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Abstract. A four-node quadrilateral shell element with smoothed membrane-bending based
on Mindlin-Reissner theory is proposed. The element is a combination of a plate bending
and membrane element. It is based on mixed interpolation where the bending and membrane
stiffness matrices are calculated on the boundaries of the smoothing cells while the shear terms
are approximated by independent interpolation functions in natural coordinates. The proposed
element is robust, computationally inexpensive and free of locking. Since the integration is done
on the element boundaries for the bending and membrane terms, the element is more accurate
than the MITC4 element for distorted meshes. This will be demonstrated for several numerical
examples.
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1 INTRODUCTION

The static and free vibration analysis of shell structures plays an important role in engineer-
ing applications as shells are widely used as structural components. Due to limitations of analyt-
ical methods [45,23,22,12] for practical applications, numerical methods have become the most
widely used tool for designing shell structures. One of the most popular numerical approaches
for analyzing vibration characteristics of shells is the Finite Element Method (FEM).

Although the FEM provides a general and systematic technique for constructing basis func-
tions, a number of difficulties still exist in the development of shell elements based on shear
deformation theories. One is the shear locking phenomenon for low order displacement models
based on Mindlin Reissner theory [38, 27] as the shell thickness decreases. Membrane locking
also occurs for shell elements and curved geometries. In order to avoid this drawback, various
improvements and numerical techniques have been developed, e.g. reduced and selective inte-
gration elements [16,46], mixed formulation/hybrid elements [35], the Assumed Natural Strain
(ANS) method [15, 2, 3, 10] and Enhanced Assumed Strain (EAS) method [41, 39, 8, 7]. Many
improved shell elements have been developed [37, 36, 6, 42, 43, 14] and can be found in the
textbooks [1, 46].

Recently, this smoothing technique was incorporated into the FEM, leading to the smoothed
finite element method (SFEM) proposed by Liu et al. [25]. It was shown by numerical examples
that the SFEM is very robust, accurate and computational inexpensive, [26, 31, 30]. As we
will show by several numerical examples, the proposed shell element is especially useful for
distorted elements.

The paper is organized as follows: In the next section, we will state the formulation shell
element formulation. Section 3 describes the smoothing technique in order to evaluate the bend-
ing and membrane stiffness. Section 4 discusses several numerical examples that are compared
to analytical solutions and other elements from the literature. Finally, we close our paper with
some concluding remarks.

2 FORMULATIONS FOR QUADRILATERAL SHELL ELEMENT

A typical Mindlin-Reissner shell with notations shown in figure 1 is considered here. For
an initially flat isotropic thick shell, the membrane deformations are accounted for since they
are uncoupled from the bending and shear deformations. Hence, the basic assumptions for the
displacement behavior [13] are:

u(x, y, z) = u0(x, y) + zβx(x, y)
v(x, y, z) = v0(x, y) + zβy(x, y)
w(x, y, z) = w0(x, y)

(1)

where u0, v0,w0 are displacement components in the x, y, z directions (local coordinate system),
respectively. βx and βy are the rotations of the normal to the undeformed mid-surface in the xz
and yz planes, respectively, βx = ∂w

∂x
and βy = ∂w

∂y
.

The membrane ε
m and curvature strains κ are defined as

ε
m =





∂u0

∂x
∂v0

∂y
∂u0

∂y
+ ∂v0

∂x



 , κ =







∂βx

∂x

−∂βy

∂y
∂βx

∂y
− ∂βy

∂x






(2)
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and the transverse shear strain vector is

γ =

{

γxz

γyz

}

=

{

∂w
∂x

+ βx
∂w
∂y

− βy

}

(3)

By means of the spatial discretization procedure in the FEM, the displacement and strains within
any element can be written as

uh =

np
∑

i=1

















Ni 0 0 0 0 0
0 Ni 0 0 0 0
0 0 Ni 0 0 0
0 0 0 0 Ni 0
0 0 0 Ni 0 0
0 0 0 0 0 0

















qi (4)

where qi =
{

ui vi wi θxi θyi θzi

}T is the nodal displacement vector

ε
m =

∑

i

Bm
i qi ; κ =

∑

i

Bb
iqi ; γ =

∑

i

Bs
iqi (5)

