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Abstract. Nonlinear analyses are characterised by approximations of the fundamental equa-
tions in different quality. Starting with a general description of nonlinear finite element for-
mulation the fundamental equations are derived for plane truss elements. Special emphasis
is placed on the determination of internal and external system energy as well as influence of
different quality approaches for the displacement-strain relationship on solution quality. The
different kinematics influence speed of convergence as well as exactness of solution. On a simple
truss structure this influence is shown. To assess the quality of different formulations concern-
ing the nonlinear kinematic equation three approaches are discussed. First the overall internal
and external energy is compared for different kinematical models. In a second step the energy
content related to single terms describing displacement-strain relationship is investigated and
used for quality control following two different paths.
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1 INTRODUCTION

Geometrical nonlinear effects in structural analysis are reflected in a nonlinear displacement-
strain relationship [1]. To simplify the solution procedure the nonlinear function is expanded
into a Taylor series and truncated after the n-th series term. The question arises whether a
criterion can be found to evaluate the solution quality related to the chosen approach without
knowing the exact result. Based on this knowledge it would be beneficial to find an adaptive
scheme that allows to start the calculation with a simple kinematical model and adopt the solu-
tion algorithm with increasing nonlinearity.

2 FINITE ELEMENT FORMULATION FOR NONLINEAR PROBLEMS

2.1 Newton Raphson Algorithm

The finite element procedure is derived from the weak equilibrium formulation using the
principle of virtual displacement, see equation 1. Here, t0 denotes the boundary traction and δr
represents the virtual displacements for boundary regions with applied traction.

−
∫
V

δεTσdV +

∫
V

δvTpdV +

∫
S

δrT t0dS = 0 (1)

Based on the nodal displacements u shape functions Φ are used to calculate the displacements
v = Φu. Hence the strain is calculated using ε = DkΦu = Bu. Dk is the differential operator
in the kinematic equation. For the stresses this results in σ = EBu. The basic equilibrium
equation becomes:

−u

∫
V

BTEBdV︸ ︷︷ ︸
K

+

∫
V

ΦTpdV +

∫
S

ΦTRT
r t0dS︸ ︷︷ ︸

P

= 0 using δr = Rrδv (2)

The product Ku is equivalent to the internal nodal forces F.
Taking geometric nonlinearities into account results in nonlinear relationship between ex-

ternal forces P and displacements u. To find a solution an incremental-iterative approach is
necessary. Starting with a known configuration i where the internal and external nodal forces
are in equilibrium a load increment ∆P is applied to the structure. Using the stiffness matrix
known from the initial state the related displacement increment is calculated, see equation 3.

K(ui) ·∆u = ∆P i ...No. of increments (3)

This procedure provides a linear approximation for the internal forces Fi+1 = Fi + ∆F.
Equilibrium with the external loads is not achieved. In an iterative procedure this difference
called residual forces R is minimised using equation 4. Hence the unbalanced configuration
i+ 1 is used as new initial configuration. Without applying a new load increments but using the
residual forces the correct displacement increment is calculated within the iteration.

K(ui) ·∆u = Pi+1 − (Fi + ∆F) = R (4)

The reason for geometric nonlinear behaviour is the nonlinear displacement-strain relation-
ship ε = Dknl(u) · u. Since for configuration i + 1 this is not known it is approximated by a
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Taylor series, see equation 5, which is than truncated after the n-th term.

ε(ui+1) = ε(ui) +
∂ε

∂ui+1

∣∣∣∣
ui+1=ui

·∆u +
∂2ε

∂u2
i+1

∣∣∣∣
ui+1=ui

·∆u2 + ... (5)

The method described above does not allow to judge on the quality of the chosen approx-
imation for the displacement-strain relationship even if the solution converges. The solution
quality can only be validated in comparison with results of more complex models. To overcome
this problem the influence of different kinematic formulation is investigated. From equation 4 it
becomes clear that the nonlinear kinematics influence the stiffness matrix as well as the residual
forces, see chapter 4 for more details. Using better quality approximations for calculating the
stiffness matrix improves the speed of convergence. Whereas more precise formulations on the
right hand side of equation 4 leads to better results concerning the predicted deformation. In
general for both terms equal approaches are used. In our paper we will show the described
effects by applying different strain-displacement formulation for the stiffness matrix and the
residual force vector.

