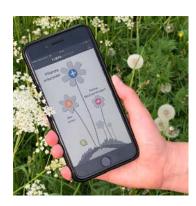
Integrating Context-based Recommendations with Deep NN Image Classification for Plant Identification Tasks

Hans Christian Wittich, David Boho, Patrick Mäder

ICEI 2018

25.09.2018

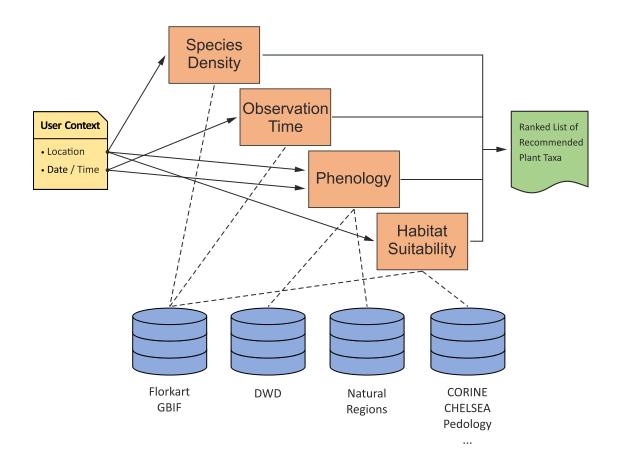

Software Engineering for Safety-Critical Systems Group Technische Universität Ilmenau

Plant Identification

- Flora Incognita Project
- Free app for iOS/Android devices
- Identifying species from their photos interactively
- Machine Learning: Deep CNN (NASNet)
- 2770 Classes (wild flowering plants in Germany)

Contextual Recommender

- Identification of large number of plant taxa is hard
- Recommender: Shortlist of likely candidate taxa ("mobile field guide")
- Context: Information on circumstances an observation is made under
- Easily available metadata on mobile devices:
 - Geographic position
 - Current date and time [25]
- Benefit for users:
 - Validity check when plants found in atypical locations

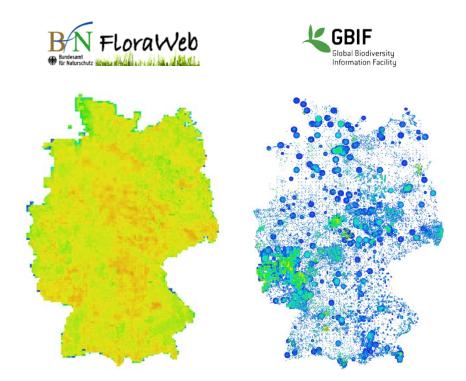


Factors Influencing Plant Observability

- 1. a) Geographic range of plant
 - Plant known to occur somewhere in area (large scale)
 - b) Occurrence of plant individual
 - Likely to occur near location of known observation
 - Likely to be observed around same time of year
- 2. Phenology
 - Known plant-specific flowering periods
 - Most plants best identified when flowering
- Presence of suitable habitat/environment
 - Plant-specific ecological conditions present -> plant present (potentially)

Recommender Components

Recommender Overview

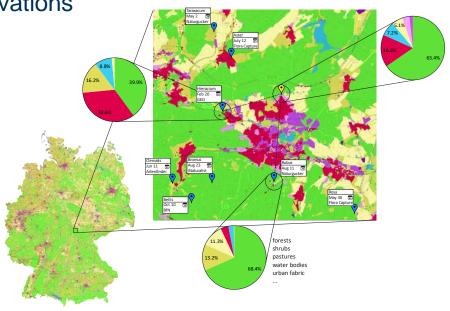

TECHNISCHE UNIVERSITÄT

ILMENAU

Biogeography: Expert Knowledge

(1) Biogeography

- Plant distribution grid maps
 - Large scale, low resolution
 - Binary presence/absence
 - Comprehensive (all of Germany)
- Individually observed occurrences
 - Local scale, high accuracy
 - Observation times
 - Presence only
 - Irregularly sampled



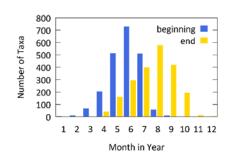
Biogeography: Contribution

Similarity to known plant observations

Geographical distance

- Land cover similarity
- Time difference

	Average Recall	Top-20 Recall	Median Rank	Avg List Length
Species Density	95%	13%	156	1551
Observation Time	50%	20%	37	240



Christian Wittich

Phenology: Expert Knowledge

Static flowering periods

- Known for most taxa
- Coarse-grained (per month)
- Independent of location

Dynamic flowering periods

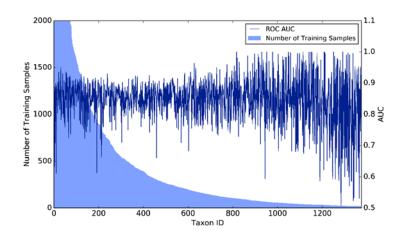
- Groups of taxa sharing similar phenological characteristics
- Ten phenological seasons, related to onset of specific phenophase
- Location-specific begin of seasons

	Average Recall	Top-20 Recall	Median Rank	Avg List Length
Phenology	70%	3%	466	1117

Habitat Suitability

- Machine-learning approach: maximum entropy density estimation¹
 - Relating taxon occurrences to environmental predictors
 - Model for each of 2770 taxa
- Predictor variables: environmental geodata
 - Climate
 - Height
 - Land cover
 - Soil
 - Geomorphology
- Training data acquisition:
 - Known taxon presence at observation locations (GBIF)
 - Randomly chosen absence locations (Florkart)

¹ Phillips, S. J. et al. 2004. A maximum entropy approach to species distribution modeling.


Soldanella alpina

Habitat Suitability: Contribution

Model performance dependent on

- Training sample selection
- Background geodata selection
- Number of training samples

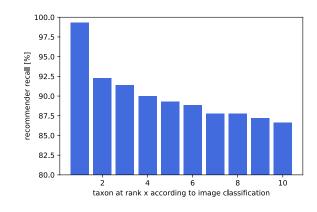
	Average Recall	Top-20 Recall	Median Rank	Avg List Length
Habitat Suitability	93%	7%	247	1379

10/12

Results

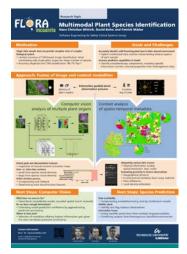
	Average Recall	Top-20 Recall	Median Rank	Avg List Length
Compound Recommender	90%	25%	70	860

- Feedback for image classification
 - Taxa predicted from photos (top-1) have 99% recall in recommended list
 - 92% or less for following ranks
- Flora Incognita app
 - "Sanity check" for image recognition
 - Flag observations as dubious/uncertain and inform user



Integration into image classification pipeline

Integrating Context-based Recommendations with Deep


NN Image Classification for Plant Identification Tasks

Needs more comprehensive data basis -> more densely sampled map of Germany

Wrap-up

Thanks for listening! Questions?

Poster Session 17:00

Christian Wittich