
20th International Conference on the Application of Computer
Science and Mathematics in Architecture and Civil Engineering

K. Gürlebeck and T. Lahmer (eds.)
Weimar, Germany, 20–22 July 2015

A GENERIC FRAMEWORK SUPPORTING DISTRIBUTED
COMPUTING IN ENGINEERING APPLICATIONS

J.Wiggenbrock*1,2 and K. Smarsly1

1Bauhaus University Weimar
Coudraystr. 7, 99423 Weimar, Germany

Email: jens.wiggenbrock@uni-weimar.de

2South Westphalia University of Applied Sciences
Lindenstraße 53, 59872 Meschede, Germany

Keywords: Data Modeling, Distributed Engineering Applications, Message-oriented
Middleware, Computing in Civil Engineering.

Abstract. Modern distributed engineering applications are based on complex systems
consisting of various subsystems that are connected through the Internet. Communication and
collaboration within an entire system requires reliable and efficient data exchange between the
subsystems. Middleware developed within the web evolution during the past years provides
reliable and efficient data exchange for web applications, which can be adopted for solving the
data exchange problems in distributed engineering applications. This paper presents a generic
approach for reliable and efficient data exchange between engineering devices using existing
middleware known from web applications. Different existing middleware is examined with
respect to the suitability in engineering applications. In this paper, a suitable middleware is
shown and a prototype implementation simulating distributed wind farm control is presented
and validated using several performance measurements.

218

1 INTRODUCTION

A general trend in engineering applications are interconnected subsystems that in total form
a distributed engineering system. Every subsystem may include sensors and actuators
supporting the overall task of the engineering system. A common general requirement of
distributed engineering systems is the need for reliable and efficient data exchange between the
interconnected subsystems. Examples of such engineering systems are industrial assembly
lines, home automation, wired or wireless structural health monitoring [1] [2] or, more
specifically, wind farms being composed of single wind turbines representing interconnected
subsystems.

There exists a number of proprietary and enterprise-specific approaches for reliable and
efficient data exchange between interconnected and spatially distributed subsystems. The
approaches provide data exchange protocols, network topologies and, also, several
specifications for additional cabling that must be considered when implemented in terms of an
engineering system required to connect the subsystems. Disadvantages of these approaches are
high expenses because of the additional cabling. Furthermore, the engineering system is
technology-dependent and, as such, hardly expandable.

Modern, collaborative web applications, such as groupware and social networks, also
require reliable and efficient data exchange between the subsystems. Here, the web servers and
the web browsers are considered subsystems forming the entire system “web” that is connected
through the Internet. In the area of web applications, there exists well-established middleware
for data exchange between the subsystems (i.e. web servers and web browsers). This
middleware can advantageously be adopted to implement reliable and efficient data exchange
in distributed engineering applications.

In this paper, a generic framework for reliable and efficient data exchange between
engineering devices is presented, using existing middleware usually deployed in web
applications. Starting with a brief overview of modern collaborative web applications, the
principles of existing middleware are elucidated. Then, selection criteria for suitable
middleware with respect to data exchange in engineering applications are defined, and existing
middleware is examined. Based on the selection results, the middleware being most appropriate
to be adopted to engineering applications is taken as a basis for a prototype implementation.
Finally, the prototype implementation is validated using several performance measurements.

2 MESSAGE-ORIENTED MIDDLEWARE FOR ENGINEERING APPLICATIONS

“Message-oriented middleware” is a generic term describing a software that operates as
message exchange service. The software can be divided into a server, which provides the
exchange service, and participating clients, which require message exchange between each
other. A message refers to all types of data and command packets being exchanged. The
following paragraphs describe state-of-the-art message-oriented middleware for engineering
applications.

2.1 Principles of message-oriented middleware

Today, most devices that are connected to the Internet are located behind a router with an
integrated firewall. As shown in Figure 1, the router grants Internet access to the devices
behind the router. Vice versa, the devices behind the router cannot be accessed from the

219

Internet directly. To give an example, the mobile phone shown in Figure 1 cannot establish a
connection to the public web server, and the web server cannot establish a connection to any
device, such as the mobile phone mentioned above.

Figure 1: Topology of various devices connected through the Internet

In summary, the topology shown in Figure 1 shields the devices behind the router and
basically protects the devices from external access. However, considering engineering
applications, establishing a connection to a device behind a router can become a serious issue if
the connection is needed for the engineering application.

