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Abstract. In this paper we review two distinct complete orthogonal systems of monogenic
polynomials over 3D prolate spheroids. The underlying functions take on either values in the
reduced and full quaternions (identified, respectively, with R® and R*), and are generally as-
sumed to be nullsolutions of the well known Riesz and Moisil Théodoresco systems in R3. This
will be done in the spaces of square integrable functions over R and H. The representations of
these polynomials are explicitly given. Additionally, we show that these polynomial functions
play an important role in defining the Szego kernel function over the surface of 3D spheroids. As
a concrete application, we prove the explicit expression of the monogenic Szego kernel function
over 3D prolate spheroids.



1 INTRODUCTION

Quaternion analysis is thought to generalize onto the multidimensional situation the classical
theory of holomorphic functions of one complex variable, and to provide the foundations for
a refinement of classical harmonic analysis. The rich structure of this function theory involves
the analysis of monogenic functions defined in open subsets of R?, which are nullsolutions
of higher-dimensional Cauchy-Riemann systems. In this paper we review two distinct com-
plete orthogonal systems of monogenic polynomials over 3D prolate spheroids. We show that
these polynomial functions play an important role in defining the monogenic Szego kernel func-
tion over 3D spheroids. The underlying spheroidal prolate functions (C. Flammer [12], E.W.
Hobson [21]], N.N. Lebedev [24]) were introduced by C. Niven in 1880 while studying the con-
duction of heat in an ellipsoid of revolution, which lead to a Helmholtz equation in spheroidal
coordinates. The prolate spheroidal harmonics are special functions in mathematical physics
which have found many important practical applications in science and engineering where the
spheroidal coordinate system is used. They usually appear in the solutions of Dirichlet problems
in spheroidal domains arising in hydrodynamics, elasticity and electromagnetism. For the solv-
ability of boundary value problems of radiation, scattering, and propagation of acoustic signals
and electromagnetism waves in spheroidal structures, spheroidal wave functions are commonly
encountered. Recently, there has been a growing interest in developing numerical methods us-
ing prolate spheroidal functions as basis functions [2, 3} 41} 142, 43]. These applications have
stimulated a surge of new techniques and have reawakened interest in approximation theory,
potential theory, and the theory of partial differential equations of elliptic type for spheroidal
domains. Higher dimensional extensions of the prolate spheroidal functions were first studied
by Slepian in [35], which provided many of their analytical properties, as well as properties
that support the construction of numerical schemes (see also A.l. Zayed [44]). Very recently,
K.I. Kou et al. [23]] introduced the continuous Clifford prolate spheroidal functions in the finite
Clifford Fourier transform setting. These generalized spheroidal functions (for offset Clifford
linear canonical transform) were successfully applied for the analysis of the energy concentra-
tion problem introduced in the early-sixties by D. Slepian and H.O. Pollak [34].

Since the foundations of the theory of approximation of monogenic functions by Fueter [[13,114]],
the study of orthogonal polynomials in application to certain boundary value problems for ellip-
tic partial differential equations has been of great importance in connection with certain prob-
lems of mathematical physics. In our view much of the older theory has progressed considerably
upon the study of monogenic polynomial approximations in the context of quaternion analysis.
For a detailed historic survey and extended list of references on monogenic approximations
we refer to [17]. Most relevant to our study are the intimate connections between monogenic
functions and spheroidal structures, and the potential flexibility afforded by a spheroid’s non-
spherical canonical geometry. Developments are described in the sequence of papers by H.
Malonek et al. in [1} 26, 27]] (cf. [9]) and J. Morais et al. in [18, [19, 20, [30]. In light of this,
in [29,31] (cf. [L6]) a very recent approach has been developed to discuss approximation prop-
erties for monogenic functions over 3D prolate spheroids by Fourier expansions in monogenic
polynomials of which could be explicitly expressed in terms of products of Ferrer’s associ-
ated Legendre functions multiplied by Chebyshev polynomial factors (see Theorem 3.1 below).
Within the scope of this paper we shall be fully concerned with the polynomials introduced in
these notes. Studies have shown that the underlying spheroidal monogenics play an important
role in defining the monogenic Szego kernel function for 3D spheroids [32]].



