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Abstract. Monogenic functions play a role in quaternion analysis similarly to that of holo-
morphic functions in complex analysis. A holomorphic function with non-vanishing complex
derivative is a conformal mapping. It is well-known that in R

n+1, n ≥ 2 the set of conformal
mappings is restricted to the set of Möbius transformations only and that the Möbius trans-
formations are not monogenic. The paper deals with a locally geometric mapping property
of a subset of monogenic functions with non-vanishing hypercomplex derivatives (named M-
conformal mappings). It is proved that M-conformal mappings orthogonal to all monogenic
constants admit a certain change of solid angles and vice versa, that change can characterize
such mappings. In addition, we determine planes in which those mappings behave like confor-
mal mappings in the complex plane.
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1 INTRODUCTION

The complex function theory is considered as the theory of holomorphic functions, which are
null solutions of the Cauchy-Riemann operator. In quaternionic analysis, monogenic functions
are a generalization of holomorphic functions in the sense that they are null solutions of the
so-called generalized Cauchy-Riemann operator and they share with holomorphic functions so
many common properties such as integral representations, mean value theorems, maximum
principles, series expansions and etc.

One of the most interesting points of a holomorphic function is that it realises in a domain
Ω ⊂ C a conformal mapping providing that its C-derivative is different from zero in Ω. It is well
known that in R

n, n > 2, only Möbius transformations have the property of conformality and
they are not monogenic. Similarly to the complex analysis, we say that a monogenic function
with non-vanishing hypercomplex derivative realises in a domain a M-conformal mapping (M
stands for monogenic). It arises naturally a question: which geometric mapping properties
characterize M-conformal mappings, or how can we generalize the result of conformality from
complex case to higher dimensional spaces?

There are several attempts to describe geometric mapping properties of M-conformal map-
pings. Among others, H. Malonek proved that M-conformal mappings preserve angles where
angles in his sense must be understood in terms of ”Clifford measures” (see also [7]), while
in [8, 9] J. Morais showed that locally M-conformal mappings map a ball to a specific type of
ellipsoids with the property that the length of one semi-axis is equal to sum of lengths of two
other semi-axes. In fact, in [7] apart from introducing the ”Clifford measures” of a surface, the
author measures not angles between curves, but angles between hypersurfaces. That means a
generalization of angles from the complex plane (between curves) to higher dimensional spaces
(between hypersurfaces). These results motivate us to study actions of M-conformal mappings
on solid angles in R3.

In section 3, we have proved that actually M-conformal mappings change also solid angles.
However, there exists a subclass of monogenic functions which admits a certain change of a
specific type of solid angles. These are monogenic functions with non-vanishing hypercomplex
derivatives and orthogonal to all monogenic constants. The inversion theorem is also true, i.e
a mapping admits such a change of such solid angles must be in that subclass. Therefore that
geometric mapping property can characterize some M-conformal mappings. These results are
stated for linear mappings only but it holds for general mappings. The fact is that the actions of
general mappings on solid angles are completely determined by their linear parts and based on
the relation between the linear part and the whole function at the origin (see also [8]), one can
state the results for both of them. The section 4 is about the role of M-conformal mappings on
some planes analogously to that of holomorphic functions on the complex plane. They are not
conformal with respect to every angles between curves but we determine some planes where
they preserve such angles.

2 PRELIMINARIES

2.1 Some Definitions and Notations

Let H be the skew field of real quaternions with basic elements {1, e1, e2, e3} satisfying:

eiej + ejei = −2δij , (i, j = 1, 2, 3)
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Denote by A := spanR{1, e1, e2} a subset of H. Each x := (x0, x1, x2) ∈ R
3 can be identified

with x := x0 + x1e1 + x2e2 ∈ A. As usual, we define Sc(x) := x0, x := x0 − x1e1 − x2e2 and
|x| :=

√

x2
0 + x2

1 + x2
2, respectively.

Let f : R3 ⊃ Ω → A, f(x) = [f(x)]0 + [f(x)]1e1 + [f(x)]2e2, be a reduced quaternion-
valued function where [f(x)]i (i = 0, 1, 2) are real-valued functions. Denote by L2(Ω;A;R)
the real-linear Hilbert space of square integrable A-valued functions defined in Ω endowed with
the scalar-valued inner product:

〈f, g〉L2(Ω,A,R) :=

∫

Ω

Sc(fg)dV (1)

We introduce a so-called generalized Cauchy-Riemann operator by

D :=
∂

∂x0

+
∂

∂x1

e1 +
∂

∂x2

e2

Definition 2.1. A C1-function f is called monogenic in a domain Ω if it satisfies Df = 0 in Ω.