A well-known solution for reliable and efficient data exchange between devices connected
through the Internet is the establishment of a public server, based e.g. on the File Transfer
Protocol (FTP). The common, unidirectional and indirect way to transfer a file between the
devices via FTP is shown in Figure 2. The desktop PC connects with the public FTP server and
uploads a file (green arrows). Once the file is uploaded, the mobile phone connects with the
public FTP server and downloads the file (red arrows). Technically, the FTP server operates as
a middleware for file exchange.

Figure 2: Indirect, unidirectional data exchange over a public FTP server

Both operations, upload and download, are executed independently from each other and
must explicitly be initiated by the respective client device, i.e. the upload process must be
finished before the download process is started. Unfortunately, traditional file exchange
protocols, such as FTP, generally do not provide any possibility to notify participating clients
when the upload process is finished or when changes at the server occur. Thus, additional
means for notifying participating clients, such as email or phone calls, are needed, which,
however, leads to delays in the data exchange process.

Eradicating the drawbacks illustrated above, message-oriented middleware (MOM) enables
data exchange between various devices based on a different concept. Negotiating on a central
server allows near real-time data exchange between participating clients, as shown in Figure 3

220

and in Figure 4 [3]. Message-oriented middleware provides different communication protocols,
such as “message passing”, “message queueing”, and “publish/subscribe”. While “message
passing” and “message queueing” are mostly used for concurrent programming in local
applications, publish/subscribe is a well-established model for asynchronous distributed
computing considered herein.

A public server provides topic-oriented communication channels and takes on their central
mediation. First, all participating clients connect to the public server. Then, the clients register
with the server and “subscribe” to a specific topic. Finally, the server compiles a list of all
clients and topics, and it manages the communication. To receive data, a client sends a message
with the topic of interest to the server. The server processes the list of clients and topics, and it
forwards the message to the clients subscribed to the topic of interest. Figure 3 and Figure 4
show different publish/subscribe architectures. Figure 3 presents a simple architecture of one
client publishing in one topic, a server, and two subscriber clients. Figure 4 presents a simple
architecture of two clients publishing in the same or in different topics, a server, and one
subscriber client.

Figure 3: Publish/subscribe architecture with one
publisher and two subscribers

Figure 4: Publish/subscribe architecture with two
publishers and one subscriber

2.2 Selection criteria for message-oriented middleware for engineering applications

Automated, distributed engineering applications are widely used in a number of areas. The
most critical component in distributed engineering applications is the communication system
[4]. Essential features, which every distributed engineering application must provide, are
defined as follows:

• Fast data exchange: Data packets have to be delivered with low and predictable latency

• Reliable data exchange: Data must be equipped with error-correcting code

• Durability: The lifetime of engineering applications may be several decades; the
engineering systems have to be maintained over the lifetime

When using message-oriented middleware in engineering applications, specific requirements
must be met. The following criteria are identified for selecting suitable message-oriented
middleware for distributed engineering applications. Based on these criteria, Table 1
summarizes the middleware examined in this study.

221

• Hosting: Does the middleware provide self-hosting on an independent server?

• Data security: Does the middleware provide authentication and encryption or is a plugin
available?

• Future security: Is the development within the next years ensured by a vivid community?

• Usability: Does the middleware provide a programming interface, which can easily be
integrated into existing engineering applications?

Table 1: Middleware examined in this study

Middleware Host Data
security

Future
security

Usability Remarks

Redis

http://redis.io/

Self-
host

Not
integrated

Server and
clients are
open
source

Server: Independent
application on
Linux/Windows
Clients: Supporting
many programming
languages

Popular NoSQL-
database with
publish/subscribe
function

Google Cloud pub/sub
API

https://cloud.google.co
m
/pubsub/docs

Cloud-
host

HTTPS Beta
version,
potential
for future
Google
services

Server: Managed
service

Clients: Supporting
.NET, Java and
JavaScript

First (beta) release in
03/2015

Apache Kafka
http://kafka.apache.org/

Self-
host

SSL
implement
ed in last
version

Server and
clients are
open
source

Server: Independent
application on
Linux/Windows

Clients: Supporting
several progr.
languages

Originally developed
by LinkedIn

PUSHER

https://pusher.com/
Cloud-
host

SSL
implement
ed

Server not
available,
Clients
are open
source

Server: Managed
service
Clients: Supporting
.NET, Java and
JavaScript

Describes itself as
“Leader in realtime
technologies”

Socket.io + NODE.js
http://socket.io/

Self-
host

SSL
implement
ed

Server
and
clients are
open
source

Server and client
only available in
JavaScript

Popular event-
driven JavaScript
server architecture

RabbitMQ

http://www.rabbitmq.com

Self-
host

SLL
implement
ed but
depends on
Erlang
crypto
application

Server and
clients are
open
source.

