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Zusammenfassung

In unserem alltdglichen Leben kénnen wir drei raumliche sowie eine zeitliche Dimension wahr-
nehmen. Jedoch konnte die Betrachtung zusitzlicher Dimensionen einen Ansatz zur Losung
verschiedener Probleme der modernen Physik bieten, unter anderem fiir das Hierachieproblem
und die Vereinigung der elementaren Wechselwirkungen. Zudem gibt uns die Stringtheorie, wel-
che generisch zur Annahme zusitzlicher Dimensionen fiihrt, Hinweise auf die Aquivalenz zwi-
schen bestimmten stark gekoppelten Quantenfeldtheorien und Gravitationstheorien in hoheren
Dimensionen. Speziell die AdS/CFT Korrespondenz induzierte die Untersuchung zahlreicher
hoherdimensionale Gravitationstheorien mit verschiedenem Materieinhalt.

Der erste Teil dieser Arbeit ist der numerischen Konstruktion von lokalisierten Schwarzen
Lochern in flinf, sechs und zehn dimensionalen Kaluza-Klein-Theorien gewidmet. Der Fokus
liegt hierbei auf der Untersuchung statischer, asymptotisch flacher Losungen der Einsteinglei-
chungen im Vakuum mit einer periodisch kompaktifizierten Dimension. Speziell der kritische
Bereich, innerhalb dessen die Pole der lokalisierten Schwarzen Locher nahe dem Verschmelzen
sind, steht im Zentrum unserer Aufmerksamkeit. Die dafiir erforderlichen Genauigkeiten wer-
den durch Verwendung eines besonders angepassten pseudospektralen Mehrgebietsverfahrens
erreicht, wodurch das entsprechende Phasendiagramm weit tiber den bisher bekannten Bereich
ausgedehnt werden kann. Als Ergebnis erhalten wir eine spiraldhnliche Struktur im Phasen-
raum der fiinf- und sechsdimensionalen Konfigurationen, welche sich nahtlos an die kiirzlich
fir Schwarze Strings mit ungleichméfiiger Horizontgeometrie gefundenen Resultate fiigen. Im
Gegensatz dazu zeigt der Phasenraum der zehndimensionalen Konfiguration keine spirfalférmi-
gen Kurven der thermodynamischen Groflen. Die im Rahmen dieser Arbeit numerisch berech-
neten Werte der kritischen Exponenten zeigen eine besonders gute Ubereinstimmung mit den
theoretischen Vorhersagen.

Die Untersuchung stark gekoppelter Weyl-Halbmetalle unter Verwendung der AdS/CFT
Korrespondenz steht im Fokus des zweiten Teils dieser Arbeit. Konkret analysieren wir unter Zu-
hilfenahme numerischer, pseudo-spektraler Techniken die Auswirkungen von Inhomogenitédten
in einem holographischen Weyl-Halbmetall, insbesondere werden Grenzfldcheneffekte sowie die
Folgen von zeitlich konstanter Unordnung studiert. Als Resultat der Untersuchung von Grenz-
flachen zwischen verschiedenen Phasen eines Weyl-Halbmetalls erhalten wir lokalisierte Grenz-
flachenstromdichten bei Anwesenheit eines dufleren chemischen Potentials. Der diesbeziigliche
integrierte Grenzflichenstrom héngt nur von der Topologie der sich berithrenden Phasen ab und
ist in diesem Sinne universell. Als Konsequenz stellen unsere Resultate einen wichtigen Beitrag
fir das Verstandnis anomaler Transporteigenschaften in inhomogenen Magnetfeldern dar.

Als weiteren Aspekt wird die Auswirkung von zeitunabhéangiger Unordnung auf den Quan-
tenphasentibergang (QPT) im holographischen Weyl-Halbmetall untersucht. Hier ldsst sich eine
Ausschmierung des scharfen QPTs beobachten, welche mit der Ausbildung sogenannter seltener
Regionen mit lokal nicht verschwindendem Ordnungsparameter einhergeht. AufSerdem unter-
suchen wir den Einfluss der Korrelationsldnge der implementierten Unordnung und vergleichen
unsere Resultate mit theoretischen Vorhersagen der Festkorperphysik.






Abstract

In our everyday lives, we experience three spatial dimensions and a fourth dimension of time.
Nevertheless, several intricate problems of modern physics may be mastered with the intro-
duction of additional dimensions, including the hierarchy problem and the unification of the
fundamental forces. Furthermore, dualities between certain strongly coupled quantum field the-
ories and particular gravitational theories in higher dimensions were conjectured based on string
theory, which generically comes with the premise of extra dimensions. Specifically, the AdS/CFT
correspondence or rather gauge/gravity duality motivated the study of a wide variety of higher
dimensional gravitational theories with additional matter.

The first part of this thesis covers the numerical construction of localized black holes in five,
six and ten dimensional Kaluza-Klein theories. We focus on static, asymptotically flat vacuum
solutions of Einstein’s field equations with one periodic compact dimension. Our study concen-
trates on the critical regime, where the poles of the localized black holes are about to merge. We
utilize a well adapted multi-domain pseudo-spectral scheme for obtaining high accuracy results
and investigate the phase diagram of the localized solutions far beyond previous results. A spi-
ral phase space structure is found for the five and six dimensional setups which matches to the
results that were recently obtained for non-uniform black strings. On the contrary, the phase
space structure of the ten dimensional configuration exhibits no spiraling behavior of the ther-
modynamical quantities. These critical exponents were extracted from the numerical data of the
aforementioned configurations and show an excellent agreement with the theoretical predictions.

In the second part of this thesis, the AdS/CFT correspondence is employed for studying
strongly coupled Weyl semimetals. More concretely, we numerically investigate the effects of
inhomogenities within a holographic Weyl semimetal by using a pseudo-spectral scheme, includ-
ing interfaces of Weyl semimetals and the impact of time independent disorder. When studying
interfaces between different Weyl semimetal phases, we observe the appearance of an electric
current, that is restricted to the interface in the presence of an electric chemical potential. The
related integrated current is universal in the sense that it only depends on the topology of the
phases. These results may shed some light on anomalous transport for inhomogeneous magnetic
fields.

As another point, we study the effects of time independent one-dimensional disorder on the
holographic Weyl semimetal quantum phase transition (QPT), with a particular focus on the
quantum critical region. We observe the smearing of the sharp QPT linked to the appearance of
rare regions where the order parameter is locally non-zero. We discuss the role of the disorder
correlation and we compare our results to expectations from condensed matter theory at weak
coupling. We also analyze the interplay of finite temperature and disorder.
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Chapter 1

Introduction

The beginning of the 20th century was marked by two major revolutions in science, which con-
sequently changed our perception of nature and are both linked to Albert Einstein. The first
revolution is related to Einstein’s utilization of Planck’s quantum hypothesis when explaining
the photoelectric effect in 1905 [63], which was one of the pioneering works for establishing
quantum theory. Quantum theory aims for describing nature at microscopic scales, whereas
gravity determines structures at large scales. As a tremendous breakthrough, Einstein revealed
the geometric origin of the gravitational interaction when presenting his final theory of general
relativity (GR) in 1915 [64]. Accordingly, the gravitational attraction of matter is a direct conse-
quence of spacetime curvature, which is in turn induced by the energy content of the matter.

The success of general relativity was, despite its mathematical complexity, a result of its
geometric clarity and its capability to explain the perihelion precession of Mercury [65], that had
remained mysterious for a long time. Furthermore, GR made predictions about the observation
of physical effects, that had not been recognized so far, such as the deflection of light by the
Sun [62] and the gravitational redshift of light [170]. In particular, the recent measurement of
gravitational waves from a binary neutron star merger by LIGO [1], accompanied with a direct
optical validation of the event, highlights the verification of one of the last missing tests for
general relativity.

Due to the successes of field theoretic formulations in the electromagnetic realm and similar-
ities between gravitational and electromagnetic interactions, physicists started early to combine
Maxwell’s formulation of electromagnetism with Einstein’s theory of general relativity. Already
shortly after Einstein published his work, Nordstrom tried to derive both theories from a unified
description by adding a fourth spatial dimension to the GR framework [160]. This idea was fur-
ther developed by Kaluza, who noticed that a five-dimensional formulation of GR can be reduced
to Einstein’s description of gravity in four dimension coupled to electromagnetic fields [124]. The
basis of Kaluza’s ansatz was the interpretation of the additional degrees of freedom as compo-
nents of a four-dimensional vector potential augmented by an additional scalar field, while all
fields were constrained to be independent of the new fith dimension. This cylinder condition led
to a significant simplification of the regarding field equations, but a physical motivation for it re-
mained unclear. Subsequently, Klein replaced the cylinder condition by assuming a compactified
nature of the fith dimension in 1926 [130, 129]. Klein’s ansatz came with the advantage of a nice
physical interpretation of the extra dimension related to quantum theory: As a consequence of
its compact topology, the field momentum ps should be quantized in the periodic dimension ac-
cording to de Broglie’s condition ps = hk/L, where h is the Planck constant, L is the extension of
the compact dimension and k is an integer. Klein’s modification provided a simple explanation,
why the predicted additional dimension has not been spotted yet: A very small value of L would
make excitations of the higher non-trivial modes k > 0 inaccessible to experimental observation.

The ideas of Kaluza and Klein (KK) were further extended and analyzed by several re-
searchers in the following years'. However, the presence of an additional scalar field in KK

IReference [20] provides a nice review on these developments.
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theory without any physical interpretation was considered as a major inconvenience. Mean-
while the quantization of fields was put on profound grounds by the successive development of
quantum field theory. The vast number of new particles detected in the different high energy
accelerators together with the discovery of the weak and strong interactions let rise the need for
a unified explanation of these phenomena. The efforts for a unification of the fundamental elec-
tromagnetic, weak and strong interactions culminated in the so-called Standard Model (SM) of
particle physics. Being based on quantum field theory, the SM includes a wide range of physics,
such as spontaneous symmetry breaking and anomalies. Consequently, the SM was able to ex-
plain many of the observed phenomena, while providing important experimental predictions,
that led amongst others to the discovery of the W and Z bosons, the gluon, top and charm
quarks and recently the Higgs boson, cf. [8, 214] for comprehensive reviews on these topics.
Despite its successes, the SM fails to incorporate the gravitational interaction as described by
general relativity and a unified theory of all fundamental interactions is not available today. The
formulation of such a unification poses one of the most important challenges to contemporary
theoretical physics.

A possible framework for such a unified theory is provided by string theory, which is based
on the replacement of the point-like particle model by one-dimensional strings. The first studies
of string theory as a possible candidate to model the strong nuclear force date back to the late
1960s. Only after being abandoned in favor of quantum chromodynamics, it was realized that
string theory could serve as a possible candidate for a quantum theory of gravity. A detailed
review of string theory is certainly out of the scope of this thesis?, but the most important ideas
can be summarized as follows: Strings propagate through space, interact with each other and are
subject to different vibrational states corresponding to the analogs of the elementary particles of
particle physics. In particular, one of these vibrational states can be interpreted in terms of the
graviton, which is the predicted quantum particle that mediates the gravitational force. A consis-
tent quantization of the strings necessitates the introduction of additional dimensions, where the
concrete number depends on the different particle classes (bosons, fermions) to be incorporated.
Correspondingly, superstring theory, in which bosonic and fermionic strings are connected by
so-called supersymmetric transformations, requires six additional spatial dimensions resulting
in a total number of ten spacetime dimensions. The idea of extra dimensions brings us back to
Kaluza’s and Klein’s formulation of five-dimensional gravity. A much richer set of possible com-
pactifications are considered within string theory due to the higher number of excess dimensions,
but the missing evidence for additional dimensions can again be justified with Klein’s argument
about their tiny extension. As desired, we recover classical GR in ten dimensions coupled to
additional fields in the low energy limit of superstring theory. Accordingly, we can consider KK
theory as one of the possible classical limits of superstring theory, if the additional dimensions
are compactified in a suitable way.

An important relationship between string theory and and quantum field theory was estab-
lished in 1997, when the so-called anti-de Sitter/conformal field theory (AdS/CFT) correspon-
dence was discovered [153, 213, 90, 3]. In a nutshell, this correspondence implies the equiva-
lence of certain string theories in anti-de Sitter (AdS) spacetimes® to specific conformal quantum
field theories (CFTs). Consequently, the AdS/CFT correspondence is also commonly denoted
as gauge/gravity correspondence or holographic duality. The original formulation of the cor-
respondence [153] related a CFT in four dimensions to the geometry of an AdS space in five

2We refer the reader to [218] for an instructive textbook on string theory.
3The anti-de Sitter space is a maximally symmetric vacuum solution to Einstein’s equations with constant negative
curvature.



dimensions. More generally, the correspondence relates strongly coupled quantum field the-
ories to the classical dynamics of gravity with an additional dimension. This puts us in the
beneficial position to study the physics of strongly coupled quantum systems by performing
calculations within higher dimensional theories of gravity. Specifically, the AdS/CFT driven
analysis of collective phenomena in strongly correlated condensed matter systems has attracted
recent attention, after a number of exotic states of matter were discovered in experiments, in-
cluding high temperature superconductors and Weyl semimetals. In the context of condensed
matter physics, s-wave [98] and p-wave [91, 14, 16, 15, 13] superfluids were investigated, as well
as Non-Fermi liquids [147, 15], topological insulators [109, 125, 17] and Quantum Hall transi-
tions [50]. Recently, the spontaneous and/or explicit breaking of translational symmetry were
investigated within holographic massive gravity theories [6, 7] giving rise to transverse phonons
whose speed is dictated by elasticity theory. In this thesis we concentrate on modeling the quan-
tum phase transition within a strongly coupled Weyl semimetal, which is hard to address by
standard methods, which usually rely on weak coupling assumptions, that are not applicable
in this case. However, the gauge/gravity correspondence and its implications are still not fully
understood yet and are subject to current research.

Besides the numerous discoveries and new developments in physics, a large variety of new
methods for tackling the related mathematical problems were established in the 20th century.
Most of all, the development of modern computers stimulated research by facilitating the solu-
tion of problems that had been out of reach before. A problem class of particular importance
is provided by differential equations due to their omnipresence in the different physical disci-
plines. Accordingly, various numerical methods for the efficient and accurate approximation of
solutions to differential equations were designed, implemented and applied to many different
problems. Among the distinct approximation schemes, we would like to mention spectral meth-
ods, which rely on a truncated expansion of the target function in terms of an appropriate set
of basis functions. Under certain conditions, these methods can show extraordinary convergence
properties, which are desirable when a high accuracy of the approximation is required. Conse-
quently, these methods play a major role for the construction of numerical solutions of partial
differential equations within this thesis.

Subjects of this work

As previously discussed, by studying problems related to gravity in higher dimensions we can
make predictions about possible impacts of a unification of forces at higher energy scales. On
the other hand, we may relate our findings directly to results within certain quantum field the-
ories depending on the number of dimensions and the asymptotic structure of the underlying
spacetime.

This work is divided into two major parts. In the first half, we consider the numerical con-
struction of static higher dimensional localized black holes (LBHs) in KK theory. The second part
addresses the study of Weyl semimetals by utilizing the aforementioned gauge/gravity duality.

Localized black holes

Black holes assume a special role among the various objects and effects that are predicted by
GR as a consequence of their event horizon, which prevents all classical matter from escaping
their vicinity. First considered as a mathematical curiosity, they were later recognized as generic
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predictions of general relativity. While the number of possible stationary vacuum black hole con-
figurations in four dimensions is constrained due to uniqueness theorems (i.e. the Schwarzschild
and Kerr solutions), higher dimensions provide a much richer set of different time-independent
black holes without additional matter fields. This fact, together with the aforementioned impor-
tance of higher dimensions within string theory, explains that the study of higher-dimensional
black hole systems was receiving a growing attention over the last decades [107].

Localized black holes are a special class of static vacuum spacetimes with one compact peri-
odic dimension considered in KK theory and were first discussed in [156]. The study of LBHs
was initially motivated when examining the stability of so-called black strings. A black string
is a black hole whose event horizon wraps the compact dimension completely. Gregory and
Laflamme showed, that the perturbation of a black string with a uniform horizon geometry
can lead to an instability, if the string mass surpasses a certain threshold at given extension of
the compact dimension [84, 85]. The subsequent search for an endpoint of this instability led
to the discovery of new static black hole configurations, such as non-uniform black string (NBS)
with broken translational invariance along the compact dimension [89] and localized black holes.
LBHs can be thought of as forming a never ending necklace of black hole “pearls” along the com-
pact dimension. Soon after the discovery of the NBS solution, a parametric transition between
the NBS and LBH branch was conjectured [93, 132]. Moreover, the so-called double cone met-
ric as a candidate for the critical transit solution was studied by Kol [132, 133, 24], including a
scaling analysis of physical quantities in the critical region.

In this work we present a sophisticated approach for numerically constructing LBH solutions,
which is based on spectral methods. We remark, that this approach was used in [121, 122, 123] to
analyze the merger of the LBH and NBS branch in five and six dimensions with an unprecedented
level of accuracy. We further analyze the critical scaling of the physical quantities in the critical
region and compare the results with Kols predictions about the double-cone metric. Moreover
we show, that the method works in principle for arbitrary dimensions by constructing LBHs not
only in five and six, but also in ten spacetime dimensions, where the critical behavior differs
qualitatively.

We remark, that the NBS to LBH phase transition is first order and consequently comes with
a significant release of energy. As a result, test signatures for extra dimensions in accelerator or
astronomic observations can benefit from a high-precision study of the physical quantities in the
critical regime [131].

As a peculiarity, the LBH solution in ten dimensions can be related to thermal states of a two
dimensional supersymmetric Yang-Mills theory (SYM), which is compactified to a circle [113, 59].
We provide an analysis of the corresponding thermodynamic quantities in the appendix.

Holographic Weyl semimetals

Black holes also play a major role in the second half of this thesis, which covers the construc-
tion of holographic Weyl semimetals (WSMs). Within this context, black holes in asymptotically
anti-de Sitter (aAdS) space provide the proper boundary asymptotics for studying field config-
urations on the gravity side that can be related to strongly coupled quantum field theories at
finite temperature via the aforementioned AdS/CFT correspondence. The corresponding quan-
tum field theory can be thought of as living on the special conformal boundary structure of
the aAdS space, which explains the notion “holographic duality”. As mentioned previously,
the AdS/CFT correspondence allows us to investigate strongly coupled solid state systems by
performing calculations within higher dimensional theories of classical gravity coupled to ad-



ditional fields. Thus non-perturbative results for quantum theories can be obtained by solving
differential equations.

WSMs provide a particularly interesting strongly coupled condensed matter system for a
study based on AdS/CFT, because they are connected to several exotic physical effects, such
as a quantum phase transition, the chiral anomaly and topological surface states. Furthermore,
they are subject to current experimental research [215, 112], such that theoretical predictions can
be confronted with experimental results. Accordingly, a first holographic model of WSMs was
introduced by Landsteiner [140]. It was shown, that this model can reproduce the characteristics
of the quantum phase transition (QPT) and a corresponding modification of the available weak-
coupling results was obtained [142].

Within this thesis we aim for extending the model of Landsteiner, that was used to study
homogeneous configurations, to more complicated setups. The implementation of more realis-
tic field configurations gives us the opportunity to check, whether the holographic model can,
besides the QPT, also reproduce the special surface states of WSMs. Furthermore, we study the
influence of disorder on the QPT in WSMs, which marks the first investigation of disorder ef-
fects in WSMs based on AdS/CFT so far. Especially the disorder analysis depends on a good
performance to accuracy ratio of the underlying numerical approximation, which is again based
on spectral methods.

Outline

The thesis is structured as follows. In chapter 2 we start with a review of the most important
theoretical basics, including the formulation of general relativity and Einstein’s equations, the
relevant non-trivial spacetimes and fundamental properties of black holes. We conclude chapter 2
with a brief overview of the AdS/CFT correspondence and provide important duality relations
that are used within the investigation of holographic WSMs. The numerical techniques, i.e.
spectral methods, that are used for both, the LBH and the WSM projects, are considered in
chapter 3. Chapter 4 is dedicated to a detailed description of the numerical construction of
localized LBHs, starting with a review of the most important properties of LBHs and related
physical quantities. Chapter 4 concludes with a presentation of the LBH results in five, six
and ten dimensions. After a short review of the physical characteristics and effects in WSMs,
we present the numerical construction of holographic WSMs in chapter 5, concluding with a
summary of the obtained results. The final chapter 6 provides a conclusion focusing on the
physical relevance of our results. Additionally, some remarks on potentially interesting future
developments are given.

We provide supplementary material, such as theoretical derivations and accuracy estimates
in appendix A. Furthermore, additional details about the numerical implementation are given in
appendix A.4.

We remark that the construction of LBHs in five and six dimensions, which is covered in
chapter 4 of this thesis, was published in reference [123]. Consequently, the results of this co-
operation, including the numerical construction and critical phase space analysis of LBHs and
NBSs in five and six dimensions, were presented before in detail within the recently published
PhD thesis of Michael Kalisch [120].

The investigation of surface states as well as finite temperature and disorder effects in holo-
graphic WSMs (contained in chapter 5) were published in [18, 11]. In particular, the numerical
construction of surface states in holographic WSMs was covered in detail in the (unpublished)
Master thesis of Markus Heinrich, which was supported by the author.






Chapter 2

Theoretical foundations

This chapter contains an overview of the theoretical foundations of this thesis. We start with
discussing the basics of general relativity in section 2.1, including a short review of Einstein’s field
equations in subsection 2.1.2. We continue with an overview of the most important spacetimes
to be used in this thesis in section 2.2. Finally, we outline the essential elements of the AdS/CFT
correspondence, that will be important in the scope of this work, in section 2.3.

2.1 General relativity basics

2.1.1  Gravity as geometry

General relativity (GR) provides a description of the interaction between matter (or more general
energy, including all types of fields) and space together with time. Accordingly, within GR, grav-
ity is interpreted as a geometrical property of a 4-dimensional curved spacetime manifold. This
approach can be easily extended to the description of spacetimes with arbitrary dimension D.
The key ingredient of this model is the rank 2 metric tensor g;,, which defines how the invariant
spacetime interval ds? between two spacetime events is measured

ds? = Suvdxtdx’, (2.1)

where dx# denotes an infinitesimal displacement in the metric space. Here, Greek indices are
running from 0 to D — 1 where D denotes the dimension of the manifold and repeated indices
imply summation. Note the invariance of equation (2.1) under general coordinate transforma-
tions x — x’.

As a next step, a covariant derivative V is introduced since the ordinary partial derivative
related to a given coordinate basis is not covariant under general coordinate transformations. Its
component-wise action on a general tensor T within a given coordinate system reads as follows

2
01...0p . 0.0
(V) g5 = 5 T it

HIp Tty o e+ T T

Y.y 1V

1- ﬂ] ﬁ:-
v ... Ky v 0] ...y
L N Nl R R R (2.2)
where I, is the Christoffel symbol
ga)\

FZV = IR (a;tg/\v + avg)\y - a)\gpn/> . (2.3)

The curvature of a given spacetime is encoded in the Riemann tensor
Rp;wv = aarfn/ - avrﬁa + Fﬁyrﬁg - rﬁgriv (2.4)
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Note that its components are determined by nonlinear combinations of first and second partial
derivatives of the metric tensor. Its trace Ry, = R’ is called the Ricci tensor. By taking the
trace R = R" i of the Ricci tensor, one obtains the Ricci scalar. These geometrical objects play a
major role when relating the spacetime curvature to the energy content of a manifold.

Non-coordinate Basis

Coordinate compactifications lead usually to singular entries of coordinate basis tensors which
are cumbersome for numerical evaluation. The usage of non-coordinate basis tensors can help
here and can be considered as a generalization of the usual conformal approach, which allows
only for dealing with one singular factor that can be removed from all metric tensor entries.

The starting point is the introduction of the frame coefficients eyl and the inverse coefficients ¢,
according to

e”.evi =4, eyie”j = 5;, (2.5)

1

where the Latin indices {i,j,k, ...} run from 0 to D — 1 and repeated indices imply summation.
As a result we obtain a new frame basis metric

V .

Mij = 8w e’ i€, (2.6)

where we do not put any constraints on 7;;. The inverse transformation reads

g],u/ — ei/lle]/]ﬂz] . (2.7)

Note that equation (2.6) can be considered as a spacetime dependent similarity transformation
of guv. A tensor T can now be transformed to the non-coordinate frame and back

T =e¢,'T", T = o' T', 2.8)
T, = ' T,, T, =e,'T;, (2.9)

where the generalization to multi-index tensors or even mixed basis tensors follows straightfor-
wardly. Covariant derivatives are now augmented by the spin connection w if expressed in the
new tensor basis

o d .
...l o l],..l,f' .
(VVT) Jieds T Qxch JieJs
iy kin.., iy iy 1k
BT S N S s Y
ok epitedy ok e,
“ujo T kja...jis Wy ]sT Jiejs—1k (2.10)

The relation of w to the Christoffel connection is obtained by expressing VT in the coordinate
basis and comparing the coefficients, yielding

I, =e';0, e, +e; eA]wyij, (2.11)
or equivalently

i i A A i
W, =e/ e —eioue. (2.12)
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The Riemann tensor and related quantities expressed in the non-coordinate frame can be found
in appendix A.1.1.

2.1.2 Einstein’s field equations

The relation between the geometry and the energy content of a spacetime manifold is given by
Einstein’s field equations

1
Ryy — ERgW + Aguy = 8nGpTyy, (2.13)

where T),, is the energy-momentum tensor of the spacetime matter content, A is the cosmological
constant and Gp is the gravitational constant in D spacetime dimensions. Together with the
equations of the matter fields, the tensor equation (2.13) comprises a set of nonlinear second
order partial differential equations (PDEs) for the spacetime metric g,.

The shape of the field equations (2.13) is neither suitable for the numerical solution of bound-
ary value problems nor for the evolution of initial data. How to recast the equations into an
applicable form will be covered within the next subsection.

Reformulations of Einstein’s field equations and the DeTurck method

The full set of Einstein’s equations (2.13) is usually overdetermined and exhibits another impor-
tant flaw with respect to its principal part (the part with second derivatives of g;,). For the stable
solution of a boundary value problem it is required that the underlying system is well-posed.!
(Uniform) Strong ellipticity? of the regarding differential operator and a certain regularity of the
boundary data are sufficient conditions for well-posedness.? A similar notion holds for the evo-
lution of initial data, where the principal symbol must be strongly hyperbolic as a requirement
for a stable time evolution [28]. In the following, we will constrain the discussion to the elliptic
case, since we deal only with boundary value problems in the scope of this thesis.

One can show that the principal part of the field equations (2.13) is not strongly elliptic and
additional procedures have to be carried out to implement this feature. There are many ap-
proaches known for obtaining the desired system. For example one ansatz relies on recombining
the equations into a strongly elliptic subset plus supplementary constraint equations while an-
other is to introduce additional terms into equation (2.13), which render the system well-posed.
We will give a short description of a concrete realization of the latter procedure, since it will be
used within this thesis.

For understanding this method, which is also denoted as DeTurck method [212], we need to
consider Einstein’s equations (2.13) in their trace-reversed form

1
Ryy — Aguw = 8mGp <THV — 2Tgw> , (2.14)

where T denotes the trace of the energy-momentum tensor. From (2.14) we can infer, that the
principal part of the PDE system is completely contained in R,,. Separating the second metric

IConsider section 3.2 for a proper definition of well-posedness in the context of elliptic boundary value problems.

2We refer the reader to [70] for a definition of (uniform) strong ellipticity.

3However, solutions can be constructed for not-strongly elliptic operators, cf. reference [180] for the Dirichlet
problem and reference [122] for an example in numerics. Nevertheless, strongly elliptic operators usually lead to
better convergence properties when solving the underlying problem with numerical methods.



12 Theoretical foundations

derivatives within the Ricci tensor R, into a definite principal part and additional contributions
gives the following decomposition

1
Ry = _Egaﬁawaﬁgw + V) + 88" (058uu degpy — TyaaTupe) (2.15)

where 'y, = gwl”gv and I'y = ¢"Tyyy. The first term in (2.15) is the desired strongly elliptic
principal part, while the second term includes additional second metric derivatives, which cause
the problems discussed above. The remaining terms contain no second order derivatives of the
metric and are not important for the discussion. Within the DeTurck approach the term V(, I,
is canceled by adding a suitable tensor V, ¢, to Ry, with ¢, being constructed as

N

CV — Fy —_ 1—‘1/ ’ (2.16)

where [, is a pre-defined gauge function*. Note that the difference in (2.16) will give a tensor, if
[, shares the transformation properties of a Christoffel symbol on the manifold of consideration.
Accordingly, we aim for solving the following system which is also denoted as Einstein-DeTurck
equation

1
Ryuy + V(&) — Aguw = 87Gp <Tw - 2Tgw> ) (2.17)

together with the gauge-fixing condition ¢, = 0. Fortunately, the vanishing of ¢, does not need
to be enforced by solving &, = 0 explicitly, since one can show that §, satisfies an inhomogeneous
Laplace equation [212]

VZCV + va’lgy — 0 .

As a result, it is sufficient to require the vanishing of ¢, at the boundaries of the domain of
consideration. A smart ansatz for satisfying this requirement is to derive ', from another pre-
defined metric ¢,,, which has the same boundary asymptotics as g,

fﬂ = gvéﬁgwfxﬂl

where [V p is the Christoffel symbol related to g

It is important to note that the method can fail due to the existence of so-called Ricci solitons
which could obstruct the vanishing of ¢, within the domain of consideration. However, according
to reference [72] the existence of Ricci solitons is ruled out in the static case. Nevertheless,
we always need to check the norm of ¢, when computing numerical solutions of the Einstein-
DeTurck equations (2.17).

4In more general approaches I'y can contain new unknown fields and supplementary equations are used for
determining the solution.
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2.2 Important spacetimes

After having discussed the field equations, it remains to provide a brief overview of the most
important solution classes to be considered in this thesis.

2.2.1 The anti-de Sitter spacetime

A manifold of constant sectional curvature in Lorentzian geometry is locally isometric to either
de Sitter, Minkowski or anti-de Sitter space, depending on the sign of the curvature®. This can be
seen in comparison to Riemannian geometry where the same holds for the sphere, the Euclidean
space and the hyperbolic space.

The anti-de Sitter (AdS) space is maximally symmetric with a constant negative sectional
curvature and the Ricci tensor R, and the scalar curvature R are related as follows

R

R;u/ = 4d+1gy1//

(2.18)
where d denotes the number of spacelike coordinates, such that there is a total dimension of
D = d + 1. Relation (2.18) can be rewritten into

1 d—1
Ry, — =R ~—Rguw =0, 2.19

) gﬂV+2(d+1) Suv ( )
which shows that the anti-de Sitter space is a solution of Einstein’s field equations (2.13) in
vacuum with cosmological constant

d—1

e (2.20)

The anti-de Sitter space can be constructed by considering a hyperboloidal hypersurface em-
bedded in R%2:

I1X)? = — (x9)* + é (Xi)z - (Xd“)z = -1, (2.21)

where [ 4,45 is the radius of the AdS space. Note that this submanifold is not simply connected
since the loop in the X° — X%*1-plane is not contractible, so the universal cover needs to be
considered.

The hypersurface (2.21) can now be covered by different coordinate charts as a preliminary
for explicit calculations. The definition as a hyperboloid suggests the utilization of hyper-polar
coordinates covering the entire manifold

X0 = 45 coshgcosT,
X' =la45Qisinho (i=1,...,d), (2.22)

X1 =45 coshosinT,

with the coordinate ranges ¢ € R>o, T € [0,27) and the (); parametrize the (D — 2)-dimensional
unit sphere, i.e. ()1 = sinfsin¢; - - -singp_3, N = sinfsing; - - - cos Pp_3,

5Tn mathematically correct words the universal cover of the manifold is isometric to one of these spaces.
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T AdS,

1
X P

Figure 2.1: Schematic picture of AdS; embedded in R'2.

)3 = sinf@sin¢; - - - cos pp_» etc. This leads to the induced metric
ds* = 155 (— cosh? 0d7? + do? 4 sinh? QdQ%,Z) , (2.23)

where dQ?, , is the line element of the (D — 2)-dimensional unit sphere. This cover can now
be enhanced to be universal by extending the periodic time-like coordinate T to R which corre-
sponds to unwrapping the hyperboloid along T = const. (see figure 2.1).