With the adjoint Cauchy-Riemann operator D := ∂
∂x0

− ∂
∂x1

e1 − ∂
∂x2

e2, it is well-known that
the Laplacian operator in R3 can be decomposed into ∆ = DD = DD. It means that the class
of monogenic functions is a subset of harmonic functions.

Definition 2.2. Let f be a monogenic function in Ω. The expression 1
2
Df is called the hyper-

complex derivative of f in Ω.

Definition 2.3. A C1-function is called a monogenic constant if it is monogenic and its hyper-
complex derivative is equal to zero.

Example: f = x1e1 − x2e2 is a monogenic constant.

Remark 2.1. In [7], H. Malonek introduced the definition of M-conformal mappings and proved
that these are equivalent to monogenic functions with non-vanishing hypercomplex derivatives.

2.2 Complete Elliptic Integrals

We introduce Complete Elliptic Integrals of the first, second and third kind which will be
used in the next sections

K(k) :=

∫ 1

0

dt
√

(1− t2)(1− k2t2)
,

E(k) =

∫ 1

0

√

1− k2t2

1− t2
dt,

Π(n, k) :=

∫ 1

0

dt

(1− nt2)
√

(1− t2)(1− k2t2)
.

They have the following properties:

• K(0) = Π(0, 0) = π
2
.

• d
dk
K(k) = − 1

k
K(k) + 1

k(1−k2)
E(k).

• ∂
∂n
Π(n, k) = 1

2(k2−n)(n−1)
[E(k) + k2−n

n
K(k) + n2−k2

n
Π(n, k)].

• ∂
∂k
Π(n, k) = k

n−k2

(

1
k2−1

E(k) + Π(n, k)
)

.

For more information, see also [5, 6].
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3 M-CONFORMAL MAPPINGS WITH SOLID ANGLES

We investigate now the change of solid angles under linear M-conformal mappings F (x) =
ax0 + bx1e1 + cx2e2, where a, b, c are real, non-zero and have same signs. We refer readers to
J. Morais’ dissertation [8] to see how general linear monogenic mappings can be transformed
to our case.

θ

W0

W1

W2

L

Ω

S1 S2

SX0R

X1

X2

F (x) = ax0 + bx1e1 + cx2e2

Figure 1: The mapping F (x) changes the solid angle

Let’s consider a cone around the x0-axis characterized by an angle θ as shown in the Figure
1. In order to calculate the solid angle of such a cone, we draw a sphere with the radius R. The
area of the surface on the sphere which lies inside the θ-cone can be computed as follow:

Sx =

∫∫

D

√

1 +

(

∂x0

∂x1

)2

+

(

∂x0

∂x2

)2

dx1dx2,

where D = {(x1, x2) : x
2
1 + x2

2 ≤ R2 sin2(θ)} is the projection of the considered surface on the
plane R2(x1, x2) and x0 =

√

R2 − x2
1 − x2

2. With simple calculations, it leads to:

Sx = 2πR2(1− cos(θ)).

Then the solid angle of the cone is:

Sx

R2
= 2π(1− cos(θ)). (2)

By applying the linear mapping F (x) = ax0+bx1e1+cx2e2, where a, b, c are all real positive
(or negative) numbers, the sphere of radius R transforms into an ellipsoid S, the cone changes to
ellipse-based cone and the surface on the ellipsoid restricted by the ellipse-based cone becomes
S1. In order to calculate the solid angle in this case, we draw another sphere with radius L, then
project S1 onto the L-sphere according to the ellipse-based cone and get S2.

It can be proved that the projection of S2 on the plane R2(w1, w2), namely Ω, is an ellipse
with the two semi-axes:







A1 = L δ tan(θ)√
1+δ2 tan2(θ)

A2 = L ε tan(θ)√
1+ε2 tan2(θ)

where δ = b/a, ε = c/a.
Similarly, the changed solid angle restricted by S2 can be calculated:
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Sw

L2
= 2π +

4A1A2

L
√

L2 − A2
2

K

(

√

A2
1 −A2

2

L2 − A2
2

)

− 4LA1

A2

√

L2 −A2
2

Π

(

A2
2 − A2

1

A2
2

,

√

A2
1 − A2

2

L2 − A2
2

)

.

