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Chapter 1. General Introduction 
Global warming is postulated to affect life all over the planet (IPCC, 2014). Changes in 

climate are expected to trigger changes in ecosystems of all kinds and on all levels (e.g. Parmesan 

and Yoke, 2003). Warming modifies plant and animal diversity, bringing some species to extinction 

while expanding ecological niches for other species; it affects soil chemical and physical parameters, 

microbial activity and effects dynamics of all processes (e.g. Walther et al., 2002). But we should not 

focus solely on climate and underestimate interactions occurring between all the components of the 

global biosphere. It is essential to estimate the time of biotic response to climate change; the 

response could be both, barely perceptible during a human lifespan or, on the contrary, follow 

immediately (e.g. Alley et al., 2003; Dakos et al., 2008). Recent climatic changes are neither the first 

nor the last to appear. In order to understand today’s processes, the natural variability of the 

climatic conditions must be taken into account (e.g. Zachos et al., 2001). Therefore, the primary task 

is to reveal the natural variability of climate and understand the complex interdependent reactions 

of the ecosystem components to occurring deviations. Only with this knowledge can changes be 

predicted and prepared for.  

As we all know “the past is the key to the future” (Lyell, 1876). A large number of long-term 

environmental changes occurred in Earth´s history (e.g. Petit et al., 1999). They can be reconstructed 

on the basis of analysing palaeo-records, such as: lake sediments, ice cores, peat accumulations, 

deep sea sediments, and permafrost archives (e.g. Birks and Birks, 1980; Bradley, 1999). Permafrost 

is one of the best media to preserve past life in a frozen state. Due to fossil evidence from various 

palaeo-records, climatic changes and such dramatic issues as extinction events were discovered. 

The latest fundamental change in global ecosystems started at the beginning of the 

Quaternary Period, 2.6 million years ago, and continues today (e.g. Bennett, 2004; Rull, 2008). The 

Quaternary is characterised by alternating warm and cold climatic phases (e.g. Williams et al., 1998; 

Stauffer, 1999). During cold phases, mountain glaciers and vast ice sheets formed. Ice sheets fixed 

huge amount of water, causing a global sea-level drop. During warm phases, ice sheets and glaciers 

retreated and the sea-level rose (Velichko, 1975).  

Sea-level fluctuations during the Quaternary caused major environmental impacts in the 

shallow shelf seas in northern Eurasia (Fig. 1.1). According to Hopkins (1972), the maximum sea-level 

fall of the Bering and Chukchi seas was 135 m, resulting in an advance of the coastline by several 

hundred kilometers north of its recent position. The landmass emerging in this manner connected 

Eurasia and North America during cold stages and became inundated during warm stages. This area – 

Beringia (Hulten, 1937) – enabled migrations and exchanges of flora and fauna between the two 

continents, and human arrival in North America. Beringia is a key region for studying the 

development of the arctic flora and understanding the mechanisms underlying the Quaternary biotic 

impoverishment in northern latitudes. What makes this area so special?  

Beringia, the area between the mouths of the Siberian Lena River and the Canadian 

Mackenzie River, remained free of continental ice sheets at least during the late Quaternary 

(Svendsen et al., 2004; Barr and Clark, 2012). Instead of ice sheets, perennially frozen ground 

developed here (Sher, 1984). This ice sheet-free area was a center of dispersal of one of the greatest 

northern ecosystems – mammoth-steppe or tundra-steppe (e.g. Giterman, 1968; Hopkins, 1972; 

Guthrie, 1986; Yurtsev, 1982; Kahlke, 2015). This biome extended from the Atlantic east coast 

crossing Eurasia and the Beringia land bridge to North America (Matthews, 1982). The name “tundra-

steppe” suggests that the ecosystem consisted of a mixture of tundra and steppe biota. This 

assumption was later evaluated using palaeo-data like pollen (e.g. Kaplina, 1978; Anderson and 
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Lozhkin, 2002) and plant macrofossils (Kienast et al., 2005). Numerous findings of mammal bone 

remains have suggested that this ecosystem was characterised by the coexistence of species that 

nowadays are either extinct or fill different ecological niches (e.g. Nehring, 1890; Tugarinov, 1929). 

For example, woolly mammoth, woolly rhinoceros, cave lions and cave bears are now extinct, 

whereas reindeer and musk ox currently inhabit the northern tundra, and saiga antelope, horse and 

bison are restricted to southern steppes. The former composition of animals and plants is reflected 

in the name “mammoth-steppe” and suggests that environmental conditions at this time lack a 

modern analog.  

Figure 1.1. A map of northeastern Asia and part of North America (Modified after Elias and Crocker, 2008). 

Yellow colour illustrates shallow shelfs (-120 m) of the arctic seas. Black circles indicate locations of palaeo 

archives: 1 – Batagay, the Yana Highlands, 2 – YRH Site, 3 – Vorontsov Yar, Indigirka River, 4 – Sypnoy Yar, 

Indigirka River, 5 – Mamontova Gora, Aldan River, 6 – Diring Yuriakh, Lena River. The map of the northern 

hemisphere is from https://freeclipartimage.com/article/top-78-world-map-clip-art. 

 

The data available from northeastern Asia provide information about the past Beringian 

ecosystem and its response to the Pleistocene climatic shifts. The composition of biocenoses 

fluctuated with climatic changes (Sher et al., 1976). Beringia was refugium for both plants and 

animals (e.g. Sher, 1997; Brubaker et al., 2005; Boeskorov, 2006; Gavin et al., 2014). The mammoth-

steppe ecosystem endured over several glacial/interglacial cycles, but perished after 11,700 a BP, 

when a massive ecosystem restructuring took place and some large herbivores disappeared. The last 

living mammoths, discovered so far, existed 9,670±60 a BP on the mainland and 3,730 a BP on 

Wrangel Island (Stuart et al., 2002). The woolly rhinoceros became extinct around 12,155±37 a BP 

(Stuart and Lister, 2012), the steppe bison around 8,215±45 a BP (Murton et al., 2017) and the wild 

horse about 2,150±200 a BP (Boeskorov, 2006). Vegetation cover suffered somewhat less — tundra-

steppe vegetation remnants are still to be found in northeast Asia. However, steppe and tundra- 

steppe occupy now only small extra-zonal patches on south-facing slopes all over north-eastern 

Siberia (Yurtsev, 1982; Reinecke et al., 2017).   



Chapter 1. General Introduction 

3 

 

Beringia was vast, and despite available data there are still many open questions. Unresolved 

questions include those relating to the spatial distribution of palaeo-archives: most of the available 

data originate from sites at today´s coastal area. For example, along the coast of the Arctic Ocean 

(e.g. Romanovskii, 1961; Sher et al., 1977; Kaplina and Chekhovskij, 1987; Schirrmeister et al., 

2011a,b; Wetterich et al., 2008) and at river banks (e.g. Kaplina and Sher, 1977; Kaplina et al., 1980; 

Kaplina and Giterman, 1983; Kiselev et al., 1987), where frozen material is exposed by active wave 

abrasion and thermodenudation. Despite numerous palaeo-ecological studies of the permafrost 

outcrops in the northern coastal areas, the vast inland areas are sparsely investigated and, therefore, 

ecosystem responses to varying climatic continentality are unclear. Only few studies (Fig. 1.1) are 

available from inland permafrost archives: the Mamontova Gora (e.g. Agadzhanyan and Boyarskaya, 

1969; Pewe et al., 1977; Astakhov and Isayeva, 1988), Diring Yuriakh (Alekseev et al., 1990), 

Vorontsov Yar (Biske, 1960) and Sypnoy Yar (Kaplina and Sher, 1977).  Therefore, the inland Yana 

Highlands (Fig. 1.2) are one of the least-studied areas of inland Beringia.  

Figure 1.2. The Yana Highlands study area. Yellow circle indicates location of the Batagay permafrost outcrop. White 

triangular indicates the location of the YRH Site. Picture has been modified from satellite pictures, Google Earth 7.1.2.2041. 

Batagay region, Russia, 67° 34' 41.83" N, 134°45'46.91" E, 4 July 2013, viewed 10 December 2017, 

http://www.google.com/earth. The map of the northern hemisphere is from https://freeclipartimage.com/article/top-78-

world-map-clip-art. 

The arctic palaeolithic archaeological site (YRH site) dated back to 27 ka BP was discovered 340 km 

north of the Yana Highlands (Fig. 1.2; Pitulko et al., 2004). Which surprises are still to be found 

there?  

A recently exposed unique permafrost exposure was found 10 km southeast of the town 

Batagay, which is the municipal center of the Verkhoyansky district. This sediment sequence was 

scarcely explored so far and gives the unique opportunity to deepen scientific knowledge about the 
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Quaternary ecosystems of the Yana Highlands. The data for the present thesis originates from the 

Batagay permafrost exposure. This permafrost sequence was explored with the intention to fill the 

following scientific knowledge gaps:  

(i) Describe the new permafrost outcrop, determine its sedimentary units and their age, 

establish the main formation processes, and discuss the first climatic implications.  

(ii) Reconstruct the palaeo-vegetation in order to report the first palaeo-ecological results 

for this unique inland outcrop.  

(iii) Elucidate the history of Beringian flora by exploring the origin and phylogeographical 

reationships of endemic plants. 

(iv) Trace the changes in palaeo-vegetation cover and investigate if these could have been 

influenced by grazing pressure or if they are of solely climatic origin.    
 

1.1. Permafrost as a palaeo-archive 

The Batagay outcrop potentially provides an outstanding permafrost palaeo-record. 

Perennially frozen ground is one of the best palaeo-archives due to a number of properties. 

Permafrost is any type of “soil or rock which is experiencing below 0 °C temperatures for at least two 

consecutive years” (Harris, 1988), this means that any kind of material enclosed within permafrost 

will remain frozen or partially frozen. According to Zhang (1999), the permafrost zone underlies 

today about 24% of the landmasses of the Northern Hemisphere and about 64% of the area of the 

Russian Federation (Fig. 1.3; Brown et al., 1997). Of course the permafrost of this huge territory is 

not homogenous but varies between different geographical settings. Permafrost formed in mountain 

areas is called alpine, over the plains lowland, and on the Arctic Ocean shelf subsea (Subcommittee, 

1988).  

Figure 1.3. Permafrost distribution in the Northern Hemisphere. From Brown et al., 1997. 
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 Figure 1.4. Vertical and longitudinal distribution of permafrost in Eastern Siberia. Yellow dashed lines indicate active layer 

thickness decreasing northward. 1500 m* stays for maximum permafrost depth measured in Central Siberia. Diagram 

modified after Koppe, 2003.  

Permafrost can be classified further according to the percentage of the area underlain by perennially 

frozen ground. Zones can be described as continuous (90-100%), discontinuous (50-90%), sporadic 

(<50%) and isolated (few patches) permafrost (Subcommittee, 1988) (Fig. 1.4). A third classification is 

based on the timing of deposition and freezing of the sediment: “permafrost that formed after the 

deposition of the soil material in which it occurs” is called epigenetic, and “permafrost that formed 

more or less simultaneously with the deposition of the soil material in which it occurs” is called 

syngenetic (Fig. 1.5) (Subcommittee, 1988).  

 

Figure 1.5. Schematic representation of the epigenetic (a) and syngenetic (b) ice-wedge growth. Numbers 1-3 indicate 

stages of ice-wedge formation. Epigenetic ice-wedge growth is directed sideways, while syngenetic is directed upwards 

along with accumulation of host sediment. Modified from Mackay (1990). 

Permafrost formation in mineral soil involves frost cracking and building up of ice wedges. In 

winter, the frozen soil contracts due to cooling. First frost cracks appear at the ground surface (Fig. 

1.6a). During spring, snow melt water may fill the crack, which later could be resealed due to 

expansion of the thawing soil. In case the crack stays open and forman ice vein within permafrost 

before the crack can close due to expansion of the warming soil. The ice vein persists in the 

permafrost throughout summer and autumn (Fig. 1.6b). Renewed cooling and cracking may occur 

during the next winter. This cycle recurs year after year: cracks appear at the center of the ice 

wedge, forming a foliated ice structure, with every foliated layer containing material of one year. In 
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the other words, older ice can be found at the sides of an ice wedge, while the newer ice is 

accumulates in the middle (Davis, 2001). In this way, epigenetic ice wedges grow wider through time.  

Figure 1.6. Stages of ice-wedge development through repeated freeze-thaw cycles. Based on Figure 1 of Lachenbruch 

(1962). 

Active layer is the top-most soil layer, from several centimetres to several metres, that annually 

freezes and thaws above permafrost. A typical permafrost pattern develops here - ice-wedge 

polygons (Fig. 1.7a,b). Below the active layer, both the material within the ice wedges and in the 

hosting sediments remains perennially frozen. Depositional environment and accumulation 

processes can be deducted by exploring cryostructures and sedimentological properties. Organic 

material found within permafrost sediments also derives valuable information. Permafrost can reach 

an enormous depth (Fig. 1.4) and varies in ice and organic content. As permafrost started to form in 

the early Pliocene (Kaplina, 1981), the analysis of frost-preserved organic matter offers the possibility 

of investigating and reconstructing the regional environmental and climatic history over long time 

spans.  

The newly exposed Batagay permafrost outcrop, located in interior northern Yakutia, in the 

Yana Highlands, provides the unique opportunity to enrich scientific knowledge on the Quaternary 

ecosystems in high latitudes. Check Box 1 summarises the present-day permafrost features observed 

in the Highlands. 

 

Box 1. Permafrost and periglacial features in the Yana Highlands 

The Yana Highlands belong to the continuous permafrost zone. The permafrost here is 380-450 m 
thick, varying according to geologic, hydrogeologic and orographic factors (Geology of USSR, 1979). The 
active-layer thickness is 15-25 cm in fine-grained sediments and 70-80 cm in coarse-grained sediments. 
On south-facing slopes, it can reach depths of 4.5 m (Geology of USSR, 1979). Modern permafrost 
landforms ice-wedge polygons on river flood plains. As visible in Figure 1.7, the crack pattern slightly 
differs from site to site: it is hexagonal in homogeneous material and orthogonal in heterogeneous 
material (Davis, 2001). The observed ice-wedge polygons degrade: the top parts of ice-wedges thaw 
causing transformation of low-center polygons into high-center polygons. Another prominent feature of 
a permafrost landscape is a presence of small steps (terracettes) on the slopes of the Yana River 
terraces near Verkhoyansk. They form a parallel horizontal pattern, especially evident on the steep part 
of the slopes (Fig. 1.7c; Davis, 2001).  
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Figure 1.7.  (a), (b) - Ice-wedge polygons in the Yana River flood plain. Pictures were taken on 13 June 2014. (c) - 
cryoturbation steps on an eastern slope of the Yana River terrace, 40 km downstream from Verkhoyansk. The 
estimated spacing between the steps is 0.3 to 0.5 m. The picture was taken on 16 June 2014. 

The current development of permafrost features implies high soil moisture, which is the result of 
two factors - low evaporation rates and the presence of permafrost that prevents drainage deeper than 
permafrost table. 

 

The Yana Highlands are located in the northern inland part of the Sakha Republic (Yakutia), 

Russian Federation. The area is rich in mineral resources. The Batagay outcrop is a huge 

amphitheather-like thermoerosional cirque (Fig. 1.8). The outcrop is exposed in the foothills of Mt. 

Khatyngnakh (381m a.s.l.), 2.5 km north-east from the left bank of the Batagaika River, a tributary to 

the Yana River. According to L. Vdovina (geologist, Yana Geological Service, personal communication, 

2017), there are two possible triggers that led to the evolution of the Batagay (thermokarst) outcrop. 

First, during tin mining on top of Mt. Khatyngnakh, trucks transporting tin ore used the same route 

downslope to the Batagaika River. The resulting damage to the vegetation and organic layer, 

together with a changed albedo, initiated thawing of the ice-rich permafrost deposits. The second 

proposed trigger, which has led to the same chain of consequences, could have been forest logging 

in the area. Prisoners of the nearby Ese-Khayya labor camp logged trees for the camp and the locals. 

Dragging timber over the same route caused erosion and thermal degradation that, in the end, led to 

the exposure of the permafrost sequence.  

Stages of the outcrop development can be tracked on aerial photographs and illustrate two 

stages: limited activity, from 1968 to 1990, and highly active since 1991 (fig. 1.8b-f; Kunitsky et al., 

2013). 
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Figure 1.8. (a) View from a helicopter on the Mt. Khatyngnakh and the Batagay outcrop. Photograph taken on 17 August 

2011, provided by L.Vdovina. (b)-(f) aerial photographs illustrating the stages of the outcrop development: (b), (c) – limited 

activity stage, (d), (e), (f) – highly active thawing. Modified after Kunitsky et al., 2013. 

The limited activity stage included the formation of a gully and its deepening and slow widening over 

time. The highly active stage resulted in the expansion of the gully into the large thermocirque (Fig. 

8a and 9a). This outcrop has a steep, nearly vertical, ice-rich headwall 80 m high (Günther et al., 

2015) and steep flanks. Due to thermo-denudation rates of up to 30 m per year, the outcrop reached 

a width of up to 800 m in 2014 (Günther et al., 2015, 2016) and is the largest thaw slump 

(megaslump) in the world. The thermo-erosional cirque grows with accelerating rates and uneven 

thawing along the margins, possibly due to varying ice content of the deposits (Günther et al., 2015). 

The estimated denudation rate is 210-450 m³/year per 1 m of the outcrop margin (Kunitsky et al., 

2013). Some of the thawed material accumulates at the bottom of the erosional cirque among 30 m 

high residual hills and some is washed away. The meltwater flows downslope to the Batagaika River 

and dams the river with its sediment load (Fig. 1.9c-f).  

Previous studies on the Batagay permafrost exposure focused on thermal denudation 

processes, the structure of the outcrop and stable-isotope composition of the ice wedges (Kunitsky 

et al., 2013; Günther et al., 2015; Murton et al., 2017; Vasil´chuk et al., 2017; Opel et al., 2018). The 

findings of faunal remains of the mammoth steppe, including carcass of horse (Equus sp.) and bison 

(Bison priscus), as well as bone remains of cave lions (Panthera leo spelaea), woolly rhinoceroses 

(Coelodonta antiquitatis), mammoths (Mammuthus primigenius) and other extinct Pleistocene 

animals (Novgorodov et al., 2013), provide evidence that a potentially rich palaeo-environmental 

archive is preserved in the permafrost sequence.  
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Figure 1.9. The overview of the Batagay headwall reaching 80 m height and residual hills on the bottom of the erosional 

cirque (a, b).  (c) A map of the area with the Batagaika River. The hillslope containing the megaslump descends to the 

northeast. (d) The outlet streams to the Batagaika River. The Batagaika River after the inflow of the sediment-rich 

meltwater from the outcrop (e) and before (f). Picture (a) was taken by Frank Kienast; (b) on 27 July 2017, (d-f) on 31 July 

2017. 

1.2. Plant macrofossil analysis 

Methods for reconstructing past permafrost environments are numerous, e.g. palynological 

analysis (e.g. Lozhkin, 1984; Lazarev and Tomskaya, 1987; Andreev et al., 2002; Anderson and 

Lozhkin, 2002); identification of chitin remains (e.g. Sher et al., 2005), charcoal (e.g. Huber, 1951; 

Schweingruber, 1978; Schoch et al., 2004) and ostracods (e.g. Wetterich et al., 2008, 2009); ancient 

DNA identification (Jørgensen et al., 2012; Willerslev et al., 2014); chemical analysis of soil (Gubin, 

1999; Zanina, 2006), ice-wedge stable isotopes and gas bubbles found within permafrost (e.g. 

Vaikmäe, 1989; Vasil’chuk, 1991, 1992; Meyer et al., 2002; Opel et al., 2017) and paleontological 

analysis (Sher, 1974). Each approach gives an insight into a certain aspect of the former ecosystem. 

Spore-pollen analysis is useful to unravel the regional vegetation but is limited to northern plant 

communities, ancient DNA identification helps to find traces of living organisms, while e.g. the study 

of mollusks provides useful information on lake environments. Nevertheless, for the reconstruction  
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of past ecosystems the application of only one single analysis could be ambiguous and, therefore, 

misleading. After taking into account all possible methodological restrictions, we chose to base our 

work mainly on the analysis of plant macrofossils and to use spore-pollen, entomological, charcoal 

and sediment analyses as complementary sources of information.The identification of vascular plant 

macro-remains >200 µm, e.g. fruits, seeds, leaves, twigs and inflorescences (Birks and Birks, 1980) 

has some advantages. First, macro remains are only locally dispersed due to their relatively big size. 

Therefore, they give a precise picture of the local vegetation. Second, they can be frequently 

identified to the species level.  

The macrofossil method contains 6 stages: sampling, sieving, drying, picking, identifying and, 

finally, compiling a vegetation reconstruction. In this thesis, stage one – the sampling – meant taking 

an appropriate amount (ca. 5l) of frozen material from the permafrost outcrop. In stage two – the 

sieving – sediment particles should be removed from the fossil remains by wet sieving with mesh 

sizes 0.5 and 0.25 mm. Stage three is the air drying of the fossils. These first three stages can be 

conducted directly in the field, whilst the next stages must be carried out in a lab. Stage four is the 

picking. Well-preserved macrofossils should be picked from the dried bulk material using tweezers 

and a stereomicroscope. During stage 5 plant remains are identified. The basis for the species 

recognition is the taxonomy and the morphological characteristics of the macrofossils, in particular 

size, colour, and texture (Birks and Birks, 1980). One difficulty in this context is that the macro-

remains found within permafrost can be incomplete as some hard parts might have been destroyed 

and/or soft parts might have decayed. Due to these problems with the recognition of macrofossils to 

the species level, the following system indicating various levels of identification certainty was used in 

this work. The system is illustrated by the example of a poppy plant: Papaveraceae -family is certain;  

Papaver - genus is certain;  

Papaver polare - species is certain;  

Papaver sect. Scapiflora – section Scapiflora is certain, species is less certain due to unclear 

taxonomy within that section. 

The final step is to reconstruct the vegetation and the environment. Using the taxa list 

together with the knowledge about the host sediment and the sedimentary environment, 

characteristic features of the past environment and ecosystem can be reconstructed (Birks and Birks, 

1980). First, a reconstruction of the plant communities is needed. A plant community is an 

assemblage of taxa that exists in a shared habitat, where each member of the plant community fills 

the certain ecological niche. According to Hutchinson (1978), a niche is the range of environmental 

tolerances of a species to which the species is adapted. The ecological niche of a plant community 

can provide more valuable information on past environments than those of single plant taxa, due to 

the fact that the niche of the community is more restricted than niches of its individual components 

(Birks and Birks, 1980). Nevertheless, fossil assemblages are incomplete due to decay of plant 

remains. The reconstruction of past plant communities should be based on analogies with modern 

taxonomic communities. For the vegetation reconstruction, we considered the presence/absence of 

plant taxa only. The quantity of identified remains might be misleading, as the number of fossils 

found does not necessarily reflect the actual abundance of the taxa in the palaeo-vegetation. The 

fossil number can be affected by taphonomy, preservation and reproductive strategy of the plant 

species. For this reason, not all plant taxa that formed the palaeo-vegetation are sufficiently 

preserved in the fossil record. Despite such restrictions, past vegetation units can be effectively 

reconstructed on the basis of few identified species that serve as indicator species for certain plant 

communities. Following the methodology of Kienast et al. (2005, 2008, 2011) for the reconstruction 
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of palaeo-vegetation, the identified vascular plant taxa were grouped into plant communities 

(syntaxa) in line with their ecological preferences and present-day occurrences (Dierßen, 1996; 

Hilbig, 1995; Reinecke et al., 2017). The identified plant communities and the phytosociological 

nomenclature of taxa follow the Braun-Blanquet classification (Weber et al., 2000). 

1.3. Study area 

1.3.1. Geology 

The Yana Highlands are located within the Verkhoyansk geosyncline – a complex of 12-14 km 

thick deposits that formed from the Carboniferous to the Jurassic. The Yana Highlands belong to the 

western part of the Verkhoyansk-Kolyma Orogen and are surrounded by the Verkhoyansk 

Mountains (highest peak: 2389 m a.s.l.) and are connected to the Yana Lowland in the north. The 

Verkhoyansk Mountains were formed at the beginning of the late Cretaceous Period (Geology of 

USSR, 1979). Subsequently, the ranges were eroded, such that during the Palaeogene the 

Verkhoyansk Mountains were hilly highlands. Renewed tectonic uplift started in the late Oligocene 

and Miocene epochs and continued also during the Quaternary Period. Granitoid intrusions and 

acidic dike formations are typical for this territory. 

Spirazhskij (1940) explored the northern slope of the Verkhoyansk Mountains and found 

morphological evidence of glaciations and end moraines consisting of siltstone accumulations up to 

50 m high. According to Atlasov (1938) and Kolosov (1947), valley glaciers also developed in the 

mountains surrounding the Yana Highlands. Strelkov et al. (1965) and Siegert et al. (2007) suggested 

that glaciers of the western Verkhoyansk Mountains almost reached the Lena River during the LGM 

but the highlands remained unglaciated. Stauch and Lehmkuhl (2010) and Popp et al. (2007) dated 

moraines on the eastern and western flanks of the Verkhoyansk Mountains and confirmed the 

results of Katasonov (1954): within the Yana Highlands themselves there are no moraines and other 

morphological features indicating the existence of glaciers, and so it is likely that moraines never 

reached altitudes below 800-1000 m a.s.l.  

1.3.2. Climate 

The absence of valley glaciers could be explained by the local climate. The Yana Highlands lie 

within the continental subarctic climate zone (Köppen, 1884). Despite its relatively small distance 

from the ocean of 410 km (Robertson Group and Geological Institute, 1991), the town of 

Verkhoyansk is described as the coldest permanently inhabited location in the Northern Hemisphere 

(Lydolph, 1985; Ivanova, 2006). This means that the continental climate has a great seasonal 

temperature range coupled with a low annual precipitation rate. Air masses that form above Siberia 

throughout the year have a great impact on the seasonal variability of climate. Wintertime is 

influenced by a high-pressure air cell - the Siberian anticyclone. The Siberian anticyclone has its main 

centre above Mongolia, stretches beyond the Verkhoyansk Mountains and forms another pressure 

peak above the Yana Highlands. This cold high-pressure area blocks the penetration of warmer, 

moister air masses and, at the same time, results in an extreme cooling of the air near the surface 

because outgoing longwave radiation from the ground can escape through a cloudless sky into space 

(e.g. Guthrie, 2001). In summer, the situation changes – a southwest Asian low pressure system 

dominates the region. It brings high summer wind velocities and precipitation (Oliver, 2008).  

Meteorological observations at the Verkhoyansk weather station since 1888 (RIHMI-WDC, 

2016) reflect the extreme continental climate (Table 1): the mean annual air temperature is -14.9 °C 

(observation period 1936-2015) and annual precipitation amounts to only 181 mm. The seasonal 
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differences in temperature and precipitation are very prominent: in January, when the Siberian 

anticyclone is dominant, the average air temperature is -44.7 °C. In the winter months only 27% of 

the annual precipitation is recorded. Wind velocities are also low. Summer weather is completely 

different owing to the Southwest Asian cyclone: the average June temperature is +15.5 °C. Maximum 

precipitation is recorded in June-August, resulting in 51% of the total annual amount (RIHMI-WDC, 

2016). In summer, wind velocities increase compared to those in winter; wind speeds up to 15 m/s 

are observed in narrow valleys along rivers and mountain regions (Geology of USSR, 1979). Loose 

sediments covering exposed river floodplains, barren steep river terraces and roads, supply material 

for summer dust storms (Fig. 1.10).  
 

Table 1. Climatic parameters recorded at the Verkhoyansk weather station. Winter average air temperature 

corresponds to January; average summer temperature is shown for July. Annual precipitation is indicated for 

February and July. 

Parameter Air temperature, °C Precipitation, 
mm 

Wind 
velocity, m/s Season average min/max 

winter -44.7 -67.8 22 0.7 

summer +15.5 +37.3 93 3.5 

Figure 1.10. Photograph of dust storm over the town of Verkhoyansk observed from the eastern slope of the Yana 

River terrace. Photograph taken on 14 June 2014. 

1.3.3. Hydrology 

The Yana is the main river in the area; it is 872 km long and has 93 tributaries. One of the 

largest confluents is the Adycha River (701 km), joining the Yana downstream of Batagay (Fig. 1.2; 

State Water Register, 2018). The study area is located in the Upper Yana section, which ranges from 

the source to the Adycha River inflow. The Yana River floodplain is 7-10.5 km wide and contains 

numerous ox-bow lakes. The channel bed is tortuous with 10 km long meanders and shallow with an 

average depth of 2 m. 

All the rivers of the region have a similar hydrological regime. Most of the water is supplied 

by rain and snowmelt. Spring high floods are caused by snowmelt in the mountains, while during the 

summer and autumn occur freshets triggered by rains and melting of naleds (perennial river ice). 

Rivers start to freeze in the beginning of October and break up at the end of May/beginning of June. 

The mean annual water discharge of the Yana near Verkhoyansk is 150 m3/s; the highest amounts 



Chapter 1.3. Study area 

13 

 

are recorded during the ice-free months (June - September). Winter discharge corresponds to only 

5% of the annual value (State Water Register, 2018).  

During summer freshets, river terraces are actively eroded; the mean annual concentration 

of suspended fine material is 130 g/m3, measured in Verkhoyansk, while the total suspended 

sediment load of the Yana River is 4.35 million tons, measured in the lower Yana.  

