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Brno University of Technology; Veveřı́ 95, Brno, 602 00, Czech Republic

E-mail: vorechovsky.m@fce.vutbr.cz

Keywords: Multivariate random field, Karhunen-Loève expansion, Orthogonal transformation
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Abstract. A practical framework for generating cross correlated fields with a specified
marginal distribution function, an autocorrelation function and cross correlation coefficients
is presented in the paper. The approach relies on well known series expansion methods for sim-
ulation of a Gaussian random field. The proposed method requires all cross correlated fields
over the domain to share an identical autocorrelation function and the cross correlation struc-
ture between each pair of simulated fields to be simply defined by a cross correlation coefficient.
Such relations result in specific properties of eigenvectors of covariance matrices of discretized
field over the domain. These properties are used to decompose the eigenproblem which must
normally be solved in computing the series expansion into two smaller eigenproblems. Such a
decomposition represents a significant reduction of computational effort.
Non-Gaussian components of a multivariate random field are proposed to be simulated via
memoryless transformation of underlying Gaussian random fields for which the Nataf model is
employed to modify the correlation structure. In this method, the autocorrelation structure of
each field is fulfilled exactly while the cross correlation is only approximated. The associated
errors can be computed before performing simulations and it is shown that the errors happen
especially in the cross correlation between distant points and that they are negligibly small in
practical situations.
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1 INTRODUCTION

The random nature of many features of physical events is widely recognized both in industry
and by researchers. The randomness of a gust wind, random structural features of materials,
random fluctuations in temperature, humidity, and other environmental factors, all make the
characterization provided by deterministic models of mechanics less satisfactory with respect
to predictive capabilities. However, the entire problem of uncertainty and reliability can be
addressed in a mathematically precise way and the random characteristics of nature can be
addressed by computational models. For example, spatially fluctuating values of material pa-
rameters can be conveniently represented by means of random fields (e.g. strength, modulus
of elasticity, fracture energy, etc). Except for the narrow class of problems that can be solved
analytically, the solution to the variety of complex engineering problems involving uncertainty
regarding mechanical properties and/or the excitations they are subjected to must be found by
means of simulation. The only currently available universal method for accurate solution of
such stochastic mechanics problems is the Monte Carlo technique.

One of the most important stages of the Monte Carlo type simulation technique as applied
to systems with random properties (or systems subjected to random excitations) is the genera-
tion of sample realizations of these random properties. The generated sample functions must
accurately describe the probabilistic characteristics of the corresponding stochastic processes or
fields. Moreover, since the analyzed problems are usually computationally intensive (e.g. large
scale nonlinear finite element computations), an analyst must select a simulation technique giv-
ing stable solutions with a small number of samples.

Simulation of non-Gaussian processes is mostly based on memoryless transforms of the
standard Gaussian processes. These processes are known as translation processes [2]. The cen-
tral problem is to determine the corresponding Gaussian covariance matrix (or equivalently, the
Gaussian power spectral density function) that yields the target non-Gaussian covariance matrix
after the memoryless transformation. Yamazaki and Shinozuka [11] proposed an iterative al-
gorithm for generating samples of non-Gaussian random fields with prescribed spectral density
and prescribed marginal distribution function based on iterative updating of the power spectral
density. Recently, Sakamoto and Ghanem [8] and Puig et al. [7] utilized Hermite polynomial
chaos method. In their method, the non-Gaussian processes are simulated by expanding the
non-Gaussian distribution using Hermite polynomials with the standard Gaussian variable as
argument. The correlation structure is decomposed according to the KLE of the underlying
Gaussian process. The accuracy of this representation was studied by Field and Grigoriu [1]
who pointed out some limitations of the approach. Grigoriu [3] criticize the algorithm for its
computational intensity and questionable accuracy. Phoon et al. [6] have recently proposed
simulation of non-Gaussian processes via Karhunen-Loéve expansion with uncorrelated non-
Gaussian coefficients of zero mean and unit variance. The key feature of their technique is that
the distribution of the random coefficients (random variables) is updated iteratively.

In the present paper (which is a shortened version of [9]) the well known orthogonal trans-
formation of covariance matrix is chosen for representation of a Gaussian random field, and
based on this method a simple extension to the simulation of the target type of multivariate
stochastic fields is shown. After a brief review of the method in the context of univariate ran-
dom fields (Sec. 2) we proceed to cross correlated Gaussian vector random fields (Sec. 3) and
the proposed method. Sec. 4 shows how the presented approach can be extended for simulation
of non-Gaussian vector random fields via transformations of an underlying Gaussian random
field. Numerical examples and examples of applications of the method have been dropped due
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to space limitations, they can be found in [9].