2.2 Determination of system energy

To solve the nonlinear equation system and to determine the displacements of the structural
system the modified Newton-Raphson [2] method is applied. Compared to the standard algo-
rithm the stiffness matrix is not calculated for each iteration step but for the converged solution
of a load increment. This lowers the speed of convergence because more iterations are neces-
sary. On the other hand computing time per iteration decreases.

To determine the internal energy of geometric nonlinear structural systems it is sufficient to
apply the load in one increment as long as a linear elastic material law is used. As one can see in
figure 1, for linear stress-strain relationship the internal energy is independent from the number
of increments. To determine the external energy correctly an incremental approach becomes
necessary. Hence the increment in potential of external energy is calculated for every load step
and summed up. The number of load steps is sufficient if the external energy equals the strain
energy, see figure 1.

Figure 1: a) Internal and b) External energy of the investigated system (see figure 3), for solution the load is applied
in 10 increments
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3 NONLINEAR FINITE ELEMENT FORMULATIONS FOR PLANE TRUSSES

3.1 Displacement-strain relationship

X

Z

w

u

u+ du

w + dw

dx

dl

dl =
√

(dx+ du)2 + dw2

=
√

1 + 2u′ + u′2 + w′2 dx

ε = dl−dx
dx

=
√

1 + 2u′ + u′2 + w′2 − 1

Figure 2: Nonlinear kinematics of a plane truss

The deformation of a plane truss element resulting from external loading is visualised in
figure 2. The element strain for small strain conditions is defined as the ratio of elongation
to the original length. Because this expression is to complicated for investigation of complex
structures it is expanded into a Taylor series.

ε =
1

2
(2u′ + u′2 + w′2)− 1

8
(2u′ + u′2 + w′2)2 +

1

16
(2u′ + u′2 + w′2)3 ... (6)

In classic approaches this series expansion is truncated after the first series term. In addition the
term u‘2 is neglected due to the dominant axial stiffness which normally leads to neglectable u
deformations. This results in a simplified description for the strains ε = u′+ 1

2
w′2, with the first

summand representing the linear part.

3.2 Influence of kinematical model on stiffness matrix

For a linear relationship between strains and displacements ε = u′ the stiffness matrix is
defined with K =

∫
V

BTEBdV , see section 2.1. Applying the widely used simplified descrip-
tion for nonlinear kinematics ε = u′ + 1

2
w′2 results in more complicated formulations for the

stiffness matrix. Rewriting the equation for the strains in matrix notation ε = [Dk+ 1
2
Dknl(v)]v

and incrementing the displacements results in equation 7.

ε = [Dk +
1

2
Dknl(vi + ∆v)](vi + ∆v)

= [Dk +
1

2
Dknl(vi)]vi + [Dk + Dknl(vi)]∆v + [

1

2
Dknl(∆v)]∆v

with v = Φu and B = DΦ

= BLui +
1

2
BNL(ui)ui + BL∆u + BNL(ui)∆u +

1

2
BNL(∆u)∆u

(7)

Applying a variation on the displacement parameters and inserting the term for ε in the
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principle of virtual displacement, equation 1, results in:

δ∆uT

{∫
V

NTpidV +

∫
V

NT∆pdV

−
∫
V

[BL + BNL(ui)]
T · E · [BL +

1

2
BNL(ui)] · uidV

−
∫
V

BT
NL(∆u) · E · [BL +

1

2
BNL(ui)] · ui)dV

−
∫
V

[BL + BNL(ui)]
T · E · [BL + BNL(ui)] ·∆u)dV

}
= 0

(8)

The first and second integral represent the external forces. The third term embodies the
internal forces that are already in equilibrium for the initial state. From the last two integrals
the different parts of the stiffness matrix can be derived. For plane trusses with linear shape
functions the stiffness matrix becomes:

K =
EA

l

[
1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

]
︸ ︷︷ ︸

KE

+
EAw′i
l

[
0 1 0 −1
1 0 −1 0
0 −1 0 1
−1 0 1 0

]
︸ ︷︷ ︸

KuL

+
EAw′2i
l

[
0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

]
︸ ︷︷ ︸

KuNL

+
Ni

l

[
0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

]
︸ ︷︷ ︸

KσL

(9)

Taking more series terms for the description of ε into account results in even more complex
formulations for the stiffness matrix. Hence more detailed formulation of K only effect the
speed of convergence but not the solution quality, see table 2, additional effort is not reasonable.

3.3 Influence of kinematical model on internal forces

For trusses the member forces depend directly on the chosen ε-formulation. After calculat-
ing the additional displacement due to the applied load increment, using equation 4, the overall
displacement ui+1 is transferred from the global to the local coordinate system. Afterwards
the displacement derivate u′ and w′ are determined. Depending on the degree of nonlinear-
ity ε is calculated with required accuracy. The axial force for one element results then from
N = EAε(u). This force needs to be transferred backwards to global coordinate system, see
figure 3. Also here the different kinematics needs to be considered, see table 1.
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Table 1: Transformation of local internal forces into global forces

ε Determination of internal nodal forces

u′ The member forceN is transformed in internal nodal forces
F using the initial geometry
F = T−1N with T =

[
cosα0 sinα0

]
u′ + 1

2
w′2 From the third integral in equation 8 the description for the

internal nodal forces is derived. Applying the transforma-
tion condition results in:

F = N


−cosα0

−sinα0

cosα0

sinα0

+Nw′


−sinα0

cosα0

sinα0

−cosα0


√

1 + 2u′ + u′2 + w′2 − 1 The transformation is achieved using the same equation like
for ε = u′. The difference is in the transformation matrix. A
geometry update is made for every iteration and the updated
angle αupd is used for calculation of internal nodal forces.

4 NUMERICAL EXAMPLE

4.1 System and Solution

α
α0

l0

L

U

H

P

H=50cm
L=100cm
E=21000kN/cm2

A=10cm2

L=4000kN

Figure 3: Investigated plane truss system

In figure 3 the investigated plane truss system is shown. Table 2 shows the calculated de-
flections for different strain approximations. As expected with refined kinematical model the
solution quality improves. The same information results from investigating the different energy
terms, see figure 4. Additionally the effect described in chapter 2.2 can be seen. To determine
the external energy the loading needs to be applied in multiple intervals. The question arises
how the solution quality can be assessed by quality measures without necessity to compare
different kinematical models.
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Figure 4: Comparison of strain energy (dashed line) and potential of external forces (continuous line) for different
formulations of ε, Energy is summed up over the number of load increments

Table 2: Global deformation of the truss structure using different approaches for ε and number of iteration subject
to the displacement-strain formulation used to calculate K; No. of load increments: 10

ε U [cm] No. of iterations over all load increments for K based on
ε = u′ ε = u′ + 1

2
w′2

u′ 10,6 - -
u′ + 1

2
w′2 16,8 179 81√

1 + 2u′ + u′2 + w′2 − 1 20,2 317 137

4.2 Criterion 1 - overall system energy

The first approach is to change the solution algorithm with respect to the transformation of
internal forces from local to global coordinate system. Different approaches for ε effect the cal-
culation of the residual forces twice. First when the member forcesN are calculated and second
when they are transferred from local into global coordinates. Using always the exact expression
F = sin(αupdated) ·N , this transformation leads to results for the converged solution of external
energy as shown in table 3. For the different ε-approximations a difference between the internal
and external energy terms can be detected, even for converged solution. This difference is be-
coming smaller if the kinematic equation is improved. Therewith this energy difference might
be taken as a first error measure for the quality of the kinematic formulation.