A more common form of the metric (2.23) is obtained by introducing the coordinates t = 45T
and r = I 445 sinh o:

2 1

g2 = — (14 - )arr+ dr? 4 203, (2.24)
12 72 D-2
AdS 1+ -

A simple calculation yields the scalar curvature related to the metric (2.23) to be

d(d+1)
2o
AdS

R=— (2.25)

i.e. the considered submanifold has the desired constant negative curvature. The cosmological
constant is determined by employing relation (2.20)

A:—i@lﬁ. (2.26)

20as

Another convenient chart are so-called Poincaré coordinates, which are introduced by setting

0 lzzqu r* 2 2 12
X' =07 1+Z47(x — "+ lags) |,

2r AdS
_ i
XZZ; (i=1,...,d),
Xd _ 112‘\515 1 7,2 =2 2 l2
= +l47(x — =) |
AdS
Xd+1 _ rt

— 7 7
Laas
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for r € Rug and x* = (t,¥) € RV, In Poincaré coordinates the metric reads

12 2
ds? = A g2 4 T (—d? 4 d%). (2.27)
r Laas

Note that the Poincaré chart covers only half of the AdS space, where a Killing horizon at r = 0
separates the given patch from the other half.

The knowledge of the conformal structure of the AdS space is of crucial importance for the
AdS/CFT correspondence. Note that (2.27) is conformally equivalent to

14
ds? = %drz + (—dt* +dx?), (2.28)

which resembles the d-dimensional Minkowski metric for r — oo.

Another coordinate system is obtained by setting p = 13,5/r in (2.27) leading to the line
element

12 =
ds? = ,;7,;5 (dp* — dt* + dx?), (2.29)
which is sometimes better suited for specific numerical purposes since the conformal horizon is
now located at p = 0 and the Killing horizon is mapped to infinity.

Black holes in anti-de Sitter space will play an important role for the construction of holo-
graphic Weyl semimetals in chapter 5. More details about black holes are provided in the next
subsection.

2.2.2 Black hole spacetimes

Black holes are particularly interesting solutions to Einstein’s field equations (2.13). The charac-
teristic property of a classic black hole is the existence of an event horizon, a surface which can be
identified with the boundary of the black hole. The event horizon can not be crossed by any type
of information located in the inside of the black hole, including all physical matter, while being
permeable for all matter on the outside. There are additional notions of horizons besides the
event horizon for black holes, such as the apparent and the Killing horizon. However, all these
notions coincide in the realm of this work, since we are only considering static solutions to Ein-
stein’s equations. Static solutions are time-independent and do not change under time reversal,
which constrains the mixed temporal-spatial components of the metric tensor to vanish g;; = 0.
It is important to note the difference to stationary solutions describing rotating configurations,
which are also time-independent but not invariant under time reversal.

We start by providing some basic aspects of black holes followed by a compact summary
of their thermodynamic properties. Subsequently, we give a brief introduction to the class of
Kaluza-Klein black holes, which will be important for chapter 4 and conclude with a short review
of black holes in anti-de Sitter space.
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Basic aspects

The prototype of a black hole vacuum solution is the asymptotically flat Schwarzschild solution
in D = 4, which was discovered by Schwarzschild in 1915 [182]° soon after Einstein’s equations
were published [64]. The corresponding line element reads

2

dr
fa(r)

dsgchw = _f4 (1’) ar + + r*dQy; ’ (2.30)

where r € [0,00) and fy is given by

fin=1-"%, (2.31)
and dQ)3 is the line element of the unit 2-sphere dQ3 = d6? + sin? d¢? with polar angle 6 € [0, 77)
and azimuth ¢ € [0,27). We approach the flat D = 4 Minkowski spacetime for large values of the
radius r — oo as desired. Moreover the line element becomes singular for two specific values of 7,
namely » = 0 and r = ry. By considering scalar curvature invariants it can be shown that r = 0
is the location of a true spacetime singularity, while r = ry is only a coordinate singularity and
can be removed by changing to suitable coordinates, cf. reference [206] for a review of this topic.
In addition ry is related to the mass M of the source of the Schwarzschild spacetime according
to ry = 2G4 M.

In principle the Schwarzschild spacetime can be used for describing the asymptotic region
outside of a spherically symmetric static astrophysical object. In practice, generic observable
objects feature additional properties such as angular momentum ] and charge Q, hence gener-
alizations of the Schwarzschild solution are necessary. Such a generalization for charged black
holes was discovered independently by Reissner in 1916 [173] and Nordstrom in 1918 [161]. Fur-
thermore, the solution for stationary rotating black holes was found by Kerr in 1963 [126]. It
is worth to mention that the axially symmetric Kerr solution exhibits a much more complicated
mathematical description related to its interesting horizon structure, which is one of the rea-
sons for its late discovery. Combining the Reissner-Nordstrom and the Kerr solution to charged
stationary rotating black holes led to the Kerr-Newman solution class in 1965 [158].

Nevertheless, the Schwarzschild solution provides an instructive example for understanding
basic black hole features. For ordinary astrophysical objects the radius ry is smaller than the
outer radius defined by the object-surface and therefore the singularities of the line element (2.30)
are of no concern, since the Schwarzschild metric cannot be used to describe the interior of the
corresponding object. We are speaking of a black hole as an astrophysical object if ry; exceeds
the objects extensions, then the horizon of the Schwarzschild black hole is located at r.

We provide a short review of the laws of black hole thermodynamics in the next subsection,
before turning to more general black hole types.

6Actually, Schwarzschild published his result one year later. Meanwhile, Johannes Droste found the same solution
independently in 1916, using a more direct derivation [61].
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Thermodynamics

Bardeen, Carter and Hawking published the first version of the four laws of black hole mechanics
in 1973 [26]. Generally speaking, these laws are physical properties that black holes are believed
to satisfy. Importantly, they resemble the four laws of thermodynamics and read as follows:

0. The surface gravity’ « is constant over the horizon for a stationary black hole.

1. Perturbations of the mass M of a stationary black hole are related to a change of its horizon
area Ay, angular momentum | and electric charge Q according to

K

adM =
M 87TG4

dAy + Qd] + ®dQ, (2.32)

where () is the angular velocity and @ is the electrostatic potential of the black hole.
2. The horizon area is a non-decreasing function of time:

dAy

—=>0. 2.33

at — (2.33)

3. It is not possible to reduce the surface gravity « of a black hole to zero by a finite sequence
of operations.

Due to the the aforementioned similarity to the four laws of thermodynamics, we can interpret
the zeroth law as a statement about the thermodynamic equilibrium and therefore identify « to be
related to the temperature of a black hole. The first law can be thought of as the thermodynamic
statement about the conservation of the internal energy. Accordingly, the mass M corresponds to
the total internal energy U. By recalling the role of x as a temperature, we associate the surface
area Ay with the entropy S of the black hole as conjectured by Bekenstein in 1973.

In 1974 Hawking showed that black holes emit thermal Hawking radiation [103] when taking
quantum effects into account, corresponding to a finite temperature of

K

Ty = —.
"o

(2.34)
Thus, after fixing the suggested proportionality between x and the temperature, we are able to
obtain a concrete expression for the entropy of a black hole by comparing the first law (2.32)
for d] = dQ = 0 with the first law of thermodynamics dU = TdS:

_ T
e

dA'H =Ty dSpy = Spy = Ai (235)

adM G,

This is the so-called Bekenstein-Hawking entropy formula, that was first established in 1974 [103].
We note that the second law has to be adapted due to Hawking’s discovery of black hole ra-
diation, which implies a shrinking of the black hole’s mass and horizon area over time. By gener-
alizing the second law to the sum of black-hole and outside entropy dS;ot = dSmatter +dSpr > 0,
we obtain an entropy formula, that implies no violation of the second law of thermodynamics.
The third law is the black hole analog of Nernst’s theorem, i.e. no thermodynamical system
can be cooled down to zero temperature within a finite time.

"The surface gravity of a black hole is defined by the relation xk* = kVV k¥, where k¥ is defined as the Killing
vector associated with the black hole Killing horizon. For our purposes, we can consider x as a general relativistic
version of the gravitational acceleration at the horizon, which is undefined in terms of Newtonian physics.
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Following the thermodynamical interpretation presented so far, we obtain another interesting
property of the Schwarzschild black hole (2.30) with Hawking temperature T = 1/ (87t1G4M). In
particular, we note that it has a negative specific heat JM /9T, i.e. its temperature increases when
its mass decreases. We conclude, that small Schwarzschild black holes emit more radiation in a
given time as larger ones. However, this is not a generic feature of all possible black holes and
we will provide an example of black holes with positive specific heat M /9T in chapter 4.

In addition, Hawking and Page were able to extend the laws of black hole thermodynamics
by assigning entropy and temperature to cosmological event horizons. This together with the for-
mer results on black holes suggested the surprising conjecture that the maximal entropy in any
three-dimensional region scales with its surface area, instead of its volume, which was expected
from classical thermodynamics and information theory arguments. These findings were com-
bined with string theoretic arguments to the so-called holographic principle, which states that
the description of a volume of space can be thought of as being encoded on a lower-dimensional
boundary of the regarding region. Despite this connection is still not fully understood today,
it manifests itself specifically in the AdS/CFT correspondence, which will be discussed in sec-
tion 2.3. Regarding the content of the following subsections, we underline that the laws of black
hole thermodynamics consistently adapt to higher dimensions.

More general black holes

One intent of this thesis is not the description of black holes as astrophysical objects, but the nu-
merical construction of black hole spacetimes, which can be related to quantum field theories by
means of string theory arguments and the AdS/CFT correspondence (see section 2.3). Therefore
we need to consider black holes in general dimensions D > 4. The corresponding generalization
of the asymptotically flat Schwarzschild spacetime was found in 1963 by Tangherlini [191]

dr?

N0 + 203 ,, (2.36)

dsir = —fp (r)dt* +
where fp reads

fo(r)=1- (LH)[H’- (2.37)

v
The mass of the Schwarzschild-Tangherlini (ST) black hole reads

_ (D — 2) Qp_» 1’%73

Mt = 2.
ST 1672Gp (2.38)

In the following we will outline some basic aspects of other black hole types that play a major
role in the scope of this thesis.

Kaluza-Klein black holes

Another class of more general black holes emerges from considering Kaluza-Klein compactified
geometries, which can also be considered in a general number of dimensions. For such construc-
tions some of the additional dimensions are compactified, where in principle an endless variety
of compactifications is possible. The idea goes back to the early attempt of Kaluza, who consid-
ered Einstein’s field equations in five-dimensions by adding one additional spatial dimension.
He was able to show that the resulting five dimensional field equations can be separated into
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a set of Einstein’s equations for a four dimensional subspace and Maxwell’s equations on this
space. Unfortunately he had to impose some additional constraints on the underlying fields,
leading to rather unphysical field configurations. Nevertheless, his approach was one of the
early attempts to unify gravity and electromagnetism and thus can be seen as a predecessor to
string theory, which also funds on the idea of compactified extra-dimensions. A simple exam-
ple for a Kaluza-Klein black hole is obtained by adding one additional periodic dimension to a
Schwarzschild-Tangherlini spacetime, resulting in the following line element

24003, , +dz?, (2.39)

dr

2 2,
dsiips = fD( )dt fp (7’)
where z € [—L/2,L/2]. The resulting spacetime can be considered as a Schwarzschild black hole
extended along the new dimension, giving it the shape of a uniform black string with radius L
(see figure 2.2).
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Figure 2.2: [llustration of the spatial embedding of a uniform black string horizon. The compact coordinate
z of length L is aligned with the horizontal direction. The coaxial circles illustrate the z = const. slices of
the horizon, which are actually (hyper-)spheres with radius ry. The end points of the string correspond
to the same points in spacetime as a result of the periodic nature of the compact dimension.

AdS black holes

As we will see in section 2.3, black holes in asymptotically anti-de Sitter spacetimes play a major
role when examining strongly coupled quantum field theories at finite temperatures through
the AdS/CFT correspondence. A particularly interesting vacuum solution class is given by the
so-called AdS;,1 Schwarzschild or black brane (BB) solution, where its name originates from the
spatial R?~! topology of the event horizon. In Poincaré coordinates (see subsection 2.2.1) the
solution reads

45y = hts (—fBB,d () + 0y da#) , (2.40)
o f8B.4(0)
where fgp 4 is given by
d
fBBa(p) =1— (p‘;) , (2.41)

p# denotes the location of the event horizon and /445 is the AdS radius, cf. section 2.2.1. The line
element (2.40) resembles the AdS,; space for p — 0, because lim, .o fgpq (0) = 1 as desired.

After having discussed the most important spacetime configurations for this thesis, we pro-
vide a short review on the AdS/CFT correspondence in the next section.
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2.3 The AdS/CFT correspondence

The AdS/CFT correspondence, or more generally gauge/gravity duality, states that certain quan-
tum field theories in d-dimensional Minkowski spacetime are dynamically equivalent to certain
gravitational theories in asymptotically d 4+ 1-dimensional AdS spacetimes. Since quantum field
theories are related to higher-dimensional gravity theories, it is also referred to as holographic
duality. In fact, the following picture emerges: The conformal boundary of AdS; is conformally
equivalent to flat Minkowski space R~!!. Consequently, the quantum field theory is said to be
living on the conformal boundary of AdS;;; and the AdS/CFT correspondence is considered as
a realization of the so-called holographic principle.

Originally, concrete examples for the AdS/CFT correspondence were conjectured by Juan
Maldacena in 1997 [153] and subsequently extended by Witten, Gubser, Klebanov, Polyakov and
many more [213, 90, 3]. Although it still remains a conjecture, the AdS/CFT correspondence has
been very fruitful for many developments in theoretical physics within the last two decades. In
particular, we obtained new insights into the physics of black holes. For example, before the
advent of AdS/CFT, it was quite a mystery why the four laws of black hole mechanics resemble
the four laws of thermodynamics.

Moreover, the AdS/CFT correspondence allows for insights into strongly coupled quantum
tield theories in the large-N limit. In particular, profound questions may be answered, which
are inaccessible within more conventional approaches such as lattice gauge theory. For example,
using AdS/CFT, we may determine the phase diagram, transport coefficients and even the non-
equilibrium dynamics within the strongly coupled quantum field theory.

This section is structured as follows: We first discuss a concrete example for the AdS/CFT
correspondence in subsection 2.3.1. Subsequently we introduce the dictionary of the AdS/CFT
correspondence, i.e. how to relate gravitational fields and quantum fields, in subsection 2.3.2.
Finally, the computation of expectation values and correlation functions is presented.

2.3.1 A concrete example for the AdS/CFT correspondence

First, let us give one concrete example for the AdS/CFT correspondence, involving N = 4 Super
Yang-Mills (SYM) theory and type IIB superstring theory on AdSs x S°.

The strongest form of the duality conjectures the equivalence of an N' = 4 SYM theory with
gauge group SU (N) and Yang-Mills coupling gyps in 3 + 1-dimensions to a type IIB superstring
theory with string length I; = v/’ and coupling constant g; on AdSs x S° with radius of curva-
ture [ AdS-

Here, the word equivalence means that the Hilbert spaces of both theories are isomorphic
and the dynamics of both theories agree. The latter can be expressed in terms of the equality
of the partition functions Zcrr = Z4s. Moreover, the parameters of both sides are related as
follows:

l4
Sy = 27gs, 293 N = 2725 . (2.42)

The strongest form of the duality is not utilizable for practical purposes since both sides cannot
be solved. For example, we do not have a working definition of non-perturbative string theory
on AdSs x S°. Hence, we may take limits to simplify the string theory side. Taking the large-N
limit N — oo while keeping A = N g%,, fixed and successively taking A — oo, the superstring
theory reduces to classical supergravity, while the aforementioned SYM theory is still non-trivial
in the limit of a large number of degrees of freedom N and large "t Hooft coupling A = N g2, .
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Since the first work of Maldacena, who conjectured the correspondence for large N, the con-
jecture was thoroughly studied but not proven rigorously by today. Nevertheless it was extended
for providing duality between conformal field theories in d spacetime dimensions and asymptot-
ically AdS;4 spaces. Furthermore the duality between less supersymmetric and non-conformal
tield theories was conjectured. A comprehensive book about the AdS/CFT correspondence, in-
cluding its recent extensions and applications, is given by reference [12].

In this thesis we will only use the weak form of the correspondence as a mere black box
in the sense that we assume the correctness of the conjecture and use it to derive physical re-
sults for specific strongly coupled quantum systems by utilizing numerical calculations on the
asymptotically anti-de Sitter gravity side.

Composite operators in N/ = 4 SYM

In this section we discuss examples of local operators O (x) which are gauge-invariant under the
SU(N) gauge transformation. The elementary fields of N' = 4 SYM, i.e. gauge fields, fermions
and scalar fields transform in the adjoint representation of the gauge group, and hence only
composite fields are gauge-invariant. For example, the energy-momentum tensor T,, of NV = 4
SYM is a gauge-invariant, local operator. Other examples are the scalar operator O = tr (F,,F)
and the (conserved) currents J, related to the so-called R-symmetry?®.

In the following we denote local composite and gauge-invariant operators by O'. Since N' = 4
SYM theory is a conformal field theory, i.e. invariant under conformal transformations’, the cor-
responding field operators O! transform in irreducible representations of the conformal algebra.
In particular, the operators O! are characterized by their spin s/ and their conformal dimen-
sion Al. The latter one can be obtained from the commutator action of the dilatation operator D
on a conformal operator O:

[D, 0 (0)] = —iAO (0). (2.43)

For a finite dilatation x — Ax the operator transforms as O — A~20.

The reader is invited to read more about the interesting features of CFTs 1°.

Fields on the dual gravity side

In the weak form of the AdS/CFT correspondence, the dual gravity side is given by type IIB
supergravity in asymptotically AdSs x S°. First, a Kaluza-Klein reduction to the sphere S° is
performed, giving rise to infinitely many fields defined on the (asymptotically) AdSs spacetime.
Besides the metric g,,, we denote the matter fields by {¢;}, where I labels (the infinitely many)
different fields. Note that the notation does not imply that there are only scalar fields. In
particular, the Kaluza-Klein reduction to $° leads also to gauge fields, as well as fermionic fields.
Moreover, we denote the Kaluza-Klein reduced supergravity action by Ssc.

8 NV = 4 SYM has four supercharges Q' which are rotated into each other by the SU (4) R-symmetry.
Consider appendix A.1.2 for a short review on conformal symmetries.
10Cf. reference [32] for an instructive book on CFTS with applications to string theory.
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2.3.2 Relating fields in AdS to composite operators of the CFT

Within this section we portray the dictionary relating the field content on the gravity side to com-
posite (gauge-invariant) operators in the dual quantum field theory. For simplicity, we work in
the weak form of the AdS/CFT correspondence, relating strongly coupled large-N field theories
in d dimensions to supergravity theories in asymptotically AdS;,; x M spacetimes, where M is
a compact manifold, e.g. M = S° in the concrete example presented previously.

The dictionary

As before we perform a Kaluza-Klein reduction on the compact manifold M, accordingly the
supergravity metric g;,, and all other fields, e.g. gauge fields A, and scalar fields ¢ depend only
on the coordinates of AdS spacetime.

The AdS/CFT dictionary can now be obtained by matching the conformal dimension and
the spin of the fields and operators on both sides. As shown in [12], we arrive at the schematic
dictionary provided in table 2.1.

A more detailed dictionary for the concrete AdS/CFT correspondence, that was provided in
subsection 2.3.1, can be found in table 7 of reference [53].

Table 2.1: Schema of the AdS/CFT dictionary, taken from reference [12]. T, is the energy-momentum
tensor, J, is a conserved current and O a scalar operator on the quantum field side. The Greek indices
{p,v,...} in the bulk space run from 0 to d, where the d-th component is the additional dimension of the
asymptotically anti-de Sitter space. The Latin indices {a,b, ...} of the boundary CFT quantities run from
Otod—1.

| conformal field theory «— gravity theory |

Tﬂb <— gyy
]a — Ay
(@) — ¢

Equality of generating functional and partition function

Having established the dictionary, we focus on the dynamics of both sides, in particular how to
compute one-point functions of composite operators of the conformal field theory by solving the
equations of motion of supergravity. A starting point for relating observables on the CFT side to
the regarding objects on the gravity side is to use the aforementioned equality of the partition
functions Zcrr = Zags.

On the conformal field theory side, the generating functional, Zcrr, is defined by

Zerr [{ji}] = <exp ( / d'xj; (x) O! (x)> > (2.44)

where j; are the sources for the operators O!. We can compute correlation functions of the
form (O (x7)--- O (xp)), by taking functional derivatives of (2.44) with respect to j;, and
subsequently setting the sources to zero.
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It is more subtle to define and compute the partition function Z44s. Since we are only inter-
ested in the weak form of the correspondence within this thesis, we can compute Z 4,45 through a
saddle point approximation by the Euclidean supergravity on-shell action Sgg on AdS;,. Within
this approximation, Ss¢ is evaluated at classical solutions of the equations of motion for the met-
ric together with additional fields {¢;} coupled to the gravity background.

As a result we can express the AdS/CFT correspondence on the level of the generating func-
tional of the CFT and the AdS partition function:

Zerr [{in}] = exp ( =Ssc [ (91} |y, ) (245)

where we require g, to be asymptotically AdS; ;.

Note that the on-shell action Sg¢ is generically divergent. Hence, we have to renormalize the
theory by a procedure that is denoted as holographic renormalization. As a common strategy, we
first regularize the divergent action Ssg by introducing a cut-off distance p = € > 0 !}, yielding
the regularized action Ssg .. Subsequently a counter term Ssg; is introduced to cancel the
divergent contributions for € — 0 and the remaining part gives the desired renormalized result:

SSG,ren = lli% (SSG,reg (G) + SSG,ct (6)) . (2-46)

It is important to note that the methods outlined above also apply to finite temperature quan-
tum field theories. A finite temperature QFT is usually obtained by Wick rotating the functional
integral into its Euclidean version and constraining it to (anti-)periodic field configurations with
period B = 1/T. Applying the same procedure to the quantum gravity path integral and per-
forming the saddle point approximation (2.45) corresponds now to looking for extrema of the
Euclidean gravity action with compactified time coordinate. These are (amongst others) black
hole solutions with Hawking temperature Ty; = 1/B = T. On the classical gravity perspective
this implies to require appropriate boundary conditions for the metric tensor at the event horizon
p = py. In particular, we have to impose regularity of the fields there.

After presenting the abstract formalism, it remains to provide some concrete manifestations
of how to map boundary asymptotics of the gravity-side fields g,, and {¢;} to the sources and
(vacuum) expectation values of the corresponding quantum field operators.

For doing so we introduce Gaussian normal coordinates by foliating the asymptotically
AdS;11 spacetime in terms of d dimensional hypersurfaces labeled by the spatial coordinate p
where the conformal boundary is located at p = 0. Accordingly the line element can be brought
to the form

g o
ds? = % (dpz + i (0, %) dx'dad ) (2.47)

where we have pulled out /3 ;s by convention. Asymptotically AdS,; 1 spaces permit the Fefferman-
Graham (FG) expansion [71]

~ ~(0 ~(1 1
gi(o,x) =3 () + -+ 3 (x) p* + b p?logp + - (2.48)

N The classical supergravity action is computed by integrating the on-shell Lagrange density over all coordinates,
which causes divergences as can be seen when looking at the metric tensor g, close to the conformal boundary at
o =0.
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Note that this expansion can only be constructed asymptotically around p = 0 and up to a
(1)

certain order for a generic spacetime. One can show, that §;;’ (x) is directly related to the 1-point
function of the energy-momentum tensor of the dual quantum field theory, cf. reference [12].

For modeling a quantum theory with a single scalar operator O of conformal dimension A
which couples to a source j by an action term

S S+ / dxj (x) O (%) (2.49)

one must introduce a minimally coupled scalar field ¢ with appropriate mass'? m? = A (A — d) /12 ;
on the gravity side and solve the regarding scalar field equation

1
— —g9"d,¢) —mPPp =0 (2.50)
=3, (V55" 0u)
together with Einstein’s field equations (2.13). The scalar field ¢ can also be expanded in the FG
coordinates

¢ (0,x) = ¢V (x) p" A -+ 9 (x) p* + 9! (x) p* logp + ... . (2.51)

The expansion coefficients $(®) and ¢(1) are related to the source and to the (sourced) vacuum
expectation value (VEV) of O according to (cf. [12])

j(x) =99 (x) (2.52)
(0 (x)) = 1921 28 — d) ) (x) . (2.53)

To model a CFT having a conserved Noether current J,, i.e. being invariant under the action of
a group G, we introduce a G gauge field A, on AdS;, ;. Consequently one needs to solve the
corresponding coupled system of Einstein’s equations together with the gauge field equations.
The boundary expansion of A, in FG coordinates reads

Au(o,x) = A;O) (x)+---+ A,(}) (x) ™%+ a,(}) (x) " 2logp + ..., (2.54)

where color/group indices have been suppressed for simplicity. As in the scalar case, the source

of the dual current operator J, can be identified with Ago) and the A,gl) coefficient is proportional
to the VEV (cf. [12])

(Ja (1)) o A5 (x). (255)
Note that (2.55) incorporates only the Latin indices of Ag,l) , corresponding to the boundary co-
ordinates of the FG expansion. Moreover it is straightforward to obtain the gravity dual of
the quantum finite particle density ¢ and chemical potential y associated with J,. The chemi-
cal potential at finite temperature is associated with the difference of the temporal gauge field
component at the conformal horizon at A; (0) and its value at the black hole horizon A; (py)

= At’p:O - At’p:pH :

12The mass square of a scalar field in AdS;; is constrained by the so-called Breitenlohner-Freedman bound: m? >
—d*/ (415) (see reference [12]).
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The density ¢ is proportional to the Agl) coefficient of the expansion (2.54)

oo Al (x),

which is in agreement with the covariant expression (2.55).






Chapter 3

Numerical methods

In this chapter we provide a short overview of the numerical techniques that were applied in the
scope of this thesis. Additional details are provided in appendix A.4.

We start with a brief review of spectral methods in section 3.1, including the Fourier and the
Chebyshev approach. In section 3.2 we explain the utilization of spectral methods for solving
differential equations and comment on the basics of domain decomposition.

3.1 Theory of spectral methods

Spectral methods are a special subcategory within the broad framework of weighted residual
methods (MWR) for partial differential equations.! A generic MWR method relies on a set of
expansion functions and weight functions. The expansion functions (or basis functions) are used
for approximating the solution in terms of a truncated series expansion. The weight functions
control how the expansion is supposed to satisfy the related differential equation by minimizing
the residual.

Spectral methods rely on infinitely differentiable global expansion functions, which distin-
guishes them from finite-element and finite-difference methods. Typical basis functions are
trigonometric polynomials or eigenfunctions of singular Sturm-Liouville problems for which
particularly good convergence estimates can be shown. In comparison, finite-element methods
rely on the division of the domain of consideration into small elements and a basis function is
specified for each element.

The three most common spectral methods can be differentiated according to the choice of
test functions into Galerkin, tau and collocation schemes. For the Galerkin approach the set of
basis and weight functions coincides, which are accordingly infinitely smooth functions that in-
dividually satisfy the boundary conditions. As a result the residual is minimized by requiring
the orthogonal projection of the differential equation on the basis functions to vanish. Spectral
tau methods resemble the Galerkin approach in the way the residual is minimized, but use a
supplementary set of equations to enforce the boundary conditions, which need therefore not to
be integrated into the basis. The collocation method (also called pseudospectral method, cf. ref-
erence [163]) can be considered as the simplest of the MWR. The corresponding weight functions
are Dirac delta distributions centered at special collocation points, whose choice is crucial for the
accuracy of the solution. As a result the convergence of the method can be significantly enhanced
by employing maps to rearrange the collocation points (consider reference [34] for a collection
of useful maps). The collocation method is distinguished from the other approaches due to its
simple applicability to variable-coefficient and non-linear problems, which is the main reason
for employing it in the scope of this thesis. Comprehensible reviews about spectral methods are
provided for instance by the following references: [34, 106, 40, 39].

In the following we outline some of the basic properties of the Fourier and Chebyshev expan-
sions which play a major role in the scope of this thesis and show how the method is applied for

LA review on MWR methods is provided by reference [74].
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solving differential equations.

3.1.1 The Fourier expansion

The Fourier method became especially popular with the development of the fast Fourier trans-
formation (FFT, [47]) by improving its numerical expense to O (Niyq 10g Niorar), where Ny is
the total number of unknowns. The basis functions are the complex or the real valued trigono-
metric polynomials making the method attractive for representing periodic functions on [0, 27).
Of course, functions exhibiting periodicity on different intervals can be mapped to [0,27) by
applying appropriate transformations. Here we restrict ourselves to the uneven real valued basis
case (cf. reference [106]). As a result we have the following approximation of a target function ¢

in terms of the discrete Fourier coefficients {ucf, ﬁf}

o
oy (x) = 70 i (ock cos (kx) + B! sin (kx)) 3.1

and the collocation grid is given by the equidistant Fourier nodes on [0, 27)

2mj .
= ...,2N. 2
Y= oN 1 jEO,..., (3.2)

We can infer the following nice relation between the coefficients { ;f Z,}k, of the derived

N
target function and the original coefficients {oc;f, ﬂf}kfo from the expansion formula (3.1)

o = kpY, BY = —ka!, k=1,...,N. (3.3)

Furthermore, the integral of a periodic function over the interval [0,27) is given by its first
Fourier coefficient. Accordingly, the first coefficient of the truncated Fourier series provides a
good approximation of the regarding integral and exhibits the same convergence features as the
spectral expansion (in terms of global convergence measures).

For N — oo the approximation (3.1) converges towards the periodic target function ¢, if
certain criteria apply. According to [34] the convergence can be classified into the following
categories:

e Supergeometric convergence:
The coefficients {uc;f, ﬁf} decay faster than any exponential exp (—vk) with v > 0. This

ideal convergence rate can only be found for entire functions, i.e. functions whose analytic
continuation into the complex plane has only singularities at infinity.

e Geometric convergence:
The convergence can be characterized by the following leading behavior {rx;f, ﬁf} ~ exp (—vk)

with > 0. This case occurs for functions that are not entire but analytic on the interpola-
tion interval [0, 277).

e Subgeometric convergence:
The spectral coefficients decay with a rate that is slower than any exponential exp (—k)
with 7 > 0, but faster than any inverse power of k~° with § > 0. Subgeometric convergence
concerns functions that are smooth, but not analytic on the interpolation interval.
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e Algebraic convergence:
The coefficients fall-off like {(x;f, ﬁf} ~ k=% with § > 0 which marks the worst convergence

scenario. This can be observed when the underlying function has only a finite number of
existing derivatives in the interpolation interval.

Some nice examples demonstrating the different convergence categories can be found in the
appendix of [120]. We remark, that the first three convergence categories point to the excellent
convergence properties of spectral methods, that cannot be obtained by local methods such as
finite-difference and finite-element schemes. Whereas the convergence of a spectral method
reduces to that of the aforementioned local methods in the case of algebraic convergence. Often
a bad convergence can be lifted into one of the higher categories by applying a suitable mapping.

3.1.2 The Chebyshev expansion

The Chebyshev method, which is also applicable to non-periodic functions on [—1,1], uses the
Chebyshev polynomials of the first kind as basis functions:

Ty (x) = cos (karccos (x)), x¢€[-1,1], (3.4)
resulting in the expansion
(oly) N P
PN (x) = 5t Y T (x). 3.5)
k=1

Again the extension to functions not normalized to [—1,1] can be achieved by applying an ap-
propriate map. The method owns its popularity mainly due to the fact, that it can be considered
as a cosine expansion resulting in the applicability of the FFT algorithm for the computation of
the coefficients.

The most important collocation grids for the Chebyshev method are the following:

e Chebyshev-Lobatto points:

j

Xj = cos ( N) , j=0,...,N, including both end points,

e Chebyshev-Gauss points:

i1
Xj = COS <ngif)> , j=0,...,N, excluding both end points,

e Left sided Chebyshev-Radau points:
Xj = —cos (212\]%) , j=0,...,N,including only the left end point,

e Right sided Chebyshev-Radau points:
27

Xj = cos (2N +1) , j=0,...,N, including only the right end point.
N
In addition, the following recursive relation between the coefficients {Cfl}k—o of the derived

N
target function and the original coefficients {c;f }kfo can be established (cf. reference [106])

c%’H = c%’ =0, c,‘f' = 2kc,‘f + cfil . (3.6)
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The integral of a Chebyshev expanded function over the interval [—1,1]

1 1

N
I = /l/JN (x)dx = / <C20+kZ:1CZ’Tk (x)) dx, (3.7)

-1 -1
is given by a simple summation

IN/2]

C2k
I=cy—2 —_—, 3.8

where |-| denotes the floor function. We remark that this integral has the same convergence
properties as the Chebyshev expansion (in terms of global convergence measures).
The convergence scenarios for N — oo fall into the same categories as for the Fourier method.