Bm
i =





Ni,x 0 0 0 0 0
0 Ni,y 0 0 0 0
Ni,y Ni,x 0 0 0 0



 ; Bb
i =





0 0 0 0 Ni,x 0
0 0 0 −Ni,x 0 0
0 0 0 −Ni,x Ni,y 0



 (6)

Bs
i =

[

0 0 Ni,x 0 Ni 0
0 0 Ni,y −Ni 0 0

]

(7)

As known in References [47, 17, 19], the use of reduced integration on the shear term ks

can avoid shear locking as the thickness of the shell tends to zero. However, these elements
fail the patch test and exhibit an instability due to rank deficiency [31]. In order to improve
these elements, we use independent interpolation fields in the natural coordinate system for the
approximation of the shear strains [2].

[

γx

γy

]

= J−1

[

γξ

γη

]

(8)

where
γξ =

1

2
[(1 − η)γB

ξ + (1 + η)γD
ξ ], γη =

1

2
[(1 − ξ)γA

η + (1 + ξ)γC
η ] (9)

where J is the Jacobian matrix and the mid-side nodes A, B, C, D are shown in figure 1. In case
of bending around the η-axis, it is useful to place the sampling points at positions ξ = 0 where
the parasitic transverse shear strains vanish. We recall, that γξ linearly varies in ξ - direction. In
order to retain a linear variation of γξ in η - direction, we choose two sampling points, at ξ = 0,
η = 1 and at ξ = 0, η = −1 (points A and C ). For the transverse shear strains γη we proceed in
a similar way ( points B and D). Presenting γB

ξ , γ
D
ξ and γA

η , γ
C
η based on the discretized fields

uh, we obtain the shear matrix:

Bs
i = J−1

[

0 0 Ni,ξ −b12i Ni,ξ b11i Ni,ξ 0
0 0 Ni,η −b22i Ni,η b21i Ni,η 0

]

(10)
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where
b11i = ξix

M
,ξ , b

12
i = ξiy

M
,ξ , b

21
i = ηix

L
,η, b

22
i = ηiy

L
,η (11)

with ξi ∈ {−1, 1, 1,−1}, ηi ∈ {−1,−1, 1, 1} and (i,M, L) ∈ {(1, B, A); (2, B, C);
(3, D, C); (4, D,A)}.

Figure 1: Quadrilateral shell element.

The formulation for the free vibration of a Mindlin-Reissner shell can be written in matrix form
as

meq̈ + keq = 0 (12)

where

ke =

∫

Ωe

(Bm)T
DmBmdΩ +

∫

Ωe

(

Bb
)T

DbBbdΩ +

∫

Ωe

(Bs)T
DsBsdΩ (13)

me =

∫

Ωe

NTmNdΩ with m = ρ

















t 0 0 0 0 0
0 t 0 0 0 0
0 0 t 0 0 0

0 0 0 0 t3

12
0

0 0 0 t3

12
0 0

0 0 0 0 0 0

















(14)

and

Dm =
Et

(1 − ν)2





1 ν 0
ν 1 0
0 0 1−ν

2



 , Db =
Et3

12 (1 − ν)2





1 ν 0
ν 1 0
0 0 1−ν

2



 (15)

Ds =
kEt

2 (1 + ν)

[

1 0
0 1

]

(16)

The transformation between global coordinates and local coordinates is required to generate the
local element stiffness matrix in the local coordinate system.







u
v
w







= Tl







U
V
W







and







θx
θy
θz







= Tl







θX
θY
θZ







(17)
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where Tl is the transformation matrix as given in [46]. Finally, the element stiffness K, mass
M in the global coordinate system, can be written as

K = T̄TkeT̄, M = T̄TmeT̄ (18)

where

T̄ =

















Tl

Tl

Tl

Tl

Tl

Tl

















(19)

