410 0.0456 0.0854 0.1060 0.0835 0.1021 3

Novelty(nov) Movie 9.9085 1.1475 9.5948 0.8020 9.0511 2.2065 3

Music 11.0932 3.0087 10.7295 3.7810 10.7076 3.7469 7

Book 12.0522 2.1212 11.9175 2.5186 11.8663 2.4642 7

Diversity (divC)
Movie 0.8907 0.0533 0.8550 0.0533 0.8817 0.0526 3

Music 0.8912 0.0450 0.8693 0.1036 0.8902 0.0371 3

Book 0.8843 0.1013 0.8437 0.1329 0.8592 0.1291 3

The claim of the flexible similarity detection method as a helpful alternative retrieval strategy
is further backed up by the fact that the composition of recommendation lists was different be-
tween the approaches throughout the domains. Jaccard indices (JI) were determined for each
method pair. Table 7.16 lists the results of these calculations. The mostly low JI values indi-
cate that concept expansion methods change the composition of recommendation lists thereby
enabling a more comprehensive exploration of the item space through browsing.

Table 7.16 also depicts the mean Jaccard value for the result sets obtained from flexible sim-
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Table 7.14: Significant differences according to Friedman tests (multimedia domain)
Dim. (Metric) Domain Friedman test

Accuracy (rec)
Movie χ(2) = 53.18, p < 0.001, N = 100

Music χ(2) = 25.12, p < 0.01, N = 100

Book χ(2) = 80.14, p < 0.001, N = 100

Accuracy (prec)
Movie χ(2) = 22.59, p < 0.001, N = 100

Book χ(2) = 36.97, p < 0.001, N = 100

Novelty (novpop) Movie χ(2) = 148.34, p < 0.001, N = 96

Diversity (divC)
Movie χ(2) = 115.74, p < 0.001, N = 100

Music χ(2) = 23.38, p < 0.001, N = 94

Book χ(2) = 38.21, p < 0.001, N = 100

Table 7.15: Significant differences between the retrieval strategies as verified by Wilcoxon post-
hoc tests (multimedia domain)

Dimension (Metric) Domain exact vs. broader sim vs. exact sim vs. broader

Accuracy (rec)
Movie Z = −5.55, p < 0.001 - Z = −9.47, p < 0.001

Music Z = −3.19, p < 0.01 Z = −2.63, p < 0.05 Z = −4.46, p < 0.001

Book Z = −6.54, p < 0.001 - Z = −6.72, p < 0.001

Accuracy (prec)
Movie Z = −3.86, p < 0.001 Z = −3.40, p < 0.01 Z = −4.68, p < 0.001

Book Z = −5.76, p < 0.001 - Z = −5.98, p < 0.001

Novelty (novpop) Movie Z = −3.54, p < 0.001 Z = −2.29, p < 0.05 Z = −4.20, p < 0.001

Diversity (divC)
Movie Z = −7.84, p < 0.001 Z = −8.31, p < 0.001 Z = −3.57, p < 0.001

Music Z = −4.08, p < 0.001 Z = −4.68, p < 0.001 -
Book Z = −4.63, p < 0.001 Z = −5.97, p < 0.001 Z = −3.58, p < 0.001

Table 7.16: JI of recommendation lists for Tflex
Domain exact vs. broader sim vs. exact sim vs. broader
Movie 0.39 0.56 0.39
Music 0.00 0.00 0.33
Book 0.26 0.78 0.26

Digital Library - 0.26 -

ilarity detection and on-the-fly retrieval (i.e., exact concept matching) in the DL experiment.
As it was the case for offline simulation runs, the JI turned out to be fairly low in this study as
well. Additionally, Table 7.17 provides an overview of the main findings from the statistical
comparisons between performance scores of exact concept matching and flexible similarity de-

tection from the DL experiment. Pairwise t-tests were conducted for interval-scaled variables
(size, mrs, nv, divC), among whom only content-based diversity scores (divC) were found to be
significantly different (t(38) = −5.43, p < 0.001), with the flexible similarity method achiev-
ing higher diversity values, than exact concept matching. Again, this is not surprising given the
altered retrieval strategy of concept expansion. Wilcoxon pairwise comparisons were applied
to investigate whether one of the approaches was better ranked than the other one in terms of
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diversity (divU - rank-based) and general usefulness (rank-based).6 For each metric, the mean
scores of the better performing approach are either underlined (for non-significant differences)
or shown in bold figures (for significant differences). In case of the rank-based measures, the
median of both performance metrics was lower for exact concept matching, whereas the non-
parametric test did not verify any systematic differences.
Given these findings in the DL experiment, it is concluded that the flexible similarity detection

approach can be an alternative access strategy in this domain when regular results do not offer
any interesting suggestions. Performance scores indicate that users might be able to find addi-
tional recommendations of comparable quality from a topically more diverse result list.
Besides testing the SKOSRec system in flexible similarity detection mode, the author evaluated
the engine concerning its ability to provide useful results, when users formulate specific con-
straints (TC2). The methods and results for this test case will be presented in the following
section.

Table 7.17: Evaluation scores for on-the-fly (exact) vs. flexible similarity detection (DL domain)
Dimension (Metric) exact sim

M SD M SD N
Accuracy (size) 6 - 6 - 39
Accuracy (mrs) 48.99 21.75 47.60 22.68 39
Accuracy (prec) 0.57 0.48 0.51 0.32 39

Novelty (nv) 0.68 0.35 0.71 0.34 32
Diversity (divU - rank-based) 1 - 2 - 39

Diversity (divC) 0.62 0.11 0.76 0.16 39
Usefulness (rank-based) 1 - 2 - 39

7.5 Evaluation of Contraint-based Recommendation

Retrieval

7.5.1 Methods for the Evaluation of Constraint-based
Recommendation Retrieval

Constraints serve as filters on the set of relevant resources before the process of similarity calcu-
lation is started. In this context, TC2 addressed two crucial aspects. The first aspect concerned
the engine’s ability to improve usefulness through filter conditions (RQ12). For these com-
parisons, an appropriate experimental setting had to be applied. The author utilized a within-
subjects design, since a large sample that would have been required for a between-subjects ex-
periment could not be generated within the study series of the thesis. Additionally, customized

6Note that in the case of rank-based measures, lower figures indicate a better performance
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recommendation requests are highly individual. Even small variations in the experimental set-
ting could cause substantial differences in performance evaluations [29]. Hence, to keep the
extent of variations even lower, comparisons between simple on-the-fly and constraint-based

recommendations were based on the same profile for each user. Section 7.3 outlined how users
generated a personalized profile through an AJAX-based autocomplete form in TC1. This pro-
file served as a starting point for filtered retrieval. After participants had completed the first
section of the web experiment (user profile generation, evaluation of results originating from
TC1), the second section started (TC2), in which the web application showed the recently gen-
erated profiles to users and asked them to provide an additional filter condition. Figure 7.23
depicts an example web form for a constraint-based recommendation request in the music do-
main. It comprises the user profile and an additional text field, where users stated their filter
condition. Afterward, the engine applied this filter condition on the set of potential recommen-
dation results before similarity calculation was started. For each usage scenario, different types
of constraints were available. Regarding suitable filter options, the author sought to achieve a
balance between assisting users in finding filter conditions that would adequately represent their
information needs, while keeping the variability among domains as low as possible.

Fig. 7.23: Music - User profile generation, TC2 (page 5)

Therefore, the specificities of each scenario and the availability of the respective data sources
were determined. For instance, for the multimedia domains (movie, music, and books) it was
assumed that users would like to filter recommendations according to the specific genre of the
item. In the music domain, the DBpedia dataset contains this kind of information. It can be re-
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trieved through the property dbo:genre. However, in the movie and book domains, DBpedia
does not provide this data. Many LOD resources which represent books were not assigned a
genre. In the movie domain, a genre property is missing entirely and genre-specific information
can often be only found in the subject categories describing the movie. Hence, in contrast to the
experiment on music RS, participants of the book and movie RS experiments could not filter
their recommendation lists by genre. On the other hand, the property dc:subject could be
applied as a filter in each multimedia domain. Since the subject property often links to many
informative features of multimedia items (e.g., release period, geographic or content informa-
tion), the author decided that this feature type represented a powerful filter dimension. It would
have been possible to enable users to state a specific person (e.g., an actor, director or an author)
as an additional refinement option as well. However, this kind of information is not available
for every multimedia item in the DBpedia dataset [59]. Hence, such a filter option would have
unnecessarily excluded items, due to missing information, which in turn could have led to bi-
ased evaluation results.
The EconStor dataset provides author information for almost all its publications [79]. This fact
as well as the common practice of scientists to (co-)author up to hundreds of papers, led to
the assumption that the author filter was a helpful option besides the subject filter in the DL
experiment. For the domain of scientific publication retrieval, it was also hypothesized that an
option to filter recommendation results according to the series of a paper (e.g., a journal or a
working paper series), would be useful as well. Since series often release papers in a certain
subdomain of a scientific field, they might help to narrow down the search. For this reason,
users could filter recommendations by specifying a series title. In the experiment on travel des-
tination search, participants had fewer options. The web interface had two filters: a subject and
a location-specific filter. The subject filter enabled users to state their preferences about the
characteristics of a location (e.g., being a nature reserve). The location-specific filter, on the
other hand, gave participants the option to specify, where the desired destination should be lo-
cated. However, DBpedia sometimes lists location-specific information in the subject category
as well. Therefore, in the backend of the application, user filters were rewritten into a pattern,
which comprised the union of the two graph patterns representing the filter options. Each sub-
pattern contained the constraint specified by the user. By this means, the query engine could
retrieve all relevant resources from the repository. However, the author decided against joining
the two filter categories in the frontend to avoid any confusion [59]. Table 7.18 lists the filter
options and the SPARQL graph patterns representing them for each web experiment. In addi-
tion to the constraints, the graph patterns also specified the corresponding item types (?item
rdf:type <ITEM_TYPE>) to ensure that only items from the particular usage scenario were
presented. The author omitted these triple patterns in Table 7.18 for brevity reasons.7

7 PREFIX econAuth: <http://linkeddata.econstor.eu/beta/resource/authors>
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Besides simple graph patterns, the table also depicts the expressive versions of the filter con-
straints. As has been previously pointed out, expressive filter requests can be applied to over-
come data quality issues and can reveal hidden information in the data that might be helpful
for the user. Consequently, aside from the general effectiveness of constraint-based retrieval,
another fundamental research question of TC2 concerned the question whether expressive con-

straints can boost recommendation quality even further (RQ13). Hence, apart from executing
a constraint-based workflow with a simple filter upon receiving a participant’s request, the
SKOSRec engine generated suggestions with the help of the expressive filter as well. This sec-
ond procedure, while still applying the same user constraint as the simple execution mode (i.e.,
<CONSTRAINT>) utilized an expressive graph pattern to include additional LOD resources in
the result set. In cases, where Table 7.18 does not show an advanced graph filter the author was
not able to identify appropriate patterns in the corresponding datasets. Whenever there was a
suitable graph pattern available, participants received two separate recommendation lists. One
list contained results based on simple filtering, and the other showed suggestions for the expres-

sive constraint.
However, in the DL experiment, only recommendations resulting from simple filtering were
shown to participants. This approach was chosen to keep the necessary effort in this study at a
reasonable level. Aside from assessing the SKOSRec engine’s performance regarding on-the-fly

(TC1) and constraint-based retrieval (TC2), subjects in the DL experiment had to work on an
additional test case (TFlex). Since participants had carried out time-consuming evaluations by
the time they reached the web form of TC2, the required effort in this section was limited to a
minimum to prevent study withdrawals. Hence, in the constraint-based section, DL users solely
assessed a single recommendation list (i.e., the one resulting from simple filtering). Therefore,
the DL experiment can only partly answer the research question as to whether the application of
constraints can improve recommendation quality. Although this approach imposed some minor
limitations on the generalizability of evaluation results, it was deemed necessary due to time
and economic restrictions. Additionally, the experiments on travel, movie, music and book RS
fully investigated the impact of expressive graph patterns. Thus, domain-specific variations
were still captured in the remaining experiments. Differences between the DL and the other
experiments were also partly leveled out by deferred evaluations on user logs after the DL ex-
periment had already been carried out. In these tests, the author reissued the constraint-based

recommendation requests of DL participants that contained keyword filters (N = 15) with an
expanded graph-based filter against the SKOSRec engine. The expressive version comprised all
ancestors (skos:broader*) as well as related concepts (skos:related) of the originally
specified subject descriptor.8 By these means, it was possible to draw at least some conclusions
about response rates (see Subsect. 7.5.2). However, the author could only carry out these tests
whenever participants had chosen to use the subject filter since EconStor did not contain ex-