 

1.3.4. Soil and vegetation 

In northern Asia, soil development takes place under harsh climatic conditions. The shallow 

depth of the permafrost table influences plants, especially the depth of root penetration, and the 

activity of soil microorganisms. Most soils in the Verkhoyansk region have a thin organic horizon and 

a high acidity (Elovskaya, 1987). The Yana Highlands are located in the taiga zone. Due to the 

elevation gradient, soil and vegetation cover change in line with altitudinal zonation of a continental 

type (Tolmachev, 1949). The following soil-vegetation complexes occur with increasing altitude: taiga 

zone, subalpine zone, dry alpine tundra and zone of the cold goltsy deserts. Goltsy (bald tops) are 

mountain tops that are covered by rocks and are sparsely vegetated, typical for Siberian mountains 

and the Ural Mountains (Walter, 1974). 

The floodplain of the Yana River hosts forb- and grass- meadows together with forests of 

larch (Larix dahurica subsp. cajanderi), birch (Betula divaricata, B. fruticosa), alder (Alnus), willow 

(Salix). Moist meadows of floodplains with Calamagrostis neglecta, C. langsdorfii, Poa sp., 

Polygonum tripterocarpum, Polemonium acutiflorum, Lloydia serotina, Pedicularis verticil lata, 

Ranunculus affinis, Anemone ochotensis, Pulsatilla flavescens, Dracocephalum palmatum, Oxytropis 

adamsina, О. deflexa, Cerastium maximum, Carex sp. serve as pastures for horses and cattle 

(Zakharova et al., 2005; Nokhsorov, 2017). In wintertime parts of Arctophila fulva, Equisetum 

variegatum, scirpoides Carex aquatilis var. minor, Eriophorum angustifolium, Comarum palustre are 

the food source for cattle (Nohsorov, 2017). The key soil types (all soil types within the text are given 

according to Unified State…, 2014) in the floodplains are taiga Histic Gyosols Dystric and Entic 

Podzols.  

Characteristic features of the soil distribution in the Yana floodplain are the presence of 

Haplic Cambisols Eutric and the presence of extra zonal mountain cold-steppe soils (Mollic Leptosols 

Eutric) on the south-facing slopes of mountains and river terraces. These steep slopes are a suitable 

habitat for a xerophytic forb- and grass-dominated vegetation. Within the generally dry Yakutia, the 

upper reaches of the Yana drainage system experience the lowest precipitation, resulting in a high 

percentage of steppe vegetation in the study area (Yurtsev, 1982). According to Reinecke (2017), the 

steppes belong to petrophytic Carici duriusculae-Festucetum lenensis and typical Pulsatilletum 

flavescentis associations. Among the common plant taxa are Festuca lenensis, Роа botryoides, 

Koeleria gracilis, Agropyrum cristatum, Carex pediformis, C. duriuscula, Stellaria jacutica, Phlox 

sibirica, Calmagrostis purpurascens, Artemisia commutata, A. frigida, Astragalus fruticosus, A. 

inopinatus, Thymus serpyllum, Dracocephalum palmatum, Pulsatilla flavescens, Potentilla nivea,  

Alyssum obovatum, Eritrichium villosum, Anemone flavescens, Silene samojedorum (personal 

observation, 2014, 2017; Yurtsev, 1961; Reinecke et al., 2017) and endemics of the Yana-Kolyma 

Highlands: Potentilla tollii, Oxytropis scheludjakovae, Stellaria jacutica. In the height interval from 

500 to 900 m a.s.l. (Nikolin, 2012), the taiga zone is replaced by a subalpine zone. Here, shrubs of 

stone pine (Pinus pumila), Duschekia fruticosa and Betula middendorfii are common. The understory 

is poor in species and consists of Diapensia lapponica, Arctostaphylos alpine, Vaccinium uliginosum 

and Rhododendron sp. The ground is covered by a thick layer of lichens and mosses that allow only a 
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few species to establish: Pedicularis dasyantha, P. oederi, Bistorta major subsp. elliptica, and Luzula 

capitate. The soil type is a Histic Podzol.  

The dry alpine tundra zone extends from 900 to 1600 m a.s.l. and is covered with Salix 

cuntea, S. reticulate, Ledum decumbens and Cassiope tetragona is developed on Spodic Cryosols 

(Nikolin, 2012). In the wet areas of the micro-relief mosses dominate and at the dry sites lichens: 

Stereocaulon paschale, Cetraria cucculata, С. nivalis, С. islandica, С. Crispa, Cladonia rangiferina, Cl. 

mitis, Cl. uncialis, Cl. amaurocrea, Cl. Pyxidata, Sphaerophorus globosus and Ochrolechia tartarea.  

The goltsy zone has only poorly developed Lithic Leptosols Brunic soil. 

 

1.4. Publication outline  

 

The thesis consists of three independent research papers that correspond to the three following 

chapters. Each chapter aims to answer one of the rised questions: 

(i) Describe the new permafrost outcrop, determine its sedimentary units and their age, 

establish the main formation processes, and discuss the first climatic implications.  

(ii) Reconstruct the palaeo-vegetation in order to report the first palaeo-ecological results 

for this unique inland outcrop.  

(iii) Elucidate the history of Beringian flora by exploring the origin and phylogeographical 

reationships of endemic plants. 

 

The stratigraphy of the Batagay outcrop has not yet been studied in a detail, but is the basis 

for palaeontological investigations. Therefore, the first publication describes the Batagay permafrost 

outcrop and reports the results on the sedimentary processes that formed the permafrost sequence 

and on the chronology. The second paper presents results of a multidisciplinary approach for 

reconstructing the palaeo-vegetation and Pleistocene environments of the Yana Highlands. The third 

paper focuses on the endemic plant Stellaria jacutica, found within a sample attributed to the Last 

Interglacial and having implications to the phylogeography in Beringia.  

 

Chapter 2: Palaeoclimate characteristics in interior Siberia of MIS 6–2: first insights from the 

Batagay permafrost mega-thaw slump in the Yana Highlands 

Kseniia Ashastina, Lutz Schirrmeister, Margret Fuchs, and Frank Kienast,  

published in Climate of the Past 

 

The first paper describes the stratigraphical, cryolithological and geochronological characteristics of 

the permafrost sequence at the Batagay outcrop, Russia. This description forms the stratigraphical 

framework for any further palaeontological studies and reports.  

The aims of the paper were:  

1. To provide a stratigraphic description of the outcrop, to obtain the first geochronological 

dates for age estimation of each stratigraphic unit. 
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2. To correlate the units with climatic phases that occurred at the site during the sequence of 

formation and to identify the governing sedimentation processes. 

3. To compare the Batagay sequence to coastal permafrost exposures in order to account for 

climatic differences. 

We inferred that the permafrost sequence consists of five stratigraphic units that can be observed in 

the headwall of the outcrop. Using different dating methods (optically stimulated luminescence, OSL, 

and 14C -dating), we constrained the temporal framework of the formation of each unit. According to 

our oldest dated sample, the accumulation of the sequence started at least in the late Middle 

Pleistocene (MIS 6). The lithological units indicate a succession of several distinct climate phases - 

the cold and warm phases of the Late Pleistocene. The main difference between the Batagay 

sequence and the coastal sequences is the absence of evidence for subaquatic deposition and a 

higher proportion of aeolian deposition.   

 

Author contribution 

F.K. designed the study concept and arranged the expedition. K.A. and F.K. carried out the field work 

and sampling. K.A. designed the concept of the manuscript. L.S. accomplished the sedimentological 

analysis and plotted the graphs. M.F. designed and performed the OSL dating procedure and 

interpretation. K.A. prepared the manuscript with contributions from all co-authors. F.K., L.S. and 

K.A. revised the draft.  

 

 

Chapter 3: Warm stage woodlands and cold stage steppes: Pleistocene palaeovegetation in North 

Yakutia’s most continental part recorded in the Batagay permafrost sequence  
Kseniia Ashastina, Frank Kienast, Svetlana Kuzmina, Natalia Rudaya, Elena Troeva,  

Werner H. Schoch, Christine Römermann, Jennifer Reinecke, Volker Otte, 

Grygory Savvinov, Karsten Wesche. 

 

Quaternary Science Reviews, under review 

 
 

In the largest chapter of the thesis, Chapter 3, we conducted multidisciplinary analyses of the 

samples from the Batagay outcrop. Each of the performed methods – macro- and microfossil, 

charcoal and invertebrate identification – has certain constraints, but merging the results gives a 

better and more complete impression of the vegetation history. 

The main research issues we addressed in this paper were: 

1. To present first results of the palaeoecological analysis of the Batagay outcrop and provide a 

reconstruction of palaeo-vegetation from MIS 6 to 2 with a focus on the Last Interglacial and 

the Last Glacial Maximum. 

2. To compare the results with modern vegetation in order to decipher the impact of climatic 

shifts on the vegetation. 
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3. To compare the reconstructed vegetation of the inland site Batagay with palaeo-records 

available from sites in today’s coastal zone.  

4. To reveal potential non-climatic impacts on the palaeo-vegetation such as disturbances and 

eutrophication related to the presence of megaherbivores. 

 

Forty-five analysed samples provided an uneven amount of fossil material. Therefore, we gave a 

detailed vegetation reconstruction of two fossil-rich samples representing the Last Glacial Maximum 

and Last Interglacial. These two climatic and, hence, environmental extremes, displayed in palaeo 

vegetation, served as reference vegetation that was compared to the data from all other samples 

poor in fossils. We found that meadow steppes formed the primary vegetation during the 

Pleistocene cold stages.  During the Last Interglacial (warm stage), meadow steppes were present as 

well but as a constituent of open coniferous woodland. Additionally, we revealed that the region was 

a northern refuge throughout the late Quaternary for trees and possibly an interglacial refuge for 

large herbivores of the mammoth faunal complex. The latter was derived from the presence of 

ruderal plants that indicate zoogenic disturbances of the plant cover. 

 

Author contribution 

F.K. designed the study concept. K.A. and F.K. arranged the expedition. G.S. granted us permission to 

work at the site. K.A. and F.K. carried out field work and sampling. K.A. carried out the macrofossil 

analysis, produced pictures and tables under supervision of F.K. The modern vegetation was 

analysed by K.W., C.R. and J.R. The DCA graph was plotted by J.R., she also provided an 

interpretation. S.K. conducted the entomological analysis, produced pictures and compiled the 

corresponding figure and a table. V.O. worked on the identification of mosses and the interpretation 

of these results. N.R. carried out the spore-pollen analysis and produced the spore-pollen diagram. 

W.H.S. identified charcoal remains. K.A. analysed and combined the results from all co-authors and 

wrote the first draft of the manuscript with help of F.K.  F.K., J.R., S.K. and K.W. participated in editing 

the article. K.A. prepared the manuscript for submission. F.K., K.A., K.W., J.R., S.K., N. R., W.H.S., C.R., 

V.O. and E.T. revised the draft.  

 

 

Chapter 4: Pleistocene refugia in Western Beringia: fossil evidence of a Yakutian endemic plant for 

the last interglaciation 

                 Kseniia Ashastina, Frank Kienast, Elena Troeva 

Review of Palaeobotany and Palynology, draft 

 

A seed of a recent steppe endemic of northeast Siberia was found within the sample of Last 

Interglacial age. This is the oldest discovered seed of Stellaria jacutica, which could add valuable data 

to revealing the history of steppes in northeastern Asia. The purpose of the paper was to summarize 

all available data on S. jacutica species and to propose the timing and possible migration route of the 

plant. The studied seed, along with the fossil record, examined in Chapter 3, proves that modern 
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steppe occurrences in the Yana Highlands did not establish recently but that they are relicts of a 

formerly closed steppe belt extending from central Siberia to northeast Yakutia during the 

Pleistocene.  

 

Author contribution 

K.A. and F.K. took the samples and identified plant fossils. K.A. and F.K. designed the study concept. 

K.A. contacted botanical gardens to confirm the identification, drafted the manuscript, made maps 

and photos. F.K., K.A. and E.T. revised the manuscript. 
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Abstract 

Based on fossil organism remains including plant macrofossils, charcoal, pollen, and 

invertebrates preserved in syngenetic permafrost deposits of the Batagay sequence in the Siberian 

Yana Highlands, we reconstructed the environmental history during marine isotope stages (MIS) 6 to 

2. Two fossil assemblages, exceptionally rich in plant remains, allowed for a detailed description of 

the palaeo-vegetation during the two climate extremes of the Late Pleistocene, the onset of the Last 

Glacial Maximum (LGM) and the Last Interglacial. In addition, altogether 41 assemblages were used 

to outline the vegetation history since the penultimate cold stage of MIS 6. Accordingly, meadow 

steppes resembling modern communities of the phytosociological order Festucetalia lenensis, 

occurring today in the Central Siberian steppe belt and in extrazonal relict steppe patches in 

Northeast Siberia, formed the primary vegetation during the Saalian and Weichselian cold stages. 

Cold-resistant tundra-steppe communities (Carici rupestris-Kobresietea bellardii) as they occur north 

of the treeline today were in contrast to more northern locations mostly lacking. The local presence 

of larch (Larix gmelinii), proven by macrofossils nearly over the whole studied period including the 

onset of the LGM, suggests that northern tree refugia existed at the study site possibly throughout 

several glacial cycles. During the Last Interglacial, open coniferous woodland similar to modern larch 

taiga was the primary vegetation at the site. Abundant charcoal indicates wildfire events during the 

Last Interglacial. Zoogenic disturbances of the local vegetation were indicated by the presence of 

ruderal plants, especially by abundant Urtica dioica, suggesting that the area was an interglacial 

refugium for large herbivores. Meadow steppes, which formed the primary vegetation during cold 

stages and provided potentially suitable pastures for herbivores, were a significant constituent of the 

plant cover in the Yana Highlands also under the full warm stage conditions of the Last Interglacial. 

Consequently, both, meadow steppes and larch stands occurred in the Yana Highlands during the 

entire investigated timespan from MIS 6 to MIS 2 documenting a remarkable environmental stability. 

Thus, the proportion of these two major plant communities merely shifted in response to the 

respectively prevailing climatic conditions. Their persistence indicates both low precipitation and a 

relatively warm growing season throughout and beyond the late Pleistocene. The studied fossil 

record also proves that modern steppe occurrences in the Yana Highlands did not establish as late as 

in the Holocene but instead are relicts of a formerly continuous steppe belt extending from Central 

Siberia to Northeast Yakutia during the Pleistocene. The persistence of plants and invertebrates 

characteristic of meadow steppe vegetation in interior Yakutia throughout all climatic fluctuations of 

the late Quaternary documents the former suitability of this region as a refugium also for other 

organisms of the Pleistocene mammoth steppe including the iconic large herbivores. 

  

Key words: palaeo-vegetation, plant macrofossils, invertebrates, charcoal, pollen, ground 

squirrel nest, LGM, Eemian 

 

1. Introduction 
Climatic and associated vegetation changes are considered possible drivers for the extinction of 

Pleistocene mammoth fauna (Campos et al., 2010; MacDonald et al., 2012; Prescott et al., 2012). In 

high latitudes, rising temperature and increased humidity triggered, according to this interpretation, 

the transformation of the Pleistocene nutritious grassland vegetation into birch shrubland, 

coniferous forest tundra and finally into low-diverse taiga and tundra wetlands (Binney et al., 2009; 
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Edwards et al., 2005; Kienast, 2013). Correspondingly, the demise of mainland mammoth 

populations coincided with the expansion of coniferous forests and the formation of extensive 

northern peatlands (MacDonald et al., 2012). The question remains, however, as to why the 

Pleistocene mammoth fauna survived several warm pulses during the Pleistocene, including full 

interglacials such as MIS 5e, but became extinct in particular in the course of the Holocene. Also, it is 

not fully clear whether the restructuring of late Quaternary vegetation was the cause or, due to 

herbivore - vegetation interactions, the consequence of the demise of megafauna. 

A key region for understanding the mechanisms underlying the late Quaternary biotic 

impoverishment in northern latitudes is Beringia (Hulten, 1937; Tugarinov, 1929). The sector 

between the mouths of the Siberian Khatanga River and the Canadian Mackenzie River including 

entire Yakutia remained free of continental ice sheets during the late Quaternary (Barr and Clark, 

2012; Svendsen et al., 2004). Due to its relative environmental stability, Beringia, and NE-Siberia in 

particular, is regarded the last refuge of mammoth fauna (Yurtsev, 1982; Boeskorov, 2006). The 

dominance of grazers among Beringian megaherbivores has been taken as evidence for productive, 

cold-adapted grassland, the tundra-steppe or mammoth steppe being the key vegetation type in the 

Pleistocene Arctic (Guthrie, 1990). Based on vegetation studies at currently isolated relict steppe 

stands in Northeast Siberia and Chukotka, Yurtsev (2001) suggested that the Pleistocene palaeo-

landscape were analogously characterized by a codominance of steppe and arcto-alpine plant 

species. He also showed that modern relict steppe vegetation forms patchy mosaics in response to 

local environmental conditions such as topography, exposition, disturbances and soil. In recent 

years, palaeobotanical studies confirmed Yurtsev’s assumption (Kienast et al., 2005; Kienast, 2013). 

Palaeontological records from permafrost sections in Northeast Siberia revealed the mosaic-like 

character of Pleistocene vegetation with a coexistence of steppe, meadow and arcto-alpine plant 

communities (Kienast et al., 2005, 2008), which is in line with the descriptions of modern tundra-

steppe relict vegetation in Yakutia (Reinecke et al., 2017; Yurtsev, 1982, 2001).   

In the present paper, the term mammoth steppe is accepted as an ecosystem (or palaeo-biome) 

supposedly dominating during Pleistocene cold stages as suggested by Guthrie (1990). Tundra 

steppe, in contrast, is henceforth regarded here as a certain plant community occurring at dry 

exposed places in the alpine belt of mountains and subsumed in the plant-sociological class Carici 

rupestris-Kobresietea bellardii (Kucherov and Daniels, 2005). Tundra steppe vegetation is thus 

regarded part of the Pleistocene mammoth steppe and no longer as a synonym. It corresponds to 

plant communities formerly designated Kobresia-meadows (Kienast et al., 2005; Wetterich et al., 

2008) or dry arctic upland vegetation (Kienast et al., 2008). We implement this sharp distinction to 

make palaeo-vegetation reconstructed on the base of diagnostic species comparable with modern 

vegetation that is analogously classified using diagnostic species. 

Several palaeontological methods can be used for the reconstruction of the Quaternary palaeo-

vegetation. Palynological analyses are a widespread tool, but the relevance of pollen analyses alone 

for the reconstruction of local vegetation in northern latitudes is limited (e.g. Birks and Birks, 1980). 

Macro-remains, conversely, are a superior tool for the reconstruction of local palaeo-vegetation but 

are less valuable for the regional picture. A relatively novel approach is the identification of taxa 

using ancient DNA preserved in permafrost deposits (e.g. Zimmermann et al., 2017). Comparative 

studies have shown that the identification of plant macro fossils is comparable to the usage of 

ancient DNA (Jørgensen et al., 2012; Willerslev et al., 2014). It is recognised that entomological 

approaches are also suitable tools for the reconstruction of palaeo-vegetation (e.g. Elias, 1994, 2001, 

2006; Kiselev, 1982; Kiselev, Nazarov, 2009; Sher et al., 2005). Frozen remains of mammals, insects, 

mollusks, as well as plant macrofossils give unique insights into arctic terrestrial ecosystems of the 
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Pleistocene (Berman et al., 2011; Fisher et al., 2012; 

Guthrie, 1990; Harington, 2007; Kienast et al., 2011; 

Zanina et al., 2011). Using a multi-proxy approach 

could help to overcome the constraints of individual 

approach (Kienast et al., 2011).  

Most of the known fossil vegetation records are 

situated in the coastal lowlands of Yakutia. Due to 

Quaternary sea level fluctuations, Yakutia’s coastal 

lowlands and the adjacent shelves were intermittently 

hit by tremendous coast line shifts (Bauch et al., 2001; 

Romanovskii et al., 2004) and correspondingly 

fluctuating maritime influence on climate. However, 

inland sections unaffected by maritime climate but 

with constantly continental climate throughout the 

Quaternary, were scarcely available so far. A newly 

formed permafrost exposure near Batagay, 

Verkhoyansk district, Yakutia, is one of the few active 

inland permafrost outcrops in Siberia (Fig. 1; Ashastina 

et al., 2017; Murton et al., 2017). As a result of intense 

thermo-denudation, the megaslump formed in the 

Yana Highlands within 40 years only (Günther et al., 

2015; Kunitsky et al., 2013). The region can be 

considered as a benchmark for northern inland climate 

as Verkhoyansk is a town situated in the Yana 

Highlands with the lowest measured winter air 

temperature and the greatest seasonal temperature 

gradient, e.g. the most severe climatic continentality in 

the Northern Hemisphere (USSR Climate Digest, 1989). 

Previous studies on the Batagay permafrost

Figure 1: (a) Location of the Yana Highlands in northeastern 

Siberia. Map modified from Jakobsson et al., 2012. (b) 

Situation of the study area on the right southeastern bank 

of the Yana River valley. (c) Location of the Batagay mega 

slump (framed) at the northeastern slope of Mt. 

Khatyngnakh, left bank of the Batagay River. (d), Location 

of the studied sections in the Batagay mega slump.  (b), (c), 

and (d) modified from satellite pictures, Google Earth V. 

7.1.2.2041. (July 4th, 2013), Batagay Region, Russia 

67°34'41.83"N, 134°45'46.91"E, Digital Globe 2016, CNES 

Astrium 2016, http://www.earth.google.com (accessed 

April 25th 2016). 

exposure dealt with structure, composition, 

chronology, cryostratigraphical and sedimentological 

characteristics of the permafrost sequence (Kunitsky et 

al., 2013; Ashastina et al., 2017; Murton et al., 2017) 

and expansion rates of the outcrop (Günther et al., 

2015) or described megafauna findings, including 

frozen carcasses of horses (Equus sp.) and bison (Bison 

priscus), as well as bone remains of cave lions 

(Panthera leo spelaea), woolly rhinoceroses 

(Coelodonta antiquitatis), mammoths (Mammuthus 

primigenius), and other extinct Pleistocene animals 

(Novgorodov et al., 2013). These findings indicate that 

the Yana Highlands, due to their climatic stability, were 

among the last refuges for now extinct mammoth 

fauna. Data on fossil plant and insect remains and on 

ancient vegetation were lacking so far from the 

Batagay exposure. 
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In this paper, we present first results of the analyses of plant macro-fossils, charcoal, pollen and 

invertebrates obtained from permafrost deposits accessible at the Batagay mega-thaw slump. We 

provide a reconstruction of palaeo-vegetation from MIS 6 to 2 with a focus on the Last Interglacial (LIG) 

and the onset of the Last Glacial Maximum (LGM), and compare the results with modern vegetation in 

the area as well as with palaeo-records available from coastal sites. Environmental conditions 

associated with the reconstructed palaeo-vegetation are inferred from the respective macro -and 

microclimatic conditions of comparable modern vegetation types in Yakutia. We aim at ascertaining 

the macro-climatic impacts on ecosystems in Beringia’s most continental region and in one of the last 

refugia of the Pleistocene megafauna during warm and cold extremes of the Pleistocene. Furthermore, 

we reveal non-climatic impacts on palaeo-vegetation such as disturbances and eutrophication 

potentially related to the presence of megaherbivores. 
 

2. Regional setting 

The Batagay outcrop (67° 34’41.83” N, 134° 45’46.91” E) is located 10 km southeast of Batagay, the 

municipal centre of the Verkhoyansk district, Sakha Republic (Yakutia, Russian Federation). The study 

site is 2.300 m northeast from the left bank of the Batagay River, a tributary to the Yana River. The 

outcrop slopes down between 300 and 240 m a.s.l. into the foothills of Mt. Khatyngnakh (Fig. 1c).

The Yana Highlands are bordered by the Verkhoyansky and Chersky Mountains, which are 

primarily composed of volcanic intrusive rocks, siltstone and argillite of the Permian, Jurassic, 

Cretaceous and Palaeogene Periods. The Neogene period is represented by clay deposits 

interspersed with pebbles and gravel, loam, sandy loam, and sands (Vdovina, 2002). The Highlands 

with the Yana River valley are covered with thick Quaternary deposits (Katasonov, 1954). According 

to Popp et al. (2007) and Siegert et al. (2009), the Highland territory was not glaciated at least during 

the last 60 ka, whereas both the Verkhoyansk Mountains and Chersky Ridge were influenced by 

alpine glaciers during Pleistocene cold stages (Glushkova, 2011; Stauch and Lehmkuhl, 2010). 

The climate of the Yana Highlands is continental subarctic (Dfd; Köppen, 1884), it is characterized 

by low precipitation rates and by the globally largest seasonal temperature gradient exceeding 100 K. 

Climate data are available from Verkhoyansk (USSR Climate Digest, 1989), 50 km north-east from the 

study site (Fig. 1b). The mean annual precipitation amounts to only 181 mm with a maximum falling 

in summer. Within generally dry Yakutia, the upper reaches of the Yana drainage system exhibit the 

lowest precipitation resulting in a relatively high percentage of modern steppe vegetation in the 

study area (Yurtsev, 1982). 

The degree of climatic continentality oscillated in the course of the Quaternary. But the Batagay 

outcrop has been always exposed to the continental climate: it is located 410 km from the coast to 

the Laptev Sea today, 535 km at 10 ka BP, 1040 km at 18 ka BP, and 450 km during the Eemian 

(Robertson Group and Geological Institute, 1991). Continental climate with warm summers and dry 

conditions fostered grassland vegetation and large grazing mammals.  

Due to low ground temperatures associated with extremely continental climate and lacking 

inland ice cover, thick permafrost deposits formed in the Yana Highlands comparable to those in the 

coastal lowlands of Yakutia and on the shelves (Romanovskii et al., 2004). The ice-bonded permafrost 

(Ice Complex) deposits are penetrated by thick ice wedges and consist of up to 90 vol % of ice 

(Romanovskii et al., 2004). Ice Complex deposits formed syngenetically, i.e. sediments passed 

immediately into permafrost synchronous with their deposition (Schirrmeister et al., 2013). Since 

they preserve fossils in excellent condition, these deposits are an exceptional palaeoenvironmental 

archive.  
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The modern vegetation in the study region is built up of light coniferous forest dominated by 

Larix gmelinii (Isaev and Timofeyev, 2010). The study site is situated within the subzone of northern 

taiga in the Verkhoyansk district, i.e. upper Yana floral district (Isaev et al., 2010). In contrast to the 

neighbouring western districts, Pinus sylvestris is absent here, as the Verkhoyansk mountain range 

seems to be an effective migration barrier for that species. Instead, Pinus pumila is a common 

constituent of mountainous taiga in the Yana Highlands.  

In addition to L. gmelinii and Siberian dwarf pine (Pinus pumila), the modern vegetation is 

composed of Alnus alnobetula subsp. fruticosa, Betula divaricata, B. nana subsp. exilis and Salix spp. 

in the shrub layer, and the dwarf shrubs Ledum palustre, Vaccinium vitis-idaea, Arctous alpina and 

Empetrum nigrum. The ground is mostly wet and densely covered with a thick layer of lichens 

(Cladonia stellaris, C. rangiferina, C. arbuscula, Cetraria islandica, Stereocaulon paschale) and mosses 

(Polytrichum piliferum, Dicranum congestum); only few grasses and herbs occur (e.g. Polygonum 

tripterocarpum, Corydalis sibirica, Pedicularis lapponica).  

The Verkhoyansk district is characterized in places by mountain tundra and cryophilic steppes as 

the climate there is the most continental within Yakutia and represents the closest existing analogue 

of the Beringian cold stage climate. Modern relict steppe occurrences in Verkhoyansk and Ust-Nera 

are described by Yurtsev (1981, 1982, 2001). Also modern Coleopteran assemblages, resembling 

Pleistocene tundra-steppe environments, have been collected in the Yana Highlands (Berman et al., 

2001). 

 
 

 

3. Material and methods 

3.1. Material 

The Batagay outcrop represents the worldwide biggest thaw slump reaching dimensions of 800m 

in diameter and forming a steep headwall of up to 80m (Günther et al., 2015). The total height of the 

erosional cirque is estimated to be 110m from the topmost edge to the bottommost point, where the 

bedrock is exposed (L. Vdovina, Yana Geological Service, 2014, personal communication). Sediment 

loaded meltwater constantly flows off the headwall and the steep slopes forming drainage channels. 

These channels dissect a number of up to 30m high ridges (Fig. 2c) of frozen sediments on the 

bottom of the slump, forming a fan that is visible in satellite photos. Due to a slight northeastern 

inclination, the sediment-loaded meltwaters stream down to the Batagaika River.  

In summer 2014, we sampled the exposure for palaeo-ecological studies.  We distinguished five 

units in the sequence from top to bottom (Fig. 2b). The samples were taken from three different 

sections (A, B, C) according to accessibility of the deposits (Fig. 1d). At section A, in the western part 

of the cirque, the upper part of the sequence was accessible. In the central part of the cirque, in 

section B, organic-rich deposits assumedly from the Last Interglacial were outcropping. At section C 

in the southeastern part of the outcrop, the upper, central and lower parts of the sequence were 

sampled. A detailed description of the studied sediment succession is given in Ashastina (2017). The 

described stratigraphy corresponds with that of Murton et al. (2017) although different terminology 

is used.  A brief outline of the sequence and provide dating results is In Appendix A.1.  