Basis functions in higher dimensions

For higher dimensions products of lower dimensional basis functions are employed. The choice
of the basis for each direction is guided by the properties of the underlying system. For example,
the area of a circle in two dimensions can be covered by combining Chebyshev polynomials in
the radial direction with a Fourier series in the angular direction.

3.2 Spectral methods for boundary value problems

A set of elliptic differential equations together with a set of boundary conditions (BCs) is called a
boundary value problem (BVP). Many branches of science are devoted to the solution of different
types of BVPs originating from mathematical models of different processes.

The notion of well-posedness is elementary for extracting data of practical use from a given
BVP. Well-posedness can be summarized as follows (cf. reference [164]):

1. There is a solution of the given BVP.
2. The solution is unique.

3. The solution depends continuously on the input (including the BCs).

For simplicity we consider the application of the collocation method to a single second order
ordinary differential equation (ODE), which can then be straightforwardly extended to more
general cases by adding additional indices. Given an ODE for the unknown function u (x) on
the interval x € [a,b] of the form

F(x;uu',u") =0, (3.9)
together with the boundary conditions
F, (u(a),u' (a)) =0 and F, (u(b),u’ (b)) =0, (3.10)

we start by approximating u (x) with a truncated spectral expansion

N
u(x) =iy (x) =) P (x), (3.11)
k=0
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with coefficients {c;}_, and basis functions {®}, .. Subsequently, we introduce a suitable col-
location grid {x; };_, for discretizing u (x) on this grid, yielding a vector of unknown collocation
values

X: (uo,ul,...,uN)T, (312)

where 1y = u (x;). Under the assumption that we can also approximate the derivative of u by a
spectral expansion, we obtain

N
u' (x) =y (x) = Y @ (x) . (3.13)
k=0

Since the basis functions are differentiable, we can also approximate their derivatives in terms of
a truncated basis

N
Dy (x) ~ Y di®; (x), (3.14)
i=0

where the last relation becomes exact if dD;( has no overlap with ®; for i > N, which is guaranteed
for all common expansions. If we now approximate the derivative 1’ (x) by the derivative of the
approximation 1}, (x) we can obtain a relation for the coefficients of the derivative

N
w' (x) =y (x) = kZOqu’i (x)

cxdp®; (x) . (3.15)

=

i,k=0

T

By comparing the coefficients of (3.13) and (3.15) a linear relation can be established for the
coefficients of the derivative

N
k=Y cidy, (3.16)
k=0

which reduces to relation (3.3) for the Fourier expansion and relation (3.6) for the Chebyshev
expansion.

Accordingly, we define two more vectors X’ and X" containing the spectral approximations
of the derivatives of u (x) at the collocation points. Consequently, we collocate the ODE by
evaluating (3.9) in the interior and (3.10) at the boundaries of the grid, giving the residual vector

F=(F,F,....Fy)", (3.17)
where
E, (uo, uyp), fork =0,
F = F (xgs ug, up,uy), for0 <k <N, (3.18)

Fy (un,uy), fork=N.
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In order to compute the unknown collocation values we must solve
E <5< X, 5(”) —0, (3.19)

which is essentially equivalent to approximating the original equation (3.9) together with its
boundary conditions (3.10) as a truncated series. By recalling that X’ and X" are in a linear
relationship to the spectral coefficients c; of X and therefore to X we can write equivalently

F ()?) —0, (3.20)

which can be solved by standard methods. A Newton-Raphson solver was utilized for solving
the nonlinear problems of the later chapters. Solutions to the corresponding linear problem
were obtained with a matrix-free iterative Krylov subspace method?. Further details about the
implementation can be found in appendix A 4.

3.2.1 Multiple domains

Splitting the computational domain () into several subdomains becomes necessary, if we need
to adapt to the complicated geometry of a specific problem, which might be difficult or even
impossible with a single domain ansatz. Furthermore, multiple domains allow us to increase
the resolution and apply distinct convergence improving maps in certain regions of (). This
can improve the accuracy of our computation a lot, while keeping the necessary computational
resources low. Using multiple domains is the basis of parallelizing computations and thus makes
large scale problems feasible. We are only covering non-overlapping decompositions here, since
only these are used within this thesis.
The computational domain () is covered by N non-overlapping subdomains

Nq
Q=Jo, (3.21)
i=1

each with an individual set of basis functions and expansion coefficients:
, N
uy (x) =) @i (x), xe€Q,i=1,...,Ng. (3.22)
k=0

Accordingly, we need additional conditions to couple the functions ué\]l_ (x) for yielding one suf-

ficiently smooth solution of the boundary value problem. For touching subdomains (); and (),

of a second order PDE it is sufficient to impose continuity of the functions and of their normal

derivatives at the boundaries (cf. reference [154])

. dui, duly

un, (x) = uy, (x), () =
! on;

an]- (x) , x €N aQ] . (3.23)

Once again, we refer the reader to the appendix for more details about the implementation of
these conditions.

2Consider reference [155] for an instructive review on Krylov subspace methods.



Chapter 4

Localized Kaluza-Klein black holes

Throughout the last decades, the topic of black holes in higher dimensions D > 4 attracted a lot of
attention. Special focus was devoted to the study of D-dimensional black objects in spacetimes
with one periodic dimension. In this context there are various solutions to Einstein’s vacuum
equations with different horizon topologies, such as localized black holes and black strings.

By appending a compact, periodic dimension to the solution of a (D — 1)-dimensional
Schwarzschild black hole, we obtain uniform black strings (UBSs) in D dimensions. As shown
by Gregory and Laflamme [84, 85], a uniform black string with a fixed size of the compact di-
mension L is stable for large masses M > M and unstable for small masses M < Mg, where
the critical mass Mg defines the so-called Gregory-Laflamme point.

Subsequently, a new branch of static solutions emanating from the Gregory-Laflamme point
was discovered. These non-uniform black strings (NBSs) were first constructed in D = 5 by
considering small perturbations around the Gregory-Laflamme point [89]. This procedure was
later adapted to higher dimensions [211, 185]. We note, that non-perturbative results could only
be obtained numerically, cf. [211, 128, 186, 104, 73, 121, 122, 59] for a series of papers covering the
dimensions from D =5 up to D = 15.

Localized black holes (LBHs) define another static vacuum solution class with a compact
direction in higher dimensions, which was first discussed in [156]. First results on LBHs were
obtained in the perturbative regime of small black holes, where the LBH solution can be ap-
proximated by a D-dimensional Schwarzschild solution, cf. the references [93, 82, 83]. Again,
numerical approaches were required for constructing solutions beyond perturbation theory. Nu-
merical results are available for D = 5, 6 [210, 187, 137, 138, 104] and were recently obtained for
D =10 [59].

The merger of the NBS and LBH branch was early conjectured by Kol [132], when numerical
data for both branches was still rare. According to Kol, the singular transit solution is described
by the so-called double-cone metric, which provides a local model of the merging LBHs or
rather pinching-off NBSs solutions. We remark, that none of the previously mentioned numerical
results contradicts Kol’s conjecture, though all implementations break down before reaching the
critical transition. Numerical evidence in favor of the double-cone conjecture was provided in the
references [136, 186] for D = 6, where the NBS branch was shown to approach the double-cone
metric in the vicinity of the critical point.

Numerical data of NBS solutions in D = 5, 6 far beyond previous results were recently pro-
vided by [122], including an investigation of the regime close to the critical transition. In addition,
further evidence of a convergence of the horizon configuration towards the double-cone geome-
try was provided by the authors. Furthermore, an oscillation of the associated thermodynamic
quantities was observed, which was characterized to resemble a distorted logarithmic spiral. Ac-
cordingly, the numerical data suggests the existence of an infinite number of oscillations before
the NBS horizon pinches off.

This chapter of the underlying thesis concentrates on the construction of LBHs in D = 5,
D = 6 and D = 10 dimensions. Special attention is devoted to the critical regime, where
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the poles of the horizons are about to merge along the compact dimension. For D = 5 and
D = 6, evidence is provided for a similar log-spiraling behavior of the related thermodynamic
quantities as was acquired before for the NBS branch [122]. On the contrary, we are able to show
that the critical regime in D = 10 is approached in a qualitatively different manner, i.e. without
oscillations. We are able to show that the obtained critical exponents for D = 5, 6 and D = 10
are in excellent agreement with the values that were predicted by Kol [132, 133]. Furthermore,
the relation of the D = 10 localized black hole solution to thermal states of a supersymmetric
Yang-Mills theory (SYM) on the circle S! is discussed in appendix A.2.4.

This chapter is structured as follows: We give a short review of static Kaluza-Klein black
holes in section 4.1. Subsequently, we discuss the numerical implementation of localized black
holes in great detail in section 4.2. The regarding results are provided in section 4.3, followed by
summary in section 4.4.

The contents of this chapter rely partially on the results that were presented in references [123,
120].

4.1 Static Kaluza-Klein black holes

In this section we provide a short overview on static asymptotically flat black holes in KK theory.
We start by defining the most important parameters and physical quantities in subsection 4.1.1.
Subsequently, we give a short summary of the important class of black strings in subsection 4.1.2
before turning to the class of localized black holes, which are the main focus of this chapter. We
conclude this section with a brief review of the Gregory-Laflamme instability in subsection 4.1.3
followed by a discussion of the corresponding phase diagram in subsection 4.1.4.

4.1.1  Physical quantities

Before presenting the physical quantities that are used for the description of the KK black holes,
we need to recall the background metric that any spacetime in KK theory with only one compact
dimension shall approach at infinity. The background for asymptotically flat KK black holes
in D dimensions with one periodic spatial direction z € [—-L/2,L/2] is a direct product of the
Minkowski spacetime R"P~2 and the circle S!

dstc = —dt* + dr* + r*dQF_5 + dz*. (4.1)

As in chapter 2, we use (hyper-)spherical coordinates for the D — 2 spatially extended dimensions
with radial coordinate r € [0, c0]. Keeping this in mind we can proceed with the definition of
two asymptotically measured charges and further thermodynamic quantities that are important
for the formulation of the first law of black hole thermodynamics in KK theory.

Asymptotic charges

A black hole introduces the following leading order corrections to the background metric (4.1) at
infinity r — oo [95, 135]

c c
gttﬁ—l‘f‘rl)ﬁ; 8zz21+rl)%4/ (4.2)
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where the coefficients c; and c; are directly related to the total mass M and tension 7 of the black
hole space time

_ LQOp;

= 167G [(D—=3)ct — ¢, 4.3)
~ QOp-3
—167TGD[t—(D—3)CZ]. (4.4)

The so-called relative tension is obtained by the following combination:

. LT_Ct—(D—3)CZ
" M (D-3)c—c *3)

As shown in references [95, 184, 193] n is bounded from two sides:

0<n<D-3.

Thermodynamics

The equations (2.34) and (2.35) relating surface gravity x and area Ay to temperature T and
entropy are also valid for KK black holes. Whereas the presence of the new asymptotic charge n
leads to a modification of the first law of black hole thermodynamics

SM = T6S + TSL = T5S + #ﬂ. (4.6)

When comparing (4.6) with the fundamental thermodynamic equation U = TéS — PV and
recalling that the black hole mass M is identified with the internal energy U, we can confirm the
interpretation of 7 as a force acting to compress the length of the compact dimension.

Integrating relation (4.6) yields the so-called Smarr relation in the presence of tension [135, 95]:
(D-2)TS=(D—-3—n)M. 4.7)

We now proceed with the discussion of black strings and localized black holes based on the given
thermodynamic terminology.

4.1.2 Black strings and localized black holes
Uniform black strings

The line element (2.39) for the asymptotically flat uniform black string (UBS) was presented in
subsection 2.2.2 as the simplest example of a KK black hole. Since this spacetime is a direct prod-
uct of a (D — 1)-dimensional ST black hole and a circle S!, we can easily provide the expressions
for the related black hole mass and entropy

Moo (D—-3)Qp_arh™*  (D—-3)Qp_sry *L @8
ups = 167Gp B 167Gp_1 ' '

S Anuss _ Qp_sry 3L _ Qp_sri) ™
UBS = "4Gp 4Gp 1L 4Gp_; '

(4.9)
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where we used the relation Gp = Gp_1L between the gravitational constants in the unconstrained
(D —1)-dimensional subspace and the KK compactified space. Furthermore, the relative tension
and temperature of the UBS solution read

nuBs = —= , (4.10)

Typs = : (4.11)

We can build one dimensionless parameter K := L/ry from the two characteristic length scales
ry and L of a UBS, which is the only parameter that allows us to differentiate between different
solutions due to the scale invariance of GR.

When analyzing the stability of the UBS solution branch in dependence of K, we need to
consider perturbations of the symmetric event horizon configuration which leads us to the branch
of non-uniform black strings (NBS).

Non-uniform black strings

The class of NBS was discovered when searching for a stable configuration of the dynamic evo-
lution of a perturbed UBS and can be characterized by a modulated concentric string radius
along the compact coordinate z (see figure 4.2). The properties of NBSs beyond the perturbative
scope can only be accessed by highly accurate numerical methods. The interesting critical regime
comes with the highest requirements in terms of accuracy due to the extremely thin waist region.
Accordingly, only a small number of configurations have been studied with detail in the critical
region.

Nevertheless, the available numerical data (references [211, 138, 128, 186, 104, 73, 59, 185, 122])
excludes the NBS branch as stable end configuration for the perturbed UBS for D < 11 due to its
lower entropy than the related UBS branch. For configurations with D > 11 the picture changes
and the entire NBS branch has a higher entropy than the corresponding UBS branch for D > 14.

Localized black holes

Since the NBS branch cannot serve as a stable endpoint for the perturbed UBS evolution, another
class of static KK black holes with different horizon topology needs to be considered. For local-
ized black holes (LBH) the horizon does not wrap the entire compact dimension. Instead LBH so-
lutions have a hyper-spherical horizon structure homeomorphic to SP~2 in D dimensions. Thus,
the extension /gy of the black hole has to be smaller than the size of the compact dimension L and
we recover the D-dimensional ST black hole with horizon radius Iy for L — co. Small LBHs with
L > Iy are well approximated by the ST metric 2.36 in the vicinity of the event horizon, while
deviations from the ST solution occur at the periodic boundaries. Correspondingly, the horizon
shape of an LBH is stretched along the compact dimension due to the presence of its mirror
images (figure 4.1). Again, only high precision numerical methods are suited for constructing
LBH solutions beyond the perturbative regime. Previous results [59, 104, 137, 138, 187, 210] sug-
gest that the mass of a LBH is bounded as a direct consequence of its limited extension in the
compact direction. The construction of the LBH solutions in D = 5, 6 and 10 with unprecedented
accuracy is the main focus of this chapter.



§4.1 Static Kaluza-Klein black holes 37

Figure 4.1: Illustration of a small localized black hole in a spacetime with one compact periodic dimension.
The black dot corresponds to the black hole with horizon topology S”~2. The region in vicinity of the black
hole that is well approximated by the D dimensional ST metric (2.36) is indicated by the dashed circle.
The ST solution fails to describe the spacetime as the boundary of the compact dimension is approached.

It remains to address the question of stability by comparing the entropy S of UBS and LBH
solutions having the same mass M. According to the given analysis we can estimate the entropy

of a small LBH by using the results of a ST black hole. Combining the Bekenstein-Hawking
entropy formula (2.35) with the mass formula of the ST black hole (2.38) yields

Sppr ~ MP3, (4.12)

whereas the UBS entropy behaves asymptotically as (cf. (4.8) and (4.9))

Sups ~ MD, (4.13)
Comparing (4.12) and (4.13) leads to the conclusion that the entropy of a LBH exceeds the entropy

of a UBS for sufficiently small M. As a result, we expect the UBS solution to be unstable at least
for small masses.
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Figure 4.2: Comparison of the spatial embeddings of the UBS, NBS and LBH (left to right) horizon

structure in D = 5. The vertical direction corresponds to the compact coordinate z. The z = const. slices
of the horizon are (hyper-)spheres, here illustrated as circles.
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4.1.3 The Gregory-Laflamme instability

Motivated by the entropy driven stability analysis presented so far, Gregory and Laflamme stud-
ied linear perturbations of the UBS in the early 1990s [84, 85]. The corresponding results can be
summarized as follows: For small K = L/ry the energetic costs of the horizon deformations are
too high and they decay exponentially. Moreover, there exits a threshold value K¢ where the
UBS is marginally stable and becomes unstable for K > Kgr.

Figure 4.3: Schematic horizon deformation of an unstable UBS perturbed by a GL mode. The shape
of the horizon changes since the perturbations that trigger the GL instability are non-uniform along the
z-direction.

This Gregory-Laflamme (GL) instability causes the growth of small perturbations into large
deformations accompanied by the redistribution of mass (figure 4.3) until a new stable configu-
ration is reached.

It should be pointed out that the occurrence of GL type instabilities is not constrained to UBSs,
but appears for a variety of higher dimensional black objects!. Furthermore, the GL instability
can be classified within a broader class of similar instabilities, such as the Jeans instability [115,
94], leading to the formation of compact objects rather than widely spread structures.

Investigating the end state of the GL instability requires high precision time evolution of a per-
turbed unstable UBS, which is out of the scope of this thesis, but we give a brief summary of the
current scientific progress. The problem was considered by different research groups mostly for
D = 5, where the perturbed UBS was shown to collapse to a self-similar cascade of decreasing
hyper-spherical black objects interconnected by shrinking black string segments [45, 144, 145].
This cascade continues until the string segments reach zero size and the horizon pinches off,
leading to the formation of a naked singularity in finite asymptotic time (as extrapolated from
the numerical data). This naked singularity is interpreted to signal the limited validity of clas-
sical physics and quantum effects are expected to circumvent its appearance. Furthermore, this
configuration is inherently unstable against small perturbations in the compactified dimension,
causing the merger of these black objects into a single LBH. Investigating the time evolution for
large D showed that these configurations eventually relaxate to a NBS solution [69]. This is in
accordance with the thermodynamic analysis, which shows a higher entropy for the NBS than
for the UBS having the same mass for D > 12. Nevertheless, numerical results for D > 5 are
still rare and determining the corresponding end states of the GL instability is subject of ongoing
research.

! Actually, Gregory and Laflamme considered black branes in the original work about the GL instability.
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Figure 4.4: Left: Microcanonical phase diagram of KK black holes in D = 5. Mass M and entropy S are
shifted by the corresponding values of a UBS and normalized by the UBS value at the GL point. LBHs
have highest entropy and are thermodynamically preferred for small masses (red line). When the LBH
branch crosses the UBS branch (black line), the UBSs become thermodynamically preferred. Note that the
intersection point of the LBH and UBS branches corresponds to a first order phase transition. The NBS
branch (blue line) starts from the GL instability point with a lower entropy than the UBS branch. At the
maximum of entropy and mass the LBH branch exhibits a turning point and approaches the NBS branch.
The merger of both branches in D = 5, 6 was extensively studied in [123]. Right: The situation in D = 10
differs qualitatively, since the LBH branch and the NBS branch are expected to asymptote to each other
when approaching the finite maximum mass configuration of the LBH. The NBS data for D = 10 was
extrapolated from [59].

4.1.4 The thermodynamic stability of static Kaluza-Klein black holes

In the following we give a summary of the phase diagrams for static KK black holes related to
the LBH solutions in D = 5, D = 6 and D = 10, whose numerical construction is presented in
section 4.2.

The phase diagram for D = 6 is qualitatively similar to the picture for D = 5, so it suffices
to discuss the latter one, which is depicted in figure 4.4 for the microcanonical ensemble, i.e. for
a given mass the configuration with the highest entropy is physically preferred. We note that
the UBS branch has the higher entropy for large values of the mass parameter, whereas the LBH
branch predominates for small and moderate masses. Consequently, we have a first order phase
transition where both branches intersect.

Starting with a UBS above the phase transition point, we have a globally stable configuration.
Reducing its mass the stability of our UBS is reduced from global to local, when traversing the
intersection point with the LBH branch, whose entropy is now higher. The local stability is lost
when the GL point is passed and already small perturbations will grow as described above.

On the other hand, a LBH with small mass parameter is globally stable until its mass param-
eter is increased to the point where the entropy of the UBS branch dominates. The configuration
remains locally stable when the mass is further increased until a maximum mass for the LBH is
reached. Raising the mass beyond this point must lead to another configuration, whose stable
end state is given by a UBS of the regarding mass. When looking at figure 4.4, we see that the
LBH branch does not end at the maximum mass configuration, but continues with solutions
having a lower mass and entropy. Finally, the LBH branch approaches the NBS branch which
emanates from the UBS branch at the GL point.
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The turning point of the LBH branch in D = 5, 6 is the main qualitative difference to the
phase diagram in D = 10. Here the LBH branch is not expected to turn around when reaching
the maximum mass configuration. Instead the NBS and LBH branches are expected to approach
each other at a finite maximum mass configuration (cf. right panel of figure 4.4). As we will see
in the next subsection, the behavior for D < 10 is qualitatively the same as for D = 5, 6, while a
significant change of the critical behavior is observed for D > 10.

The details of the merger of these branches, were subject of a controversial scientific debate for
D =5, 6, since the available numerical results were not conclusive [128, 73] in the critical region.
This issue was finally resolved with the results presented in [122, 123]. A critical scaling analysis
of the LBH/NBS transition was first carried out by Kol [132], who analyzed linear perturbations
around the so-called double-cone metric, which he claimed to be a local model of the proper
limit at which both configurations meet. A brief summary of the double-cone metric and the
related scaling analysis is provided in the next subsection.

4.1.5 Critical behavior and the double-cone metric

Kols analysis together with the merger hypothesis was confirmed for D = 5 and D = 6 in [122,
123] by a direct numerical construction of the NBS and LBH sides. The construction of the
LBH side for D = 5, D = 6 and D = 10 and the regarding evaluation of the predicted scaling
coefficients is covered in section 4.2 of this work.

Kol predicted the limiting spacetime of the LBH/NBS transition to be described by the Ricci-
flat double cone metric [132]

2
dsdc = dp? + ﬁ [dQ3 + (D — 4)d03, 5], (4.14)
which describes two separate cones with coinciding tips and a curvature singularity at the inter-
section point p = 0. A heuristic motivation of this ansatz can be obtained from figure 4.5, which
shows that the corresponding horizon shape of the double cone “interpolates” between the cor-
responding horizons of the LBH and NBS branches. Accordingly, the D dependent prefactors
in (4.14) prescribe the angle at which the poles of the LBH merge (or the horizon of the NBS
pinches off) close to the transition point. A more detailed derivation of the double cone ansatz is
rather complicated and can be found in reference [134].

Linear perturbations of the double cone metric were analyzed in [132, 24], where the form of
the perturbations was chosen as follows

2
dstpe = do? + 5 [Wd03 + (D - 4) >0/ (P00}, ] (4.15)

The linear contributions in € can be reduced to the following fundamental solution
€(p) =p™, (4.16)

with the complex exponents

si:D_2<—1ii DS_2—1>. (4.17)
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LBH transition NBS

Figure 4.5: Sketch of the horizon shape of a LBH close to the merger, the double-cone and a NBS in
vicinity of the critical point.

While the imaginary part of (4.17) leads to oscillations in € (p) for D < 10, we see that s
become both purely real for D > 10. A physical interpretation of the exponents s+ can be taken
from reference [133]: If € is related to the distance of physical observable p from its value at the
critical point p. according to € ~ Ap := p — p. , we expect Ap to show the following leading
behavior on length scales of the double cone

Ap ~ dp 5+ +bp°-, (4.18)
with some constants @ and b. For D < 10 we can simplify the last expression to
Ap 10 = ap’ cos (clogp +d), (4.19)

where b = —Re(s;), c = Im(s;) and ¢, d € R. For D = 10 the expression (4.18) degenerates
and we have to consider an additional logarithmic solution branch, giving the leading behavior
according to

Apro~p *(a+blogp), (4.20)

where 4, b € R.

From the given analysis we conclude that physical observables close to the transient LBH/NBS
region are expected to follow a scaling law. The theoretical prediction for this scaling law can
be tested by fitting numerical data to the given expressions (4.19) (for D < 10) or (4.20) (for
D = 10), after some appropriate length scale py for the parametrization of the LBH and NBS
branches close to the critical point has been identified. Previous studies of the critical behavior
in D = 6 can be found in [136, 186]. The numerical construction of the critical LBH region for
D =5,D =6 and D = 10 is covered within this thesis, based on the references [122, 123].
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4.2 Numerical construction

We start with the description of the coordinate system, that we employed for the construction
of the LBH solutions. The LBH is centered in the origin of the r — z plane. Here, r € [0, o]
is the radial coordinate associated with the SP~2 hyper-spherical horizon topology. z denotes
the coordinate along the compact dimension with asymptotic length L as it was described in
the previous sections. The setup is reflection-symmetric with respect to z = 0 and we can
constrain the domain of integration to z € [0, L/2], while using appropriate boundary conditions
at z = 0. Since we want to construct static solutions, we can always choose a suitable coordinate
system, where the LBH attains a hyper-spherical shape in the (r,z)-coordinates, making the
problem effectively two-dimensional. As a result we can describe the horizon by a circle-equation
r? + z2 = g3, where gy denotes the coordinate radius of the horizon. The corresponding domain
of integration is shown in figure 4.6, its boundary structure can be divided into:

e The horizon H = {(r,z): r >0, z >0, r* + 2> = 3},

The exposed axis of symmetry A = {(r,z): ¥ =0, 00 <z < L/2},

The lower mirror boundary My = {(r,z): r > 09, z =0},

The upper mirror boundary My = {(r,z): r >0, z=L/2},

The asymptotic boundary Z = {(r,z): r - o0, 0 <z < L/2}.

z
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Figure 4.6: Sketch of the domain of integration with the following boundaries: horizon H, exposed
axis of spherical symmetry .4, lower mirror boundary M, upper mirror boundary M3, and asymptotic
boundary 7.

Subsequently, the numerical procedure for constructing LBH solutions to Einstein’s field
equations on the above domain of integration is covered in detail with a special focus on the criti-
cal regime, where the poles of neighboring LBHs approach each other. We start with introducing
the metric tensors and the regarding boundary conditions in subsection 4.2.1, followed by the
description of the gauge procedure and the related reference metric tensors in subsection 4.2.2.
More information on the underlying domain decomposition and the numerical strategy are given
in subsection 4.2.3, before completing this section with a summary of the parameters and physi-
cal quantities in subsection 4.2.4.



§4.2 Numerical construction 43

4.2.1 Metric and boundary conditions

Instead of introducing a single coordinate system that fits to all five boundaries at once (cf.
eg. reference [137]), we decided to use two different coordinate charts in the different asymp-
totical regions of the setup. This approach, which has been employed previously by different
authors ([104, 187]), comes with the advantage of being not spoiled by any coordinate singularity
while keeping the complexity of the coordinate transformations comparatively low. The follow-
ing two paragraphs contain a detailed discussion of the regarding coordinate charts, where the
tirst is adapted to the asymptotic behavior at large r — co, while the other is specifically designed
to cover the near horizon region.

Asymptotic chart

We use the following general ansatz for the metric tensor at large r
dstpy, = —Tadt* + Aqdz® + Badr? + 2F,dzdr + r*S,dQf,_5, (4.21)

which complies with the required symmetries. Note that the functions T,, A,;, B;, F, and S,
depend on the coordinates (r,z). The following boundary conditions are imposed on the four
external boundaries of the asymptotic region:

e The asymptotic boundary Z (r — o0):
The background metric (4.1) has to be approached in the limit r — oo, i.e.

0=T,-1=A,-1=B,-1=5,—-1=F,. (4.22)

e The exposed axis A (r = 0):
This is the location of the hyper-sphere axis, i.e. the metric degenerates. We obtain the
following regularity conditions
oT, 0A, 0B, 0S,

0=4,-5,=="=21=20 =1 =F,. (4.23)

e The mirror boundaries My (z = 0) and M; (z = L/2):
As a result of the mirror symmetry we obtain
9T, 0A, 0B, 95,
e (.24)

The next paragraph covers the near horizon chart which is based on polar coordinates that are
adapted to the spherical symmetry of the horizon.
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Near horizon chart

The polar coordinates (o, ¢), which adapt naturally to the spherical horizon shape, are related to
the (7,z) coordinates as follows

r=gsing, Z=0cosQ, (4.25)
with the horizon located at ¢ = 0o. The corresponding metric ansatz reads
dstpp, = —Tydt* + Apdg® + 0*Bydg® + 20F,dodg + ¢° sin® ¢S,d0% 5, (4.26)

where the functions T;, Ay, By, F, and S, depend on the coordinates (o, ¢). Apart from the
trivial identification T;, = T, and S;, = S;, we need to apply the coordinate transformation (4.25)
to the line element (4.21) for obtaining the relations between the metric functions in the different
coordinate charts, yielding

Ay, = sin® pA, + cos? pB, + 2sin ¢ cos ¢F,, (4.27)
B, = cos? pA; + sin® @B, — 2sin ¢ cos ¢F;, (4.28)
F, = singcos ¢ (A — Ba) + (cos? ¢ —sin’ ¢) F, . (4.29)

In addition we introduce a redefined version of Tj, that includes the blackness factor
T, =2 (0 — 00)* Ty, (4.30)

where T, is regular at the horizon. The boundary conditions on H, A, My and M are summa-
rized subsequently:

e The horizon boundary H (¢ = 0o):
The following conditions are be derived from regularity requirements at the horizon

P RC) I VR A PR A P

e The exposed axis A (¢ = 0):
As above, we obtain the regularity conditions

0=By— =2 _ 94 9By 95 _ (4.32)
dp d¢  dp  I¢
e The lower mirror boundary Mg (¢ = 7w/2):
The symmetry conditions yield

_ 9Ty _ 9Ay _ 0By _ 95y _
~ 90 " 99 ~ 3 3y~ (4.33)

e The upper mirror boundary M; (0cos ¢ = L/2):
The symmetry conditions for the upper mirror boundary can be obtained by transforming
the regarding conditions from the old coordinate frame (4.24) to the new one. This leads to
rather lengthy expressions, thus we refrain from presenting them here.
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We notice that the number of conditions at .4 and H exceeds the number of unknown fields
by one. According to reference [58], one of the conditions can be dropped and will be satisfied
automatically up to the precision of our numerical algorithm once the computation has been
carried out. Accordingly, the condition 9T;,/d¢ = 0 at # and 9S;,/9¢ = 0 at .A were omitted.

4.2.2 Gauging and reference metric

The DeTurck method, which was outlined in section 2.1.2, was used for rendering the field equa-
tions strongly elliptic. The required reference metric must comply with the different boundary
asymptotics in the different coordinate charts that were discussed in the last section. Therefore
we use different reference line elements in the different asymptotic regions and connect them via
a suitable interpolation technique.

We divide the domain of integration in two regions separated at some distance ¢; with gg <
01 < L/2 (see figure 4.7). For ¢ > 01 we can use the the background metric (4.1) as a reference,
since it satisfies all the external boundary conditions within this region. In the remaining near-
horizon region gp < ¢ < 01 we need to construct a reference that complies with the horizon
boundary condition at H as well as the conditions at the exposed axis A and the lower mirror
boundary My. In addition this reference needs to attach to the background metric at ¢ = ¢; with
a certain level of smoothness. For constructing the reference in g9 < ¢ < ¢; we start with the
following ansatz

dstpy,, = —H (0)df* +do® + G (0)d0p_,, (4.34)

where dQ2 , = d¢? + sin® pd)2,_,. We note that the functions H (¢) and G (¢) depend only on
0, as a result (4.34) satisfies the boundary conditions on A and M. For matching the background
metric (4.1) at ¢ = 01, we consider its form in polar coordinates

dsic = —dt* + do* + o* (d¢* + sin® pd )}, _5) . (4.35)
Accordingly, the functions for H (¢) and G (¢) can be constrained to the following shapes
_ Hy,, if 0< o1, - Ghor if ,
L A BT B e L P
1 if 0> o1, 0? if 0>o01.