2 PRELIMINARIES

2.1 The Riesz and Moisil-Théodoresco systems

As is well known, a holomorphic function f(z) = u(z,y) + iv(x, y) defined in an open domain
of the complex plane, satisfies the Cauchy-Riemann system
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As in the case of two variables, we may now characterize two possible analogues of the Cauchy-
Riemann system in an open domain of the Euclidean space R®. More precisely, consider the
pair f = (fo, f*) where f; is a real-valued continuously differentiable function defined on an
open domain 2 C R? and f* = (/f1, fo, f3) is a continuously differentiable vector-field in €2 for

which
div f* = 0
R . 2.1
() {rot ff=20 —

Recall that the 3-tuple f* is said to be an M. Riesz system of conjugate harmonic functions in
the sense of E.M. Stein and G. Weil} [36] 37], and system (R) is called the Riesz system [33].
The Riesz system has a physical relevance as it describes the velocity field of a stationary flow
of a non-compressible fluid without sources nor sinks.

The Moisil-Théodoresco system is represented by [28] (cf. [22])

{ div f* = 0
(MT) , (2.2)
grad fo +rot f* = 0

and it is closely related to many mathematical models of relevance in spatial physical problems
such as the Lamé and Stokes systems. Both systems are historical precursors that generalize the
classical Cauchy-Riemann system in the plane. Obviously (2.I)) may be derived from (2.2)) by
taking fo = 0.

2.2 Quaternion analysis

To start with, the (R)- and (MT)-systems may be obtained consistently by working with the
quaternion algebra. Let H := {z = 2y + 211 + 29j + 23k : 2z, € R, [ =0, 1, 2,3} be the Hamil-
tonian skew field, where the imaginary units i, j, and k are subject to the multiplication rules

i’ =j =K =—1;

ij =k =—ji, jk=i=-kj, ki =j=—ik.
The scalar and vector parts of z, Sc(z) and Vec(z), are defined as the zy and 211 + 29 + 23k
terms, respectively. Like in the complex case, the conjugate of z is the reduced quaternion

Z = zg — 211 — 25 — 23k, and the norm |z| of z is defined by |z| = Vzz = Vzz =
Va2 + 2422+ 22




The paravector space is the linear subspace defined by A := spang{1,1i,j} C H, with elements
of the form x := xy + i+ z5j. Of course, it is assumed here that A is a real vectorial subspace,
but not a subalgebra of H. Now, let 2 be an open subset of R with a piecewise smooth
boundary. We say that

f:Q—H,  f(z)=I[f(2)o+ @)+ [f2)l]+ [f(z)]:k (2.3)

is a quaternion-valued function or, briefly, an H-valued function, where the components [f];
(I = 0,1,2,3) are real-valued functions defined in 2. By now, it is clear that the form of
a paravector-valued function may be derived from by taking [f(x)]; = 0. Continuity,
differentiability, integrability, and so on, which are ascribed to f are defined componentwise.
We will work with both the real- (resp. quaternionic-) linear Hilbert space of square integrable
A- (resp. H-) valued functions defined in €2, that we denote by L?(Q; A; R) (resp. L*(Q; H; H)).
In this assignment, the scalar and quaternionic inner products are defined by

< f, g >L2(Q;A;R) = / SC(? g) dVv (24)
Q
and
<f,g>romm= / fgdv,
Q

where dV denotes the Lebesgue measure on (2. For continuously real-differentiable .A-valued
functions f, the reader may be familiar with the (reduced) quaternionic operator

p=2 1% 4
N al‘o 8$1 ']8:752’

which is called generalized Cauchy-Riemann operator on R*. From this operator we obtain the
usual Dirac operator

via the equality 9 = —jDi, and the identification
X=xo+zit+azjeA — y=uxoi+xj+ 2k e H.