According to stratigraphy and absolute dating, based on nine Accelerator Mass Spectrometry 

(AMS) 14C and two Optical stimulated Luminescence (OSL) samples, the Batagay permafrost 

(sediments have been deposited since the late Middle Pleistocene and experienced erosional events 

during  the Late Pleistocene and the Holocene (Appendix A.1, tables; Ashastina et al., 2017).   
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Figure 2. The Batagay thaw slump: a – view on the Ice Complex of north-western part of the slump; b – 5 units of the 

headwall according to Ashastina et al., 2017; c - view from the northern rim of the Batagay thaw slump over ca. 30 m high 

ridges of frozen sediments intersected with outflows. 

 
 

3.2. Sampling and preparation 

According to accessibility of the permafrost exposure, we took bulk samples of frozen material 

with a volume of two to ten litres about every 1 meter in vertical direction for multi-disciplinary 

analyses using a hammer and a chisel. In case an organic rich horizon was detected, it was sampled 

additionally. We obtained 45 samples in total. In the field, the samples have been split for 

sedimentological and palaeo-ecological analyses. Samples for sedimentological and palynological 

analyses were air-dried and remained otherwise unprocessed. Samples for plant macrofossil, 

charcoal, and insect analyses were wet-sieved with standard test sieves from Rentsch GmbH with 

mesh sizes of 2 and, to ensure that also small seeds and other remains are caught, 0.25mm then and 

air-dried. 
 

3.2.1. Macrofossil preparation and identification 

At the laboratory of Senckenberg Research Station of Quaternary Palaeontology, Weimar, we 

screened the samples using an Olympus SZX 16 stereomicroscope and hand-picked material suitable 

for macrofossil and insect identification. Plant remains, mainly seeds, fruits, inflorescences, scales, 

and leaf fragments, were identified to the lowest taxonomic level using a reference collection at the 

Senckenberg Research Station of Quaternary Palaeontology, Weimar, Germany (IQW, 2017), seed 

atlases, and identification keys (Anderberg, 1994; Berggren, 1969, 1981; Kats et al., 1965). The taxa 

nomenclature follows The Plant List (2017). The identification of the cryptogamic plants was 

conducted in the Senckenberg Museum of Natural History, Görlitz. 
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3.2.2. Charcoal  

Charcoal identification was performed for two samples from Unit III rich in charcoal. Microscopic 

wood anatomy is used to identify the wood species (Huber, 1951; Schweingruber, 1978, 1990; 

Schoch et al., 2004). The size of analyzed material ranged from 1 to 12 mm. Each specimen was 

picked under the stereomicroscope and split with a razor along tangential and radial planes. A 

reflected-light microscope was used to examine the cellular details of fragments in order to identify 

taxa. The charcoal was compared to the reference collection available at the Laboratory for Ancient 

wood, Langnau, Switzerland. 
 

3.2.3. Palynology preparation  

A total amount of 40 samples, each consists ca. 10 g of dry material, were used for the 

palynological analyses. The samples were chemically treated according to the methodology 

suggested by Faegri and Iversen (1989), including treatment with a 10% solution of hydrochloric acid 

for dissolving carbonates, 10% solution of potassium hydroxide for removing humic acids, and high-

concentration hydrofluoric acid for removing silicates. Acetolysis was not performed. A Lycopodium 

spore tablet (batch 483216) was added to each sample for calculating the total pollen and spore 

concentration. Pollen grains mounted in glycerine were analysed under a transmitted light 

microscope AxioImagerD2 with 400× magnification. In addition to pollen and spores, coniferous 

stomata and other non-pollen palynomorphs (NPPs) were counted. Only 19 samples contain 

palynomorphs, other are palynologically ‘sterile’ (Table with counts in Appendix A.2). Pollen 

percentages and pollen concentrations were calculated only for samples with >100 grains, based on a 

pollen sum of all detected taxa, taken as 100%. The results of pollen analysis are illustrated by the 

pollen diagram (Appendix A.3) made in Tilia software for four richest pollen samples (pollen sum 

>100); pie chart is constructed for the sample from the ground squirrel nest (Appendix A.3).  
 

3.2.4. Invertebrate sampling  

Numerous chitin fragments of different size found in the studied material, were picked using an 

Olympus SZX 16 reflected light microscope. In case the sediment stuck to the chitin and could not be 

removed with a wet brush, the specimen was suspended in water again and the minerals were then 

mechanically removed. The fragments were counted for each detected taxon and the minimal 

number of individuals (MNI) was calculated (Kuzmina, 2015; Sher and Kuzmina, 2007). Identified taxa 

were combined to 13 ecological groups following the methods of Sher et al. (2005), Kuzmina and 

Sher (2006), Sher and Kuzmina, (2007), and Kuzmina (2015). Identification has been conducted by 

comparison of the chitin fragments with a database of modern and fossil insect images (Kuzmina, 

2014). 
 

3.2.5. Reconstruction of palaeo-vegetation 

The ancient vegetation was reconstructed in a number of ways depending on the used proxies, 

pollen and palynomorphs, invertebrates or plant macrofossils. Pollen and palynomorphs have a low 

taxonomic resolution and are transported over greater distances and therefore rather provide 

information on the general character of vegetation on a larger regional scale, e.g. indicating the 

dominance of forest or rather open ground vegetation in the region. Macrofossils, in contrast, 

indicate the local conditions and allow for the precise identification of plant taxa mostly down to the 

species level. They are therefore comparable with the recording of modern vegetation even though 

the original species assemblage is fragmentary owing to incomplete preservation. Insects have often 

a very distinct ecological niche with a narrow tolerance range. The ecological preferences of 

identified insects give thus a valuable complementary indication and were taken into account for the 

reconstruction of ancient vegetation. 
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For vegetation reconstruction, we considered primarily the presence/absence of plant taxa as the 

quantity of identified remains does not necessarily reflect the actual abundance of the taxa in the 

palaeo-vegetation. The fossil number is also affected by taphonomy, preservation and reproductive 

strategy of the plant species. Despite such restrictions, past vegetation units can be effectively 

reconstructed on the basis of few identified species that are characteristic, or diagnostic, for certain 

plant communities. Following the methodology of Kienast et al. (2005, 2008, 2011) for the 

reconstruction of palaeo-vegetation, the identified vascular plant taxa were grouped into plant 

communities (syntaxa) in line with their ecological preferences and present-day occurrences 

(Dierßen, 1996; Hilbig, 1995; Reinecke et al., 2017). The phytosociological nomenclature of syntaxa 

follows the Braun-Blanquet classification (Weber et al., 2000).  

We used data on actual vegetation composition from Reinecke et al. (2017) and Reinecke et al. 

(in preparation) to characterize recent vegetation types for comparison with palaeo-vegetation (in 

total 210 vegetation relevés, 10 x 10m, species abundances). Vegetation types were classified using 

TWINSPAN (Hill, 1979) as implemented in JUICE (Tichy, 2002) and similarity of plots based on species 

composition was visualized in an ordination (DCA) using CANOCO (ter Braak and Šmilaue, 2012). Only 

relevés of most relevant vegetation types for the palaeobotanic comparison were chosen for display 

in the ordination (thus excluding 19 wetland relevés). Current environmental conditions for each 

plot, including microclimatic as well as macroclimatic variables, were added to the ordination. Slope 

inclination, northerness, easterness, and heat load (derived from slope aspect; following McCune, 

2007) were recorded in the field. Macroclimatic variables (mean annual temperature, annual 

precipitation, summer temperature, summer precipitation, winter precipitation, (temperature) 

continentality, precipitation seasonality) were downloaded from Worldclim (Hijmans et al., 2005). 

We then added only those species of the recent vegetation, which were also found in the palaeo-

record (separately for warm and cold stage species) to display, how vegetation of the late Pleistocene 

relates to modern vegetation types. 
 

4. Results and interpretation 

The macrofossil analysis of several thousands of identifiable plant remains revealed 61 vascular 

plant taxa from 23 families (Appendix A.4). The analysis of charcoal remains yielded five species. 

Pollen analysis accounted for 20 taxa from 1892 identified pollen and spores. Among invertebrates, 

102 taxa were identified (Appendix A.5).  

Most of the identified macro- and microfossils were found in two organic-rich accumulations – the 

ground squirrel nest at a depth of 4.6 m bgs and the organic layer representing Unit III, sampled in a 

depth of 43-44 m bgs (Fig. 3). These two fossil assemblages give us a clear and comprehensive picture 

on composition and structure of the vegetation at the time of deposition and allow for major 

conclusions about habitats, climate and other environmental factors. The ground squirrel nest was 

built, according to the AMS radiocarbon dating, during the onset of LGM. Unit III was deposited 

during MIS 5. Thus, the assemblages represent two major climate stages and are therefore regarded 

as references for cold or warm stage conditions. All other samples were poor in fossils or, partly, 

lacking any identifiable remains. This applies to all proxies and is obviously the result of generally 

poor preservation of organic material in the studied sediments. The poor preservation or, 

respectively, the highly corroded state of the organic material in our samples is probably owed to 

mechanical forces, microbial decomposition and, primarily, oxidation associated with the sediment 

composition, which is dominated by sand. Sandy deposits are well aerated and are therefore a good 

environment for the rapid decay of organic matter.  
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Figure 3. Reference samples position in the outcrop and view through the microscope. a – sample of Eemian Interglacial 

age; b – sample of Last Glacial Maximum age enclosed in the ground squirrel nest, the nest is about 12 cm x 20 cm; c – 

macrofossil assemblage of Eemian age; d – macrofossil assemblage of pre-LGM age. 

 

We exemplarily contrast local palaeo-vegetation and environmental setting for both climate 

extremes and compare them to modern plant communities and their respective environmental 

conditions. Based on the reconstruction of the palaeo-vegetation from these reference assemblages, 

we then extrapolate the results on the remaining, fossil poor samples to provide more generalized 

information on the history of vegetation throughout the sequence.  

 

 

4.1. Vegetation of the last cold stage  

4.1.1 Dating 

The ancient nest preserved cold stage material in excellent condition. The accessible part of the 

den had a size of about 12 x 20 cm and represented winter storage for hibernation of the ground 

squirrel (Fig. 3b). Accordingly, it was stuffed with plant material, mainly with inflorescences, fruits 

and seeds actively gathered in the territory surrounding the den during the life time of the rodent. 

The AMS 14C-dating of identified terrestrial herb remains (Plantago sp., Artemisia sp.) and ground 
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squirrel droppings resulted in an age of 26,180±122 a BP (Poz-77152). The nest was accordingly built 

during the onset of the LGM (Clark et al., 2009; Lambeck et al., 2014; Hughes and Gibbard, 2015). It is 

therefore a unique archive of northern environments out of the range of glaciations at this time.  

4.1.2 Pollen 

Palynological analyses of material from the nest revealed, with 321 pollen grains, the highest 

recorded concentration of microfossils in the whole sequence. More than half of the counted pollen 

(51.4%) falls on Caryophyllaceae. Furthermore, we found a high proportion of Artemisia (28.7%), 

other Asteraceae (11.0%), and a lower amount of Cyperaceae, Poaceae (4.0%), Ranunculaceae, 

Brassicaceae and ferns (0.3%). The pollen spectrum indicates open vegetation, dominated by insect 

pollinated herbs. Since the pollen was obtained from the cache, it probably originated largely from 

the gathered inflorescences. Thus, it cannot be ruled out that the pollen spectrum is biased and does 

not reflect the actual regional vegetation at the lifetime of the ground squirrels. The high proportion 

of Caryophyllaceae is reflected by macrofossils, which consist to a large degree of Caryophyllaceae 

species like Silene samojedorum, Stellaria sp. and Eremogone capillaris. 

4.1.3 Macrofossils 

The identification of several thousand macrofossils in the ground squirrel nest resulted in 

altogether 20 vascular plant taxa (Fig. 4). This number is relatively low but it is in line with 

observations of modern arctic ground squirrels, which cache plant material selectively. Modern 

ground squirrels in the Yukon cache only 24 of more than 100 vascular plant species growing in the 

proximity of the nest (Gillis et al., 2005). On the other hand, plant species that are abundant in the 

nest do not necessarily reflect the dominance of those plants in the local vegetation (Zazula et al., 

2007). The high proportion of nutritious inflorescences and fruits in the Batagay sample (Plantago 

canescens, Artemisia and Silene samojedorum (syn. Lychnis sibirica)) confirms the assumption of 

selective harvesting by the ancient ground squirrels. Since only the presence of diagnostic species 

and not abundances and completeness of the species spectra was considered, the potentially biased 

gathering of rodents does not foil the reconstruction of local vegetation. 

In Table 1, the identified plant taxa are listed according to their synecological preferences, i.e. 

arranged in plant communities (syntaxa) consistent with their present-day occurrences. Following 

these results, the local plant cover during the last cold stage was composed almost exclusively of 

grassland vegetation. The most abundant remains originated from dicotyledonous steppe plants such 

as Silene samojedorum (syn. Lychnis sibirica), Plantago canescens, Artemisia sp., Alyssum obovatum, 

Tephroseris integrifolia, Eritrichium villosum and Eremogone capillaris. Phlox sibirica and Potentilla 

arenosa were present in low abundance. Grasses were also present, however in lower quantity than 

dicots. We found Agropyron cristatum, Festuca cf. lenensis., Koeleria cf. pyramidata, and Poa sp. All 

of the listed plant taxa are characteristic of steppes. The arctic ground squirrel (Urocitellus parryii) in 

itself is an indicator of Pleistocene steppe like vegetation (Zazula et al., 2006). 
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Figure 4. Macrofossils of vascular plants characteristic for cold stage vegetation at Batagay, the Yana Highlands. (1) 
Selaginella sibirica megaspore; (2) Agropyron cristatum floret; (3) Koeleria sp. floret; (4) Festuca sp. floret; (5) and (6) 
Festuca sp. spikelet fragments; (7) Carex duriuscula nutlet; (8) Stellaria sp. seed; (9) Stellaria sp. calyx with opened capsule; 
(10) Eremogone capillaris open capsule; (11) Eremogone capillaris capsule fragment with unripe seeds attached; (12) 
Eremogone capillaris seeds; (13) Silene samojedorum calyx with closed capsule; (14) Silene samojedorum seed; (15) 
Ranunculus pedatifidus ssp. affinis nutlet; (16) Alyssum obovatum leaf with characteristic stellate hair; (17) Alyssum 
obovatum seed; (18) Smelovskia sp. seed fragment; (19) Empetrum nigrum leaf; (20) Phlox sibirica capsule valve; (21) 
Myosotis asiatica flower; (22) Myosotis asiatica mericarp; (23) Eritrichium villosum mericarp; (24) Plantago canescens seed; 
(25) Plantago canescens capsule; (26) Artemisia sp. flower; (27) Artemisia sp. cypsela; (28) Tephroseris integrifolia cypsela.
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4.1.4 Palaeo-vegetation reconstruction 

Following Reinecke et al. (2017), we integrate our reconstructed palaeo-steppes in the class 

Cleistogenetea squarrosae MIRKIN et. al.,1992. Recently typical steppes of West Eurasia are subsumed 

under Festuco-Brometea, whereas the Eastern steppes belong to Cleistogenetea squarrosae 

(Ermakov et al., 2006). Earlier publications (e.g. Kienast et al., 2005) assigned reconstructed Yakutian 

palaeo-steppe communities to the classes Festuco-Brometea and Koelerio-Corynephoretea following 

the European phytosociological nomenclature. This is erroneous given that Eastern steppes of 

Mongolia and Transbaikalia, and their Yakutian outposts, differ in floristic composition from 

European and West Siberian steppes and therefore belong to another floristic region - the Central 

Siberian or Mongolian-Daurian floristic region and its vegetation (Hilbig, 1995; Meusel et al., 1965). 

The results of the ordination analysis provide an overview of the patterns in modern vegetation 

samples. The two main axes of the DCA (Fig. 5a) separate steppes in the lower right corner from 

meadows in the top left, and from taiga as well as tundra steppe in the lower left corner. These 

differentiations can be attributed to differences in continentality, slope inclination and SW-

exposition, which were higher in steppes, and to differences in annual and summer precipitation, 

summer temperature and heat load, which increase towards meadows and steppes. Figure 5b gives 

the same ordination, but additionally shows axis 3 that separates taiga from tundra steppe plots. The 

ordination thus displays two divergent gradients from steppes (yellow) to light taiga (dark green) and 

from steppes over meadows (light green) to tundra steppe (blue). This roughly reflects a gradient of 

increasing moisture availability from the right to the left and increasing temperature from the top to 

the bottom. We also overlaid the corresponding species data. Species names corresponding to the 

LGM sample of the palaeo-record are coloured in blue. In today’s vegetation these species clustered 

mostly in the area of actual steppes (Koeleria pyramidata [KoelPyr], Agropyron cristatum [AgroCri], 

Alyssym obovatum [AlysObo], Eritrichium villosum [EritVil], Plantago canescens [PlantCan], 

Eremogone capillaris [EremCap], Myosotis sp. [MyosSpe], Phlox sibirica [PhloSib]) as well as in the 

actual tundra steppe (Tephroseris integrifolia [TephInt], Myosotis asiatica [MyosAsi]). However, 

single species of modern light taiga occurred in the palaeorecord of the cold stage as well (Empetrum 

nigrum [EmpNig], Ranunculus pedatifidus subsp. affinis [RanuPet]). Names of the species of the warm  

stage of the palaeo-record species are coloured in red. Today these species are associated with 

samples of modern light taiga (Moehringia laterifolia [MoehLat], Equisetum scirpoides [EqiSci], Rosa 

acicularis [RosaAci], Rubus idaea [RubuIda], Betula sp. [Betula sp], Urtica dioica [UrtiDio], 

Chenopodium album [ChenAlb]) and meadow vegetation (Silene repens [SileRep], Puccinellia 

hauptiana  [PuccHaup], Minuartia verna [MinuVer], Chenopodium sp. [ChenSpe]), although some 

species of modern steppe (Carex duriuscula [CareDur], Potentilla  tollii [PoteTol], Stellaria jacutica 

[StelJac]) and tundra steppe (Minuartia rubella [MinuRub], Ledum palustre [LeduPal]) occur in the 

palaeorecord of the warm stage as well.  

Besides the listed steppe plants, we identified few other grassland species that are characteristic 

of dry arctic or, correspondingly, alpine meadows of the class Carici rupestris-Kobresietea bellardii 

OHBA 1974. Only Ranunculus pedatifidus subsp. affinis and Myosotis asiatica could be detected. 

Eventually, the dwarf shrub Empetrum nigrum might also have occurred in Kobresietea vegetation or, 

alternatively, in the understorey of open light taiga stands. Kobresietea communities form the 

dominant vegetation in the alpine belt of mountains, i.e. the zone above the tree line. In the Arctic, 

they are today restricted to dry, exposed, well-drained sites and they are absent in zonal lowland 

habitats, which   are   characterized   by   waterlogged   ground   due   to   the  damming  effect  of the 
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Figure 5. Bi-plot of the DCA ordination (a shows axis 1 and 2; b shows axis 1 and 3) of 210 vegetation plots using recent 
plant species composition with post hoc-fitting of environmental variables (ANNUTEMP = mean annual temperature; 
ANNUPREC = annual precipitation; SUMMTEMP = summer temperature; SUMMPREC = summer precipitation; WINTPREC = 
winter precipitation; CONTI = continentality (annual temperature range); PRECSAIS = precipitation seasonality; all 
macroclimatic variables from WORLDCLIM. NORTH = northern ess (aspect); EAST= easterness (aspect); SLOPE= slope 
inclination; HEATLOAD = Heat load). Only plots of the most relevant vegetation types for the palaeobotanic comparison are 
shown (taiga, mesic meadows, steppe and tundra steppe. Species are coloured according to their respective occurrence in 
the palaeo-botanic record: last cold stage (blue), last warm stage (red) or both cold and warm stages (black).  

permafrost table. Kobresietea vegetation is regarded as a modern analogue of Pleistocene palaeo-

vegetation (Walker et al., 2001) and it is equated with tundra steppes (Yurtsev, 1982; Reinecke et al. 

2017) – a designation that is accepted also in the present paper. In earlier descriptions of 

reconstructed palaeo-vegetation, tundra-steppe was described simply as Kobresia-meadows or 

Kobresia-mats (Kienast et al. 2005, 2011). 

a 

b 
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The finding of larch remains dated to the time of the LGM proves the local occurrence of trees in 

interior Yakutia north of the Arctic Circle throughout the last cold stage. As visible in the dominance 

of light demanding herbs in the fossil assemblage, trees did not play a significant role in the plant 

cover at this time. But the finds prove that the Yana Highlands were a full glacial refugium for trees. 

According to the macrofossil database on woody taxa in Northern Eurasia (Binney et al., 2009), larch 

was so far not detected in that area before 13 ka BP. The existence of tree populations in northern 

refugia throughout the last glacial cycle might explain the rapid reoccupation of their former territory 

at the advent of the Holocene. The presence of Larix gmelinii during the rapid cooling phase is in 

accordance with its capacity to withstand extremely low winter temperatures in the continental 

climate.  

4.1.5 Insects 

The insect species composition in the nest suggests that the detected insects were not purposely 

gathered by the ground squirrels as their prey but came into the den actively by themselves or by 

chance (Fig. 6). Few more or less complete specimens of lace bug (Tingidae), the weevil Phyllobius 

kolymensis, and an ant-like beetle Anthicus ater, as well as fragments of flies and parasitic wasps 

were detected. We assume that they were occasional visitors, which might have used the den as a 

shelter. Some of them might also be randomly collected by the ground squirrels together with plant 

material. Anthicus ater occurs in meadows within the forest zone and Phyllobius kolymensis is an 

indicator of meadow-steppe vegetation (Sher and Kuzmina 2007). The detection of both species 

supports the palaeobotanical results.  

In addition, there were numerous tiny larva heads probably from small round fungus beetles 

(Leiodidae), which can be considered as regular nest inhabitants. Many of the so-called nest-beetles 

in the subfamily Cholevinae within the Leiodidae are typical occupants of mammal nests. Larvae of 

rove beetles (Staphylinidae) and carrion beetles (Silphidae) were present as well and can also be 

regarded as nest occupants.  

In summary, the palaeontological results suggest that steppe grassland dominated the 

vegetation indicating dry conditions during the cold stage. The scattered occurrence of larch was 

proven as well. The scarcity of woody plants might be not only the result of climate but it might also 

be caused by frequent disturbances of vegetation due to grazing and trampling by herbivores. 

Grazing supports grassland vegetation. Plantago canescens has a certain affinity to open, disturbed 

ground. Its abundance in the record might be a clue of frequent disturbances. Papaver sect. 

Scapiflora is another plant characteristic of barren or disturbed ground. Both taxa were recorded in 

the sample, Plantago canescens was even among the most abundant plant species in the record. 
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Figure 6. Insects from the Batagay site: 1-87 beetles: 1-3 - head, pronotum, elytron of Cymindis arctica; 4 – pronotum of Poecilus 

nearcticus; 5 - elytron of Pterostichus montanus; 6-10: head, pronotum, left and right elytra, male genitalia of Harpalus amputatus obtusus; 
11 – elytra of Pterostichus pinguedineus; 12, 13 – pronotum, elytra of P. brevicornis; 14-16 – head, pronotum, elytra of Dyschiriodes 
melancholicus; 17 - elytron of Bembidion umiatense; 18 - elytron of Dicheirotrichus mannerheimi; 19, 20 - pronotum, elytra of Cyrtoplastus 

irregularis; 21 – pronotum of Cholevinus sibiricus; 22 – elytron of Colon sp.; 23 – head of Aleocharinae gen. indet.; 24 – elytra of Phosphuga 
atrata; 25-27 - head, pronotum, elytron of Atheta sp.; 28, 29 – pronotum, elytra of Arpedium quadrum; 30, 31 – pronotum, elytron of 
Lathrobium cf. longulum; 32, 33 - pronotum, elytron of Tachyporus sp.; 34-39 - meso and metasternum, elytron, head, pronotum, thorax 

and abdomen, elytron of two or three species of Stenus sp.; 40, 41 – pronotum, leg of Aphodius sp.; 42-51 – head, mandible, prosternum, 
meso and metasternum, pronotum, metacoxa, leg, abdominal sternites, elytron of Morychus viridis; 52 – elytron of Simplocaria elongata; 
53 – head and pronotum of Ptinus sp.; 54 – elytron of Stephanopachys substriatus; 55 – pronotum of Troglocollops arcticus; 56 – pronotum 

of Atomaria kamtschatica; 57 – elytron of Cryptophagus acutangulus; 58 - elytron of Caenoscelis ferruginea; 59 – pronotum of Scymnus sp.; 
60 – elytron of Nephus bipunctatus; 61 - elytron of Heterocerus sp.; 62 – elytron of Anthicus ater; 63 - elytron of Meligethes sp.; 64, 65 - 
pronotum, elytron of Corticaria ferruginea; 66, 67 – head and pronotum, elytron of C. rubripes; 68 - elytron of Leptophloeus angustulus; 69 

- elytron of Altica engstromi; 70, 71 - head and pronotum, elytron of Bromius obscurus; 72 - elytron of Chrysolina arctica; 73 - elytron of 
Liophloeus tessulatus; 74-77 – head, pronotum, meso, metasternum and abominal sternites, leg of Stephanocleonus eruditus; 78 – head of 
S. incertus; 79, 80 – head, pronotum of Phyllobius virideaeris; 81 - head with deciduous mandible of Phyllobius (Angarophyllobius) sp.; 82, 

83 – head, elytron of P. kolymensis; 84 - head of Rhynchaenus sp.; 85, 86 – head, pronotum of Hypera diversipunctata; 87 – elytron of 
Dorytomus rufulus amplipennis. 88-92: hemipterans: 88 – pronotum of Eurygaster sp.; 89 - scutellum of Aelia sp.; 90 – whole body of 
Tingidae gen. indet; 91 – elytron of Saldula sp.; 92 – head of Cicadellidae gen. indet. 93-102: ants: 93, 94 – head, thorax of Leptothorax 

acervorum; 95-102 – thorax, pronotum, femur, coxa, tergite, head of major worker, mandible of major worker, head of minor worker of 
Camponotus herculeanus. 104-106 dipterans: 104-106 – two pupae, leg, head of Diptera gen. indet.; head of Tipulidae gen. indet. (larvae). 
108 - wing pad of Ephemeroptera gen. indet. 109-114: non-insect invertebrates: 109-111 – cephalothorax with leg, cephalothorax, leg of 

Araneae gen. indet.; 112 – whole body of Daphnia sp.; 113 – cocoon of earthworm Lumbricidae gen. indet.; 114 – egg of worm Nematode 
gen. indet. 
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4.2. Vegetation of the warm stage  

Three samples attributed to MIS 5 are available from the Batagay outcrop at section B. These 

reference samples were taken from Unit III in the lower part of an organic accumulation representing 

the fill of a former depression, in a depth of 43-44 m bgs. Direct radiocarbon dating of the sampled 

material resulted in a non-finite age of > 44 ka BP. A finite OSL date of 142,800±25,300 a was 

obtained from sediments of Unit IV underlying the sampled deposits (Ashastina et al., 2017). Unit III 

is located directly below the Yedoma Ice Complex (YIC) - deposits of the last cold stage. Its position 

between the YIC (MIS 4-2) and deposits OSL-dated to about 143 ka BP (MIS 6), Unit III is likely to be of 

the Last Interglacial origin (MIS 5). 

Since the three samples of organic debris appeared in a fine bedding alternating with silty fine 

sand beds, they might reflect a vegetational succession. The sampled material was very rich in 

macroscopic plant remains (Fig. 7). Remarkably, the samples were, however, nearly devoid of pollen. 

Just three andfive grains, respectively, were detected at depths of 43.5 and 44 m bgs.  

4.2.1 Plant macrofossils 

The identification of plant macrofossils resulted in 34 taxa. The most abundant remains originate 

from woody plants characteristic for northern taiga forests. Accordingly, the stand-forming trees 

were larch as well as tree birches. Beside several fruit scales unambiguously from Betula pendula, 

there were hundreds of Betula fruits with eroded wings, which could not be assigned with certainty 

to a definite species. A large part of them probably originated from shrub birches as they were 

detected in deposits of the Last Interglacial along the coast (Kienast et al., 2008, 2011). Shrub alder 

(Alnus alnobetula subsp. fruticosa) could be reliably identified in large quantity. The frequency of 

shrub alder in the vegetation of the Last Interglacial is corroborated by numerous nodules of the 

actinomycete bacterium Frankia alni that is a nitrogen-fixing symbiont of Alnus. Rubus idaeus was an 

abundant element of the shrub layer. Also the former presence of Rosa acicularis is verified by 

macrofossils. Additionally, few leaf fragments and buds from Salix sp. were identified. The dwarf 

shrub Ledum palustre and the herb Moehringia laterifolia as characteristic components of the 

understorey in taiga forests were likewise detected. Pinus pumila was not found in the rich and well 

preserved macrofossil assemblage indicating that this species was very likely absent. This is an 

important difference to the modern vegetation, where the Siberian dwarf pine is very common at the 

site.  

The nitrophytic ruderal plant Urtica dioica was found in high abundance. The diversity of ruderal 

plants including Hordeum jubatum, Corispermum crassifolium, Sonchus arvensis, Chenopodium sp., 

Corydalis sibirica and Papaver sect. Scapiflora in the assemblage of MIS 5 is an indication of locally 

disturbed ground. It thus is in contrast to the recent ground cover at the site with a thick layer of 

lichens and mosses. Lichens and mosses are not able to withstand disturbances (Zimov et al., 1995). 

