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Abstract. With the advances of the computer technology, structural optimization has become a 
prominent field in structural engineering. In this study an unconventional approach of 
structural optimization is presented which utilize the Energy method with Integral Material 
behaviour (EIM), based on the Lagrange’s principle of minimum potential energy. The 

equilibrium condition with the EIM, as an alternative method for nonlinear analysis, is secured 
through minimization of the potential energy as an optimization problem. Imposing this 
problem as an additional constraint on a higher cost function of a structural property, a bilevel 
programming problem is formulated. The nested strategy of solution of the bilevel problem is 
used, treating the energy and the upper objective function as separate optimization problems. 
Utilizing the convexity of the potential energy, gradient based algorithms are employed for its 
minimization and the upper cost function is minimized using the gradient free algorithms, due 
to its unknown properties. Two practical examples are considered in order to prove the 
efficiency of the method. The first one presents a sizing problem of I steel section within 
encased composite cross section, utilizing the material nonlinearity. The second one is a 
discrete shape optimization of a steel truss bridge, which is compared to a previous study based 
on the Finite Element Method. 
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1    INTRODUCTION 

Structural optimization has gained considerable attention in the design of structural 
engineering structures, especially in the preliminary phase. The application of optimization in 
design would enable optimal and efficient shape of structures and to utilize properties which 
are not feasible with conventional design techniques. In structural optimization a cost function 
is minimized under design and equilibrium constrains. Mechanical systems are typically 
formulated by partial differential equations describing the equilibrium, compatibility and 
constitutive relations. Alternatively the state of equilibrium can be also formulated by a 
variational formulation, in which a variation of a given functional with respect to certain state 
variable is zero. Conventionally the equilibrium condition is secured by the Finite Element 
Method (FEM). In this work the Energy method with Integral Material behaviour (EIM) is 
employed, which ensures equilibrium through minimization of the potential energy. With an 
additional cost function, this constitutes a bilevel optimization problem. The outline of this 
paper is the following: initially a brief outline of the EIM is given, followed by formulation of 
the structural optimization and finally the method is applied on two practical examples. 

2    STRUCTURAL OPTIMZIATION USING EIM 

2.1   Formulation of the EIM 
Lagrange’s theorem of minimum of potential energy is a variational principle in which the 

sum of the internal, 𝛱𝑖 and external energy, 𝛱𝑒 is minimized with respect to a state variable, 
and it represents the fundamental principle of the EIM: 

𝛱 = 𝛱𝑖 + 𝛱𝑒 → 𝑚𝑖𝑛. (1) 

In the latter formulation the equilibrium, compatibility and constitutive relations are 
incorporated; therefore they should be represented accordingly with respect to a certain state 
variable. In case of formulation on cross section level this is the deformation vector containing 
the strain 𝜀0 at the origin and the two curvatures and 𝜺 = [𝜀0,  𝜅𝑦, 𝜅𝑧] 𝑇. The constitutive law is
described using the integral description of the material, introduced by Raue in [1]. This is 
obtained by integration over the uniaxial stress-strain relationship resulting in the specific strain 
energy 𝑊, the 𝐹 and 𝛷 which describe the same behaviour of one specific material. The latter 
two functions are used within the strain integration over complex geometries, in order the 
internal potential energy to be obtained: 

𝑊 = 𝑊(𝜀) = ∫ 𝜎(𝜀)𝑑𝜀
𝜀

0
,    𝐹 = 𝐹(𝜀) = ∫ 𝑊(𝜀)𝑑𝜀,

𝜀

0
 𝛷 = 𝛷(𝜀) = ∫ 𝐹(𝜀)𝑑𝜀

𝜀

0
. (2) 

Taking into account Bernoulli’s hypothesis, the strain at arbitrary point of a deformed cross 

section could be described by a linear function of 𝜀0, 𝜅𝑦 and 𝜅𝑧 with respect to y and z 
coordinates respectively as: 

𝜀𝑥(𝑦, 𝑧) = 𝜀0 + 𝜅𝑦𝑦 + 𝜅𝑧𝑧. (3) 

In case of biaxial bending, there is a second system of Cartesian coordinates 𝜂 and 𝜁, at 
which along the 𝜂 axis, the strain is constant as displayed on Figure 1. Here, standard relations 
are employed for the transformation between coordinate systems. The strain energy 𝛱𝑖

𝐶 of a
cross section with area 𝐴 can be obtained by integrating the specific strain energy over the area 
𝑊(𝑦, 𝑧):  

