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Abstract. Due to economical, technical, or political reasons all over the world about 100 nu-
clear power plants have been disconnected until today. All these power stations are still waiting
for their complete dismantling which, considering one reactor, causes costs of up to one Bil. Eu-
ros and lasts up to 15 years. In this paper we present a resource-constrained project scheduling
approach minimizing the total discounted cost of dismantling a nuclear power plant. For the re-
spective NP-hard optimization problem, we introduce an appropriate project scheduling model
with minimum and maximum time lags, renewable and cumulative resources as well as mul-
tiple execution modes. Optimal solutions can be gained from a relaxation based enumeration
approach which may be incorporated into a branch-and-bound algorithm.
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1 MOTIVATION

On April 26th, 2002 the German government passed a law with the purpose of phasing
out of nuclear energy within three decades. In general, two facts are regulated by the law
that is abbreviated by “AtG-E”. Firstly, it prescribes the remaining electrical power each of
the 19 German nuclear power plants is allowed to produce until it is decommissioned (§1 (1)
AtG-E), and secondly, it rules that contaminated material arising from the dismantling must be
stored at the former power plant’s location until a national repository exists (§9a (2) AtG-E). In
negotiations with the government, plant operators obtained the right to distribute the production
of the remaining electrical power among their power stations, such that less efficient power
plants can be disconnected earlier in order to enlarge the residual term for more efficient ones
(§7 (1d) AtG-E). Nevertheless, in 2034 no nuclear power plant is allowed to operate anymore.
However, due to the distribution of the remaining nuclear power, the first minor efficient power
plants have already been disconnected, e.g. in 2003 the nuclear power plant in Stade was
decommissioned. Further reactors, like in Greifswald or Rheinsberg, were previously taken out
of operation because of economical and technical reasons. Actually, all over the world there
exist about 100 power stations that have stopped producing nuclear energy and are still waiting
for their complete dismantling. Considering that a dismantling project for one nuclear power
plant causes cost of 500 Mio. to one Bil. Euros (cf. [6]), one can imagine that there exists a
significant market for such projects and appropriate planning software.

In general, two common accepted variants of dismantling a reactor can be distinguished,
which differ by the point of time the reactor is removed. In case of immediate dismantling the
disassembling of the reactor is begun as soon as the power plant has been disconnected. In
contrast, in case of safe enclosure and postponed dismantling one begins to remove the nuclear
structure of the power station after it has been left as it was for a specified number of years (cf.
[6]). The main argument for the latter case are lower costs today due to the application of dis-
count rates. Moreover, lengthy delays decrease radioactivity over the time period such that the
worker dose and public exposure are reduced. Nevertheless, postponed dismantling will require
a continuing need for security, surveillance and maintenance. However, the direct dismantling
is the active policy in many countries, e.g. Germany and Sweden, as it is in accord with the
concept of a sustainable development. Regarding the ‘polluter pays’ principle, it prevents from
inter-generational tensions (cf. [6]). Furthermore, this concept ensures that a high qualified
staff for the challenging dismantling tasks is available, as nobody possesses better knowledge
on the structures and facilities of a nuclear power plant than the staff that operated it or even was
involved in its construction. Furthermore, we have to consider social aspects regarding the staff.
As with phasing out of nuclear power in Germany there is little need for the highly specialized
employees of the disconnected power plants, the only opportunity for keeping these employees
occupied any longer is to involve them in an immediately starting dismantling project.

Although immediate dismantling compered to safe enclosure and postponed dismantling is
disadvantageous in regard to discounted costs, there exist opportunities to reduce this disad-
vantage. In general, our approach makes use of the fact that the entire dismantling project can
be subdivided into individual activities, each of which leading to a disbursement. Of course,
the discounted cost of each activity depends on the date it is processed. Consequently, the to-
tal discounted costs of a dismantling project can be optimized by scheduling the activities in
an appropriate manner, where a number of constraints must be regarded. The constraints are
necessary due to technological and logical dependencies between several activities as well as
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scarce resources which are necessary to perform the individual activities. That is, we consider
a resource-constrained project scheduling problem optimizing the net-present-value of the im-
mediate dismantling. In the subsequent section, we present the optimization problem in detail
and give an introduction to necessary concepts of resource-constrained project scheduling.