Cryptogams effectively decrease evapotranspiration and thus potentially cause wet ground even 

under low precipitation. The detection of diverse xerophilous vascular plants such as Silene repens, S. 

samojedorum, Potentilla arenosa, Comastoma tenellum, Erigeron acris, Thymus sp., Artemisia sp., 

Festuca sp., Poa sp., and the endemic species Potentilla tollii indicate open and locally dry habitats 

existing in the area also during the warm stage. It seems that steppe vegetation continuously existed 

in the Yana Highlands already before the last cold stage and thus persisted throughout the late 

Pleistocene. Even potentially productive grasses such as Festuca sp., Poa sp. and Puccinellia sp. 

possibly serving as forage for large herbivores were present. Puccinellia sp. is typical of saline 

meadows in closed basins with fluctuating moisture, as they occur under arid conditions in

 continental regions. Beside Puccinellia ap., also Chenopodium sp., Erigeron acris and Sonchus 

arvensis are salt-tolerant. 
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Figure 7. Macrofossils of vascular plants characteristic for Last Interglacial vegetation at Batagay, the Yana Highlands. (1) Larix gmelinii 
fascicle (short shoot); (2) Larix gmelinii needle; (3) Larix gmelinii cone; (for 1-3, note the smaller scale bar);  (4) Larix gmelinii seed; (5) 
Puccinellia sp. caryopsis; (6) Alnus alnobetula subsp. fruticosa catkin bract; (7) Alnus alnobetula subsp. fruticosa catkin rachis; (8) Betula 

pendula catkin bract; (9) Betula sp. nutlet; (10) Urtica dioica seed; (11) Chenopodium sp. seed; (12) Corispermum crassifolium seed; (13) 
Stellaria jacutica seed; (14) Moehringia laterifolia seed; (15) Silene repens seed; (16) Rubus idaeus inflorescence; (note the smaller scale); 
(17) Rubus idaeus aggregated drupelets forming part of etaerio; (18) Rubus idaeus pyrene; (19) Potentilla tollii nutlet; (20) Rosa acicularis 

nutlet; (21) Ledum palustre leaf; (22) Vaccinium vitis-idaea leaf; (23) Erigeron acris cypsela; (24) Sonchus arvensis cypsela. 
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As in the pre-LGM ground squirrel nest, we found in the deposits of Unit III numerous droppings 

of rodents, which were however considerably smaller than those of ground squirrels. We therefore 

assume that they originate from small rodents of the subfamily Arvicolinae that includes voles and 

lemmings, both characteristic for taiga habitats. 
 

4.2.2 Charcoal 

High amounts of charcoal in the sediment indicate the spread of wild fire events during the Last 

Interglacial. More than 500 charcoal pieces were found within the sample from 43 m bgs. Their size 

varied from 1mm to 2cm. The identification of charcoal resulted in typical forest taxa: Betula sp., 

Larix sp. (burned needles, cone fragments, fig. 8), Salix sp., Equisetum sp., Ericaceae cf. Ledum sp., as 

well as stems of herbs. Wildfires might be a reason for the difference in species composition to the 

modern day taiga at the site. Betula pendula does not occur today at the exposure but was common 

during the Last Interglacial. It is a characteristic pioneer wood whose dispersal is stimulated by 

wildfires. Also, Rubus idaeus does not occur today but was common in the fossil assemblage. It 

likewise frequently occurs in forest glades after wildfires. It seems that disturbances of the plant 

cover, e.g. by fire action, played a crucial role for composition, structure and dynamic of the 

ecosystem at this time. The presence of other disturbance indicators supports this assumption.  

Figure 8. Examples of charcoal cellular structures typical for: a – Larix sp., b – Betula sp. Diameter of both twigs is 1 mm. 

4.2.3 Insects 

Whereas differences in the percentage of open or forest habitat species within the short 

sequence of plant assemblages within Unit III are hard to discern, the fossil invertebrate assemblages 

slightly varied within Unit III. The upper sample in a depth of 43 m bgs comprised 722 fragments of 

insects, spiders, oribatid mites, and worms (Appendix A.5). The calculated MNI is 198 belonging to 50 

species in total. As many as of 32% of the assemblage consists of forest taxa. Mainly carpenter ants 

Camponotus herculeanus (Fig. 6.95-102), which nest inside rotten wood mostly in coniferous forest, 

were detected. Two other detected species are also directly connected to forest trees. The carrion 

beetle Phosphuga atrata lives under the bark of dead wood and the weevil Magdalis carbonaria is 

limited to coniferous trees. Numerous cocoons of earthworms indicate stable environmental 

conditions and soil forming processes during the Last Interglacial. Several tiny cocoons, probably 

originating from soil nematodes, as well as remains of oribatid mites and fly pupae indirectly indicate 

pedogenesis as well. Abundant remains of plant litter inhabitants including several species of the 

family Cryptophagidae such as Atomaria kamtschatica, Cryptophagus acutangulus, and Caenoscelis 

ferruginea could be identified. These beetles are common faunal elements in forests and were so far 



Chapter 3. Warm stage woodlands and cold stage steppes 

66 

rarely detected in Pleistocene deposits. According to the rich and diverse association of forest and 

plant litter invertebrates, a well-developed forest existed at the time of the Last Interglacial. 

Grassland species were by contrast rare in the upper sample of Unit III. We found only a few 

fragments of weevils of the Cleonini tribe (Coniocleonus or Stephanocleonus) and a shield bug 

(Eurygaster sp.). These insects are regarded belonging to a group of meadow-steppe species. The low 

taxonomical resolution of identification is, however, insufficient to give more precise implications. 

The usually most common steppe-tundra indicators of NE Siberia are absent here.  

The fossil arthropod assemblage from the lower sample in Unit III in 43.5 m bgs yielded 324 

fragments of insects, spiders and oribatid mites. The estimated MNI is 137 belonging to 37 species. 

Most of the identified species do not indicate any certain habitat but have broad ecological 

amplitude. The high percentage of this indifferent group merely indicates that invertebrates were 

present in relatively high diversity. The high number of oribatid mites and fly pupae indirectly 

indicate soil formation in this layer as well. Regular forest insects are not preserved in great diversity. 

The carpenter ant Camponotus herculeanus, was present in relatively high abundance. In addition, 

numerous fossil fragments of the rove beetle genus Atheta were detected. Many species of this 

genus live in mushrooms where they pray on fungus gnat larvae. The deduced presence of 

mushrooms with their complex of abundant eaters and predators is an indirect indication for a forest 

setting. As in the upper sample, the insect assemblage comprises various plant litter inhabitants such 

as several species of the families Leiodidae, Lathridiidae, and Staphylinidae. A well-developed plant 

litter cover is a characteristic feature of forest environments. Wildfires in taiga are indirectly 

indicated by the presence of the leaf beetle Bromius obscurus who feeds on fireweed (Epilobium 

angustifolium), which is a pioneer plant that regularly occupies wildfire areas. 

The presence of open vegetation within the ancient forest is in the lower sample indicated by a 

number of regular meadow insects such as a fossil leaf-hopper and the weevil Phyllobius virideaeris. 

Some species found in the sample such as the pill beetle Morychus viridis (Fig. 6.42-51), the soft-

winged flower beetle Troglocollops arcticus, the leaf beetle Chrysolina arctica, and the weevil 

Otiorhynchus cribrosicollis are characteristic for cold and dry (cryoxerophilous) grassland vegetation, 

potentially in line with Kobresietea communities. 

Summarizing the results of plant and invertebrate analyses, we can draw the following 

conclusions. A dry herb-rich light coniferous taiga with a pronounced plant litter cover existed at the 

study site during the Last Interglacial. The long-term stability of warm stage conditions resulted in 

soil-forming processes, which are indicated by geobiontic invertebrates or soil-dwelling larvae. Plant 

and insect species characteristic for open habitats point toward frequent disturbances of the past 

vegetation as result of grazing and/ or fires during the Last Interglacial. Charcoal remains indicate 

that wildfires were an important factor in the dynamics of warm stage forest vegetation.  

 

4.3. History of local vegetation and environment throughout the sequence 

The analysis of the two above-described fossil rich assemblages that served as reference for the 

onset of the LGM and the MIS 5 as climate extremes formed the basis for the interpretation of the 

other samples. In this way, also the less well-preserved material revealed enough information to 

reconstruct the history of vegetation and environments for the entire sedimentation period. In 

contrast to our previous top down approach for the sediment description in the order of sampling, 

we proceed now chronologically, i.e. we start with the oldest and conclude with the youngest.  

Unit IV 

The only available sample from the lower sand Unit IV, taken in 50 m bgs, was deposited during 

the Saalian cold stage (MIS 6). The plant macrofossil composition with numerous remains of drought 
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adapted grasses (Koeleria sp., Festuca sp., Poa sp., Puccinellia sp.) and steppe forbs (Alyssum 

obovatum, Artemisia sp., Eritrichium villosum, Papaver sp., and Potentilla spp.) indicates that 

meadow steppes predominated at this time. Ruderal vegetation is revealed by Chenopodium sp., 

Descurainia sophioides and Draba sp. The presence of snow hare (Lepus timidus) detected by its 

dropping is an indirect indication for open landscape. Few needles of larch and a leave of Ledum 

palustre indicate the scattered existence of trees and boreal dwarf shrubs in the Yana Highlands 

already at the penultimate cold stage suggesting that northern tree refugia possibly persisted 

throughout several glacial cycles. No pollen grains were found in this sample, probably due to rapid 

accumulation of aerated sandy matrix. The sample included only three fragments from two insect 

species: a weevil Coniocleonus sp. characteristic of meadow-steppes and a leafhopper, which can live 

in various types of grassland. Altogether, the plant and insect composition of the only sample in Unit 

IV indicates that meadow-steppe vegetation existed under dry conditions in the cold stage prior to 

the Last Interglacial. Generally, the vegetation of the penultimate cold stage resembled the LGM 

meadow steppe as reconstructed on the basis of the cold stage reference sample from the ground 

squirrel nest. 

Unit III 

The vegetation reconstructed for Unit III as a reference for Pleistocene warm stage conditions 

was already described in detail. Accordingly, light coniferous taiga with evident plant litter and soil 

formation existed at the study site. Numerous xerophilous plants and invertebrates indicate that 

patches of steppe vegetation persisted throughout MIS 5 suggesting the existence of a mosaic of 

woodland and open habitats. This mosaic might have been the result of frequent disturbances of the 

plant cover due to grazing and/ or wildfires as is indicated by abundant charcoal remains. 

Unit II 

Unit II represents the YIC. Ice complex deposits form under glacial conditions. The YIC was 

deposited during the Weichselian cold stage (MIS 4 to 2). The majority of the studied samples, 

including those from the lower part of the YIC, originate from section C in the eastern portion of the 

cirque. Only a small number of samples of Unit II were taken from section A in the western part of 

the exposure. First, we describe the sequence of fossil records in section C. The plant macrofossil 

records in the lower section of Unit II at depths between 42.5 and 38.5 m bgs are scarce and 

dominated by few xerophytic forbs and grasses such as Potentilla tollii, P. arenosa, Papaver sp. and 

Poa sp. Scattered larch needles were found at depths of 40.5 and 41.5 m bgs. The pollen content was 

mostly insignificant. Only in the sample at 39.5 m bgs, 91 pollen grains were counted displaying the 

following composition: Ericales (26.4%), Artemisia sp. (14.0%), Pinus sp. (14.0%), Caryophyllaceae 

(9.9%), Cyperaceae (8.8%), Poaceae (2.2%). Pinus sp. produces 10-80 kg pollen per hectare annually 

(Birks and Birks, 1980). This productivity along with its ability to be dispersed over long-distances 

suggests that the detected pollen don’t represent the local presence of Pinus sp.  

157 fossils of invertebrates belonging to 50 taxa were found in this section, mainly characteristic of 

open, dry habitats including typical representatives of the Pleistocene tundra-steppe: the ground 

beetles Harpalus amputatus obtusus and Cymindis arctica, the pill beetle Morychus viridis, and the 

weevils Stephanocleonus eruditus and S. incertus. Forest or shrub inhabitants were not detected. 

Only a few rove beetles occurring in plant litter could be found. Among the invertebrates of other 

habitats, leaf-hoppers, spiders, fly pupae, one aquatic beetle and Daphnia ephippia were detected. 

The latter two taxa thus suggest the presence of small water ponds, e.g. ice-wedge polygonal ponds 

characteristic of YIC. The fossil records display a shift from the more humid warm stage climate with 

light coniferous woodland and intertwining steppe patches to dryer cold stage conditions with 

predominating dry open grassland interspersed by scattered woodland. 
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In the section between 37.5 m bgs, and 35.5 m bgs primarily plant macrofossils from xerophilous 

forbs like Potentilla tollii, Artemisia sp., Phlox sibirica, and Silene repens as well as the ruderals 

Lepidium densiflorum and Descurainia sophioides could be identified. Descurainia sophioides is a 

moist site pioneer that occupies disturbed and overgrazed areas (McKendrick, 2000). At 36.5 m bgs, 

arctic petrophytic pioneers, e.g. Papaver Sect. Scapiflora and Smelovskia sp. (sensu Al-Shehbaz and 

Warwick, (2006), who integrated Gorodkovia, Redowskia and Hedinia into the genus Smelowskia) 

were found. Smelowskia jacutica (formerly Gorodkovia jacutica) still occurs in the study area today 

and is therefore most probably represented by fossil seeds. We also identified few grasses like Poa 

sp. and Puccinellia sp. The plant species detected in this section indicate arid conditions and 

constitute steppe and meadow vegetation. Tree birch (Betula Subgenus Betula) and shrub alder 

(Alnus alnobetula subsp. fruticosa) were the only woody plants identified in this section; larch was 

not detected. Due to the scarcity of the fossils, it is difficult to resolve whether larch was really 

absent at the time of deposition of this section or whether its remains are merely not preserved in 

the studied sample. Invertebrates were absent in this section. 

The macrofossil assemblage in the section between 34.5 and 32.5 m bgs contained again woody 

taxa represented by Larix gmelinii and dwarf shrubs (Empetrum nigrum, Vaccinium vitis-idaea) in the 

undergrowth as well as petrophytic arctic pioneers. The presence of e.g. Silene repens, Draba sp., 

Saxifraga sp., and Juncus sp. suggests that there was no continuous taiga but more or less open 

vegetation intercalated with small groves. The pollen counts of 303-325 grains per sample in the 

section at 32.0-32.5 m bgs are quite rich. The palynological results show a dominance of taxa 

characteristic of boreal vegetation: Ericales, Betulaceae, and Pinaceae. However, also the presence of 

xerophytic and cryophytic taxa are noticeable: Artemisia (6.0-12.0%), Caryophyllaceae (5.0-6.1%), 

Cyperaceae (4.6%). Among woody taxa, pollen of Picea, Pinus and Tsuga deserve special attention. 

Pollen of Picea sp. (4.0%), Pinus sp. (2.1%) and Abies sp. are present at 32.5 m bgs. In the sample half 

a meter above, the percentage of Pinus pollen increased up to 7.3%, Picea decreases to a single grain 

and Abies pollen is absent. The composition of the woody pollen fraction points to re-deposition of 

the sediments between 32.5 and 32 m bgs, e.g. due to cryoturbation in the active layer. Also 

invertebrates indicate forested habitats. The sample from 32.5 m bgs contained 65 fragments (26 

individuals) which belong to 11 species of insects and oribatid mites. We found the ground beetle 

Pterostichus brevicornis, which occurs in wet tundra and boggy forests, the riparian ladybird 

Hippodamia arctica, several plant litter species such as Arpedium quadrum and Corticaria sp. as well 

as the auger beetle Stephanopachys substriatus and the ant Camponotus herculeanus, which are 

strictly bound to forest environments. Steppe insects were not found in this section, what makes the 

assemblage remarkably different from the interval in 42-38.5 m bgs, which was assumedly deposited 

during the Early Weichselian. The entomological results indicate a northern forest or forest-tundra 

environment. In view of the scarce fossil content, this reconstruction must be treated with caution. 

In the long section from 31.5 to 20.5 m bgs, the studied deposits were poor in all kinds of fossil 

material and almost devoid of plant remains. A single seed of the Fabaceae tribe Galegeae (cf. 

Oxytropis sp.) could be identified; a macrofossil-based vegetation reconstruction is therefore not 

possible for this depth interval. There are, however, two samples in 29 m and 27.5 m depths that 

yielded a sufficient number of invertebrate remains. The insect assemblage in the sample in 29.0 m 

bgs contains forest species like the lined flat bark beetle Leptophloeus angustulus and plant litter 

species (Cryptophagus sp.) and, at the same time, the steppe weevil Stephanocleonus eruditus. The 

sample from 27.5 m bgs yielded only 14 fragments exclusively of steppe species (Cymindis arctica) 

and the cryo-steppes species Morychus viridis. Pollen are largely absent at the lower part of the 

interval. The only sample with reliable pollen counts in 22 m depth yielded a spectrum of 314 pollen 
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grains composed of Artemisia (20.0%), Caryophyllaceae (18.8%), other herbs and grasses (14.6%), 

Cyperaceae (12.4%), Selaginella rupestris (5.4%), Asteraceae (4.1%), Ranunculaceae, Saxifraga sp., 

Poaceae (2.2%), Larix sp. (less than 1.0%), Salix sp., Betula sp., Alnus fruticosa, Ericales, and others. 

Given the small amount of tree pine pollen (less than 1.0%) it is unlikely that Pinus sp. occurred in this 

area, its pollen was likely wind-transported over far distances. At a depth of 20.5 m bgs, only 18 

pollen grains were found, reflecting xerophytic vegetation cover. The poorly preserved entomological 

and pollen analyses in the depth interval from 31.5 to 20.5 m bgs, in summary, yielded inconsistent 

indications from forest to xerophytic grass-sedge vegetation, possibly reflecting the concurrent 

presence of woodland and grassland at the transition from late Early to Middle Weichselian. 

For the section from 19.5 to 12.5 m bgs, several AMS 14C dates between 48 and 51 ka BP are 

available; we assume that this narrow age range is a result of the fact that the dates represent the 

limit of the dating method. The obtained ages thus must be used with care. The studied samples 

might represent the early Middle Weichselian. According to the identifications of the poorly 

preserved plant macrofossils, dry open ground indicators like steppe forbs (Artemisia sp., Potentilla 

arenosa, P. tollii, Alyssum obovatum, Silene samojedorum, Eremogone capillaris) and graminoids (Poa 

sp., Festuca sp.) dominated the plant cover together with the cryophytic pioneer plant Papaver Sect. 

Scapiflora. The steppe sedge Carex duriuscula is an indication of overgrazing and heavily disturbed 

ground (Hilbig, 1995). Megaspores of Selaginella rupestris confirm the indication of dry and exposed 

ground. Scattered dwarf shrubs such as Vaccinium vitis-idea, Ledum palustre and the boreal dwarf 

horsetail Equisetum scirpoides occurred at this time as well.  

The pollen analysis of this depth interval is based on grain counts from 24 to 216 per sample. The 

upper palynological spectra (19.5 m bgs) is dominated by spores from bryophytes, Selaginella 

rupestris (32.6%), ferns (7.3%), as well as pollen of Cyperaceae (6.3%) and Artemisia, pointing to a 

mixture of pioneer vegetation and dry grassland vegetation. The spectrum at 18.5 m bgs is 

dominated by pollen of Caryophyllaceae (47.0%) and other herbs (18.0%) along with 8,8% pollen of 

woody taxa: Betula sp., Salix sp., Alnus alnobetula subsp. fruticosa and Pinus sp. indicating an open 

drought adapted vegetation with scattered groves. At 16.5 m bgs, Selaginella rupestris becomes 

dominant in the palynological complex (43.5%), along with Cyperaceae 17.6%, Salix sp., 

Caryophyllaceae, and Asteraceae, which share together 9.3%, reflecting again an open steppe-like 

environment.  

Invertebrate remains were found in several depths of this section. The insect assemblage from 

19.5 m depth bgs sharply differs from all other samples of the sequence as it contains the highest 

number of chitin fragments (513). However, MNI is only 60 and the species diversity is with only 9 

species very poor. We could identify numerous sclerites including legs and mandibles of only a single 

species – Morychus viridis (Fig. 6.42-51). Morychus viridis occurs today in relictic, cold, very dry, 

exposed and snow-less ‘sedge-steppes’, mainly composed of Carex argunensis (an East Siberian 

vicariant of C. rupestris) exclusively in NE-Siberia (Berman, 1990; Sher and Kuzmina, 2007). This 

species can therefore be regarded characteristic of Carici rupestris - Kobresietea communities. Found 

in the majority of Northeast Siberian fossil assemblages, often in very high numbers, this pill beetle is 

a symbol of the Pleistocene mammoth steppe in Western Beringia (Sher and Kuzmina, 2007). Most of 

the other detected species are also typical for the Pleistocene mammoth steppe: the steppe species 

Stephanocleonus eruditus and Cymindis arctica; the xerophilous tundra weevil Hypera 

diversipunctata, the ground beetle Poecilus nearcticus and the dung beetle Aphodius sp. The 

abundance of plant litter insects and oribatid mites is an unusual feature of the assemblage as it is 

inconsistent with dry, exposed ground indicated by the mammoth-steppe representatives. The 

taphocenosis thus represents a mosaic of several different habitats.  



Chapter 3. Warm stage woodlands and cold stage steppes 

70 

The assemblages from the samples between 19.5 and 12.5 m bgs consisted, beside scattered 

terrestrial steppe-tundra species, almost exclusively of aquatic invertebrates, such as caddisfly larvae 

and Daphnia, indicating the presence of an ephemeral small water body. Altogether, the combined 

proxy data of plant macrofossils, pollen and insects indicate predominating steppe and Kobresietea 

vegetation on very dry, exposed, open ground. The relative portion of dry grassland, open-ground 

pioneer vegetation and small ponds, probably in centres of polygons, changed in association with the 

local topographic conditions in this interval of the Middle Weichselian. 

The uppermost part of unit II at section C in depths of 11.5-8.5 m bgs, provided three fossil 

assemblages suitable for vegetation reconstruction. Only scattered plant macrofossils are present in 

the samples at 11.5 and 10.5 m bgs. They prove the presence of boreal taxa, e.g. Larix gmelinii and 

Vaccinium vitis-idaea, as well as Equisetum scirpoides. The Arctic pioneer Papaver Sect. Scapiflora 

and the spike moss Selaginella rupestris indicate the presence of dry and exposed sites.  

The sample in 8.5 m depth bgs was AMS 14C-dated to about 12.6 ka BP and comprised very few plant 

macrofossils of shrubs and dwarf shrubs, i.e. Salix sp. and Vaccinium vitis-idaea, as well as Equisetum 

scirpoides and the moss Aulacomnium turgidum. According to the radiocarbon date, the assemblage 

was deposited at the very end of the last glacial period, more specifically during the Allerød 

Interstadial and is therefore regarded the youngest fossil assemblage of the entire profile. The four 

identified plant taxa are all representative of northern boreal woodland vegetation. The palynological 

complex from this sample embodies only 52 spore and pollen grains. The dominance of Selaginella 

rupestris spores and the scattered presence of Cyperaceae, Caryophyllaceae, and Asteraceae pollen 

suggest open, exposed ground. 

The remaining samples were taken from the upper part of the YIC in section A, located in the 

western part of the slump (Fig. 1d). The sample depths between sections A and C are not directly 

comparable because the elevation of the ground surface as reference point differs between the 

sampled sections. The same is true for the age of the sediments; e.g. the youngest sample in section 

C dated to the end of the last glacial, the Allerød, was taken at a greater distance from the ground 

surface than the older pre-LGM reference sample from the ground squirrel nest in section A. The 

difference in elevation of the scarp at the opposite sections might be due to uneven inclination of the 

ground surface as well as differing sedimentological facies and erosional events. Ashastina et al. 

(2017) pointed out that, in order to understand the nature of these unconformities, additional 

sedimentological and dating analyses are necessary. 

The composition of the scarce plant macrofossil assemblage about 1m below the pre-LGM 

reference sample in 5.5 m bgs includes the steppe species Silene samojedorum, Carex duriuscula and 

the halophyte Rumex maritimus as well as several needles of Larix gmelinii. The palynological 

composition of the sample in 5.5 m bgs, represented by only 84 spores and pollen, contains one 

single pollen grain of Pinus subgen. Diploxylon (tree pine), which might have been transported over 

far distances. More than two thirds of the spore and pollen sum is represented by the open ground 

indicator Selaginella rupestris. In addition, pollen of Caryophyllaceae and Asteraceae were detected 

indicating open meadow-like vegetation. 

The invertebrate assemblages in this depth interval are again composed almost exclusively of 

aquatic invertebrates, such as caddisfly larvae and Daphnia. Only scattered steppe-tundra insects 

were detected. In summary, the combination of fossil indicators reveals open vegetation with 

meadow-steppes and exposed disturbed ground. The presence of small ephemeral ponds or paddles 

is indicated by aquatic invertebrates and by the halophytic nitrophilous pioneer Rumex maritimus, 

which is characteristic of muddy sites in ponds and at lake shores periodically inundated and drying 

out in summer due to high evaporation under arid climate.  
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The next upper sample is the fossil ground squirrel nest in 4.6 m bgs, which is, as reference 

assemblage for cold stage conditions, described above in detail. According to the comprehensive 

palaeontological assemblage, grassland composed of meadow-steppes complemented by few 

tundra-steppe representatives prevailed at the study site indicating dry conditions during the LGM. 

The scattered occurrence of larch is also indicted by plant macrofossils.  

The YIC samples of unit II, with depths of 3.5-2m closest to the ground surface at section A, 

revealed only plant remains and no further fossils. As in the samples discussed above, the 

assemblages comprised a mixture of xerophytic, ruderal and dry arctic grassland species as well as 

scattered remains of larch. Dominant species in the assemblages in 3.5 and 3.0 m depth bgs are 

Chenopodium sp. and Poa sp.; a scanty amount of Papaver sp. and scattered seeds or seed fragments 

of Minuartia arctica, Puccinellia sp., and Smelovskia sp. are present as well.  

The uppermost sample in 2.05 m depth bgs was AMS 14C-dated to about 33 ka BP (Lab Nrs. Poz-

79751 and Poz-80390). Thus, the sample has an age older than the underlying ground squirrel nest 

suggesting an age inversion and a possible re-deposition of this material. Alternatively, the inversion 

might be the result of plant transport by the ground squirrels deep into their subterranean burrows 

beneath considerably older layers. Depending on the thickness of the active layer, arctic ground 

squirrels can burrow their dens deeper than 1m, when the soil substrate is coarse-grained and dry as 

in sandy deposits. Larionov (1943) reported on a ground squirrel nest found in Siberia at 2m depth.  

The assumed inversion might be also the result of erosional events associated with repeated climate 

shifts at the transition from the late glacial period to the early Holocene. We could not find any 

Holocene deposits older than 300 years BP at the exposure, suggesting that denudation rather than 

deposition occurred during the Holocene perhaps as result of thawing and destabilisation of 

permafrost near surface. The poor assemblage of plant macrofossils in 2.05 m depth was dominated 

by steppe species like Silene repens, S. samojedorum and Artemisia sp. as well as Saxifraga sp. and 

the spikemoss Selaginella rupestris. 

 

5. Discussion 

Different bioindicator groups including pollen, invertebrates, plant remains and charcoal from 

the Batagay permafrost sequence were used to reconstruct the history of vegetation and 

environments in the Yana Highlands during the penultimate cold stage, the Last Interglacial and the 

last cold stage including the LGM and the late glacial. The vegetation existing during the two climate 

extremes of the late Pleistocene, the warm stage (MIS 5) and the onset of the cold stage (MIS 2), 

could be reconstructed in very detail.  

5.1. Steppes and larch groves persistent throughout the investigated timespan  

The vegetation during cold-stages was, according to our results, dominated by meadow steppes 

resembling modern communities of Festucetalia lenensis. During MIS 5 in contrast, the zonal 

vegetation mainly consisted of open taiga forest corresponding to today’s phytosociological class 

Vaccinio-Piceetea. Primary tree species were Larix gmelinii and Betula pendula. Palynological data 

already revealed before that open Larix-Betula forests with Pinus pumila and Betula shrubs existed at 

the middle course of the Yana River during the Last Interglacial (Lozhkin and Anderson, 1995). Based 

on the new data presented here, we can specify the composition of the warm stage vegetation. 

According to our results (table 2), the woodlands were interspersed with ruderal and, in particular, 

meadow steppe vegetation, which constituted the zonal vegetation during cold stages prior to and 

after the Last Interglacial. 

Within the investigated timespan from MIS 6 to MIS 2, no substitution in the floristic composition 

was detectable but only shifts in the percentages of the respective plant communities as well as in 
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the abundances and diversity of their representatives. The studied assemblages rather showed that 

the study area was covered with meadow-steppes along with groves of cold-deciduous trees (mainly 

larch) throughout most of the reconstructed period. The respective percentages of woodland and 

open vegetation assumedly changed through time in accordance with the predominating climate 

conditions and degree of disturbances. 

The few samples in the record without larch remains were in general very poor in macrofossils. 