The approximability of the LBH solution by the ST black hole in the vicinity of its horizon, that
was mentioned in the previous section, gives us the near horizon asymptotics of Hj,, (¢) and

Ghor (0)

Aoy (0) = K (0 — 20)” + O (@ — 0)*] (4.37)

_ (D-3Y% D-3

Gror (@) = 45—+ =5 (0= 0)*+ 0O ((0—a0)’] - (4.38)

To obtain a C¥ continuous reference line element at ¢ = 01, we require that

Hyor (0) =1+ 0 [(Q - Ql)k“] , (4.39)
Ghor (@) = 0>+ O [(Q - Ql)k-H} : (4.40)
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From the PDE point of view it suffices to require Hj,, (¢) and Gy, (0) to be C? in each single
domain of integration and at least C! at the external and internal boundaries. This corresponds
to creating a C! global cover of the underlying manifold, which is not a problem as long as the
regularity at the boundaries is high enough to guarantee the existence of the physical quantities,
that we are going to extract. In practice we used at least k = 2 regularity at the matching contour
0 = 01, so that all curvature measures are globally well defined. Furthermore, we compared
the results obtained at k = 2 with a k = co ansatz and saw agreement in terms of the extracted
physical quantities at the level of machine precision.

The k = 2 ansatz, is obtained by simple polynomial interpolation

Fyor (0) = k% (0 — 00)* + 711 (0 — 00)* + Ti2 (0 — 00)° + 13 (0 — 00)°, (4.41)

i D-3?° D-3 ] ] ;
Gror (0) = 4 4K2) + =5 (0= 00+ 81 (e— ) +2(e ) +&(0—0),  (“442)

where the coefficients iy, hy, h3, 31, & and g3 are determined by the aforementioned matching
conditions. In contrast, the k = oo version is obtained by an exponential ansatz

Hyor (0) =1—E(0), (4.43)
G =¢"—E 2 2 (D253 g 4.44
nor (€) =0~ —E(0) |0 —T—(Q—Qo) <4— T K Qo) , (4.44)

where E (0) is given by

U (0~ @)
Flo)=ep [ 10—’/ (- Q0)2] ' &5

There are important differences between the two approaches in terms of numerical implementa-
tion and convergence. First, we note that the function E (¢) has an essential singularity at 0 = ¢,
which needs to be cured in the numerical implementation. Furthermore, the non-analytic form
of E (0) leads to a lower convergence rate than the polynomial ansatz. The polynomial ansatz
is analytic on the closure of each patch of our non-overlapping domain decomposition, which is
depicted in figure 4.7.

4.2.3 Domain decomposition

A sketch of the domain configuration is depicted in figure 4.7. As stated in the previous section,
the domain of integration is divided into an asymptotic region with » > L/2 and a near horizon
region, where r < L/2. Moreover, the aforementioned structure of the reference metric implies
another decomposition of the near horizon region. An additional decomposition is introduced
at ¢ = 71/4 for avoiding domains with more than four boundaries leading to simpler coordinate
transformations to the standard cube [—1, 1]2, where the two-dimensional Chebyshev expansion
is defined. The final domain configuration includes 12 subdomains, which are not all covered in
the schematic sketch of figure 4.7. More details on the specific decompositions in the asymptotic
and the near horizon region are given in the next paragraphs.
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Figure 4.7: Schematic decomposition of the LBH domain of integration obtained from [120]. The region
r > L/2 is denoted as the asymptotic region and r < L/2 as the near horizon region. The near horizon
region is divided into four subdomains at the contours r = z (or ¢ = 7/4) and r? +z*> = ¢*> = ¢}. The
background metric (4.35) is used as reference for the DeTurck method in the region ¢ > ¢; (blue shaded
region corresponding to subdomains (iii), (iv) and (v)). For ¢ < g1 (red shaded region corresponding
to subdomains (i) and (ii)) the reference metric approximates an ST solution at the horizon ¢ = g9 and
matches the background metric at ¢ = 9.

Asymptotic region

A simple algebraic coordinate compactification is applied to cover the asymptotic region which
extends to r — oo

r(s) = T (4.46)
where s € [—1,1] such that infinity is mapped to s = 1 and r = L/2 corresponds to s =
—1. Analyzing the asymptotic behavior of the solution, we discover exponentially decaying z-
dependent modes and algebraically decaying z-independent modes. Thus, we expect a rather
slow decay of the spectral coefficients related to the s-direction, while the coefficients of the
z-expansion are expected to decay much faster. We divide the asymptotic region into three
linearly connected subdomains for improving the numerical accuracy in the asymptotic region
(figure 4.8). Reducing the width of the subdomain which is connected to s = 1 blocks the
spreading of the bad convergence rate, which is caused by the non-analytic z-independent modes,
to the other subdomains. Furthermore, adapting the resolutions in the three subdomains makes
the computation more effective in terms of computational costs, while a higher accuracy can be
obtained.

As covered in subsection 4.1.1, computing the mass and relative tension relies on determining
the (D — 4)th Taylor coefficients of the metric functions T, and B,. In D = 5and D = 6 we
use direct numerical differentiation for obtaining these coefficients, since the accuracy loss is

5 5
comparatively low. In contrast, for D = 10 we redefine T, = 1 + (1;25 ) T,and B, =1+ (1; ) B,
and use a single numerical differentiation to obtain ¢; and c, from T, and B,2.

2Moreover, we remark, that for D = 10 all metric variables T,, A,, By, F; and S, were redefined by pulling out the
(1=s)®

same factor “—;




48 Localized Kaluza-Klein black holes

z
asymptotic region L2
-
2
Y
&
2
O
5.5 L/4
£5
g<
==
= &
SR=
0_s
-1 S1 S9 1

Figure 4.8: Domain setup in the asymptotic region with the corresponding coordinate lines. The coordi-
nate s compactifies infinity to the value s = 1. The three subdomains are separated at s = s; and s = sy.
At s = —1 this region is connected to the near horizon region corresponding to r = L/2.

Near horizon region

As mentioned in the previous section, polar coordinates are used to cover the domains (i) and
(ii) (figure 4.9). In the domains (iii) and (iv) we need to adapt the parametrization for aligning
the patch boundaries to the rectangular shape:

r=20(v,¢)sing, z=20(v,¢)cos @, (4.47)
where
3 L/2—-v v—01 [(cosg)™" for domain (iii),
Q) =017 +L/2—F—— 4.48
plog)=a L/2 -0 / L/2 -0 {(sin @)"'  for domain (iv), (4.48)

with v € [01,L/2]. For v = ¢ we are at ¢ = 01, moreover the value v = L/2 corresponds to the
locus z = L/2 in domain (iii) and to » = L/2 in domain (iv).

To satisfy the increased accuracy requirements in the critical regime of nearly touching poles,
we split the near horizon domains further close to the exposed axis A at an angle ¢; and close
to the horizon at the radial distance ¢; (see figure 4.9). On top of that, the high gradients in the
vicinity of A make additional adjustments necessary. First, we must redefine the functions By,
and S, in the region 0 < ¢ < ¢; according to

Bh == and gh == (449)

which helps in dealing with the exceedingly high values that those functions approach close to
A. In addition, an analytic mesh refinement is applied, i.e. a reparametrization of ¢ on [0, ¢;]

_, _ sinh(A9)
9(9) = pimg g (4.50)

where ¢ € [0, ¢;].
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Figure 4.9: Domain setup in the near horizon region with the corresponding coordinate lines. The region
is further subdivided into nine subdomains with inner boundaries at ¢ = ¢1, 0 = ¢, ¢ = 7/4 and ¢ = ¢;.
We use polar the coordinates (4.25) for ¢ < ¢1. In the other subdomains the radial coordinate is modified
according to (4.48). An analytic mesh refinement (4.50) with respect to ¢ is employed for ¢ < ¢@;. At
r = L/2 this region is connected to the asymptotic region.

Adapting the parameter A can improve the decay rates of the spectral coefficients significantly.
A good review on this mesh refinement technique is provided in the appendix of [120].

4.2.4 Parameters and observables

The set of parameters that enter the numerical scheme can be categorized into those which have
a physical meaning (L and x) and non-physical parameters (0o, 01, 0i, @i, 51, 52 and A) that are
used for gauge-fixing and control of the numerical grid. The specific values that were used to
produce the results, which are presented in section 4.3, can be found in appendix A.2.1.

Apart from the parameters that we control explicitly, there are the physical quantities which
were presented in subsection 4.1.1. The following paragraphs cover the extraction of the interest-
ing physical quantities from the functions, that are approximated by the numerical scheme.

Thermodynamic quantities

The asymptotic coefficients c; and ¢, (cf. 4.2) are obtained from T, and B, as follows

LD—4 aD—4T
D-3 a
_ LD74 an4B
D—4 a

c: = (1) (D —4) o503 - (4.52)

The mass and relative tension is then obtained from c; and ¢, according to the formulas (4.3)
and (4.4) that were provided in subsection 4.1.1.
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The temperature is directly related to the surface gravity «

2L

T/Tc) = ———
/TaL (D_4)KGLK,

(4.53)

where T and K denote the temperature and K-value of a UBS at the GL point. The entropy
is obtained from a surface area integral according to

S/SGL—ZQO KD 3/ /BhSD 3

where S| is the entropy of a UBS at the GL point.

(sing)P 2 dg, (4.54)
0=0o

Geometric quantities

The following quantities are used for classifying the different LBH solutions by simple geometric
measures.
The maximal horizon areal radius at the equator is given by

Rimax = 004/ S (QO/ 7T/2) . (4.55)

The proper length of the horizon from the north to the south pole reads

2
Ly :290/ \/Bh‘g 2 (4.56)
=00
0

The proper length of the exposed axis of symmetry A, i.e. the pole to pole distance of neighboring
LBHs is computed as

L/2

A_z/ \ﬁ) (4.57)

Qo0

For illustration the (D — 2) dimensional horizon surface is embedded into (D — 1)-dimensional
flat space

ds* = dR* 4+ dZ% + R*d0Y?, ;. (4.58)

Comparing (4.58) with the line element (4.26) yields

R (@) = gosingy/Sy (00, ¢), (4.59)
2

- / V@3B (00, ) — (4R (§) /dg)%dg, (4.60)

where we set an arbitrary integration constant in the second expression to zero.
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Figure 4.10: Entropy S, mass M and temperature T as functions of the relative tension n. All quantities
are normalized with respect to the corresponding values of a UBS at the GL point. The critical region is
magnified in two stages in the center and right columns. The upper diagrams corresponds to D = 5 and
the lower ones to D = 6.
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4.3 Results

The previously described sophisticated numerical scheme enables us to extend the branch of
LBH solutions in D =5, D = 6 and D = 10 far beyond previous results. In particular, we probed
deeply into the critical regime, where a transition to the NBS branch is supposed to happen. As
a result we were able to clarify open issues about the end point of the GL instability in D =5, 6
by showing in detail how the LBH and NBS branches approach each other. Furthermore, the
currently most far-reaching results on the critical behavior of a LBH in D = 10 were obtained
and show excellent agreement with the theoretical predictions.

The qualitative behavior of the thermodynamic quantities including the regarding phase
space diagrams is provided in subsection 4.3.1 followed by a detailed geometric analysis in sub-
section 4.3.2. The results related to the critical regime are analyzed in subsection 4.3.3, where we
discuss the validity of the predicted critical scaling (4.19) and (4.20) of the physical quantities.
The accuracy of the presented solutions is analyzed in appendix A.2.5.

The LBH results in D = 5, 6 are compared to the NBS results of reference [122]. For D = 10
we refer the reader to [59], which provides data for the NBS branch in D = 10. In addition,
in appendix A.2.4, we comment on the relation of the D = 10 localized black hole solution to
localized thermal states of a supersymmetric Yang-Mills theory on the circle S!, based on the
analysis given in [59].

4.3.1 Thermodynamics

In figure 4.10 we show the normalized entropy, mass and temperature as a function of the normal-
ized relative tension n/n¢gy for the LBH and the NBS branch in D = 5, 6, where normalization is
done by dividing through the corresponding values of a UBS at the GL point. Each LBH branch
starts at small size of the horizon compared to L where n/n¢y is close to zero and continues
with increasing black hole sizes. When following the branch, we come to a maximum value for
mass and entropy which is in agreement with previous results. Accordingly, mass and entropy
decrease towards the NBS branch values when the tension is further increased.
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Figure 4.11: Phase diagrams of the microcanonical ensemble for D = 5 (left) and D = 6 (right). The values
of entropy S and mass M are shifted by the corresponding values of a UBS (black line) and normalized by
the UBS value at the GL point. The critical region is located where the LBH (red line) and NBS (blue line)
branches approach each other.
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As a result we can close the gap between the LBH and the NBS branch, as depicted in
tigure 4.10. Traversing the LBH branch, we notice at least four turning points of the displayed
thermodynamic quantities, leading to an inspiraling behavior. The same behavior was previously
obtained for the NBS branch in reference [122]. The LBH and NBS branches are coming closer
with each spiral revolution, which is a strong indication of their expected merger in the phase
diagram. The shrinking rate of this spiral was predicted in reference [133]. These findings will
be confirmed in subsection 4.3.3.

Finally, the phase diagram for the microcanonical ensemble in D = 5, 6 is provided in fig-
ure 4.11. The solutions with higher entropy S are thermodynamically preferred over the solutions
of lower entropy at the same mass M. As already discussed in section 4.1.3, we note that the
LBH branch is thermodynamically preferred for small masses while the UBS branch supersedes
for larges masses.

The Lh.s. of figure 4.12 shows the normalized entropy, mass and temperature as a function
of the normalized relative tension n/ng; for the LBH branch in D = 10. As noted before, the
relative tension 7n/n¢y, increases with growing black hole size and a maximum for the mass and
entropy is attained, when following the branch into the critical transit region®. In contrast to
D =5 and D = 6, we have no inspiraling behavior when approaching the critical region, which
is in agreement with the theoretical predictions of having purely real critical exponents [133].
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Figure 4.12: Left: Entropy S (green), mass M (red) and temperature T (blue) as functions of the relative
tension 7 for the LBH in D = 10. All quantities are normalized with respect to their corresponding values
of a UBS at the GL point. Right: Phase diagram of LBHs in the microcanonical ensemble in D = 10.
We plot the difference of the entropy to the corresponding values of the UBS, which is thus represented
as the black zero line in these diagrams with the black circle indicating the solution, where the Gregory-
Laflamme instability arises. Furthermore, we normalize again with respect to the values of a UBS at the
GL point.

The phase diagram for the microcanonical ensemble in D = 10 can be found in the right panel
of figure 4.12. As in the lower dimension, the entropy of the LBH is higher than the entropy of
a UBS solution with the same mass. Accordingly, LBHs are thermodynamically preferred until
a certain threshold value of the mass is reached. Note that reference [59] did already show this
picture qualitatively and, moreover, included the non-uniform black string results into the dia-
gram. In ten dimensions the non-uniform black string branch is at no point thermodynamically

3The end-point of the data corresponds to L 4/L = 0.007, i.e. the poles of neighboring LBHs are extremely close to
the merger.



54 Localized Kaluza-Klein black holes

favored. This changes in higher dimensions, see references [185, 73, 68]. However, we were able
to extend the localized black hole solutions much closer to the end point of this branch, where a
transition to non-uniform black strings is expected.
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Figure 4.13: Proper horizon length Ly, and maximal horizon areal radius R,y as functions of the relative
tension n. The two upper diagrams correspond to D = 5, 6 and the lower one to D = 10. For D =5, 6,
the critical region is magnified in two stages in the center and right columns.



§4.3 Results 55

4.3.2 Geometry

This section covers a comparison of the geometrical aspects of LBH and NBS solutions close to
the transition. Furthermore additional evidence in favor of the double-cone metric is provided.

The maximal horizon areal radius R;;sx (4.55) and the proper horizon length Ly, (4.56) are
plotted versus the normalized relative tension n/n¢y in the two upper diagrams of figure 4.13
for D =5 and D = 6. We find the same spiraling behavior for R,y as for the thermodynamic
quantities, whereas L, approaches a global maximum when moving towards the transition point.

The corresponding geometric quantities for the LBH branch in D = 10 are depicted in the
lowest diagram of figure 4.13. Again, the quantities are monotonically growing without addi-
tional turning points.

The spatial embeddings of different LBH and NBS horizons are compared in figure 4.14 for
D =5and D = 6. The spatial embeddings for the LBH side are computed by employing the rela-
tions (4.59) and (4.60). Similar equations can be obtained for the NBS branch (cf. reference [122]).
The LBH horizon becomes more and more stretched when approaching the transition point until
the poles of neighboring black holes almost touch. A bulge as well a waist region develops in
the NBS region when coming closer to the critical point. This waist shrinks subsequently until
its is about to pinch off. For D = 10 we cannot compare with the regarding NBS solutions, but a
collection of different horizon embeddings can be found in appendix A.2.2.
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Figure 4.14: Spatial embeddings of the horizons of different LBH and NBS solutions for D = 5 and D = 6.

The upper half of figure 4.15 shows a magnified plot of the periodic boundary together
with several LBH and NBS horizon embeddings of configurations close to the transition for
D =5, 6. The lower half of figure 4.15 shows the corresponding situation for LBH configurations
in D = 10. Furthermore, the horizon embedding corresponding to the double-cone metric (cf.
subsection 4.1.5) was added and appears as straight lines with D-dependent opening angle. We
clearly see that the horizon shapes of the LBH (and NBS for D = 5, 6) solutions converge to the
double-cone horizon, which is a strong qualitative evidence for Kol’s conjecture.
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Figure 4.15: Magnification of the critical region where the poles of LBHs (red lines) are about to merge
and the NBSs (blue lines) are about to pinch-off for D = 5 and D = 6 (upper half), and for D = 10 (lower
half, only LBHs). The dashed lines correspond to the double-cone geometry (4.14). The LBH horizons
approach the double-cone shape from above/below while the NBS horizons approach it from left/right.
The embedding coordinates R and Z are normalized by Z;, which denotes the length of the compact
dimension measured in the coordinate Z. For the LBH branch, the exposed axis of symmetry is indicated
which connects the poles.

4.3.3 Critical behavior

It remains to present the results concerning the predicted scaling of physical observables in the
critical region (cf. subsection 4.1.5). Since the behavior differs qualitatively between D < 10
and D > 10 we have separated the discussion of D = 5 and D = 6 from the corresponding
discussion of the D = 10 results. Before investigating the critical scaling of the LBH/NBS, we
need to determine appropriate length scales for parameterizing the LBH and NBS branches close
to the transition. Such a measure is provided by the proper pole distance L4 in the LBH case.
The minimal horizon areal radius R,,;, was used in reference [122] for characterizing NBSs close
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to the merger. Accordingly, we can define the following dimensionless quantities

Qi = La/L, OnBs = Ruin/RaL, (4.61)

that are used for the desired parametrization. In (4.61), Rg; denotes the horizon areal radius of a
UBS at the GL point. We note, that the parameters Qrpr and Qnps are close to one at the starting
point of the regarding branch and tend to zero in the limit of the critical transition.

D =5, 6: Insubsection4.1.5 we provided the scaling relation of an arbitrary physical quantity f
for D < 10, which can be written in terms of the above Q-parametrization

f(Q) = fo+aQ’cos (clogQ +d), (4.62)

where f, is the value of f at the critical point (Q = 0). The important scaling exponents are iden-
tical to b and ¢, which are denoted as real critical exponent and log-periodicity in the following.
According to subsection 4.1.5, the predicted values for b and c read:

o for D =5: byres = 3/2 and cpreqs = V15/2 = 1.9365,
o for D = 6: bpreis = Cpreas = 2-

The remaining parameters a and d differ for each physical quantity and do not have an explicit
physical meaning. In the following we analyze the critical scaling for the mass, relative tension,
temperature and entropy. A scaling analysis of the proper horizon length is more complicated,
since its behavior includes an additional a-priori unknown gauge dependent leading order term.
Nevertheless, we have been able to show, that the proper horizon length Ly, exhibits the same
oscillatory behavior for D = 5 and D = 6, whereas we were not able to separate the gauge
dependent contribution from the scaling behavior in D = 10. The analysis of Ly for D = 5
and D = 6 is provided in appendix A.2.3. Again, the data for the NBS branch was taken from
reference [122].

For obtaining the critical exponents a and d, the data is fitted with the ansatz (4.62), where
we use Mathematica’s FindFit routine and treat f., 4, b, ¢, d as free parameters. Since all ther-
modynamic quantities provide a similar picture in the critical region, we provide only the data
points and the corresponding fit for the normalized mass M/ Mg/ in figure 4.16. The exponen-
tially suppressed oscillation can be better observed in the logarithmic scaled plot as shown in the
right column of figure 4.16. Only data points of the last cycle were taken for the fit, since larger
deviations appear for increasing Q due to higher order effects. Correspondingly, we see a very
good agreement of the data points and the fit for small Q.

The fit parameters for the mass M, the relative tension 7, the temperature T and the entropy S
are all summarized in table 4.1 for the LBH branch. The corresponding fit results for the NBS
branch can be found in table A.2 in appendix A.2.3. We see excellent agreement of the fitted
values for the real exponent and the log-periodicity b and ¢ with the predicted values with
deviations of less than 0.5%*. In addition, we recognize that all physical quantities yield the
same critical exponents for both configurations as expected. Moreover, the critical values f. of
both branches coincide up to seven significant digits, which corresponds to the best estimation
of their actual values so far.

4The standard error resulting from the fit of the tabulated values is of the order of the last printed digit.
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Figure 4.16: Data points (red dots for LBHs and blue dots for NBSs) and fit (dashed lines) of the nor-
malized mass M/Mg as a function of Qipyg or Qngs for D = 5 and D = 6. The explicit functional
dependence is shown in the left column. A rescaled version is shown in the right column to resolve the
tiny oscillations of the functions, where AM = M/ Mg — f. is plotted with a logarithmic rescaling of the
abscissa. For each plot, all data points to the left of the dotted vertical line served as input data for the fit.
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Table 4.1: Parameter values of the fit 4.62 for the thermodynamic quantities of the LBH in D = 5 and

D =6.
f fe a b c d

M/Mgr 1.6771933 24700 1.4997 19362  2.0766
n/ngr  0.7795283 0.5762  1.4986 19359  4.2842

b=5 T/Tcr, 0.6738645 0.7869  1.4990 19367  5.3444
S/Scr  2.6718298 7.3502 1.5001 1.9359  2.0752

M/Mgp 21839096 4.75319 1.99999 1.99993 5.95517

D—6 n/ngr  0.5855194 0.93638 1.99991 1.99994 1.70328

T/Tgr 0.7419027 0.65522 1.99991 1.99996 2.92683
S/Scr  3.0961719 9.61169 2.00001 1.99992 5.95511

As an additional result, we are able to answer the question about the existence of LBHs with
positive specific heat, raised in reference [104]. In figure 4.10, we recognize that the turning point
of the mass does not coincide with the first minimum of the temperature as a function of the rel-
ative tension, yielding positive values for dM/dT in between. In addition, our data indicates the
occurrence of infinitely many regions with positive specific heat due to the inspiraling behavior.
This can be seen by recognizing the significant phase shift d (module 7) between the mass and
temperature values in table 4.1 and A.2.

D =10: The critical behavior in D = 10 differs qualitatively from D < 10, since there is only a
single real valued critical exponent and no oscillation occurs. Accordingly, the data is fitted for
the scaling relation (4.20) (cf. subsection 4.1.5)

f(Qun) = fc+ Qipy (a+blog Qren), (4.63)

where f, is the value of f at the critical point (Q = 0). For this case, we have only a single scaling
exponent ¢, which has according to subsection 4.1.5, the predicted value cyeq,10 = 4. As before,
the remaining parameters 2 and b do not have an explicit physical meaning.
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Figure 4.17: The left plot shows the rescaled mass M/ Mg, as a function of the normalized proper distance
between the poles Q;py = L4/L. To illustrate the remarkable agreement of data points and fit, we plot
the mass difference AM = M/ Mg — f. divided by ¢ (Qrpr) = a+ blog Qrpy versus Qrpp in a double
logarithmic diagram (right). The fit parameters were determined by using all data points to the left of the
dotted vertical line (all points with Q;py < 0.02), which is still a number of 200 data points.
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The critical exponent c is once more obtained by using Mathematica’s FindFit routine to fit the
data for the mass, relative tension, temperature and entropy. A scaling plot of the normalized
mass M/Mg; is available in figure 4.17. As for D = 5 and D = 6, we obtain a very good
agreement of the data points and the fit for small Q;pyg = L4 /L.

Table 4.2 provides the fit parameters for the mass M, the relative tension 7, the temperature T
and the entropy S. This time, we obtain an even better agreement with the predicted results,
because we have only one critical exponent, i.e. a lower number of fit coefficients. Consequently,
this data represents the best estimation of the critical exponent of the LBH branch in D = 10
obtained so far.

Table 4.2: Parameter values of the fit 4.63 for the thermodynamic quantities of the LBH in D = 10.

f fe a b c
M/Mg. 1.87198367 1950 -104.40 4.0009
n/ngr 013911664 -54.76 -43.216 3.9999
T/Tg. 092615434 -0.4028 8.3508 4.0006
S/SqL 2.05628384 24.47 -131.48 4.0009

D =10

The values in tables 4.1-4.2 allow us to perform some consistency checks. As an example, we
checked whether the critical values f. of the thermodynamic quantities satisfy Smarr’s relation,
yielding an error bound for f, of the order 10~7. There is another consistency check available for
the D = 5 and D = 6 data: The first law of black hole thermodynamics, requires the extreme
points of mass and entropy to coincide, i.e. the phase shift d between entropy and mass should be
the same. This was verified with deviations of less than 1% (see table 4.1). Additional measures
for estimating the accuracy of the obtained data are discussed in appendix A.2.5.

4.4 Summary

The main focus of this chapter was the numerical construction of localized black hole solutions
in five-, six- and ten-dimensional asymptotically flat Kaluza-Klein gravity with one compact
periodic spatial dimension. We utilized pseudo-spectral methods for the solution of the regarding
nonlinear partial differential equations, cf. chapter 3. Consequently, a detailed investigation of
the LBH solutions close to the critical merger was performed, relying on high-precision numerics
and well-prepared coordinate systems combined with domain decomposition.

The thermodynamic quantities associated with the LBHs in five and six dimensions display a
spiraling behavior near the transit solution, which matches the observed behavior of the related
highly deformed non-uniform black string solutions [122]. The critical exponents, that were
obtained by fitting the physical observables of the LBH branch close to the critical region, are in
remarkable agreement with the predicted values [132]. This is strong evidence in favor of the
double-cone conjecture [132] and was obtained before for the NBS branch [122]. Overall, our
data suggests an infinite inspiraling behavior of the LBH and NBS branches in the vicinity of the
merger. In addition, the phase shifts associated with the spiraling behavior lead to the formation
of an infinite number of tiny phase space regions with positive specific heat.

For ten dimensions we were able to verify the predicted qualitative change of the scaling
relations of the physical quantities. Once more, our data shows a very good agreement to the
predicted log-polynomial scaling relation predicted by [132]. Accordingly, our results provide
strong evidence for the correctness of the the double-cone conjecture also for ten dimensions.



Chapter 5

Weyl semimetals

The classification of materials according to their electrical conductivity leads traditionally to the
categories of insulators, semiconductors and metals. The electrical properties of a condensed
matter system are directly related to its possible particle-like excitations. As a result, the collec-
tive phenomena in a solid state system can lead to different statistics of the excitations including
fermionic, bosonic and even anyonic quasi-particles. Furthermore, condensed matter systems
provide the possibility for the realization of exotic quasi-particles, which have not been discov-
ered as elementary particles in nature so far, for example Weyl fermions.

Weyl fermions are massless fermions with a well-defined Chirality1 that were originally con-
sidered by Hermann Weyl in 1929 [208] as one of three possible solution classes of the Dirac equa-
tion. Due to their properties, Weyl fermions where first confused with neutrinos - a conjecture
that had to be rejected with the discovery of the neutrino mass. Despite Weyl fermions have not
been observed as fundamental particles in nature, they were recently realized as quasi-particles in
a condensed matter system, which was correspondingly denoted as Weyl semimetal (WSM) [112,
127, 148, 215].

The first theoretical studies of condensed matter systems with a close relation to WSMs were
carried out by C. Herring in 1937 [105], who studied the effect of band degeneracies in the
context of electronic band theory. Subsequently, the chiral anomaly, which plays a major role in
the understanding of the special phenomena associated with WSMs, was discussed by Adler, Bell
and Jackiw in 1969 [2, 29]. The connection between band touchings in three-dimensional crystals
and chiral fermions was further investigated by Nielsen and Ninomiya in 1983 [159] , whereas
the topological nature of WSMs was discovered in the last years [37, 38, 51, 108, 207, 216, 219].

The goal of this chapter is to investigate the surface states and study the influence of temper-
ature and disorder effects in holographic WSMs, based on [18] and [11]. We start with a brief
review of the theory of WSMs in section 5.1. The holographic model of WSMs is introduced
in section 5.2. Subsequently, surface states in holographic WSMs are studied in section 5.3. The
effects of temperature and weak time-independent disorder in holographic WSMs are considered
in section 5.4. We conclude this chapter with a summary of the acquired results in section 5.5.

The contents of this chapter rely on the results published in references [18, 11] and on the
unpublished Master thesis of Markus Heinrich.

5.1 Theory of Weyl semimetals

WSMs are characterized by special points in the Brillouin zone, where the valence and conduc-
tion bands touch at the Fermi energy, which are called Weyl nodes. The corresponding low
energy excitations that are localized at the Weyl nodes, behave as massless chiral particles, i.e.
Weyl fermions. The Weyl nodes appear only in pairs, such that the number of left-handed and
right-handed Weyl fermions are equal, as required by the Nielsen-Ninomiya theorem [159]. The

1For a massless particle the notion of chirality and helicity agrees, where the latter denotes the projection of the
spin along the linear momentum.
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existence of these nodes requires either inversion or time reversal symmetry to be broken. In
the latter case, Weyl nodes of opposite chirality are separated spatially in the Brillouin zone. A
thorough topological analysis of the momentum space shows that Weyl nodes are monopoles of
the so-called Berry flux? with charge 41 reflecting their chirality. Being topological objects, Weyl
nodes are stable under moderate perturbations, such as interactions with external fields. As in
topological insulators, WSMs show additional states localized at boundaries between phases of
different topology, e.g. surface states. The corresponding surface states of WSMs form so-called
Fermi arcs [207], which connect the projections of the Weyl nodes onto the surface Brillouin zone.

The transport properties of WSMs exhibit exotic features such as an anomalous Hall effect,
the chiral magnetic effect and a negative magnetoresistance. An effective quantum field theoretic
description relates these effects to the so-called chiral anomaly, which originates from the break-
ing of a classical symmetry in the process of quantization [2, 29]. Moreover, it was predicted that
lattice deformations couple to the fermionic low-energy excitations with different signs, giving
rise to effective axial gauge fields [49, 48]. Such lattice deformations naturally arise at the sur-
faces of a WSM, inducing localized axial magnetic fields in their vicinity. Moreover, it was shown
that the Fermi arcs can be understood from this perspective as zeroth Landau levels generated
by these fields [44].

We emphasize that a description in terms of band theory and correlation functions can not
be applied in the strong coupling regime. Nevertheless, band theory can help us to obtain an
effective picture of the involved processes for building our strong coupling ansatz.

5.1.1 Weyl nodes and transport properties

As mentioned above, in a (three-dimensional) WSM two non-degenerate bands touch exactly at
the Fermi energy er, which marks the location of the Weyl node points in the Brillouin zone. We
restrict the discussion here to band touchings in three spatial dimensions, because the complex
Dirac spinor representation is only reducible into two complex Weyl spinors for an even total
number of dimensions D = d + 1 (i.e. odd number of spatial dimension). Accordingly, we can
only have Weyl fermionic excitations in d = 1 or d = 3, where the one-dimensional case is rather
trivial compared to d = 3.

The non-degeneracy of the two bands, which is necessary for the stability of the configuration,
requires the breaking of either time-reversal or inversion symmetry due to Kramers theorem (see
for instance [181]). The aforementioned Nielsen-Ninomiya theorem then leads to the chirality
pairing of the nodes in the Brillouin zone. Figure 5.1 provides a schematic view of a pair of Weyl
nodes at Fermi energy in the energy band structure.