8For a graphic representation of this filter example, please have a look at the respective journal publication related
to this research [251].
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pressive patterns for the other filter types.
The author utilized the approach of expanded subject filters in the DBpedia experiments as well
but adapted it slightly to meet the specificities of the dataset. Since the DBpedia category graph
is not a transitive KOS and contains cycles [155], the principles of hierarchical closure could not
be applied in the same manner. Hence, expanding user filters on paths of arbitrary length (i.e., on
a property path with an asterisk [*]) was not an option, as it would have corrupted the retrieval
process. Therefore, property paths were utilized in a predefined range. For instance, in the
travel experiment, subjects were restricted to the second sublevel skos:broader{,2}. Pre-
liminary tests had revealed that a farther-reaching concept expansion disproportionally slowed
down response times, while only considering the immediate children often did not identify all
the relevant geographic entities for a particular region. In the multimedia domains, however,
initial tests had shown that concept expansion on the first sublevel (skos:broader{,1})
sufficed to retrieve most of the relevant LOD resources.
Aside from SKOS-based filter expansion, the author applied further expressive patterns in the
experiments on music and travel RS. In the music domain, the genre filter required the explo-
ration of another concept scheme, which also has a hierarchical structure. In DBpedia, music-
related subgenres are expressed with the property (dbo:musicSubgenre). Nevertheless, as
the category graph, the music genre hierarchy contains cycles as well [245]. Hence, the expres-

sive genre filter was only expanded to immediate children nodes.
In the travel domain, the extra filter retrieved place-related information. In reference to Exam-
ple 2 given in Subsection 3.2.4, the author applied a query rewriting rule to obtain the RDFS
closure of location-specific sub-property relations that are not materialized in DBpedia. The
property dul:hasLocation links to many properties, such as dbo:country, dbo:city
or dbo:state. Therefore, the expressive graph pattern (shown in the fifth row and second
column of Tab. 7.18) broadened the scope of the result set, while still capturing the notion of a
location-based filter.
In the DBpedia experiments, upon execution of constraint-based recommendation requests,
users received two recommendation lists (resulting from simple and expressive filtering ac-
cordingly) in a separate evaluation screen (see Appendix B.2, Figs. B.32-B.34). Participants
evaluated result sets in the same manner as in TC1. Additionally, for each result set, the screen
contained a Likert item asking subjects to give their agreement to the statement: „The filter
has improved the recommendation results of list...“Ȧs in TFlex, the sequence of suggestions
resulting from the different methods was randomly assigned in each user session to avoid order
effects.
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7.5.2 Results of the Evaluation of Constraint-based
Recommendation Retrieval

Constraint-based recommendations were assessed with regard to accuracy, novelty, diversity

and perceived usefulness. Additional attention was paid to participants’ agreements with the
statement: „The filter has improved the recommendation results of the list“ . Figure 7.24 shows
the distribution of domain-wise agreement ratios to this statement. On average, they were fairly
high. Throughout the domains, the vast majority of participants either selected 5 („strongly
agree“), 4 („agree“) or 3 („neutral“). Overall, the results indicate that filtered requests are
a viable recommendation strategy (RQ12). Hence, the filter often had a positive impact on
results.
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Fig. 7.24: Domain-wise agreement ratios with the statement that the filter has improved the
result list

Additionally, the diagram shows that satisfaction was particularly high in the travel domain and
quite low in the DL experiment. The low scores in the DL experiment may have occurred be-
cause overall usefulness scores were lower in this study as well. Thus, the application of a filter
on a result list of mediocre quality did not have a big impact. The author gathered responses
to the question on improvement from both the simple and the expressive filtering approaches.
Hence, they give clues about the general performance of constraint-based retrieval. Since this
section of the study revealed the experimental condition to participants (i.e., application of a fil-
ter), answers to the Likert statement have to be interpreted cautiously. Results may be slightly
biased as participants were able to guess the underlying agenda.
However, these limitations do not exist for comparisons of usefulness assessments for simple

and expressive filters. Participants did not know which approach they were evaluating, since the
web application randomly assigned the list order.
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Figure 7.25 shows the corresponding score values of the baseline approach (on-the-fly retrieval)
in comparison to the constraint-based retrieval methods, i.e. simple constraint-based and ex-

pressive constraint-based (expansion) filtering.
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Fig. 7.25: Participants’ overall satisfaction with constraint-based recommendation retrieval

In almost every domain - except for the movie domain - expressive filtering improved user sat-
isfaction in comparison to a simple filter (RQ13). The diagram does not depict the scores from
the DL experiment, as the study only compared the baseline method with simple constraints.
Table 7.19 lists response rates of the two methods. The rate measures the ratio of non-zero result
sets among all result sets that were generated during user sessions in this section. Throughout
the domains, recommendation lists resulting from expressive filtering achieved higher response
rates.

Table 7.19: Response rates for TC2
Domain Constr.-based (Simple) Constr.-based (Expressive) N

DL 89% 96% 27
Travel 23% 57% 103
Movie 86% 88% 50
Music 72% 75% 53
Book 73% 76% 51

Additionally, offline simulations determined the response rate in the DL experiment. The author
evaluated session logs from TC2 after the DL experiment had already taken place. The post-
experimental examination revealed that with the expanded keyword filter, only 1 participant
received an empty result set as opposed to 3 participants that did not receive any results during
the actual experiment. However, given the small sample, the results from the DL experiment
are not as reliable as the findings from the other domains. Besides, nothing can be said about
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the relevance of the additionally identified recommendations, since they were not available to
participants during the DL experiment. Nevertheless, it is interesting that the findings for this
performance indicator are the same in all usage scenarios. In addition to response rates, user
assessments in the quality dimensions were compared for the different methods.
Table 7.20 depicts the outcome of this analysis. Significantly higher scores are marked in bold
figures. In case statistical tests identified no meaningful variations, the results of the better
performing approach are underlined. Again, α-levels were adjusted with the false discovery
rate (FDR).

Table 7.20: Performance results of constraint-based recommendation retrieval
Dimension (Metric) Domain Constr.-based

(Simple)
Constr.-based
(Expressive)

N

M SD M SD

Accuracy (size)

Travel 1.17 2.70 4.52 4.62 103
Movie 6.72 4.08 7.20 3.92 50
Music 5.96 4.64 6.36 4.51 53
Book 4.59 4.50 5.00 4.51 51

Accuracy (mrs)

Travel 66.73 20.51 65.34 22.36 23
Movie 60.95 22.98 60.29 22.79 43
Music 63.77 16.05 62.96 16.44 34
Book 56.17 18.18 56.81 16.81 37

Novelty (nv)

Travel 0.48 0.41 0.61 0.49 21
Movie 0.44 0.36 0.55 0.80 42
Music 0.55 0.39 0.52 0.37 38
Book 0.77 0.34 0.76 0.33 33

Diversity (divU)

Travel 3 - 3.5 - 24
Movie 4 - 4 - 43
Music 4 - 4 - 38
Book 3 - 3 - 37

Diversity (divC)

Travel 0.68 0.18 0.72 0.21 19
Movie 0.70 0.24 0.73 0.23 41
Music 0.86 0.13 0.87 0.12 34
Book 0.84 0.24 0.95 0.63 29

Usefulness

Travel 3.33 0.93 3.50 0.77 24
Movie 3.32 0.85 3.31 0.86 43
Music 3.55 0.81 3.64 0.78 38
Book 3.39 0.83 3.62 1.21 37

According to mean scores, expressive requests generated more comprehensive recommenda-
tion lists (size). This finding is in line with the increased response rates shown in Table 7.19.
However, subsequently conducted t-tests confirmed significant differences only for the travel
experiment (t(102) = −7.89, p < 0.001). In contrast, precision scores (mrs) were higher in
most of the domains (i.e., travel, movie, music) for simple constraint-based queries. However,
statistical tests did not confirm any systematic differences. The author applied Wilcoxon tests
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Table 7.21: JI of recommendation lists for TC2
Domain Mean Jaccard Index (JI) SD N
Travel 0.57 0.47 25
Movie 0.71 0.38 43
Music 0.82 0.35 37
Book 0.92 0.26 35

for prec scores and the remaining performance metrics because of the small sample sizes re-
sulting from the low response rates of simple filtering.
Regarding novelty, none of the approaches was superior. In the diversity dimension, expressive

constraints generated suggestions that were at least as topically diversified as the results from
simple filtering. Even though no significant differences were identified between the two ap-
proaches, increased mean scores (divU in the travel domain and divC in each domain) indicate
a slight superiority of expanded filter requests in this quality dimension. The same applies to
usefulness scores (mean values were higher in 3 out of 4 domains, when expressive filtering was
applied). However, these statements are not proven because statistical tests were not significant.
In summary, it can be stated that expressive constraints improve response rates and recall, po-
tentially leading to a slight loss in precision scores. It may also be the case that expanded user
constraints diversify as well as increase the usefulness of recommendation lists. However, these
claims are unverified. In contrast, it is safe to say that expressive filtering generates results of at
least the same quality as simple filtering while increasing the number of relevant suggestions.
The few differences may be explained by the high JI scores of recommendation lists (see Tab.
7.21). Throughout the domains, result sets were much alike. Given these similarities and the
increases in list sizes for expressive filters, it is supposed that such a constraint produces an en-
hanced version of the recommendation list resulting from simple filtering. Therefore, expressive

filters should be the default setting in a constraint-based retrieval context.

7.6 Evaluation of Advanced Query Patterns

7.6.1 Methods for the Evaluation of Advanced Query Patterns

Aside from processing user constraints as a prefilter condition on the set of potentially relevant
items, the engine can also apply filters at other stages of the retrieval process. Section 6.6 has
introduced the approaches of preference querying and postfiltering and outlined how different
filter options can be combined to formulate advanced recommendation requests. The exper-
iments evaluated some of these query patterns. The author formulated example requests for
each usage scenario. Thereby, it was attempted to fit the query pattern to common information
needs of users in the particular domain. Unfortunately, for the domain of DL search, it was
not possible to identify any suitable graph patterns since EconStor is still in beta status [79].
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Additionally, EconStor primarily serves as a bibliographic rather than a general reference tool.
Hence, the dataset does not contain comprehensive information on entities other than publi-
cations. Therefore, it was not feasible to evaluate advanced recommendation requests in the
context of scientific publication retrieval.
DBpedia, on the other hand, provides comprehensive information on numerous entity types.
For each DBpedia experiment, the author devoted at least a single survey section to advanced

queries. For TC3 in the travel experiment, participants could choose between three rollup query

patterns. The respective templates were formulated in reference to Example 8 (Sect. 6.6). Users
could obtain recommendations for travel destinations based on POIs, they had visited during
the stay in another destination. Participants were able to choose between the entity types city,
region, and country. Upon entity type selection, the SKOSRec engine generated appropriate
suggestions. The three query options were provided to avoid that participants terminated the
study early, in case they were not able to state a preferred location for a certain entity type.
Figure 7.26 shows the web form from the travel experiment that facilitated the formulation of
advanced rollup requests.

Fig. 7.26: Travel - User profile generation, TC3 (page 7)

When users had selected an entity type, stated their favorite travel destination (e.g., dbr:
<PREF_CITY>) and three POIs (e.g., dbr:<POI_1>), the application generated a SKOS-
Rec query from these parameters. Table 7.22 lists the patterns utilized in the travel experiment.
For each entity type option, the table also depicts a corresponding simple on-the-fly request.
This query was sent to the engine to retrieve baseline recommendations, with which the sugges-
tions resulting from advanced retrieval were compared at a later stage of the experiment. The
simple query only contained the user’s favorite travel destination and the selected entity type
option thus omitting information on the POIs. During the travel domain experiment, the engine
processed both the simple and the advanced query and produced two recommendation lists. As
in the previous parts of the experiment, participants assessed the quality of the result sets, which
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appeared in random order on the screen.

The multimedia experiments contained a section on rollup retrieval (TC3) as well. As the ad-

vanced queries in the travel experiment, the multimedia requests aggregated similarity scores
of sublevel entities through summation, which the engine joined with a postfilter. In addition
to these features, the pattern contained a preference query part. This section identified a set of
preferred items based upon a single user statement. Participants either specified their favorite
director/actor (music domain), music act (music domain) or author (book domain) and received
recommendations based on the features of the works created by the artist (see Q9 in Listing 6.21,
Sect. 6.8). The author applied a slightly different version of the query pattern depicted in Ta-
ble 7.23 in each multimedia experiment. Therefore, the <ENTITY-TYPE> and <PROPERTY>
parameters were set with domain-specific values (e.g., dbo:Book as <ENTITY-TYPE> and
dbo:author as <PROPERTY> in the book domain) (Tab. 7.24). The engine generated rec-
ommendations based on the creative works of the favored artist. Participants also received
suggestions from a simple on-the-fly query, which computed results according to the artist’s
characteristics (Tab. 7.23). In the experiment on music RS, recommendation lists comprised
ten items, while for the studies on movie and book RS result sets only contained three items.
It was assumed that in the latter domains participants would be able to assess the relevance of
recommendations on a reduced set, such that task completion could be sped up. As in the travel
experiment, recommendations from the advanced rollup query were compared with the on-the-

fly query without letting participants know which approach they were assessing. Additionally,
result set positions were randomly assigned on the screen.

After participants of the multimedia experiments had evaluated the results of TC3, they were
guided to the cross-domain section (TC4), while the experiment on travel RS ended with TC3
because no suitable data could be identified to facilitate these kinds of suggestions. In the
multimedia domain, however, the data from DBpedia was sufficient for this retrieval task. The
entity type of the study (i.e., movie, music act or book) defined the source domain based on
which the engine generated suggestions for items from another multimedia target domain. It
was not possible to generate cross-domain recommendations for every potential entity type
pair in the multimedia scenarios. For instance, no suitable graph patterns were identified in
DBpedia to generate suggestions for music items based on preferences for books. However, for
the remaining multimedia entity type pairs (i.e., movie/book, movie/music act), enough data
sources existed to facilitate cross-domain retrieval. Participants formulated the corresponding
queries by stating their favorite item from the source domain. Figure 7.27 depicts the cross-

domain web form of the music experiment.

The web form assisted subjects in formulating a request, which then obtained either book or
movie suggestions based on the favorite music act of the user. Parameters from users were
entered in the placeholders of the query pattern in the backend of the application.
The second column of Table 7.25 shows two example cross-domain queries that tested the
approach in the movie experiment. The other multimedia experiments used similar SKOSRec
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Table 7.22: On-the-fly vs. advanced rollup query patterns in the travel experiment
Entity
Type

Simple SKOSRec query Advanced SKOSRec query

City RECOMMEND ?city TOP 10

PREF dbr:<PREF_CITY>

WHERE { VALUES ?cityType {

yago:Town108665504

yago:City108524735

yago:UrbanArea108675967

dbo:City schema:City }

?city rdf:type ?cityType .}

SELECT ?city

WHERE { VALUES cityType {

yago:Town108665504

yago:City108524735

yago:UrbanArea108675967

dbo:City schema:City }

?location rdfs:subPropertyOf

dul:hasLocation .

?poi ?location ?city .

?city rdf:type ?cityType .