2 PROBLEM DESCRIPTION AND MODEL

Under long-term considerations, the dismantling of a nuclear power plant can be described
as a project containing n sub-projects or disassembling sections each of which leading to a
disbursement depending on the manner it is processed. For simplicity we call these sub-projects
activities. These activities have to be scheduled, such that the resulting sum of discounted
disbursements is minimized and a number of constraints are met. These constraints can be
summarized as follows.

• temporal constraints: minimum and maximum time lags between activities must be re-
garded

• mode constraints: most activities can be executed in two modes –internal and external
processing– that influence the disbursement of the activity

• resource and inventory constraints: each activity requires some scarce resources, where
the requirement may depend on the mode the activity is executed in

Subsequently, we describe the scheduling problem under consideration in more detail and
give an introduction to necessary terms and concepts of resource-constrained project schedul-
ing. A detailed introduction to this terms and concepts is given by Zimmermann et al. [7]. Let
i = 1, . . . , n be the activities of the project in question. By pi ∈

�
we denote the duration

or processing time of activity i, which is assumed to be carried out without interruption. In
addition, we introduce the fictitious activities 0 and n + 1 representing the beginning and com-
pletion, respectively, of the project, where p0 = pn+1 = 0. Then V = {0, 1, . . . , n + 1} is the
set of all activities.

Let Si ≥ 0 be the start time of activity i ∈ V , where we set S0 := 0 (i.e. the project always
begins at time zero). Then Sn+1 represents the project duration. We assume that Sn+1 ≤ d,
where d ∈

�
is a prescribed maximum project duration. For the problem under consideration

this maximum project duration is 12 to 15 years, depending on negotiations between the power
station operator and legislator. A sequence S = (S0, S1, . . . , Sn+1) with Si ≥ 0 (i ∈ V ) and
S0 = 0 is called a schedule.

Let us take a look at the temporal constraints between the project activities. A minimum
time lag dmin

ij ∈ � ≥0 or maximum time lag dmax
ij ∈ � ≥0 can be prescribed between the start of

two different activities i and j, that is, Sj − Si ≥ dmin
ij or Sj − Si ≤ dmax

ij , respectively. By
minimum time lags we model release dates for activities regarding the fact that some activities
cannot start before the radioactivity has been decreased over the time period. Furthermore, it
takes some time until dismantling licenses are granted which also leads to minimum time lags.
For dmin

ij = pi we receive a special type of temporal constraint, called precedence constraint.
Precedence constraints are frequently used for activities starting at the earliest after several pre-
ceding activities have been finished due to existing logical dependencies. Take a disassembling
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sequence for example. Maximum time lags are necessary in order to represent regulatory li-
censes’ duration of validity to perform a disassembling section as well as to ensure that an
activity starts as soon as a preceding activity has been finished, e.g. several dismantling tasks
must immediately be followed by a decontamination activity. Finally, to ensure that the project
is terminated by time d, we introduce the maximum time lag dmax

0,n+1 := d.

It is well-known that an activity-on-node network N can be uniquely assigned to the project
in question. To do so we identify the activities i ∈ V with the nodes of network N . If there
is a minimum time lag dmin

ij , we introduce an arc 〈i, j〉 with weight δij := dmin
ij . If there is a

maximum time lag dmax
ij , we introduce an arc 〈j, i〉 with weight δji := −dmax

ij . Due to maximum
time lags, network N generally contains cycles. Let E be the set of arcs of network N with
m =| E |. Then the above inequalities for the minimum and maximum time lags can be
summarized as

Sj − Si ≥ δij (〈i, j〉 ∈ E) (1)

representing all kinds of temporal constraints. A schedule S that satisfies this constraints (1) is
termed time-feasible. The set of time-feasible schedules is denoted by ST . It holds that ST 6= ∅
exactly if network N does not contain any cycle of positive length (cf. [1]).