WSMs can be categorized into two classes according to the shapes of their Fermi surfaces,
i.e. the section of the Fermi energy level er with the energy bands. WSMs with point like Fermi
surfaces are assigned to type-I, while extended Fermi surfaces are a property of type-II WSMs.
The latter exhibit different effects, such as direction dependent conductivity. We restrict ourselves
to type-I WSMs in three spatial dimensions in the scope of this thesis.

2The Berry flux or Berry connection denotes a U (1) gauge field arising from a geometric description of the mo-
mentum space topology. A good review on this topic is provided by [157].



§5.1 Theory of Weyl semimetals 63
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Figure 5.1: Left: Schematic diagram of the type-I WSM energy band structure at the Fermi level u includ-
ing a pair of Weyl nodes with opposite chiralities, separated by a distance of 24 in the z-direction of the
Brillouin zone (BZ). Right: The magnified plot reveals the conic-structure of the energy bands at the Weyl
nodes. Furthermore, we show the projection of the Weyl nodes to the surface BZ, resulting in surface
states that are connected by Fermi arcs (thick cyan line).

Expanding the restriction of the Bloch-Hamiltonian H (E) to the two-dimensional subspace

spanned by valence and conduction states around a single Weyl node at k = ko yields to first
order

gt (F) = £ (Ro) oo+ - (R~ F) i +.0 [ (o~ F)] 61
i=1

here ¢; are the Pauli matrices and oy is the identity. The zeroth order term in the Weyl Hamilto-
nian (5.1) is identified with the Fermi energy E <E0) = er and we note that the two energy bands

have locally the form of a double cone centered at I?o, where the vectors 7; determine the slope of
the cone (figure 5.1). As expected, low-energy excitations around the Weyl node at k = ko behave
as Weyl fermions with chirality x = sgndet (v;;) € {£1} as a result of the local form of (5.1).
We further note that small perturbations of the Weyl Hamiltonian are not able to alter its overall
shape, since they can also be expanded in terms of Pauli matrices and oy, which span the space
of 2 x 2 matrices. As a result Weyl nodes are comparatively stable under perturbations and can
only be destroyed by annihilation with a node of opposite chirality, breaking the translational
invariance, or by breaking charge conservation.

It is known from topological band theory, that gapless edge states emerge at the interface
between two topologically distinct insulators, since a change of topology is accompanied by clos-
ing the band gap.® Considering interfaces of WSMs corresponds to considering two-dimensional
slices in the three-dimensional Brillouin zone, where slices that do not contain a Weyl node cor-
respond to an two-dimensional insulator. Surprisingly, also WSMs exhibit surface states, the

3To be more explicit, the Chern number of an insulator can only be changed by closing the band gap.
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so-called Fermi arcs. In contrast to ordinary topological insulators, the surface states of WSMs
form no closed curves in the corresponding surface Brillouin zone, but appear as segments con-
necting to projections of the Weyl nodes.

In the remainder of this subsection we give a short phenomenological overview about two
important transport effects in WSMs: the anomalous Hall effect and the negative magnetoresis-
tance. First we recall that every two-dimensional slice in the Brillouin zone that does not contain
a Weyl node corresponds to a topological insulator. We consider a pair of Weyl nodes with dif-
ferent chirality that are spatially separated in momentum space by a three-vector 4, then every
two-dimensional insulator between the nodes shows an anomalous Hall effect in the presence of
an external electric field E with the current j proportional to

jocdxE. (5.2)

We note that this effect only occurs between nodes of different chirality that are spatially sepa-
rated.

Moreover, in the presence of external magnetic and electric fields, B and I:j, the spectrum
around each Weyl node disperses depending on its chirality in the direction of the B field. For
parallel B and E fields, the effect leads to a current proportional to

j<E-B, (5.3)

which is proportional to B and therefore denoted as negative magneto resistance. This effect can
be explained as the result of an equalizing current due to a chiral charge imbalance induced by
B and E between Weyl nodes of different chirality [159].

The next subsections are devoted to the introduction of an effective quantum field theoretic
model as a tool for understanding the transport properties of WSMs on a quantitative level.

5.1.2 The chiral anomaly

In the last subsection we saw that the low-energy excitations around Weyl nodes have the prop-
erties of localized Weyl fermions, which implies that the fundamental dynamics of WSMs can
be described in terms of a low-energy field theory. Before providing a quantum field theoretic
model for WSMs, we first give a short review of the chiral anomaly in quantum field theory,
since the latter plays a major role for the transport characteristics of WSMs.

The chiral anomaly in the presence of external vector fields

A quantum anomaly originates from the breaking of a classical symmetry in the process of
quantization. We start by considering the Dirac Lagrangian describing a fermion with mass M
in 3 4- 1 dimensions, which is coupled to an external U (1) gauge field V,

Lp=¢(id-YV+M)y, (5.4)

where ¢ is a 4-component Dirac spinor and the Feynman slash notation was employed, i.e.

.....
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As a matter of fact, Lp is invariant under a chiral U (1) transformation, acting on the spinors
as follows

P s 0Oy (5.5)

where 7° = i7%919293 is the chirality operator and 0 (x) is a real function of the coordinates x.

Every symmetry of the classical Lagrangian is associated with a classical conserved Noether
current. Accordingly, we find for the classical chiral symmetry the chiral current j& = y*°y,
which satisfies

xd * j5 = 2iMpy P, (5.6)

where x* is the Hodge operator and d denotes the exterior derivative. The conservation law (5.6)
fails to be valid after quantization, as pointed out by Adler, Bell and Jackiw in 1969 [2, 29], which
marks the first discovery of a quantum anomaly.

A deeper understanding of quantum anomalies can be obtained by considering the Euclidean
path integral of the action functional S [¢]

Z= / DyDpe SV, (5.7)

Correspondingly, a quantum anomaly corresponds to the missing invariance of the path integral
measure under the symmetry transformation, while the action remains symmetric. We need to
include an additional Jacobian 7 [f] resulting from the gauge transformation (5.6) into the path
integral, yielding

/ DyDe ¥ / DyDy.J [0] e 5!, (5.8)

where all gauge invariant regularization schemes lead to the following form of the Jacobian (cf.
references [30, 78])

7 16] = exp [/G(x) 417;[29/\9} . (5.9)

In (5.9), G = dV denotes the field strength of the external electromagnetic field. As a result, the
Ward identity for the chiral current is adapted as follows

dxj5 = ﬁg NG —* (2iMPpY°p), (5.10)

where the manifestly covariant term G A G is called the chiral anomaly.

The chiral anomaly in the presence of an external axial field

After having covered the basics of the chiral anomaly in the preceding subsection, we extend the
discussion to the chiral anomaly in the presence of an external axial field, which is important
in the context of WSMs. For describing massless Weyl fermions, the following Lagrangian is
considered

Ly =9 (id -V - A7)y, (5.11)
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where V is an external U (1) gauge field and the role of the axial U (1) gauge field A is clarified
in the next subsection. As a result, we note that Ly exhibits a U (1),, x U (1) , gauge symmetry
related to the two gauge fields. Accordingly, we transform (5.11) to the Weyl representation by
projecting on the eigenspaces of 7° to make the description in terms of chiral Weyl fermions
manifest. The regarding projectors read

P = % (id £ +°). (5.12)
By defining the following Weyl spinors and chiral gauge fields

pr =Py with ¢ = £, (5.13)
AT =V+ A4, (5.14)

we can decompose the Lagrangian L into a left-handed and a right-handed part
Ly =9, (i —A")pr +9_(id - A )y, (5.15)

with an explicit U (1) | x U (1)_ chiral gauge symmetry.

Consequently, each of the chiral fields A* gives rise to a chiral anomaly (cf. [30]) and we
can employ our results from the previous paragraph, namely equation (5.10), yielding for the
divergence of the axial current j4 = Py P

1
A= (FFANFT+F AF~
d*ja oy (FFAFT+F AFT),

1
where F£ = dA?* are the chiral field strengths and F = d.A together with G = dV are the
field strengths of the original fields. In addition, also the vector current jy = "y becomes
anomalous

dx*jy = (FFANFT—F AF7),

872

1

The anomaly of the vector current in the presence of the axial field is denoted as axial or chiral
gauge anomaly.

The previous result (5.17) leads to a violation of charge conservation, when the vector gauge
field V is identified with the usual electromagnetic gauge field and the corresponding current jy
with the electromagnetic current. This problem, which is caused by the underlying regularization
scheme, can be cured by adding the following finite, topological counter term to the effective
action (cf. reference [27])

1
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Including (5.18) leads to the modified Ward identities

dxjy =0, (5.19)
. 1

A low energy quantum field theoretic model of WSMs based on the discussion of the chiral
anomaly is considered in the following subsection.

5.1.3 An effective quantum field model of Weyl semimetals

We present the effective quantum theoretical model of the low-energy excitations of a WSM in
two stages. First, we consider a minimal model, that introduces a splitting of left- and right-
handed spinors in momentum space by a constant three-dimensional vector 24, defined by the
following Lagrangian

Lwsmi =9 (id =YV —dv’), (5.21)

where a = (4% 7) is a constant 4-vector. Figure 5.2 shows the separation of the anti-chiral spinors

in the spectrum, where a non-zero 4’ component of the 4-vector a introduces an additional shift
in the energy direction. The component a° is set to zero within our WSM model.

Figure 5.2: Spectrum of the WSM Hamiltonian obtained from Lagrangian (5.21) in the direction of @ for
a® = 0 (left) and a° > 0 (right).

Consequently, we can give an interpretation of the axial U (1) gauge field A, which was
introduced in subsection 5.1.2. A non-constant .4 can be interpreted as spatial variations of the
Weyl node distance. Strain in solid crystals is one possible source of such axial gauge fields,
which was confirmed for graphene [92] and recently studied for WSMs [48, 169].

The study of linear transport properties in WSMs relies on investigating the linear response
of the vector current jy due to external fields. The microscopic computation of the regarding
conductivities involves the evaluation of retarded 2-point functions of the underlying current
operators. The details of this analysis are out of the scope of this thesis, but a good review on
this topic can be found in reference [12]. When assuming the more general case of a non-constant
axial gauge field .4, it turns out that the axial anomaly gives rise to new transport properties -
this is what we call anomalous transport. When considering external electric and magnetic fields,
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E and B, we find the following expectation value of the current density (cf. reference [143])
(jv) = g (A x B s+ B 622)
22 ’

where A are the spatial components of the 4-vector A, y and s are the chemical potentials
associated with the symmetry charges of U (1),, and U (1) 4. The first term in (5.22) is perpen-
dicular to E and therefore denoted as anomalous Hall effect (AHE). The next contribution, which
is proportional to ys, is the chiral magnetic effect (CME). It gives a current contribution parallel
to the applied magnetic field and only occurs in the presence of a chiral charge imbalance. As
mentioned in subsection 5.1.1, parallel E and B fields induce such an imbalance, where the CME
contribution becomes proportional to E - B. Thus, the CME can be thought of as the origin of the
negative magnetoresistance in WSMs. The last term uBs is the so-called chiral pseudo-magnetic
effect (CPME, [195]). The CPME does not require a chiral charge imbalance and hence should be
observable in equilibrium.

The simple model (5.21) can reproduce the basic properties of a WSM, namely gapless metal-
lic phases. The next step is to consider a slightly more complicated model, that is also able to de-
scribe the aforementioned two-dimensional insulating phases between the Weyl nodes. The cor-
responding model is obtained by adding an additional mass term M to the Lagrangian (5.21),

giving
Lwsmp =9 (id =V —dr" + M) ¢. (5.23)

References [87, 88] show that the Lagrangian (5.23) emerges from a low-energy ansatz of lattice
Hamiltonians for WSMs, which confirms the approach. As we saw already in the previous
subsection 5.1.2, a mass term breaks the axial U (1) , gauge symmetry explicitly by introducing
an additional contribution M1 on the right hand side of the Ward identity. The modification
of the Lagrangian leads to the emergence of two different phases depending on the ratio %/ M?,
which are depicted in figure 5.3.

Figure 5.3: Spectrum of the WSM Hamiltonian obtained from Lagrangian (5.23) in the direction of 4. For
@ > M? (left) two Weyl nodes in a distance of 2a.¢ = 2v/a?2 — M2 appear while for 4 < M? (right) the
spectrum is gapped with band gap 2Meg = 2V M? — a2.
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Phase I: A system with ungapped spectrum is obtained for @ > M? where the Weyl nodes
are separated by the distance 2v/@2 — M2 in momentum space (for a° = 0). Close to the Weyl
nodes, the spectrum agrees with that of the simple Lagrangian (5.21), where the axial vector a is
modified to an effective axial vector a.g

Lywsmetis = ¥ (id — Y — desty”) ¢, (5.24)

with e = dvd% — M?/ |d| and agff = 0. Away from the Weyl nodes, the mass term leads to
significant differences in the effective description (5.24), since the latter exhibits an additional
band inversion (figure 5.2) that is avoided for the full Lagrangian (5.23) (figure 5.3).

Phase II: For 4> < M? we obtain a gapped system (figure 5.3) and an effective description in
terms of massive Dirac fermions can be applied, leading to the effective Lagrangian

Lwsmett, i1 = P (id =YV + Megr) ¢, (5.25)

where Mg = VM? — 2.

It is important to note that the Lagrangian (5.23) gives rise to a Lorentz-breaking model be-
cause of the preferred direction, which is defined by the constant 4-vector a. Similar models have
been considered as Lorentz-breaking extensions of QED (cf. reference [114]) and are particularly
interesting, because they can be realized effectively in condensed matter physics, which makes
tests of theoretical predictions possible. Accordingly, the vector gauge field contribution to the
one-loop effective action was examined by [165], implying the following form of the anomalous
Hall term of the current 1-point function

<fv> = oaned X E/ |d] , (5.26)
where the conductivity cang reads
i C for @ < M?, 527)
UAHE = |4 .
C—# 1—%2 for @* > M->.

According to [87], the constant C should vanish for WSMs, since the trivial phase II is insulating.
As a result, the mass term leads to the replacement & — Gegf yeqx = 4V 4> — M?/ |d| in the AHE
contribution to (5.22) for 7> > M? and to capr = 0 otherwise, which is in full alignment with our
previous discussion of the two phases. We note, that the presence of the anomalous Hall effect
can be used as an order parameter of the phase transition from phase II to phase I, since it occurs
only in the latter one. Thus, an evident control parameter of the transition is given by |d| / M.

Quantum phase transition

We remark, that the previous discussion is an example of a so-called quantum phase transi-
tion (QPT) [178, 196]. A QPT is induced by quantum fluctuations, in contrast to classical phase
transitions, which are driven by thermal fluctuations of the physical system. Consequently, quan-
tum phase transitions occur at zero temperature T = 0 at a precise critical value of an external
parameter ¢ = g, i.e. the quantum critical point (QCP). Despite an absolute zero temperature
is clearly physically not realizable, the consequences of the QPT extend to a finite temperature
region near the critical point, known as quantum critical region (QCR) (see figure 5.4). More in-
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terestingly, inside the QCR, the critical nature of the system manifests itself in unconventional but
universal physical behaviors such as the linear temperature scaling of the resistivity in strange
metals [36]. In recent years QPTs have attracted the interest of many researchers, especially in
the condensed matter community, where more and more examples are being discovered: From
exotic magnetism, to high-T; superconductivity and metal-insulator transitions. Quantum phase
transitions still represent a big scientific challenge and robust and controllable theoretical models
are still under investigation [201].

T

ge g

Figure 5.4: Sketch of the phase diagram as a function of the temperature T and an external non-thermal
parameter g. The quantum phase transition between the two phases happens at g = g and T = 0 but it
affects the physics of the system on a larger region extending towards the finite temperature regime, i.e.
the QCR (gray area).
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5.2 Holographic model of Weyl semimetals

A holographic model of the quantum field theoretic description of the last section was recently
presented in [140, 142]. The present section is devoted to a review of this gauge/gravity dual con-
struction by employing the basics about the AdS/CFT duality that where provided in section 2.3
of chapter 2.

5.2.1 The holographic action

The holographic model of the WSM system should be built according to the structure of the QFT
Lagrangian (5.23), such that observables on the QFT side can be related to the boundary asymp-
totics of the classical supergravity model. Therefore, two gauge fields V and A are needed for the
U(1), x U(1), symmetry. To be precise, the vector gauge field V is dual to the vector current op-
erator ji, = Py, while the axial gauge field A is dual to the axial current operator ji, = Ppy#y°¢.
Moreover, a U (1) , symmetry breaking mass term, i.e. the operator ¢, is required, which is im-
plemented in terms of a dual massive scalar field ¢ on the gravity side. An additional term
similar to the topological counter term (5.18) is necessary for obtaining a non-anomalous vector
current, while ensuring the proper Ward identity for the axial current. Consequently, a holo-
graphic action obeying these requirements can be obtained, as shown by [117, 140, 142]:

1 5
_ZKZ/dX\/ <R+lz

AdS

) [ #x =g (IDal? - ng?)
/d5 (FA*F + G A *G) — /d5xAA(3FAP+GAG) (5.28)

where g is the determinant of the metric, xk = 87tGs is the Einstein constant in five dimensions,
R is the Ricci scalar and [ 4,45 is the AdS radius. Furthermore, F = dV and G = dA are the field
strengths of the aforementioned gauge fields. The first term is the Einstein-Hilbert action with
the corresponding cosmological contribution for AdSs. The second term includes a dynamic
complex scalar field ¢, whose boundary value sources the U (1) , breaking mass term of the QFT
Lagrangian. To accomplish this, ¢ needs to be charged under the axial gauge symmetry with the
covariant derivative D, = V, —iqA, and its mass m has to be chosen such that the conformal
dimension of Y is AWJ = 3, leading to the condition mzlf;1 45 = —3. The third term is simply the
kinetic contribution for the gauge fields V and A. The last contribution is a topological Chern-
Simons term, which represents the unique choice for removing the anomaly from the vector
current jy and giving the proper form of the axial anomaly.

The integrals appearing in the action (5.28) are not finite therefore an adequate holographic
analysis requires a prior regularization procedure. Appropriate counterterms that are made for
canceling the divergences were provided in the references [192, 12]. The regarding contributions
are

. / ey (k- ) / P57 (# = 3108 (0)90,0 )
/ dxy/~71og () ( abpﬂucabcﬂh) (5.29)

where p is the holographic coordinate providing a distance measure from the holographic bound-
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ary (cf. section 2.2.1), 7y is the induced metric on the hypersurface p = ¢, [, is the d’Alembert
operator with respect to v and K is the related intrinsic curvature. The first integral is due to
Hawking-Gibbons [81] together with an AdS-specific contribution. The remaining terms are re-
lated to the scalar field and the two gauge fields. We recognize that the Chern-Simons term does
not contribute to the counter action, since it is subleading compared to the other gauge field
terms close to the conformal boundary.

The following gauge field currents can be obtained by varying the on-shell action without
taking the Chern-Simons terms into account

(v ons = lim /=g (F¥ — 4aet™ A, Frr) (5.30)
. . — 4o
<]Z>C0ns = ;l)lir(l) _g <G4y - ?€4MV‘7KAV GUK) 7 (5-31)

where we remind the reader that x* = p in our convention. The currents (5.30)-(5.31) are denoted
as consistent currents. As expected, the vector current (5.30) is anomalous. The non-anomalous
current jy is obtained by the subtraction of the Chern-Simons contribution, leading to the fol-
lowing Ward identities for both currents

da (jv) =0, (5.32)
da (ja) = %lg(l) V8 [—%6‘”‘""" (3FuFox + GuGox) — ig (¢ <D44))* - ¢*D4¢)] . (5.33)

Now the Ward identity of the vector current jy comes indeed without anomalous right hand
side, while the first term of the axial current j4 resembles the form of the axial anomaly that was
provided in subsection 5.1.2. The scalar field contribution to (5.33) is the holographic version of
the fermion mass term M~y in the Ward identity (5.10) of subsection 5.1.2.

In the following, we use the scale invariance of the AdS space to set 445 = 1 and work in
units 2x? = g = 1 where not stated otherwise.

5.2.2 Equations of motion

The scalar and gauge field equations of motion are obtained by variations of the action (5.28),
leading to the component forms

VVFVV + 2“€VUUKTGVUFKT =0, (534)
VG + ae " (FyoFer + GueGyr) +iq (¢ (DF¢)" — ¢*DFg) =0, (5.35)
(O-m*)¢p=0, (5.36)

with 0 = DD,

The topological Chern-Simons term does not contribute to the energy momentum tensor, for
which we find

1 :
Tw = FucFy” + GuoGy = 8w (F*+ G7) + (Dyd)” (Dug) (537)

+ (DH‘P) (Dvg)* — &uv (HD(PHZ + m? \qb\z) ’
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and its trace reads

1
T=-3 (F2+G?) —3||D¢||* — 5m> |¢|*. (5.38)

Accordingly, the missing equation of motion for the metric tensor can be obtained by plugging
(56.37) and (5.38) into the trace reversed form of the Einstein equations (2.14), that was provided
in section 2.1.2.

5.3 Surface states in holographic Weyl semimetals

In the previous sections we commented on the importance of so-called Fermi arcs surface states
as one of the main characteristics of WSMs. Indeed, the detection of Fermi arcs via angle resolved
photoemmission spectroscopy (ARPES, reference [215]) was one of the first experimentally con-
firmed phenomena associated with WSMs, besides the chiral magnetic effect measured by its
negative magnetoresistance [112], whereas the measurement of other anomalous transport ef-
fects appeared to be more challenging.

Accordingly, within this section we examine whether the holographic model presented so
far is able to reproduce the appearance of Fermi arcs at the boundary of different topological
phases. Furthermore, we aim for comparing the holographic results corresponding to the strong
coupling limit of the WSM system, with the regarding weak coupling results.

We discuss the realization of a WSM phase boundary within an effective weak coupling
quantum field model in subsection 5.1.3. In subsection 5.3.2 we provide the related holographic
setup and comment on possible generalizations of the weak model. The numerical construction
of the holographic model is explained in detail in subsection 5.3.3 followed by the presentation
of the results in subsection 5.3.4.

5.3.1 Effective quantum field model

We first need to explain, how a phase boundary can be realized within our holographic model.
The Hamiltonian of a WSM must interpolate at its surface between the topologically non-trivial
gapless phase and the trivial gapped phase which is accompanied by a shrinking of the Weyl
node distance a = |@| — 0 close to the interface. We already noticed, that a mere shrinking of the
Weyl node distance results in an annihilation of the antichiral nodes, which leads to a gapless
Dirac node. Hence, this would produce a different kind of surface state as desired. Furthermore,
we recognized in subsection 5.1.3 that a fermion mass term in the Lagrangian saves us from
this scenario, while leading to a gapped Dirac fermion phase. Therefore, we realize a surface
in the quantum field model with an axial gauge field A rather than a constant node distance a.
A should vary only in the vicinity of the surface accompanied with a localized chiral magnetic
field §5 = V x A. The field §5 in turn induces a surface current according to the chiral pseudo-
magnetic effect (cf. the second contribution to equation (5.22)), which should be reproduced by
our holographic model that is presented in the next subsection. We constrain ourselves to a plane
surface in an ideal infinitely extended system.

Following the above discussion, the field theory Lagrangian should agree with (5.23) in sub-
section 5.1.3, namely

Lwsy =9 (i8 =Y =AY+ M) p. (5.39)
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Obviously, we are free to choose the orientation of the interface and therefore fix it to be perpen-
dicular to the x-axis of our Cartesian space while the Weyl nodes are separated along the z-axis.
Thus, the axial gauge field has the form A = a (x) dz , leading to the chiral magnetic field

Bs = —d' (x)é,. (5.40)

We use an axial gauge field, that only varies within a finite x-interval, to model the finite exten-
sion of the surface layer with the asymptotics

— . alx
ar /R ‘= xgrilw ](\/I) . (541)

This is accomplished by utilizing a spline of adequate C regularity, where the smoothness should
be at least k = 1 for having a well-defined magnetic field. Figure 5.5 shows the shape of 7 (x) =
a(x) /M for a 9th order spline.

a(x) /M

- 0

Figure 5.5: Profile of the axial gauge field A = a(x)dz. We use a 9th order spline interpolation between
the left and right side values @ and @ continued by constant values.

The arguments presented so far are based on a semi-classical reasoning and we expect a
similar adaption of the weak coupling CPME in the presence of a finite fermion mass M as given
in subsection (5.1.3) for the anomalous Hall effect. Accordingly, the magnetic field is replaced by

an effective field Bs — Bgf = — Lt wear (X) €y With aegear (x) = /a2 (x) — M2 for a* (x) > M?
and zero otherwise, leading to the current density
P (5.42)
]y - 2772 aeff,weak (x) ’ .
and the total current

]y = jydx = Lz (aeff,weak,L - aeff,weak,R) . (5.43)
27

The corresponding holographic analogs are provided in the next subsection.
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5.3.2 Holographic model

The holographic action for a three-dimensional WSM was presented in section 5.2. It remains to
provide the concrete form of the fields for implementing the surface of a WSM. In the following,
we work in the probe limit, i.e. we assume that the effect of all the matter fields on the spacetime
is negligible. This corresponds to the quenched approximation in lattice quantum theory.*

To implement a finite temperature parameter (cf. section 2.3), the spacetime background is
fixed to pure AdSs Schwarzschild, which reads in Poincaré coordinates

1

2 _
ds—l?

2
(— f(p)df* + L dy? + dzz) , (5.44)
f(p)

with f (p) = 1 — p*. We recall that fixing the black hole horizon to py = 1 gives us a trivial
Hawking temperature relation 77T = 1. This first seems puzzling, but it is a direct consequence
of the scale invariance of the holographic model. As shown in [140], we can use the normalized
temperature T = T/M as a physical parameter. Subsequently, we refer to T as the temperature
and the black hole horizon as the horizon.

The nontrivial components and boundary values of the matter fields ¢, A and V are crucial for
the implementation of the proper quantum field model, since they correspond directly to specific
tield theoretic quantities via the AdS/CFT dictionary (cf. section 2.3). From the considerations
of the previous sections, we already know that the conformal boundary value of the axial field
A can be used for controlling the Weyl node distance. Taking the same orientation for A as was
chosen for A in the previous subsection, we have only a nontrivial z-component A = A; (p, x) dz
accompanied with the boundary condition A, (0,x) = a (x). Recalling that the scalar field ¢ is
dual to the fermionic mass operator 1, which we have to source by M, we obtain from the
dictionary the following boundary asymptotics of ¢ close to p =0

¢ (p,x) =pM+ 0O (p?) . (5.45)

The last relation implies the introduction of a rescaled scalar function ¢ according to ¢ = pg.
Furthermore, the surface states should be populated in order to induce a surface current. This
corresponds to introducing a finite vector chemical potential y#, which is according to section 2.3
controlled by the difference of the conformal boundary value and the horizon value of the tempo-
ral vector component V; (0, x) — V; (1, x). All together, this requires a non-trivial t-component V;
of the vector gauge field together with a nontrivial y-component V;, as can be seen from the
equations of motion. The spatial component V, corresponds to the surface current as will be
shown shortly. At the conformal boundary, we set V, (0,x) = 0 for not explicitly sourcing the
surface current. In addition, we get rid of an remaining gauge freedom by setting V; (1, x) = 0 at
the horizon.

41n lattice theories the quenched approximations is used for fermions and implies that loop contributions of these
fermions are neglected.
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Putting all together, the matter fields have the structure:

Alpx) =A:(px)dz, ¢ (p,x) =pg(p,x),  Vipx)=Vi(px)dt+Vy(p,x)dy (546)
and the conditions at the conformal boundary are summarized as
Az (0,x) =a(x), ¢ (0,x) =M, Vi (0,x) =u, Vy (0,x) = 0. (5.47)

The anomalous Hall effect is constrained to the x-y-plane for the separation of the Weyl nodes
along the z-axis. As shown in [140], the (DC) AHE conductivity is directly related to the horizon
value of A,:

OAHE = 8w Az (548)

’p:l :
Relation (5.48) implies a non-trivial modification of the weak coupling result (5.27) according to
Aeff weak F Aeffhol ‘= Azl p=1- As a result, also the critical value a. = a./ M deviates from the weak
coupling result, as shown in [140, 142]. Concretely, the onset of the order parameter starts at
a, ~ 1.40 which disagrees from the weak coupling expectation @, = 1. It is important to note,
that the relation (5.48) was derived under the assumption of an homogeneous axial field A, (no
x-dependence). Nevertheless, we expect the configuration to settle down to the homogeneous
case at some distance of the interface.” We are mostly interested in qualitative results and expect
that (5.48) provides us with a reliable measure for the order parameter away from the interface
region.

At this point we remark, that the holographic direction p can be interpreted as an energy scale
for the renormalization group (RG) flow [12]. Then the horizon value of A, can be interpreted as
the IR value of the UV coupling a. The same interpretation applies to M and the horizon value
of ¢ which can be interpreted as effective IR mass.

It remains to derive the explicit expression for the vector current jy from the expression (5.30).
We find for the only non-trivial component j,:

jo 0 = tim (£ 0) 22— g (0,202, ) )

p—0
=35V, (0,x), (5.49)

where the limit can only be taken after considering a detailed boundary expansion of the fields.
This expansion is provided in the next subsection together with its numerical implications. We
remark, that the Chern-Simons contribution to the current jy vanishes for the chosen ansatz,
hence no further modification is needed for obtaining the non-anomalous vector current.

50ne can explicitly show that the EOM decouple and become those of the homogeneous case for x — +oo.
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Figure 5.6: Sketch of the chosen domain decomposition. The red area represents the part of the integration
domain where a non-constant boundary value a(x) is imposed. The domains )y and Qg are non-compact
and extend to tco in x direction.

5.3.3 Numerical construction

First we comment on the coordinate system, that was used for the numerical implementation
of the holographic WSM model. The problem is effectively two-dimensional in the coordinates
(p,x) € ]0,1] x (—o0,00). Again, spectral methods are applied to obtain solutions of the corre-
sponding boundary value problem. We continue with a presentation of the equations of motion
together with the boundary conditions.

Equations of motion and boundary conditions

Inserting the metric ansatz (5.44) and the fields (5.46) into the equations of motion (5.34)-(5.36)
yields a set of four non-trivial partial differential equations that can be found in appendix A.3.1.

The domain of integration, which is shown in figure 5.6, is subject to the following conditions
at the different boundaries:

e The conformal boundary B (p = 0):
The boundary conditions (5.47) were provided in the previous subsection. A C? spline with
C! continuity at the domain boundaries would be sufficient for the profile of a (x) from the
PDE point of view. We tested several splines and also a C* ansatz and found the same
qualitative features of the results.

e The horizon H (p = 1):
For fixing the remaining gauge freedom of the field equations, we set V; (1,x) = 0. The
other boundary conditions can be obtained from the partial differential equations (A.24)-
(A.27), which are singular at . We obtain

dpAz(1,x) =0, @ (1,x) =0, Vi(1,x) =0, dpVy (1,x) =0. (5.50)

e The two asymptotic boundaries 7 = {(p, x) : x — *oo}:
Here we do not have any physical constraints or singular points. It suffices to impose the
field equations here.
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Next we consider a boundary expansion of the fields in the vicinity of the conformal boundary,
which is instructive for understanding the convergence behavior of the spectral expansion.

Vilp,x) = u+ v (x)p2 40 (p*) (551)
Vy (0, %) = Vi (1) 02+ O (p‘*) (5.52)
Az (p,x)=a(x)+ <A§1) (x) + % (29%a (x) M* —a" (x)) logp> p?+ 0O (p4> (5.53)

¢ (0,x) =M+ (fp(” (x) + %M g°a* (x) log p) o2 +0 (o) (5.54)

We recognize the appearance of logarithmic terms in the expansions of A; (p,x) and ¢ (p, x) at
order p?. Further logarithmic contributions will emerge at higher orders in p for all fields. As
a consequence we have only an algebraic convergence rate of the spectral expansion (cf. the
convergence plots in appendix A.3.4) in the p-direction. In addition, we see that the logarithmic
contribution in the expansion of A, (p, x) is coupled to a” (x), hence we expect a worse conver-
gence in the region with varying a (x). Consequently, we introduce a multi-patch scheme that
should prevent a spreading of the worst convergence rate to the entire domain of integration due
to the global nature of spectral methods.

Domain decomposition

The purpose of the domain decomposition is to adapt to the behavior of the solutions in the dif-
ferent regions, while keeping the numerical efforts low. We employ a simple linear domain com-
position into eight non-overlapping subdomains (); = [0,1] x I; (figure 5.6), which are aligned
with regions exhibiting different convergence properties. All these domains are mapped to the
standard cube [—1, 1]2 for the approximation in terms of two-dimensional Chebyshev expansions.