𝛱𝑖
𝐶 = ∬ 𝑊[𝜀(𝑦, 𝑧)]𝑑𝑦𝑑𝑧

𝐴

= ∮ −
𝜅𝑧

𝜅2
𝐹𝑑𝑦 +

𝜅𝑦

𝜅2
𝐹𝑑𝑧

𝐿

= −
1

𝜅
∮ 𝐹𝑑𝜂

𝐿

. (4) 
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The proof of equation (4) is obtained by taking the divergence of the gradient of the 𝜱(𝒚, 𝒛) 
function, which is a 2-dimensional vector field, 𝛁 ∙ 𝛁𝜱 and using Green’s divergence theorem 

to transfer the integral over the area into a line integral over the contour 𝐿. Within this study, 
the proof will not be presented; however it is discussed in detail in [1] along with the proof of 
the curl of the gradient 𝛁 × 𝛁𝜱=0, which ensures the conservation of the energy. The external 
energy as a result of external 𝑁, 𝑀𝑦, 𝑀𝑧 forces acting on a cross section is obtained as:

𝛱𝑒
𝐶 = −(𝑁𝜀0 + 𝑀𝑦𝜅𝑧 + 𝑀𝑧𝜅𝑦). (5) 

     With the last relation, equation (1) is completed and with unconstrained optimization 
algorithm the energy is minimized with the deformation vector 𝜺 as unknown variable. In case 
of element beam formulation, the internal energy has to be integrated over the length 𝑙: 

𝛱𝑖
𝐸 = ∫ 𝛱𝑖

𝐶(𝑥)𝑑𝑥.
𝑙

0

(6) 

The state variable in this case is the displacement vector 𝒖(𝑥) = [𝑢 𝑣 𝑤 𝑣′𝑤′ ]𝑇, which is
composed of the displacements 𝑢, 𝑣, 𝑤 in 𝑥, 𝑦 and 𝑧 direction respectively and their first 
derivatives 𝑣′ and 𝑤′ with respect to x, representing the rotations. The relation between the
deformation and displacement vector for geometrically linear Bernoulli beam is defined by the 
compatibility conditions: 

𝜀0 = 𝑢′,  𝜅𝑦 = −𝑣 ′′,  𝜅𝑧 = −𝑤′′ . (7) 

By integrating the product of the external force vector 𝒑(𝑥) = [𝑝𝑥 𝑝𝑦 𝑝𝑧 𝑚𝑦 𝑚𝑧 ]𝑇  and
displacement vector 𝒖(𝑥) over the length, the external energy yields into: 

𝛱𝑒
𝐸 = ∫ 𝒑𝑇(𝑥)𝒖(𝑥) 𝑑𝑥.

𝑙

0

 (8)

The numerical implementation, discretization and suitable shape functions are discussed in 
the aforementioned literature. 

2.1   Formulation of the structural optimization problem 

A general structural optimization problem is formulated in a way to minimize an objective 
function which usually in mechanical problems represents the weight, the displacements, or the 

Figure 2. Bilevel optimization.Figure 1. Coordinate transformation.
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cost of production. Constraints imposed are the behavioural constraints with respect to the state 
variable (vector representing the response of a structure), design constraints on the design 
variable (vector or function describing geometry or material properties) and equilibrium 
constraints [3]. The behavioural and design constraints can relate to bounds, equality and 
inequality constraints with respect to mathematical optimization, while the equilibrium 
constraints are usually equality constraints. The EIM secures the equilibrium through 
optimization and therefore a Bilevel Optimization Problem (BOP) is formulated in which the 
minimization of the potential energy 𝜫(𝒖, 𝒑) represents the lower objective function and an 
additional cost function F(𝒖, 𝒑):  

𝐵𝑂𝑃: {

min
𝒖,𝒑

𝐹(𝒖, 𝒑)

𝑠. 𝑡. {
𝐺(𝒖, 𝒑) ≤ 𝟎,

min
𝒖

𝛱(𝒖, 𝒑),

 (8) 

where F, 𝛱: 𝑅𝑚 × 𝑅𝑛 → 𝑅; and G: 𝑅𝑚 × 𝑅𝑛 → 𝑅𝑙. The design vector 𝒑 contains the design
variables in the upper optimization task, while the displacement vector 𝒖 represents the state 
variables. The behavioural and design constraints are defined by a set of functions 𝐺(𝒖, 𝒑). 
Figure 2 depicts a simple nested bilevel optimization problem, with one state variable 𝑢 and 
one design variable 𝑝, where the lower problem is only represented at sequences 𝑝1, 𝑝2, and  𝑝3.
In case of cross section optimization, the deformation vector would replace the displacement 
vector as a state variable. There is a vast application field of the bilevel programming problem; 
thus, the solution strategies depend on the properties of the lower and upper objective function. 
In this case the nested method is used, which deals with both optimization problems separately 
i.e. for each iteration of the upper objective, a separate optimization task is solved for the lower 
objective function. Assuming geometrically linear and unlimited deformation capacity, the 
potential energy might be considered as convex and smooth function; therefore, for its 
minimization the unconstrained gradient methods are very effective. In this case the Broyden-
Fletcher-Goldfarb-Schano (BFGS) method is used from the Quasi-Newton algorithms with a 
line search for step size control from the Matlab Optimization toolbox. The properties of the 
upper objective are usually unknown, therefore gradient free, deterministic and stochastic 
represent a good choice.  Here, the deterministic Nelder-Mead downhill simplex algorithm and 
the stochastic genetic algorithm from the evolutionary computing field are utilized. It should be 
noted that there exists a special class of problems which include variational inequality, i.e. the 
Mathematical Programs with Equilibrium Constraints  (MPEC). However, these were not used 
in this case and the formulation using MPEC with EIM is a further research topic. 