LIMIT 10

AGG dbr:<PREF_CITY> ?city SUM

RECOMMEND ?poi TOP 1000

PREF

dbr:<POI_1>

dbr:<POI_2>

dbr:<POI_3>

Region RECOMMEND ?region TOP 10

PREF dbr:<PREF_REGION>

WHERE { VALUES ?regionType {

yago:Region108630039

yago:Region108630985}

?region rdf:type ?regionType .}

SELECT ?region

WHERE { VALUES ?regionType {

yago:Region108630039

yago:Region108630985}

?location rdfs:subPropertyOf

dul:hasLocation .

?poi ?location ?region .

?region rdf:type ?regionType .

LIMIT 10

AGG dbr:<PREF_REGION> ?region SUM

RECOMMEND ?poi TOP 1000

PREF

dbr:<POI_1>

dbr:<POI_2>

dbr:<POI_3>

Country RECOMMEND ?country TOP 10

PREF dbr:<PREF_COUNTRY>

WHERE {

?country dbo:Country .}

SELECT ?country

WHERE {

?location rdfs:subPropertyOf

dul:hasLocation .

?poi ?location ?country .

?country rdf:type ?countryType .

LIMIT 10

AGG dbr:<PREF_COUNTRY> ?country SUM

RECOMMEND ?poi TOP 1000

PREF

dbr:<POI_1>

dbr:<POI_2>

dbr:<POI_3>
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Table 7.23: On-the-fly vs. advanced rollup query patterns in the multimedia experiments
Simple SKOSRec query Advanced SKOSRec query
RECOMMEND ?recommendation TOP 3

PREF dbr:<PREF_ARTIST>

WHERE {

?recommendation rdf:type <ENTITY_TYPE>}

SELECT ?recommendation

WHERE {

?mediaItem <PROPERTY> ?recommendation. }

LIMIT 3

AGG dbr:<PREF_ARTIST>

?recommendation SUM

RECOMMEND ?mediaItem TOP 100

PREF [ ?prefItem

WHERE {

?prefItem <PROPERTY> dbr:<PREF_ARTIST> }]

Table 7.24: Parameter for advanced rollup query patterns in the multimedia experiments
Exp. Option <ENTITY_TYPE> <PROPERTY>

Movie
Director yago:FilmDirector110088200 dbo:director

Actor yago:Actor109765278 dbo:starring

Music N.A. schema:MusicGroup dbo:artist

Book N.A. dbo:author dbo:author

Fig. 7.27: Music - User profile generation, TC4 (page 9)

patterns which only switched entity types between subjects and objects of the triple. The author
formulated the query templates in such a way that the query engine would match any properties
or graph patterns that could potentially connect two items from the specified target and source
domains. For instance, such matchings can occur when a user states his favorite movie that is
written by a particular author. In case the same author has also written some books, they might
be of interest to the user as well. Another example is when a consumer has declared a preference
for a movie that links to the corresponding soundtrack. It might well be the case that the user
likes the soundtrack and the music acts that were involved in creating it just as much as he/she
likes the movie. The practice to distinguish homonymous LOD resources through the property
dbo:wikiPageDisambiguates is another interesting linking pattern from DBpedia to
be exploited for cross-domain requests since it connects similar entities (i.e., the book edition
of a certain movie). Table 7.25 also lists SPARQL queries that were applied as the baseline
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method in TC4. Both the SPARQL and SKOSRec queries are quite similar. However, while the
SPARQL query retrieves target resources based on the connections to the favored LOD resource
from the source domain, the SKOSRec query explores the same links for items that are similar
to the preferred item. Hence, while the SPARQL query only matches cross-domain relations
for a single LOD resource, the SKOSRec request expands the search space by considering links
from more than one item. The cross-domain templates were formulated as aggregation-based
query patterns. Unlike the previously presented rollup queries where sublevel entities are part
of a larger entity, items in cross-domain retrieval are positioned at the same hierarchy level.
Therefore, the maximum-based recommendation approach was picked for this task. Hence, the
engine determined the final ranking score according to the most similar item from the source
domain with connections to the target domain. As in the previous test cases, TC4 ended with an
evaluation screen where users assessed the SPARQL-based as well as the SKOSRec suggestions
in random order without knowing which recommendation list belonged to which method.
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Table 7.26: Response Rates for TC3
Domain Regular Rollup N
Travel 99% 100% 103
Movie 96% 92% 50
Music 100% 100% 53
Book 96% 100% 51

7.6.2 Results of the Evaluation of Advanced Query Patterns

This subsection presents user assessments of advanced recommendation requests. At first, score
values for TC3 are shown. In this test case, the SKOSRec engine almost always generated non-
empty recommendation lists (see Tab. 7.26). In the travel and the book experiment, the response
rate was higher for rollup queries, whereas in the movie domain, the engine more often provided
recommendations for regular requests. However, these differences are only marginal and do not
indicate a clear superiority of one method.

Fig. 7.28 depicts participants’ general agreement to positive Likert statements concerning the
perceived usefulness of the approaches in TC3. The diagram shows similar results for on-the-fly

(i.e., regular) and advanced requests (i.e., rollup queries).
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Travel Movie Music Book
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Method
Regular
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Perceived Usefulness (Regular vs. Roll−up Queries)

Fig. 7.28: Participants’ overall satisfaction with on-the-fly (regular) and rollup requests

On average, satisfaction scores reached levels, which lay slightly above neutral agreement. A
subsequent t-test confirmed no significant differences between the two methods. In fact, the
approach with the best usefulness score was different in each experiment (see Tab. 7.27). While
mean values were higher for regular requests in the studies on travel and music RS, advanced

queries achieved better results in the movie and book experiments. Among the performance
metrics, content-based diversity (divC) was the only one with systematic differences. Here,
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scores went up for advanced retrieval patterns in the travel (t(98) = −5.50, p < 0.001), the
music (t(52) = −4.51, p < 0.001) and the book domain (t(47) = −4.90, p < 0.001) (Tab.
7.27).

Table 7.27: Performance results of on-the-fly and rollup recommendation retrieval
Dimension (Metric) Domain Regular Rollup N

M SD M SD

Accuracy (size)

Travel 9.90 0.99 9.42 2.07 103
Movie 2.88 0.59 2.76 0.82 50
Music 10.00 0.00 10.00 0.00 53
Book 2.88 0.59 3.00 0.00 51

Accuracy (mrs)

Travel 48.21 24.98 44.93 25.59 102
Movie 54.58 22.88 56.69 25.42 44
Music 53.95 18.31 58.24 16.19 52
Book 51.53 23.90 49.25 22.30 49

Novelty (nv)

Travel 0.43 0.39 0.38 0.40 98
Movie 0.35 0.38 0.28 0.41 41
Music 0.49 0.36 0.46 0.39 50
Book 0.61 0.42 0.62 0.44 47

Diversity (divU)

Travel 3.5 - 3 - 100
Movie 4 - 3 - 43
Music 4 - 3 - 50
Book 3 - 3 - 48

Diversity (divC)

Travel 0.79 0.17 0.89 0.13 99
Movie 0.75 0.20 0.66 0.27 44
Music 0.83 0.17 0.93 0.07 53
Book 0.74 0.27 0.93 0.06 48

Usefulness

Travel 3.36 0.77 3.22 0.74 101
Movie 3.20 0.92 3.26 0.94 44
Music 3.45 0.84 3.44 0.85 51
Book 2.95 0.87 3.03 0.96 48

Interestingly, users seemed to have perceived recommendations that were based on on-the-fly

requests more diverse (divU ) and new (nv) than suggestions resulting from advanced queries.
Even though none of the mean/median scores in these performance dimensions was better ac-
cording to t-tests, there may be minor effects that were not significant, due to the small samples.
In the novelty (nv) and user-based diversity (divU ) category, 3 out of 4 mean/median scores
were higher. The results indicate an interesting contradiction: The advanced retrieval pattern

was set up to improve the exploration of the knowledge graph. However, users’ perceptions
might have been slightly different. While the regular method generated unexpected sugges-
tions, advanced queries produced recommendations that were more in line with the profile.
Nevertheless, in spite of significantly improved content-based diversity scores (divC), no con-
clusion can be drawn in favor of one method or the other, given the ambiguous results and the
low to zero correlation between divC and perceived usefulness.
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It is hypothesized that both approaches produce recommendation lists of similar quality and
that they can provide benefits to potential consumers. It depends on the underlying informa-
tion need, the respective domain and the available data in the LOD repository, whether or not
a particular approach is better suited for a given retrieval task, since neither approach outper-
formed the other one. This conclusion is especially impressive, given the mean Jaccard scores
for recommendation lists resulting from on-the-fly and rollup retrieval (see Tab. 7.28).

Table 7.28: JI of recommendation lists for TC3
Domain Mean Jaccard Index (JI) SD N
Travel 0.07 0.11 101
Movie 0.03 0.07 44
Music 0.02 0.05 53
Book 0.02 0.06 50

The mean score never exceeded 0.1 throughout the domains which indicates a low concordance
between result sets. It is remarkable that participants perceived the recommendations as equally
good, given the high dissimilarity of the lists. Thus, advanced queries have an added-value,
as they provide further relevant results. They can help to explore LOD repositories in different
ways than a regular retrieval approach. Therefore, it is worthwhile to offer rollup query patterns

as an alternative retrieval strategy when the regular approach has not produced any helpful
recommendations.
User assessments of TC4 (cross-domain recommendations) were also evaluated. Table 7.29
lists the response rates for the SPARQL- and the SKOSRec-based cross-domain requests. The
results show that the SKOSRec query had a higher success rate of generating non-zero result sets
throughout the multimedia domains. Participants almost always received a recommendation for
this query type, whereas in case a regular SPARQL query was executed, they often did not
receive a single suggestion at all.

Table 7.29: Response rates for TC4
Domain Regular (SPARQL) Cross-Domain N
Movie 32% 96% 50
Music 62% 98% 53
Book 53% 100% 51

Figure 7.29 gives an overview of participants’ general satisfaction with cross-domain recom-

mendations as opposed to regular suggestions resulting from a SPARQL request. The diagram
indicates a tendency of participants to prefer recommendations from the SPARQL query. How-
ever, a Wilcoxon test did not confirm this assumption.
Additionally, the author applied non-parametric tests for the performance metrics mrs, nv,
divU , divC, and perceived usefulness, due to the low response rates of the SPARQL-based
approach, which led to a low number of comparable data points accordingly. Overall the
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Fig. 7.29: Participants’ overall satisfaction with on-the-fly (regular) and cross-domain requests

FDR-adjusted pairwise Wilcoxon tests detected no significant differences, except for user-
based diversity scores (divU ) in the movie (Z = −2.69, p < 0.05) and the book domain
(Z = −2.56, p < 0.05). The results for the content-based diversity (divC) metric seem to
point in the same direction because of the high mean values for cross-domain queries in each
usage scenario. However, the significance of these results was not verified. Precision scores
(mrs), on the other hand, indicate a better performance of regular SPARQL queries, but the
within-subjects test did not confirm this assumption statistically (see Tab. 7.30).
However, the most important finding of the analysis is that cross-domain queries generated sig-
nificantly larger lists throughout the domains. (movie: t(49) = −17.92, p < 0.001, music:
t(52) = −25.73, p < 0.001, book: t(50) = −12.75, p < 0.001). Figure 7.30 illustrates this
graphically. In the case of a successfully answered SPARQL query, the result set almost always
contained only a few items due to data sparsity. In contrast to that, the SKOSRec engine was
not only able to generate recommendations for practically every cross-domain request, it also
mostly provided the required number of 10 recommendations. The verified increase in result
set size is a remarkable outcome, given the fact that no significant differences were identified
between the two approaches regarding perceived usefulness. Therefore, it is reasonable to as-
sume that the capability of the SKOSRec engine to flexibly switch between processing steps of
similarity calculation and graph pattern matching facilitates an improved exploration of LOD
repositories. Table 7.31 also shows that often the items in the two sets often did not match,
as is indicated by low Jaccard indices. This finding further demonstrates that the execution of
an additional step of similarity calculation can help to retrieve other relevant items. Regarding
practical implications, these results suggest that the two approaches could be combined into a
single SKOSRec query pattern to achieve the best outcome.
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Table 7.30: Performance results of SPARQL- and SKOSRec-based cross-domain queries
Dimension (Metric) Domain Regular

(SPARQL)
Cross-
Domain

N

M SD M SD

Accuracy (size)
Movie 0.82 2.09 8.66 2.73 50
Music 0.89 1.59 9.30 2.03 53
Book 2.90 3.98 10.00 0.00 51

Accuracy (mrs)
Movie 67.41 27.62 53.65 14.71 16
Music 62.36 31.76 48.32 22.49 20
Book 66.42 21.28 55.59 16.84 27

Novelty (nv)
Movie 0.59 0.49 0.41 0.34 16
Music 0.72 0.44 0.59 0.40 19
Book 0.54 0.41 0.63 0.30 27

Diversity (divU)
Movie 3 - 4 - 16
Music 3 - 3 - 20
Book 3 - 4 - 27

Diversity (divC)
Movie (0.64) (0.35) (0.99) (0.02) (6)
Music (0.90) (0.13) (0.98) (0.03) (10)
Book (0.84) (0.12) (0.87) (0.1) (8)

Usefulness
Movie 3.57 0.83 3.35 1.57 15
Music 3.53 1.17 3.11 0.98 20
Book 3.41 1.04 3.41 0.94 27
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Fig. 7.30: Mean recommendation list sizes of SPARQL (regular) and SKOSRec cross-domain
queries

In addition to performance comparisons between cross-domain and SPARQL requests, the au-
thor investigated how users perceived cross-domain queries in comparison to simple on-the-fly

recommendations. For this purpose, the author conducted between-subjects t-tests comparing
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Table 7.31: JI of recommendation lists for TC4
Domain Mean Jaccard Index (JI) SD N
Movie 0.03 0.07 44
Music 0.01 0.02 21
Book 0.16 0.27 33

scores of the first test case (TC1) with evaluation data for cross-domain queries (TC4). Table
7.32 shows the outcome of this analysis.