Therefore, it is difficult to resolve whether larch was really absent at the time of their deposition or 

whether larch remains are merely not preserved in the studied material. Cold stage larch 

macrofossils from the time before and during the LGM are reported so far only from West Siberia 

and the Russian Far East (Binney et al., 2009). The closest known glacial larch occurrence, dated to 

the Younger Dryas, is reported from the Dyanyshka peat profile situated west of the Verkhoyansk 

Mountain range at the edge of the Central Yakutian Plain about 170km south of the Arctic Circle and 

520km southwest from the Batagay site (Werner et al., 2009). The existence of larches at the western 

foreland of the Verkhoyansk Mountains during the Younger Dryas was regarded as proof for their 

survival during late Pleistocene cold stages (Werner et al., 2009). This assumption is confirmed by the 

nearly continuous presence of larch in the 50-ka pollen record from Lake Billyakh about 85km east of 

the Dyanyshka section (Müller et al., 2010). The here-presented macrofossil evidence of larch in the 

Yana Highlands north of the Arctic Circle even during the LGM is all the more noteworthy as the 

climate is (and was) there much less favourable than in Central Yakutia. The palaeobotanical results 

from the Batagay profile suggest that larch groves existed in the area already during the penultimate 

cold stage and survived throughout the entire late Pleistocene.  

On the other hand, grassland vegetation, primarily meadow-steppe, also persisted at the site 

throughout the studied timespan even under the relatively moist, full warm stage conditions of MIS 

5.  Wildfires might be the reason for the persistence of steppe vegetation in glades within the ancient 

forest. Wildfires might also have resulted in the abundance of pioneer wood species such as Betula 

pendula, Alnus alnobetula subsp. fruticosa and Rubus idaeus, which are partly more restricted or 

absent at this site today. The leaf beetle Bromius obscurus, which is restricted to Epilobium 

angustifolium, likewise indicates indirectly disturbances of forest vegetation possibly by fire. 

 Wildfires were, however, not the only factor of disturbance, likely during the Last Interglacial 

and certainly during cold stages. A high amount of ruderal taxa is characteristic of disturbed ground 

and is often considered to be related to overgrazing (Yurtsev, 2001). Steppe vegetation and 

grasslands in general are fostered by grazing (Johnson, 2009; Zimov et al., 1995). The absence of 

charcoal in the cold stage samples of Units IV and II virtually excludes fire as a disturbance factor 

suggesting that the territory was instead heavily grazed during cold stages. Ground squirrels, a typical 

steppe species, depending on open vegetation, in turn can strongly affect the vegetation and are 

regarded landscape engineers. The average home-range of Urocitellus paryyii is up to 200 metres 

surrounding the burrow (Hubbs and Boonstra, 1998). A sufficiently dense ground squirrel population 

could have affected the vegetation heavily within this range. An even more severe impact on 

vegetation can be expected from large herbivores. Numerous fossils of Pleistocene megaherbivores 

including mammoth, woolly rhino, horse and bison were found in the Batagay exposure (Novgorodov 

et al., 2013; Murton et al., 2017; and personal observations). The nitrophytic ruderal plant Urtica 

dioica, characteristic for resting or dung places (Walter, 1974), was found in high abundance together 

with other ruderals in deposits of the Last Interglacial suggesting the presence of megaherbivores 

also during this time. Zoogenic disturbances like grazing, trampling and wallowing by herbivores have 

in general a great impact on vegetation resulting in a mosaic-like structure, more openness and 

higher diversity (Johnson, 2009) stimulating the spread of pioneer plants. Meadow steppe vegetation  



 

 

 

Table 2. Environmental reconstruction for the Yana Highlands since MIS 6. Results and interpretation produced by plant macrofossil, pollen, charcoal, and insect analyses. 

Stratigraphy MIS* 
Depth, m 

bgs 
Geology Plant macrofossils Pollen Invertebrates Palaeoenvironment 

Active layer,  
Unit I 

modern   
fine sand of modern 

origin  
none   none none  modern  

Late 
Weichselian 

(Sartan), Unit 
IIc 

MIS 2 
 

2.0-8.5 Yedoma Ice 
complex, mainly 

fine-grained sand 
with thick ice 

wedges, evenly 
distributed organic 

material and 
occasional layers 

and chunks of 
higher organic 

content 

Abundant meadow-steppe 
species, few tundra-steppe 

taxa, scattered larch 
remains, few ruderal 

species  

Caryophyllaceae 
Artemisia, 

Cyperaceae, 
Asteraceae, 

Selaginella rupestris  

open grassland species, 
aquatic invertebrates, 

mammal nest 
inhabitants  

Meadow-steppe vegetation with 
largely open, exposed ground and 

scattered larch stands, sporadic ponds 
or paddles, ground squirrels and large 

herbivores 

Middle 
Weichselian 
(Karginsky), 

Unit IIb 

MIS 3 
 

10.5-19.5 

Meadow-steppe forbs and 
grasses, Selaginella 

rupestris few light taiga 
species 

Selaginella rupestris 
open ground, 

steppe, grassland, 
sparse boreal taxa 

Morychus viridis, and 
other tundra-steppe 

taxa, plant litter 
species, aquatic species 

Mainly meadow-steppe vegetation 
with tundra-steppe inclusions, mostly 
dry and exposed ground, likely small 

woods, ephemeral small ponds 

Early 
Weichselian 

(Zyryan), Unit 
IIa 

MIS 4 
 

25.5-40.5 

Meadow steppe taxa, few 
ruderals and halophytic 

grass, few light taiga 
species 

Artemisia, various 
meadow herbs, 

Selaginella, Ericales, 
Betulaceae, 

Pinaceae 

Steppe and tundra-
steppe species, also 

forest taxa, few plant 
litter inhabitants, few 
aquatic invertebrates 

Meadow-steppe interspersed by 
tundra-steppe patches and scattered 

woodland, sporadic ponds 

Eemian (?), 
Unit III 

MIS 5 
 

43-44 

Continuous organic 
layer merging at 

places  into 
accumulations of 

large macros-copic 
plant remains  

Open, herb-rich northern 
taiga forests with larch, 
tree and shrub birches, 
shrub alder, raspberry, 
wild rose; steppe and 

ruderal herbs with 
abundant Urtica, high 

amount of charcoal 

Not enough pollen 

Mostly forest species, 
plant litter inhabitants, 
cocoons of earthworms 
indicate pedogenesis, 

few meadow and 
tundra-steppe beetles,  

Dry, herb-rich light coniferous taiga 
with a pronounced plant litter cover, 

widespread wildfires, stability of warm 
stage conditions resulted in soil-

forming processes, patches of 
meadow-steppe vegetation persisted, 
probable presence of megaherbivores 

(existence of ruderal nitrophytes) 

Unit IV MIS 6   

horizontally layered 
frozen fine sand 

sediments, thin ice 
wedges only 

Mainly meadow steppe 
taxa, few ruderals, larch 

and Ledum palustre 
remains 

Not enough pollen  
One meadow-steppe 

 indicator and another 
grassland species 

meadow-steppe vegetation with 
scattered woods  

 

*Preliminary age division based on geochronology, radiocarbon, and OSL dates
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during the Last Interglacial, as detected in the present study, is a suitable pasture for large 

herbivores. The availability of such grassland vegetation is, in combination with thin snow cover, a 

crucial factor for the survival of herbivores during severe winters (Formozov, 1990). 

 

5.2. Steppes in Northeast Siberia: Pleistocene survivors or Holocene immigrants? 

The palaeontological record of the Batagay section contributes to the understanding of the 

phylogeography of Yakutian plants and animals. The site is situated in the Yana Highlands, where 

steppe communities are still being well developed and play a notable role in the landscapes (Yurtsev, 

1982; Berman et al., 2001). The question whether plants and invertebrates of modern steppes 

persisted in Yakutia throughout the Pleistocene or whether they immigrated to Yakutia only during 

the Holocene was contentious for a long time (Yurtsev, 1982; Kozhevnikov and Ukraintseva, 1997). 

Almost all plant and invertebrate species detected as fossil remains in Pleistocene deposits are 

known from modern relict occurrences in Northern Yakutia (Kiselev, 1981; Kiselev and, Nazarov, 

2009; Kuzmina, 2015; Yurtsev, 1982, 2001) even though these steppes are restricted in extent and 

species diversity. The results in the present paper support the assumption that the occurrences of 

disjunct taxa in modern steppes of Yakutia are relicts of a formerly continuous range extending from 

Central Siberia and Mongolia during the cold and dry glacial climate phases.  

Formerly, there was only one section known from the Ust’-Nera region at the upper Indigirka 

River, from where fossil insects were analysed (Kiselev and Nazarov, 2009). The Ust’-Nera record 

resulted in the reconstruction of forest and riparian habitats without contribution of steppes. The 

fossil invertebrate record of Ust’-Nera originates, however, from deposits, whose geological origin is 

poorly studied and so far unpublished and whose age is problematic (probably the Middle 

Pleistocene). The exploration of the Batagay section and its new palaeontological record provides 

important arguments to this discussion.  

The statement of Berman et al. (2001, 2011), the areas at the middle courses of Yana and 

Indigirka Rivers were refuges for steppe insects throughout long periods of the Pleistocene is 

confirmed by the results of this study. The Pleistocene entomological complex in former studies 

consisted of two relevant components: steppe and tundra. Tundra insects are, however, not well 

presented in the Batagay sequence. The Arctic tundra group is absent here, the wet tundra group 

has a percentage of less than 2%, and the portion of the dry tundra group ranges between 1 and 7%. 

In more northern sites, the percentage of the tundra groups is much higher even in interglacial 

faunas. For example, the Last Interglacial forest assemblage from the Alazeya River (Kuzmina, 2015) 

comprises 10% of dry tundra and 20% of wet tundra insect species. Mammoth-steppe invertebrate 

assemblages in northern regions might include even up to 80% of tundra species (Kuzmina, 2015). 

According to the entomological results, the Yana Highlands provided refugia mainly to steppe 

species but not to the whole mammoth-steppe complex. Similar observations were made in modern 

occurrences – relict steppes are occupied exclusively by xerophilous components of the regular 

Pleistocene community, while hygrophylous and mesophilous tundra insects are absent there 

(Berman et al., 2001, 2011). 

An analogous situation is observable in the assemblage of plant macrofossils. Whereas plants 

characteristic of steppes are preserved in high diversity and abundance, true indicators of tundra 

meadows - Kobresietea communities - are largely absent. The only true representative of the class is 

Ranunculus pedatifidus subsp. affinis. Plants diagnostic for the vegetation class Carici rupestris-

Kobresietea bellardii such as Kobresia myosuroides or Dryas sp. are absent in the Batagay 

assemblages but were relatively common in previously studied palaeobotanical records of the 
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northern lowlands (Kienast et al., 2005, 2008, 2011; Wetterich et al., 2008; Schirrmeister et al., 

2011).  

The Eastern steppes of Yakutia (Cleistogenetea squarrosae) comprise two orders – the true 

steppes Stipetalia krylovii and the meadow steppes Festucetalia lenensis. True steppes (Stipetalia 

krylovii) are dominated by steppe grasses. Meadow steppes (Festucetalia lenensis) in contrast are 

dominated by forbs. The fossil assemblage of the ancient ground squirrel nest was clearly dominated 

by herbaceous dicotyledons, i.e. forbs. Consequently, the pre-LGM palaeo-steppe community around 

the den can be interpreted as meadow steppes of the order Festucetalia lenensis. This classification 

is in accordance with the northern location of the study site and also with larch remains found within 

the den, which indicate the proximity to larch groves. Modern meadow steppes within the zonal 

steppe belt primarily occur in northern or elevated areas that are not as dry as true steppes and are 

often interspersed by herb-rich larch groves (Hilbig, 2000). True steppes (Stipetalia) have today their 

northernmost occurrence in Central Yakutia. The new results suggest that the Pleistocene grassland 

vegetation in the study area was mainly composed of meadow-steppes (Festucetalia) and that 

Kobresia-meadows were possibly restricted to higher elevations. 
 

5.3. Climatic implications 

The lack of Kobresietea representatives in the Batagay record even during cold stages might be 

the result of summer temperatures warmer than in the coastal lowlands. Warm summers are also 

indicated by the persistence of larch. Larix gmelinii requires a mean temperature of the warmest 

month (MTWA) of minimum about 10 °C and a growing season length of more than 60 days 

(Abaimov, 2010). The presence of arctic ground squirrels in itself points to an active layer depth of 

more than 1 meter because for successful hibernation, ground squirrels need to burrow deep 

enough to ensure a constant temperature throughout the winter (Buck and Barnes, 1999; Mayer, 

1953). The ground squirrel nest of the pre-LGM suggests therefore that the active layer must have 

been thicker than 1m, which indicates warm and sufficiently long summers. Beside deeply thawed, 

the ground during the Last Glacial must have been drained better than at present - an indication for 

low precipitation. Arctic ground squirrel nests were also detected in the lower sand unit below the 

YIC in the Batagay profile (Murton et al., 2017) and thus seem to be relatively common in this 

sequence occurring also in deposits associated with the penultimate cold stage.   

From the Duvanny Yar outcrop in the Kolyma lowland, numerous Arctic ground squirrel nests, 

radiocarbon dated from 33 ka BP to 27 ka BP, were described and analyzed by Gubin et al. (2001, 

2003) and Zanina et al. (2005, 2011). The composition of plant species gathered in the dens differed 

from those at Batagay at this site despite analogous habitat requirements of ground squirrels, to wit 

dry open areas or tundra steppe with well-drained substrates (Buck and Barnes, 1999). Polygonum 

viviparum, a forb species occupying cold, moist and exposed tundra soils, was the most abundant 

taxon among the cached plants in the Kolyma lowland (Gubin et al., 2001; Zanina et al., 2011). The 

strict preference of this particular species (up to 90% of a sample), even when the closely related P. 

bistorta was also available, is documented for Arctic ground squirrels in the Yukon as well and might 

be due to this plant’s high starch content and aggregated distribution (Gillis et al., 2005). The 

absence of P. viviparum and most other representatives of tundra meadows in the cache of the 

Batagay nest likewise suggests the real lack of Kobresietea communities displaying climate conditions 

warmer than in the northern lowland areas during the last cold stage. Corresponding to the plant 

composition in the Batagay nest described here, representatives of steppe and dry pioneer 

vegetation like Plantago canescens, Silene samojedorum, Poa sp., and Myosotis asiatica were 

common in ground squirrel caches at coastal sites (Maksimovich et al., 2004). Steppe and pioneer 
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vegetation was widespread throughout West Beringia during the Weichselian glacial and formed 

mosaics with meadows, Kobresietea communities, aquatic and littoral vegetation in the northern 

lowlands and with light coniferous forest in inland areas. 

Steppe plants are primarily indicators of dry ground. They consequently stand for low 

precipitation, just as halophytic meadow plants such as Puccinellia sp. and salt-tolerant muddy-site-

pioneers like Chenopodium sp. and Rumex maritimus indicate the drying out of ponds and salt 

accumulation at the ground surface due to high evaporation. Aridity is a characteristic feature of 

continental climate. Owing to the massive global sea level fall, the degree of continentality and 

aridity can be assumed to be even more pronounced during cold stages, when e.g. the northern shelf 

seas as potential source of moisture retreated by several hundred kilometers.  

Precipitation was probably lower than today also during the last warm stage. Low precipitation 

during MIS 5 is indicated by numerous steppe taxa and by the absence of Pinus pumila in the 

palaeorecord. The stone pine requires a snow depth of minimum 40cm (Okitsu and Ito, 1984; 

Khromentovsky, 2004). Accordingly, the absence of Pinus pumila in the record might indicate thin 

snow cover due to low winter precipitation or possibly high wind exposure during the Last 

Interglacial.  

Lower precipitation and more pronounced continentality during MIS 5 were observed also at 

more northern sites in Yakutia. Palaeontological records of this time from both coasts of the Dmitrii 

Laptev Strait, Bolshoi Lyakhovsky Island and Oyogos Yar, revealed the existence of subarctic shrub 

tundra interspersed by grasslands and shallow lakes in the area that is now Yakutia’s coastal 

lowlands (Kienast et al., 2008, 2011). Macroremains of larch (Larix gmelinii) at Oyogos Yar indicate 

the tree line was shifted to about 270 km north of its current position. Climate reconstructions 

revealed an MTWA about 10 K warmer than at present in the region, an extended growing season, 

high evaporation and locally thin snow cover in winter (Kienast et al., 2011). Pollen analyses from the 

Bolshoy Lyakhovsky site (Andreev et al., 2004) suggest that the vegetation cover was dominated by 

open plant associations with Poaceae and Artemisia. Shrub tundra with Betula nana, Salix sp., and 

Alnus alnobetula subsp. fruticosa existed assumedly at moister places. At Oyogos Yar, the 

palynological spectrum was likewise composed by around the half of taxa of open vegetation with 

Poaceae, Cyperaceae and Artemisia and around 40 % of woody taxa like Betula sect. Nanae, Betula 

sect. Albae, Alnus alnobetula subsp. fruticosa and Larix indicating open woodland vegetation 

alternating with grasslands (Andreev et al., 2011; Kienast et al., 2011).  

Comprehensive palynological records and tree macrofossils from Eemian sites in the Yana-

Kolyma lowlands suggest that Larix-Betula woodlands with a shrub layer consisting of Betula spp., 

Pinus pumila, Salix sp., and Alnus alnobetula subsp. fruticosa existed in areas covered today with 

tundra suggesting an MTWA 4 to 8 K warmer than today in the coastal lowlands (Kaplina, 1981; 

Lozhkin and Anderson, 1995). The mean temperature of the coldest month was reconstructed 12 K 

colder than today, indicating a greater seasonal temperature gradient and thus confirming more 

pronounced continentality.  

 

6. Conclusions 

 Meadow steppes resembling modern communities of the phytosociological order Festucetalia 

lenensis within the class Cleistogenetea squarrosae in extrazonal relict steppe patches in 

Northeast Siberia formed the primary vegetation during the Saalian and Weichselian cold 

stages. 
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 Cryophilous species diagnostic for tundra-steppe vegetation of the class Carici rupestris-

Kobresietea bellardii were unexpectedly scarce at the study site yet during the Last Glacial 

Maximum, which embodies the globally coldest climate phase of at least the last 130 ka. 

 Instead, even during the LGM, larch stands existed in the Yana Highlands indicating relatively 

warm summers with an MTWA higher than 10°C throughout the studied period. 

 The macrofossil-proven local presence of larch demonstrates that the study region was a 

northern tree refugium throughout the late Quaternary and beyond. 

 During MIS 5 warm stage, open coniferous woodland was the primary vegetation at the study 

site resembling modern taiga (class Vaccinio-Piceetea) but with birch (Betula pendula) as a 

constituent not present today. 

 High amounts of charcoal, the presence of insects feeding on fireweed (Epilobium 

angustifolium) and the finding of plants like Rubus idaeus, characteristic of burnt down 

woodland, indicate wildfire events during the Last Interglacial. 

 The presence of other pioneer plants, abundant Urtica dioica in particular, indicate zoogenic 

disturbances of the plant cover during MIS 5 suggesting the study area was an interglacial 

refugium for large herbivores of the mammoth faunal complex. 

 Even under the full warm stage conditions, meadow steppes formed a significant constituent 

of the plant cover in the Yana Highlands indicating low precipitation and potentially providing 

suitable pastures for herbivores.  

 The studied fossil record proves that modern steppe occurrences in the Yana highlands did 

not establish recently but that they are relicts of a formerly continuous steppe belt extending 

from Central Siberia to Northeast Yakutia during the Pleistocene. 

 The persistence of plants and invertebrates diagnostic of meadow steppe vegetation in 

interior Yakutia throughout the late Quaternary indicates climatic continuity and documents 

the suitability of this region as a refugium also for other characteristic organisms of the 

Pleistocene mammoth steppe including the iconic large herbivores.  
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Abstract 

Quaternary history of northeastern Asia is an intriguing chapter for palaeontologists. The 

region served as a refugium for flora and fauna of the Pleistocene, characterised by transgressing 

and regressing sea-levels. Populations isolated in refugia can result in the establishment of new 

species. Endemics of northeast Asia are understudied from phylogenetic point of view. Here, we 

report a finding of a fossil seed of an endemic steppe plant. The seed originates from the sample 

taken from the Batagay permafrost exposure, the Yana Highlands, northeastern Asia. Stratigraphic 

and chronologic dating attribute the fossil to the Last Interglacial. This new data suggests that the 

Yana Highlands were already a distribution area of xerophytes at least from the Last Interglacial on. 

The modern steppes in the region did not establish recently, but are remnants of a former closed 

steppe belt connecting Mongolia and northeastern Asia. 

Introduction 

Yakutia, Russian northeast Siberia, remained largely unaffected by glaciations in contrast to 

the most of other northern regions, as it was constantly characterised by cold and dry continental 

climate throughout the Quaternary (e.g. Svendsen et al., 2004; Barr and Clark, 2012). Here, the 

formation of arctic vegetation occurred (Yurtsev, 1968), which was accompanied by the spread of 

steppe taxa into inland Yakutia and northern highlands. These northern areas remained under 

continental climate influence since the Pleistocene cold phases until present. The level of climatic 

continentality increased due to global ice sheet growth, regression of arctic shelf seas resulted in the 

northwards retreat of the coastlines (Velichko, 1975). Due to this relative environmental stability 

under persistent continental climate, interior northeastern Asia was a refugial area for cold adapted 

biota (Sher, 1997; Abbott et al., 2000). The mountainous regions of Northeast Siberia including 

Yakutia, the Magadan region and inland parts of Chukotka are considered as a centre of speciation 

(Nikolin, 2012). Today, 80 endemic vascular plant species exist in northern Yakutia (Zakharova, 

2011). Little is known so far about the history of speciation of Yakutian endemics, among which more 

than a quarter are steppe taxa including species from Caryophyllaceae Family (Zakharova, 2011).  

According to Vlasova (2011), 24 Stellaria species exist in Yakutia, while 135 accepted species 

within Stellaria exist worldwide (253 unresolved; The Plant List, 2018). High speciation of plant taxa 

could be a consequence of areal disjunctions and adaptation of taxa to new climatic and 

environmental conditions. Despite present day occurrence of steppe endemics in northern Yakutia, 

timing of spread and speed of new species establishment are still remaining unclear. According to an 

accepted theory, steppe taxa occupied northern latitudes during Pleistocene cold stages (Yurtsev, 

1968). Understanding of the exact timing of new endemic species establishment would help to 

pinpoint the timing of climatic and/or geological events affecting flora distribution and speciation in 

north eastern Eurasia. Molecular data, e.g. DNA analysis, could provide valuable data on genetic 

similarities and relative age of species, but the timing could be delivered only by a fossil record 

(Milne and Abbott, 2002).  

In the recent study, we report on a finding of a Stellaria jacutica SCHISCHK., an endemic 

petrophytic steppe plant, sampled from the Batagay permafrost outcrop, the Yana Highlands, 

northern Russia. The dating result could help to understand the temporal frame and area of 

Verkhoyansk mountain glaciations, which governed new species establishment.  
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Study site and methods 

The Batagay permafrost outcrop is positioned in the Yana Highlands, 2.5 km northeast from 

the Batagaika River – a tributary of the Yana River (Fig.1). The Yana Highlands are within the 

continental subarctic climate (Köppen, 1884). Continentality is indicated by the globally greatest 

seasonal temperature gradient, exceeding 100 K, and low annual precipitation of only 181 mm 

(RIHMI-WDC, 2016). The Batagay permafrost sequence is composed of several syngenetically 

accumulated sediment units (Ashastina et al., 2017; Murton et al., 2017). Frozen sediment was taken 

in situ from the outcrop using hammer and chisel. The sample originating from 43 m b.g.s. contained 

numerous plant macrofossils, e.g. seeds, needles, leaves, and entomological remains. The obtained 

material was wet-sieved through standard test sieves from Rentsch GmbH with mesh sizes of 

minimum 0.25 mm and air-dried. From the residue, plant macro-remains were picked using an 

Olympus SZX 16 stereomicroscope and identified by comparison with reference material from 

carpological collections at the Senckenberg Research Station of Quaternary Palaeontology, Weimar, 

Germany (IQW, 2017)  and at the Institute of Biological Problems of the North, Far East Branch, 

Russian Academy of Sciences (IBPN FEB RAS) Magadan (MAG, 2018). The identification of Stellaria 

jacutica was verified with descriptions in various keys (Tolmachev, 1974; Malyshev and Peschkova, 

2003; Vlasova, 2011) and finally by the original description from Schischkin (1940). 

The identified macrofossils were dated with radiocarbon method at Poznan Radiocarbon 

Laboratory, Poland. The calibration was made with OxCal software (Bronk Ramsey, 2009) using IntCal 

2013; sediments were dated using optical stimulated luminescence (OSL) method at Helmholtz 

Institute Freiberg for Resource Technology, Germany.  

Figure 1. Distribution of extant large-seeded Stellaria species in Siberia (excl. the Russian Far East), modified from Malyshev 

and Peshkova (2003), and pollen fossil finds and references therein). Plant fossils of Stellaria jacutica: triangle – seed from 

the Batagay outcrop (Ashastina et al., 2017); circle – pollen from digestive tract of the Cherskij horse (Ukraintseva, 2013); 

square – pollen from digestive tract of the Mylakhchin bison (Ukraintseva, 2013). Floristic regions with modern occurrence 

are hatched: S. petrea – red; S. cherleria – blue; S. dichotoma – orange; S. jacutica – green.  
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Results  

 

Sample from 43 m b.g.s. provided a large amount of plant macrofossils for palaeovegetation 

reconstruction (Ashastina et al., submitted). Numerous findings of arboreal and steppe taxa suggest 

that vegetation cover was a mixture of a dry herb-rich light coniferous taiga and glades inhabited by 

ruderal and steppe species, such as Corispermum crassifolium, Papaver sect. Scapiflora, Silene 

repens, S. samojedorum, Potentilla arenosa, and the endemic species Potentilla tollii. This indicates 

that open and dry habitats existed at the site also during the last interglacial. Among steppe taxa we 

identified Stellaria jacutica (Fig. 2.1) – an endemic that occurs nowadays in basins of the Yana, 

Indigirka and Kolyma Rivers (Yurtsev, 1981). This is a petrophytic steppe species with main habitat in 

pebble mountainous areas, river slopes (Tolmachev, 1974). The specimen could be identified with 

certainty based on a fossil seed displaying the characteristic carpological features of that species. The 

seed identified as Stellaria jacutica is dull blackish-brown, reniform, compressed and is densely 

covered by conical papillae. The seed has a length of 2.4 mm and a height of 1.8 mm. Such a large 

seed size is, within the genus Stellaria, a rather rare characteristic and can be detected only at a 

limited number of speciesDirect radiocarbon dating revealed a non-finite age >50 ka BP. In order to 

determine the age with other dating method, the underlying sediment at 47 m b.g.s. was dated using 

OSL method and delivered the age of 142,800±25,300 a BP (Ashastina et al., 2017). On the basis of 

palaeovegetation reconstruction (Kienast et al., 2016; Ashastina et al., submitted) and stratigraphical 

position, we assume the sample to be of last interglacial origin (MIS 5).  

 

Discussion 

 

There are not many mentions of Stellaria jacutica in the palaeo-record. A few identifications 

of this species are based on pollen (Ukraintseva, 2013) and both originate from the Indigirka River 

valley. Pollen grains were found within large intestine contents of the Mylakhchin bison (Bison 

priscus occidentalis, Flerov, 1979) and Cherskij horse (Equus lenensis, Rusanov, 1968). Radiocarbon 

dating of the bison reported the date 29,500±1,000 a BP; age termination of the horse resulted in 

radiocarbon age 38,590±1,120 a BP (Arslanov and Chernov, 1977). Both findings correspond to 

Karginskiy interstadial.  Therefore, we assume that the seed reported within current study is the 

oldest seed of Stellaria jacutica SCHISCHKIN found so far within palaeo-record.  

Our identification of Stellaria is based on seed morphology that is a reliable and well-

described characteristic. Important traits within the genus Stellaria are seed size and number of 

seeds per capsule.  Such a large seed size is, within the genus Stellaria, a rather rare characteristic 

and can be detected only at a limited number of species. According to the Flora of Siberia (Malyschev 

and Peschkova, 2003), there are altogether four large-seeded species, 

S. cherleriae, S. dichotoma, S. jacutica, and S. petraea, present in East Siberia today (Fig. 2). All of 

them are restricted to dry, exposed habitats in montane steppe areas. 

A small-seeded group including the majority of Stellaria species and Cerastium composes 

another clade within Stellaria (Greenberg and Donoghue, 2011).Two clades are distinguished 

according to seed characters and in line with the molecular phylogeny. Few seeds (2-3 per capsule) 

and large seed size are regarded plesiomorphic and ancestral characters (Arabi et al., 2017). The 

small number of large-seeded Stellaria species can therefore be regarded phylogenetically old and 

conservative. The kinship of S. jacutica to other large-seeded Stellaria species such as S. dichotoma 

was already delineated in the original description of the species by Boris Schischkin (1940), who 

placed S. jacutica into the series Dichotomae.  
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Figure 2. Photographs of seeds from large-seeded Siberian Stellaria species. 1. Fossil seed of S. jacutica from last interglacial 

deposits of unit III in the Batagay permafrost exposure (Ashastina et al., 2017, submitted). 2. Modern seed of S. jacutica 

collected near the Indigirka River bank in the Chibagalakhskiy Mountains (Cherskiy Range, Yakutia). 3. Modern seed of S. 

jacutica from the Berelyokh River bank in the Magadan Oblast. 4. Modern seed of S. cherleriae 5. Modern seed of S. 

dichtoma. a. Detail of seed surfaces. 
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S. cherleriae, S. dichotoma and S. petraea occur in South Siberia (Altai-Sayan montane 

region), Southeast Siberia (Dauria, Transbaikalia) and in Mongolia. Stellaria jacutica is occurring 

exclusively in Yakutia and the Far Eastern Magadan Oblast and might be considered as a vicariant of 

one of the South-western species. Among the species with a Southern centre of distribution, S. 

cherleriae expands furthest north-eastwards today and is sporadically still (or rather again) occurring 

in Yakutia (Vlasova, 2011). This species is  a periglacial relict of the central Siberian taiga steppes 

(Antipova 2008).  Stellaria cherleriae is related to S. petraea in mountainous areas. The latter 

migrated to the north during Saalian glacial, and resulted in a new species of S. dicranoides in Alaska, 

and a new species of S. pulvinata on the south Altai Mountains (Kozhevnikov, 1983). So, S. cherleriae 

is distributed geographically closest to S. jacutica and might be supposed to be its nearest relative.  