2 SERIES EXPANSION METHODS FOR THE SIMULATION OF A RANDOM FIELD

Suppose that the spatial variability of a random parameter is described by the Gaussian ran-
dom field H(x), where x ∈ Ω is a continuous parameter (vector coordinate), and Ω is an open
set of R

dim describing the system geometry. The autocorrelation function CHH(x, y) describes
the autocorrelation structure of a random field, i.e., the the spatial variability. It is a function of
some norm of two points x, y ∈ Ω : ‖x, y‖ = {‖x1, y1‖, . . . , ‖xdim, ydim‖}. If the covariance
function depends on distance alone, the function is said to be isotropic.

We will use the orthogonal transformation of the covariance matrix (sometimes called also
the proper orthogonal transformation). The method is well-known in the simulation of univari-
ate random fields and will provide a good basis for illustration of the proposed methodology
for the simulation of multivariate random fields. The important point is that the target random
functions can be suitably simulated by series expansion methods expansion using a finite num-
ber deterministic functions and random variables – coefficients. By means of these random
variables ξj(θ), the approximated random field can be expressed as a finite summation (series
expansion):

Hu(θ) =

Nvar∑

j=1

ξj(θ)
√

λu
j

[
Φ

u

j

]T (1)

where λu

j and Φ
u

j are the solutions of the eigenvalue problem: Σuu Φ
u

j = λu

j Φ
u

j , Σuu is
the covariance matrix of the N (nodal) field values u. Nvar ≤ N represents the truncation in
the above discrete spectral representation of the field (random vector). The method is strongly
related to the Karhunen-Loève expansion (KLE) method and can be extended to deliver contin-
uous representation of a field by Kriging (the method is then known as the Expansion optimal
linear estimation – EOLE).

3 CROSS CORRELATED GAUSSIAN RANDOM FIELDS

It is usual that more than one random property governs the evolution of a system. Consider
for instance Young’s modulus, Poisson’s ratio or strength in mechanical problems, etc. In a
probabilistic concept, all these quantities can be modeled by random fields.

The present paper deals with cases when all fields simulated over a region Ω share an iden-
tical autocorrelation function over Ω, and the cross correlation structure between each pair of
simulated fields is simply defined by a cross correlation coefficient. Such an assumption en-
ables one to perform the modal transformation in two “small” steps, not in one “big” step, as
proposed in [12]. The advantage is a significant reduction in the dimension of the eigenvalue
problem considering the fact that the modal decomposition of the given autocorrelation function
(KLE) or matrix (EOLE) is done only once. An illustration of the algorithms of both methods
and their comparison with a detailed description follow.

The key idea of the proposed method is that all cross correlated fields (components) are
expanded using a certain of eigenfunctions/vectors, but the sets of random variables used for
the expansion of each field are cross correlated. In other words, each field is expanded using a
set of independent random variables, but these sets must be correlated with respect to the cross
correlation matrix among all expanded random fields.
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3.1 The proposed method for simulation of Gaussian cross-correlated random fields

In this section, we present some definitions needed for the problem formulation, notations
and basic facts used throughout the paper. The most important properties of defined items are
stated.

Cross-correlation matrix of random fields C is a square symmetric positive definite matrix
of order NF with elements Ci,j ∈ (−1; 1) for i 6= j and Ci,j = 1 for i = j. Matrix C is a cross-
correlation matrix and defines the correlation structure among NF random fields.

The cross correlation matrix C has NF real, positive eigenvalues λC

j , j = 1 . . . , NF asso-
ciated with NF orthonormal eigenvectors Φ

C

j , j = 1, . . . , NF . After ordering them so that
λC

1 ≥ λC

2 ≥ . . . ≥ λC

NF
the eigenvector matrix reads:




Φ
C

1 Φ
C

2 . . . Φ
C

NF,r
. . . Φ

C

NF

φC

1,1 φC

1,2 . . . φC

1,NF,r
. . . φC

1,NF

φC

2,1 φC

2,2 . . . φC

2,NF,r
. . . φC

2,NF

...
... . . . . . . . . .