Table 7.32: Performance results of on-the-fly (regular) and SKOSRec cross-domain queries
Dimension (Metric) Domain Regular Cross-

Domain
M SD N M SD N

Accuracy (size)
Movie 10.00 0.00 50 8.66 2.73 50
Music 10.00 0.00 53 9.30 2.03 53
Book 9.80 1.40 51 10.00 0.00 51

Accuracy (mrs)
Movie 62.25 19.15 50 51.53 15.99 48
Music 55.70 21.13 53 44.94 19.67 52
Book 57.47 15.55 50 49.03 21.14 51

Novelty (nv)
Movie 0.36 0.31 50 0.54 0.36 43
Music 0.36 0.39 52 0.58 0.42 50
Book 0.61 0.29 47 0.64 0.32 51

Diversity (divU)
Movie 3 - 50 4 - 47
Music 3 - 53 4 - 52
Book 3 - 50 4 - 51

Diversity (divC)
Movie 0.84 0.12 50 0.98 0.03 47
Music 0.86 0.10 53 0.99 0.02 51
Book 0.92 0.08 50 0.93 0.10 23

Usefulness
Movie 3.55 0.73 50 3.33 1.11 48
Music 3.18 0.85 53 3.13 0.94 52
Book 3.43 0.81 50 3.10 1.11 51

Regarding perceived usefulness, the tests confirmed no significant differences, despite the in-
creased mean scores for on-the-fly queries in each experiment. The usefulness scores for cross-

domain queries, on the other hand, have a higher standard deviation, presumably because this
kind of query pattern is dependent upon the data quality of the items and their interconnections.
Nevertheless, these assumptions are only speculative and cannot be drawn conclusively from
the user evaluations.
What is, however, indisputable is that both types of retrieval requests showed differences in
the performance dimensions accuracy, novelty and diversity. Between-subjects t-tests revealed
that on-the-fly requests achieved higher precision (mrs) and recall (size) scores, whereas cross-

domain queries were more likely to produce surprising (nv) and topically diverse (divC) recom-
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mendation lists.9 The significant differences occurred both in the movie and the music domain
and are marked in bold figures accordingly (see Tab. 7.32). For the performance metrics of
recommendation list size, (movie: t(49) = 3.47, p < 0.01, music: t(52) = 2.5, p < 0.01),
mrs (movie: t(96) = 3.00, p < 0.01, music: t(103) = 2.70, p < 0.01) and novelty (movie:
t(91) = −2.49, p < 0.05, music: t(100) = −2.67, p < 0.05) the effects were fairly small and
quite large for divC (movie: t(55) = −8.05, p < 0.001, music: t(55) = −8.87, p < 0.001)
scores.
In summary, it can be concluded that cross-domain queries can provide more surprising and
diverse recommendations than regular on-the-fly requests and might therefore enhance existing
content-based strategies with an additional interesting retrieval approach.

9A non-parametric Mann-Whitney test was applied to detect differences in user-based diversity scores (divU ).
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8 Conclusion

This chapter presents the main findings of the dissertation project. Section 8.1 summarizes the
capabilities of the SKOSRecommender as well as the primary results of the requirement-specific
evaluation. Section 8.2 discusses the limitations of the chosen experimental methods, outlines
future research directions and provides practical recommendations for real-world applications.

8.1 Summary

The assumption that LOD resources are currently insufficiently used by existing recommender
systems is at the core of this thesis. Starting with the characteristic features of RDF data,
the author identified the strengths and challenges of these data sources for content-based RS.
The LOD cloud contains many collections of public interest, which often hold extensive and
timely information on numerous real-world objects. On the other hand, LOD usage has many
challenges. For instance, data sources and data models are heterogeneous, since the data web
contains many different vocabularies. Other problems concern the quantity and distribution
of the data. Based on the characteristics of the LOD cloud, a requirements specification for
a LOD-enabled recommendation engine was defined. The purpose of the specification was to
comprehensively reflect the strengths and weaknesses of RDF data for recommendation tasks.
A subsequent literature survey compared these specifications with the features of existing non-
Linked Data and Linked Data retrieval engines. The review showed that there does not exist an
RS or IR system that thoroughly reflects the characteristics of the LOD cloud.
The SKOSRecommender engine, which was developed in the course of this thesis, implements
the required system features. It integrates existing CB recommendation techniques with query-
based retrieval to improve usage of LOD resources for personalized search. In this context, the
capability of on-the-fly processing plays a significant role, since it enables flexible combinations
of graph-based query parts with IR methods. With this feature, the engine can feed results from
previous query stages into subsequent processing steps of the recommendation workflow. By
these means, it becomes possible to identify existing semantic connections and graph patterns
as well as implicit information from LOD repositories.
An optimized approach of on-the-fly retrieval was proposed and tested to handle the weak-
nesses of LOD processing regarding data quantity accordingly. Another feature that addresses
a challenge of the LOD cloud is the usage of SKOS annotations and vocabularies for similarity
calculation. Since many public data repositories apply SKOS vocabularies, a generic approach
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to similarity calculation can make use of these annotations for various LOD datasets thereby at
least partially circumventing the problem of data heterogeneity. Many SKOS vocabularies state
mapping relations to other thesauri on the LOD cloud. They can be taken advantage of to gen-
erate cross-repository recommendations. Thus, the application of SKOS vocabularies addresses
the issue of data distribution of the LOD cloud as well.
While being primarily applied to handle weaknesses of LOD retrieval, interlinked knowledge
organization systems can be utilized to facilitate flexible adaptations of similarity calculation
by incorporating semantically related concepts into the retrieval process. The flexible similar-

ity detection method of this thesis extends existing approaches of concept expansion by taking
inter-concept similarities into account.
In addition to features that primarily address potentials and challenges of LOD-enabled recom-
mendations, the SKOSRec system works well with the LOD technology stack. For instance,
the engine provides SPARQL-like query options and an interface to SPARQL endpoints. The
ability of the system to issue SPARQL-like queries has been realized by the definition of the
SKOSRec query syntax and the implementation of a corresponding SKOSRec parser and com-
piler. By using the SKOSRec query language, it is possible to apply, adapt and combine the
developed system features of flexible similarity detection and on-the-fly, constraint-based or
cross-repository retrieval thus facilitating new and advanced recommendation requests. The
query syntax contains graph-based elements as well as parts that trigger the calculation of item
similarities. The additional advantage of the SKOSRec query processor is that it can seamlessly
retrieve data from SPARQL endpoints over HTTP requests, which allows obtaining recommen-
dations from remote LOD repositories. The prerequisite for this is that data collections contain
SKOS annotations.
In addition to the successful prototypical implementation of system features from the require-
ments specification, it was also important to investigate whether the new query options provide
added value to conventional content-based methods of LOD retrieval. After all, the central hy-
pothesis of this work claims that current LDRS have so far made too little use of the strengths of
the LOD cloud for recommendation tasks. For this purpose, the author carried out evaluations
for representative usage scenarios (i.e., DL, travel, movie, music and book RS) and LOD repos-
itories (i.e., EconStor and DBpedia) to determine whether SKOSRec suggestions can compete
with, if not outperform, recommendations from conventional methods.
The quantitative performance was measured by throughput rates and response times. Offline
simulation runs showed that the optimized retrieval approach significantly reduced the work-
load (i.e., the number of records that need to be processed) thus achieving scalability and linear
growth of response times for larger record sizes. In the regular execution mode of on-the-fly

retrieval, similarity calculation had an average duration of a few seconds (or a few hundreds
of milliseconds for smaller datasets), while the approach of fast on-the-fly retrieval consider-
ably reduced processing periods for high throughput rates. On the other hand, with small data
collections or low throughput rates (e.g., in the domain of DL and travel destination search),
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response times were slightly increased. In these cases, the approach caused too much overhead.
Hence, it should only be applied when the system accesses large collections and therefore needs
to provide sufficient scalability.
In addition to quantitative performance, recommendation quality was evaluated in online and
offline experiments. Common metrics assessed RS quality regarding algorithmic performance.
In particular, the following quality dimensions were measured: accuracy, novelty and diversity.
The online experiments also gathered user opinions on the perceived usefulness of suggestions.
By carrying out experiments over several datasets measuring different dimensions, it was in-
tended to capture the engine’s actual performance for the various query types and retrieval
methods as accurately as possible.
In this context, the experiments tested whether the SKOSRec engine in its basic configuration
of content-based on-the-fly retrieval is capable of generating suggestions of reasonable quality.
Since this method closely resembles approaches of existing LDRS, the user evaluations for these
recommendations served as baseline data. The assessments of the baseline method were mostly
positive. In the DBpedia domains, on average, the majority of users confirmed that the engine
provides useful suggestions. Evaluations in the DL domain, however, pointed in the opposite
direction. Here, users tended to reject positive statements regarding baseline recommendations.
In addition to the aspect of general recommendation quality, the online experiments also eval-
uated the influence of the metrics in the quality dimensions of accuracy, novelty and diversity

on the perceived usefulness construct. The results confirmed findings from previous research,
which emphasize accuracy as the most important predictor of overall user satisfaction. The re-
maining quality aspects (diversity and novelty), though not entirely irrelevant, are of secondary
importance. They only had a marginal impact on perceived usefulness. The weighting of the in-
dividual metrics influenced the interpretation of subsequent evaluation results concerning more
advanced retrieval techniques.
For instance, it was applied to assess the performance of the flexible similarity detection method,
which was mostly tested in offline experiments. In the DBpedia domains, the simulation runs
revealed that the flexible similarity detection method significantly improves accuracy, while
still achieving good diversity and novelty scores. At the same time, the two methods used for
comparison (concept expansion on skos:broader links and exact concept matching) either
showed significant strengths in terms of accuracy with strong declines in novelty and diver-

sity (exact concept matching) or had good novelty and diversity scores, but performed poorly
in terms of accuracy. It can be assumed that, on average, the flexible similarity detection ap-
proach achieves better results than a concept expansion on skos:broader links, since the un-
weighted consideration of similar SKOS concepts leads to noisy data, due to non-normalization
of annotations. In this context, however, it is also important to note that the approach was not
equally successful in the domain of DL search. Hence, it depends on the domain, the applied
SKOS vocabulary and an adequate parameter tuning whether the method works. Once a suitable
configuration is found, the flexible similarity detection approach is a veritable retrieval option.
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Subsequent online experiments tested the approaches of constraint-based and advanced rec-

ommendation queries. One question was whether filtering improves the quality of suggestions.
While a faceted search option is a common practice in IR systems, it is not as widespread in RS.
Therefore, it was interesting to find out, if users perceived it as helpful. The majority of partici-
pants commented positively on this option throughout the usage scenarios. Therefore, it can be
assumed that the approach of prefiltered constraint-based retrieval is a viable alternative recom-
mendation strategy when previous attempts have yielded too many irrelevant items. However, it
was even more important to find out to what extent the graph structures of the LOD cloud can be
used for improved constraint-based retrieval. While simple attribute-level filters can be realized
with a flat table structure, expressive query patterns require semantic network information. For
this purpose, the author formulated graph-based filter patterns for each DBpedia-based usage
scenario. These filter patterns were assumed to take good advantage of the available knowledge
sources. It could be shown that an expressive user filter increases response rates. Throughout
the domains, the quota of responses with a non-empty result set compared to all responses was
higher when an expressive filter was applied. This difference was most evident in the travel
domain. Additionally, result set sizes (which are assumed indicators of recall in the accuracy

dimension) were significantly higher with expressive filter options. For all other performance
metrics (e.g., precision, novelty or diversity) these differences were not quite as clear. Although
for some of the remaining metrics, mean scores were slightly increased in the expressive fil-

tering mode, these differences were not significant. Hence, an overall superiority of expanded
constraints cannot be ascribed. However, it can be assumed that expressive filtering achieves a
competitive level of quality in the remaining performance dimensions. In summary, it can be
stated that graph-based query constraints might help to increase response rates and recommen-
dation list sizes, while still providing the same level of quality as simple filters.
The same result of improved recall values was achieved for cross-domain queries. These kinds
of requests are examples for advanced retrieval patterns that combine graph pattern matching
with similarity calculation. In all three multimedia domains, both the response rates and the
recall values were significantly increased when a SKOSRec cross-domain instead of a regu-
lar SPARQL request was issued. Likewise, for two domains, the user-based diversity ratings
showed a significant improvement. This is a result that might be at least partly attributed to the
enlargement of recommendation lists. For all other metrics, there were neither significant im-
provements nor declines in performance. Hence, the engine’s novel recommendation approach
might help to increase recall values while maintaining the same level of quality when applied
in the context of cross-domain queries.
These findings suggest that the fusion of item similarity computation and graph-based retrieval
is indeed compelling and can help to optimize exploitation of existing knowledge sources from
the LOD cloud.
It was also evaluated whether SKOSRec cross-domain recommendations can compete with sug-
gestions that were generated through regular on-the-fly retrieval. The statistical tests revealed
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that the regular approach provides more accurate recommendations, whereas cross-domain re-

quests can help to surprise users. Once users are interested in receiving suggestions from a dif-
ferent domain than their preferred items, they will be presented with diverse recommendation
lists containing more novel items than a regular solution set resulting from on-the-fly retrieval.
For the group of advanced queries, it was also evaluated, whether rollup patterns can improve
results. There were only marginal variations between quality levels of on-the-fly and rollup

recommendations. Significant differences were only found for content-based diversity scores
(divC), which favored rollup over regular requests. However, when interpreting the results, one
has to be careful to conclude that this query type improves quality because baseline analyses had
not found any correlations between divC scores and perceived usefulness. Additionally, user-
based diversity scores (divU ) were not significantly higher for the advanced queries. Although
rollup patterns generated diversified recommendation lists, they did not change user perceptions
in this regard. Moreover, in all other performance dimensions, no significant differences were
identified either. Throughout the domains and except for divC scores, sometimes the one and
sometimes the other approach achieved higher mean scores. Since these fluctuations were not
significant, it might depend on the specific recommendation request whether one method is bet-
ter than the other. Give these findings, it is hypothesized that rollup patterns are an interesting
alternative retrieval strategy.
In summary, it can be stated that the SKOSRec engine addresses the challenges of LOD pro-
cessing while at the same time taking advantage of the characteristics of LOD knowledge
sources. Despite the fact that the SKOSRec system successfully implements the specified
system features, offline and online experiments have revealed that new recommendation ap-
proaches mostly fulfill the qualitative criteria of the requirements specification. The evaluations
have shown that the SKOSRec system can often generate relevant and useful suggestions when
novel recommendation approaches are applied. In many cases, the application of expressive

or advanced query patterns (i.e., in the context of constraint-based or cross-domain retrieval)
helps to improve recall values, while still providing the same level of quality in the remaining
performance dimensions. Advanced requests can be used to generate new or diversified recom-
mendation lists in case users are not satisfied with the results of regular requests (i.e., rollup

or cross-domain vs. on-the-fly queries). The synopsis in Table 8.1 relates each requirement to
the respective system feature of the SKOSRec prototype to demonstrate the system’s overall
capabilities.