The carpological features of both species are, however, regarded quite distinct. The seeds of 

S. cherleriae are described as wrinkled or rugose (Malyschev and Peschkova, 2003; Vlasova, 2011). In 

our collection (IQW, 2017), they resemble those of S. dichotoma, which are described as corrugate, 

being covered by amoeboid testa cells with sinuate margin (Arabi et al., 2017). The seed surface of S. 

jacutica, in contrast, is described as tuberculate and densely covered with conical papillae (Vlasova, 

2011). S. jacutica seeds might accordingly be considered resembling those of the European S. 

holostea, which are also densely tuberculate. The papillae in S. holostea seeds are, however, larger 

and fewer than those of S. jacutica and besides they are arranged in regular rows (Knapp, 2006), 

which is not the case for S. jacutica. In fact, the surface pattern of S. jacutica seeds seems to be 

rather variable as is observable by comparing seeds of different parent plants or different sites. For 

instance, S. jacutica seeds at the Indigirka River bank in the Chibagalakhskiy Mountains (Cherskiy 

Range, Yakutia) are continuously and densely papillose (Fig. 2.2). But seeds from the Berelyokh River 

bank in the Magadan Oblast possess papillae only at the back (Fig. 2.3), whereas their lateral sides 

are covered by amoeboid plates with sinuate margin, which rather corresponds with seeds of S. 

cherleriae and S. dichotoma. According to carpological and ecological characteristics, the 

phylogenetic relationship of S. jacutica with the other large-seeded Siberian rock-steppe Stellaria (S. 

cherleriae and S. dichotoma) is to be presumed. 

Given that all Siberian large-seeded Stellaria are diagnostic for steppe or tundra-steppe 

(Kobresia-meadows; Kobresietea) vegetation in montane areas, they are characteristic of cool and 

arid climate. Therefore, it can be conjectured that representatives of that group expanded north-

eastwards during the Pleistocene cold stages (Nikitin, 2006). An event of Stellaria speciation during 

the cold stage is reported for northamerican Stellaria laxmanni by Böcher (1951) that could be 

similar to the case of S. jacutica. 

According to Hernández-Ledesma (2015), the centre of diversity of Stellaria is also located in 

the mountains of central Asia. Nikitin (2006) reports that Stellaria sp. appears in the plant 

macrofossil record of southern part of Asian Russia in eopleistocene. Steppe communities with 

Stellaria sp. spread to the north via the Altai Mountains along the Yenisei, Ob´, and Lena Rivers 

(Antipova, 2008). During early Quaternary, these rivers were not blocked by ice sheets, while glaciers 

developed in the mountains and synchronous permafrost started to develop on Siberian plaines 

(Fradkina, 1995). In middle Pleistocene, Verkhoyansk Mountains experienced uplift to about 2 000 

m, intermontane basins deepened, and alpine glaciers evolved (Strelkov et al., 1965; Smirnov, 2000). 

Unglaciated highlands were refugia, where genotypical changes resulting in a loss (extinctions) or 

gain (speciation) (Böcher, 1951).  

The northern Yakutia was a refugium, harbouring the north-eastern subpopulation of large-

seeded Stellaria, where it, assumedly, became isolated. This subpopulation became thus disjunctive 

and could have evolved independently from its south Siberian progenitors via allopatric speciation. S. 
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jacutica is diploid species (2n=26) and has close cytotaxonomic characteristics to S. 

dichotoma (Yurtsev and Zhukova, 1972). The range of S. dichotoma in the Altai Mountains reaches 

2050 m altitude (Malyshev and Peshkova, 2003), this suggests that the expansion of Stellaria range 

might have occurred via Verkhoyansk mountain range. 

S. cherleriea expanded to the north by Saalian glacial (Kozhevnikov, 1983). The Last 

Interglacial resulted in decreasing of the mountain glaciers and increasing in alpine vegetation cover. 

The treeline shifted northward to the steppe territories of Yana-Indigirka Highlands, resulting in a 

mosaic plant cover: Larix sp., Betula sp., Rubus sp., including S. jacutica (Kienast et al., 2016). At the 

same time, forest-steppe was flourishing on southern slopes of Verkhoyansk Mountains (Frenzel, 

1968). During the next glacial (Weichselian), tundra-steppe covered Yana-Indigirka Highlands 

(Frenzel, 1968), divided from the Aldan River steppes by small glaciers (Siegert et al., 2007). Findings 

of S. jacutica in the Mylakhchin bison and the Cherskij horse at the Indigirka River correspond to 

Weichselian ice age (Arslanov and Chernov, 1977).  

The fossil finding of S. jacutica in the sample stratigraphically dated to the last interglacial 

proves that its speciation happened prior to the late Pleistocene. This finding is thus another proof 

that there was no glaciation of the Yana Highlands since the middle Pleistocene and that the 

environmental conditions in this region, north of the Arctic Circle, remained more or less stable since 

then, i.e. continental and dry. 

 

Conclusions 

Presence of a steppe species seed of S. jacutica in permafrost sediments stratigraphically 

dated to the Last Interglacial suggests that speciation occurred earlier and by Eemian this species 

could have spread to the east – the Indigirka and Kolyma river valleys.  

The Yana Highlands were already a distribution area of xerophytes at least from the Last 

Interglacial on. This implies a high level of warmth, or continentality in the region through the last 

120 ka. The finding suggests that modern steppes in the Yana Highlands did not establish in the 

Holocene, but that they are Pleistocene relicts.  
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Chapter 5: Concluding discussion 
 

To create a stratigraphical framework of palaeo-ecological studies, this study has outlined 

the sedimentological structure of the outcrop and described its stratigraphical units and their 

properties. It also reports the first dating results that suggest that the syngenetic permafrost 

sequence started to form at least during the Middle Pleistocene (Chapter 2). This supports the 

assumption that this unique site is of exceptional importance for palaeo-ecological and palaeo-

climatological research. A detailed palaeo-vegetation reconstruction (Chapter 3), based on 45 

samples processed for multi-proxy analyses, records the vegetation changes from MIS 6 to 2. Finally, 

analysis of the fossil find of a Yakutian endemic plant reveals that the region served as a refugium for 

flora and fauna during late Quaternary climatic extremes. 

5.1. The Batagay permafrost outcrop – one of a kind (so far) 

The Batagay megaslump is unique in several aspects. First, it is one of the few actively 

growing inland permafrost outcrops in the Yana Highlands. By inland, it is meant that the slump is 

not only far from the sea coast but also unaffected directly by large rivers or lakes. Therefore, the 

Batagay sequence provides valuable data on terrestrial climate‒vegetation interactions under a 

strong continental climate. As most permafrost exposures previously studied in Siberia are located 

along sea coasts and river banks (Chapter 1), their deposits usually include cyclic facial‒lithological 

structures, implying that the sequences experienced changes of the depositional processes that 

followed the fluvial and marine regime (Katasonov, 1954). Field observations suggest that the 

Batagay sedimentary sequence accumulated subaerially, as supported by sedimentological and 

palaeo-ecological studies (Chapters 2 and 3). No aquatic plant remains were found among the 

macrofossil assemblages, though remains of aquatic invertebrates were identified in the samples, 

which suggest the former presence of small ponds nearby, but not a subaquatic depositional 

environment. 

The prevailing sedimentary processes changed seasonally at the Batagay site: from nival 

deposition during winter to eluvial and aeolian deposition in summer (Chapter 2). The exposed 

syngenetic sequence has been deposited at least since the Middle Pleistocene (Chapter 2). 

Permafrost sequences of comparable age have been reported from the Arctic sea coast (e.g. 

Schirrmeister et al., 2002; Wetterich et al., 2009; Kienast et al., 2008, 2011; Tumskoy, 2012). This 

gives an opportunity to compare the climate history of coastal and inland sites. The general climatic 

trend seems to be similar over West Beringia: an ice complex of Middle Pleistocene age suggests that 

climate and, in consequence, mean annual ground temperatures were at least 8 °C lower than those 

of today (Romanovskii et al., 2000b). This assumption is based on the analyses of cryostructures, 

pollen and macrofossil assemblages in permafrost. Stable oxygen isotope (δ18O) analysis of ice 

wedges can provide valuable information on winter temperatures (e.g. Meyer et al., 2002; Wetterich 

et al., 2011; Opel et al., 2017): not an absolute winter temperature (in °C), but relative temperature 

information (colder/warmer than present). Comparison of δ18O results of coastal outcrops and the 

Batagay sequence suggests that Late Pleistocene deposits accumulated under winter temperatures 

significantly lower than present and reconstructed MIS 3 winter air temperatures at the Batagay 

study site were extremely low—lower than those of coastal and central Yakutian study sites (Opel et 

al., 2018). The reconstructed LGM winter temperatures differ between coastal outcrops and the 

Batagay site. For example, winter temperatures at Bol´shoy Lyakhovsky Island were extremely low 
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(Wetterich et al., 2011), while preliminary data from the Batagay suggest warmer winters than on 

the coast. However, this might be explained by the resolution of the ice-wedge sampling at the 

Batagay site, which may have missed the peak LGM wedges and needs to be constrained by 

additional dating (Opel et al., 2018). 

5.2. The Yana Highlands – refugium or not? 

Only the mountainous areas of Beringia were glaciated during the late Quaternary, while the 

majority of the landmass remained non-glaciated and hosted high-latitude biocenoses. Substantial 

endemism among plants and birds, and persistence of archaic taxa suggest a special position of 

Beringia (Tugarinov, 1929; Sochava, 1933; Hulten, 1937). The Yana‒Kolyma region has a high level of 

endemism among plants in northeastern Asia (e.g. Zakharova, 2011; Kozhevnikov and Zheleznov-

Chukotskij, 2014). These peculiarities were regarded as evidence that several refugia existed for flora 

and fauna during Pleistocene climatic extremes (e.g. Giterman, 1968; Sher, 1974; Hopkins, 1972). 

Palynological and plant macrofossil analyses have been used to pinpoint possible refugia locations 

and their inhabitants (e.g. Grichuk, 1984; Kremenetski et al., 1998; Brubaker et al., 2005; Anderson 

et al., 2006; Binney et al., 2009). Nevertheless, precise locations of these refugia are still to be found 

and each fossil enhances the spatial knowledge. 

5.2.1. Treeline and fires 

The results of this study provide valuable data for attempts to detect possible tree refugia in 

Western Beringia. The concept of refugia originates from the observation of modern Siberian 

treeline dynamics and tree distribution from the palaeo-records. The modern treeline corresponds to 

the 10 to 12 °C July air isotherm (MacDonald et al., 2008). This climate‒treeline correlation is used 

for reconstructing past treeline positions:  with increasing mean July temperature, the treeline 

advanced northwards, with decreasing temperature, the treeline retreated southwards. However, 

treeline expansion is a complex process. Open stands of single trees (often krummholz) disperse, 

expand and densify under appropriate climatic conditions (Kruse et al., 2016). Infilling of open stands 

and non-wooded areas is controlled by seed or pollen dispersal and/or by clonal growth (Laberge et 

al., 2000). Producing viable seeds depends on summer air temperature (Kullman, 2007). The pollen 

and seeds of Siberian larch species can disperse only short distances (Austerlitz et al., 1997; Ashley, 

2010). The proposed speed of modern treeline expansion in Siberia is from 2 to 10 m year-1 (Kruse et 

al., 2016; Kharuk et al., 2006); such slow dispersal suggests that postglacial recolonization of the 

northern regions was also slow. However, palaeo-records suggest a rapid range expansion. According 

to Huntley and Birks (1983), the postglacial migration rate of the treeline in Europe is estimated at 

1‒2 km year-1. Data from Siberia also show rapid expansion (MacDonald et al., 2000; Andreev et al., 

2002). The apparent contradiction between the mode and rates of dispersal can be explained by the 

existence of isolated refugia that served as nuclei for future recolonization (e.g. Sher, 1976; 

Kremenetski, 1994; Polezhaeva et al., 2010).  

Numerous studies based on palaeo-proxies such as pollen, macrofossils and DNA (Anderson 

and Lozhkin, 2002; Brubaker et al., 2005; Binney et al., 2009; Polezhaeva et al., 2010) suggest that 

tree refugia were located somewhere in the Russian Far East, western Beringia and Mongolia. The 

data in the present study support this theory and, moreover, pinpoint one of the refugia to the Yana 

Highlands. Numerous needles and seeds of larch were found in the Batagay samples (Chapter 3), 

indicating that the Yana Highlands served as tree refugium at least since the penultimate cold stage
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(MIS 6). The LIG is recorded by samples from unit III. During the LIG, annual air temperatures 

exceeded those at present, setting favourable conditions for establishing well-developed forest 

interspersed by steppes (Chapter 3). Interestingly, no macroremains of stone pine were observed 

from unit III. Stone pine, which presently occurs at the study site, requires a snow depth of at least 

40 cm to protect itself from winter frost (Khromentovsky, 2004). Its absence in the palaeo-record 

suggests that winter precipitation here was less than present and/or wind velocities were greater. 

On the other hand, limited snow cover did not hamper larch, which is strongly cold-resistant. 

Permafrost limits drainage and provides accessible soil moisture in the overlying active layer, so that 

vegetation did not suffer from increased summer air temperatures and decreased precipitation.  

Charcoal provides direct evidence of fire. Plant macrofossils and chitin remains indicate the 

presence of plant litter. Under warm summer conditions, dry plant litter could be flammable and 

ground wildfires could be widely spread by wind. The thickness of the active layer and soil drainage 

increases in burnt areas (Kharuk et al., 2011).  As larch is a pyrophitic species (Sofronov et al., 2000), 

larch seedlings together with ruderal plants found in LIG deposits (e.g. Epilobium angustifolium, 

Rubus idaeus) could have benefited from fires. Periodic fires clear tree stands (producing a mosaic of 

open and wooded habitats), release soil nutrients (accompanied by lush regrowth of early 

successional stages, including ruderal species), and enhance germination of larch seeds (Kharuk et 

al., 2011). According to Kharuk et al. (2011), fires in north Siberia (66° N) occur every 200±51 years 

on average, constituting an important driver of vegetation diversity.  

The shape of unit III varies along the permafrost exposure. It is a prominent thin black layer 

traceable all across the headwall, but in places it thickens downward to form to 5 m thick v-shaped 

structures. Such 'organic rich pockets' may have a fire-triggered origin (Sofronov et al., 2000). It is 

proposed that thick organic-rich accumulations correspond to the former v-shaped gullies whose 

modern counterparts are visible today along the top of the Batagay headwall, while the thin organic-

rich layer crossing the headwall is a former ground surface. 

Charcoal was less abundant in other samples of the Batagay record, albeit larch macrofossils 

were persistently present. The climate extreme opposite to the warm last interglacial is the cold Last 

Glacial Maximum. In the sample dated to pre-LGM (26 14C ka BP) we also found needles of larch. 

Pollen analysis showed a low concentration of larch, but such a mismatch can be explained by 

generally low pollen productivity of larch and poor preservation (Clayden et al., 1996). During the 

LGM, continentality was most likely intensified in Yakutia due to the exposed continental shelf. The 

Yana Highlands served as refugia for trees, larch in particular due to a combination of increased 

climatic continentality with relative warm summers, and low precipitation compensated by moisture 

in the active layer. 

5.2.2. Steppes and mosaic of vegetation 

As discussed above, the Yana Highlands harboured trees during several climatic extremes. 

According to several studies (e.g. Yurtsev, 1982; Boeskorov, 2006), such refugia also existed for 

steppe vegetation. The presence of fossils of steppe species within nearly all studied Batagay 

samples suggests that the Highlands were also refugia and nuclei for the distribution of xerophytic 

vegetation. The fossil record and, especially, the finding of an endemic steppe plant (Chapter 4) 

prove that modern extrazonal steppes of Yakutia are relicts of a formerly connected xerophytic belt. 

The number of endemics in floras of northern Yakutia and Chukotka is rather high (from 30 to 40%) 

and most of the endemics have south Asian ancestors (Zakharova, 2011; Kozhevnikov and Zheleznov-
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Chukotskij, 2014). Additionally, 22 of 80 Yakutian plant endemics are steppe taxa (Zakharova, 2011), 

suggesting that a steppe component was prominent in the ancient vegetation. The steppe belt was 

fragmented by glaciers during the Pleistocene cold climatic phases (e.g. Strelkov et al., 1965; 

Velichko, 1984; Fradkina, 1995; Siegert et al., 2007). Xerophytic plants survived in isolated refugia, 

where speciation and adaptation to new environments resulted in the evolution of new species 

(Chapter 4, Böcher, 1951; Kozhevnikov, 1976; Comes and Kadereit, 1998; Hewitt, 1999; Willis and 

Whittaker, 2000).  

The data from this study indicate that the dominant vegetation component in the Yana 

Highlands during cold stages was meadow steppe rather than tundra, as was the case on the coast. 

This may have been induced by climatic continentality of the region—low precipitation and a large 

annual temperature range during the low sea-level stands. The assemblages of plant macro and 

microfossils together with invertebrate remains reveal fewer tundra taxa during the Late Pleistocene 

at the Batagay site than records from the present coastal areas (Kuzmina, 2015; Kienast et al., 2005, 

2008, 2011; Wetterich et al., 2008; Schirrmeister et al., 2011). For example, the percentage of tundra 

invertebrates within Batagay samples varied from 1 to 7%, but reached 80% in the coastal lowlands 

(Chapter 3). Macrofossil assemblages of the Batagay site almost lack taxa of such tundra-steppe 

component as Kobresietea communities (Reinecke et al., 2017), which abound in coastal lowlands 

(e.g. Kienast et al., 2005, 2011). The difference in summer air temperatures between inland and 

coastal areas (continentality, discussed above) might be an explanation.  

To summarise, the new data support the theory of a heterogenic structure of Beringian 

vegetation (e.g. Yurtsev, 1968; Sher, 1974; Schweger and Habgood, 1976; Giterman et al., 1982; 

Ager, 1982; Kienast et al., 2011) that was clearly distinct from the homogeneous wet tundra with 

sporadic patches of steppe in the present-day coastlands. A mosaic structure of Pleistocene 

vegetation is revealed by a mixed vegetation signal from pollen, macrofossils and invertebrates and 

it may reflect varying micro-relief and climate settings. But there is another possible driver that could 

have impacted the vegetation cover in the Yana Highlands. 

5.2.3. Vegetation‒herbivore interactions 

Herbivores were another possible driver of heterogeneity of the Pleistocene vegetation 

cover at the Batagay site. This assumption arises from observations of modern herbivore‒vegetation 

interactions in Africa, where high density and large body size of herbivores produce a substantial 

impact on vegetation (Dublin et al. 1990; Owen-Smith, 1999). A similar observation experiment is 

currently underway in the north-eastern Siberia (Zimov et al., 1995).  

Direct impacts of herbivores on vegetation may include physical removal of plants and, 

therefore, decreasing plant density and preventing one plant species from becoming dominant; and 

utilization of various individual plants/parts of the plants by different herbivores. Indirect factors 

include herbivores consuming dry plants, a boost of nutrient recycling; affecting primary production 

and dispersing seeds. Such actions arise from herbivore size and population density. Herbivore 

weight varies from several grams (e.g. pika) up to ton (e.g. bison, musk ox), which is important as the 

amount of daily herbage consumption (c) relates to the body weight (w): C=0.09 W 0,75 (Sinclair, 

1975). Hence, the larger the herbivore, the greater the amount of biomass consumed, the greater 

the distance roamed and the greater the impact on the vegetation. Herbivores heavier than 100 kg 

are regarded as megaherbivores (1 ton according to Owen-Smith, 1988) and have a tremendous 

impact on the vegetation. In Africa, they are called landscape engineers (Dublin et al., 1990; Owen-

Smith, 1999). 
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Figure 5.1. (a) Bison in Ust´-Buotoma Bizonarij enclosure, central Yakutia. Black line highlights the fence of the 

enclosure. (b) A larch tree trunk with marks produced by bison horns. (c) Bison just before wallowing. The 

intensively disturbed open-ground pits contrast with the surrounding intact vegetation. (d) Bare ground of the 

wallowing pit; photograph from F.Kienast. All photographs were taken in July 2015 in Ust´-Buotoma Bizonarij, 

central Yakutia  

 
Trampling and foraging can physically remove plants. Trampling creates open and/or bare 

clearings in the vegetation cover. Fragile herbaceous plants can be suppressed by trampling or 

wallowing. For example, bison wallow several times a day (Knapp et al., 1999). Taking a dust bath 

helps them rid annoying insects and clean their fur. This activity removes plant cover and creates a 

bare dust bowl 3‒5 m in diameter (Knapp et al., 1999; personal observation, 2015, central Yakutia). 

The fringes of wallows are a suitable habitat for ruderal plant species. Disturbances by herbivores 

help to enrich species diversity (Collins and Barber, 1985). Tree stands are also affected by 

herbivores. According to observations of this study in central Yakutia, bison can damage trees by 

horn scratching and bark removal. Trees with weakened insulation and damaged xylems dry off; due 

to megaherbivore actions, the landscape becomes more open (Fig. 5.1). Small herbivores can also 

damage vegetation, though their impacts have received less attention than those of large animals. 

Arctic ground squirrels can effectively change the vegetation around the burrow (Wheeler and Hik, 

2013). The average home-range of an arctic ground squirrel is up to 200 m around the burrow 

(Hubbs and Boonstra, 1998). A dense squirrel population affects the vegetation heavily within this 

range: caching and trampling lead to establishment of disturbance-tolerant vegetation, while 

burrowing itself may bury vegetation (Wheeler and Hik, 2013). Price (1971) estimated that a colony 

of arctic ground squirrels excavates 18 000 kg of soil per hectare per year, which creates ground 
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instability and might affect the drainage of soil (Hall and Lamont, 2003). Hence, it is suggested here 

that small herbivores should be treated as small-scale landscape engineers. Feeding strategy can also 

directly influence vegetation patchiness. Herbivores can graze (bison, saiga, ground squirrel), browse 

(moose) or adopt mixed feeding strategies (musk ox) to use all available food (grasses; herbs; leaves, 

twigs and bark of trees and shrubs). The food diversity probably resulted in a variety of anatomical 

specializations of herbivores to exploit a certain food resource. Thus, several herbivore species could 

coexist within one range (Guthrie, 1982). Guthrie (1982) proposed a model of complementary 

segregation of Pleistocene herbivores on the basis of herbaceous plant diversity (Fig. 5.2a). 

According to his theory, small forbs and leafy grasses were consumed by saiga, short and medium 

grasses by bison, medium grasses by horses, large-stem grasses by mammoth, and leaves and tips of 

twigs by moose. The plant communities were distributed along a topographical gradient, providing 

spatial allocation of the herbivores (Fig. 5.2b)  

Herbivores alter the vegetation indirectly as well. They reduce the amount of detritus and 

consume dry plants in winter. Therefore, they decrease the probability of ground wildfires by 

removing potential fuels (Bond and Keeley, 2005). In the absence of herbivores, nutrients are locked 

in the plants and, therefore, do not contribute to the nitrogen cycle. The digestive systems of 

herbivores convert plant nutrients into usable form and release them as urine and faeces. These 

supplementary inputs of nutrients affect plant primary production and boost growth of ruderal 

plants. This leads us back to the idea (e.g. Redmann, 1982; Guthrie, 1982; Zimov et al., 1995; Yurtsev, 

Figure 5.2. (a) Dietary specialization of herbivores on the basis of herbaceous plant diversity. (b) Foraging ranges of 

herbivores along the topographic gradient. Light green colour illustrates species found at the Batagay site. Pictures from 

Guthrie, 1982. 

 

2001) that this is a self-sustaining system: open landscapes and mosaic-like vegetation cover are 

maintained by herbivores; patchy vegetation provides palatable forage; grazing is accompanied by 

trampling; trampling creates open landscapes and boosts diverse vegetation. 

Present-day interactions of herbivores and vegetation can be measured, observed and 

described, and the same interdependencies can be applied to past interactions (Johnson, 2009). This 

approach requires data about past herbivore density and diversity. For example, based on counts of 

vertebrate bones, Zimov et al. (2012) estimated a herbivore biomass of 10.5 tons km-2 in northern 

Siberia, consisting typically of one mammoth, five bison, 7.5 horses and 15 reindeer per km2. But it is 

difficult to obtain accurate estimates of herbivore density and diversity, because the more 
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permafrost thaws, the more data it releases. Most likely, the animal density was spatially 

heterogeneous and existing calculations are speculative in terms of a minimum number of 

individuals but valuable in terms of herbivore diversity. Most Pleistocene herbivores were grazers, 

and this suggests that productive cold-adapted grassland was the key vegetation type (Guthrie, 

1990). Species diversity originates from a variety of ecological niches (Whittaker, 1975; Redmann, 

1982). Hereby, we have a line of evidence that a vegetation mosaic (Chapter 3) and diverse 

herbivore populations existed in the Yana Highlands during the Late Pleistocene (Novgorodov et al., 

2013). One of the main questions is if we can trace the indicators of herbivore presence in the 

vegetation record lacking animal fossil remains. 

One of the new proxies of herbivore presence is dung fungi analysis based on spores of 

Sordariales (Sordaria, Podospora, Gelasinospora) and Pleosporaleas (Sporormiella) (e.g. Burney et al., 

2003; Robinson et al., 2005; Gill et al., 2009; Gill, 2014). For example, Sporormiella fungi reproduce 

exclusively in herbivore dung. The presence of these highly distinctive spores in spore‒pollen 

assemblages is inversely proportional to the charcoal abundance in the palaeo-record (Gill, 2014). 

With a decrease of herbivore populations (decrease of Sporormiella), the plant biomass and litter 

increased, resulting in the intensification of wildfires (increase of charcoal abundance). The dung 

fungi proxy was tested on a modern bison population (Gill et al., 2013). This promising proxy, 

however, did not show impressive results for the Batagay samples. As reported by Novgorodov et al. 

(2013), the paleontological record indicates herbivore presence at the Batagay site. Nevertheless, 

altogether 20 spores of dung fungi were detected within four of 45 samples. Most striking was the 

absolute absence of dung fungi in the ground squirrel sample. The sample that contained the highest 

number of droppings was expected to be a “hot spot” of dung fungi, but it was not. On the contrary, 

spores were found in the last interglacial sample, which is rich in charcoal remains. In conclusion, the 

Sporormiella proxy should be treated with caution as the preservation of spores in permafrost 

sediments and their general taphonomy (e.g. the influence of fire on spore preservation) are not yet 

well studied and the number of detected spores is too low for quantitative conclusions. 

Ruderal plant species are another proxy for herbivore presence. Ruderal plants are often 

halophytes at moist sites and disturbed eutrophytic habitats (e.g. Grime, 1979; chapters 3 and 

5). Fire and herbivores could promote fertilization (Yurtsev, 2001; Chapter 5). Ruderal plants have 

several features that benefit herbivores:  they have a burst of spring growth and are usually not well 

defended with toxic allelochemical compounds (Janzen, 1975). In order to specify how exactly large 

herbivores affect the vegetation, Reinecke et al. (in prep) performed plot analyses of the vegetation 

cover within and outside of enclosures in central and northern Yakutia to detect plant species that 

can be regarded as ruderal plants accompanying large herbivores. In the Batagay palaeo-record 

Urtica dioica, Plantago canescens, Hordeum jubatum, Descurainia sophioides, Sonchis arvensis are 

herbivore indicator species. Therefore, the presence of herbivores at the Batagay site can be 

assumed for the entire late Quaternary and securely pinpointed at least to the Last 

Interglacial, MIS3, pre-LGM and LGM(Chapter 3).  

 

Box 2. Grazing at the limit – large herbivore effects on extrazonal steppes and surrounding 
vegetation in the extreme climate of northeastern Siberia. J. Reinecke, K. Ashastina, F. Kienast, 
E. Troeva, K. Wesche (in preparation). 
 

The dietary preferences of most herbivores are well recorded in Siberia, but the exact substitution of 
floristic taxa as an effect of herbivores is still poorly investigated. To fill this knowledge gap, we collected 
and analyzed data in Yakutia, eastern Siberia. Extra-zonal grasslands there serve as a natural pasture for 
horses and cattle, and small mammals such as hares and ground squirrels. At the same time, Yakutia 
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harbours two sites dedicated to the projects on rewilding large herbivores—Pleistocene Park (Zimov et 
al., 1995) and Bisonary (Reinecke et al., in prep.). Our study region includes five locations (two rewilding 
enclosures and three sites grazed by domestic livestock) that are spread along the climatic gradient from 
continental to maritime conditions (Fig. 5.3).  