3 A MIXED INTERPOLATION AND A SMOOTHED METHOD FOR FOUR-NODE
QUADRILATERAL SHELL ELEMENT

The strain smoothing method was proposed by [9]. A strain smoothing stabilization is cre-
ated to compute the nodal strain as the divergence of a spatial average of the strain field. This
strain smoothing avoids evaluating derivatives of mesh-free shape functions at nodes and thus
eliminates defective modes. The motivation of this work is to develop the strain smoothing ap-
proach for the FEM. The method developed here can be seen as a stabilized conforming nodal
integration method, as in Galerkin mesh-free methods applied to the finite element method. The
smooth strain field at an arbitrary point xC is written as

ε̃ij (xC) =

∫

Ωh

εij (x) Φ (x − xC) dΩ (20)

where Φ is a smoothing function that satisfies the following properties

Φ ≥ 0 and

∫

Ωh

ΦdΩ = 1 (21)

For simplicity, Φ is assumed to be a step function defined by

Φ (x − xC) =

{

1/AC,x ∈ ΩC

0,x /∈ ΩC
(22)

where AC is the area of the smoothing cell, ΩC ⊂ Ωe ⊂ Ωh, as shown in figure 2.
Substituting Eq. (22) into Eq. (20), and applying the divergence theorem, we obtain

ε̃ij (xC) =
1

2AC

∫

ΩC

(

∂ui

∂xj

+
∂uj

∂xi

)

dΩ =
1

2AC

∫

ΓC

(uinj + ujnj) dΓ (23)

Next, we consider an arbitrary smoothing cell, ΩC illustrated in figure 2 with boundary ΓC =
nb
⋃

b=1

Γb
C , where Γb

C is the boundary segment of ΩC , and nb is the total number of edges of each

smoothing cell. The relationship between the strain field and the nodal displacement is rewritten
as

ε̃ =

{

κ̃

ε̃
m

}

(24)
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where
κ̃ = B̃b

Cq

ε̃
m = B̃m

C q
(25)

The smoothed element membrane and bending stiffness matrix is obtained by

k̃e
m =

∫

Ωe

(B̃m
C )TDmB̃m

C dΩ =

nc
∑

C=1

(B̃m
C )T (xC)DmB̃m

C (xC)AC (26)

k̃e
b =

∫

Ωe

(B̃b
C)TDbB̃b

CdΩ =

nc
∑

C=1

(B̃b
C)T (xC)DbB̃b

C(xC)AC (27)

where nc is the number of smoothing cells of the element, see figure 3.
The integrands are constant over each ΩC and the non-local strain displacement matrix reads

B̃m
Ci

(xC) =
1

AC

∫

ΓC





Ninx 0 0 0 0 0
0 Niny 0 0 0 0

Niny Ninx 0 0 0 0



dΓ (28)

B̃b
Ci(xC) =

1

AC

∫

ΓC





0 0 0 0 Ninx 0
0 0 0 −Niny 0 0
0 0 0 −Ninx Niny 0



dΓ (29)

From Eq. (29), we can use Gauss points for line integration along each segment of Γb
C . If the

shape functions are linear on each segment of a cell’s boundary, one Gauss point is sufficient
for an exact integration:

B̃m
Ci

(xC) =
1

AC

nb
∑

b=1





Ni

(

xG
)

nx 0 0 0 0 0
0 Ni

(

xG
)

ny 0 0 0 0
Ni

(

xG
)

ny Ni

(

xG
)

nx 0 0 0 0



lCb (30)