...
φC

NF ,1
φC

NF ,2
. . . φC

NF ,NF,r
. . . φC

NF ,NF




(2)

and the associated eigenvalues

Λ
C = diag

(Φ
C

1 Φ
C

2 . . . Φ
C

NF,r
. . . Φ

C

NF

λC

1 λC

2 . . . λC

NF,r
. . . λC

NF

)

Each j-th eigenvector Φj
C is normalized to have an Euclidean length of 1, therefore

[
Φ

C
]T

Φ
C =

I, in which I is an identity matrix. The spectral decomposition of correlation matrix C reads:
CΦ

C = Φ
C
Λ

C. Let us denote Φ
C =

(
Φ

C

I Φ
C

II

)
and Λ

C =
(
Λ

C

I Λ
C

II

)
, where Φ

C

I =(
Φ

C

1 Φ
C

2 . . . Φ
C

NF,r

)
is the (NF ×NF,r) matrix and Λ

C

I = diag
(
λC

1 , . . . , λC

NF,r

)
is the (NF,r×

NF,r) diagonal matrix. Partitioning of the matrices can be used later in the reduction of com-
putational effort for the simulation of random fields. It can be shown that a large amount of
computer memory can be saved at a given level of accuracy if one uses Φ

C

I instead of full Φ
C

(with associated Λ
′s). The idea is that the largest eigenvalues and their corresponding eigenvec-

tors dominate the foregoing transformation, so the second part of the eigenvalues/vectors can
be neglected and the approximate spectral representation of matrix Ĉ can be obtained:

Ĉ = Φ
C

I Λ
C

I

[
Φ

C

I

]T (3)

It can be shown that for the simulation of cross correlated stochastic fields by the methods
described above one needs to simulate a vector of cross correlated random variables for the
expansion. These random variables have the block cross correlation matrix D of random
variables. Let D be a squared symmetric matrix of order (NF Nvar) assembled in this way:
matrix D consists of (NF × NF ) blocks (squared matrices) Ci,j

I, where I is the unit matrix of
order Nvar, and Ci,j are elements of the cross-correlation matrix C defined previously.

D =




H1 H2 H3 . . . HNF

H1 I C1,2
I C1,3

I . . . C1,NF I

H2
... I C2,3

I . . . C2,NF I

H3
...

... I . . . C3,NF I
...

... sym.
... . . . ...

HNF
. . . . . . . . . . . . I
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D is a correlation matrix having nonzero elements on sub-diagonals of partial square blocks.
The fact that each square block matrix on the diagonal of D is the (Nvar × Nvar) unit ma-
trix can be simply interpreted: random variables needed for the expansion of one random field
Hi, i = 1 . . . NF are uncorrelated (and also independent since we will work with Gaussian
random variables). The off-diagonal square blocks (diagonal matrices) represent cross cor-
relation between each two sets of random variables used for expansion of the fields Hi and
Hj, i 6= j; i, j = 1, . . . , NF . The key property for the proposed method is the spectral property
of the correlation matrix D. Cross correlation matrix D has NF Nvar real, positive eigenvalues
λD

j , j = 1, . . . , (NF Nvar) associated with orthogonal eigenvectors. Obviously matrix D has
the same eigenvalues as matrix C, but these are Nvar-multiple. Similarly the eigenvectors of D

are associated with the eigenvectors of C. The space described by Φ
C is enriched so that the

dimension is Nvar-times higher, but the components of the orthogonal eigenvectors Φ
C remain.

After ordering the eigenvalues so that λD

1 ≥ λD

2 ≥ · · · ≥ λD

NF×Nvar
, one can assemble the

eigenvectors/eigenvalue matrices using a block-matrix with squared block submatrices: Φ
D =




Φ
D

1 . . . Φ
D

NF,r
. . . Φ

D

NF

φC

1,1I . . . φC

1,NF,r
I . . . φC

1,NF
I

φC

2,1I . . . φC

2,NF,r
I . . . φC

2,NF
I

... . . .
... . . .