We visited two fenced grazing sites, the Pleistocene Park in northern Yakutia, close to Chersky, and the 
Ust´-Buotoma Bisonary in central Yakutia, along the Buotoma River mouth. Pleistocene Park was founded 
in 1996 to run an experiment to convert taiga vegetation to tundra‒steppe through impacts of large 
herbivores. A small enclosure (50 ha) with one European bison and three musk oxen is surrounded by a 
fenced area (1600 ha) populated in July 2015 by approximately 40 horses and several moose. Pastures 
include taiga and large areas of floodplain meadows. Animals are fed in winter to secure their survival 
and built up high-density populations.  

The Bisonary was established in 2006 as a part of the governmental program of reintroducing bison to 
Yakutia. In 2006 the Bisonary had 30 Canadian forest bison grazing in mostly secondary meadows, 
steppes and dark taiga. By 2015, 35 bison roamed within a 118.5 ha enclosure. Semi-wild horses grazed 
freely on the meadows and steppes outside the fence. 

In order to study the effects of herbivores on vegetation we sampled vegetation plots sized 10 x 10m, 
using the Londo scale for cover abundance of plant species. The intensity of grazing by bison, horse, cattle 
and small mammals was calculated based on the density of droppings (in %). To determine the influence 
of macro- and microclimate within the sites we compiled several BIOCLIM variables (Hijmans et al., 2005) 
and calculated northerness, easterness, and heat load from field observations for each plot. Plant 
functional traits of the most abundant taxa were measured as well.  

We carried out variation partitioning and serial partial canonical correspondence analysis (pCCA) to 
test the effects of each variable group on species composition: macroclimate (continentality, winter 
precipitation, mean summer air temperature), microclimate (slope angle and direction, heat load, 
easternness, northernnes) and grazing (bison, horse, cattle, small mammals). We then carried out a final 
pCCA with macroclimate as co-variables and microclimate and grazing as environmental variables, using 
interactive forward selection to find environmental variables that are significant (p<0.05) in explaining 
species composition. 

Effects on species composition. 
Bison: According to the pCCA (Fig. 5.4) Chenopodium album, Leonurus quinquelobatus, Geum 

aleppicum, Plantago depressa, Artemisia vulgaris and Potentilla longifolia relate to bison grazing. 
Trifolium repens grows on heavily trampled ground, and Elymus repens and Sibbaldianthe bifurca are 
dominant on drier grazed sites. Carex supina, Chamaerhodos erecta, Linaria acutiloba, Sibbaldianthe 
bifurca and Potentilla longifolia indicate intensive grazing in steppes.  

Other herbivores: Indicators for horse grazing are more difficult to discern, but Goniolimon speciosum 
and Koeleria pyramidata correlate with it. Indicator species for small mammal grazing are also unclear 
and probably relate to the effect of slope inclination. 

Effects on trait composition. 
Bison grazing density is correlated with an increasing number of hemicryptophytes and therophytes, 

and a decreasing number of chamaephytes. Bison disturbance increases the number of defenseless plants 
and increases the percentage of open ground.  The proportion of long-leaved plants also rises under 
bison grazing pressure, while relative inflorescence height tends to decrease. Slopes grazed by small 
mammals feature more cushions, fewer dwarf shrubs and more hairy plants. 
In overall terms, vegetation, slope inclination and small mammal grazing are positively correlated with 
taxonomic and functional diversity indices. Heat load and horse grazing are only associated with 
increasing species richness. Bison grazing is associated with decreased functional diversity, but not with 
taxonomic diversity.  

In conclusion, herbivores have little to moderate effect on vegetation across the study area. The 
strongest impacts are created by bison through mechanical disturbances of soils (wallowing and 
trampling) and woody vegetation (shrub destruction and de-barking of trees). As a result, annual weeds 
occur, indicating the creation of open ground and fertilization through droppings, while other species 
locally indicate soil compaction. Forest vegetation may locally shift to more light-demanding species. 
Grasslands may shift to a more xeric character in continental macroclimate and profit from litter 
reduction in wetter conditions. Despite these local impacts of bison, animal densities today seem to be 
too low to have significant effects on vegetation on the landscape scale, regardless of livestock species. 



Chapter 5.2. The Yana Highlands – refugium or not? Vegetation-herbivore interactions 

95 

 

 

Figure 5.3. Map of the Sakha (Yakutia) Republic with five studied locations. Triangles indicate the sites 
grazed by domestic livestock. Circles pinpoint two rewilding enclosures: a red circle indicates Ust´-Buotoma 
Bisonary, a blue circle stands for Pleistocene Park. The map of the Yakutia Republic is from 
https://commons.wikimedia.org/wiki/File:Relief_Yakutia.png, the map of the world is from 
https://freeclipartimage.com/article/top-78-world-map-clip-art. 

 

 
Figure 5.4. Ordination of overall data set: pCCA with macroclimate as co-variable and significant. Microclimate and 
grazing variables (forward selection, 499 permutations); total variance: 12.9, explained variance: 5.5%, 
eigenvalues: Axis1: 0.29, Axis2: 0.16; only most abundant species used and 40 best fitted species shown; species 
square root-transformed. Abbreviations of species names used in a detrended correspondence analysis (DCA) plot 
are in Appendix A.6. 
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Indeed, the most pronounced effect was observed in the Bisonary, where animal density was 0.29 
individuals/ha. In the enclosures of the Pleistocene Park animal densities are low (0.08 individuals/ha) 
within the kern fence and only 0.03 individuals/ha within the outer fence. Higher densities of keystone 
species like the bison, as well as multiherbivore grazing systems might be needed for a more pronounced 
and consistent effect of large herbivores. The short duration of grazing projects and inappropriate 
habitats for grazing experiments could also be reasons for the observed moderate effect of herbivores on 
vegetation. 

 

The Yana Highlands served as a refugium for a variety of Pleistocene herbivores (Novgorodov 

et al., 2013). The results of the current study might be interpreted to draw the following picture. The 

Batagay site, like most of the former Beringia landmass, is located north of the Arctic Circle, so the 

onset of the polar day provides enduring sunlight and warmth for plant growth. Rising spring 

temperatures melted the thin snow cover (Chapters 1, 3), heated the ground and stimulated growth 

of nutritious plants favoured by herbivores haggard after winter (Guthrie, 1982). Variations in the 

digestive system and foraging, specialisation on particular plant species and/or plant parts granted 

diversity among the numerous herbivores. Grazing and trampling actions of animals stimulated and 

maintained the mosaic-like structure of vegetation that was enhanced by a topographic gradient of 

the Highlands. Slopes of the hills/river terraces were well-drained and covered by productive 

meadow‒steppe vegetation interspersed by larch stands. Plains and foothills with thermokarst 

depressions were a suitable environment for halophytic plants preferred by saiga (Guthrie, 1982). 

Well-drained ground, usually at the foothills in permafrost areas, was a feature important for the 

existence of ungulates, mammoths and burrowing animals. The small size of ungulate hooves (saiga; 

Martin, 1982) and great pressure per cm2 generated by the great body mass of mammoth suggest 

that those animals would have sunk into moist ground of floodplains (Shilo et al., 1983). Polar day 

conditions and relief provided a variation in the temporal distribution of new growth throughout 

summer (Guthrie, 1982). The floodplain of the nearby Batagaika and the Yana rivers likely were 

fringed by forests (with e.g. Salix, Alnus) and served as a supplementary summer food source. In 

winter, pasture range in the floodplains were actively visited, as the frozen ground lost its boggy 

properties and dried floodplain grasses were actively consumed by the herbivores, supplementary 

food resources as bark and twigs of trees played an increased role in the foraging. Thin snow cover 

(caused by climatic continentality) on the hill slopes was either removed by winds or easily removed 

by animals and, therefore, dry meadow‒steppe plants were accessible to herbivores. Water 

demands could be fulfilled by springs (in the Yana Highlands as reported by Shvetsov, 1951), eating 

snow and/or naled´ ice. Studies on wear of the mammoth tusks (Vereshchagin and Tikchonov, 1986) 

suggest intensive assisting in breaking river or cleft ice, likely to compensate water demand in 

winter. Herbivores were successful in enduring drastic continentality - long fur with a thick fat layer 

were perfect insulators under dry air conditions; small hooves of ungulates were perfect for roaming 

on firm and dry ground of the Highlands. Snow thickness of > 40 cm is critical for most herbivores 

(e.g. Formozov, 1990; Vereshchagin and Baryshnikov, 1982). The Yana Highlands might have served 

as a pasture—all year round or seasonally—for the Pleistocene herbivores due to the benefits of 

climatic continentality in the region. The vegetation patchiness persisted during all climatic extremes 

of the Late Pleistocene. Only the proportion of vegetation communities at the site changed. 

5.3. Conclusions and Outlook 

The Batagay permafrost sequence has a high scientific potential but, to date, has been 

understudied. This thesis reports sedimentological and palaeo-ecological data, adding valuable 
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information to the environmental history of West Beringia. The perennially frozen material from the 

Batagay outcrop was used to reconstruct vegetation and climate history since MIS 6; as the 

lowermost sediments could not be sampled, the beginning of the sequence is older still. According to 

the data from the coastal lowlands and plant and entomological remains from Batagay, a single 

mammoth steppe biome existed in north-eastern Asia during the Pleistocene. The percentages of 

each biocenosis varied according to changes in climatic conditions and local geographical settings. 

The Yana Highlands served as a refugium for larch trees and steppe vegetation during 

climatic extremes of the Last Interglacial and the rapid onset of the LGM. Fossil remains, both floral 

and faunal, suggest that the Batagay site harboured large and small herbivores. Probably, a suitable 

topographical gradient from floodplain to hills/high river terraces sustained pasture year-round and 

met dietary demands of the herbivores of the Pleistocene mammoth steppe. To elucidate the details 

of the Yana Highlands refugium, it would be helpful to study more permafrost outcrops in the region. 

Local inhabitants have observed and reported newly exposed permafrost archives in the 

Yana‒Adycha watershed. Analysis of thick ice-rich deposits with multi-disciplinary methods could 

provide valuable information about environmental conditions of West Beringia. 

Obtaining a reliable absolute chronology for all coastal and inland permafrost archives is challenging, 

as illustrated by dating of unit III at Batagay. The unit—composed of thick organic-rich sediments—is 

sandwiched between sediments with ages of >50 14C ka BP and <143 14C ka BP. Analysis of the 

organic material suggests that the vegetation cover was a mosaic of steppe vegetation interspersed 

with well-developed forest that contained several understories of shrubs and forbs, meaning that 

summers were warmer than at present. Usually, such indirect chronology would lead to the 

assumption that the age of this layer is the thermal maximum of the last interglacial (MIS 5e), as 

assumed for Bol'shoy Lyakhovsky and Oyogos Yar, at the Laptev Sea coast (e.g. Kienast et al., 2008, 

2011). However, new dating results of the coastal exposure provide an absolute age of 

102,400±9,700 a (MIS 5c) to the previously assumed MIS 5e sediments there (Opel et al., 2017). 

Thus, the indirect age of unit III should be treated with caution. Physical age determination and a 

higher dating resolution throughout all units are necessary for further investigations to fully exploit 

the palaeo-ecological potential of the Batagay megaslump. The AMS radiocarbon ages obtained from 

the site indicate that there are gaps in the sedimentological record. Likely, these gaps are caused by 

erosional events as a result of thermokarst processes or spatially and/or temporarily various 

depositional environments.  Additionally, it would be useful to date all units of the sequence not only 

vertically but also transversely. 

Wider multi-proxy investigations are needed for a more comprehensive understanding of 

Beringian palaeo-ecology. Combining several methods would overcome constraints of each single 

method. Therefore, a complex analysis of host sediments, ice wedges, fossils (macro-, micro-, 

charcoal, invertebrates, bones etc.) and ancient DNA would amply illustrate the environmental 

history of the Yana Highlands and west Beringia. 
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6. Summary 
 

Climate change influences all ecosystems on all levels. Understanding the geological lessons 

of the Quaternary could provide valuable information for managing future environmental variations. 

Climatic changes in the past triggered alteration of past environments. The consequences of past 

alterations are widely documented in palaeontological records.  

Permafrost deposits, which underlie vast areas of Asia, provide valuable information for 

reconstructing past ecological events. Most permafrost exposures studied in Russia are situated in 

the coastal lowlands of northeastern Siberia, whereas reports of inland archives are scarse. The 

syngenetic permafrost deposits of the Batagay outcrop preserve valuable data about the palaeo-

environment of the Yana Highlands of inland Beringia. The former subcontinent of Beringia 

connected Eurasia and America during low sea-level stands and hosted a now extinct biome—the 

mammoth‒steppe. To unravel the environmental history of West Beringia, the Batagay permafrost 

sequence was investigated. 

The first part of the thesis (chapter 2) reports the first sedimentological results and provides a 

stratigraphical and temporal framework of the sequence. The stratigraphy comprises five units, 

including two ice complexes, two sand units and one woody layer. OSL and AMS dating suggest that 

the sequence started to accumulate during the late Middle Pleistocene and extends through the Late 

Pleistocene, with interruptions and erosional events. The depositional processes were climatically 

and seasonally controlled. Stratigraphical, cryolithological and geochronological data are significant 

for later palaeontological investigations.  

The second part of the thesis (chapter 3) presents the palaeo-environmental reconstruction 

at the Batagay site during marine isotope stages (MIS) 6‒2. Plant macrofossil, palynological, 

entomological, and charcoal analyses were performed on 41 samples from the Batagay outcrop. The 

palaeo-vegetation of the two climatic extremes of the Late Pleistocene—the Last Interglacial (LIG) 

and the onset of the Last Glacial Maximum (LGM)—are described in detail based on exceptionally 

fossil-rich samples. The palaeo-environmental reconstruction suggests that meadow steppes were a 

significant vegetation type during the LIG and formed the primary vegetation during pre-LGM. Cold-

resistant tundra‒steppe communities were mostly lacking at the site during the studied period, 

whereas larch was locally present in the Yana Highlands throughout the Late Pleistocene. 

Palaeontological data indicate that the Yana Highlands were a northern refugium for larch, steppe 

communities, and herbivores. That larch stands and meadow steppes persisted at the site from MIS 

6 to 2 indicates environmental stability in the region. The magnitude of climatic continentality 

changed during the late Quaternary, but warm growing season and low precipitation fluctuations 

were insufficient to effect fundamental shifts in plant communities in the Yana Highlands. 

The third part of the thesis (chapter 4) discusses the phylogeographical history of the endemic 

steppe plant Stellaria jacutica found in the LIG fossil assemblage. A finding of this single seed proves 

that modern steppes of the Yana Highlands did not establish as late as in the Holocene. Instead, they 

are relics of a formerly closed central Siberian–northeast Yakutian steppe belt. 

Overall, the data obtained from the inland Batagay outcrop differ from those previously 

reported from coastal permafrost sections. Thus, the results of this thesis provide valuable 

information about the evolution of vegetation in continental settings of West Beringia.
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7.  Zusammenfassung 

 
Der Klimawandel beeinflusst alle Ökosysteme der Erde auf sämtlichen Ebenen sowohl jetzt als 

auch in der geologischen Vergangenheit. Lehren die wir aus der Erforschung des Quartärs ziehen, 

könnten uns dabei helfen, mit prognostizierten Veränderungen in der Zukunft umzugehen, da 

Klimawandel die Umwelt der Vergangenheit ebenso geprägt hat. Die Auswirkungen dieser 

Veränderungen sind in natürlichen Archiven auf der ganzen Welt erhalten und dokumentiert. 

Permafrost-Ablagerungen, bedecken weite Teile Nordasiens und sind eine potentiell sehr 

aufschlussreiche Quelle für die Rekonstruktion früherer Ökosysteme. Die meisten bisher 

untersuchten Permafrost-Aufschlüsse befinden sich in den küstennahen Tiefländern Nordost-

Sibiriens, während Informationen aus dem Inland kaum verfügbar sind. Die syngenetischen 

Ablagerungen des Batagay Permafrost-Aufschlusses haben wertvolle Informationen über die Paläo-

Umwelt des Jana-Hochlandes - das Inlandgebiet der einstigen Landmasse Beringia - konserviert. 

Beringia verband während der quartären Meeresspiegeltiefstände Eurasien mit Amerika und war 

Heimat für ein einzigartiges, mittlerweile verschwundenes Biom, die so genannte Mammut-Steppe. 

Ziel der vorliegenden Arbeit war es, die Umweltgeschichte West-Beringias auf der Basis von 

Untersuchungen des Batagay Permafrost-Aufschlusses zu entschlüsseln. 

Im ersten Teil der Doktorarbeit (Kapitel 2) werden erste sedimentologische Ergebnisse sowie 

der stratigraphische und zeitliche Rahmen der Umweltgeschichte des Untersuchungsstandortes 

vorgestellt. Die vorliegenden Datierungen (Optically stimulated luminescence (OSL) und 

Radiokarbon-Alter) sowie stratigraphische Schlussfolgerungen belegen, dass die untersuchte 

Permafrost-Abfolge, unterbrochen durch sporadische Erosionsereignisse, seit dem mittleren 

Pleistozän entstanden ist. Die Ablagerungsprozesse wurden sowohl durch klimatische als auch durch 

jahreszeitlich bedingte Prozesse beeinflusst. Informationen über die Akkumulationsprozesse, 

konnten durch stratigraphische, kryolithologische und geochronologische Untersuchungen 

gewonnen werden und bilden die Grundlage für die paläontologische Erforschung des Permafrost-

Aufschlusses.  

Im zweiten Teil der Doktorarbeit (Kapitel 3) werden die Ergebnisse der Paläoumwelt-

Rekonstruktion für den Zeitraum der Sauerstoff-Isotopenstadien „Marine Isotope stages“ (MIS) 6 bis 

2 vorgestellt. Dreiundvierzig Proben aus den verschiedenen stratigrafischen Einheiten des Batagay 

Aufschlusses wurden auf pflanzliche Makrofossilien, Pollen sowie Käferüberreste und 

Holzkohlerückstände analysiert. Die Paläo-Vegetation der zwei klimatischen Extreme des späten 

Pleistozäns – das letzte Interglazial sowie das letzte glaziale Maximum – konnte auf Grundlage 

außergewöhnlich fossil-reicher Proben im Detail rekonstruiert werden. Die Ergebnisse zeigen, dass 

Wiesensteppen, analog zu Gesellschaften der heutigen Festucetalia lenensis im Norden der Mongolei 

und Jakutiens während des letzten glazialen Maximums dominierten und auch während des letzten 

Interglazials ein bedeutender Vegetationstyp waren. Kälteresistente Pflanzenarten der Tundra-

Steppe (Kobresietea) wurden am Fundort für den untersuchten Zeitraum kaum gefunden. Dagegen 

konnten lokale Lärchenvorkommen im Jana-Hochland für das gesamte Spät-Pleistozän nachgewiesen 

werden. Unsere paläontologischen Daten belegen, dass das Jana-Hochland  ein nördliches Refugium 

für Lärchen, Steppenpflanzen und Pflanzenfresser war. Die Tatsache, dass sowohl Lärchenbestände 

als auch Wiesensteppen im Zeitraum von MIS 6 bis MIS 2 existiert haben, belegt die Stabilität der 

Umweltbedingungen in der Region. Die klimatische Kontinentalität schwankte zwar im Laufe des 

Spätquartärs, aber aufgrund durchgängig relativ warmer Vegetationsperioden und geringer 



Chapter 7. Zusammenfassung 

101 

 

Schwankungen der Niederschlagsmengen kam es zu keinen fundamentalen Veränderungen der 

Pflanzengemeinschaften im Jana-Hochland. 

Der dritte Teil der Doktorarbeit behandelt die phylogeographische Geschichte der 

endemischen Steppenpflanze Stellaria jacutica, die in den Ablagerungen des letzten Interglaziales  

fossil nachgewiesen werden konnte. Der Fund eines einzelnen Samens ist ein weiterer Beleg dafür, 

dass die heutigen disjunkten Steppen des Jana-Hochlandes nicht erst im Holozän entstanden sind, 

sondern Relikte eines ehemals geschlossenen zentralsibirisch-nordostjakutischen Steppen Gürtels 

ist. 

Die gewonnenen Daten aus dem jakutischen Binnenland-Aufschluss bei Batagay 

unterscheiden sich von publizierten Rekonstruktionen der Paläo-Umwelt im Küstenbereich Jakutiens. 

Die Ergebnisse dieser Doktorarbeit leisten einen wertvollen Beitrag zur Erforschung der Vegetations- 

und Umweltentwicklung unter den kontinentalen Klimabedingungen West Berinigias.
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10. Appendices 

Appendix A.1. 

Unit I represents the active layer, with a thickness varying between 1.4 and 0.85m, as 

measured at the end of June 2014 and is composed of fine sand. One 14C AMS age of 295 years BP 

from a sample directly above the permafrost table, the border to Unit II, indicates the modern origin 

of Unit I deposits.  

Unit II consists of 30–40m thick Yedoma Ice Complex (YIC) deposits, composed of silty and, 

primarily, sandy sediments with a layered cryostructure and enclosed by up to 6m wide syngenetic 

ice wedges. The mean grain size of Unit II is fine-grained sand. The YIC deposits contain evenly 

distributed organic material, mainly plant detritus and vertical plant roots. Occasionally, layers and 

chunks with higher organic content were found, e.g. a fossilized ground squirrel nest with thick 

bedding of grasses, including numerous identifiable plant remains. Based on droppings preserved in 

the nest, it was attributed to an arctic ground squirrel (Urocitellus parryii, confirmed by L. Maul, 

Senckenberg Weimar, personal information). This ground squirrel nest was sampled in detail. 

Additionally, 28 samples from Unit II deposits were used for the palaeontological study. Seven AMS 

radiocarbon ages are available for Unit II (Table 1). An age of 33±0.5 14C ka BP was obtained from 

material 2.05m below the ground surface (bgs) in section A. Plant material sampled from the ground 

squirrel nest at 4.6m bgs in section A provided a 14C AMS date of 26±0.22 ka BP. In section C, dating 

of organic material at 12.5 and 14.5m bgs resulted in non-finite ages of > 48 and > 51 ka 14C BP, 

whereas plant material from 18.5m bgs was dated to 49±2 14C ka BP. According to the dating results 

and the stratigraphical interpretation, the YIC of Unit II was deposited over a long period during the 

last cold stage, e.g. MIS 2, 3, and 4.  

Unit III is an organic layer rich in large macroscopic plant remains, including numerous 

branches and twigs of woody plants, situated directly below the YIC of Unit II. This horizon is 

detectable across the whole outcrop, mostly as a relatively thin layer about 1.5m thick, sharply 

delineated from the YIC and Unit IV. In places, the layer merges into accumulations of organic matter 

about 5m thick that are assumed to represent the fill of former trench-like depressions resembling 

modern gullies. Unit III was sampled in section B in the lower part of one such pocket-like 

accumulation below a coarse woody layer at a depth of about 43 to 44m bgs. The three samples 

consist largely of organic material, including numerous seeds, fruits, and plant debris in a distorted 

fine bedding alternating with silty fine sand beds. Radiocarbon dating of this material resulted in an 

non-finite age of > 44 ka BP. We assume that Unit III represents sediments from the last interglacial 

(MIS 5), owing to an OSL age of 142,800±25,300 a for underlying sediments from Unit IV and its 

position directly below last cold-stage deposits. 

Unit IV is composed of horizontally layered frozen sand that is traceable without interruption 

over large distances along the headwall of the outcrop. This unit is about 25 m thick and in most 

places it reaches almost to the bottom of the exposure. In contrast to the YIC, Unit IV is not 

penetrated by wide ice wedges. Exposed exclusively at the headwall, Unit IV was not accessible for 

systematic sampling due to the danger of objects frequently falling from the > 60m high, intensely 

thawing and eroding, partly overhanging permafrost wall. Only one sample was collected in situ from 

a ridge of frozen deposits in 50m bgs for OSL dating as well as sedimentological and palaeontological 

analyses. According to the sedimentological characteristics of this material, Unit IV clearly differs 

from the overlying Units I–III in having the largest sand fraction (70 %) and the highest carbonate 
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content 8.2 wt % within the sequence. OSL dating resulted in several non-finite minimum ages 

between 93.6 and 123.2 ka BP and a finite age of 142.8±25.3 ka (Table 2, Ashastina et al., 2017). 

Thus, unit IV probably accumulated during the late Middle Pleistocene and included the Saalian cold 

stage (MIS 6). This attribution is supported by data from the local Yana Geological Service, who 

sampled the upper part of Unit IV for detailed palynological analyses (L.Vdovina, personal 

communication).  

Unit V represents the deepest part close to the bottom of the exposure. The main part of 

this unit is not exposed. The unit consists of ice-rich deposits with a layered cryostructure, 

embedded in syngenetic ice wedges similar to deposits of the YIC (Unit II) and is therefore assumed 

to be an older ice complex, probably formed during the Middle Pleistocene. Since exposed only 

directly at the headwall, Unit V was not accessible for sampling.  

 

Table 1. Radiocarbon dating of the selected samples from the Batagay permafrost exposure. 

Lab. No. Sample name 
Depth  

[m b.s.l.] 

Radiocarbon  ages 

[yr BP] 

Calibrated ages 

2 σ  95.4% 
[cal yr BP] 

Description 

Poz-78149 19.6/A/4/1.15 1.15 295±30 459 - 347 Plant remains 

Poz-79751 19.6/A/5/2.05 2.05 33 400 ± 500  Plant remains 

Poz-77152 20.6/A/1/460-472 4.6 26 180 ± 220 28 965 – 27 878 Plantago sp., Artemisia sp., 

ground squirrel droppings 

Poz-79756 22.6/C/2/8.5 8.5 12 660 ± 50  Plant remains 

Poz-79753 22.6/C/6/12.5 12.5 >48 000  Plant remains  

Poz-79754 22.6/C/9/14.5 14.5 >51 000  Plant remains 

Poz-79755 29.6/E/2/18.5 18.5 46 000 ± 2 000  Papaver sp. 

Poz-78150 29.6/C/10/24.5 24.5 110.31 ± 0.37 pMC  1991AD - 2005AD Alnus sp., Vaccinium vitis-

idea 

Poz-66024 21.6/B/3/2 44 44 000  Plant remains 

 
 
Table 2. OSL and IRSL measurement data and respective dating results for the luminescence samples from Unit 
IV of the Batagay permafrost exposure Dose rate is the effective dose rate calculated based on results from 
gamma spectrometry and cosmic dose rate and corrected for mineral density, sediment density, grain sizes, 
and water content. Water is the in situ water content and saturation water content. N is the number of 
aliquots. PD is the palaeo-dose based on central age model, CAM, according to Galbraith et al. (1999). OD is the 
overdispersion. Age is the calculated ages according to CAM using the in situ water content. The > sign 
indicates that minimum age signals were close to saturation and hence tend to underestimate luminescence 
ages. 
 

Sample name Depth 
[m] 
 

Water 
[%] 

Dose rate 
[Gy ka�1] 

Grain size 
[μm] 

N 
PD (CAM) 
[Gy] 

OD 
[%] 

Age 
[ka] 

QUARTZ 

2.7/B/1/47   47 30.1/49.6 1.3 90–160 26 123.8±6.2 26.5 > 93.6 

   1.4 63–100 19 129.0±6.1 17.1 > 95.2 

2.7/B/2/47 47 34.3/51.6 1.3 90–160 11 127.1±5.1 6.6 > 100.2 

   1.3 63–100 11 185.3±26.1 42.9 142.8±25.3
a
 

2.7/A/2/50 50 25.1/37.4 1.4 63–100 12 174.4±14.4 23.7 > 123.2 

FELDSPAR 

2.7/B/2/47 47 34.3/51.6  63–100 25 274.2±3.32 3.9 210.0±23.0
b
 

a
 The CAM age using the saturation water content yields 160.9_27.7 ka.  
b
 The age using the saturation water content yields 236.6_24.0 ka. 

 



 

 

 

  
Plant taxa 

Dephts, m bgs 

0.2 4.7 5.5 8.5 9.5 12.5 16.5 18.5 20 20.5 22 32 32.5 40 41 42 44 44 50 
                                        

Trees and shrubs                                       

Abies                         1             

Alnus subg. Alnobetula               1     3 18   1           

Betula           3   4   2 16 136 9 5     1     

Larix                     2                 

Picea           1           1 13             

Pinaceae spp.                 2   1 2 3 2           

Pinus sg Diploxylon     1     1   2     4 2 1 4   2       

Salix       1   3 2 12 2   1 1 3             

Tsuga           1                           
                                        

Herbs and semi shrubs                                       

Amaranthaceae                     3 2               

Artemisia   93 1   1 1   8 3 3 64 16 39 13 1 1   1   

Asteraceae   35 2 2   1 2 3   2 13 2 1 1 1     2   

Brassicaceae   1           4 2   2   3   1         

Caprifoliaceae subf. 
Valerianoideae 

                        3             

Caryophyllaceae   165 12 1   2 2 101 1 3 59 15 20 9 1   1     

Cyperaceae   12 2 3 1 10 4 13 6 1 39 19 15 8 3 7       

Epilobium                       6 6 1       1   

Ericales                     1 51 173 24           

Polygonaceae                           1           

Liliaceae                       1 1             

Poaceae   13 1     2   5 1   7 2 1 2   1       

Ranunculaceae   1           17     7 2 3 3       1   

Rosaceae             1 1     2   2             

Table 1. List of identified pollen with counts from the Batagay permafrost exposure. 
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Plant taxa 

Dephts, m bgs 

0.2 4.7 5.5 8.5 9.5 12.5 16.5 18.5 20 20.5 22 32 32.5 40 41 42 44 44 50 

Saxifraga                     6     1           

Thalictrum                     5   1             
                                        

Pollen sum   320 19 7 2 25 11 171 17 11 235 276 298 75 7 11 2 5 0 

Pollen concentracions 
(grains/gram) 

N/A 9019 N/A N/A N/A N/A N/A 2394 N/A N/A 6459 7447 11057 N/A N/A N/A N/A N/A N/A 

                                        

Spores                                       

Huperzia                     1   1             

Lycopodium     5 1 1           2 1 2 1           

Polypodiophyta   1 3 1   3 1 3 7 2 8 1 1 1           

Selaginella rupestris 1   56 42   3 10   31 2 17 1 9 1           

Sporae redep.     1               3                 

                                        

Non-pollen palynomorphs                                       

Arcella                                   3   

Stomata of Pinus                         2         1   

Sordaria                 11   4 5           1   

Glomus     34           22         3         130 

Gelasinospora                     1 1               

Mycrothyrium                                   3   

Podospora                       1               

Valsaria                 4   3                 

Zygnema                     1                 

Sphagnum       1   1   1         1             
                                        

Total sum   321 118 52 3 32 22 175 92 15 275 286 314 81 7 11 2 13 130 

 

Table 1. List of identified pollen with counts from the Batagay permafrost exposure. 
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Appendix A.3. 