B̃b
Ci(xC) =

1

AC

nb
∑

b=1





0 0 0 0 Ni(x
G)nx 0

0 0 0 −Ni(x
G)ny 0 0

0 0 0 −Ni(x
G)nx Ni(x

G)ny 0



lCb (31)

where xG and lCb are the midpoint (Gauss point) and the length of ΓC
b , respectively, and nb is

the total number of edges of each smoothing cell.
The smoothed membrane and curvatures lead to high flexibility such as arbitrary polygonal
elements, and a slight reduction in computational cost. The element is subdivided into nc non-
overlapping sub-domains also called smoothing cells. figure 3 illustrates different smoothing
cells for nc = 1, 2, and 4 corresponding to 1-subcell, 2-subcell, and 4-subcell methods. The
membrane and curvature are smoothed over each sub-cell. The values of the shape functions
are indicated at the corner nodes in figure 3 in the format (N1, N2, N3, N4). The values of the
shape functions at the integration nodes are determined based on the linear interpolation of
shape functions along boundaries of the element or the smoothing cells.
Hence, the element stiffness matrix and geometrical stiffness matrix write:

k̃e = k̃e
b + k̃e

m + ke
s (32)

where

k̃e
b =

∫

Ωe

B̃T
b DB̃bdΩ =

nc
∑

C=1

(

B̃b
C

)T

(xC)DbB̃b
C (xC)AC (33)
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Figure 2: Example of finite element meshes and smoothing cells

(a) 1-Subcell (b) 2-Subcell

(c) 4-Subcell

Figure 3: Division of an element into smoothing cells (nc) and the value of the shape function along the boundaries
of cells: k-Subcell stands for the shape function of the MISTk element, k = 1, 2, 4
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k̃e
m =

∫

Ωe

B̃T
mDB̃mdΩ =

nc
∑

C=1

(

B̃m
C

)T

(xC)DmB̃m
C (xC)AC (34)

ke
s =

1
∫

−1

1
∫

−1

BT
s DsBs |J| dξdη =

2
∑

i=1

2
∑

j=1

wiwjB
T
s DsBs |J| (35)

It is seen that the element membrane-bending and geometrical stiffness matrices are now con-
structed based on the smoothing operator on each smoothing cell of the element while the shear
term ke

s is derived from an interpolation independent from that of the shear strains, in the natural
coordinates [2]. The shear contribution is therefore calculated as usual using Gauss quadrature
and, in this paper, we use a 2 point rule.
The transformation of the element stiffness matrix and geometrical stiffness matrix from the
local to the global coordinate system is given by

[

K̃

]

24×24
= [T]T24×24

[

k̃e
]

24×24
[T]24×24 (36)

The final formulation of the free vibration of shells with the smoothed version reads:

Mq̈ + K̃q = 0 (37)

A general solution of such an equation can be written q = q̄ exp(iωt) . Upon substitution of
this general solution into Eq. (37), the frequency ω can be found by solving

(

K̃ − ω2M
)

q̄ = 0 (38)

where K̃ is the global smoothed stiffness matrix, M is the global mass matrix, vector q̄ contains
the vibration mode shapes, ω is the natural frequency.

4 NUMERICAL RESULTS

4.1 Static analysis

We name our element MISTk (Mixed Interpolation with Smoothing Technique with k ∈
{1, 2, 4} related to number of smoothing cells as given by figure 3). For several numerical
examples, we will now compare the MISTk elements to the widely used MITC4 elements. One
major advantage of our element is that it is especially accurate for distorted meshes. To obtain
mesh distortion that occurs naturally under phenomena such as shear bending or cracking, the
coordinates of the initially regularly (structured) spaced interior nodes are relocated by the
following expression [25]:

x′ = x+ αrc∆x
y′ = y + αrc∆y

(39)

where rc is a random number between -1.0 and 1.0, α ∈ [0, 0.5] is used to control the shapes of
the distorted elements and ∆x,∆y are initial regular element sizes in the x–and y–directions,
respectively. In the next two sections, we did not disturb the y-direction in order to ensure
smooth curvature.
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4.1.1 Pinched cylinder with diaphragm