The central region is defined by the finite extension of the spline a (x) within the inter-
val x € [—],1] for some I > 0. A high number of Chebyshev points within a single region
would accumulate at the boundaries of this region and therefore not cover the strong gradients,
that are present in the center. Thus we use four subdomains instead of one to increase the num-
ber of points significantly, while avoiding the accumulation effect. Buffer domains are introduced
next to the interior subdomains to separate the central and the asymptotic regions. The two outer
domains extend to oo in x-direction and need to be compactified to [—1,1]. As in chapter 4, we
use a simple algebraic compactification scheme

51—1—11(14—51)

x(s1) = 1+s; forx € [ = (—o0,—I],
x(sg) = sst1 1—185(81 ) forx € [g=1[l,00),

where 51,3 € [—1,1] and ;5 > 0 are parameters that can be used to control the map.
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In principle the logarithmic contributions in the boundary expansion of the fields imply a
further domain decomposition in p-direction, leading to a much improved convergence in the
domains that would be connected to p = 1. However, the observed convergence of our data
was sufficient, nevertheless we expect this to change when considering the setup with metric
backreaction. We use a simple rescaling map to the unit cube p = ¥, which leads to a sufficient

accuracy of the output.®

Parameters and physical quantities

The nonphysical parameters /; and Ig were set to I; = Ig = 15 after probing their influence on
the spectral expansion. Furthermore, we set ¢ = 1 and y = 1/10. We chose a small value for
the chemical potential, because high values of i are expected to change the semi-metallic state
of the system due to excitations far away from the Weyl nodes. In addition, we found that the
total current is proportional to the chemical potential for small values of y, i.e. without loss of
generality it suffices to consider y = 1/10. Moreover, the dependence on g and « was found to
be trivial, as shown in appendix A.3.2.

The horizon value of A; is computed in dependence of a;, and ar for the different sides of the
interfaces, in order to use the anomalous Hall conductivity capg as an order parameter between
WSM and non-WSM phase as discussed before.

We study the current density j, in dependence of the surface width [, and the asymptotic
values a;, and ag of the Weyl node distance for different temperatures T = 1/ (7M). The com-
putation of j, requires the evaluation of 8%, Vy (0, x), which is obtained by direct numerical differ-
entiation. The total current J, is obtained by numerical integration, cf. section 3.1.1.

We chose a 9th order spline for producing the data provided in the next subsection. We tested
several splines and also a C* ansatz and found the same qualitative features of the results.

5.3.4 Results

We start with an analysis of the anomalous Hall effect in dependence of the provided interface
spline 7 (x). Subsequently, we consider the obtained profiles for the current densities, followed
by a thorough discussion of the integrated currents. The accuracy of the solutions is analyzed in
appendix A.3.4.

Anomalous Hall effect

Figure 5.7 shows the horizon values of A, and ¢ at high and low temperatures for a; < a,
and ag > 4., which should correspond to a trivial phase on left side and a WSM phase on
the right side. The system becomes homogeneous away from the interface and we can ap-
ply relation (5.48) to determine the anomalous Hall conductivity (AHC). For low temperatures,
Aefi ol = Az p—1 Vvanishes in the trivial, left phase, as expected implying a zero AHC. Further-
more, the non-vanishing scalar field ¢| p—1 can be considered as an effective non-zero mass.
Whereas the effective mass vanishes on the non-trivial WSM phase on the right side, where @ (x)
exceeds the critical value, i.e. we have g, > 0 and a non-vanishing AHC. We do not observe

®The application of convergence improving maps, such as the maps presented in reference [35], introduces addi-
tional problems due to singular Jacobians at the boundaries. For this project, the desired accuracy could simply be
obtained by increasing the number of collocation points appropriately. This was not possible for the project presented
in section 5.4 and so we employ a convergence improving map there (cf. subsection 5.4.3).
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Figure 5.7: Horizon values of scalar and axial gauge field (dashed, solid) along the sample for tempera-
tures 7T = 100,1/16 (red, blue). The black dotted line corresponds to the profile of a(x)/M.

a sharp transition between the phases, which is a result of the finite extent of the interface and
the non-zero temperature.

We recognize a different behavior for high temperatures. Here the scalar field attains a con-
stant value and remains constant over the horizon. Moreover, the axial field does not vanish
any more in the trivial phase. We remark, that the concrete profiles depend not only on the
temperature, but also on the profile 7 (x) where the qualitative features remain the same.

Current profiles

First we note, that there is no scaling symmetry in x-direction left, since we removed the AdS
rescaling symmetry by fixing the location of the horizon to be at py = 17. Figure 5.8 shows
the electric current j, (x) = B%Vy (0,x) at low temperature for different choices of the interface
width [. We see, that the current profile becomes more localized around x = 0 as I decreases,
which confirms our interpretation of j, as an interface current. Nevertheless, the integral of the
current J, along the x-direction remains constant to good accuracy for all configurations under
consideration. We further remark that the current j, deviates from the weak coupling result (5.42)
for M > 0, even when replacing age .. bY 8 101-

Integrated current

Figure 5.9 shows the integrated current ], for several fixed values of a; as a function of ag and
for different temperatures T. We recover the weak result (5.43)

_ K

Jy = 72 (ar —ag) (5.55)
for high temperature T, i.e. small mass M, corresponding to the dashed lines in figure 5.9. This
meets our expectation for high temperatures, where the mass becomes negligible the topolog-
ical phase boundary disappears. Consequently, the integrated current ], depends only on the
difference of a; and ar and not on their concrete values.

7 As a result, all lengths are measured in units of inverse temperature.
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Figure 5.8: Current profile along thg x direction for different interface widths I = 0.1,0.5,1, 4 (blue, green,
yellow, red) and low temperature 7T = 1/16.

On the other hand, the low temperature behavior is different, as shown by the solid lines in
figure 5.9. We start with considering the setup with a trivial phase on the Lh.s. (blue line in
figure 5.9). No current is generated as long as the r.h.s. remains in the trivial phase, whereas we
obtain a finite current for ag > a, which exhibits a non-trivial dependency on ar. Concretely, the
curve appears to have a kink at ag = 4., which is in fact smooth due to the finite temperature
of the system. According to figure 5.9, this behavior remains as long as a; < a.. Hence, the
integrated current is insensitive to the details of the trivial phase and we see no current at the
interface of two trivial phases.

Now we turn on the case of a non-trivial phase on the Lh.s., namely a; > a., corresponding
to the solid green and red lines in figure 5.9. The main difference to the previous situation is
an overall shift of the integrated current depending on a;. Again we see a plateau for agr <
a, pointing to the insensitivity of the integrated current to the parameter of the trivial phase.
Moreover, the current shows the same functional dependence on ar as before once the rh.s.
undergoes the phase transition and both sides are in the non-trivial phase. We further note that
the current vanishes exactly for a; = ar in agreement with the expected behavior (solid green
line in figure 5.9).

The full dependence of the current on a;, and ag at low temperatures is provided in figure 5.10.
We recognize the plateau for a;,r < 4. and notice that the current is odd under the left-right
exchange a;, <+ aR reflecting its chiral nature as a fundamental symmetry of the system.

The previous discussion suggests the following form of the integrated current:

o = 5oy (F (a1) = F (ag)), (556)

where F denotes some a-priori unknown map. According to the previous discussion, a possible
candidate for 7 is given by F (a) = aeff = A:|,_;, such that we obtain

Jy = ZLnZ (@et hol, L. — Aefihol,R) = M (CAHEL — OAHER) , (5.57)

where the last equality follows from (5.48) with the identification « = 1/ (16712). This model fits
well to our numerical data, with relative deviations of less than 3%.
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Figure 5.9: Integrated current as a function of ag for a; < @ (blue) and a. < 7 € {4,10} (green, red).
Solid lines correspond to low temperature 77T = 1/16 and dashed lines to high temperature 7T = 1.

4 ar

Figure 5.10: Integrated current as a function of ag and 7; at low temperature 7T = 1/16. Contour lines
shown in black.

At this point, we would like to give an interpretation of the presented results. The surface cur-
rent can be considered as the result of an axial magnetic field B4 that is localized at the boundary
layer. First it might appear not as a surprise, that our relation for the integrated current (5.57)
can be obtained from the weak result (5.55) in the same way as the corresponding AHE was
obtained by replacing deffweak ++ defthor- Though this is a non-trivial result, because the weak
relation (5.55) was supposed to be only valid for homogeneous fields. Hence we conclude, that
the high order contributions to the weak coupling induction relation (5.40) are canceled by the
integration operation. However, this is not evident, since we do not know about any theoretical
restriction on the higher order transport coefficients that would imply such a cancellation.
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5.4 Finite temperature and disorder effects in holographic Weyl
semimetals

The presence of impurities or disorder is unavoidable in realistic situations and it can have a deep
impact on the physical features of a system and its behavior across possible phase transitions.
The effects of disorder on quantum phase transitions (QPTs) are much stronger than on their
classical counterparts and they are subject of intense study in the present days [200, 203].

The goal of this section is to investigate the influence of finite temperature and disorder
effects in holographic WSMs and compare the findings with results gained from condensed
matter considerations. In subsection 5.4.1 we provide a short overview of disorder effects for
quantum phase transitions (QPT). The holographic setup for modeling quenched (i.e. time inde-
pendent) disorder in WSMs is presented in subsection 5.4.2. The numerical construction of the
holographic model is outlined in subsection 5.4.3 followed by the presentation of the results in
subsection 5.4.4.

5.4.1 Physical background

A common rule to assess whether a phase transition is stable with respect to weak disorder®
relies on the so-called Harris criterion [97]. According to that criterion, the phase transition will
not be affected by the presence of disorder as far as the correlation length critical exponent v
satisfies the inequality dv > 2, with d as the number of spatial dimensions in which disorder is
present. If dv < 2, the weak disorder is relevant and its effects increase under coarse graining,
i.e. the transition must change.

P

smeared tail

9e

R 2

Figure 5.11: The evolution of the order parameter P across the quantum phase transition at T = 0. The
black dashed line illustrates the clean case where the QPT is sharp while the red line is the smeared
disordered QPT.

The Harris criterion relies on classifying the effects of weak disorder under coarse graining.
Therefore it refers to the behavior of the system at large length scales and it is not able to capture
possible existing features at finite length scale. It thus represents a necessary condition for the

8The disorder is considered as weak, if the phases at the (quantum) critical point are not changed qualitatively.
Here the notion of “weakness” should not be confused with what is called Harris-irrelevant.
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stability of a clean critical point, but not a sufficient one. In other words: Disorder is defined as
Harris-irrelevant, if its effects become less and less important at larger scales. Accordingly, it is
clear that such a criterion has to be extended and new effects, i.e. rare region effects, are expected
to play a fundamental role in disordered QPTs [204, 205]. In particular, the generic consequence
of disorder is to smear the sharp quantum phase transition (see figure 5.11) [110, 197].

The smearing or rounding of the sharp QPTs is believed to be a direct manifestation of the
so-called rare regions or Griffiths effect [86, 172, 202]. The study of rare large disorder fluctua-
tions can be considered as a complementary approach to the Harris analysis, which concentrates
on large scale effects. Indeed, such fluctuations and the corresponding spatial regions play an
important role, because the rare regions can be locally in one phase, while the bulk system is in
the other. Accordingly Griffiths showed, that this can be the source of non-analyticities (so-called
Griffiths singularities) in the free energy of an entire parameters region around the transition [86].
First experimentally observed in quantum magnets [197], these phenomena appear in a variety
of systems, ranging from classical Ising magnets with planar defects [198] to nonequilibrium
spreading transitions in the contact process [199]. Furthermore, disorder correlations are of spe-
cial relevance for QPTs; even short-range correlations can qualitatively modify quantum smeared
phase transitions. Concretely positive correlations (like in the case of impurity atoms which at-
tract each other) were shown to enhance the smearing of the transition [52, 162, 189]. There have
been efforts to relate the different disorder-schemes [204], but the understanding of the physics
of disordered QPTs is just at a preliminary stage and a complete classification of the various
scenarios is still lacking.

The question whether and how disorder and impurities affect the physics of the WSMs re-
ceived particular attention recently. The effective field theory for disordered WSMs was built
in [9, 10] and several studies regarding the phase diagram and the topological phase transition
in presence of randomness were performed [43, 217, 175, 149, 174, 179, 10]. Despite all the effort
a robust and definitive verdict is still absent.

In the last years, special attention was paid to the idea of incorporating disorder and its effects
in the holographic picture. Throughout our work by disorder we mean quenched disorder. From
the (strongly coupled) quantum field theory side this amounts to consider “random couplings”
(cf. reference [4]), whose statistical distribution does not depend on the quantum fields. This is
implemented in terms of a deformation of the quantum field action

S— S+ /ddxgl (x) Op(x), (5.58)

where the couplings g; are random. Reconsidering the Fefferman-Graham boundary expan-
sion (2.51) of section 2.3, this corresponds to the following source term within the asymptotic
boundary expansion for the bulk fields ¢,

¢\ (x) = ji (x) + g1 (%), (5.59)

where j; denotes the contribution of all non-random sources in S of the operator ;. Quenched
disorder was already considered in various holographic models with particular emphasis on its
effects on transport properties [151, 152, 150, 60, 80, 19]. In addition disordered geometries and
tixed points were recently studied in [102, 101].
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Furthermore, discrete scale invariance (DSI) is believed to be intimately linked to the presence
of disorder [188]; it manifests itself in the peculiar log-oscillatory behavior of the thermodynamic
and transport observables due to the appearance of a complex critical exponent in the vicinity
of a (quantum) phase transition. The signatures of emergent (discrete) scale invariance were
observed before in disordered holographic models in [99, 100, 25, 75]°.

Finally, the effects of disorder on thermal, but not quantum, phase transitions were already
analyzed in holography in [176, 79, 23, 22, 21]. Concretely, in [23] the appearance and effects of
rare regions were studied in the context of superconducting phase transitions.

Despite all the recent efforts, the effects of quenched disorder on QPTs has not been investi-
gated so far to the best of our knowledge. In this direction, we aim to provide a first study of
a holographic QPT and its quantum critical region in the presence of disorder. In particular, we
focus on one dimensional quenched disorder within the holographic Weyl semimetal QPT and
examine the following questions:

1. Will the quantum phase transition remain sharp in the presence of quenched disorder?

2. If not, how will its nature get modified?

After discussing how quenched disorder should be implemented by using random couplings,
we provide the explicit expressions in terms of boundary values of the holographic fields in the
next subsection.

5.4.2 Holographic model

The holographic action (5.28) serves once more as the building block for modeling the holo-
graphic WSM. Again, we align the Weyl nodes along the z-axis and hence can recycle the setup
that was presented in subsection 5.3.2. This time we set the external vector field V to zero, since
we only want to compute the anomalous Hall conductivity in dependence of the temperature
parameter T = T/M and the disorder strength. As for the last project, we choose an inhomoge-
neous source 4 (x) for the z-component of the axial gauge field A, and a homogeneous source M
for the scalar field ¢. As shown in appendix A.3.3, for inhomogeneous A, the averaged AHC can
be obtained directly from the averaged axial gauge field component A, at the horizon under the
assumption of periodic boundary conditions in x-direction:

A
8
(cAHE)) = 7"‘ / dx Az (%), (5.60)
0

where A is the extension of the compact dimension x.

We further remark that the critical scaling of the Hall conductivity in WSMs in the completely
homogeneous setup (no x-dependency of the Weyl node separation) was already considered for
a holographic model [142, 139]. For the latter, the behavior of the order parameter ¢ close to the
QPT was obtained to scale as

OaHE ~ (@ — ) Mool (5.61)

where the critical exponent was estimated to be ¥y,om nor = 0.21 - in contrast to the mean field
result Yyom weak = 1/2, cf. equation (5.27). In the following we omit the lower index AHE and
write only ¢ together with the previously introduced averaging subscript if applicable.

9Discrete scale invariance has been also studied in holographic systems without disorder in [25, 75].
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Implementation of disorder

To implement the effects of one dimensional quenched disorder in terms of a fluctuating Weyl
node distance, we introduce 1D Gaussian noise in the source a (x) of the axial gauge field A,.
The source M of the scalar field ¢ is kept constant. Concretely, when assuming a compactified
x-direction, the disorder is implemented in terms of the following spectral representation (cf.
reference [183]):

Ngis—1
a(x)=ao+2y Y /s (kj)Vdkcos (kix + ;) . (5.62)
=1

In expression (5.62), k; = jAk denote the equi-distributed momenta with constant separation
Ak = 27t/A, where A is the length of the compact direction x. Furthermore, the ¢; € [0,27)
are Ngjs — 1 independent uniformly distributed random phases, which provide the source of the
disorder. The parameter v measures the disorder strength, because it provides the amplitude of
the sum of random variables in expression (5.62). Finally, the factor s (k) is the spectral power
density of the random signal evaluated at the contributing wave-numbers.

We expect that the excitations of the disordered system within the energy interval corre-
sponding to k1 = 271/A and ky,, 1 = 271 (Ngis — 1) /A will lead to the most pronounced effects
of disorder in terms of the observables. Hence, the temperature of our thermal state should
satisfy

< T < kny1, (5.63)

to guarantee a thermal population of these states. This can be achieved by choosing A and Nj;js
appropriately.
Choosing the spectral power density s to be of the form

5(8) = & e, (5.64)

allows us to control the correlation of the random variable (5.62). In the case acor = 0, i.e. s =1,
the random variable 4 (x) = a (x) — ap describes local, isotropic, Gaussian disorder in the limit
Ngjs — o0:

(@ (%)) ais =0, (@ (x) & (Y))gis =70 (x =), (5.65)

with all higher momenta vanishing. In particular, positive and large a,r corresponds to positive
and large correlation (see figure 5.12).
The spectral power P of the random signal 4 (x) can be obtained by summing over the spectral
power densities of the single contributions weighted by the overall amplitude
Nyis—1
P =49’Ak )~ kj_z"‘“’r = 4P AK TR N g o (5.66)
j=1

where Hy,, 124, i the Ngs — 1-th generalized harmonic number of order 2., [118].



8§5.4 Finite temperature and disorder effects in holographic Weyl semimetals 87

a(x)
=
c(x)l o

24} ]
23f ]
22f u ]
21 ]
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
X X

Figure 5.12: Left: Example of specific disorder realizations (5.62) with ap = 25, Ng;s = 30 and acor =
0.00, 0.25, 1.00 (red, blue, green). Right: Corresponding correlation functions ¢(x) = (4 (x) @ (0)) gie-
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The goal of this work is to investigate the fate of the WSM quantum phase transition in
presence of this type of one-dimensional Gaussian disorder. We note, that the mass-dimension of
our disorder is given by [y] = [a] — [\/A—k} = [A;] —1/2 = 1/2. Hence, the disorder contribution
in (5.62) corresponds to a relevant deformation of the quantum field action, which does not
satisfy the Harris criterion according to our discussion in the last subsection. Since the relevant
dimensionless quantity governing the phase transition is the ratio 2/ M we expect similar results
to hold for the case of an inhomogeneous source of the scalar field'?.

5.4.3 Numerical construction

The problem is effectively two-dimensional in the coordinates (p,x) € [0,1] x [0,27). The prob-
lem is discretized by employing a Chebyshev expansion in the p-direction and a Fourier expan-
sion in the x-direction.

The equations of motion for A, and ¢ are obtained from the PDEs (A.24) and (A.27) after
setting V; and Vj, to zero.

The domain of integration has the same boundary structure with respect to the holographic
coordinate p as the interface project (cf. subsection 5.3.3), whereas we do not set any conditions
in x-direction, since the periodicity comes as a behavioral boundary condition of the Fourier
expansion (cf. reference [34]).

The boundary expansion of the fields A, and ¢ around p = 0 agrees with the expansions

provided by (5.53) and (5.54). This time we do not need to extract any output at the conformal

boundary. Thus we use a quadratic map for mapping p to the standard cube p (s) = (12i)2,

s € [—1,1], which improves the convergence of the spectral expansion by two orders (cf. refer-
ence [35] for the application of a similar map of quadratic order in the presence of logarithmic
endpoint singularities).

19However, let us remark that this second option allows for the study of marginal or irrelevant disorder, by appro-
priately setting the mass of the associated scalar field in the bulk. Another, numerically more challenging, option to
achieve this is to increase the number of dimensions in which the fields are disordered.
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Parameters and physical quantities

The length of the compactified dimension is set to A = 207r. The number of random phases is
constrained to Ngis = 30. We note, that these choices for A and Ny;s satisfy the criterion (5.63). We
use aqor = 0 where not explicitly stated otherwise, for minimizing the correlation of the disorder.

The mean-value (f) . of an observable f that depends on Ny — 1 independent random
phases is defined as

Nais—1 45.
(Fais = / ]11 ot (5.67)

We estimate the statistical mean value of the output (i.e. of the integrated Hall conductivity) by
taking its average over a sufficient number of random samples.
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Figure 5.13: Left: Integrated AHC (), as a function of @ for zero disorder and at finite temperature 7T =
1/k with k = 2, 3,..., 10 (red-blue). At low enough temperatures (blue) a quantum phase transition oc-
curs. Right: Semi-logarithmic plot of the AHC (¢), vs 1/ T for fixed @y € {1.00, 1.10, 1.20, 1.30, 1.35, 1.39}
(green-red). Close to the phase transition, at @y = 1.39 (red line), a new scaling appears at low 1/T. This
is an effect of the quantum critical region (see figure 5.14 for a magnified view).
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Figure 5.14: Log-Log plot of the AHC (0), vs 1/T very close to the critical point 7y ~ 1.40. For small

enough 1/T Z; 20 the function fits very well to a power law T with v = 0.67. At low enough temperature
we leave the critical region and the behavior is no longer a power law as depicted in the sketch on the

right side.
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Figure 5.15: Left: Log-log zoom of the region 1/T < 20 shown in figure 5.14 and fit (black line). Only
points that are located on the right of the dashed line are used for the fit. Right: Log plot zoom for
1/T Z 20 (figure 5.14), where an exponential decay is recovered. Again the black line corresponds to the
fit where only points that are on the right of the dashed line are taken into account.
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5.4.4 Results

We start with analyzing the impact of finite temperature on the QPT in WSMs. Subsequently, we
consider the effects of disorder on the smearing of the QPT. Next, we comment on indications
for the observation of rare regions, followed by studying the influence of varying the correlation
of the disorder signal. The accuracy of the numerical procedure is discussed in appendix A.3.4.

Temperature effects

First, we study the effects of a finite temperature on the clean QPT, which were already partially
analyzed in [142]. Finite temperature generically smoothens the sharp quantum phase transition
into a crossover (see left panel in figure 5.13). Eventually, for high enough temperature, the AHC
is non-zero everywhere and the topologically trivial phase becomes inaccessible in the entire
a-range. We have analyzed the decay of the anomalous Hall conductivity (¢), as a function of
T = T/M for several values of 2 moving towards the quantum critical point . (right panel of
figure 5.13). Outside of the quantum critical region for 7 < a., we find an exponential decay of
the form (see right panel in figure 5.13):

(o) ~ e/, (5.68)

where ¢ is not independent of ay. The exponential fall-off is consistent with the presence of a
mass gap outside the quantum critical region which breaks the scale invariance. Moving close
to the quantum critical region, i.e. in the vicinity of @, this behavior is modified. As shown in
figure 5.14, at high enough T the decay follows a power law:

(@), ~T ", (5.69)

were the “critical exponent” is found to be v = 0.67 (consider the left half of figure 5.15 for the
fit). This is a clear signature of the presence of a scale invariance inside the quantum critical
region. Decreasing the 1/T parameter further, we get back to an exponential decay. This can
be understood from the sketch on the right panel of figure 5.14: When getting close to zero
temperature T = 0, the critical region becomes thinner and thinner. At some point the system is
again outside the quantum critical region and the exponential behavior due to the mass gap is
restored. Following the critical region up to T = 0 requires a high numerical accuracy. We leave
this for a future investigation including backreaction, which will allow us to directly probe the
QCP at zero temperature.

Disorder effects

For studying the shape of the quantum phase transition at finite disorder, we computed the
integrated anomalous Hall conductivity (¢}, 4 in presence of the Gaussian disorder (5.62) with
increasing disorder strength 7 = yAk/M for a fixed low temperature T = 1/ (107) as a function
of 7y in the vicinity of the critical region (figure 5.16). The low temperature was chosen for
having a pronounced difference between the trivial and the non-trivial phase at zero disorder
when sweeping over the critical region. We see that the sharp QPT gets smeared out in the
presence of disorder. Close to the critical value a. ~ 1.40 the smearing is well approximated by
an exponential tail of the form:

( (A0)) 5 gis ~ cqe2 (@)% (5.70)
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as depicted in the right panel of figure 5.16. The parameter c3 was obtained as c3 ~ 1.28 and
was found to be independent of the disorder strength up to the underlying numerical accuracy.
On the contrary, the other coefficients ¢, ¢, depend strongly on the disorder strength 7. The
obtained functional dependence, concretely the invariance of the exponent c3 with respect to the
details of the randomness, is in agreement with the results obtained with optimal fluctuation
theory.!!
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Figure 5.16: Left: Anomalous Hall conductivity as a function of @ for 7 = (3 +6k) - 1073 with k =
0,1,...,5 (blue-red). Right: Semi-logarithmic plot of the AHC against g for 7 = (3 +6k) - 1072 with
k =1,...,5 (green-red). At too low disorder the scaling behavior of the clean QPT supersedes the
influence of the disorder and the data becomes hard to fit, i.e. we left out the dataset with 7 = 31073
here. Black lines correspond to the exponential fit (5.70).

Next we consider the temperature scaling of (), 4 for different but fixed values of the
disorder strength 7 close to the critical configuration @y = @.. As a preliminary result, we find
evidence for a log-oscillatory behavior in accordance with the predicted existence of a discrete
scale invariance at the disordered quantum critical point (cf. subsection 5.4.1). To be precise, we
find a behavior that is compatible with the form (see figure 5.17):

(o (T)>A/dis ~ % (1+ azsin (a5 — aglogT)) , (5.71)

though we remark that we do not have enough data points to make a robust statement.

Unfortunately, for extending our computation to very low temperatures and high disorder
strengths we must leave the probe limit and take the full backreaction to the spacetime into
account, which is out of the scope of this work. Nevertheless, the acquired data provides us with
promising indications in favor of a discrete scaling symmetry.

HConcretely, we refer to optimal fluctuation theory for composition tuned quantum smeared phase transitions,
with c3 = 2 —d /1, where 7 is the so-called finite size shift exponent, which depends only on the details of the clean
QPT (see for example [111]).
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Figure 5.17: Left: Log-Log plot at the critical point 74y = 1.40 with increasing disorder strength 7 ¢
{0.03, 0.04, 0.24, 0.44, 0.60} (green-red). At low disorder (green line) the data approximates the power
law decay found at zero disorder and shown in blue-dashed line. Right: Data at 7 = 0.44 (orange line in
the left panel), divided by (1/T)®, fitted with ansatz (5.71).
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Figure 5.18: A concrete configuration of the gauge field along the bulk for 7T = 1/10, 3y = 1.35 and
7 =0, 0.002 (left, right).

Indications of rare regions

After having described the quantitative effects of disorder on the scaling of the order param-
eter (0),, we would like to look at qualitative effects of disorder when considering the bulk
field A, of our holographic model with special emphasis on its horizon behavior.

Therefore, we consider a concrete but typical realization of the bulk profile of the gauge field
component A at low temperature T = 1/ (1077) for a subcritical value of @y = 1.35 and compare
the results of a homogeneous and a disordered configuration. As expected, we obtain a vanishing
gauge field at the horizon, i.e. zero anomalous Hall conductivity, in the absence of disorder (see
left panel of figure 5.18).
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Figure 5.19: The profile of the gauge field A, at the horizon and the appearance of the rare regions. Left:
At fixed disorder strength 7 = 0.002 approaching the critical point. We take gy = 1.25, 1.30, 1.35, 1.40
(purple, red, orange, blue). Right: At fixed 7y = 1.35 and increasing strength 7 = 0.010, 0.020, 0.025 (red,
yellow, green).

On the other hand, the presence of a disordered source triggers the appearance of localized
areas at the horizon where the gauge field A, does not vanish (right panel of figure 5.18). As a
consequence, the integrated AHC acquires a finite value that was not present in the clean system
in accordance with the results of the AHC-disorder scaling analysis, which showed a smearing
of the QPT.

Consequently, we extend this qualitative analysis by studying representative properties of the
shape of A;| =1 when varying the order parameter ay for different disorder strengths 7. In the
left panel of figure 5.19 we show several realizations of A:[,_; for fixed disorder strength 7y and
increasing @p. The appearance of localized areas with non-vanishing AHC is apparent. As the
system is tuned closer to the critical value of @y these rare regions become broader and less rare.
A similar behavior is found for fixed @y and increasing disorder strength 7, as shown in the right
panel of figure 5.19. We note, that these regions become suddenly large, as soon as the amplitude
of @ (x) exceeds the critical value 7., even when its mean 7 is still below @.. Accordingly, it is
tempting to interpret these areas as indications of so-called rare regions, which were discussed
in the previous subsection 5.4.1.

Finally we remark, that we considered more than 10 randomly chosen configurations to see
whether the observed behavior can be considered as being representative in terms of the under-
lying statistics. Correspondingly, the qualitative arguments provided in this paragraph should
be merely taken as a first step for further research.
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Figure 5.20: Left: AHC close to the critical j for fixed P = 0.15, 7T = 1/10 and increasing correlation
&eor = 0.0, 0.5, 2.0 (red, yellow, blue). Black dashed line shows the AHC at zero disorder. Right: Evolution
of the rare regions with alpha for acor = 0.0, 0.5, 2.0 (red, yellow, blue) at fixed P = 0.15. Localized regions
become broader, as expected for increasingly correlated disorder.

Varying the correlation

Additionally, we studied the role of the disorder correlation on the quantum phase transition
and its smearing. Correspondingly, we computed the anomalous Hall conductivity (o (@0)), 4is
as a function of ay for three different values of the correlation coefficient a.or (cf. relation (5.64))
at fixed spectral power P (5.66) of the disorder signal and for a constant number of modes
Ngis = 30. Figure 5.20, shows the obtained behavior of the conductivity for ac,r = 0.0, 0.5 and
2.0, where the highest value of a.,r corresponds to a signal with high correlation. As a result, we
see that the disorder correlation indeed plays a role close to the QPT. Concretely, we find that a
positive correlation increases the smearing of the order parameter, which is in agreement with
the theoretical predictions [52, 162, 189]. On the right panel of figure 5.20 we show a concrete
realization of the gauge field A, at the horizon for fixed power P and increasing correlation.
We observe how increasing «a.or gives rise to broader, less rare, regions that have undergone the
phase transition. This is in accordance with the theoretical expectation, since a larger correlation
length should naturally lead to an increasing length scale of localized structures.
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5.5 Summary

In the first part of this chapter, we investigated the surface states of a holographic Weyl semimetal.
This is a step further in the understanding of topological phases within strongly coupled quan-
tum field theories using holography. At low temperatures, a current is generated in the presence
of a chemical potential along the surface of a holographic Weyl semimetal. Crucially, this current
vanishes at the interface of two topologically trivial phases. Moreover, the integrated current only
depends on the global order parameters, namely the anomalous Hall conductivities of the two
phases. This is a strong indication of the topological nature of the surface states. Furthermore,
the dependence of the integrated current on the order parameters is completely determined by
the anomaly. This is a non-trivial statement since the local current is sensitive to higher order
corrections in the effective inhomogeneous axial magnetic field naturally arising in a (realistic)
interface. It would be interesting to investigate how our result constrains the form of higher
order transport coefficients in the presence of inhomogeneous axial magnetic fields.

In the second part of this chapter, we studied the effects of temperature and quenched disor-
der on a quantum phase transition in holography. In particular, we focused on the probe limit
analysis of the holographic Weyl semimetal quantum phase transition (QPT) in presence of 1-D
Gaussian disorder. First we investigated the effects of temperature on the clean QPT appearing
at 4, ~ 1.40. Finite temperature enhances the anomalous Hall conductivity (AHC) and tends to
destroy the trivial phase, where the AHC vanishes. The decrease of the AHC towards T — 0 was
obtained to be:

e Exponential decay ~ e/ for values of the external parameter far from the critical point
a < a. outside the quantum critical region. This is consistent with the presence of a finite
mass gap.

e Power law decay ~ T " around the critical point @ = 7, i.e. inside the quantum critical
region. This is strong evidence for the presence of scale invariance at criticality.

