Statistically reinforced machine learning for nonlinear interactions of factors & hierarchically nested spatial patterns

Masahiro Ryo & Matthias C. Rillig

Free University of Berlin

Berlin-Brandenburg Institute of Advanced Biodiversity Research

R2.1: Understanding species distribution, population dynamics and phenology by machine learning 10th International Conference on Ecological Informatics 2018, Jena, Germany. 2018.09.20.

#1 Statistics + Machine learning

#2 Variable interactions detection

#3 Multiscale autocorrelation

R2.1: Understanding species distribution, population dynamics and phenology by machine learning₂ 10th International Conference on Ecological Informatics 2018, Jena, Germany. 2018.09.20.

cf. Ryo & Rillig (2017)

#1 Statistically reinforced machine learning?

= Statistics + Machine learning

Statistics

- Hypothesis-testing, theory-driven
- Some strong assumptions (e.g. Linearity, normality, additivity)
- Probability

Machine learning

- Information-searching, data-driven
- No assumptions (nonparametric)
- Predictability

cf. Ryo & Rillig (2017)

#1 Statistically reinforced machine learning?

- Permuting **X**, building a model, evaluating the reduction in accuracy
- After repeating this, evaluate if the reduction is significant or not

cf. Ryo & Rillig (2017)

#1 Statistically reinforced machine learning?

High predictability & model-free hypothesis test

Prediction with _____ p-value Variable selection

Using only useful info. increases model performance

Discovering nonlinearity & interactive effect without a priori assumption

#2 Nonlinear interactions explains diversity pattern

What are the most important abiotic interactions?

Macroinvertebrate diversity in Swiss rivers (n = 518)

- Family richness (α-diversity)
- 70 abiotic factors
- Nonlinear interactions of abiotic factors are often fully neglected at the regional scale

#2 Nonlinear interactions explains diversity pattern

Random Forest testing significance of each predictor

- **70** factors
- **2415** of 2-way interactions
- **54740** of 3-way interactions
- 20 factors
- **190** of 2-way interactions
- **1140** of 3-way interactions

cf. Ryo et al. (2018)

#2 Nonlinear interactions explains diversity pattern

cf. Ryo et al. (2018)

#2 Nonlinear interactions explains diversity pattern

cf. Ryo et al. (2018)

#2 Nonlinear interactions explains diversity pattern

#3 Multiscale spatial autocorrelation

? Spatial autocorrelation in machine learning?

3.5 2.5 3 0 0.5 1.5 2 distance d15NSoil element ec15 PercN16 sbd16 sbd15 soilmoistApr16 TOC16 PercC16 PercN15

Variable importance measure

#3 Multiscale spatial autocorrelation

#3 Multiscale spatial autocorrelation

Decomposition to patterns and then regress them ③

#3 Multiscale spatial autocorrelation

Take-home messages

ML can better support ecological studies by offering:

- 1. Statistical summary for more flexible hypothesis-testing
- 2. Nonlinear variable interactions discovery
- 3. Multiscale variable importance with hierarchical structure

- Consultations

Masahiro Ryo

https://masahiroryo.jimdo.com masahiroryo@gmail.com

Bridging in Biodiversity Science -BIBS

COLLABORATIVE

PROJECT

SPONSORED BY THE

Federal Ministry of Education and Research

Mutual information theory

Kelly & Okada (2012) Variable interaction measures with random forest classifiers

Mutual information theory

I(A∩B∩C)