18" International Conference on the Application of Computer
Science and Mathematics in Architecture and Civil Engineering
K. Giirlebeck and C. Konke (eds.)

Weimar, Germany, 07-09 July 2009

ENERGY RELEASE CONTROL FOR NONLINEAR MESOSCALE
SIMULATIONS

Stefan Eckardt* and Carsten Konke

Institute of Structural Mechanics
Bauhaus-University Weimar
Marienstrasse 15, 99423 Weimar, Germany
*e-mail: stefan.eckardt@ uni-weimar.de

Keywords: path-following algorithm, quasi-brittle material, snap-back phenomena.

Abstract. In nonlinear simulations the loading is, in general, applied in an incremental way.
Path-following algorithms are used to trace the equilibrium path during the failure process.
Standard displacement controlled solution strategies fail if snap-back phenomena occur. In this
contribution, a path-following algorithm based on the dissipation of the inelastic energy is pre-
sented which allows for the simulation of snap-backs. Since the constraint is defined in terms of
the internal energy, the algorithm is not restricted to continuum damage models. Furthermore,
no a priori knowledge about the final damage distribution is required. The performance of the
proposed algorithm is illustrated using nonlinear mesoscale simulations.



1 INTRODUCTION

In nonlinear finite element simulations of concrete, path-following algorithms are applied
to trace the equilibrium path during the failure process, which can be represented by a global
load-displacement curve. Depending on the ratio between the specimen size and the size of the
fracture process zone, this curve may exhibit snap-back phenomena. Path-following algorithms
based on direct displacement control fail at the turning point, where the tangent of the cor-
responding load-displacement curve is vertical. Load-displacement-constraint methods, such
as arc-length or indirect displacement control, can be used to simulate snap-backs. In these
methods, the parametrized load step is coupled to the increment of selected nodal degrees of
freedom using an additional constraint equation. The crack mouth opening can for example
be used to control the loading. Such an approach is only applicable if the final failure process
zone is known in advance. Mesoscale simulations of concrete, in which the numerical model
explicitly represents the material components, are characterized by the propagation of multiple
microcracks. The coalescence of these microcracks to a macroscopic crack results in a soften-
ing of the material. In general, the position of the final macroscopic fracture process zone is
determined by the heterogeneous material structure on the mesoscale and therefore not known
a priori. Gutiérrez [ 1] proposes a path-following constraint which is based on the energy dissi-
pation during the failure process. Consequently, the constraint does not depend on the position
and behavior of the fracture process zone. Since in this method the constraint is defined by the
external energy, which can be calculated from the external load vector and the nodal displace-
ments, this constraint is only applicable to simulations with damage material models. In this
contribution, the energy release control is extended to general constitutive formulations. The
corresponding constraint is defined in terms of the internal energy, which is calculated from
stresses and strains.

2 LOAD-DISPLACEMENT-CONSTRAINT METHODS

In load-displacement-constraint methods, the external forces or the displacements at the
supports after load step n are not prescribed in advance. Instead, the external load vector is
parametrized by a scalar load factor p

F = fo+u™f, (1)

where f, is a vector of constant loads, e.g. the dead load of the structure, and f is a given
reference load vector. The corresponding equilibrium condition reads

£ = Fina(d™) = fo + 1™ f, )

where f;,,, is the internal load vector and d is the displacement vector. Assuming a constant
load factor in each load step, standard load control is obtained. If the load factor is considered
as an unknown during the iteration process, the equilibrium equation, is enhanced by
an additional constraint equation

1) — l(d("), u(n)) = 0. (3)

Using Newton’s method, the generally nonlinear system of equations given by and [(3)]
is solved in an iterative manner for the displacement vector d and the load factor .
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2.1 Path-following constraint based on the internal energy

In this contribution, a path-following constraint is introduced which is directly based on the
dissipated (inelastic) energy. In general, the inelastic energy U,,.; can be defined as