...
φC

NF ,1
I . . . φC

NF ,NF,r
I . . . φC

NF ,NF
I




(4)

and the eigenvalue matrices corresponding to vector blocks
(
Φ

D

1 , . . . ,ΦD

NF

)
: Λ

D =

= diag
( Φ

D

1 . . . Φ
D

NF,r
. . . Φ

D

NF

λC

1 I . . . λC

NF,r
I . . . λC

NF
I

)
(5)

where I is the unit matrix of order Nvar. Matrices C and D are positive definite. Similarly to
Eq. (3) the second part of the eigenvalues/vectors can be neglected and the approximate spectral
representation of (cross) correlation matrix D̂ can be obtained as:

D̂ = Φ
D

I Λ
D

I

[
Φ

D

I

]T (6)

where the matrix Φ
D

I , again, contains only the respective eigenvectors to the NF,r eigenvalues.
It might be important to know how the correlation matrix of all NF fields, each discretized

into the same set of N points (x1, . . . , xN), looks like. We call it full-block correlation matrix
F. Let F be a squared symmetric matrix of order NF N assembled as follows. Matrix F consists
of NF × NF blocks (squared matrices) F

i,j
uu

which are correlation matrices of order N . Each
submatrix F

i,j
uu

= F
j,i
uu

=




x1 . . . xl . . . xN

x1 F
i,j
1,1 . . . F

i,j
1,l . . . F

i,j
1,N

...
... . . . ...

...
...

xk F
i,j
k,1 . . . F

i,j
k,l . . . F

i,j
k,N

...
... . . .

... . . . ...
xN F

i,j
N,1 . . . F

i,j
N,l . . . F

i,j
N,N




(7)
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is symmetric and the general entry F
i,j
k,l = F

i,j
l,k = Corr [Hi (xk) , Hl (xl)] has the meaning of

correlation between two field’s (i, j) nodal values at points xk, xl (k, l = 1, . . . , N). Matrix F

can be obtained using the autocorrelation matrix Fuu = F
i,i
uu

and using the cross-correlation
matrix C among random fields (vectors) H1, . . . , HNF

simply by multiplying the autocorre-
lation by the cross correlation: F

i,j
k,l = Ci,jFk,l. Matrix F can be written using the squared

(N × N) blocks F
i,j
uu

= Ci,j
Fuu as: F =




H1 H2 . . . HNF

H1 Fuu C1,2
Fuu . . . C1,NF Fuu

H2
... Fuu . . . C2,NF Fuu

...
... sym.

. . . ...
HNF

. . . . . . . . . Fuu


 (8)

This illustrates the simple cross correlation relationships between the vector fields Hi,Hj (sin-
gle correlation coefficients Ci,j). Matrix F is the target cross-correlation matrix of discretized
random fields (random vectors) H1, . . . , HNF

, each discretized into the same set of points
xi, (i = 1, ..., N).

It is not difficult to show that if the correlation matrix F consists of blocks (autocorrelation
matrices Fuu, each multiplied by a cross correlation coefficient Ci,j), the eigenvector matrix
denoted Φ

u can be assembled as a block-matrix with block submatrices Φ
F

1 , . . . ,ΦF

NF
: Φ

F =




Φ
F

1 . . . Φ
F

NF,r
. . . Φ

F

NF

φC

1,1Φ
u . . . φC

1,NF,r
Φ

u . . . φC

1,NF
Φ

u

φC

2,1Φ
u . . . φC

2,NF,r
Φ

u . . . φC

2,NF
Φ

u

... . . .
... . . .

...
φC

NF ,1
Φ

u . . . φC

NF ,NF,r
Φ

u . . . φC

NF ,NF
Φ

u




(9)

and Λ
F =

diag
( Φ

F

1 . . . Φ
F

NF,r
. . . Φ

F

NF

λC

1 Λ
u . . . λC

NF,r
Λ

u . . . λC

NF
Λ

u

)
(10)

where Λ
u is the (reduced) eigenvalue matrix of F of order Nvar and λC

i (i = 1, . . . , NF ) are
the eigenvalues of cross correlation matrix C. Note that the eigenvalues λF are not sorted
automatically even if the eigenvalues of both Λ

u and Λ
C are sorted. The partitioning of Φ

F

and Λ
F in the case that only the reduced number of eigenmodes NF,r of matrix C are available

is obvious.
Block sample matrix χD. Let χD be a (Nvar NF )-dimensional jointly normally distributed

random vector with correlation matrix D. The vector consists of NF blocks. Each block (sub-
vector) χD

j , j = 1, . . . , NF represents a Gaussian random vector with Nvar standard Gaussian
independent (and therefore also non-correlated) random variables (marginals) while the vectors
χD

i , χD

j are cross correlated.
For a given number of realizations Nsim the vector χD is represented by an (Nvar NF )×Nsim

random matrix. Each of the Nsim columns is one realization of a Gaussian random vector. The
random vector χD is partitioned into NF vectors each with the dimension Nvar:

χD =
[ [

χD

1

]T [
χD

2

]T [
χD

3

]T
. . .