For many activities i there exists a set M := {0, 1} of two alternative execution modes mi

(execution by internal (mi = 0) or external (mi = 1) staff). However, not all activities can
be performed by an external service provider such that Mi ⊆ M denotes the set of admissible
modes for an activity i and a sequence M = (m0,m1, . . . ,mn+1) with mi ∈ Mi (i ∈ V ) and
m0 = mn+1 = 0 is called a mode assignment. An introduction to multi-mode project schedul-
ing can be found in Heilmann [3]. The selected mode mi influences the disbursement cimi

of
an activity i but not its processing time pi, as the latter is fix due to technological reasons. Gen-
erally, engaging an external staff leads to a higher disbursement than using internal employees,
i.e. ci1 ≥ ci0.

Carrying out the activities of the underlying project requires scarce resources k ∈ Rρ like
manpower, machines, special equipment or perhaps an amount of space in the dry well. As
the available capacity Rk ∈

�
of all these resources in each time period is independent from

its use in former periods, they are called renewable resources (cf. [4]). Moreover, we assume
the capacity of external service providers not being scarce. Then, let rimik ∈ {0, 1, . . . , Rk}
be the amount of resource k used by activity i if it is performed in mode mi. Keep notice
that, in general, only the requirement for manpower varies with the underlying mode, as the
utilization of machines and equipment as well as the necessary amount of space in the dry well
are independent from internal or external processing. Given schedule S = (Si)i∈V ,

A(S, t) := {i ∈ V | Si ≤ t < Si + pi}

is the set of activities in progress, also called the active set, at time t ∈ [0, d]. Furthermore,
given a mode assignment M = (mi)i∈V in addition to schedule S,

rk(M, S, t) :=
∑

i∈A(S,t)

ri0k · (1 − mi) + ri1k · mi

is the amount of resource k ∈ Rρ used at time t ∈ [0, d], such that the renewable-resource
constraints are

rk(M, S, t) ≤ Rk (k ∈ Rρ, 0 ≤ t ≤ d). (2)
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In dismantling projects of nuclear power plants, we make use of an additional type of scarce
resource different from renewable ones. As mentioned in Section 1, contaminated material
arising from the dismantling must be stored at the former power station’s location. For this
purpose an interim storage facility with sufficient capacity must be built. An additional storage
is necessary to keep material from disassembling activities until it can be processed or recycled
by a processing activity. Usually, the turbine house can be used for this purpose after its interior
has been cleared out. Resources that are depleted and replenished during the project are called
cumulative resources (cf. [4]). The availability of a cumulative resource k at a given time t

results from all positive and negative requirements (depletions and replenishments, respectively)
that have occurred by time t. The inventory level in resource k is supposed to be bounded from
below by Rk = 0 and from above by the capacity of the storage facility Rk ∈ � ≥0.

Let Rγ be the set of all cumulative resources and let rik ∈ � denote the inventory change
of resource k caused by activity i (notice that rik does not depend on the mode activity i is
executed in). If rik > 0, activity i replenishes resource k by rik units, and if rik < 0, resource k

is depleted by −rik units. We assume that resources k ∈ Rγ are depleted at completion times
and replenished at start times of activities. To simplify writing, we also suppose that an activity
cannot deplete and replenish one and the same cumulative resource. The initial stock r0k of all
cumulative resources k is set to Rk illustrating that the respective storage facility is not available
at the project’s start. The activities i representing the construction of the interim storage facility
and the close up of the turbine house’s interior, deplete the respective storage k completely (i.e.
rik = −Rk) such that the storage becomes available. Accordingly, at activity i representing the
demolition of the turbine house, the respective storage k is replenished by rik = Rk units and
no further material can be stored afterwards. Furthermore, all disassembling tasks replenish a
storage, whereas activities which process the disassembled material deplete it.