Ui(r?e)l - Ut(:t) - Uéln )a 4)

where U;,; is the total energy and U, is the elastic energy. The total energy stored in an el-

ement with volume V' can be written as a function of the total energy density u;,; which is
approximated by the trapezoidal rule

n n n— 1 — —
Ut(ot) _ / ugot) dV ~ / ugot 1) + 5 (o.(n 1) 4 a-(n)) . (s(n) _gln 1)) dv, ®)
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where € is the strain tensor and o is the corresponding stress tensor. Assuming a combined
damage-plasticity model, the elastic energy is given by

1
U =2 / o™ (e —eyuy™) v, (6)
Vv

2
in which €, denotes the tensor of plastic strains. It is to be noted that the plastic strains vanish
if a pure damage material model is applied.
Assuming that a predefined amount of energy AG should be dissipated in each load incre-
ment n, the corresponding constraint equation can be written as
U™ b _AG = 0. (7)

inel inel

Inside the iterative solution procedure, the unknown energy dissipation is approximated by
a truncated Taylor series. In the i-th iteration step of load increment n, the corresponding
constraint equation reads

(ni-1)]7T
Winel ] 8d™) — Uyt (d™V) — AG = 0, (8)

U(n,ifl)
104

inel

where dd is the unknown correction of the displacement vector.

Assuming nonlinear simulations with continuum damage material models, the presented ap-
proach is totally equivalent to the path-following constraint introduced by Gutiérrez [1/] which is
based on the external energy. Compared to this approach, a higher numerical effort is required
since the derivative of the inelastic energy with respect to the displacements, which involves
the computation of the tangent material matrix, must be calculated for each element and an
assembling of the element values to the global vector must be performed. Due to the usage of
the inelastic energy, this approach is not limited to continuum damage models. It is applicable
to any material formulation for which the inelastic energy and the corresponding derivative can
be defined.

The presented constraint equation can only be used if damage or plasticity is evolving during
the load step. In general, this is not the case at the beginning of the loading process. As long
as the structure is in the elastic regime, the simulation is performed with load control and the
dissipated energy is calculated in each iteration step using If damage or plasticity
initiates and inelastic energy starts to dissipate, the load control is replaced by an energy release
control. In order to reduce the computation time, the step size is adapted during the simulation.
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Figure 1: Mesoscale model for specimen type A and nominal stress-strain curves.

3 EXAMPLE

The performance of the proposed constraint is illustrated using nonlinear mesoscale simula-
tions of the size-effect experiments of van Vliet and van Mier [2]. For a specimen of type A,
shows the three-phase mesoscale model, which consists of aggregates, mortar matrix
and the interfacial transition zone (ITZ), and the corresponding finite element discretization.
The evolution of microcracks inside the mortar matrix is described by a nonlocal isotropic dam-
age model. Linear elastic behavior is assumed for the aggregates and the nonlinear behavior of
the ITZ is represented by a cohesive zone model. The simulations are performed for specimens
of type A, B, C and D. The specimen size is successively doubled, assuming a constant thick-
ness of 100 mm. Consequently, a specimen of type D is scaled by a factor of 8. The diagram
in shows the nominal stress-strain curves. A clear influence of the specimen size on
the maximum nominal stress can be identified. As illustrated in snap-back phenom-
ena observed for the specimen types C and D can be efficiently simulated with the proposed
path-following algorithm. Further details on these simulations can be found in [3]].

4 CONCLUSIONS

In this contribution, a path following constraint based on the energy which is dissipated
during the failure process is presented which allows for an efficient simulation of snap-back
phenomena. By defining the constraint in terms of the internal energy, the proposed path-
following algorithm is not restricted to continuum damage models, but can be applied to any
material formulation for which the inelastic energy can be defined. Since, no a priori knowledge
about the final failure zone is required, this constraint is especially advantageous in nonlinear
mesoscale simulations of concrete.
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