[
χD

NF

]T ]T
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Simulation of the matrix χD is the most important step in the method. The matrix D is targeted
in simulation of χD as the correlation matrix. The key idea of the method is the utilization of
spectral decomposition of correlation matrix D as this decomposition is very easy to perform
(Eq. 4). Therefore, the orthogonal transformation of correlation matrix will be used. The uti-
lization of the equivalence with prescribed correlation matrix C among fields has a significant
computational impact: instead of solving the Nvar ×NF eigenvalue problem of D, one needs to
solve the NF eigenvalue problem of prescribed correlation matrix C. In cases when the number
of random variables utilized in the expansion of one random field is large (thousands), the re-
duction is significant. By partitioning the matrix χD into Nvar-dimensional blocks, one obtains
an independent standard Gaussian random vector for the simulation of each of the NF random
fields.

Having Eq. (4) for the correlation matrix D at hand the simulation of the block sample matrix
χD is straightforward (orthogonal transformation of the correlation matrix):

χD = Φ
D

(
Λ

D
)1/2

ξ (11)

where ξ = {ξi, i = 1, . . . , NF × Nvar} forms a vector of independent standard Gaussian
random variables. Of course, the (sparse) matrices Φ

D and Λ
D do not need to be assembled

and stored in computer memory. They can be used in the form of an algorithm, and only the
eigen-matrices Φ

C and Λ
C must be solved (or at least their dominating parts Φ

C

I and Λ
C

I ).
Yamazaki nad Shinozuka [12] proposed the universal simulation of discretized multivariate

stochastic fields by one orthogonal transformation of (block) covariance matrix F. The modal
matrix of matrix F is then used for the transformation of random vector ξ composed of N ×NF

independent Gaussian random variables. The main difference from the method proposed here
is that they need to solve an eigenvalue problem of matrix F that has a large order (N × NF )
while in this paper the problem is decomposed into two separate modal solutions, namely (i)
the autocovariance structure (order N in EOLE; a reduced number of Nvar eigenmodes must be
solved) and (ii) the cross-correlation matrix of order NF (NF,r modes). A simple illustration
with a comparison of the approaches is given in Fig. 1. The figure illustrates a) the expansion of
a univariate random field using the random vector ξ and the eigenvalue matrix Λ with associ-
ated eigenfunctions [eigenvectors] in KLE [EOLE], b) the simulation procedure employing one
“huge” orthogonal transformation of the correlation matrix F [12]:

H = Φ
F

(
Λ

F
)1/2

ξ (12)

This procedure is general. In our case the correlation matrix F can be assembled using the
products of the cross-correlation matrix C and autocorrelation matrix Fuu. We have shown that
the eigenvector and eigenvalue matrices of C and Fuu solved separately can be used to compute
the required matrices Φ

F and Λ
F (see Eqs. 9,10) and therefore computational effort can be

saved. It will be shown later that such a technique yields identically good results as the proposed
scheme depicted in the third part c) of the figure: decomposition into (i) the preparation of a
vector of cross correlated random variables χD and (ii) the expansion of each random field Hi

using a subset χD

i
and always the same orthogonal base as in a). The advantage of the proposed

procedure c) is that the simulation of each random field can be done separately using either a
KLE or EOLE base while the cross correlated random variables χD are prepared in advance.
Incorporation into an existing algorithm for simulation of univariate fields is therefore simple
and transparent.
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1

D c
2

D c
3

D c
N

D

F

x
1

x
2

x
NF,r

x
1

x
2

x
3

x

x =

c  =

H1 H2 H3 HNF

......

... ...

...

H1 H2 H3 HNF
H

r

D

a) c)b)

x =
r

x
N N F
.

c
1

D c
2

D c
3

D c
N

D

F

x
1

x
2

x
NF,r

x =

c  =

H1 H2 H3 HNF

...

...

...

r

D

d)

...

Eq. (11)

Eq. (16)ψ[Φu]ψ[Φu]

ΛuΛu

Φu

1

Λu

1

Φu

2

Λu

2

Φu

3

Λu

3

Φu

NF

Λ
u

NF

Φ
F,ΛF

ΦD

I
,ΛD

I
ΦD

I
,ΛD

I

Figure 1: a) Simulation of a univariate random field using Nvar eigenmodes; b) illustration of the method due to
Yamazaki and Shinozuka (1990); c) proposed method for simulation of cross correlated fields in two steps when
components share the same distribution; d) proposed method for components with different distributions, where
eigenanalysis of each field is performed separately.