From this summary, it can be seen that the system meets almost all of the objectives. Qualitative
features that only partly meet the requirements specification (i.e., where superiority over regular
LOD retrieval did not reach significant levels across the majority of domains) are shown in
parentheses. In these cases, it depends on the usage scenario, whether the novel approach can
provide improved result lists. Despite the fact that no general statements are possible for these
requirements, the new recommendation approaches extend existing methods and at least provide
the option of an alternative search strategy when conventional methods have failed.
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Table 8.1: Functional & Qualitative System Features
Requirement Fulfillment Features of the SKOSRec system
RQ1 3 On-the-fly similarity calculation from LOD repos-

itories.
RQ2 3 Similarity calculation through SKOS vocabularies

and DCMI annotations.
RQ3 3 Flexible similarity calculation through SKOS-

enabled concept expansion and precomputation of
concept-to-concept similarity values.

RQ4 3 Integration of (remote) SPARQL endpoints.
RQ5 3 SKOSRec query language (incl. SPARQL syntax

elements and language processing units).
RQ6 3 Ability of the SKOSRec query language to formu-

late advanced recommendation requests.
RQ7 3 Ability of the SKOSRec query language to formu-

late cross-repository recommendation requests.
RQ8 3 Ability of the recommendation engine to process

cross-repository recommendation requests.
RQ9 3 Ability of the recommendation engine to provide

quick responses to single-item on-the-fly recom-
mendation requests.

RQ10 3 Ability of the recommendation engine to handle
large datasets well.

RQ11 3 Ability of the recommendation engine to improve
recommendation quality through flexible similar-
ity detection methods.

RQ12 3 Ability of the recommendation engine to improve
recommendation quality through constraints.

RQ13 (3) Ability of the recommendation engine to im-
prove constraint-based recommendation retrieval
through expressive SPARQL-like graph con-
straints.

RQ14 (3) Ability of the recommendation engine to improve
recommendation quality through application of ad-
vanced query patterns.

8.2 Discussion

In addition to the positive outcome of the research project, the limitations of the results also
need to be acknowledged. This refers to the generalizability of the study findings as well as to
the technical restrictions of the SKOSRec system. Regarding the validity of the results from
the experiments, practitioners should consider the following aspects: Even though the evalua-
tion strictly followed established standards from RS research - due to limited time and financial
resources - some trade-offs had to be made. For instance, it is arguable whether the number
of usage scenarios can provide a representative overview of the range of typical recommenda-
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tion tasks as well as over existing domains in the LOD cloud. Naturally, information needs are
much more diverse than the examined recommendation tasks of this thesis. In theory, there ex-
ists a wide variety of potential query patterns and numerous additional usage scenarios, based
on which the SKOSRec engine could have been tested. The selection of suitable application
scenarios focused on the prevalence of common recommendation domains from industry and
practice as well as on the existence of corresponding and suitable LOD collections. Future
research will have to examine the effectiveness of the presented retrieval approaches for other
domains and datasets accordingly. It also needs to be taken into account that the author did
not test the novel recommendation strategies in each specified usage scenario. Due to missing
graph patterns or time restrictions, some methods (e.g., flexible similarity detection or advanced

query patterns) could not be evaluated in every domain or experiment.
During the online studies, it would have also been desirable to let users explain their opinions
on recommendation quality in greater detail. For instance, a free comment field below result
lists might have grasped users’ perceptions more comprehensively. Additionally, reversed state-
ments could have increased the reliability of the perceived usefulness construct. However, due
to the assumed limited attention span of participants, these items were omitted. Reasonable
reliability levels suggest that this was a justified decision.
Aside from the limitations with regard to the evaluation, it is a strength of the developed ap-
proaches that they facilitate combinations of graph-based and similarity-based retrieval at dif-
ferent stages of the recommendation workflow. This feature extends general search capabilities
for semantic networks. It requires future research to investigate whether, in addition to SKOS,
further RDF vocabularies can be used for item-to-item similarity computation to increase the
range of potential usage scenarios as well as to extend recommendation approaches to be ap-
plicable to general search tasks. It this context, it also needs to be determined whether the
representation of the user profile in the SKOSRec query language can be substituted with free-
text expressions to enable search-like functionalities. LOD researchers have already developed
engines that can process natural language queries over RDF data [143, 241, 263]. It will have
to be investigated how the SKOSRec engine profitably fits into this landscape of existing NLP
tools for RDF retrieval.
Another open research question concerns the aspect of interfaces to other applications. In its
standard configuration, the system is not an end-user retrieval engine, but a backend applica-
tion with which an administrator who has domain knowledge (e.g. of RDF vocabularies and
data models of a particular usage scenario) creates the respective query patterns. Although the
websites of the online experiments represent possible implementations of suitable end-user ap-
plications for the SKOSRec engine, there are still many other possibilities and extensions to
design such a user interface (UI). For instance, the selection of LOD items for the profile was
made possible by storing the data in an index that could then be accessed and searched before
issuing a recommendation query. However, this runs against the idea of ad-hoc retrieval. Future
research will have to determine whether it is feasible to generate an on-the-fly mapping from
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items (e.g., in the product catalog of a commercial application) to the respective LOD resources.
Even if it is not yet clear which UI components can make the best possible use of the SKOSRec
engine’s features, the results from the user experiments can give at least a few suggestions. The
following retrieval options might be the default setting in an interface that contains a LOD-
enabled RS component to assist users in finding interesting items. Since the regular approach
of on-the-fly retrieval achieved good results throughout the domains, the display of simple rec-
ommendations generated from previously stated user preferences represents a suitable starting
point for retrieval. On-the-fly queries could be refined by similarity thresholds that lead to the
incorporation of semantically related SKOS concepts (i.e., concept expansion through flexible

similarity calculation) and a re-ranking of suggested items in case a user makes a corresponding
statement (e.g., through a slider option). Additionally, there should be a button to filter recom-
mendation results. Since the evaluations have shown that expressive constraints often lead to
increased recall values, the application of such a filter might be the best option for assisted re-
trieval. As in the preparations for the experiments, appropriate graph-based query patterns for
the usage scenario in question would have to be determined by a domain expert before setting up
the application. The same applies to advanced retrieval patterns, which should be available to
the end user to refine the query when both the regular as well as the constraint-based approach

have failed to provide relevant items. This suggestion is made because rollup queries were
competitive with regular recommendations in the web-based experiments. Thus, they represent
a viable alternative retrieval strategy. For some domains, it is also possible to use an optional
selection field to enable the formulation of cross-domain requests. Evaluations for this query
type suggest that users might receive interesting results (i.e., unexpected items or diversified
recommendation lists) from such a request.
The prototypical implementation and the evaluation of the SKOSRec engine in different us-
age scenarios have demonstrated that the freely available knowledge sources of the LOD cloud
can be successfully applied to advance LOD-enabled retrieval approaches. The novel SKOS-
based recommendation strategies proposed by this work, namely fast on-the-fly retrieval, flex-

ible similarity detection, cross-repository recommendations, (expressive) graph-based filters

and advanced recommendation queries (i.e., rollup and cross-domain requests) are promising
alternatives to existing IR technologies.
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A Code Examples of the SKOS Recommender

A.1 Configuration and Query Input

package rec;

import java.io.IOException;

import java.util.ArrayList;

import java.util.List;

import java.util.Map;

import rec.ParserRec;

import rec.RecCompiler;

import rec.RecQuery;

import federation.CollectionContainer;

import federation.Configuration;

import federation.DistributedResourceCollection;

import federation.ResourceCollection;

import federation.SKOSMapping;

import federation.SKOSVocabulary;

import federation.Service;

public class Mainer {

public static void main(String[] args) throws IOException, InterruptedException {

// Service object to access the SPARQL API of the default repository (HTTP address, maximum no. of records)

Service econstor = new Service("http://localhost:8890/sparql", 10000);

// Vocabulary object to access SPARQL API of the SKOS vocabulary

SKOSVocabulary cat = new SKOSVocabulary(econstor);

// Collection object representing the default repository

(service object, annotation property of the default repository, vocabulary object of the target collection)

ResourceCollection agris = new ResourceCollection(econstor, "http://purl.org/dc/terms/subject", cat);

// Distributed collection (default repository, annotation property of the default repository, vocabulary object)

DistributedResourceCollection distributed = new DistributedResourceCollection(econstor, "http://purl.org/dc/elements/1.1/subject", cat);

// Sets the target collection of the distributed repository

distributed.setTargetCollection(new CollectionContainer(agris));

/*

* Sets the vocabulary objects to access the SKOS vocabularies of the distributed collection

* Only a single object is needed to access the two vocabularies STW and AGROVOC in this example

*/

List<SKOSVocabulary> skosList = new ArrayList<SKOSVocabulary>();

skosList.add(cat);

// Sets the SKOS mapping object

distributed.setSKOSMapping(new SKOSMapping(cat, skosList));

// Sets the configuration for the distributed retrieval process

Configuration conf = new Configuration(new CollectionContainer(distributed), true);

// Sets the SKOSRec query string

String queryStr = "PREFIX econ: <http://linkeddata.econstor.eu/beta/resource/publications/> "

+ "PREFIX econColl: <http://linkeddata.econstor.eu/beta/resource/collection/>"

+ "RECOMMEND ?item TOP 10 "

+ "PREF econ:21555 SIM > 0.75 ";

// SKOSRec query object

RecQuery recquery = new RecQuery();

// SKOSRec parser object

ParserRec parser = new ParserRec();

// Parses the query string with the SKOSRec parser to verify syntactic correctness

RecQuery parsedQuery = parser.parseRec$(recquery, queryStr);

// SKOSRec compiler object

RecCompiler compiler = null;

// Solution object

List<Map<String,Object>> res = null;

// Compiles the SKOSRec query and puts out the solution upon successful compilation

try {

compiler = new RecCompiler();

res = compiler.compile(parsedQuery, conf);

}

catch (Exception ex) {

res = null;

}
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if ( res != null ) {

System.out.println("Ergebnis: "+res);

}

}

}

A.2 SKOSRec Grammar
/**

* Licensed to the Apache Software Foundation (ASF) under one

* or more contributor license agreements. See the NOTICE file

* distributed with this work for additional information

* regarding copyright ownership.

*

* http://www.apache.org/licenses/LICENSE-2.0

*

* This grammar file is a derivative version of the .jj file for

* SPARQL 1.1 of Apache Jena ARQ that can be obtained from

*

* https://github.com/apache/jena/blob/master/jena-arq/Grammar/sparql_11.jj

*

* It was modified to meet the demands of the SKOSRec grammar.

*/

[...]

void Query() : {Element where; }

{

Prologue() ( SelectPart() )? SimProjection() (ItemPart())+ ( where = RecWhereClause())?

{

if (where != null) getQuery().setWhereClause(where.toString()) ;

}

}

void Prologue() : { }

{

( BaseDecl() | PrefixDecl() )*
}

void BaseDecl() : { String iri ; }

{

<BASE> iri = IRIREF()

{ getPrologue().setBaseURI(iri) ; }

}

void PrefixDecl() : { Token t ; String iri ; }

{

<PREFIX> t = <PNAME_NS> iri = IRIREF()

{ String s = fixupPrefix(t.image, t.beginLine, t.beginColumn) ;

getPrologue().setPrefix(s, iri) ;

}

}

// ---- Query type clauses

void SelectPart() : { }

{

SelectQuery() (Aggregation())?

}

void SelectQuery() : { Element el;}

{

SelectClause()

( DatasetClause() )*
el = RecWhereClause() { getQuery().getSelectQuery().setQueryPattern(el); }

(LimitClause())?

}

void SelectClause() : { Var v ; Expr expr ; Node n ; }

{

<SELECT>

{ getQuery().getSelectQuery().setQuerySelectType() ; }

( <DISTINCT> { getQuery().getSelectQuery().setDistinct(true);}

| <REDUCED> { getQuery().getSelectQuery().setReduced(true); }

)?

{ allowAggregatesInExpressions = false ; }

(

(

v = Var() { getQuery().getSelectQuery().addResultVar(v) ; }

)+

|

<STAR> { getQuery().getSelectQuery().setQueryResultStar(true) ; }

)

{ allowAggregatesInExpressions = false ; }
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}

void Aggregation () : {String aggr; String v; Token type;}

{

<AGG> aggr = iri() v = Var() ( type = <SUM> | type = <MAX> | type = <AVG> ) (ServiceIntegration())?

{ getQuery().setAggregation(type.image,aggr,v); }

}

String ServiceIntegration () : {String acc;}

{

<FROM_SERVICE> acc = IRIREF()

{ return acc; }

}

void SimProjection() : {String n ; Token t; String service = ""; }

{

<RECOMMEND> n = Var() <TOP> t = <INTEGER> (ServiceIntegration())?