Table 3: Difference between internal and external energy for different approaches for ε using the exact formulation
for coordinate system transformation of internal forces

ε Internal energy Converged solution for ∆Energy [%]
[kNm] external energy [kNm]

u′ 373 313 16,1
u′ + 1

2
w′2 482 472 2,1

1
2
(2u′ + u′2 + w′2)
− 1

8
(2u′ + u′2 + w′2)2

532 534 0,4

√
1 + 2u′ + u′2 + w′2 − 1 522 522 0,0
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This strategy has several disadvantages. First of all the principle of energy equilibrium,
whereon the whole solution scheme is based, is violated. Additionally for simple kinematical
models that according to table 2 do not provide a satisfying solution the difference of the two
energies is comparably low. The user would expect a much lower difference in the displacement
as it really is. At least for this simple example this approach has to be judged critically.

4.3 Criterion 2 - energy related to single epsilon terms

Another option is the evaluation of energy related to single terms of epsilon, see figure 5. For
a calculation with exact kinematical model the additional energy per load increment is plotted
in percent related to the exact value. It becomes clear that with increasing load the structure
behaves more nonlinear. The portion of higher order ε-terms to total energy increases. For
the first load increments using only ε = 1

2
(2u′ + u′2 + w′2) would be a good approximation.

But starting from the 4th/5th load step the influence of the second series term can no longer be
neglected.
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Figure 5: Internal energy related to single terms of epsilon for
each load increment compared with exact energy
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Figure 6 shows the same approach for a simpler approximation of ε. For the first two load
steps a linear approximation of the strain-displacement relationship seems to be sufficient. By
increasing the load the nonlinear part grows rapidly. The high value of energy related to the term
ε = 1

2
w′2 for higher load steps might be used as an indicator that even more exact formulations

for describing ε needs to be considered.
For this approach it is always necessary to include one simple nonlinear term in addition to

the linear ε-formulation to have the opportunity of comparison. Furthermore the question arises
which amount of deviation between the energy terms indicates that more series terms needs to
be taken into account.

4.4 Criterion 3 - prediction of energy related to single epsilon terms

To overcome the problems of the previous described criterion the calculation is started based
on the linear term. After the iteration for one load step is completed the percentage increase
of energy related to the next higher series term is calculated. If the simple formulation of ε is
sufficient the value should not exceed a predefined limit, for example 1% of the total system

8



energy. Otherwise for the next load increment a more precise formulation for the displacement-
strain relationship is used. This procedure is repeated after each load step. For the simple truss
structure using 10 load increments and a limit of 1% results in an adaptive process as shown in
figure 7.

Calculation for first load increment using ε = u′

E
u′+1

2 w′2−Eu′

E
u′+1

2 w′2/100
= 1, 75% > 1%

For the second load increment the iteration is done using ε = u′ + 1
2
w′2 on the

right hand side of equation 4.

E 1
2 (2u′+u′2+w′2)− 1

8 (2u′+u′2+w′2)2
−E

u′+1
2 w′2

E 1
2 (2u′+u′2+w′2)− 1

8 (2u′+u′2+w′2)2
/100

= 1, 32% > 1%

Energy related to the third Taylor series term never exceeds the limit of 1%.
The calculation is continued using ε = 1

2
(2u′ + u′2 + w′2)− 1

8
(2u′ + u′2 + w′2)2

Result: global displacement U = 20, 51m
overall internal energy Eint = 532 kNm

after iteration completed: control of energy

Continuing the check for the approach of
kinematical relation results after the seventh
load increment in

Figure 7: Adaption of kinematical formulation subjected to chancing degree of nonlinearity of the structure

5 PERSPECTIVE

Based on a simple example of a truss structure the idea of model quality assessment using
energy terms is presented. Calculation of the overall energy and relations of different energy
terms can be used as an indicator for the solution quality. Based on this knowledge an adaptive
scheme was used to change the kinematical model depending on increasing nonlinearity of the
structure. The solution quality has turned out satisfactory compared to the exact result. More
detailed investigations are necessary to find criteria for the threshold values for the iterative
process as well as for decision on number and stepsize of incremental load steps.
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