Server: Independent
application on
Linux/Windows
written in Erlang
Clients: Supporting
several progr.
languages

Implements the open
Advanced Message
Queuing Protocol
enabling own client
developments

ASP.NET SignalR

http://signalr.net

Self-
host

Over IIS-
Server /
OWIN

Open
source

Server: Integrates in
existing C# or
ASP.NET appl’s on
Linux/Windows
Clients: Supporting
C#, Java, JavaScript

Started as open
source project; now
core feature of
ASP.NET

222

As can be seen from Table 1, “Apache Kafka”, “RabbitMQ” and “SignalR” are matching all
defined selection criteria. In addition, SignalR provides a so called server module that can be
integrated directly into existing engineering applications [5]; this enables the server to perform
further processing on the messages and to distribute the messages according to additional filter
rules. Finally, SignalR is chosen in this study as an appropriate basis for the prototype
implementation simulating decentralized wind farm control.

3 A GENERIC FRAMEWORK SUPPORTING REAL-TIME DATA EXCHANGE
FOR DECENTRALIZED WIND FARM CONTROL

Representing an illustrative example of a distributed engineering application, decentralized
collaborative control of a wind farm is chosen as a proof of concept of the proposed
framework. Today, wind turbines in a wind farm are usually operated without considering
wake effects between the wind turbines. Figure 5 shows a wind farm with highlighted wake
fields affecting wind turbines lying behind other wind turbines. Minimizing the wake effects
increases the wind farm power efficiency. In recent years, different approaches towards wind
farm power efficiency optimization have been proposed. Park et al., for example, propose a
cooperative control strategy, adjusting the yaw control of the nacelle, the pitch control of the
rotor blades and the induction factor of the generator to alter the wake field of each wind
turbine [6, 7]. It is evident that automated real-time control of the wind turbines in a
collaborative way can substantially increase the overall performance of a wind farm in terms of
power efficiency. In this paper, collaborative control of a wind farm is simulated, serving as a
proof of concept of the proposed framework.

Figure 5: Wind farm with highlighted wake fields affecting wind turbines
lying behind other wind turbines (figure source: [4])

It is assumed that for cooperative control, the location (i.e. latitude and longitude) of each
wind turbine within the wind farm, the actual settings (i.e. yaw angle, rotor blade pitch, and
induction factor), the power output, and the environmental data (i.e. wind direction and wind
speed) of each wind turbine is needed to calculate the optimum settings for each wind turbine
relevant to collaborative wind farm power maximization. The optimum settings of each wind
turbine contain improved yaw angle, rotor blade pitch, and induction factor. It is further
assumed that real-time computational optimization is done by a central control unit within a
procedure carried out in regular intervals. Each wind turbine sends the described data sets to the
central control unit. In this study, the central control unit runs an engineering application
simulating the wind farm optimization model proposed by Park et al. The calculated data sets
containing the optimum settings are sent to the respective wind turbine in through messages.

223

Assuming that the messages, which contain the data sets described above, are sent in human
readable text format (JSON or XML), one message has a size of less than 100 bytes (about 10
bytes per value). In this study, data exchange between the central control unit and the wind
turbines 10 times per minute will be sufficient for wind farm control.

The SignalR middleware used in this study has originally been developed to integrate real-
time communication in ASP.NET web applications [8]. A SignalR server is based on the
programming language C# and provides server and client integration in underlying applications
running on Windows and Linux. Clients for Java and JavaScript are also available. The ability
of SSL encryption is a further feature of SignalR. Figure 6 presents the architecture of the
proposed generic framework, which basically consists of one server that represents the central
control unit, and two clients that represent two wind turbines. Both, server and clients, include
specific SignalR libraries that provide a hub class. The hub class is the interface to handle all
SignalR communications within the distributed engineering application. Furthermore, the hub
class provides a programmable interface for external access, which keeps the main part of the
application encapsulated. Data exchange between subsystems is done by invoking hub class
methods that pass the data sets of the wind turbines as method parameters.

Figure 6: SignalR-based example application for wind farm control

As mentioned earlier, the wind turbines technically act as the clients and the central control
unit acts as the server. Figure 7 shows the wind farm control as a closed control circuit. The
clients, in pre-defined intervals, collect the environmental data and the wind turbine settings
required for real-time optimization. Once having collected all data sets, the clients invoke the
server method “wt_data”, passing the collected data sets to the server.

As shown in Figure 7, the “wt_data” server method passes the collected data sets to the
server engineering application, which then calculates the optimum settings for each wind
turbine. After the calculations are done, the server engineering application invokes the client
method “wt_adjust” on every client, passing the optimum settings for adjusting the respective
wind turbine. Thus, the optimum settings are transmitted to the server. Finally, the “wt_adjust”-
method passes the optimum settings to the wind turbine, which adopts the optimum settings to
adjust the wind turbine actuators.