Now let V −
k := {i ∈ V | rik < 0} and V +

k := {i ∈ V | rik > 0} denote the sets of all
activities i ∈ V depleting and replenishing, respectively, resource k. For given schedule S

Ak(S, t) := {i ∈ V −
k | Si + pi ≤ t} ∪ {i ∈ V +

k | Si ≤ t}

is the active set of all activities that determine the inventory level

rk(S, t) :=
∑

i∈Ak(S,t)

rik

in resource k at time t. The inventory constraints can now be written as

Rk ≤ rk(S, t) ≤ Rk (k ∈ Rγ, 0 ≤ t ≤ d). (3)

A schedule S that satisfies (2) is called (renewable-)resource-feasible and a schedule S which
satisfies inventory constraints (3) is termed inventory-feasible.

A time-, resource- and inventory-feasible schedule is termed feasible. The set of feasible
schedules is denoted by S .
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The underlying project scheduling problem consists of minimizing objective function f(S,M)
on the set S of feasible schedules. In detail, this problem reads as follows:

Min! f(S,M) :=
∑

i∈V
(ci0 · (1 − mi) + ci1 · mi) · (1 + r)−Si

s. t. Sj − Si ≥ δij (〈i, j〉 ∈ E)
S0 = 0
mi ∈ Mi (i ∈ V )
rk(M, S, t) ≤ Rk (k ∈ Rρ, 0 ≤ t ≤ d)
Rk ≤ rk(S, t) ≤ Rk (k ∈ Rγ, 0 ≤ t ≤ d)
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Given an interest rate r, the objective function f(S,M) of problem (P) claims to minimize
the total discounted disbursements with respect to the temporal, mode, resource and inventory
constraints. As (P) is a generalization of the resource-constrained project scheduling problem
with maximum time lags and antiregular objective function (cf. [4]), it can easily be shown that
finding a feasible solution for (P) is NP-hard in the strong sense.

3 RELAXATION BASED SCHEDULE-GENERATION SCHEME

For solving project scheduling problem (P) a so-called relaxation-based approach turns out
to be expedient, which has been devised by De Reyck and Herroelen [2]. If we omit the resource
and inventory constraints (2) and (3) from problem (P), the resulting resource relaxation (RP)
has feasible region ST instead of S , i.e. only the temporal constraints (1) must be considered.
If we additionally tighten the mode constraints fixing the mode of internal processing for each
activity, the objective function of (P) becomes antiregular, i.e. the objective function value
decreases with increasing start times Si of activities i ∈ V . For antiregular functions f , the latest
schedule LS (i.e. the vector of latest start times LSi of activities i ∈ V ), which represents a
maximal point of polytope ST , is optimal for (RP). This is due to the fact that internal processing
leads to a smaller disbursement than engaging an external service provider (ci0 ≤ ci1) and the
discounted disbursement of an activity decreases with increasing Si. The latest schedule LS

can efficiently be calculated by a label correcting algorithm (cf. [4]), which requires O(mn)
time.

If schedule LS is resource- and inventory-feasible, we have found an optimal solution. Oth-
erwise, there exist points in time t where the resource or inventory constraints (2) and (3) are
violated. We distinguish three types of conflicts with renewable and cumulative resources.

Mode-independent resource conflict: for renewable resources k like machines, equipment or
space in the dry well the used amount at time t does not depend on the selected mode mi

for any activity i ∈ V and exceeds the maximum resource capacity Rk.

Mode-dependent resource conflict: like the previous resource conflict, but the resource usage
depends on the selected modes for some activities i ∈ V (e.g. manpower).