Figure 1. Pollen and spore diagram (%) illustrating four representative samples from Batagay outcrop (18.5, 22, 32, 32.5 m bgs). 
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Figure 2. Pollen and spore diagram (%) illustrating palynological assemblage found in the ground squirrel nest (4.6 m bgs, 26,180±0,22 14C a BP). 
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Appendix A.4. 

Table 1. List of identified Batagay macrofossils. Index letters identify the counted part of the plant: b 

– bract; c - cone/catkin;  ca – capsule;  cl – calyx; cr – caryopsis; cs - cone scale; cy – cypsela; f – 

flower; fl – floret; I – inflorescense; k – knob; l – leave; m – megaspore; mk – mericarp; n – needle; nt 

– nutlet; py – pyrene; s – seed; sm - sterm; sp – spiklet; v - valve of silique. Split into several depth 

intervals (1.1–8.5m; 9.5–18.5m; 19.5–37.5m; 38.5–50.0m). Note that species list is different for 

depth intervals. 

 

 Depth, m bgs 

Plant taxa 1.1 2.0 3.0 3.5 4.6 5.5 6.5 8.5 
Agropyron cristatum         3ᶠˡ       

Alyssum obovatum         2ˡ,150ˢ       

Artemisia sp.   1ᶜʸ     
46ᶠ, 1011ᵃ, 

15ᶠˡ 
    1ᶜʸ 

Betula Subgenus Betula               6ᶰᵗ 

Carex duriuscula           1ᶰᵗ     

Chenopodium sp.     1ˢ 15ˢ         

Comastoma tenellum                 

Empetrum nigrum s.l. 2ˡ       1ˡ       

Equisetum scirpoides     1ˢᵐ          2ˢᵐ 

Eremogone capillaris         10ᶜᵃ, 356ˢ       

Erigeron acris                 

Eritrichium villosum         1ˢ, 10ᵐᵏ, 45ˡ       

Festuca sp.         55ˢᵖ       

Juncus sp.                 

Koeleria sp.         3ᶠˡ       

Larix gmelinii 2ᶰ   1ᶰ   3ᶰ 5ᶰ 2ᶰ   

Ledum palustre                 

Lepidium densiflorum                 

Minuartia arctica     1ˢ           

Myosotis asiatica         1ˢ, 1ᶠ, 1ˢᶜ       

Papaver Sect. Scapiflora       4ˢ 12ˢ 3ˢ     

Phlox sibirica         2ˢᶜ       

Plantago canescens         284ˢ, 800ˢᶜ       

Poa sp.       13ˢ 48ᶠˡ       

Potentilla  arenosa         1ᶰᵗ       

Potentilla  tollii                 

Puccinellia sp.     1ᶜʳ           

Ranunculus pedatifidus subsp. affinis         9ˢ       

Rumex maritimus           1ˢ     

Saxifraga cf. oppositifolia   1ˢ             

Selaginella sibirica/rupestris 3ᵐ 2ᵐ             

Silene repens   1ˢ             

Silene samojedorum   2ˢ     620ˢ, 1ᶜˡ 1ˢ     

Smelovskia sp. (sensu Al-Shehbaz 2006)       1ˢ         

Stellaria sp.         167ˢ, 2ᶜˡ       

Tephroseris integrifolia         31ˢ       

Vaccinium  vitis-idaea               6ˡ 
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Table 1 (Continued). List of identified Batagay macrofossils. Index letters identify the counted part of 

the plant: b – bract; c - cone/catkin;  ca – capsule;  cl – calyx; cr – caryopsis; cs - cone scale; cy – 

cypsela; f – flower; fl – floret; I – inflorescense; k – knob; l – leave; m – megaspore; mk – mericarp; n 

– needle; nt – nutlet; py – pyrene; s – seed; sm - sterm; sp – spiklet; v - valve of silique.  

 Depth, m bgs 

Plant taxa 9.5 10.5 11.5 12.5 13.5 14.5 16.5 17.5 18.5 
Agropyron cristatum                   

Alnus alnobetula subsp. fruticosa                   

Alyssum obovatum           2ˢ     1ˢ 

Artemisia sp.           1ᶜʸ       

Betula Subgenus Betula                   

Carex duriuscula                 2ᶰᵗ 

Carex sp. tricarpellata               1ᶰᵗ   

Chenopodium prostratum                   

Chenopodium suecicum                   

Chenopodium sp.       
 

  
 

      

Comastoma tenellum                   

Corispermum crassifolium                   

Corydalis sibirica                   

Descurainia sophioides                   

Draba sp.                   

Empetrum nigrum s.l.                   

Equisetum scirpoides   1ˢᵐ         1ˢᵐ     

Eremogone capillaris           5ˢ       

Erigeron acris                   

Eritrichium villosum                   

Fabaceae tribe Galegeae 
 (cf. Oxytropis sp.) 

1ˢ                 

Festuca sp.           4ᶠˡ       

Frankia alni                   

Hordeum jubatum                   

Juncus sp.         3ˢ         

Koeleria sp.                   

Larix gmelinii   1ᶰ 1ᶰ             

Ledum palustre       1ˡ           

Myosotis asiatica                   

Papaver Sect. Scapiflora   7ˢ 1ˢ 7ˢ 6ˢ     1ˢ 250ˢ 

Poa sp.         2ᶠˡ 10ᶠˡ       

Potentilla  arenosa                 1ᶰᵗ 

Potentilla  tollii         1ᶰᵗ         

Puccinellia sp.                   

Puccinellia tenuiflora         2ᶜʳ         

Selaginella sibirica/rupestris   2ᵐ     4ᵐ   1ᵐ     

Silene repens                   

Silene samojedorum       1ˢ         127ˢ 

Vaccinium  vitis-idaea   1ˡ   1ˡ         2ˡ 
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Table 1 (Continued). List of identified Batagay macrofossils. Index letters identify the counted part of 

the plant: b – bract; c - cone/catkin;  ca – capsule;  cl – calyx; cr – caryopsis; cs - cone scale; cy – 

cypsela; f – flower; fl – floret; I – inflorescense; k – knob; l – leave; m – megaspore; mk – mericarp; n 

– needle; nt – nutlet; py – pyrene; s – seed; sm - sterm; sp – spiklet; v - valve of silique.  

 Depth, m bgs 

Plant taxa 19.5 25.5 32.5 33.5 34.5 35.5 36.5 36.7 37.5 
Alnus alnobetula subsp. fruticosa                 3ᶜˢ 

Artemisia sp.               1ᶜʸ   

Betula Subgenus Betula           1ᶰᵗ       

Carex duriuscula 8ᶰᵗ                 

Carex sp. tricarpellata                 1ᶰᵗ 

Descurainia sophioides             11ˢ 12ˢ 5ˢ 

Draba sp.             2ˢ 8ˢ   

Empetrum nigrum s.l.     1ˡ             

Equisetum scirpoides 3ˢᵐ                 

Eremogone capillaris                   

Erigeron acris                   

Eritrichium villosum                   

Fabaceae tribe Galegeae  
(cf. Oxytropis sp.) 

  1ˢ               

Festuca sp.                   

Frankia alni                   

Hordeum jubatum                   

Juncus sp.     1ˢ 1ˢ           

Koeleria sp.                   

Larix gmelinii     8ˢ, 2ᶰ 1ᶰ 1ᶰ         

Ledum palustre                   

Lepidium densiflorum             1ᵛ     

Minuartia arctica                   

Minuartia rubella     1ˢ             

Papaver Sect. Scapiflora 1ˢ           60ˢ     

Phlox sibirica               2ˡ   

Plantago canescens                   

Poa sp.           15ᶠˡ 2ᶠˡ 5ᶠˡ 8ᶠˡ 

Potentilla  arenosa               4ᶰᵗ   

Potentilla  tollii           8ᶰᵗ   9ᶰᵗ   

Puccinellia sp.                   

Puccinellia tenuiflora             1ᶜʳ     

Saxifraga sp.     1ˢ             

Selaginella sibirica/rupestris                 5ᵐ 

Silene repens           4ˢ 4ˢ     

Silene samojedorum                   

Smelovskia sp.  
(sensu Al-Shehbaz 2006) 

            10ˢ     

Urtica dioica     1ˢ             

Vaccinium  vitis-idaea       1ˡ 3ˡ         
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Table 1 (Continued). List of identified Batagay macrofossils. Index letters identify the counted part of 

the plant: b – bract; c - cone/catkin;  ca – capsule;  cl – calyx; cr – caryopsis; cs - cone scale; cy – 

cypsela; f – flower; fl – floret; I – inflorescense; k – knob; l – leave; m – megaspore; mk – mericarp; n 

– needle; nt – nutlet; py – pyrene; s – seed; sm - sterm; sp – spiklet; v - valve of silique.  

 Depth, m bgs 
Plant taxa 38.5 40.5 41.5 42.5 43.0 43.5 44.0 50.0 
Alnus alnobetula subsp. fruticosa         35ᶜ, 84ᶜˢ  9ˢᶜ 153ˢᶜ, 55ᶜ   

Alyssum obovatum               6ˢ 

Artemisia sp.             4ᶜʸ 4ᶜʸ 

Betula Subgenus Betula         8ᶜ, 500ᶰᵗ 47ᶰᵗ 150ᶰᵗ   

Betula sp.         12ᵇ, 566ᶰᵗ 5ᵇ 8ᵇ, 7ˡ, 526ᶰᵗ, 1ᶜ   

Carex duriuscula 5ᶰᵗ     1ᶰᵗ 1ᶰᵗ   1ᶰᵗ   

Carex sp. tricarpellata         3ᶰᵗ       

Chenopodium prostratum         3ˢ     2ˢ 

Chenopodium suecicum         4ˢ   2ˢ   

Chenopodium sp.         1ˢ       

Comastoma tenellum             2ˢ   

Corispermum crassifolium             1ˢ   

Corydalis sibirica         1ˢ       

Descurainia sophioides               1ˢ 

Draba sp.             1ˢ 4ˢ 

Equisetum scirpoides         3ˢᵐ 8ˢᵐ 9ˢᵐ   

Eremogone capillaris                 

Erigeron acris             1ᶜʸ   

Eritrichium villosum               4ˢ, 19ᵇ 

Fabaceae tribe Galegeae (cf. 
Oxytropis sp.) 

    1ˢ         3ˢ 

Festuca sp.       2ᶠˡ     1ᶠˡ 19ᶠˡ 

Frankia alni           12 3   

Hordeum jubatum         1ᶠˡ       

Juncus sp.             1ˢ   

Koeleria sp.               20ᶠˡ 

Larix gmelinii   1ᶰ 1ᶰ   
141ˢ, 3ᶰ, 
41ᵏ, 5ᶜˢ  

12ˢ, 
200ᶰ 

55ˢ, 1000ᶰ 7ᶰ 

Ledum palustre         1ˡ     1ˡ 

Minuartia verna             1ˢ   

Moehringia laterifolia         7ˢ   3ˢ   

Papaver Sect. Scapiflora     1ˢ   200ˢ   2ˢ 24ˢ 

Phlox sibirica   3ˡ             

Poa sp. 1ᶠˡ 1ᶠˡ   2ᶠˡ 1ᶠˡ 1ᶠˡ 7ᶠˡ 142ᶠˡ 

Potentilla  arenosa   1ᶰᵗ     24ᶰᵗ     2ᶰᵗ 

Potentilla  tollii 2ᶰᵗ   41ᶰᵗ 6ᶰᵗ 14ᶰᵗ   11ᶰᵗ 4ᶰᵗ 

Puccinellia sp.             1ᶜʳ 2ᶜʳ 

Rosa acicularis         6ᶰᵗ 1ᶰᵗ 1ᶰᵗ   

Rubus idaea         107ᵖʸ, 1ᶠ  4ᵖʸ 106ᵖʸ   

Salix sp.           4ˡ     

Silene repens         2ˢ       

Silene samojedorum         1ˢ       

Sonchus arvensis         4ᶜʸ   1ᶜʸ   

Stellaria jacutica         1ˢ       

Thymus serpyllum             1ˢ   

Urtica dioica         400ˢ 1ˢ 47ˢ   
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Table 1. A list of coleoptera species, identified from the Batagay samples. 

Table 1 (Continued). Insect ecological groups: st - steppe, ms - meadow-steppe, ss - cry-steppe, dt - dry tundra, mt - wet tundra, me - 

meadow, sh -shrubs, pl - plant litter, fo - forest, ri - riparian, aq -aquatic, oth - others 

species   sample 

Ec
o

C
o

d
e 

20.6/A 21.6/B 22.6/C 

2
9
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4
.5
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5
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1
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2
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2
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4
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0
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6
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2
.5

 

8
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3
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2
/1

8
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3
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9
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5
/3

7
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6
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8
.5

 

8
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0
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Fam. Carabidae                       

Subfamily Scaritinae                                             
Dyschiriodes melancholicus 
(Putz.) pl 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Subfamily Trechinae   
                     Bembidion (Asioperyphus) 

umiatense Ldrt. ri 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Subfamily Harpalinae   
                     Ttribe Harpalini   
                     Dicheirotrichus mannerheimi 

Sahlb. dt 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Harpalus amputatus 
amputatoides Mln. ms 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

H. amputatus obtusus Gebl. ms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 3 0 0 

Harpalus sp. ms 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Tribe Lebiini   
                     Cymindis arctica Kryzh. et Em. st 0 0 0 0 0 0 0 0 0 0 0 0 0 2 3 0 0 0 2 0 0 

Cymindis vaporariorum L.? dt 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 1 (Continued). Insect ecological groups: st - steppe, ms - meadow-steppe, ss - cry-steppe, dt - dry tundra, mt - wet tundra, me - 

meadow, sh -shrubs, pl - plant litter, fo - forest, ri - riparian, aq -aquatic, oth - others 

species   sample 

Ec
o

C
o

d
e 

20.6/A 21.6/B 22.6/C 

2
9
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1
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4
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Tribe Pterostichini   
                    

 

Poecilus (Derus) nearcticus Lth. 
dt 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Pterostichus (Cryobius) 
brevicornis (Kby.) mt 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 5 0 0 0 0 

P. (Cryobius) pinguedineus Esch. mt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pterostichus (Cryobius) sp. mt 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 
P. (Lenapterus) vermiculosus 
Men. mt 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P. (Petrophilus) montanus 
(Motsch.) dt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Pterostichus sp. oth 0 0 0 0 1 2 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

Carabidae gen. indet. oth 0 0 0 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fam. Dytiscidae     
                   

  

Subfamily Agabinae     
                   

  

Agabus sp. aq 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Fam. Hydrophilidae     
                   

  

Subfamily Hydrophilinae     
                   

  

Hydrobius fuscipes F. aq 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fam. Leiodidae     
                   

  

Subfamily Leiodinae     
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Table 1 (Continued). Insect ecological groups: st - steppe, ms - meadow-steppe, ss - cry-steppe, dt - dry tundra, mt - wet tundra, me - 

meadow, sh -shrubs, pl - plant litter, fo - forest, ri - riparian, aq -aquatic, oth - others 

species   sample 

Ec
o
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Agathidium sp. pl 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cyrtoplastus irregularis Rtt. pl 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Leiodes sp. pl 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Subfamily Coloninae     
                   

  

Colon sp. pl 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Subfamily Cholevinae                          

Cholevinus sibiricus (Jean.) mt 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Leiodidae gen. indet.? pl 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fam. Staphylinidae     
                   

  

Subfamily Omaliinae     
                   

  

Tribe Anthophagini     
                   

  

Arpedium quadrum (Grav.) pl 0 0 0 0 1 3 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 

Subfamily Tachyporinae     
                   

  

Tribe Tachiporini     
                   

  

Tachyporus sp. pl 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Subfamily Aleocharinae     
                   

  

Tribe Athetini     
                   

  

Atheta sp. pl 0 0 0 0 7 11 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 
Tribe Gymnusini     
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Table 1 (Continued). Insect ecological groups: st - steppe, ms - meadow-steppe, ss - cry-steppe, dt - dry tundra, mt - wet tundra, me - 

meadow, sh -shrubs, pl - plant litter, fo - forest, ri - riparian, aq -aquatic, oth - others 
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Gymmusa sp. pl 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Aleocharinae gen. indet pl 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 1 1 0 0 

Subfamily Steninae     
                   

  

Stenus spp. ri 0 0 0 0 4 2 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 

Subfamily Paederinae     
       

    
        

  
Lathrobium cf. longulum  pl 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Lathrobium sp. pl 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Staphylinidae gen. indet. pl 1 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Fam. Silphidae                          

Subfamily Silphinae     
                   

  

Phosphuga atrata L. fo 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Thanatophilus sp.? oth 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fam. Scarabaeidae     
                   

  

Aphodius sp. xe 0 2 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

Scarabaeidae gen. indet. oth 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fam. Byrrhydae     
                   

  

Subfamily Byrrhinae     
                   

  

Morychus viridis Kuzm. et Kor. ss 0 1 0 0 0 2 0 0 0 0 0 2 0 31 2 0 0 1 1 1 0 
Simplocaria elongata J. Sahl dt 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Table 1 (Continued). Insect ecological groups: st - steppe, ms - meadow-steppe, ss - cry-steppe, dt - dry tundra, mt - wet tundra, me - 

meadow, sh -shrubs, pl - plant litter, fo - forest, ri - riparian, aq -aquatic, oth - others 
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Byrrhidae gen. indet. oth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Fam. Heteroceridae     
                   

  

Heterocerus sp. ri 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fam. Bostrichidae     
                   

  

Stephanopachys substriatus Payk. fo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Fam. Ptinidae     
                   

  

Subfamily Ptininae     
                   

  

Ptinus sp. fo 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Fam. Melyridae                          

Troglocollops arcticus L.Medv. ms 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fam. Cryptophagidae     
                   

  

Subfamily Atomariinae     
                   

  

Atomaria kamtschatica Rup. pl 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Atomaria sp. pl 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 0 0 

Subfamily Cryptophaginae     
                   

  

Cryptophagus acutangulus Gyll. pl 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Cryptophagus sp. pl 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 0 0 0 2   

Caenoscelis ferruginea (Sahl.) pl 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Fam. Laemopholoeidae 
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Table 1 (Continued). Insect ecological groups: st - steppe, ms - meadow-steppe, ss - cry-steppe, dt - dry tundra, mt - wet tundra, me - 

meadow, sh -shrubs, pl - plant litter, fo - forest, ri - riparian, aq -aquatic, oth - others 

species   sample 
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Leptophloeus angustulus (LeC.) fo 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Fam. Nitidulidae     
       

    
        

  

Subfamily Meligethinae     
                   

  

Meligethes sp. me 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fam. Coccinellidae     
                   

  

Subfamily Coccinellinae     
                   

  

Tribe Scymnini     
                   

  

Scymnus sp. ri 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Nephus bipunctatus (Kug.) oth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Tribe Coccinellini                          

Hippodamia arctica Schneid. ri 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Fam. Lathridiidae     
                   

  

Subfamily Corticariinae     
                   

  

Corticaria rubripes Man. pl 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C. ferruginea Marsh. pl 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Corticaria sp. pl 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 

Fam. Anthicidae     
                   

  

Anthicus ater Pz. me 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fam. Chrysomelidae     
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Table 1 (Continued). Insect ecological groups: st - steppe, ms - meadow-steppe, ss - cry-steppe, dt - dry tundra, mt - wet tundra, me - 

meadow, sh -shrubs, pl - plant litter, fo - forest, ri - riparian, aq -aquatic, oth - others 
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Subfamily Eumolpinae     
                   

  

Bromius obscurus (L)  me 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Subfamily Chrysomelinae     
                   

  

Chrysolina arctica Medv. ms 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

C. brunnicornis bermani Medv. st 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

Chrysolina sp. oth 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Phaedon sp.? me 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Subfamily Galerucinae     
                   

  

Tribe Alticini                          

Altica engstromi (Sahlb.) me 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fam. Brachyceridae                          

Subfamily Erirhininae                          

Fam. Curculionidae     
                   

  

Subfamily Bagoinae     
                   

  

Bagous sp.? aq 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Subfamily Entiminae     
                   

  

Tribe Otiorhynchini     
                   

  

Otiorhynchus cribrosicollis Boh. ms 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Tribe Phyllobini     

                   
  1
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Table 1 (Continued). Insect ecological groups: st - steppe, ms - meadow-steppe, ss - cry-steppe, dt - dry tundra, mt - wet tundra, me - 

meadow, sh -shrubs, pl - plant litter, fo - forest, ri - riparian, aq -aquatic, oth - others 
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Phyllobius kolymensis Kor. et 
Egorov ? ms 2 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

0 

Phyllobius (Angarophyllobius) sp. ms 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Phyllobius virideaeris Laich. me 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tribe Polydrusini     
                   

  

Liophloeus tessulatus (Mull.) me 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Subfamily Hyperinae     
                   

  

Hypera diversipunctata (Schrank.) dt 0 2 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 

Subfamily Lixinae                          

Tribe Cleonini                          

Coniocleonus sp. ms 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 

Stephanocleonus eruditus Faust st 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 4 0 

S. incertus T.-M. st 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 

Stephanocleonus sp. st 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 

Cleonini gen. indet. ms 0 0 0 0 1 1 0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 

Subfamily Mesoptilinae     
                   

  

Magdalis carbonaria L.? fo 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Subfamily Molytinae     
                   

  

Tribe Lepyrini     
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Table 1 (Continued). Insect ecological groups: st - steppe, ms - meadow-steppe, ss - cry-steppe, dt - dry tundra, mt - wet tundra, me - 

meadow, sh -shrubs, pl - plant litter, fo - forest, ri - riparian, aq -aquatic, oth - others 
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Lepyrus nordenskioeldi Faust sh 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Lepyrus sp. sh 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Subfamily Curculioninae     
                   

  

Tribe Elliscini     
                   

  
Dorytomus rufulus amplipennis 
Tourn. sh 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tribe Rhamphini     
                   

  

Rhynchaenus sp. sh 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Curculionidae gen. indet. oth 0 0 0 1 2 4 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 
Ord. Hemiptera, subord. 
Auchenorryncha                          

Fam. Cicadellidae                          

Cicadellidae gen. indet. me 0 0 0 0 0 1 0 0 0 0 3 1 0 0 0 0 0 2 1 2 1 

Fam. Saldidae                          

Saldula sp. aq 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fam. Scutelleridae     
                   

  

Eurygaster sp. ms 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Fam. Pentatomidae     
                   

  

Aelia sp. ms 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Fam. Tingidae     
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Table 1 (Continued). Insect ecological groups: st - steppe, ms - meadow-steppe, ss - cry-steppe, dt - dry tundra, mt - wet tundra, me - 

meadow, sh -shrubs, pl - plant litter, fo - forest, ri - riparian, aq -aquatic, oth - others 
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Tingidae gen. indet oth 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Ord. Hymenoptera     
                   

  

Fam. Formicidae     
                   

  

Leptothorax acervorum F. fo 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 

Camponotus herculeanus L. fo 0 0 0 0 62 10 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 

Hymenoptera gen. indet. oth 2 0 0 1 8 5 0 0 0 0 0 4 0 0 0 0 2 0 0 0 0 

Ord. Trichoptera     
                   

  

Trichoptera gen. indet. (larvae) aq 0 2 0 4 0 0 2 1 4 6 4 0 0 0 0 0 0 0 0 0 0 

Ord. Diptera                          

Fam. Tipulidae                          

Tipulidae gen. indet. (larvae) oth 0 0 0 0 3 3 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

Diptera gen. indet. oth 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Diptera gen. indet. (puparia) oth 2 0 0 1 16 20 0 1 0 0 0 0 0 0 0 0 0 0 0 11 0 

Order Ephemeroptera                          

Ephemeroptera gen. indet.  aq 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Class Arachnida     
                   

  

Ord. Oribatida     
                   

  

Oribatida gen. indet. oth 0 0 0 0 16 39 0 1 1 0 8 25 2 18 0 3 9 5 0 1 0 

Ord. Araneae     
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Table 1 (Continued). Insect ecological groups: st - steppe, ms - meadow-steppe, ss - cry-steppe, dt - dry tundra, mt - wet tundra, me - 

meadow, sh -shrubs, pl - plant litter, fo - forest, ri - riparian, aq -aquatic, oth - others 

species   sample 

Ec
o

C
o

d
e 

20.6/A 21.6/B 22.6/C 

2
9

.6
/C

1
/2

4
.5

 29.6/E 

3
0

.6
/J

/3
/2

7
.5

 

3
0

.6
/K

/1
/2

9
.0

 

3
0

.6
/L

/4
/3

2
.5

 

30.6/N 

2
.7

/A
/2

/5
0

 

1
/4

.6
-4

.7
2

 

2
/5

.5
 

4
/7

.5
 

5
/8

.5
 

1
/4

3
 

3
/4

4
 

2
/8

.5
 

2
/9

.5
 

4
/1

0
.5

 

6
/1

2
.5

 

8
/1

3
.5

 

2
/1

8
.5

 

3
/1

9
.5

 

5
/3

7
.5

 

6
/3

8
.5

 

8
/4

0
.5

 

Araneae gen. indet. oth 1 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 2 0 2 0 

Arachnida gen. indet. oth 0 0 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Class Branchiopoda, Ord. 
Cladocera     

                   
  

Daphnia sp. aq 0 1 13 0 0 0 0 5 1 0 5 0 0 0 0 0 0 1 0 0 0 

Phylum Annelida, Class Clitellata     
                   

  
Ord. Haplotaxida, Fam. 
Lumbricidae     

                   
  

Lumbricidae cocoons pl 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Phylum Nematoda   
                    

  

Nematoda eggs? pl 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

sum   23 8 14 7 198 137 2 10 7 8 26 54 5 60 5 10 28 17 12 23 2 
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Appendix A.6. 

Abbreviations of species names used in a DCA plot (Figure 5 in Chapter 3, figure 5.4 in Chapter 5)  

Short Species in modern vegetation Species in palaeo-vegetation 

AgroCri Agropyron cristatum Agropyron cristatum 

AlysObo Alyssum obovatum Alyssum obovatum 

ArteCom Artemisia commutata Artemisia sp. 

ArteFri Artemisia frigida Artemisia sp. 

BetuSpe Betula species Betula species 

CareDur Carex duriuscula Carex duriuscula 

ChenAlb Chenopodium album Chenopodium sp. 

ChenSpe Chenopodium species Chenopodium species 

EmpeNig Empetrum nigrum Empetrum nigrum 

EquiSci Equisetum scirpoides Equisetum scirpoides 

EremCap Eremogone capillaris Eremogone capillaris 

ErigAce Erigeron acer Erigeron acris 

ErigAcr Erigeron acris Erigeron acris 

EritVil Eritrichium villosum Eritrichium villosum 

FestLen Festuca lenensis Festuca sp. 

KoelPyr Koeleria pyramidata Koeleria sp. 

LariGme Larix gmelinii Larix gmelinii 

LeduPal Ledum palustre Ledum palustre 

LepiDen Lepidium densiflorum Lepidium densiflorum 

MinuRub Minuartia rubella Minuartia rubella 

MinuVer Minuartia verna Minuartia verna 

MoehLat Moehringia lateriflora Moehringia lateriflora 

MyosAsi Myosotis asiatica Myosotis asiatica 

MyosSpe Myosotis species Myosotis asiatica 

PapaAlp Papaver alpinum Papaver Sect. Scapiflora 

PhloSib Phlox sibirica Phlox sibirica 

PlanCan Plantago canescens Plantago canescens 

PoaAtt Poa attenuata Poa sp. 

PoaSib Poa sibirica Poa sp. 

PoaSpe Poa species Poa species 

PoteAre Potentilla arenosa Potentilla arenosa 

PoteTol Potentilla tollii Potentilla tollii 

PuccHau Puccinellia hauptiana Puccinellia sp. 

RanuPed Ranunculus pedatifidus Ranunculus pedatifidus subsp. affinis 

RosaAci Rosa acicularis Rosa acicularis 

RubuIda Rubus idaeus Rubus idaeus 

SelaSel Selaginella sellowii Selaginella rupestris 

SileRep Silene repens Silene repens 

SileSam Silene samojedorum Silene samojedorum 

StelJac Stellaria jacutica Stellaria jacutica 

TephInt Tephroseris integrifolia Tephroseris integrifolia 

UrtiDio Urtica dioica Urtica dioica 

VaccVit Vaccinium vitis-idaea Vaccinium vitis-idaea 
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