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Recipe

#1 Statistics + Machine learning
#2 Variable interactions detection

#3 Multiscale autocorrelation
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cf. Ryo & Rillig (2017)
#1 Statistically reinforced machine learning?

E = Statistics + Machine learning

Statistics

e Hypothesis-testing, theory-driven

e Some strong assumptions
(e.g. Linearity, normality, additivity)
e Probability

Machine learning

o o e Information-searching, data-driven
o 0 e No assumptions (honparametric)
e Predictability




cf. Ryo & Rillig (2017)
#1 Statistically reinforced machine learning?
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b Overall importance of predictors

e Permuting X, building a model, evaluating the reduction in accuracy
e After repeating this, evaluate if the reduction is significant or not



cf. Ryo & Rillig (2017)
#1 Statistically reinforced machine learning?

n High predictability & model-free hypothesis test

;*\/\ Prediction with A p-value Variable selection

Using only useful info. increases model performance

A Hypothesis-testing with ~*.-"> Information-searching

—_—

Discovering nonlinearity & interactive effect
without a priori assumption



cf. Ryo et al. (2018)

#2 Nonlinear interactions explains diversity pattern

What are the most important abiotic interactions?

Macroinvertebrate diversity

%}{% in Swiss rivers (n = 518)

e Family richness (a-diversity)

e 70 abiotic factors

e Nonlinear interactions of
abiotic factors are often fully
neglected at the regional scale



cf. Ryo et al. (2018)

#2 Nonlinear interactions explains diversity pattern

Variable selection

Testing all 3-way combinations

Finding imporant interactions

Random Forest testing
significance of each predictor

e 70 factors
e 2415 of 2-way interactions
e 54740 of 3-way interactions

e 20 factors
e 190 of 2-way interactions

e 1140 of 3-way interactions



cf. Ryo et al. (2018)
#2 Nonlinear interactions explains diversity pattern
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Variable selection f Kelly & Okada (2012)
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cf. Ryo et al. (2018)

#2 Nonlinear interactions explains diversity pattern

Variable selection

Testing all 3-way combinations

Finding imporant interactions
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cf. Ryo et al. (2018)
#2 Nonlinear interactions explains diversity pattern

Elevation X Forest coverage X Geographic region
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cf. Ryo et al. (in review)

#3 Multiscale spatial autocorrelation

Spatial autocorrelation in machine learning?

Variable importance measure
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cf. Ryo et al. (in review)

#3 Multiscale spatial autocorrelation

Spatial autocorrelation in machine learning?
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cf. Ryo et al. (in review)

#3 Multiscale spatial autocorrelation

E Decomposition to patterns and then regress them ©
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cf. Ryo et al. (in review)

#3 Multiscale spatial autocorrelation
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Take-home messages

ML can better support ecological studies by offering:
1. Statistical summary for more flexible hypothesis-testing
2. Nonlinear variable interactions discovery
3. Multiscale variable importance with hierarchical structure

N
- Consultations | Masahiro Ryo

- Collaborations | https://masahiroryo.jimdo.com
- ML workshops | masahiroryo@gmail.com
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Mutual information theory

0 0

Interaction importance Importance Importance  Joint importance
I(AnB) I(A) 1(B) I(AuB)

Kelly & Okada (2012) Variable interaction measures with random forest classifiers



Mutual information theory
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