{if (service == "")

getQuery().setSimProjection(n,integerValue(t.image)) ;

else

getQuery().setSimProjectionService(n,integerValue(t.image),service);

}

}

void ItemPart() : {Token dec = null; VarPart var = null; String iri; SimCondition sim = null;}

{

<PREF> (dec = <DECIMAL>)? (var = VarPart() | iri = iri()) ( sim = Sim())?

{if (var == null)

if (sim == null)

if (dec == null)

getQuery().addItemPart(iri);

else

getQuery().addItemPart(doubleValue(dec.image),iri);

else

if (dec == null)

getQuery().addItemPart(iri,sim);

else

getQuery().addItemPart(doubleValue(dec.image),iri,sim);

else

if (sim == null)

if (dec == null)

getQuery().addVarPart(var);

else

getQuery().addVarPart(doubleValue(dec.image),var);

else

if (dec == null)

getQuery().addVarPart(var,sim);

else

getQuery().addVarPart(doubleValue(dec.image),var,sim);

}

}

VarPart VarPart() : {String var; Element where;}

{

<LBRACKET> var = Var() where = RecWhereClause() <RBRACKET>

{ return new VarPart(var.toString(), where.toString()); }

}

SimCondition Sim() : {String rel; Token t;}

{

<SIM> rel = Relation() t = <DECIMAL>

{ return new SimCondition(rel,doubleValue(t.image)); }

}

String Relation() : {Token t ;}

{

( t = <EQ> | t = <GT> | t = <GE> )

{return t.image ;}

}

void DatasetClause() : {}

{

<FROM>

( DefaultGraphClause() | NamedGraphClause() )

}
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void DefaultGraphClause() : { String iri ; }

{

iri = SourceSelector()

{

// This checks for duplicates

getQuery().getSelectQuery().addGraphURI(iri) ;

}

}

void NamedGraphClause() : { String iri ; }

{

<NAMED>

iri = SourceSelector()

{

// This checks for duplicates

getQuery().getSelectQuery().addNamedGraphURI(iri) ;

}

}

String SourceSelector() : { String iri ; }

{

iri = iri() { return iri ; }

}

Element RecWhereClause() : { Element el ; }

{

(<WHERE>)?

{ startWherePattern() ; }

el = RecGroupGraphPattern() { return el ; }

{ finishWherePattern() ; }

}

[...]

Element RecGroupGraphPattern() : { Element el = null ; Token t ; }

{

t = <LBRACE>

{ int beginLine = t.beginLine; int beginColumn = t.beginColumn; t = null; }

(

{ startSubSelect(beginLine, beginColumn) ; }

{

Query q = endSubSelect(beginLine, beginColumn) ;

el = new ElementSubQuery(q) ;

}

| el = RecGroupGraphPatternSub()

)

<RBRACE>

{ return el ; }

}

[...]

Element RecGroupGraphPatternSub() : { Element el = null ; }

{

{ ElementGroup elg = new ElementGroup() ; }

{ startGroup(elg) ; }

(

{ startTriplesBlock() ; }

el = TriplesBlock(null)

{ endTriplesBlock() ;

elg.addElement(el) ; }

)?

(

el = GraphPatternNotTriples()

{ elg.addElement(el) ; }

(<DOT>)?

(

{ startTriplesBlock() ; }

el = TriplesBlock(null)

{ endTriplesBlock() ;

elg.addElement(el) ; }

)?

)*
{ endGroup(elg) ; }

{ return elg ; }

}

[...]

Element RecGraphPatternNotTriples() : { Element el = null ; }

{

(

el = RecGroupOrUnionGraphPattern()

|

el = RecOptionalGraphPattern()
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|

el = RecMinusGraphPattern()

|

el = Filter()

|

el = Bind()

|

el = InlineData()

)

{ return el ; }

}

Element RecOptionalGraphPattern() : { Element el ; }

{ <OPTIONAL> el = RecGroupGraphPattern()

{ return new ElementOptional(el) ; }

}

[...]

Element RecMinusGraphPattern() : { Element el ; }

{

<MINUS_P>

el = RecGroupGraphPattern()

{ return new ElementMinus(el) ; }

}

Element RecGroupOrUnionGraphPattern() :

{ Element el = null ; ElementUnion el2 = null ; }

{

el = RecGroupGraphPattern()

( <UNION>

{ if ( el2 == null )

{

el2 = new ElementUnion() ;

el2.addElement(el) ;

}

}

el = RecGroupGraphPattern()

{ el2.addElement(el) ; }

)*
{ return (el2==null)? el : el2 ; }

}

A.3 SKOSRec Query

package rec;

import java.util.ArrayList;

import java.util.Iterator;

import java.util.List;

import java.util.Map;

import org.apache.jena.iri.IRIFactory;

import com.hp.hpl.jena.query.Query;

import com.hp.hpl.jena.sparql.core.Prologue;

import federation.Configuration;

public class RecQuery extends Query {

private Configuration conf;

private Query selectQuery;

private Aggregation aggregation;

private String whereClause;

static IRIFactory iriFactory = IRIFactory.semanticWebImplementation();

private SimProjection simprojection;

private List<ItemPart> itemPartList = new ArrayList<ItemPart>();

protected Prologue prologue;

// @param config the configuration object of the running SKOSRec instance

public RecQuery(Configuration config) {

super();

this.conf = config;

selectQuery = new Query();

}

// Sets a new postfilter SELECT query

public void setSelectQuery () {

selectQuery = new Query();

}

// @return Determines whether the postfilter SELECT query is empty

public boolean hasSelectQuery () {

if (!selectQuery.toString().equals("")){ return true;}

else { return false; }

}
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// Returns the postfilter SELECT query

public Query getSelectQuery() {return selectQuery;}

/*

* Sets a prefilter condition for the SKOSRec query

* @param where the prefilter condition

*/

public void setWhereClause(String where) {

if (where == null) {this.whereClause = null;}

else {this.whereClause = where.toString();}

}

// Determines whether the SKOSRec query contains a prefilter condition

public boolean hasWhereClause() {

if (this.whereClause != null){ return true;}

else { return false; }

}

// Returns the prefilter condition

public String getWhereClause() {

return this.whereClause;

}

/*

* Sets the parameters needed for recommendation retrieval

* @param v the recommendation variable

* @param l the number of recommendations to be returned

*/

public void setSimProjection (String v, int l) throws Exception {

test(v);

this.simprojection = new SimProjection(v,l);

}

/*

* Sets the parameters needed for recommendation retrieval

* @param v the recommendation variable

* @param l the number of recommendations to be returned

* @param s the SPARQL endpoint address for cross-repository retrieval

*/

public void setSimProjectionService (String v, int l, String s) throws Exception {

test(v);

this.simprojection = new SimProjection(v,l,s);

}

/*

* Returns the parameters needed for recommendation retrieval

* @return simprojection the SimProjection object of the SKOSRec query

*/

public SimProjection getSimProjection () { return this.simprojection; }

// Tests whether the recommendation variable is contained in potential pre- and postfilter conditions

private void test(String v) throws Exception {

if (hasWhereClause()) {

if (!this.whereClause.contains(v)) {

throw new Exception("Recommendation variable not contained in WhereClause!");}

}

if ( selectQuery.getQueryPattern() != null ) {

if (!this.selectQuery.toString().contains(v)) {

throw new Exception("Recommendation variable not contained in the SelectPart!");}

}

}

/*

* Sets the aggregation object and tests whether the SKOSRec query contains a postfilter SELECT query and

* whether the aggregation variable is contained in the SELECT query

* @param a the summarization method (MAX | SUM | AVG)

* @param i the IRI resource of the user profile for which aggregation-based retrieval should be performed

* @param v the aggregation variable

*/

public void setAggregation (String a, String i, String v) throws Exception {

if (!this.hasSelectQuery()) {

throw new Exception("The SKOSRec query does not contain a SelectPart!");

}

if (!this.selectQuery.getQueryPattern().toString().contains(v)) {

throw new Exception("Aggregation variable not contained in the SelectPart!");}

this.aggregation = new Aggregation(a,i,v);

}

// Determines whether the SKOSRec query contains an aggregation object

public boolean hasAggregation () {

if (this.aggregation != null) { return true; }

else { return false; }

}

// Returns the aggregation object

public Aggregation getAggregation () {

return this.aggregation;

}

/*
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* Retrieves recommendations based on preference scores, preference querying and concept expansion

* @param pref the preference score

* @param var the graph pattern to retrieve preferred LOD resources

* @param sim the similarity threshold for concept expansion

*/

public void addVarPart (double pref, VarPart var, SimCondition sim) throws Exception {

List<String> items = getItems(var);

for (String item : items) {

addItemPart(pref, item, sim);

}

}

/*

* Retrieves recommendations based on preference scores and preference querying

* @param pref the preference score

* @param var the graph pattern to retrieve preferred LOD resources

*/

public void addVarPart (double pref, VarPart var) throws Exception {

List<String> items = getItems(var);

for (String item : items) {

addItemPart(pref, item);

}

}

/*

* Retrieves recommendations based on preference querying and concept expansion

* @param var the graph pattern to retrieve preferred LOD resources

* @param sim the similarity threshold for concept expansion

*/

public void addVarPart (VarPart var, SimCondition sim) throws Exception {

List<String> items = getItems(var);

for (String item : items) {

addItemPart(item, sim);

}

}

/*

* Retrieves recommendations based on preference querying

* @param var the graph pattern to retrieve preferred LOD resources

*/

public void addVarPart (VarPart var) throws Exception {

List<String> items = getItems(var);

for (String item : items) {

addItemPart(item);

}

}

// Execution of preference querying: retrieval of the preferred LOD resources based on a specified graph pattern

/*

* @param varRaw the graph pattern to retrieve preferred LOD resources

* @return list the list of preferred LOD resources

*/

public List<String> getItems (VarPart varRaw) throws Exception {

List<String> list = new ArrayList<String>();

String where = varRaw.getWhere();

String varWithQ = varRaw.getVar();

String var = varWithQ.replace("?", "");

String query = "SELECT "+varWithQ+" WHERE "+where;

List<Map<String,Object>> results = this.conf.getContainer().getCollection().getService().query(query);

for (Iterator<Map<String,Object>> iter = results.iterator(); iter.hasNext(); ) {

Map<String,Object> element = iter.next();

String item = element.get(var).toString();

list.add(item) ;

}

return list;

}

/*

* Adds a preference (LOD resource and similarity threshold) to the user profile

* @param iri the IRI of the preferred item

* @param sim the similarity threshold for concept expansion

*/

public void addItemPart (String iri,SimCondition sim) {

ItemPart itemPart = new ItemPart(iri);

itemPart.setSimCondition(sim.getRel(),sim.getSim());

itemPartList.add(itemPart);

}

/*

* Adds a preference (prefernce score, LOD resource and similarity threshold) to the user profile

* @param pref the preference score

* @param iri the IRI of the preferred item

* @param sim the similarity threshold for concept expansion

*/

public void addItemPart (double pref, String iri, SimCondition sim) {
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ItemPart itemPart = new ItemPart(iri);

itemPart.setSimCondition(sim.getRel(),sim.getSim());

itemPart.setPref(pref);

itemPartList.add(itemPart);

}

/*

* Adds a preference (LOD resource) to the user profile

* @param iri the IRI of the preferred item

*/

public void addItemPart (String iri) {

ItemPart itemPart = new ItemPart(iri);

itemPartList.add(itemPart);

}

/*

* Adds a preference (LOD resource and similarity threshold) to the user profile

* @param iri the IRI of the preferred item

* @param sim the similarity threshold for concept expansion

*/

public void addItemPart (double pref, String iri) {

ItemPart itemPart = new ItemPart(iri);

itemPart.setPref(pref);

itemPartList.add(itemPart);

}

/*

* Returns the user profile

* @return itemPartList the user profile with information on preferred items

*/

public List<ItemPart> getItemParts () {return itemPartList;}

}

A.4 SKOSRec Compiler

package rec;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import utils.MapSorter;

import com.hp.hpl.jena.query.Query;

import com.hp.hpl.jena.sparql.core.Var;

import federation.Configuration;

import java.io.FileNotFoundException;

public class RecCompiler {

private String simName = "";

private String simVar = "";

private RecQuery rQuery = null;

private Configuration conf = null;

/*

* Compiles the SKOSRec query and check its semantic correctness

* @param query the SKOSRec query

* @param conf the configuration

* @return results the solution table of the SKOSRec query

*/

public List<Map<String,Object>> compile (RecQuery query, Configuration conf) throws NoDescriptorException, FileNotFoundException {

this.simVar = query.getSimProjection().getVar();

this.simName = simVar.replace("?","");

this.rQuery = query;

this.conf = conf;

HashMap<String, Double> recommendations = preprocess();

List<Map<String,Object>> results = postprocess(recommendations);

return results;

}

/*

* Preprocessing of the SKOSRec query and execution of similarity calculation

* @return recommendations similar items for the user profile from the LOD repository

*/

private HashMap<String,Double> preprocess () throws NoDescriptorException {

// Determines the number of recommendations to be returned to the user

int limit = this.rQuery.getSimProjection().getLimit();

// Identifies the preferred LOD resources that were either specified by the user or obtained from preference querying

List<ItemPart> articles = rQuery.getItemParts();

/*

* Checks whether the SKOSRec query contains a prefilter condition

* If it does the condition is handed over to the process of similarity calculation

*/

String wherePart;
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if (this.rQuery.hasWhereClause()) { wherePart = this.rQuery.getWhereClause(); }

else { wherePart = "";}

RecRecommender recommender = new RecRecommender(articles, this.conf.toBeOptimized());

return recommender.recommend(conf.getContainer(), this.simVar, this.simName, wherePart, limit, 1.0);

}

/*

* Postprocessing of recommendations (i.e., similar items)

* @return output Solution table of the SKOSRec query

*/

private List<Map<String,Object>> postprocess (HashMap<String,Double> recommendations) {

List<Map<String,Object>> output;