Consider a cylindrical shell with rigid end diaphragm subjected to a point load at the center
of the cylindrical surface. Due to its symmetry, only one eighth of the cylinder shown in figure 4
is modeled. The expected deflection under a concentrated load is 1.8425×10−5 [44].
The problem is described with N × N MITC4 or MISTk elements in regular and irregular
configurations. The meshes used are shown in figure 4.
Figure 5 and figure 6 illustrate the convergence of the displacement at the center point and the
strain energy, respectively, for the MITC4 element and our MISTk elements for regular meshes.
Our element is slightly more accurate than the MITC4 element for structured meshes. In table 1,
we have compared the normalized displacement at the center point of our element to the MITC4
element. The strain energy is summarized in table 2.
The advantage of our element becomes more relevant for distorted meshes, see figure 7 – fig-
ure 8 and table 3 – table 4. For the same reasons as outlined in the previous section, the MISTk
elements are significantly more accurate as compared to the MITC4-element with increasing
mesh distortion.

(a) Pinched cylinder
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(b) Regular meshes
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(c) Irregular meshes

Figure 4: Pinched cylinder with diaphragms boundary conditions (P = 1; R = 300; L = 600; t = 3; υ = 0.3; E =
3×107)

Table 1: Normal displacement under the load for a regular mesh

Mesh MITC4 Mixed [40] QPH [4] SRI [18] Present elements
MIST1 MIST2 MIST4

4 × 4 0.3677 0.399 0.370 0.373 0.4705 0.4376 0.3838
8 × 8 0.7363 0.763 0.740 0.747 0.8016 0.7802 0.7481

12 × 12 0.8656 - - - 0.9071 0.8935 0.8735
16 × 16 0.9203 0.935 0.930 0.935 0.9482 0.9391 0.9257
20 × 20 0.9481 - - - 0.9681 0.9616 0.9520
24 × 24 0.9644 - - - 0.9794 0.9745 0.9673
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Table 2: The strain energy for a regular mesh

Mesh No MITC4 Present elements
MIST1 MIST2 MIST4

4 × 4 8.4675e-7 1.0837e-6 1.0078e-6 8.8394e-7
8 × 8 1.6958e-6 1.8462e-6 1.7970e-6 1.7230e-6

12 × 12 1.9937e-6 2.0891e-6 2.0579e-6 2.0118e-6
16 × 16 2.1196e-6 2.1837e-6 2.1630e-6 2.1320e-6
20 × 20 2.1836e-6 2.2296e-6 2.2147e-6 2.1926e-6
24 × 24 2.2210e-6 2.2556e-6 2.2444e-6 2.2278e-6

Table 3: Normal displacement under the load for a irregular mesh

Mesh No MITC4(α = 0.5) MIST2
α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

4 × 4 0.3539 0.4370 0.4342 0.4331 0.4261 0.4398
8 × 8 0.6950 0.7777 0.7786 0.7839 0.7803 0.7860

12 × 12 0.7402 0.8941 0.8938 0.8945 0.8959 0.8930
16 × 16 0.8488 0.9397 0.9394 0.9344 0.9402 0.9350
20 × 20 0.8960 0.9614 0.9631 0.9586 0.9628 0.9601
24 × 24 0.8718 0.9746 0.9739 0.9764 0.9755 0.9672

Table 4: The strain energy for a irregular mesh

Mesh No MITC4(α = 0.5) MIST2
α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

4 × 4 8.1512e-7 1.0065e-6 1.0001e-6 9.9738e-7 9.8127e-7 1.0129e-6
8 × 8 1.6007e-6 1.7911e-6 1.7932e-6 1.8054e-6 1.7971e-6 1.8102e-6

12 × 12 1.7047e-6 2.0591e-6 2.0585e-6 2.0601e-6 2.0634e-6 2.0567e-6
16 × 16 1.9549e-6 2.1642e-6 2.1636e-6 2.1521e-6 2.1654e-6 2.1534e-6
20 × 20 2.0636e-6 2.2142e-6 2.2182e-6 2.2077e-6 2.2175e-6 2.2113e-6
24 × 24 2.0078e-6 2.2445e-6 2.2431e-6 2.2488e-6 2.2466e-6 2.2276e-6
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Figure 5: The convergence of deflection at under the load for a regular mesh
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Figure 6: The convergence of strain energy for regular mesh
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Figure 7: The convergence of deflection for a irregular meshes
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Figure 8: The convergence of strain energy for a irregular meshes
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4.1.2 Partly clamped hyperbolic paraboloid
We consider the partly clamped hyperbolic paraboloid shell structure, loaded by self-weight

and clamped along one side. The geometric, material and load data are given in figure 9, and
only one half of the surface needs to be considered in the analysis.
For this problem there is no analytical solution, and reference values for the total strain energy
E and vertical displacement w present in table 5, previously obtained by [20].