In addition, we introduced disorder into the system and studied the fate of the QPT. The smear-
ing of the sharp QPT is the main consequence of the presence of disorder. Its shape appears
to be consistent with the expectations from condensed matter theory [200] and optimal fluc-
tuations arguments [111]. Moreover, we investigated the temperature fall-off of the integrated
AHC (0 (T)), 4 in presence of disorder. We see indications of a log-oscillatory behavior of the
AHC as a function of T within the critical region and at sufficiently high disorder strength. This
can be interpreted as a first sign for the emergence of a disordered fixed point connected with
discrete scale invariance [188].

Subsequently, we showed that modifying the correlation indeed plays a role in the smearing of
the quantum phase transition. Concretely, we were able to demonstrate that a positive correlation
enhances the smearing of the AHC around the QPT, which is expected from condensed matter
theory studies [52, 162, 189].






Chapter 6

Conclusions and outlook

The main results of this thesis concern two major topics: The numerical construction of localized
black holes (LBHSs) in five, six and ten spacetime dimensions and numerical studies of inter-
faces as well as disorder effects in holographic Weyl semimetals (WSMs). We emphasize that a
summary regarding the results of the construction of LBHs can be found in subsection 4.4. The
results of the investigation of surface states as well as finite temperature and disorder phenomena
of WSMs were summarized in subsection 5.5.

In this chapter we would like to draw conclusions from the obtained results, discuss their
scientific implications and reflect on significant techniques. Furthermore, we provide an outlook
and comment on possible future developments.

Localized black holes

We presented a robust method for constructing highly accurate numerical approximations of
LBH solutions in D = 5, D = 6 and D = 10. We remark, that our method can be easily
adapted to different dimensions as well as different compactifications. As a result, we were
able to investigate the phase diagram of the corresponding LBH solutions and compare with the
regarding non-uniform black string (NBS) results. In particular, in D = 5, 6 our data provides
strong evidence in favor of a merger of the LBH and NBS branches, which is accompanied by
distorted logarithmic spirals in suitable phase diagrams. Additionally, we were able to show that
the critical behavior changes qualitatively when studying the LBH configuration in D = 10.

Our findings, in particular the concrete values of the critical exponents, are in excellent agree-
ment with the theoretical predictions of [132, 133]. This is a strong evidence in favor of Kol’s
double cone conjecture. Interestingly, the infinite spiraling behavior in D = 5, 6 is related to
a discrete scaling symmetry of the thermodynamic quantities in the critical region (cf. refer-
ence [188] for a review of this phenomenon). Moreover, the spirals lead to the formation of an
infinite number of small phase space regions describing LBHs with positive specific heat.

We further note, that such a spiraling behavior has been spotted also for other configurations,
such as hairy black holes in AdSs x S° [31] and when considering the transition of black rings
to so-called lumpy black holes [57, 66]. Interestingly, also the study of disorder phenomena in
WSMs provided us with first hints in favor of the presence of a discrete scaling symmetry.

Finally we remark, that the presented construction of LBHs would not have been possible
without crucial adaptions to the underlying numerical methods. In particular, the decompo-
sition of the integration domains and the utilization of individual coordinate transformations
enabled the resolution of the very high gradients at the exposed axis. Furthermore, the special
decomposition of the asymptotic region into several linearly connected subdomains guaranteed
the rapid fall-off of the spectral coefficients, which would have been otherwise spoiled by non-
analytic contributions at the singular boundary corresponding to (compactified) infinity. Finally,
to our best knowledge, a non-smooth reference metric within the DeTurck approach has not
been used in a similar fashion before. The simple ansatz for the reference metric combined with
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uncomplicated coordinate transformations, leads to a notable reduction of the complexity of the
resulting field equations and made the numerical scheme much less error prone while improving
roundoff-stability together with the computational speed.

After providing highly accurate data for LBHs in five, six and ten dimensions, the investi-
gation of the missing configurations in the interval 6 < D < 10 as well as the study of some
more high-dimensional setups for D > 10 would be an obvious next step. Especially higher di-
mensional configurations and the study of different compactification schemes offer the greatest
potential for the discovery of new phenomena, since the numerical data is still quite rare here.
While the situation for 6 < D < 10 should be qualitatively similar to D = 5 and D = 6, we expect
further qualitative changes of the phase diagram of Kaluza-Klein black holes for D > 10 accord-
ing to references [132, 73]. For D > 10 we expect that the critical behavior is governed by two
independent real critical exponents, in contrast to the degenerate case in D = 10. Furthermore,
parts of the NBS branch are expected to become thermodynamically preferred over the UBS so-
lution for D > 11 and the entire NBS branch is supposed to be entropically favored over the
UBS branch for D > 13. Consequently, the development of a simple highly accurate construction
scheme for NBS solutions is desirable. References [121, 122] provide an excellent starting point
for such a project, raising the question whether the DeTurck method could improve the stability
and reduce the complexity of the methods presented there. We remark, that NBS solutions have
been constructed before in up to D = 15 dimensions (cf. reference [73]), but a high accuracy
analysis of the predicted UBS-NBS merger is still not available for D > 11.

As another very interesting point, the double cone metric emerged also in the context of
other topology changing transitions. A good analytic example is provided by reference [67],
investigating the merger of a Kerr black hole horizon in de Sitter spacetime with the related
cosmological horizon for D > 5. In addition, reference [67] provides further examples of possible
double-cone related topology changes, such as the aforementioned black ring to lumpy black hole
transition for D > 5. Consequently, the numerical methods provided in this thesis are expected
to be applicable in a wide range of fascinating configurations.

As discussed in appendix A.2.4, the D = 10 configuration is conjectured to be dual to certain
thermal states of a two-dimensional supersymmetric Yang-Mills (SYM) theory compactified to a
circle. Here, the construction of the NBS solution, which corresponds to non-uniform phases of
the SYM, was already provided in [59]. Nevertheless, a high accuracy analysis of the correspond-
ing LBH-NBS merger has not been carried out so far and should be one of the next steps to be
considered. Needless to say, that this would be a valuable consistency check of the conjectured
gauge/gravity duality.

As a final consideration, there is no reason for constraining the study of Kaluza-Klein black
hole configurations to asymptotically flat spaces. Correspondingly, asymptotically AdSs x S°
black holes that are localized on the S° were considered in reference [56]. While being ther-
modynamically preferred at low energies, there is a first order phase transition to AdSs —
Schwarzschild x §° at higher energies. According to the AdS/CFT correspondence, this tran-
sition is conjectured to be dual to spontaneous symmetry breaking of N' = 4 SYM. We expect,
that our method can also be applied for acquiring high accuracy results in this and many similar
cases. Specifically the AdS/CFT correspondence provides us with a large diversity of potentially
interesting problem setups.
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Holographic WSMs

In the second part of this thesis we studied the effects of inhomogenities in holographic WSMs.
First we developed a model for representing an interface between different topological phases
of a WSM. Consequently, we were able to show that this particular model resembles the main
characteristics of real world WSM surface states (Fermi arcs), i.e. a finite integrated current
localized at the interface (chiral pseudo-magnetic effect). At this point we remark, that an explicit
connection of these boundary currents with the surface states of WSMs were established within
recent works [88]. As a major result, we were able to relate this integrated current to the difference
of the anomalous Hall conductivities of the distinct phases.

The study of finite temperature effects within a homogeneous WSM revealed an algebraic
scaling relation of the order parameter (the anomalous Hall conductivity) close to the critical
point. This is in agreement with the expected behavior in the vicinity of a quantum critical point
and was observed before for other quantum critical systems. For instance, the reader may refer
to [76] for an investigation of quantum critical effects in nematic Fermi fluids.

Exposing the holographic WSM model to quenched disorder, that does not satisfy the Harris
criterion, led to the predicted smearing of the quantum phase transition. Similar behavior was
observed for holographic superconductors, cf. reference [99]. Furthermore, the indications for
log-oscillatory behavior in the temperature scaling of the order parameter at finite disorder can
be interpreted as the consequence of a discrete scale invariance related to a disordered fixed
point, as mentioned before in subsection 5.5. We refer the reader to [75] for a recent work
related to discrete scale invariance in holography. These results hint to the question whether
the emergence of a discrete scaling symmetry can be considered as a general feature of strongly
correlated quantum system at finite disorder. Thus experimental validations of these effects are
highly desirable.

As a last point, the formation of rare regions in the disordered phase is not a feature specifi-
cally related to our WSM system. We refer the reader to [23] for an investigation of these effects
in holographic superconductors. Apart from the holographic approach, these structures were
studied before in Ising ferromagnets [86], Ising spin-glasses [172] and metals [202]. Overall,
we expect that these results can contribute to the understanding of disorder effects in strongly
coupled quantum systems beyond the Harris criterion.

An obvious next step would be the exploration of the full holographic WSM system, including
a backreaction to the spacetime metric. While being much more challenging with respect to
the required numerics, this corresponds to taking higher order contributions of the fermionic
operators on the strongly coupled quantum field side into account. In this realm, we expect the
obtained results for the boundary currents within our interface model to remain valid. However,
backreaction comes with the possibility for obtaining the “pure” T = 0 configurations. As a
result, a high accuracy study of the temperature scaling for the chiral pseudo-magnetic current
would be possible in the vicinity of the quantum critical point. Here we expect a scaling behavior
that is directly given by the regarding scaling of the anomalous Hall conductivity as suggested
by our previous results.

Another interesting task concerns the investigation of the structure of the observed chiral
pseudo-magnetic in dependence of the details of the given interface profile. For more compli-
cated shapes of the interface a computation of the longitudinal conductivities could give us new
insights. Theoretical expectations predict a negative magnetoresistance in this case, as for the chi-
ral magnetic effect, i.e. a scaling of the conductivity according to o ~ B?, cf. reference [159]. In
addition, it would be interesting to adapt our model for investigating surface states of topological
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insulators within holography.

Also for the disorder analysis the main, numerical demanding, but very valuable direction,
would be the study of the same setup with full backreaction. This would allow us to implement
several improvements: Full control on the bulk solution up to zero temperature, a complete anal-
ysis of the disordered fixed points and the possibility of computing more observables like en-
tropy, heat capacity and longitudinal conductivities as well as viscosities (cf. references [142, 141])
in the presence of disorder. Of course it would be extremely interesting to extend our prelimi-
nary results by analyzing the log-oscillatory structures with the required reliability. As another
important point, we would like to study disorder effects at different holographic quantum phase
transitions, for example [54, 55], and test to which extent our results are universal.

A next step would be the construction of consistent top-down models exhibiting the WSM
phase transition between topological trivial and non-trivial phases. These models are expected
to come with more complicated interaction terms in the Lagrangian. However, such terms would
not change the principal symbol of the underlying differential operator and hence our numerical
algorithms could also be applied straightforwardly in these cases.

Of course a study of disorder effects on the properties of an interface configuration would be
another attractive project.

As the final words of this thesis we emphasize the significance of studying configurations
related to gravity in higher dimensions: As one point higher dimensions provide a possible
basis for the unification of the fundamental forces and might also shed some light on the hier-
archy problem of physics (cf. reference [171]). Moreover, supergravity configurations in higher-
dimensional asymptotically anti-de Sitter spaces can provide us with new insights into strongly
coupled quantum systems, that cannot be obtained by other methods that are available today. We
expect that the set of numerical routines, which were developed in the course of this thesis, will
help to acquire valuable results related to various other problems in higher dimensional gravity.
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Supplementary material

A.1 Theoretical basics

A.1.1 Frame expressions for curvature quantities

As mentioned before, non-coordinate basis formulations can help to remove singular factors from
tensor entries.

For illustration, let us consider the following example of a flat space metric in Cartesian
coordinates for D = 2 in coordinate basis

ds3p = dx?* + dy>. (A1)

Compactifying the x- and y-directions according to (cf. reference [34])

_ o B _ B _
x(g)_ﬁ/ ge[ 1’1]/ y(ﬂ) 1_;72' ;76[ 1’1]’
with a, B € Ry, leads to
2 2
dsdp = — % _4g? -y .
52D (1—62)3 g + (1_172)3 77 (A 2)

We note that the metric (A.2) exhibits two independent singular factors a?/ (1 — 62)3 and B2/ (1— 172)3

in the coordinate basis frame {d¢, dy}. Introducing the coordinate frame basis according to the
following frame coefficients

. 3/2 0
do= 8 , (A3)
1 0 ﬁ
(1)
we obtain the frame basis metric (in matrix form)
10
Nij = < 0 1 ) , (A4)

which is now free of singular factors. Accordingly, we can avoid singularities in a variety of frame
basis quantities. The singular factors are of course not completely erased, but are constrained to
the frame coefficients ¢/, and their derivatives.

Starting from the definition of the spin coefficients

i _ i ATV A i
w,;=ee ) —e iOuer’s (A.5)
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we define!

k
Wyij 2= ik, (A.6)
1
wi]‘k = eyiiyﬂw” ke (A7)

By projecting the indices of the Riemann tensor to the frame basis, we obtain

i i i i m i m i m m
Ry = wijp —wij + o ywp™ — wiy i + wy, (‘01 Kk~ Wk z) / (A.8)
where
i i
Wi'jx = € 4w’y
Correspondingly, the Ricci tensor in the frame basis reads

ok k k1 ko1 k ! !

Rij = w;jp — Wy + wpw; — 0wy + Wiy (w].k - wkj) : (A9)
With the help of these tensor relations, a formulation of the Einstein equations, that allows for a
nice, explicit control and separation of singularities, can be achieved.?

A.1.2 Conformal transformations

This subsection provides a short summary on conformal transformations. A detailed review on
this topic can be found in [32] and [12].

First we provide a rather general definition of a conformal map. We start by considering
two semi-Riemannian manifolds M and N with metric ¢ on M and & on N. A smooth map
¢ : M — N is called conformal map if the pull-back of ¢ acting on h satisfies ¢*h = 0>¢ where
Q € C*(M). Both manifolds are called conformally equivalent if there exists a diffeomorphic
conformal map between them. All conformal diffeomorphisms of a manifold M onto itself form
a group which is called the conformal group CO (M, g).

Now let us concentrate on conformal transformations of the Minkowski space (M, g) =

(]RdH,iy(d'l)) which are of particular interest in the context of quantum field theories. It can

be shown that every conformal transformation® of Minkowski space can be built as a composi-
tion of the following 3 transformations

1. Poincaré transformations, i.e. translations and Lorentz transformations,
2. Dilatations: x — Ax for A € R,

3. Special conformal transformations (SCFTs): x — szl,j;% for b € R,

Note the singular nature of the SCFTs for x = b% which is cured by considering a conformal
compactification of Minkowski.

1We remark, that the relations (A.6) and (A.7) should be defined explicitly, since the spin connection is no tensor
and therefore index operations on it are not clear a priori.

20f course, not all singularities can be separated and removed in this way, cf. true curvature singularities or
singularities that develop dynamically.

3 Actually, we are considering every conformal transformation in the connected component of the identity.
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The associated conformal algebra co (d, 1) is spanned by the following generators
1. P, and J,: the generators of translations and Lorentz transformations,

2. D: the generator of infinitesimal dilatations,

3. K,;: the generator of the SCFTs.

As an interesting fact, one can show that the conformal algebra co (d, 1) is isomorphic to so (d + 1,2),
which gives a first glimpse on the AdS/CFT correspondence since SO (d + 1,2) is the apparent
symmetry group of the hyperboloid considered in section 2.2.1 about the anti-de Sitter spacetime.
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A.2 Localized black holes

A.2.1 Numerical parameters

The values of the grid parameters L, 0o, 01, 0i, ¢i, s1 and s, for the LBH configuration with almost
touching poles can be found in table A.1. The value of A was adapted for obtaining the desired
accuracy. We increased A up to A =~ 10 for the solutions that are closest to the critical transition.

Table A.1: Grid parameters for LBH solutions in the critical regime for D = 5,6 and D = 10. The
parameters are explained in figures 4.8 and 4.9.

DHL‘QO‘Ql‘Qi‘q)i\Sl\Sz

56(8/05[15| 1 |01|0 |08

10 (8] 2 | 3 25|01 | L |5L

We emphasize that the values in table A.1 are appropriate for the construction of a first
solution. As an initial guess for the Newton-Raphson method, we need to use a sufficiently good
approximation of a LBH solution. In practice the reference metric (cf. subsection 4.2.2) turned
out to be an acceptable first guess for relatively small LBHs, i.e. with x ~ 2 (in units where L = 8).
Subsequently « is modified for computing another physically inequivalent solution, where the
last obtained solution provides the initial guess. This procedure can be applied until a turning
point in « is reached. Such extreme points are handled with the trick presented in reference [58]
section VILB.

 JEE300000

Figure A.1: Spatial embeddings of the horizons for different LBH solutions in D = 10.

A.2.2 Horizon embeddings for D = 10

Figure A.1 displays a number of horizon embeddings for LBH solutions in D = 10, based on the
coordinate embedding relations (4.59) and (4.60). We see that the LBH horizons in D = 10 show
less eccentricity than the configurations for D = 5, 6 that were presented in figure 4.14.
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A.2.3 Scaling analysis
Scaling of the NBS datain D =5, 6
Table A.2 provides the fit results for the NBS branch in D = 5, 6, which were taken from refer-

ence [122]. As mentioned in subsection 4.3.3, the real critical exponent b and log-periodicity c
show a good agreement with the predicted values:

o For D =5: byreqs = 3/2 and Cpreas = v/15/2 ~ 1.9365,

e For D = 6: bprgd/6 = Cpred,6 =2.

Table A.2: Parameter values of the fit (4.62) for the thermodynamic quantities of the NBS in D = 5 and

D =6.
f fe a b c d

M/Mgr 1.6771932 0.7161  1.4995 19364  3.6215
n/ngr  0.7795282 0.1691 15010 19375 5.8367

b=5 T/Tcr, 0.6738646 0.2295 1.4998 1.9358  0.6010
S/Scr  2.6718297 21232 14994 19369  3.6237

M/Mgp 21839096 159247 1.99923 1.99932 0.74457

D—6 n/ngr  0.5855195 0.30918 1.99487 1.99655 2.76608

T/Tgr 0.7419027 0.21640 1.99512 2.00111 4.00513
S/Scr  3.0961720 3.23682 2.00071 1.99891 0.74332

Critical scaling of the geometrical quantities in D =5, 6

As stated in subsection 4.3.3, we need an adapted ansatz for examining the critical behavior of
the proper horizon length Ly, due to its continuous growth in the critical regime. We consider
the following ansatz, which includes a non-oscillating term

Ly (Q) = Le — a1Q" 4 a2Q% cos (¢, logQ+4dy), (A.10)

where L., a1, by, a2, by, c2 and d; are the new fit parameters. L. denotes the critical horizon
length and we should have b; < b, for obtaining a leading non-oscillating part. The correspond-
ing fits are depicted in figure A.2, which again show excellent agreement close to the critical
point. The computed fit parameters can be found in tables A.3 and A.4. As expected, we notice
that the values for b, and ¢, are in good agreement to the predicted values. We obtain approxi-
mately the same value for b; ~ 1 for all configurations and dimensions, i.e. the horizon length
is directly proportional to Q at leading order when approaching the critical point. For D = 10
we were not able to separate the gauge dependent growth contribution from the gauge-invariant
part.
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Figure A.2: Data points (red dots for LBHs and blue dots for NBSs) and fit (blue solid lines) of the horizon
length Ly as a function of Qrpy or Qngs. In the left column the explicit functional dependence is shown,
where both axes are log-scaled. To resolve the tiny subleading oscillations of the functions, a rescaled
version is shown in the right column, where ALpolar = Lc — Ly /L. The first two rows correspond to
D =5, while the last two rows correspond to D = 6. For each plot, all data points to the left of the dotted
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Table A.3: Parameter values for the horizon length Ly, for LBHs and NBSs when fitted with (A.10) in
D =5.

L. ay by az by C2 d>
LBH 1.428268 0.5548 1.0024 0.7976 1.4976 1.9267 1.9116
NBS 1428265 0.2441 1.0041 0.2319 1.5046 1.9500 3.5614

Table A.4: Parameter values for the horizon length Ly for LBHs and NBSs when fitted with (A.10) in
D =6.

Lc a] b1 a, b, Co do
LBH 1.464800 0.4564 0.99999 0.6558 1.9998 2.0001 2.7909
NBS 1.464801 0.3273 0.99960 0.2143 1.9898 1.9985 3.8530

A.2.4 Localized black holes and N = (8,8) SYM

As mentioned in the main text, KK black holes in D = 10 can be related to certain thermal
states of a two-dimensional A" = (8,8) supersymmetric Yang-Mills (SYM) theory compactified
to a circle S! with gauge group SU(N) in the large N limit. LBHs correspond to a spatially
deconfined phase within the SYM, while UBSs and NBSs are related to spatially confined phases.
Note that the aforementioned SYM can be characterized by three dimensionless quantities: The
rank of the gauge group N, the dimensionless 't Hooft coupling constant* A = Ng%, /L? and the
dimensionless temperature T given by the product of the ordinary temperature and the length
of the circle L. In the following, we denote the (dimensionless) thermodynamic quantities of the
SYM by U for the energy, T for the temperature and & for the entropy.

According to [5, 96, 59], the relation between the SYM and KK black holes in D = 10 can be
obtained by applying the following solution generating technique

1. We lift the D = 10 solution up to D = 11 and perform a boost in the new coordinate,
followed by a Kaluza-Klein reduction.

2. The result is a solution in type IIA supergravity. Concretely, the LBH solutions in D = 10
with R x §! asymptotics correspond to localized DO-branes in type IIA supergravity.

3. As a next step a T-duality transformation is applied, which converts the type IIA super-
gravity solution into an type IIB supergravity solution.

4. As a last step we take the decoupling limit between the string and gravitational length
scales on the type IIB gravity side, which corresponds to taking the limit N — oo with A
fixed on the SYM side, and to consider the large A limit in a second step. The details of the
decoupling limit are rather intricate and we refer the reader to the references [5, 96, 59] for
a detailed description of the underlying limits.

“Note that the Yang-Mills coupling constant gy has the dimension of energy in two-dimensions.
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Thermodynamic quantities

As a result of this procedure, we can interrelate the thermodynamic quantities of the SYM to
the thermodynamic properties of the KK black holes. In particular, considering the normalized
quantities £l = - A?2/N?, T =% . A2 and & = & - A3/2 /N2, we obtain (cf. reference [59])

§l = 647® (2M — ST) T = 4V2nr8Y27%/2, & = 16V2r°5Y/2T71/2, (A.11)

where M, T and S denote the black hole mass, temperature and entropy normalized according
to

- GipM .

= G1oS
M=, T=TL, §=

ey (A.12)

with the gravitational constant in ten dimensions Gjp. In addition, the (dimensionless) free
energy § of the canonical SYM ensemble and its normalized version § = § - A2/ N? are given by
F=4—6%Fand § = {l— &%.

Results

Figure A.3 shows the phase diagrams of the microcanonical (left) and canonical (right) ensemble
of the uniform (blue) and localized (red) phases of the ' = (8,8) SYM. For the microcanoni-
cal ensemble, we see that the localized phase is thermodynamically preferred over the uniform
phase up to some threshold value of the normalized internal energy {lpr, where the uniform
phase starts to dominate. There is a first order phase transition, where the entropy of the uniform
phase exceeds the entropy of the localized branch. We have a similar picture when considering
the canonical phase diagram. Here, lower values of the free energy & correspond to the ther-
modynamically preferred phase. Accordingly, we see that the localized phase is dominating for
small values of the normalized temperature %. As before, the uniform phase becomes thermody-
namically preferred at some threshold value % pr. We remark that including the inhomogeneous
SYM phase (corresponding to NBSs) would not alter this picture of thermodynamic stability,
since the related branch is thermodynamically inferior for all configurations, as can be seen from
the data presented in reference [59].

0.8
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M &3 1t
D
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—0.8 : : : :
0 50 100 150 0 1 2 3
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Figure A.3: Phase diagram of N’ = (8,8) SYM on a circle with length L in the microcanonical (left)
and canonical (right) ensemble. We plot the difference of entropy and free energy, respectively, to the
corresponding values of the uniform branch, which is represented as the blue zero line in these diagrams
with the black circle indicating the solution where the Gregory-Laflamme instability arises. The localized
branch, represented by the red line, is thermodynamically favored over the uniform branch for small
masses or small temperatures.
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With the procedure described at the end of the current section, we determine the first order
phase transition between the localized and the uniform phase in the microcanonical ensemble to
be at

fdpr = 96.9053906163(1) . (A.13)
For the canonical ensemble we find
Tpr = 2.451118333749(1) . (A.14)

Moreover, the (dimensionless) latent heat associated with the first order phase transition is given

by
AQ = Zpr - (Sups (Tpr) — Ssr (Trr)) | (A.15)

where Syps (2pr) and Sppn (Tpr) are the normalized entropies associated with the uniform
phase (UBS) and the localized phase (LBH). Note that we can obtain the latent heat also by
differentiating the normalized free energy with respect to %, i.e.:

- . 0(5 -5
AD = Fpr (SLBHai Suss) ' (A.16)

—=PT

By means of our numerics we determine the latent heat to be
A = 9.47738683316(1) . (A.17)

We used both formulas (A.15) and (A.16) and compared the results for obtaining the value (A.17).
The comparison showed a slightly better convergence of the specific heat obtained from (A.15) (by
two digits), which is not surprising, since formula (A.16) involves the evaluation of a numerical
derivative.

Summary

We obtained the phase diagrams of the localized and uniform phases of the two-dimensional
N = (8,8) supersymmetric SYM theory compactified to a circle S! with gauge group SU(N) in
the large N limit from the corresponding LBH and UBS data. The localized branch was found
to be predominating for small energies or temperatures, whereas the uniform phase becomes
thermodynamically favored at some threshold values of the energy {lpr or temperature <pr.
We obtained the threshold values with unprecedented accuracy and additionally computed the
latent heat AQ of the related first order phase transition.

Especially the values flpr, Tpr and AQ are the basis for a comparison of our results with
regarding data from quantum lattice calculations. We refer the reader to the references [42, 41,
116] for lattice results that show indications of a first-order phase transition.
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Determining the phase transition

In order to obtain a highly-accurate value for the position of the first order phase transition, we
have to find the intersection point of the localized and the uniform branch in the phase diagrams,
cf. figure A.3. For this purpose, we compute a series of localized black hole solutions with values
of the control parameter « that are distributed on a Lobatto grid around the intersection, i.e. for

Kend T Kstart  Kend — Kstart j .
i = - — =0,... . Al
K; > 5 Cos (NK> , J=0,...,Ng (A.18)

An interval k¥ € [Kstart, Kend] in Which the corresponding phase transition is located can be easily
identified once the data for producing the phase diagrams in figure A.3 is at hand. We took
Kstart = 0.98 and xeng = 1.02 (recall that we set L = 8 in our computations). At each of the Lo-
batto points we calculate the relevant physical quantities (mass and entropy). By using standard
pseudo-spectral techniques we are able to express these quantities in the given interval as a trun-
cated Chebyshev series depending on x with expansion order Ny . Finally, we identify the phase
transition point by determining the root of the difference of these functions and the analytically
known uniform branch.

Moreover, this procedure even gives a straightforward way to calculate derivatives of the
thermodynamic quantities in the corresponding interval [Kstart, Kend] by using standard spectral
algorithms, which can be employed for obtaining the latent heat, cf. equation (A.15). Besides that,
we are able to check the first law of thermodynamics dfl = Td& in this interval as an additional
consistency check of the numerical results. Indeed, the deviation from this law rapidly drops
down as the resolution is increased and saturates at values of 10712, The spectral convergence of
this interpolation procedure is discussed in the next subsection.

A.2.5 Accuracy

The numerical quality of the obtained LBH solutions was estimated by comparing a high-
resolution reference solution u,.s to solutions uy of lower resolution N. To carry out the com-
parison we interpolate the reference u,,s and the uy’s to a high resolution grid X and take the
maximum of their point-wise difference as an error norm

RN = sup |uper (x) —un (x)] . (A.19)

xex

We observe a rapid decay of the residue Ry as a function of N (Lh.s. of figure A.4) until
saturation is reached at 10~ (for D = 5 and D = 10) and 10~'° (for D = 6) as a consequence of
having a finite machine precision® combined with rounding errors. Note that we display Ry in
tigure A.4 (left) for a configuration close to the critical transition, which serves as a kind of lower
bound for the accuracy, since solutions away from the critical region are converging much faster.

In addition, we investigated the numerical violation of the Smarr relation Agy,, (rh.s. of
figure A.4) as a consistency check for the obtained solutions. The rh.s. of figure A.4 shows a
rapid decrease of Agy,r With increasing resolution until some saturation levels are approached.
We notice that Ag,,,, saturates for D = 6 at a level, that differs about two orders in magnitude
from the corresponding level for D = 5 and D = 10. The reason is that we performed two
derivatives in order to extract the asymptotic coefficient ¢; in D = 6, while only one derivative
was used in D =5 and D = 10.

5For obtaining the results we used 80-bit extended double precision.
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Figure A.4: Convergence of the residue Ry and the deviation from Smarr’s relation Agp,,r for the LBH
solutions as a function of the mean resolution N. The respective numerical solutions correspond to LBHs
with proper separation of the poles of L4/L ~ 0.0029 for D = 5, L,/L ~ 0.00083 for D = 6 and
L4/L ~0.007 for D = 10.
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Figure A.5: Convergence of the numerical positions of the first order phase transition between the local-
ized and the uniform phase. We show the phase transition points for the bare LBH data (A.12) (left) and
for the transformed data (A.11) (right).
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As the last point we monitored the non-trivial components of the DeTurck vector field ¢* (cf.
subsection 2.1.2) to be always smaller than 107! in magnitude on each point of the grid for all
considered configurations. As we stated earlier, it is important that sup, .y |{* (x)| remains small
compared to the magnitudes of all the metric functions.

Accuracy of the phase transition quantities for LBHs in D = 10 related to A = (8,8) SYM

Due to the high accuracy of our localized black hole solutions, the spectral interpolation proce-
dure for obtaining {lpr, Tpr and AQ (cf. subsection A.2.4) will give highly accurate values for the
intersection points as well, at least if the resolution N is high enough. Since we chose a rather
small interval [Kstart, Kend], comparably small values of N, suffice. Moreover, this approach pro-
vides a natural estimation of accuracy for the phase transition values, simply by comparing the
values obtained for different resolutions, similarly to the procedure described above. The result
of this convergence analysis is shown in figure A.5. Note, that we obtained the phase transition
points for the bare LBH data (A.12) (left) and for the transformed data (A.11) (right).
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A.3 Holographic Weyl semimetals

A.3.1 Equations of motion

As described in chapter 5, the static AdS Schwarzschild metric and the following ansatz for the
fields was used for the numeric construction

21 2 dp? 2 2 2

ds :p2<—f(p)dt —i—m%—dx +dy +dz>, (A.20)
A=A;(x,p)dz, (A.21)
V =Vi(x,0)dt+Vy,(x,0)dy, (A.22)
9= (xp) (A.23)

Here, f (p) = 1 — p* is the blackness function. Plugging these fields in into the equations of
motion (5.34)-(5.36), yields four elliptic PDEs for the non-trivial field components:

—¢ (P AZ+m?) + (0*f' — 3pf) 0x¢p

+0% (3¢ + f329) =0, (A.24)
8apf (0xA20,Vy — 0, A0, V) + fO: Vi
—p (8§Vt + faivt) =0, (A.25)
(f = pf') 9xVy + 8ap? (9xA20, Vi — 0pAz0, V)
—p (92v, + f32v,) = 0, (A.26)
—20°¢*A. +p (pf — f) 0x Az + 8ap® (3,V;9xVy — 0, V40, V)
+0? (agAz + faiAz) ~0. (A.27)
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Figure A.6: Total current ], = J,/M divided by 8aAay,, = 8a (a; —ag) /M as a function of the chemical

potential y for fixed parameters @, = 0.4, ag = 3 and 71T = 1/16. We refer the reader to the weak result
(5.55) for understanding the origin of the employed normalization.

A.3.2 Parameter studies

The following studies were carried out to analyze the behavior of the holographic WSM system
on all related parameters.