// In case the SKOSRec quety does not contain a postfilter condition the recommendations are returned right away

if (!rQuery.hasSelectQuery()) {

output = new ArrayList<>();

for (String recommendation : recommendations.keySet()) {

Map<String,Object> resultMap = new HashMap<>();

resultMap.put(simVar, recommendation);

output.add(resultMap);

}

return output;

}

// Otherwise the set of similar items is joined with the postfilter condition

else {

Query selectQuery = this.rQuery.getSelectQuery();

String vals = "";

Var var = Var.alloc(simName);

List<Var> varList = new ArrayList<Var>();

varList.add(var);

for (String rec : recommendations.keySet()) {

vals = vals+" <"+rec+"> ";

}

String whereString = selectQuery.getQueryPattern().toString().replace(this.simVar, " VALUES "+this.simVar+" { "+vals+" } "+simVar+" ");

String varString = "";

boolean containsVar = false;

// Includes the recommendation variable in the solution table in case it is not specified

for (Var v : selectQuery.getProjectVars()) {

if (v.equals(this.simVar)) {

containsVar = true;

break;

}

else {

varString = varString +" "+v.toString();

}

}

if (containsVar == false) {

varString = varString + " "+this.simVar;

}

String selectString = "SELECT ";

if (selectQuery.isDistinct()) {

selectString = selectString+" DISTINCT ";

}

else if (selectQuery.isReduced()) {

selectString = selectString+" REDUCED ";

}

String queryString = selectString+varString+" WHERE "+whereString+’’ ’’+rQuery.getSelectQuery().getLimit();

// Retrieves the intermediate postfiltered solution table

List<Map<String,Object>> intermediate = this.conf.getContainer().getCollection().query(queryString);

// In case the SKOSRec query does not contain an aggregation section the intermediate solution table is returned right away

if (!rQuery.hasAggregation()) {

output = intermediate;

return output;

}

// Otherwise the solution table is sorted according to aggregation scores

else {

output = MapSorter.sortByList(intermediate, recommendations.keySet());

HashMap<String,HashMap<String,Double>> aggMap = new HashMap<>();

HashMap<String,Double> aggMapScore = new HashMap<String,Double>();

String aggVar = rQuery.getAggregation().getVar().replace("?","");

String aggIRI = rQuery.getAggregation().getIRI();

String method = rQuery.getAggregation().getType();

for (Map<String, Object> mapAgg : output) {

String recomm = mapAgg.get(simName).toString();

String agg = mapAgg.get(aggVar).toString();

Double score = recommendations.get(recomm);

if (!aggMap.containsKey(agg)) {

HashMap<String,Double> recMap = new HashMap<>();

recMap.put(recomm,score);

aggMap.put(agg, recMap);

}
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else {

HashMap<String,Double>tempRec = aggMap.get(agg);

tempRec.put(recomm, score);

aggMap.put(agg, tempRec);

}

}

// Summarizes aggregation scores according to the specification in the SKOSRec query (MAX, SUM or AVG)

for (String agg : aggMap.keySet()) {

switch (method) {

case "MAX":

Double max = 0.0;

for (Double maxCand : aggMap.get(agg).values()) {

if (maxCand > max) {

max = maxCand;

}

}

aggMapScore.put(agg, max);

break;

case "SUM":

Double valSum = 0.0;

for (Double val : aggMap.get(agg).values()) {

valSum = valSum + val;

}

aggMapScore.put(agg, valSum);

break;

case "AVG":

Double sum = 0.0;

Double mean = 0.0;

Double counter = 0.0;

for (Double val : aggMap.get(agg).values()) {

sum = sum + val;

counter++;

}

mean = sum / counter;

aggMapScore.put(agg, mean);

break;

}

}

Map<String,Double> sortedAggs = MapSorter.sortByValue(aggMapScore);

output = MapSorter.sortByList(intermediate, sortedAggs.keySet());

// Determines aggregation-based recommendations

List<String> aggregations = new ArrayList<>();

int counter = 0;

for (Map.Entry<String, Double> entry : sortedAggs.entrySet()) {

if (!entry.getKey().equals(aggIRI)){

if (counter < rQuery.getSelectQuery().getLimit()){

aggregations.add(entry.getKey());

counter++;}

else {break;}

}

}

// Returns result mappings for aggregation-based recommendations

List<Map<String,Object>> newOutput = new ArrayList<>();

for (Map<String,Object> map : output) {

if (aggregations.contains(map.get(aggVar).toString())) {

newOutput.add(map);

}

}

return newOutput;

}

}

}

}

A.5 Similarity Calculation

package rec;

import federation.CollectionContainer;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import federation.QueryRecommenderJob

/**

* This class performs similarity calculation

* @param articles LOD resources of the user profile

* @param op indicates whether the retrieval process should be optimized

* @param ranker object to order similar items
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* @param mapSourceToTarget maps SKOS concepts of the source collection to SKOS concepts of the target collection

* @param mapTargetToSource maps SKOS concepts of the target collection to SKOS concepts of the source collection

*/

public class RecRecommender {

List<ItemPart> articles;

boolean op;

RecRanker ranker;

HashMap<String,String> mapSourceToTarget;

HashMap<String,String> mapTargetToSource;

HashMap<String,Double> scores = new HashMap<>();

public RecRecommender (List<ItemPart> arts, boolean opt) {

this.articles = arts;

this.op = opt;

}

/*

* @param coll recommendations are retrieved from this collection

* @param simVar the recommendation variable

* @param simName the recommendation variable as string value

* @param whereCond the prefilter condition

* @param limit the number of recommendations to be retrieved

* @return a ordered list of LOD resources ranked according to the recommendation score

*/

public HashMap<String,Double> recommend (CollectionContainer coll, String simVar,

String simName, String whereCond, int limit) throws NoDescriptorException {

// Initializes process that handles SPARQL API access operations

QueryRecommenderJob job = new QueryRecommenderJob(coll, simVar, simName, whereCond);

ArrayList<String> articleStrings = new ArrayList<>();

/*

* Retrieves similar items for each LOD resource in the user profile

* In case the profile contains a similarity threshold the system retrieves additional proximate descriptors

*/

for (ItemPart article : this.articles) {

String resource = article.getIRI();

articleStrings.add(resource);

List<String> exactSubjects = job.getConcepts(resource);

HashMap<String,Double> simSubjects = null;

HashMap<String,Integer> allCounts;

List<String> mergedList = new ArrayList<>(exactSubjects);

if ( article.hasSim() ) {

simSubjects = job.getProximateConceptsAndSim(exactSubjects, article.getSimCondition().getRel(), article.getSimCondition().getSim());

List<String> proxies = job.getProximateConcepts(simSubjects);

mergedList.addAll(proxies);

}

// In case the process is triggered in cross-repository retrieval mode, SKOS mappings need to be obtained

if ( job.isDistributedJob() ) {

HashMap<String,String> mapSourceToTarget = job.getMapSourceToTarget(mergedList);

HashMap<String,String> mapTargetToSource = job.getMapTargetToSource();

this.ranker = new RecRanker(mapSourceToTarget, mapTargetToSource);

List<String> remoteConceptList = new ArrayList<>();

for (String entry : mapTargetToSource.keySet()) {

remoteConceptList.add(entry);

}

allCounts = job.getConceptCounts(remoteConceptList);

}

else {

this.ranker = new RecRanker();

allCounts = job.getConceptCounts(mergedList);

}

// In case no SKOS concepts could be found for the LOD resource continue with the next resource in the profile

if (allCounts.isEmpty()) {continue;}

/*

* Obtains information content (IC) scores for each SKOS annotation

* In case the process is executed in optimized mode a cut value is determined

*/

HashMap<String,Double> ICValues = job.getICScores(allCounts);

String cutPart = "";

int cut;

if (this.op) {

int noOfMatches = job.getCutBegin(limit);

RecOptimizer helper;

if (job.isDistributedJob()) {

helper = new RecOptimizer(mapSourceToTarget, mapTargetToSource);

}

else { helper = new RecOptimizer();}

cut = helper.getCutOff(exactSubjects, ICValues, simSubjects, noOfMatches);

cutPart = "having (COUNT(?subject) >= "+cut+") ";

}

HashMap<String,List<String>> simResults = job.getConceptsOfResources(cutPart);
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HashMap<String,Double> localScores;

// Determines the recommendation score of each retrieved LOD resources

localScores = ranker.score(simResults, simSubjects, ICValues, exactSubjects);

for ( String key : localScores.keySet() ) {

if (!this.scores.containsKey(key)){

if(article.hasPref()) {

this.scores.put(key, localScores.get(key)*article.getPref());

}

else { this.scores.put(key, localScores.get(key));}

}

else {

double newScore;

if(article.hasPref()) {

newScore = this.scores.get(key) + (localScores.get(key)*article.getPref());

}

else { newScore = this.scores.get(key) + localScores.get(key); }

this.scores.put(key, newScore); }

}

}

// Ranks the LOD resources according to the recommendation score

return this.ranker.rank(this.scores, limit, articleStrings);

}

}

A.6 Ranker
package rec;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import utils.MapSorter;

/**

* @param sourceMapping SKOS mappings from source to target collection (cross-repository retrieval)

* @param targetMapping SKOS mappings from target to source collection (cross-repository retrieval)

* @param rankDistributed indicates whether this is a distributed retrieval process

*/

public class RecRanker {

HashMap<String,String> sourceMapping

HashMap<String,String> targetMapping;

private boolean rankDistributed;

// Constructor for a retrieval process that is executed over the default repository

public RecRanker () {

this.rankDistributed = false;

}

// Constructor for a cross-repository retrieval process

public RecRanker (HashMap<String,String> sourceMapping, HashMap<String,String> targetMapping) {

this.sourceMapping = sourceMapping;

this.targetMapping = targetMapping;

this.rankDistributed = true;

}

/*

* Determines the recommendation score of retrieved LOD resources for input resources

* @param results relevant resources and annotations

* @param subjects proximate concepts and their concept-to-concept similarity score

* @param ICVals IC scores of each SKOS concept

* @param SKOS concepts of the input resource

*/

public HashMap<String,Double> score (Map<String,List<String>> results, Map<String,Double> subjects,

HashMap<String,Double> ICVals, List<String> exactSubjects) {

HashMap<String,Double> sc = new HashMap<>();

for (Map.Entry<String, List<String>> entry2 : results.entrySet()) {

List<String> matches;

if (this.rankDistributed) {

matches = new ArrayList<>();

for ( String match : entry2.getValue() ) {

matches.add(this.targetMapping.get(match));

}

}

else { matches = entry2.getValue(); }

String art = entry2.getKey();

double score = 0.0;

for (String sub : exactSubjects){

double ICValue = 0.0;

if (rankDistributed) {

if ((this.sourceMapping.get(sub) != null) && (ICVals.get(this.sourceMapping.get(sub)) != null) ) {

ICValue = ICVals.get(this.sourceMapping.get(sub));
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}

}

else { if ( ICVals.get(sub) != null) { ICValue = ICVals.get(sub); } }

if (matches.contains(sub)){ score = score + ICValue; }

else if (subjects != null) {

double proxSim = 0.0;

for (String match : matches) {

if (subjects.containsKey(sub+"-"+match)) {

double newSim = subjects.get(sub+"~"+match);

if (newSim >= proxSim){

proxSim = newSim;

}

}

}

score = score + (proxSim * ICValue);

}

}

sc.put(art, score);

}

return sc;

}

/*

* Ranks the LOD resources according to the recommendation score

* @param scores recommendation scores for LOD resources

* @param limit the number of recommendations that should be retrieved

* @param articles the LOD resources of the user profile

* @return sortedRecs similar LOD resources (recommendations)

*/

public HashMap<String,Double> rank (HashMap<String,Double> scores, Integer limit, List<String> articles) {

Map<String,Double> sortedMap = MapSorter.sortByValue(scores);

int counter = 0;

HashMap<String,Double> rec = new HashMap<>();

for (Map.Entry<String, Double> entry : sortedMap.entrySet()) {

if (!articles.contains(entry.getKey())) {

if (counter < limit){

rec.put(entry.getKey(),entry.getValue());

counter++;

}

else { break; }

}

}

HashMap<String,Double> sortedRecs = (HashMap) MapSorter.sortByValue(rec);

return sortedRecs;

}

}

A.7 Optimizer

package rec;

import java.util.ArrayList;

import java.util.Collections;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import java.util.Map.Entry;

/**

* Optimizes similarity calculation

* @param conceptScores object to store potential recommendation scores

* @param sourceMapping SKOS mappings from the source to the target collection

* @param targetMapping SKOS mappings from the target to the source collection

* @param optDistributed indicates whether the optimization procedure is carried out for cross-repository retrieval

*/

public class RecOptimizer {

List<Double> conceptScores;

HashMap<String,String> sourceMapping;

HashMap<String,String> targetMapping;

private boolean optDistributed;

public RecOptimizer () {}

public RecOptimizer (HashMap<String,String> sourceMapping, HashMap<String,String> targetMapping) {

this.sourceMapping = sourceMapping;

this.targetMapping = targetMapping;

this.optDistributed = true;

}

/*

* Computes the cut value that reduces the number of records to be processed
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* @param exactSubjects SKOS annotations of the input resource from the user profile

* @param IC information content (IC) scores of SKOS concepts

* @param proxSim proximate concepts and concept-to-concept similarity scores

* @param matches number of matching SKOS concepts

* @return cutOff returns the maximum number of matching SKOS concepts required for similarity calculation

*/

public int getCutOff(List<String> exactSubjects, HashMap<String,Double> IC, Map<String,Double> proxSim, int matches) {

conceptScores = new ArrayList<>();

for (Entry<String,Double> entry : IC.entrySet()) {

conceptScores.add(entry.getValue());

}

if ( proxSim != null) {

for (Entry<String,Double> entry2 : proxSim.entrySet()) {

String id = entry2.getKey();

double simValue = entry2.getValue();

String [] parts = id.split("~");