Inventory conflict: we speak of an inventory excess if the inventory in some resource k ex-
ceeds the maximum inventory level. One can imagine that generally also a situation
occurs, where the inventory in some resource k falls below a minimum inventory level.
In the problem under consideration this situation can be excluded because of an existing
precedence constraint 〈i, j〉 between each inventory replenishing (disassembling) task i

and the corresponding inventory depleting activity j with rjk = −rik.
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If a mode-independent (mode-dependent) resource conflict occurs, not all activities from
active set A(S, t) can be processed at the same time (or in the selected mode). A set F of
activities that cannot be executed simultaneously (in the selected mode), because

∑

i∈F

ri0k · (1 − mi) + ri1k · mi > Rk for some k ∈ Rρ,

is called a forbidden set (mode forbidden set).

It has been shown by Bartusch et al. [1] that a schedule S is resource-feasible precisely if
for any inclusion-minimal forbidden set F there exist two activities i, j such that activity j is
completed before activity i starts, i.e. Sj + pj ≤ Si (we then say that forbidden set F has been
broken up). This means that in case of a mode independent resource conflict at time t, we have
to partition forbidden active set A(S, t) into two sets A and B such that B contains an activity j

from each inclusion-minimal forbidden set F ⊆ A(S, t). If we then introduce the precedence
constraints

Si − Sj ≥ pj (j ∈ B) (4)

between some activity i ∈ A and all activities j ∈ B, we break up all inclusion-minimal
forbidden sets F ⊆ A(S, t) containing activity i ∈ A.

Since this property holds for any partition {A,B} of A(S, t), without loss of generality we
may restrict ourselves to inclusion-minimal sets B, which are referred to as minimal delaying
alternatives in literature. An efficient recursive procedure for computing all minimal delaying
alternatives for a given forbidden set F can be found in Neumann et al. [4]. We note that set A

is a non-forbidden set and thus all activities i ∈ A may be processed jointly.

Treating the mode-dependent resource conflicts is a little bit harder, as in addition to the
precedence constraints (4) also changes in the mode assignment become appropriate to break
up a mode forbidden set. Since external processing –if possible– requires no internal manpower
and the resource capacity of external service providers is assumed not to be scarce, a mode for-
bidden set is broken up, if each activity j ∈ B is either processed external or completed before
some activity i ∈ F \ B. That is, for each minimal delaying alternative B and some activity
i ∈ F \ B we receive up to 2|B| possibilities to break up the underlying mode forbidden set.

In the case of an inventory excess for a cumulative resource k at time t

∑

i∈Ak(S,t)

rik > Rk

holds true and Ak(S, t) is termed a k-surplus set F . Similarly to the approach for mode-
independent resource conflicts, we introduce a concept of minimal inventory forbidden sets,
which will allow us to define appropriate minimal delaying alternatives for resolving an in-
ventory excess. In contrast to the case of renewable resources, our minimality concept cannot
refer to inclusion-minimality, because resource demands may be positive or negative. That is
why we define a k-surplus set F to be a minimal k-surplus set if no replenishing activity can
be removed from F and no depleting activity can be added to F without loosing the surplus
property. In Neumann et al. [4] it is shown that a schedule S is inventory-feasible if and only
if each minimal k-surplus set F contains a depleting activity i ∈ V −

k and a replenishing activity
j ∈ V +

k such that activity i is completed before activity j has been started (i.e. Si + pi ≤ Sj).
The corresponding minimal forbidden set satisfying this condition is said to be broken up in
schedule S.
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Now consider an inventory excess for some resource k ∈ Rγ at time t. A minimal delay-
ing alternative B for active k-surplus set Ak(S, t) is an inclusion-minimal subset of Ak(S, t)
containing a replenishing activity j of each minimal k-surplus set F that can be obtained from
Ak(S, t) by deleting replenishing and adding depleting activities. By introducing the prece-
dence constraints

Sj − Si ≥ pi (j ∈ B)

between some activity i ∈ A = V −
k \ Ak(S, t) (i.e. a depleting activity i being completed after

time t) and all activities j ∈ B, we break up all those of the above minimal k-surplus sets F

containing i.