224

Figure 7: Closed control circuit enabling wind farm optimization

The above described framework has been implemented into a prototype application
simulating distributed wind farm control. The prototype application has been written in the
programming language C#. As a result, the program is executable on different computer
systems and operating systems, entailing an easy integration into existing systems, such as
existing wind turbine control systems. Performance measurements have been conducted on the
prototype application to validate the reliability and the efficiency of the data exchange. The test
environment defined for the performance measurement is shown in Figure 7, measuring the
message response times from client to server and back to the client. The time difference, also
called latency, is an acknowledged performance indicator used to compare different system
variations. Table 2 presents the performance measurement results for different system
variations.

Client

Desktop PC,
Windows 7

Desktop PC,
Linux Ubuntu
14.10

Raspberry Pi 1,
Debian Raspbian

S
er

ve
r

Desktop PC,
Windows 7

2 ms 3 ms 20 ms

Desktop PC,
Linux Ubuntu
14.10

270 ms 70 ms 90 ms

Raspberry Pi 1,
Debian Raspbian

730 ms 520 ms 550 ms

Table 2: Performance measurement results

Summarizing the performance measurement results, it can be concluded that the proposed
framework is usable for reliable and efficient data exchange supporting distributed computing
in engineering applications, specifically for decentralized wind farm control as simulated
herein. However, the different response times on desktop PCs running Linux as server are
unexpected and may open a field for further research.

225

4 SUMMARY AND CONCLUSIONS

This paper has presented a generic framework for reliable and efficient data exchange in
engineering applications. Principles of existing middleware, well-established in the field of web
applications, have been adopted to distributed engineering applications. Specifically, selection
criteria for reliable and efficient data exchange in engineering applications have been defined
and matched with existing middleware. Based on the selection criteria, SignalR has been
examined in detail for a prototype implementation simulating distributed wind farm control. As
a result, the prototype implementation has shown that SignalR is universally applicable to
different engineering systems as a reliable and efficient middleware for data exchange.
Performance measurements have demonstrated that the performance strongly depends on the
roles of the subsystems (e.g. server or client) as well as on the computer systems and operating
systems used (e.g. Windows and the Microsoft .NET Framework or Linux and the Mono .NET
Framework).

5 ACKNOWLEDGEMENTS

The authors would like to gratefully acknowledge the generous support offered by Professor
Stefan Breide and Professor Jürgen Willms (South Westphalia University of Applied Sciences,
Germany).

REFERENCES

[1] K. Smarsly, K. Lehner and D. Hartmann, “Structural Health Monitoring based on Artificial
Intelligence Techniques,” in Proceedings of the International Workshop on Computing in
Civil Engineering, Pittsburgh, PA, USA, 2007.

[2] K. Smarsly, K. H. Law and M. König, “Autonomous Structural Condition Monitoring based
on Dynamic Code Migration and Cooperative Information Processing in Wireless Sensor
Networks,” in Proceedings of the 8th International Workshop on Structural Health
Monitoring 2011, Stanford, CA, USA, 2011.

[3] M. Qusay and E. Curry, Middleware for Communications, New Jersey, USA: John Wiley &
Sons, Ltd, 2004.

[4] K. H. Law, K. Smarsly and Y. Wang, “Sensor Data Management Technologies for
Infrastructure Asset Management,” in Sensor Technologies for Civil Infrastructures,
Sawston, UK, Woodhead Publishing, Ltd., 2014, pp. 3-32.

[5] J. S. Lang and J. R. Irving, “Creating a Prototype Web Application for Spacecraft Real-
Time Data Visualization on Mobile Devices,” in SpaceOps 2014 International Conference
on Space Operations, Pasadena,CA, USA, 2014.

[6] J. Park, S. Kwon and K. H. Law, “Wind Farm Power Maximization Based On A
Cooperative Static Game Approach,” in Proceedings of the SPIE Smart Structures/NDE
Conference, San Diego, CA, USA, 2013.

[7] J. Park and K. H. Law, “A Bayesian optimization approach for wind farm power
maximization,” in Proceedings of the SPIE Smart Structures/NDE Conference, San Diego,
CA, USA, 2015.

[8] G. A. Valdez, “SignalR: Building real time web applications,” Microsoft, 17 12 2012.
[Online]. Available: http://blogs.msdn.com/b/webdev/archive/2012/12/17/signalr-building-
real-time-web-applications.aspx. [Accessed January 9, 2015].

226