String exact = parts[0];

double ICValue;

double score;

if (optDistributed) {

if ( this.sourceMapping.get(exact) != null && IC.get(this.sourceMapping.get(exact)) != null ) {

ICValue = IC.get(this.sourceMapping.get(exact));

score = ICValue * simValue;

conceptScores.add(score);

}

}

else {

if (IC.get(exact) != null) {

ICValue = IC.get(exact);

score = ICValue * simValue;

conceptScores.add(score);

}

}

}

}

Collections.sort(conceptScores);

double prevMinScore;

double maxScore;

int cutOff = 0;

while (matches > 0) {

prevMinScore = getScore(matches, false);

cutOff = matches;

matches--;

maxScore = getScore(matches, true);

if ( maxScore < prevMinScore ) {

break;

}

}

return cutOff;

}

/*

* Determines potential recommendation scores for a given number of matching SKOS concepts

* @param limit number of matching SKOS concepts

* @param maxScores indicates if the function should calculate the potential for a higher (maxScore == TRUE)

* or a lower number of matching SKOS concepts (maxScore == FALSE)

* @return sum the potential recommendation score

*/

private double getScore(int limit, boolean maxScore) {

double sum = 0;

List<Double> subList;

if (maxScore == true) {

subList = conceptScores.subList((conceptScores.size()-1)-limit, conceptScores.size()-1); }

else { subList = conceptScores.subList(0, limit); }

for (Double value : subList) {

sum = sum + value;

}

return sum;

}

}
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B Supplementary Material of the Evaluation

B.1 Simulation - Flexible Similarity Detection

import java.io.File;

import java.io.FileInputStream;

import java.io.FileWriter;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.PrintWriter;

import java.util.ArrayList;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import org.apache.mahout.cf.taste.common.NoSuchItemException;

import org.apache.mahout.cf.taste.common.NoSuchUserException;

import org.apache.mahout.cf.taste.common.TasteException;

import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator;

import org.apache.mahout.cf.taste.model.DataModel;

import org.apache.mahout.cf.taste.model.PreferenceArray;

import federation.DistributionalCalculator;

/**

* Simulation setting for flexible similarity detection

* {@value #LOG2} logarithm base 2

* {@value #namespace} namespace of DBPedia resources

* {@value #keyNS} namespace of DBPedia resources

* {@value #filePath} path to store evaluation results

* {@value #sep} line separator to store evaluation results

* {@value #rounds} cross-validation rounds

*/

public class LDRecommender {

private static final double LOG2 = Math.log(2.0);

private static final String namespace = "http://dbpedia.org/resource/";

private static final String keyNS = "http://dbpedia.org/resource/Category:";

private static final String filePath = "src/log.txt";

private static final String sep = System.getProperty("line.separator");

private static final int top = 20;

private static final rounds = 5;

public static void main(String[] args) throws IOException, TasteException, NoSuchItemException, NoSuchUserException, \newline

InterruptedException, ClassNotFoundException {

File file = new File(filePath);

FileWriter fw = new FileWriter(file,true);

PrintWriter out = new PrintWriter(fw);

out.write("userid;precision;recall;novelty;diversity"+sep);

for ( int i = 0; i < rounds; i++) {

DataReader dr = new DataReader();

// Reads test and training data

DataModel test = dr.readModel("src/test"+i+".dat");

DataModel train = dr.readModel("src/train"+i+".dat");

String path = "src/MappingMovielens.tsv";

String subjectPath = "src/movieSubjects.ser";

String countPath = "src/movieCounts.ser";

Mapper map = new Mapper(path);

// Reads SKOS annotations and concept counts from DBpedia

FileInputStream fis = new FileInputStream(subjectPath);

ObjectInputStream ois = new ObjectInputStream(fis);

Map<String,List<String>> subjects = (Map<String, List<String>>)

ois.readObject();

ois.close();

FileInputStream fis2 = new FileInputStream(countPath);

ObjectInputStream ois2 = new ObjectInputStream(fis2);

HashMap<String,Integer> counts = (HashMap<String,Integer>

ois2.readObject();

ois2.close();

// Determines information content (IC) scores of SKOS concepts
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DistributionalCalculator dc = new DistributionalCalculator(1.0);

HashMap<String,Double> ICValues = dc.computeIC(counts);

// Initializes an object that can calculate diversity scores for recommendation lists

Diversity diversity = new Diversity(subjects,ICValues);

// Initializes an object that computes on-the-fly recommendations

FastRecommendation fastRec = new FastRecommendation(subjects, counts, namespace, keyNS, ICValues);

int totalNoOfPreferences = 0;

// Determines the total number of preferences stated by users

for (LongPrimitiveIterator itemIt = train.getItemIDs(); itemIt.hasNext();) {

Long item = itemIt.nextLong();

totalNoOfPreferences = totalNoOfPreferences + train.getNumUsersWithPreferenceFor(item);

}

PreferenceArray realPrefs = null;

int step = 0;

/*

* Performs recommendation retrieval for the first 100 users in the dataset based on the preferences

* in the training set and compares the recommendations with the actual preferences from the test set

*/

for (LongPrimitiveIterator userIt = test.getUserIDs(); userIt.hasNext();) {

if (step < 100) {

step++;

double novItemSumREL = 0.0;

double novelty = 0.0;

Long userID = userIt.nextLong();

realPrefs = test.getPreferencesFromUser(userID);

List<Long> recommendations = null;

Map<String,Double> ids = new HashMap<String,Double>();

for (LongPrimitiveIterator itemIt = train.getItemIDsFromUser(userID).iterator(); itemIt.hasNext();) {

Long itemID = itemIt.nextLong();

ids.put(map.getString(itemID),Double.valueOf(train.getPreferenceValue(userID, itemID)));

}

recommendations = fastRec.getRecommendations(ids, 1.0, top, map);

List<String> stringRec = new ArrayList<String>();

for (Long recomm : recommendations) {

stringRec.add(map.getString(recomm));

}

int matches = 0;

int precisionBase;

float precision = 0.0f;

float recall = 0.0f;

if ( recommendations.size() < top) {

precisionBase = recommendations.size();

}

else { precisionBase = top; }

// Determines the number of matching resources of the set of predicted recommendations and the actual preferences

for (int m = 0; m < precisionBase; m++ ) {

if (realPrefs.hasPrefWithItemID(recommendations.get(m))) {

matches++;

double fraction2 = (double) train.getNumUsersWithPreferenceFor(recommendations.get(m)) / (double) totalNoOfPreferences;

if (fraction2 == 0.0) {

fraction2 = 1 / (double) totalNoOfPreferences;

}

novItemSumREL = novItemSumREL + (-Math.log(fraction2)/LOG2);

}

}

// Calculation of precision, recall, novelty and diversity scores

if (precisionBase > 0) {

precision = (float) matches / (float) precisionBase;

recall = (float) matches / (float) realPrefs.length();

novelty = novItemSumREL / (float) matches;

}

double div = diversity.calcDiv(stringRec);

// Stores the evaluation results in a log file

out.write(userID+";"+precision+";"+recall+";"+novelty+";"+div+sep);

out.flush();

}

}

}

out.close();

}

}
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B.2 Webinterfaces of the Online Studies

B.2.1 Digital Library Experiment

Fig. B.1: DL - Language selection (page 1)

Fig. B.2: DL - Demographics section (page 2)
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Fig. B.3: DL - User profile generation, TC1 (page 3)

Fig. B.4: DL- Results part I, TC1 (page 4)
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Fig. B.5: DL - Results part II, TC1 (page 4)

Fig. B.6: DL - User profile generation, TFlex (page 5)
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Fig. B.7: DL - Results part I, TFlex (page 6)
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Fig. B.8: DL - Results part II, TFlex (page 6)
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Fig. B.9: DL - User profile generation, TC2 (page 7)
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Fig. B.10: DL - Results, TC2 (page 8)

Fig. B.11: DL - Finish screen (page 9)
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Fig. B.12: Travel - Consent form (page 1)
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B.2.2 Travel Experiment

Fig. B.13: Travel - Demographics section (page 2)
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Fig. B.14: Travel - User profile generation, TC1 (page 3)

Fig. B.15: Travel - Results part I, TC1 (page 4)
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Fig. B.16: Travel - Results part II, TC1 (page 4)
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Fig. B.17: Travel - User profile generation, TC2 (page 5)



B Supplementary Material of the Evaluation 223

Fig. B.18: Travel - Results part I, TC2 (page 6)
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Fig. B.19: Travel - Results part II, TC2 (page 6)
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Fig. B.20: Travel - Results part III, TC2 (page 6)

Fig. B.21: Travel - User profile generation, TC3 (page 7)
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Fig. B.22: Travel - Results part I, TC3 (page 8)
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Fig. B.23: Travel - Results part II, TC3 (page 8)
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Fig. B.24: Travel - Results part III, TC3 (page 8)
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Fig. B.25: Travel - Finish screen (page 9)

B.2.3 Multimedia Experiments (Music Domain)

Fig. B.26: Music - Consent form (page 1)
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Fig. B.27: Music - Demographics section (page 2)

Fig. B.28: Music - User profile generation, TC1 (page 3)
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Fig. B.29: Music - Results part I, TC1 (page 4)
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Fig. B.30: Music - Results part II, TC1 (page 4)
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Fig. B.31: Music - User profile generation, TC2 (page 5)
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Fig. B.32: Music - Results part I, TC2 (page 6)
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Fig. B.33: Music - Results part II, TC2 (page 6)
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Fig. B.34: Music - Results part III, TC2 (page 6)

Fig. B.35: Music - User profile generation, TC3 (page 7)
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Fig. B.36: Music - Results part I, TC3 (page 8)
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Fig. B.37: Music - Results part II, TC3 (page 8)
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Fig. B.38: Music - Results part III, TC3 (page 8)

Fig. B.39: Music - User profile generation, TC4 (page 9)
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Fig. B.40: Music - Results part I, TC4 (page 10)
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Fig. B.41: Music - Results part II, TC4 (page 10)
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Fig. B.42: Music - Finish screen (page 11)

B.3 Correlation Matrices

Table B.1: Spearman’s ρ for evaluation metrics correlation with perceived usefulness, TC2
Domain Method Accuracy Nov. Diversity

size mrs prec ndcg nv divU divC
DL Constr.-based (Regular) - - 0.43* - - 0.58** -

Travel Constr.-based (Regular) 0.49* - - - - - -
Constr.-based (Expanded) - 0.40** - - - 0.44*** -

Movie Constr.-based (Regular) - 0.46** 0.42* - - - -
Constr.-based (Expanded) - 0.55*** 0.48*** - - - -

Music Constr.-based (Regular) 0.50** - - - - 0.44* -
Constr.-based (Expanded) 0.35* 0.40** - - - 0.35*

Book Constr.-based (Regular) - - - - - - -
Constr.-based (Expanded) - - - - - - -

Table B.2: Spearman’s ρ for dependencies among evaluation metrics, TC2
Domain Method Accuracy Diversity

ρmrs,prec ρmrs,ndcg ρprec,ndcg ρdivU,divC

DL Constr.-based (Regular) 0.82*** 0.46* - -

Travel Constr.-based (Regular) 0.55* - 0.45* -
Constr.-based (Expanded) 0.71*** 0.61*** 0.76*** -

Movie Constr.-based (Regular) 0.64*** - 0.47** -
Constr.-based (Expanded) 0.63*** - 0.53*** -

Music Constr.-based (Regular) - - 0.56*** -
Constr.-based (Expanded) 0.47** - 0.57***

Book Constr.-based (Regular) 0.63*** - 0.50** -
Constr.-based (Expanded) 0.66*** 0.32* 0.60*** -
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Table B.3: Spearman’s ρ for evaluation metrics correlation with perceived usefulness, TC3
Domain Method Accuracy Nov. Diversity

size mrs prec ndcg nv divU divC

Travel Regular NA 0.62*** 0.51*** 0.26** 0.32** 0.77*** -
Rollup - 0.36*** 0.30** - 0.26** 0.69** -

Movie Regular NA - - - - - -
Rollup NA 0.49*** 0.47** - - 0.37* -0.35*

Music Regular NA 0.53*** 0.32* - - - -
Rollup NA 0.63*** - - - - -

Book Regular - - - - - - -
Rollup NA 0.63*** 0.47*** - - 0.32* -

Table B.4: Spearman’s ρ for dependencies among evaluation metrics, TC3
Domain Method Accuracy Diversity

ρmrs,prec ρmrs,ndcg ρprec,ndcg ρdivU,divC

Travel Regular 0.86*** 0.50*** 0.66*** -
Rollup 0.87*** 0.59*** 0.71*** -

Movie Regular 0.75*** - - -
Rollup 0.76*** - 0.36* -

Music Regular 0.56 - 0.63 -
Rolup 0.47*** 0.36** 0.77*** -

Book Regular 0.68*** - 0.46** -
Rollup 0.72*** - 0.47** -

Table B.5: Spearman’s ρ for evaluation metrics correlation with perceived usefulness, TC4
Domain Method Accuracy Nov. Diversity

size mrs prec ndcg nv divU divC

Movie Regular (SPARQL) - - - - - - -
Cross-Domain - 0.50*** 0.35* - - - -

Music Regular (SPARQL) 0.45* 0.63** 0.68*** - - 0.47* -
Cross-Domain - 0.39* - - - - -

Book Regular (SPARQL) - - 0.47* - - 0.56** -
Cross-Domain NA 0.60*** 0.64*** 0.49*** - - -

Table B.6: Spearman’s ρ for dependencies among evaluation metrics, TC4
Domain Method Accuracy Diversity

ρmrs,prec ρmrs,ndcg ρprec,ndcg ρdivU,divC

Movie Regular (SPARQL) 0.69** - 0.75** -
Cross-Domain 0.69*** - 0.45** -

Music Regular (SPARQL) 0.74*** - - -
Cross-Domain 0.65*** 0.44** 0.80*** -

Book Regular (SPARQL) 0.60** - 0.56** -
Cross-Domain 0.64*** - 0.63*** -
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