Table 5: The reference values for the total strain energyE and vertical displacementw at point B (x = L/2, y = 0)

t/L Strain energy E(N.m) Displacement w(m)

1/1000 1.1013 × 10−2 −6.3941 × 10−3

1/10000 8.9867 × 10−2 −5.2988 × 10−1

(a) Clamped hyperbolic paraboloid
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(b) Regular meshes
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(c) Irregular meshes

Figure 9: Partly clamped hyperbolic paraboloid (L = 1m, E = 2 × 1011N/m2, ν = 0.3, ρ = 8000kg/m3,
z = x2 − y2, x ∈ [−0.5, 0.5], y ∈ [−0.5, 0.5])

Table 6: Displacement at point B for a regular mesh(t/L=1/1000)

Mesh No MITC4 MITC16 [20] Present elements
MIST1 MIST2 MIST4

8 × 4 4.7581e-3 - 5.5858e-3 4.9663e-3 4.8473e-3
16 × 8 5.8077e-3 - 6.1900e-3 5.9294e-3 5.8624e-3
32 × 16 6.1904e-3 - 6.3470e-3 6.2487e-3 6.2180e-3
40 × 20 6.2539e-3 - 6.3691e-3 6.2982e-3 6.2751e-3
48 × 24 6.2939e-3 6.3941e-3 6.3829e-3 6.3287e-3 6.3108e-3

Figure 10 and figure 11 illustrate the convergence of deflection at point B and strain energy
error for a regular mesh with ratio t/L=1000,t/L=1/10000, respectively. In table 6 we have
compared the displacement at at point B for a regular mesh of our element to other elements
in the literature. We note that the MISTk elements are always more accurate compared to the
elements compared with. The results for the distorted meshes are illustrated in figure 12 and
table 8.
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Table 7: Displacement at point B for a regular mesh(t/L=1/10000)

Mesh No MITC4 MITC16 [20] Present elements
MIST1 MIST2 MIST4

8 × 4 0.2851 - 0.3398 0.2959 0.2899
16 × 8 0.4360 - 0.4789 0.4453 0.4401
32 × 16 0.4967 - 0.5169 0.5021 0.4991
40 × 20 0.5063 - 0.5214 0.5106 0.5085
48 × 24 0.5121 0.5298 0.5240 0.5157 0.5137

Table 8: Displacement at point B for a irregular mesh(t/L=1/1000)

Mesh No MITC4(α = 0.5) MIST2
α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

8 × 4 4.6652e-3 5.4683e-3 5.4437e-3 5.4359e-3 5.3768e-3 5.3417e-3
16 × 8 5.7148e-3 6.1379e-3 6.1285e-3 6.1243e-3 6.1196e-3 6.1075e-3
32 × 16 5.8184e-3 6.2753e-3 6.2648e-3 6.2617e-3 6.2584e-3 6.2520e-3
40 × 20 5.9769e-3 6.2891e-3 6.2714e-3 6.2682e-3 6.2574e-3 6.2371e-3
48 × 24 5.8548e-3 6.2957e-3 6.2826e-3 6.2748e-3 6.2664e-3 6.2440e-3
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Figure 10: The convergence of deflection of point B for a regular mesh (t/L=1/1000)
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Figure 12: The convergence of deflection of point B for a irregular mesh (t/L=1/1000)
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Figure 13: Convergence in strain energy for a irregular mesh (t/L=1/1000)

