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LIFE Healthy Forest 
Early detection and advanced management
systems to reduce forest decline by
invasive and pathogenic agents.

Main task: Spatial (modeling) analysis to
support the early detection of various
pathogens.

Pathogens 

Fusarium circinatum
Diplodia sapinea ( needle blight)
Armillaria root disease
Heterobasidion annosum

 
Fig. 1: Needle blight caused by Diplodia pinea
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Introduction

Motivation
Find the model with the highest predictive performance.

Results are assumed to be representative for data sets with similar predictors and
different pathogens (response).

Be aware of spatial autocorrelation 

Analyze differences between spatial and non-spatial hyperparameter tuning (no
research here yet!).

Analyze differences in performance between algorithms and sampling schemes in CV
(both performance estimation and hyperparameter tuning)
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Data  & Study Area 
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Data  & Study Area 
�� Skim summary statistics  
��  n obs: 926    
��  n variables: 12    
�� 
�� Variable type: factor
�� 
��  variable     missing     n     n_unique                    top_counts                 
�� -----------  ---------  -----  ----------  --------------------------------------------
��   diplo01        0       926       2                  0� 703, 1� 223, NA� 0            
��  lithology       0       926       5        clas: 602, chem: 143, biol: 136, surf: 32  
��    soil          0       926       7         soil: 672, soil: 151, soil: 35, pron: 22  
��    year          0       926       4        2009� 401, 2010� 261, 2012� 162, 2011� 102 
�� 
�� Variable type: numeric
�� 
��    variable       missing     n       mean       p0       p50       p100       hist   
�� ---------------  ---------  -----  ----------  -------  --------  --------  ----------
��       age            0       926     18.94        2        20        40      ▂▃▅▆▇▂▂▁ 
��    elevation         0       926     338.74     0.58     327.22    885.91    ▃▇▇▇▅▅▂▁ 
��    hail_prob         0       926      0.45      0.018     0.55       1       ▇▅▁▂▆▇▃▁ 
��      p_sum           0       926     234.17     124.4    224.55    496.6     ▅▆▇▂▂▁▁▁ 
��       ph             0       926      4.63      3.97      4.6       6.02     ▃▅▇▂▂▁▁▁ 
��      r_sum           0       926    -0.00004    -0.1     0.0086    0.082     ▁▂▅▃▅▇▃▂ 
��  slope_degrees       0       926     19.81      0.17     19.47     55.11     ▃▆▇▆▅▂▁▁ 
��      temp            0       926     15.13      12.59    15.23      16.8     ▁▁▃▃▆▇▅▁
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Data  & Study Area 

 
Fig. 2: Study area (Basque Country, Spain)
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Methods 

Machine-learning models
Boosted Regression Trees ( BRT )
Random Forest ( RF )
Support Vector Machine ( SVM )
k-nearest Neighbor ( KNN )

Parametric models
Generalized Addtitive Model ( GAM )
Generalized Linear Model ( GLM )

Performance Measure
Brier Score: Mean squared error of the probabilites, t t

1
N
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Methods 

Nested Cross-Validation
Cross-validation for performance estimation

Cross-validation for hyperparameter tuning (sequential model-based optimization
(SMBO), Bischl, Richter, Bossek, et al. (2017))

Different sampling strategies (Performance estimation/Tuning):

Non-Spatial/Non-Spatial

Spatial/Non-Spatial

Spatial/Spatial Brenning (2012)

Non-Spatial/No Tuning

Spatial/No Tuning
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Methods 

Nested (spatial) cross-validation

 
Fig. 3: Nested spatial/non-spatial cross-validation
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Methods 

Nested (spatial) cross-validation
 

 
Fig. 4: Comparison of spatial and non-spatial partitioning of the data set.
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Methods 

Hyperparameter tuning search spaces
RF : Probst, Wright, and Boulesteix (2018) 
BRT, SVM, KNN: R package mlrHyperopt Richter (2017)

Table 1: Hyperparameter limits and types of each model. 
Notations of hyperparameters from the respective R packages were used. 

 = Number of variables.p 14 / 31
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Results 

Hyperparameter tuning

Fig 4: SMBO optimization paths of the first five folds of the spatial/spatial and spatial/non-spatial CV setting for RF. The dashed
line marks the border between the initial design (30 randomly composed hyperparameter settings) and the sequential optimization
part in which each setting was proposed using information from the prior evaluated settings.
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Results 

Hyperparameter tuning

Fig 5: Best hyperparameter settings by fold (500 total) each estimated from 100 (30/70) SMBO tuning iterations per fold using five-
fold cross-validation. Split by spatial and non-spatial partitioning setup and model type. Red crosses indicate the default
hyperparameters of the respective model. Black dots represent the winning hyperparameter setting of each fold. The labels ranging
from one to five show the winning hyperparameter settings of the first five folds.
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Results 

Hyperparameter tuning
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Results 

Predictive Performance

Fig 6: (Nested) CV estimates of model performance at the repetition level using 100 SMBO iterations for hyperparameter tuning. CV
setting refers to performance estimation/hyperparameter tuning of the respective (nested) CV, e.g. "Spatial/Non-Spatial" means that
spatial partitioning was used for performance estimation and non-spatial partitioning for hyperparameter tuning. 19 / 31



Results 

20 / 31



Discussion 
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Discussion 

Predictive performance
RF  showed the best predictive performance 
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Discussion 

Predictive Performance
RF  showed the best predictive performance 

High bias in performance when using non-spatial CV

The GLM  shows an equally good performance as BRT, KNN and SVM

The GAM  suffers from overfitting
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Hyperparameter tuning
Almost no effect on predictive performance
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Discussion 

Tuning
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Discussion 

Hyperparameter tuning
Almost no effect on predictive performance

Differences between algorithms are higher than the effect of hyperparameter tuning

Spatial hyperparameter tuning has no substantial effect on predictive performance
compared to non-spatial tuning

Optimal parameters estimated from spatial hyperparameter tuning show a wide spread
across the search space

 Spatial hyperparameter tuning should be used for spatial data sets to have a consistent
resampling scheme 
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Thanks for listening!

Questions? Slides can be found here: https://bit.ly/2DsIEJg

 

Spatial modeling tutorial with mlr: http://mlr-org.github.io/mlr/articles/tutorial/handling_of_spatial_data.html 
Spatial modeling tutorial with sperrorest: https://www.r-spatial.org/r/2017/03/13/sperrorest-update.html 
arxiv preprint: https://arxiv.org/abs/1803.11266
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