3    APPLICATION 

3.1    Composite column 
Composite cross sections using steel profile are commonly used in practice due to their 

efficiency to withstand high loads with relatively small area. This example presents 
optimization of completely encased steel I profile cross section by concrete with circular form 
typical for columns. The problem is formulated to compute the rotated shape of the I section 
with respect to the bending moment axes under biaxial bending and axial force, for minimum 
thickness of the flange 𝑡𝑤 of the steel profile. The section geometry with the external forces is 
depicted on Figure 3 (left). The materials used in this case were concrete C30/37 with parabolic 
rectangular material law according to Eurocode 2 and steel S235 with bilinear constitutive law. 
The objective function was to minimize 𝑡𝑤, by changing the design variables 𝑡𝑤 and 𝛼 with 
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constraints imposed on the strain in compression in concrete 𝜀𝑐≥-3.5‰ and on the strain of the 

steel |𝜀𝑐|≤25‰. The contribution of the concrete in tension was neglected.

                 

The simplex algorithm was utilized and the constraints were imposed as penalty functions. 
The optimized cross section is depicted on Figure 3 (right), for which 𝑡𝑤=2.61cm and 
𝛼=23.13°. As expected, the I profile rotated so it its web is perpendicular to the neutral axis 
with failure in compression. 

3.2    Truss bridge 

The second example presents discrete shape optimization and a sizing problem. It is based 
on a previous study by Soh & Yang in [2] who compared a solution of a truss bridge with 
previous work. Shape optimization problem has been identified as more difficult but more 
important task than mere sizing problems, since the potential savings in material can be far 
better improved by the latter [2]. The structure is a 24m spanned truss bridge depicted in Figure 
4, for which the total weight should be minimized. Design variables are the area of the bars 𝐴𝑖
(𝑖 =1, 2, …, 5), horizontal coordinates 𝑥2, 𝑥3, 𝑥6, 𝑥7 and vertical coordinates 𝑧7, 𝑧8. Constraints 
are imposed on the vertical and horizontal displacements (𝑢 <1cm, 𝑤 <5cm), on the axial 
stresses (𝜎 <14 kN/cm2) and on the area of the bars (𝐴𝑖 >0,5 cm2). The bridge is modelled with
truss elements, using the symmetry. The material is considered as linear elastic with Young’s 

modulus of 𝐸 =2.1E6 kN/cm2 and density 𝜌=7850 kg/m3. Soh & Yang also include 𝑥2 and 𝑥3

as design variables without any notice of constraints, which resulted in this work with 
meaningless results as the node is moving to the support, thus the force has no influence. In 
order to compare the results, these variables were taken from the cited authors solution as fixed. 
For the optimization of the outer objective function, initially the GA was implemented, and 
after 200 generations with a population size of 20 individuals, the simplex was used to refine 
the results. Favorable results were obtained which resulted in weight reduction of 2.35%. The 
values of the design parameters are depicted in Table 1 and comparison of the shapes is 
displayed in Figure 5. The layout conform an arch which is close to the theoretical shape. 

Study 
Area [mm2] Coordinates [cm] 

𝐴1 𝐴2 𝐴3 𝐴4 𝐴5 𝑥2 𝑥3 𝑥6 𝑥7 𝑧6 𝑧7 𝑧8

[3] 27.2 5136.5 106.7 1433.2 1420.8 162.2 579.3 167.3 435.0 581.2 184.1 61.4 
Current 9.30 4676.5 389.8 1460.8 1475.9 fixed fixed 176.5 433.4 604.9 158.6 38.4 

 Table 1. Truss bridge optimization results. Total weight: This work – 1235.6kg; Soh&Yang – 1265.32kg. 

Figure 3. Circular section (left; units: [cm]; [kN]; kNm]). Computed curvature and optimized position (right).

102



Figure 4. Truss bridge. Units: [cm]; [kN]. 

Figure 5. Comparison of truss bridge optimal shape: this work (-●-), Soh&Yang (- Ө -). 

4    CONCLUSION 

The future of design of attractive and efficient structures may be very closely related to 
structural optimization. In this paper, a structural optimization problem using EIM was 
formulated using bilevel optimization. Although computationally expensive, the EIM could be 
used as an alternative to the standard FEM for structural optimization, especially in case of 
physical nonlinearity. However, this limitation could be approached by formulating a MPEC. 
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