4.2 Free vibration analysis

4.2.1 A cylindrical shell panel

In this example, a clamped cylindrical shell panel is analyzed. The geometry of the shell
is illustrated in figure 14 and its mesh. The following parameters are used in the analysis:
length L = 7.62cm, radius R = 76.2cm, thickness t = 0.033cm, elastic modulus E =
6.8948 × 1010N/m2, Poisson ratio ν = 0.33 and mass density ρ = 2657.3kg/m3. The cen-
tral subtended angle of the section is θ = 7.640. This problem was studied repeatedly in the
literature: experimentally by Nath [28], numerically by the extended Rayleigh-Ritz method
(ERR) in [34], using triangular finite elements (FET) in [33], analytically by a higher order the-
ory in [24] and with a nine-node assumed natural degenerated shell element in [21]. To analyze
the effectiveness of the present method for distorted meshes, we calculate frequencies using
8 × 8, 12 × 12, 16 × 16, and 20 × 20 meshes for both regular and distorted elements. The first
eight frequencies of the clamped cylindrical shell panel are shown in table 9 for regular. The
frequencies obtained using the MISTk element are lower than those obtained using the MITC4
element, which is consistent with the fact that strain smoothing leads to softer responses in the
case of bilinear interpolants (see, e.g. [32, 29]). Figure 15 illustrate six shape modes of free
vibration of the clamped cylindrical shell panel with regular meshes and for distorted meshes.

4.2.2 Hemispherical panel CCFF

Let us consider a hemispherical panel as shown in figure 16 with radius R = 1m, thickness
t = 0.1m, ϕ0 = 300, ϕ1 = 900, ψ = 1200. The material parameters are: Young’s modulus
E = 2.1 × 1011Pa, Poisson’s ratio ν = 0.3, mass density ρ = 7800kg/m3. The first eight
frequencies obtained with MITC4 and MISTk elements are given in table 10. The results of
both MITC4 and MISTk are compared with the Generalized Differential Quadrature (GDQ)
method of [11] and with results obtained using commercial software packages such as Abaqus,
Ansys, Nastran, Straus [11]. It is observed that the solutions of the MISTk element are closer to
the reference values than the MITC4 element. The first six eigenmodes of hemispherical panels
are given in figure 17.
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Figure 14: Cylindrical shell panel CCCC: (E = 6.8948× 1010N/m2, ν = 0.33, ρ = 2657.3kg/m3)

Table 9: First eight frequencies of clamped cylindrical shell panel for a regular mesh

Modes mode 1 mode 2 mode 3 mode 4 mode 5 mode 6 mode 7 mode 8

MITC4 899.34 993.14 1439.03 1476.10 1487.88 1897.88 2496.93 2571.05
849.72 951.66 1315.32 1365.06 1384.48 1683.56 2009.36 2188.12
833.42 934.60 1271.52 1340.20 1350.30 1617.52 1848.14 2097.67
826.09 926.21 1253.18 1328.74 1334.82 1588.41 1780.96 2058.23

MIST1 888.13 980.04 1399.66 1444.49 1454.61 1818.21 2436.97 2490.22
844.77 945.76 1306.53 1347.22 1365.03 1650.67 1996.11 2159.51
830.62 931.24 1266.68 1330.04 1339.15 1599.10 1841.04 2081.10
824.29 924.04 1250.11 1322.18 1327.60 1576.59 1776.50 2047.46

MIST2 892.05 985.36 1416.70 1460.68 1462.96 1847.83 2463.57 2521.81
846.41 947.99 1309.88 1354.52 1371.65 1661.89 2001.18 2171.50
831.52 932.47 1268.51 1334.07 1342.77 1605.12 1843.68 2087.84
824.86 924.82 1251.27 1324.73 1329.88 1580.37 1778.13 2051.77

MIST4 896.76 990.01 1429.84 1470.99 1478.56 1880.34 2483.34 2554.94
848.54 950.23 1313.19 1360.80 1380.07 1676.05 2006.15 2181.42
832.74 933.78 1270.34 1337.74 1347.68 1613.18 1846.40 2093.71
825.65 925.68 1252.42 1327.13 1333.09 1585.58 1779.86 2055.62