4 TRANSFORMATION TO NON-GAUSSIAN RANDOM FIELDS

In most applications, the Gaussian random field H is used to model uncertainties with spatial
variability because of convenience and a lack of alternative models. However, the Gaussian
model is not applicable in many situations. For example, it cannot be used to model Young’s
modulus or the strength of a material, which is always positive.

Let us denote the marginal cumulative [probability] distribution function (cdf) of each com-
ponent H̃i of the non-Gaussian vector random field H̃ by Gi [gi]. In the discretized version,
one can assemble the target correlation matrix F̃ of all random fields by computing the entries
F̃
i,j
k,l as a product of the autocorrelation coefficient F̃ i,j

uu
(depending only on the positions of each

pair of points) and the target cross correlation C̃i,j. It would be convenient to find an underlying
Gaussian random field H (with some cross correlation matrix C studied earlier) that can be
easily transformed into the target field H̃ while keeping the target cross correlation matrix be-
tween these components denoted by C̃. The univariate nonlinear transformation of the Gaussian
variables, called the translation process by Grigoriu [2] is the mapping hi(·):

H̃i (xk) = hi [Hi (xk)] = G−1
i {Φ [Hi (xk)]} (13)

where Φ (·) is the standard cumulative Gaussian probability function and i = 1, . . . , NF ; k =
1, . . . , N .

The Nataf [5] model has been proposed in [4] for transforming non-Gaussian multivariate
distribution into standardized Gaussian distribution. We will show how the Nataf model can
be used within the presented framework for effective simulation of cross correlated Gaussian
random fields in order to model non-Gaussian fields with prescribed marginal distributions Gi,
the autocorrelation function and cross correlated via C. For application of the Nataf model, the
correlation coefficient ρ̃i,j of each pair (i, j) of non-Gaussian variables must be adjusted to form
the correlation coefficient ρi,j of a pair of Gaussian variables. The adjustment has been shown
in [4] to be a unique solution of a certain two-fold integral (Eq. 12 in [4]) :

ρ̃i,j =

∞∫

−∞

∞∫

−∞

H̃i − µi

σi

H̃j − µj

σj
ϕ (Hi, Hj, ρi,j) dHi dHj (14)
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where the values of the original variables H̃i, H̃j (with means µi, µj and standard deviations
σi, σj) are expressed in terms of the the standard Gaussian variables in the spirit of Eq. (13) via
H̃i = G−1

i [Φ (Hi)]. Function ϕ (Hi, Hj, ρi,j) is the standard bivariate Gaussian density. Due to
the uniqueness of the solution, the relationship in Eq. (14) can be expressed as a correction to
the original correlation [4]:

ρi,j = κ ρ̃i,j (15)

In general, the correction factor κ (satisfying κ ≥ 1) is a function of both marginal distributions
and their correlation: κ = κ (Gi, Gj, ρ̃i,j). For some pairs of distributions κ becomes just a
constant or a function of only some of the three types of information. Other important properties
are that (i) ρi,j = 0 for ρ̃i,j, (ii) |ρ̃i,j| ≤ |ρi,j| and that (iii) ρ̃i,j is a strictly increasing function of
ρi,j.

In application of the Nataf model, we seek the corresponding correlation matrix F of a
Gaussian random vector field H. The correct method is to solve the correction factor for each
entry F

i,j
k,l = κ

i,j
kl F̃

i,j
k,l depending on Gi, Gj and F̃

i,j
k,l . Unfortunately, the full block correlation

matrix F does not follow the simple pattern from Eq. (8) any more. In particular, the diagonal
blocks are not identical anymore, because the distributions Gi may differ in general, and the off-
diagonal blocks are not a simple multiple of the diagonal block (for the same reasons). Even
if the distributions Gi were identical, the corrections κ would prevent each off-diagonal block
from being a simple multiple of the diagonal block, because in general Ci,js are not zeros (and
also generally are not all the same).

We remark also that not every combination of the autocorrelation structure with the non-
Gaussian marginal distribution can be admissible for the mapping via underlying Gaussian ran-
dom field. There are two possible incompatibilities. The first one arises when the autocorrela-
tion functions of the non-Gaussian fields do not have a corresponding admissible correlations
in the Gaussian space (this happens often in cases of high negative correlations combined with
strongly non-Gaussian marginals). The second incompatibility arises when the auto-correlation
function (or matrix) in the Gaussian space becomes non-positive definite and, therefore, not
admissible. The second problem can sometimes be remedied by ignoring negative eigenvalues
and corresponding eigenmodes.