Chemical potential

The chiral pseudo-magnetic effect, j = uBs, suggests a direct proportionality of the current
density and the chemical potential. We remark, that we were not able to construct any solutions
for values higher than y = 0.4 with reasonable effort. This could be caused by an insufficient
first guess or might be related to a breakdown of the probe-limit, since strong enough magnetic
fields make the consideration of higher Fermion loop contributions necessary. The total current
as a function of y is provided in figure A.6 for « = 1,a; = 0.4, ag = 3 and 7M = 1/16. Fitting
the normalized total current Ty = J;/M as a linear function of y, gives a slope of 0.998 and an
offset of 1078, in agreement with our assumption.

Interface width

When studying the influence of the interface width /, we see that the obtained solutions depend
strongly on [ (cf. figure 5.8 in subsection 5.3.4), which is not surprising, since all scale invariance
was removed from the EOM, when the location of the black hole horizon was fixed to be at
p = 1. However, we note that the integrated current is independent of / to a good accuracy (cf.
figure A.7). Fitting the points in figure A.7, yields a slope of 0.998 and an offset of —2 x 10~°.
We remark that this result fits well to our interpretation of the current as a topological quantity.
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Figure A.7: Total current Ty = Jy/M divided by 8auAay, = 8ap (ap —ar) /M as a function of the transi-
tion width [ for fixed parameters y = 0.1, @, = 0.4, ag =3 and 7T = 1/16.
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Figure A.8: Total current Ty = Jy/M divided by 8uAay, = 8y (ap —agr) /M as a function of the Chern-
Simons coupling « for fixed parameters y = 0.1, @, = 0.4, ag = 3 and 7T = 1/16.
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Chern-Simons coupling

Studying the dependence of the integrated current as a function of the Chern-Simons coupling «,
we find a linear relation within the interval 0 < a < 4 (see figure A.8). Fitting the points with
a linear ansatz yields the result fy/ (8uAapo) = 0.995a 4 0.003. Accordingly, we consider the
current dependence on a to be trivial in the corresponding interval and we can use an arbitrary
value of 0 < a < 4 for producing our results.
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Figure A.9: Total current fy = Jy/ M divided by 8apuAay, = 8ap (ap —ag) /M as a function of the charge
q for fixed parameters y = 0.1, @, = 0.4, ag = 3 and T = 1/16.

Axial charge of the scalar field

The integrated current depends in a non-trivial way on the charge q of the scalar field under the
axial gauge field, which enters the formula for the axial anomaly (5.33), and hence contributes
to the magnitude of the axial anomaly. Plotting the dependence of integrated current on g (cf.
figure A.9), we notice that J, first strongly increases for small g followed a plateau of saturation.
This plateau is reached for g4 ~ 1 where the deviation from 1 is less then 1%c. This means, that
our results do not depend on the concrete value of g for g > 1.
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A.3.3 Anomalous Hall conductivity

In this appendix we provide details about the computation of the anomalous Hall conductivity
(AHC) oauE = UAHEW6 in the inhomogeneous (but periodic) holographic Weyl semimetal. The
computation is split in two parts: First we compute the so-called covariant part of caHgy». In a
second step we calculate the contribution of the Chern-Simons term.

The full AHC is obtained by the Kubo formula (cf. reference [12])

. 1 ..
UAHE,yx = i}lgb E <]]‘V/]€>cans ’ (A.28)

where ( ]%', jﬁ)cons denotes the consistent current 2-point function. The consistent current is given
by (5.30):

<j€>cons = }}L% V8 (P4ﬂ - 4“€4HTUKATFUK> ’ (A.29)

where we remind the reader that x* = p in our convention.

Accordingly, the consistent two-point function is given by

<j1‘//j€>cons :(5 <j€>cons /5V1/

SF 0A OF,
=lim \/—¢{ —— — 4 T "F+ AT L. A.
im g{ 5V, KE <5Vv ox + At v, > } (A.30)

The covariant part of the two-point function is given by

SF41
. ‘I,l S B
<]1\//]V>cov - })ILI}) (\/ -8 5V, ) . (A31)
We obtain the Chern-Simons contribution as the remaining part of (j%, j%wnsz
v v . 0A OF,
(eib)eoms = Gy = —detom tim /=5 (SRt A ). (A3

Covariant contribution

We consider an electric field in the x-direction and define the Hall conductivity as the response
in the transverse y-direction while omitting the AHE lower index on 0aHE,yx:

(Jjy) = oyx Ex. (A.33)

In order to determine Oyx We consider the following fluctuations of the vector gauge field V (for
a vanishing background Vg = 0)

5V = (ﬁt (0,x) e Gy (p,x) e, by (0, x) e @t ), 0) . (A.34)

®Recall that the AHE is constrained to the x-y-plane for the separation of the Weyl nodes along the z-axis.
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We impose in-going boundary conditions at the horizon as follows (cf. reference [12]):

o (p,x) = i (p, %) (1—p)' /%, (A.35)
0. (p,x) = vx (0, x) (1—p) "%, (A.36)
3y (0, %) = vy (p,x) (1—p) %, (A.37)

where v, (p, x) are regular functions at the horizon. The covariant part of ¢y, is obtained from
(A.31):

Oyx = i}ig}) [agvy (0,x)/ (iw)} . (A.38)

We are interested in the DC Hall conductivity. Hence we have to solve the equations of
motion for the fluctuations only to first order in w. Moreover, we also perform an expansion in
the Chern-Simons coupling « and neglect terms of order a?:

(0,1) (1L1)

v (p,x) = v,EO'O) (p,x) + vgl’o) (o, x) w+v," (p,x) a+v; " (p,x) wa+ ..., (A.39)
— (00 (10) (01) (11)

ve(p,x) =0y (0,x)+0y" (0,x) w+ovy" (0,x) a+0vy" (0,x) wa+ ..., (A.40)
_ ,(00) (1,0) (0,1) (11)

vy (0,x) =vy " (0,%) +v, " (0,x) w40, (0, x) a+0y" (0,%) wa+ ..., (A.41)

where the neglected terms (indicated by dots) are of order O (a?,w?,...). In the following we

discuss now the differential equations for vgm’"), v&m'”) and v](/m’”).
Let us first consider the order a’w’. We obtain the following equations of motion for o0 , v,(co’o)

and 050’0) by plugging the expansions (A.39)-(A.41) into the full set of EOM (5.34) and expanding

to lowest order in w and «

(1+p+p2+0%) o = (140)* (14 p?) 90"
+p (1-p*) 920" +pa2o{*” = 0, (A.42)
(1 + 3p4> a,,v(o")) —p (1 — p4> 8,2,09(60’0) =0, (A.43)
(1 + 3p4> 9,00 — o (1 - p4> 20" —pa2o™” =0, (A.44)

while the constraint (equation (5.35)) evaluated at the horizon p = 1 reduces to:
0% (1,x) — 30" (1,x) = 0. (A.45)

Switching on an electric field with a single component in x-direction, leads us to impose the
following boundary conditions at the AdS boundary p = 0,

2% (0,x) =0, o0 0,x) =1, véo'o) (0,x)=0. (A.46)

The solution of (A.42)-(A.45) respecting these boundary conditions reads:

ol (p,x) =0, o (o,x) =1, o (p,x) =0.  (A47)
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Next, we proceed with order w!a’. Repeating the same procedure as for the lowest order, we

obtain for Ugl'o) and vy’o) the trivial solutions:
051'0) (p,x) =0, 051,0) (p,x)=0, (A.48)
while the solution for o\""") (p, x) reads
i
o (p,x) = =1 (log (14 p) ~log (1 + %)) , (A49)
(1,0) (1,0)

where we imposed that vy " (0,x) = 0 as well as regularity of vy "’ at the horizon.
The order w’a! is trivial and we obtain

vgo'l) (p,x) =0, o (p,x)=0, U;O'l) (p,x) =0. (A.50)
At order w'a! we are only interested in ot (p,x) 7, cf. equation (A.38). The relevant differential

equation (A.26) yields
(1 + 3p4) 00! —p (1 - p4) 2oy — paZol!) 4+ 8ip?9,A. = 0. (A.51)

The solution to this differential equation is not x-independent and hence not simple to tackle
with analytic methods.
Using the previous results, we can modify our expression for o, as follows:

0yx = —iad20y) (0,x) . (A52)

The last relation is obtained by taking the w — 0 limit. We define the averaged (or integrated)
anomalous Hall conductivity (cy,), to be

A

(Oyx), = —ij/dx [azvy’l) (O,x)} ) (A.53)
0

In order to determine (0y, ), we have to solve the partial differential equation (A.51). Let us
tirst solve the homogeneous equation, i.e.

(1 + 3p4) 9,00 — o (1 - p4> 2o — patoM) = 0. (A.54)
It is convenient to use a separation of variables ansatz of the form

vy’l) (p,x) = Zvy('nl)) (0) fu (x) - (A.55)

As a result of the assumed periodicity in x-direction, we can use a Fourier basis in this direction:

fn(x) =exp (izznx> , (A.56)

(1,1) (1,1)

7For the electric field in x-direction, the solution for v and vy "’ is still trivial, i.e. it vanishes. As a result, the

constraint is also satisfied.
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and hence the homogeneous differential equation (A.54) for vy(nl )) (p) becomes
2
£\ 5 L) (g 4\ 52 (L) 2T\ " 1) _
(1+3p ) a0l —p (1 0 )apvy(m —I—p( . ) ol =0. (A.57)

Note that this is now an ordinary differential equation.
As a result of the averaging procedure, we obtain for (oy,),:

, 11
(Oyx)y = —zzxagv;(o)) (0) .

Note that all US(; )) with n > 0 drop out, since their integral over x vanishes. Hence it suffices to
consider the case n = 0 in the differential equation.

Integrating the homogeneous differential equation (A.57) for n = 0 is straightforward. First

of all, we can introduce ﬁ;l(bl)) = apvél(bl)) and integrate the (now first order ordinary) differential

equation, yielding

sa0 _ Cp
y0) = 7= ot (A.58)
Imposing the boundary condition U;I(bl)) (0) = 0 at the conformal boundary, we obtain the follow-

ing solution for vy(’ol)) (p) by quadrature

| On

1,1
olio) () = 5 (log (1+p%) —log (1-¢?)) . (A.59)
Note that this solution is not regular at the horizon.

Let us now proceed with the inhomogeneous differential equation. Also using the separation
ansatz (A.55) we end up with

2
4 (1,1) 2 (11) 2rn\" (1) | o 2 _
(1 + 3p ) apvy(n) — p (l — p4) apvy(n) + p <A> vy(n) + 8lp apAz(n) =0. (A60)

Again, we only have to solve the differential equation for n = 0 and we may view it as a first

(11)

order differential equation for 9,0 -

~(1,1 ~(1,1 .
(1+30%) 3ljo) =0 (1= 0*) 9,8, 5] +8ip*pAz(0) = 0. (A.61)

We use the variation of constants method and promote the parameter C to a function of p, denoted

by C (p). We can derive a differential equation for C (p) by substituting the ansatz for 5;1(61))

%) (0) = Clo) 715 (A62)

into (A.61). In particular we obtain

C' (o) = 8idpAz () (o), (A.63)
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which gives rise to the solution

C(p) =81 (Axg) (0) = Ax0) (1) - (A64)
In particular we fixed the constant such that the total solution

~(1,1)
%y(0)

() =81 (Ax0) (0) = A (1) 715 (A.65)

is regular at p = 1. As a result, the covariant part of the average AHC is given by

(o), = —iadol ) (0) = —iadyo((y) (0) = 8a (Az(o) (0) — A (1)) . (A.66)

The Chern-Simons term and the consistent current

We consider the case of a vanishing background, i.e. F,x = 0, and the only non trivial background
axial gauge field component is A,. Consequently, starting from (A.67) we obtain for the desired
part of the two-point function in the x-y-plane

i X XZ0K V0V — VoV,
<]%/]V>cons - <]V]V>Cov = — 4 e lim \/7 ( ( ))

oV,
—8ua €4xzm< })IL% . < V(T >
=iw8ae*™A, (0,x), (A.67)

where the harmonic time dependency (A.34) of §V,, was used. We remark, that our coordinate
tuple is arranged as (t,x,y,z,p) = (x%,x!,x2, 3, x%) and therefore e/ = 41302 = 1.

Combining the Kubo formula (A.28) with the results (A.66) and (A.67) yields the total aver-
aged AHC, that also includes the Chern-Simons contribution:

(oyx), = —8a Ay /dxA (1,x) (A.68)

Note that the sign of expression (A.68) differs from the sign of (5.48) and (5.60). This change of
sign comes from considering oy, in (5.48) and (5.60) instead of ¢, and can be understood by con-
sidering the Onsager relations. These relations guarantee the symmetry of the DC conductivity
tensor under time reversal or by multiplying the external fields with a factor of —1 respectively,
where the latter explains the origin of the sign change.
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A.3.4 Accuracy
Surface states in holographic Weyl semimetals

The estimation of the numerical quality of the solutions follows the procedure outlined in sub-
section A.2.5. Figure A.10 shows the residual Ry in dependence of the grid sizes in p- and
x-direction. The three-dimensional plot allows us to recognize the different convergence behav-
ior in the two directions. We clearly see a poor algebraic convergence rate in p-direction as
expected due to the logarithmic contributions at order p? of the series expansions of A, and ¢
around p = 0 (cf. equations (5.53)-(5.54). Whereas the convergence in the x-direction is much
better and can be considered as spectral convergence due to its linear slope in the logarithmic
plot. We note that the same convergence analysis for the field derivatives yields a loss of one to
two orders in convergence for each derivative that was taken, which is important for assessing
the accuracy of the numerical approximation to af,vy. As a compromise in terms of accuracy,
speed, memory consumption and size of the output we used a resolution of (N, Nx) = (55,45)
for the production of the plots in section 5.3. This relates to a point-wise accuracy bound for the
fields of 107® and 102 for the second derivatives.

20

Ny 30 &

70 \

80

Figure A.10: Residual of the field V; as a function of the average grid resolutions for all domains in x and
p direction, obtained for nT =1/16,1=1,a; = 0.6 and ag = 2.2.

Finite temperature and disorder effects in holographic Weyl semimetals

The discussion of the numerical quality of the results of section 5.4 relies on estimating the
two major sources of errors, namely the numerical error related to our numerical approxima-
tion scheme and the statistical error, which is a necessary consequence of estimating statistical
quantities by looking only at a finite number of randomly chosen samples.

In particular, at least 50 random samples were computed for each data point and the cor-
responding variance was taken as an estimate of the statistical error. The magnitude of the
statistical error was indicated by error-bars in the plots of section 5.4, whenever necessary (i.e.
whenever being large enough). Accordingly, the plots of the results section are based on more
than 10.000 single solutions of the corresponding boundary value problem.



§A.3 Holographic Weyl semimetals 123

1,
10—7,
0.100¢
2]
5 -9
0.010 N\F S 10
= A
('3 o)
0.001 _ VZ 10,11
g
1074
10—13_
1075 S
0 2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000
N N

Figure A.11: Left: Convergence plot for five randomly chosen samples: residual Ry as a function of
the total number of grid points N. Right: Convergence plot for the integrated Hall conductivity for five
random samples: residual Ay (0), 45 as a function of the total number of grid points N.
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Figure A.12: Example coefficient convergence plot for the gauge field A, (left) and scalar field ¢ (right)
for five randomly chosen samples at 7T = 1/10, 7 = 0.45, ap = 1.4, « = 0: maximum Chebyshev absolute
coefficient as a function wave number k,, where the maximum is taken over the remaining x-direction.

Due to the large number of solutions, that were computed in order to improve the statistical
estimates, it is not possible to save or inspect the numerical convergence for every sample, apart
ensuring convergence in the Newton-Raphson scheme. To check the numerical quality of the
obtained solutions, we studied at least five samples with different generic random boundary
data for each tuple of parameters according to the procedure outlined in section 4.3 of chapter 4.
Figure A.11, shows the convergence of the residual R with increasing resolution for five generic
random samples at low temperature and high disorder strength. We see that the convergence is
comparatively slow due to the high number of random Fourier modes at the conformal boundary,
which couple directly to the logarithmic contributions (cf. the boundary expansion of the fields
as specified in (5.53)-(5.54)). Nevertheless, the convergence plot for the corresponding values
of (o), (see right panel of figure A.11) shows a much faster convergence, since calculating the
related integrals corresponds to extracting the lowest order Fourier coefficient of A, at the horizon
p = 1. Overall, we see that the numerical error is much smaller than the statistical error for all
considered samples.
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Figure A.13: Coefficient convergence plot for the gauge field A; (left) and scalar field ¢ (right) for five
randomly chosen samples at 7T = 1/10, ¥ = 0.45, a9 = 1.4, « = 0: maximum absolute normalized

Fourier coefficient ¢, = % uc% + ﬁ% (where ay and B are the coefficients of the sine/cosine representation)

as a function wave number k,, where the maximum is taken over the remaining p-direction.

Furthermore, it is instructive to study the convergence rate of the spectral coefficients for non-
vanishing disorder. As a result, we clearly see the lag of convergence in the p-direction which is
caused by the logarithmic contributions (cf. A.12). Furthermore, we notice the plateau of Fourier
coefficients for the convergence plot related to the x-direction, which originates from the random
coefficients of the boundary data (figure A.13).

Finally, we would like to comment on the influence of the number of random phases Ngjs
in the spectral representation of the disorder signal (5.62). Despite we checked the qualitative
independence of the results when varying Ng;s over a finite range, a large Ng;s scaling analysis
would be necessary to make further and robust statements about the concrete quantitative results,
like the critical exponent values. Unfortunately this is out of the scope of this thesis.
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A.4 Details of the numerical implementation

In this section we provide additional technical details about the numerical routines. We re-
mark that the projects realized within this thesis were implemented in terms of a self-written C
code named APDES?, that was later updated and transferred into a C++ header library, called
APDES++. Concretely, the LBH and WSM interface projects were implemented with the older
APDES C-style version of the code, while the WSM disorder project was realized on the basis
of the C++ header library. Figure A.14 shows a summarizing flow chart of the overall solution
process, including the numerical core routines.

EOM analysis Geometric analysis,
’ domain decomposition,

coordinate choices

Model building

h 4

reduction, gauging

h 4

Discretization (Nonlinear) algebraic '_1\I_e;v‘;o;1—_R_a1_)I;S(_)n_— i

(spectral methods) problem L solver !

—)(Linear solverHInitial guess)
]

(Update solution)

Test residual

Post-processing

Figure A.14: Flow chart of the overall solution process: From the modeling stage, over the numerical core
routines to the post-processing.

The concrete implementation of the spectral routines is covered in subsection A.4.1 together
with additional information about the implementation of the multi-domain algorithm. Subsec-
tion A.4.2 contains additional information about the implementation of the Newton-Raphson
method, including the underlying linear solver routines. Finally, supplementary routines and
programs that were employed in the scope of the solution process are summarized in subsec-
tion A.4.3.

A.4.1  Spectral discretization

As outlined in section 3.1, the Fourier and Chebyshev methods can be implemented in terms
of the fast Fourier algorithm (FFT). Accordingly, we utilized the highly optimized FFTW li-
brary [77] for transforming between the collocation and coefficient representation of the spectral
expansions.

Within the pseudo-spectral collocation method, we solve directly for the collocation values.
Thus, we only employ the spectral-transformation for computing the derivatives in the coefficient

8 APDES is the acronym for Automatic PDE Solver.
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space by employing the relations (3.3) (Fourier method) and (3.6) (Chebyshev method) and for
interpolating from the given collocation grid to arbitrary points in the domain of integration. As
covered with great detail in [106], the recursive relation (3.6) for obtaining the spectral coefficients
of the derived function is prone to round-off errors, leading to the loss of around 2 significant
digits per derivative operation. We were able to reduce this loss by redefining every single
summation in terms of a Kahan summation [119]. We remark, that the Kahan approach prevents
a parallelization of the recursive summation (3.6). Furthermore, also the FFT algorithm is a
potential source of round-off errors, though the FFTW library provides us with a high-quality
low round-off implementation”®.

The interpolation to arbitrary points within the domain of the collocation grid is implemented
in terms of the Clenshaw algorithm [46], which provides an improved summation technique for
computing the sum

N
f(x)~ ) P (x), (A.69)
k=0

with the spectral coefficients ¢, and the spectral basis functions ®y.

We mention that differentiation-matrices provide another efficient way for implementing the
differentiation operation for pseudo-spectral methods. Though having a complexity of O (N?),
this approach can be more efficient than the FFT method for small to average numbers of col-
location points N. However, we decided to use the FFT algorithm for making the method also
efficient for larger collocation grids.

As mentioned before the convergence of spectral methods can be significantly enhanced by
employing maps to rearrange the collocation points. A review on the analytic mesh refinement
technique that was employed in the scope of the LBH project can be found in the appendix of
[120]. As another example [35] provides some information on the convergence improvement in
the presence of logarithmic endpoint singularities by utilizing quadratic maps. More convergence
improving coordinate transformation can be found in reference [34].

Domain 1 Domain 2

Figure A.15: Illustration of the non-overlapping domain matching with two subdomains in one dimension.

xi(k) denotes the coordinate of the i-th collocation point of the k-th subdomain, and u(k)

. is the function
value at the corresponding grid point.

9We remark that the FFTW library also supports 80bit extended and 128bit precision out of box.
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Multiple domains

For the implementation of the non-overlapping multi-patch method for elliptic boundary value
problems, we followed the approach presented in [168], i.e. we enforce the corresponding Dirich-
let and Neumann conditions directly at the patch boundaries.

Figure A.15 provides a sketch of a one-dimensional configuration of two non-overlapping
domains. For this illustrative setting, the implemented collocation method works as follows:

e We collocate the underlying differential equation on all internal points:

{(1) 1 2 () (2)},

X177 Xy ", X7, Xy 7y Xy

e The boundary conditions are enforced directly at the outer boundaries x(()l)and xf),

e The matching point xél) = x(()2) is present in the grid of both domains. Therefore we must

implement two conditions here: one for ugl) in domain 1 and the other for u(()z) in domain
2. As mentioned before, the Dirichlet and Neumann couplings provide us with the two

desired conditions at the inter-domain boundary, i.e.

auél) B auff)
ox  ox

Uy’ =1 together with (A.70)

for our example.

When coupling domains in more than one-dimension, we interpolate the boundary data of ad-
jacent domains on the neighbor-grid. This interpolation is carried out by means of the spectral
interpolation technique, that was mentioned above. This approach allows us to couple grids
of different resolutions, which is the basis of an economic distribution of the collocation points
according to the convergence properties of the expansions on the different domains.

As an important point, care must be taken when considering more complicated domain se-
tups: A domain with no external boundaries shall not be coupled to its neighbors only by
Neumann conditions, since the regarding boundary value problem is potentially ill-posed!'’. We
addressed this issue by writing a Mathematica based domain connecting routine.

A.4.2 Newton-Raphson

As mentioned in section 3.2, we utilized a standard Newton-Raphson scheme for solving the
nonlinear algebraic problem arising from the spectral discretization. Newton’s method can be

derived by expanding the residual F (2) in a Taylor series and neglecting terms of order AX?2
and higher

=

—

(Xm + Af{) —F (f(m) + = AR+ 0O (Af{z) : (A71)

0This can be seen easily by considering the Laplace equation with Neumann conditions on all boundaries: The
corresponding solution is obviously not unique.
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Setting F (}_fm + A}?) = 0 yields an iteration scheme for obtaining the correction AX of a given

X, that lies more closely to the true solution Xsol:

AX ~ — a—l_:,
0X

-1
X_X> F (Xm) . (A.72)

As a common approach, the Jacobian J;; = dF;/dX; can be approximated by a finite difference
scheme:

Ji (%) ~ Fi (Rt 45) Z_EFi (R —e7) (A.73)

and subsequently be inverted by a standard LU solver for obtaining the correction AX from
(A.72).

However, this approach leads to large memory requirements and exceedingly high computa-
tion times, since the Jacobian related to a spectral collocation method is usually dense and the
corresponding LU algorithm scales as O (Nfo ; al), where Ny, is the total number of unknowns.
As a consequence, we decided to utilize a matrix-free approach!!, which is based on the combi-
nation of the Fréchet derivative functional for generating the Jacobian together with an iterative
linear solver.

Matrixfree Jacobian

The Fréchet derivative of a set of differential equations E <}2, X, X' ’) is obtained by considering
its total differential (cf. reference [34])

p <X, 2/, Xw) . oF (X;:;;/’ X//) - . oF (}_i;;j’ }_f//) 3 . oF ()_i,;;:’ "//) -
[ (X(;;(’, ") . oF <Xa ;{/’, ") . oF <Xa ;:,: ) I N,

where the operator D yields the coordinate-derivatives of the vector of unknowns according to
DX =¥X. )
Expression (A.74) provides a nice analytic form for the matrix-vector product g—;( AX,

—=Am

when the linear relationship of the spectrally discretized versions of X" and X" to X is recalled.
Furthermore this allows us to define the matrix-vector product of an arbitrary vector V' with the

Jacobian | ()_f) at a given X according to

(1) - oF <XB§X> L (z&;;f,xf')p+ap (xaj:x) oo -

where DV now denotes the spectral derivative operation on the given vector V, while the expres-
sions OF ()_f, X', }_f”) /09X, oF <}_€, X/, )?”) /90X’ and F (f(, X/, 55”) /9X" can be predefined analyt-

1 Actually, we still have to compute the inverse of a sparse preconditioning matrix.
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ically. This approach allows us to build the matrix-vector product with O (Njy,) effort, if V and
its spectral derivatives V' and V" are available at no extra cost'?, while the full matrix J (X) is
generated at no point of the procedure, saving us the corresponding memory.

Preconditioned iterative linear solver

The big advantage of this second matrix-free Jacobian-vector-product formulation comes when
combining it with the power of an iterative matrix solver. Since the employed iterative Krylov

subspace solvers rely only on the computation of matrix-vector products of the form | (2) v,

our approximate matrix solver has theoretically O (Nyy,) effort. However, the convergence of
these methods relies on a low condition number of the corresponding matrix. Apart from trivial
special cases, low condition numbers require a preconditioning of the regarding linear system

i (Xm) AX = —F (Xm) , (A.76)
which is obtained by multiplying both sides of the system with an approximation ]p_ri (2m> of
J! ()_fm)

Tk (Xm) i (Xm) AR = ],k (Xm) F (Xm) . (A.77)

While a constant approximation of ]! ()_fm) by a diagonally dominant matrix often suffices
for constant coefficient equations on equidistant grids, we have to put considerable effort in the
generation of a good preconditioner due to the complicated non-constant coefficient equations
under consideration combined with non-equidistant meshes (at least for the Chebyshev method).
We use a second order finite difference approximation of the Jacobian as a preconditioner. This
approximate Jacobian can be obtained by employing relation (A.75):

e By setting V =& fori = 0,...,Ni — 1 we obtain subsequently all rows of the full
Jacobian,

e The approximation is done, when the derivatives Dé; and D?¢; are computed - here we use
second order finite differences instead of the spectral derivative, that is used for the true

Jacobian. The result is a sparse approximation of | (Xm)

The centered second order finite difference stencil on an equidistant grid {¢} ,I(V:O with grid spac-
ing h reads as follows

0 — fi 92 —2fr + fr—
U fer1 — fier ];k ~ Jren j;k fe1 (A78)
9 2h 1 i

While the Fourier method provides us with a equidistant grid, we need to transform the non-
equidistant Chebyshev grids {x;} ,I(\I:O on [—1,1] to an equidistant one as follows:

x(¢) = —cos (), (A.79)

120therwise the effort would be dominated by the spectral derivative operation, yielding O ( Ny 10g Nyorar) for the
FFT implementation.
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where ¢ € [0, 7] and ¢, = 7wk/N (for the Lobatto grid).

Furthermore, we need to built the stencils that touch the grid boundaries with additional
care. For Fourier methods, we need to take care of the periodic boundary conditions, when
implementing the finite difference stencil on the Fourier grid. For the Chebyshev methods, we
need to take the singular boundaries into account, when transforming the derivatives from the
equidistant grid back onto the Chebyshev nodes. In particular we have

gf; _ gg;’f ~sin(@) (A.80)
LT () iy o] -
-5 )

= —sin(®) L + 3005 sin (@) L +-5in () 7 (282

4 4 2 3 2 2 3 4
L S G WL Lo S Y AN B A
Ft T 9¢t dx 8(_?2 93 ¢ ox2  9¢g? C T ag ox*
_ of 2 P g2 @ °f o'f
= —cos (&) Eri 3 cos” (¢) 32 4sin” (¢) Freias 6 cos (&) sin? () Eycia sin* (&) 3 (A.83)
Considering the left end point of the interval, i.e. ¢ = 0, we see that relation (A.80) becomes
degenerate and we need to use (A.81) to obtain df /dx from 9?f/9¢>. The same happens for
92f/9x> when considering (A.81). Accordingly, at ¢ = 0 we need to obtain the fourth order
derivative 0*f/9¢* on the ¢-grid to obtain a non-singular expression for 9*f/dx> from (A.83).
Consequently, we also need the second order finite difference approximation of the 9*f/d¢*
derivative

*fe ~ Jera = 4firn +6fk —4fi1 + fio 2
3zt it

(A.84)

for obtaining the proper approximations of df/dx and 92f/dx> on the non-equidistant grid.
This makes preconditioning for the Chebyshev method substantially harder than for the Fourier
method.

Nevertheless, the additional efforts pay out, since the resulting approximation of the Jacobian
is only a sparse matrix!3. This matrix does not only need considerably less memory space', but
can be inverted much faster, than the full Jacobian. So overall the real runtime of our matrix-
solver is bounded by the effort of a sparse matrix LU, which depends on the concrete block-size
and the distribution of its off-diagonal entries. In practice we used the high-performance sparse
matrix solvers provided by the SLU library [146] and the Intel MKL Pardiso implementation
[167, 166].

Finally, we implemented the GMRES [177] and BiCGSTAB [194] Krylov subspace solvers for
the iterative solving process. As mentioned before, these solvers rely only on products of the
preconditioned matrix with vectors. Importantly the GMRES and BiCGSTAB methods are appli-

13More specifically, we obtain a doubly bordered block-diagonal matrix, when considering multiple domains. The
off-diagonal borders are a result of the direct domain-couplings via the aforementioned Dirichlet/Neumann condi-
tions.

14The sparse preconditioning matrix that was used throughout the high-accuracy multi-domain LBH project had
only about 1% non-trivial entries.
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cable to non-symmetric matrices. A good review on Krylov subspace methods and specifically
on the GMRES and BiCGSTAB solvers can be found in reference [155].

A.4.3 Miscellaneous
Additional tools for the realization of the projects within this thesis were:

e Wolfram Mathematica for the preparation of the EOM, analysis of the coordinates, prepa-
ration of the meshes, data visualization and data fitting,

e GNU parallel [190] for the parallel data production related to the study of disorder effects
in WSMs,

e gnuplot [209] for data visualization.

As a last point we restrained from using arbitrary precision numerics, as provided by the BOOST
C++ libraries [33], since they cannot be combined with the high-performance FFTW and sparse-
matrix routines of SLU or Intel MKL. Nevertheless, since the entire APDES++ library uses C++
templates for the data-type specification, an arbitrary precision data container would be com-
mensurable with the design of APDES++, if the regarding FFT and sparse-matrix routines are
provided.
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Abbreviations and notation

We use Greek letters for D = d + 1-dimensional indices running from 0 to d and Latin letters
starting from {a,b,c, ...} for d-dimensional indices running from 0 to d — 1, where not indicated
otherwise. Latin letters starting from {i,j,k, ...} are used for generic indices and non-coordinate
tensor expressions.

The following abbreviations are used throughout the thesis:

aAdS  asymptotically anti-de Sitter

AdS anti-de Sitter

AHC anomalous Hall conductivity

AHE anomalous Hall effect

ARPES angle resolved photoemmission spectroscopy
BB black brane

BC boundary condition

BVP boundary value problem

CFT conformal field theory

CME chiral magnetic effect

CPME  chiral pseudo-magnetic effect

DSI discrete scale invariance
FFT fast Fourier transform
FG Fefferman-Graham

GR general relativity

GL Gregory-Laflamme

KK Kaluza-Klein

LBH localized black hole

NBS non-uniform black string
ODE ordinary differential equation
PDE partial differential equation

QCpP quantum critical point
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QCR
QPT
SM
SYM
UBS
VEV
MWR
WSM

quantum critical region
quantum phase transition
standard model
supersymmetric Yang-Mills
uniform black string

vacuum expectation value
method of weighted residuals

Weyl semimetal
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