Ref.solu.:
Olson [33] 869.56 957.56 1287.56 1363.21 1440.26 1755.59 1779.63 2056.08
Petyt [34] 890 973 1311 1371 1454 1775 1816 2068
Lim [24] 870 958 1288 1364 1440 1753 1779 2055
Lee [21] 878.253 966.97 1300.51 1377.21 1453.50 1768.54 1797.46 2077.21
Nath [28] 814 940 1260 1306 1452 1802 1735 2100
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Figure 15: Mode shapes of a clamped cylindrical panel for a regular mesh
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Figure 16: Hemispherical panel CCFF: R = 1m,h = 0.1m,ϕ0 = 30o, ϕ1 = 90o, ψ = 120o

Table 10: First eight frequencies of hemispherical panel CCFF

Modes mode 1 mode 2 mode 3 mode 4 mode 5 mode 6 mode 7 mode 8

MITC4 329.23 463.92 726.69 946.05 1089.64 1373.59 1397.38 1503.95
330.37 463.15 722.32 918.96 1073.88 1340.33 1355.33 1455.62
330.45 462.65 719.89 908.94 1067.79 1319.45 1344.54 1437.55
330.34 462.26 718.42 904.07 1064.62 1308.89 1338.90 1428.54

MIST1 310.29 450.94 692.38 917.08 981.27 1047.06 1316.45 1363.52
323.04 457.50 708.89 907.29 1058.76 1244.61 1321.24 1338.48
326.67 459.62 712.95 902.60 1060.50 1309.87 1334.86 1426.94
328.04 460.41 714.19 900.07 1060.39 1302.90 1332.86 1422.39

MIST2 322.17 458.89 714.11 932.60 1071.32 1355.41 1384.53 1474.95
327.36 460.74 716.95 913.02 1066.87 1333.54 1348.63 1444.90
328.82 461.38 717.00 905.59 1064.21 1315.82 1340.74 1432.30
329.33 461.41 716.63 901.91 1062.47 1306.58 1336.50 1425.43

MIST4 326.12 461.83 721.56 940.60 1082.61 1364.10 1391.01 1493.23
328.92 462.07 719.82 916.46 1070.96 1336.25 1351.96 1451.27
329.64 462.02 718.46 907.51 1066.24 1317.24 1342.48 1435.28
329.82 461.86 717.50 903.14 1063.67 1307.47 1337.56 1427.14

Abaqus [11] 326.94 459.01 706.98 884.09 1047.62 1270.77 1309.19 1383.72
Ansys [11] 328.48 460.89 710.52 893.51 1056.12 1285.21 1327.96 1403.99
Nastran [11] 328.69 460.93 711.09 892.71 1055.81 1282.41 1325.89 1401.91
Straus [11] 327.28 458.54 706.64 888.86 1049.49 1278.91 1313.90 1395.46
GDQ [11] 327.39 458.58 705.71 885.18 1046.55 1270.72 1305.12 1382.81
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Figure 17: Mode shapes of a hemispherical panel CCFF
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5 CONCLUSIONS

In this paper, a smoothed finite element method (SFEM) was further developed for static
and free vibration analysis of shell structures. The present method is derived from the linear
combination of the gradient smoothing technique and an independent interpolation of assumed
natural strains as given in the MITC4 element.

The major advantage of the method, emanating from the fact that the membrane and bending
stiffness matrix are evaluated on element boundaries instead of on their interiors is that the
proposed formulation gives very accurate and convergent results for distorted meshes.

In addition to the above points, the author believes that the strain smoothing technique herein
is seamlessly extendable to complex shell problems such as non-linear material and geometric
non-linearities, problems where large mesh-distortion play a major role. Providing an associ-
ation of boundary integration with partition of unity methods in the extended finite element
method [5] may be an interesting subject for improving discontinuous approximations.
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