(3)

Remark 3.1. In fact, Sw/L
2 does not depend on L. However for a short expression, we prefer

the formula (3).

We define the change of such a solid angle under the mappings F (x) by:

KF (θ) :=
Sw/L

2

Sx/R2
=

1

2π(1− cos(θ))

Sw

L2
. (4)

Theorem 3.1. Let F (x) = ax0+ bx1e1+ cx2e2 be a bijective linear mapping on R
3. Moreover

suppose that F is monogenic and orthogonal to all monogenic constants. Then F changes the
solid angle characterized by the angle θ around the x0-axis by

K0(θ) =
1

1− cos(θ)

(

1− 2
√

4 + tan2(θ)

)

. (5)

Proof. If F (x) is monogenic and orthogonal to all monogenic constants, then a = 2b = 2c.
The result follows directly.

One is asking whether the quantity K0(θ) characterizes uniquely mappings which are mono-
genic and orthogonal to all monogenic constants?

Theorem 3.2. Let F (x) = ax0 + bx1e1 + cx2e2 be a bijective linear mapping in R3, where
a, b, c are real and have the same signs. The necessary and sufficient condition for F (x) to
be monogenic and orthogonal to all monogenic constants is that it changes the solid angle
characterized by θ around the x0-axis by K0(θ) as in (5).

Consider the function

f(ε) =
π

2
+

ε√
16ε2 + 1

K

(

√

1− 16ε4

16ε2 + 1

)

− 1 + ε2

ε
√
16ε2 + 1

Π

(

16ε4 − 1

ε2(16ε2 + 1)
,

√

1− 16ε4

16ε2 + 1

)

.

(6)
We have

Lemma 3.1. Let f(ε) have the form as in (6), then the derivative of f(ε) is given as follows:

f ′(ε) =
1

(ε2 + 1)
√
16ε2 + 1(1− 16ε4)

(7)

×
(

(16ε4 + 32ε2 + 1)E

(

√

1− 16ε4

16ε2 + 1

)

− (32ε4 + 32ε2)K

(

√

1− 16ε4

16ε2 + 1

))

.

Proof. It comes directly from the properties of the complete elliptic integrals.

Proof. (theorem 3.2)
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• Consider the equation KF (θ) ≡ K0(θ).

• At θ = 0 =⇒ δ = 1
4ε

• At θ = π/4, we obtain

KF (
π

4
) =

2

π(1−
√
2
2
)
f(ε). (8)

The Figure 2 shows that f(ε) and therefore KF (
π
4
) takes the maximum value at ε = 1/2.

Figure 2: The graph of function f(ε)

This can be proved according to the lemma 3.1. It means that K0(
π
4
) = KF (

π
4
) has the

unique solution ε = 1/2. This completes the proof.

4 M-CONFORMAL MAPPINGS ON PLANES

We have proved that on the x0-direction, a mapping F (x) = ax0 + bx1e1 + cx2e2 admits a
certain change of solid angles providing that it is monogenic and orthogonal to all monogenic
constants. In addition, F (x) maps a ball to a prolate spheroid which is symmetric with respect
to x0-axis. A question follows: How does the mapping F (x) behave on planes which are
perpendicular to the x0-axis?

Theorem 4.1. Let F (x) = ax0 + bx1e1+ cx2e2 be a function defined in a domain Ω ⊂ R
3 with

non-vanishing Jacobian determinant. Suppose further that F (x) is monogenic and orthogonal
to all monogenic constants, then F (x) preserves angles on planes which are perpendicular to
the x0-axis.

Proof. Without loss of generality, let’s consider the plane R2(x1, x2). Then

F (x)
∣

∣

∣

R2(x1,x2)
= bx1e1 + cx2e2 (9)

is identified with a (linear) complex function, f(z) = bx+ icy. The assumptions in the theorem
lead to ∂zf(z) = 0, and consequently f(z) is a holomorphic function. This means that the
restriction of F (x) to the plane R2(x1, x2) is a conformal mapping.

Remark 4.1. This is a special property because usually the restriction of a monogenic function
to a plane is not a holomorphic function there.
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Figure 3: Monogenic mappings preserves angles on the plane R2(x1, x2).
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