The relaxation-based approach for problem (P) is now as follows. We start by computing
the latest schedule LS for the resource relaxation (RP) and choose internal processing for each
activity i ∈ V (i.e. M = (0)i∈V ). If LS is resource- and inventory-feasible, we have found
an optimal schedule. Otherwise, we determine some activity start time t for that schedule LS

causes a resource or inventory conflict. By highest priority we break up all mode-independent
resource conflicts. If actually no such conflicts occurs anymore, an excess of the inventory is re-
solved, and finally, if actually no mode-independent resource conflict or inventory excess exists,
mode-dependent resource conflicts are treated. Within the same type of conflict that one, which
occurs at latest time t, is resolved first. For breaking up forbidden sets A(S, t) or Ak(S, t),
respectively, we compute a minimal delaying alternative B for F and refine relaxation (RP) by
the corresponding precedence constraints (4) or, in the case of a mode-dependent resource con-
flict, also by altering the mode assignment. Each possibility to resolve an inventory or resource
conflict leads to a (descending) node EN in the generated enumeration tree. We choose one
of theses descending nodes EN and re-perform the determination of the latest schedule LS,
which either shows the refined relaxation to be unsolvable, because we have generated a cycle
of positive length in network N that was augmented by arcs 〈i, j〉 representing the additional
precedence constraints, or which yields a new schedule S. We re-iterate these steps until we
have reached a deadlock (i.e. N contains a cycle of positive length) or a feasible schedule S has
been found. In doing so we perform a depth first search. As soon as we obtain a deadlock or a
feasible schedule, we go back to the last node in our enumeration tree for that not all descen-
dants have been examined yet and continue the enumeration, i.e. we perform backtracking.

4 TRUNCATED BRANCH AND BOUND ALGORITHMS

The relaxation based schedule-generation scheme introduced in Section 3 is expanded to a
branch-and-bound algorithm. In each iteration, we branch over all pairs (i, B) for which B is
a minimal delaying alternative for set A(S, t) or Ak(S, t) and i is some activity from set A =
A(S, t)\B or A = Ak(S, t)\B, respectively. Remember, that in the case of a mode-dependent
resource conflict, for each pair (i, B) we additionally have to branch over all combinations
resulting from altered mode assignments and added precedence relations. As usual, if in a node
of the enumeration tree an appropriate lower bound LB on objective function value f(S,M)
(e.g. f(LS,M) of the resource relaxation (RP) considered in the actual node) exceeds an
upper bound UB on f(S,M), we can stop branching the examined node. Furthermore, we
reduce the number of nodes being examined by adding additional temporal constraints within
a preprocessing procedure and by applying dominance rules in order to fathom enumeration
nodes that are dominated by some nodes which have already been examined (cf. [5]). The
introduced approach is promising to generate exact solutions for problem instances containing
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up to 30 activities. For larger problem instances we propose truncated versions of the branch-
and-bound algorithm.

We receive a solution with performance guarantee ε if we stop branching a node EN in the
enumeration tree as soon as for the lower and upper bound (1 + ε) · LB(EN) ≥ UB (instead
of LB(EN) ≥ UB) holds true. A heuristic A is said to have a performance guarantee ε if
fA(PI)−f∗(PI)

f∗(PI)
≤ ε for all problem instances PI and provided that f ∗(PI) > 0, where fA(PI)

is the objective function value for a feasible solution of PI computed by algorithm A and
f ∗(PI) is the minimum objective function value for instance PI . Such a heuristic A is called a
performance-guaranteed algorithm.

Another truncation of the branch-and-bound algorithm is received by sketching it to a filtered
beam search procedure (cf. e.g. [4]). By ϕ and β < ϕ we denote the integers corresponding to
the filter width and the beam width, respectively. When we branch from an enumeration node
P , only for the ϕ descending nodes EN ′ that have smallest objective function value f , lower
bound LB(EN ′) is calculated, and only the β nodes with smallest lower bounds are added to
the enumeration tree. In contrast to the performance guaranteed algorithm, we may influence
the depth of the enumeration tree for a filtered beam search algorithm, but neither a performance
guarantee nor the computation of a feasible schedule in the case of S 6= ∅ is ensured.
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