From the preceding paragraphs, it becomes clear that the presented approach for simula-
tion of Gaussian vector random fields can not generally be employed for simulation of vector
random fields with arbitrary marginals. However, it is known that for the majority of com-
monly used continuous distributions the correction factors κ are only slightly greater than one
[4]. Therefore, the difference between correlation matrices F and F̃ is usually very small. The
difference actually depends on the “non-Gaussianity” of the distributions Gi. The closer the
component distributions Gi are to the elliptical distributions (Gaussian inclusive), the closer
these two matrices are. In the paragraphs after the following summary of the method, we will
try to find an approximation F

′ of the correct Nataf full correlation matrix F in order to be able
to profit from the presented framework for Gaussian fields.

The proposed procedure for the simulation of random fields can be itemized as follows (see
Fig. 1c,d):

1. Given the common autocorrelation function in original (non-Gaussian) space, a Nataf
correction function κi (ρ̃) = κ (Gi, Gi, ρ̃) must be found for each field i = 1, . . . , NF

over the whole range of autocorrelation coefficients ρ̃. The set of functions κi transform
the original correlations into Gaussian space. Then, the spectral analysis of the auto-
correlation structure for each underlying Gaussian field and the choice of the common
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number of eigenmodes Nvar is made, i.e., Based on the discretization (grid of points) the
autocorrelation matrices F

i
uu

are assembled and the corresponding sets of Nvar largest
eigenvalues and the corresponding eigenvectors (Φu

i and Λ
u

i matrices) are determined.
In most cases, the Nataf’s correction will be only slightly greater than one over the whole
range of possible autocorrelations and thus the eigenvalues and eigenfunctions [vectors]
will be very similar for each Gaussian field. Therefore, one can solve one field only and
use iterations to refine the eigenmodes for the other fields.

2. Find a corrected cross correlation matrix C given the target matrix C̃ and marginals
G1, . . . , GNF

using the Nataf model. Each off-diagonal entry is obtained as Ci,j =

κi,j C̃i,j, (i, j = 1, . . . , NF ). Then, eigenvalues must be computed with corresponding
orthogonal eigenvectors

(
Φ

C

I Λ
C

I

)
of the target cross correlation matrix C among ran-

dom fields. The choice of number of eigen-modes NF,r ≤ NF is made.
3. Simulation of Gaussian random vector ξ of Nr = NF,r ·Nvar independent standard Gaus-

sian variables ξj. For a given number of simulations Nsim a random vector becomes an
Nr ·Nsim random matrix, where Nsim is a sample size for each random variable. The LHS
technique is recommended for the simulation of the random vector [10].

4. The simulation of cross correlated random vector χD by matrix multiplication (Eq. 11).
Matrices from Eqs. (4 and 5) of the matrix D (an enlarged matrix from step 2) and a
random matrix from step (3) are utilized.

5. Simulation of all underlying Gaussian fields i = 1, . . . , NF one-by-one using the correct
portion of χD and eigenmodes from step 1 (see Fig. 1d for illustration). Each random
field i is expanded using the i-th block χD

i
of random vector χD

(
χ̂D

)
and the Nvar

eigenmodes from step (1):
Hi = Φ

u

i (Λu

i )
1/2

χD

i (16)

6. The last step is the transformation of standardized underlying Gaussian random fields
i = 1, 2, . . . , NF into non-Gaussian via Eq. (13).

One randomly chosen realization of the three fields is plotted in Fig. 2a,b and c. In the
same figure it can be seen how the cross correlation of fields influences the shape similarity of
corresponding realizations. Fig. 2d illustrates the typical plot of the mean and variance profiles
of the field over the target domain Ω. Such a plot serves as visual check for the accuracy of
simulations of field.

The plot also illustrates that the multivariate 2D random field over a plate can be viewed as a
3D random fields discretized using three two-dimensional plates. These three plates are parallel
and therefore the autocorrelation of a pair of two points k, l from two different plates i and j

is, in fact, cross correlation F
k,l
k,l . This gives a clear hint on how simply cross correlated vector

random fields could be treated as cuts through a single random field with a higher dimension.
In the procedure, we have made a certain simplification of the consistent approach described

above, so it is important to assess the error of the approximation. Assume that the distribution
of the underlying Gaussian random field is simulated correctly. Then the non-Gaussian field
obtained by the memoryless transformation has no error in the marginal distributions. The only
error can arise is in the correlation structure of the fields. Obviously, every field alone has a
correct autocorrelation structure, because it is expanded using independent Gaussian variables
via orthogonal transformation of correct correlation matrices. Let us now take a look at the
cross-correlations obtained with the suggested approach.
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(Nsim = 1000).

The simulation of the all nodal point values of all fields (step 5) can be written simply as:

H = Φ
E

(
Λ

E
)1/2

χD (17)

where Φ
E and Λ

E are the eigenvector and eigenvalue matrices of a (block-diagonal) correlation
matrix E that is constructed as follows. Matrix E consists of diagonal blocks F

i,i
uu

; all off-
diagonal blocks are zero matrices. Therefore, the eigenvalue [eigenvector] Λ

E [ΦE] matrices
have the matrices Λ

u

i [Φu

i ] on the diagonal blocks and zeros elsewhere. By substituting Eq. (11)
into Eq. (17) we obtain the fields in terms of transformation of independent variables ξ:

H = Φ
E

(
Λ

E
)1/2

Φ
D

(
Λ

D
)1/2

︸ ︷︷ ︸
ΨF

ξ = Ψ
F ξ (18)

Therefore, the resulting full (block) correlation matrix can be computed as F
′ = Ψ

F
[
Ψ

F
]T :

F
′ = Φ

E ·
(
Λ

E
)1/2

Φ
D ·

(
Λ

D
)1/2

[
Φ

E ·
(
Λ

E
)1/2

Φ
D ·

(
Λ

D
)1/2

]T
(19)

= Φ
E

(
Λ

E
)1/2

· D ·
(
Λ

E
)1/2 [

Φ
E
]T

where D = Φ
D ·

(
Λ

D
)1/2

·
(
Λ

D
)1/2 [

Φ
D

]T
· By this construction, the F

′ matrix can be written
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in square blocks (each of order N): F
′ =




H1 . . . Hj . . . HNF

H1 F
′

1,1 . . . F
′

1,j . . . F
′

1,NF

...
... . . .

...
...

...
Hi F

′

i,1 . . . F
′

i,j

... F
′

i,NF

...
... . . .

... . . . ...
HNF

F
′

NF ,1
. . . F

′

NF ,j
. . . F

′

1,NF




(20)

Of course, the matrix is symmetric as a whole, but the blocks are not symmetric in general.
Using Eq. (19), each block i, j can be written as

F
′

i,j = Ci,j
Φ

u

i (Λu

i )
1/2

︸ ︷︷ ︸
Ψu

i

(
Λ

u

j

)1/2 [
Φ

u

j

]T
︸ ︷︷ ︸

[Ψu

j ]
T

(21)

The F
′ matrix (consisting of blocks F

′

i,j = Ci,j
Ψ

u

i [Ψ
u

j ]
T ) represents a good approximation

of F in most cases (see [9] for a numerical example with an estimation of error). The diagonal
blocks are equal to the autocorrelation of each field F

′

i,i = F
i
uu

. The off-diagonal blocks F
′

i,j ,
in a certain sense, inherit a combination of the autocorrelations of the i-th and j-th random
field (a product of the eigenmodes of both). Note that if a pair of fields i, j follow an identical
autocorrelation structure, the corresponding cross-correlation block is just a Ci,j multiple of it
(compare to Eq. 8).

The F
′ can be computed and compared to F before performing any simulations. If the

difference (cross correlation errors) is not acceptable for the analyst and he wants to return to
the consistent procedure employing the correct Nataf transformation for F in the orthogonal
transformation via Eq. (12), we recommend to use Eq. (18) to find a very good approximation
of the eigenmodes of F needed in Eq. (12). The eigenmodes can be refined iteratively.

5 CONCLUSIONS

The main result of this paper is the utilization of the spectral properties (eigen-properties)
of defined block correlation matrices. These can be advantageously utilized for the simulation
of multivariate stochastic fields with a simple cross correlation structure and a common distri-
bution of components. If all fields share the same distribution shape, the decomposition of the
autocovariance structure is done only once for all univariate fields. For Gaussian vector ran-
dom fields, the resulting distribution and correlation properties are correct. For non-Gaussian
fields the autocorrelation structure is correct for all fields, but taking full advantage of the com-
putational simplification brings about small errors in cross correlations. These errors can be
predicted without any simulations. The reduction of computational effort is often significant.
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