Namely, a continuously real-differentiable A-valued function f is said to be monogenic in € if
Df =0 =fD in Q, which is equivalent to the Riesz system

8x0 B 8x1 B 8ZE2 B 0’
" Olflo , OIf] Olflo , OIf] ot olf]
0 1 0 2 _ 1 2 _
85(71 + 8x0 N 0’ 8[)32 + 81'0 07 8952 8[)31 0.

This system can also be written in abbreviated form:

divf =
curlf =



For the interpretation of the (R)-system in viewpoint of H = CESTB we refer to [[10]. Follow-
ing [25]], the solutions of the system (R) are customary called (R)-solutions. The subspace
of polynomial (R)-solutions of degree n will be denoted by R*(€2; A;n). We also denote by
RT(2;A) := L?(Q; A;R) Nker D the space of square integrable .A-valued monogenic func-
tions defined in 2.

The analysis of functions with values in H requires a different treatment. Namely, an H-valued
function f is called left (resp. right) monogenic in  if f is in C'(Q; H) and satisfies f = 0
(resp. f0 = 0) in 2. Throughout the text we only use left H-valued monogenic functions
that, for simplicity, we call monogenic. Nevertheless, all results accomplished to left H-valued
monogenic functions can be easily adapted to right H-valued monogenic functions. For any
H-valued function f it is worthy of note that the equation Of = 0 is equivalent to the system

(Olth | Olfle |, Ol

8550 8:61 8%2 =0
ol Olfl Ot _
0$0 81‘2 8$1
(MT)

Olfo Oy _dlfls _
8x1 (9x2 8%0
Offlo Olf, K Offl2 _

\ al'g B 8:61 * (9%0 =0

or, in a more compact form:

div (Vec(f)) =0
grad [f]p + rot (Vec(f)) = 0.

For the interpretation of the (MT) system in viewpoint of H = Céaf 5 we also refer to [L1].
To state our general results we shall need some further notation. The solutions of the (MT)-
system are called (MT)-solutions, and the subspace of polynomial (MT)-solutions of degree
n is denoted by M™(Q; H;n). In [38], A. Sudbery proved that dim M*(Q;H;n) = n + 1.
We also denote by M™(Q; H) := L?(Q; H; H) N ker O the space of square integrable H-valued
monogenic functions defined in ).

3 COMPLETE ORTHOGONAL SYSTEMS OF MONOGENIC POLYNOMIALS OVER
3D PROLATE SPHEROIDS

3.1 Prolate spheroidal monogenics

A prolate spheroid is generated by rotating an ellipse about its major axis. For the prolate
spheroidal coordinate system (u, 6, ¢) the coordinate surfaces are two families of orthogonal
surfaces of revolution. The surfaces of constant y are a family of confocal prolate spheroids,
and the surfaces of constant ¢ are a family of confocal hyperboloids of revolution.

In prolate spheroidal coordinates (see e.g. E.-W. Hobson [21], N.N. Lebedev [24]]), the Cartesian
coordinates may be parameterized by x = x(p, 0, ¢), u € [0,00), 8 € [0,7), and ¢ € [0, 27),
such that

ro =cacosf, x;=chbsinfcosp, x5 = chbsinfsinap,
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where c is the prolatness parameter, and a = cosh p, b = sinh p, are respectively, the semimajor
and semiminor axis of the generating ellipse. Using these transformation relations the surfaces
of revolution for which y is the parameter consist of the confocal prolate spheroids:

x% x% + x%

: =1. 3.1
c2cosh® i ¢2sinh? pu G-1)

Accordingly, the surface of S is matched with the surface of the supporting spheroid u = «
if we put ¢®cosh?a = a?, and ¢?sinh® @ = b?. Then we obtain the prolatness parameter
¢ = +Va?>—0b% € (0,1), which means that c is the eccentricity of the ellipse with foci on the
ro-axis: (—c,0,0), (+¢,0,0).

In [29] J. Morais found it necessary to focus the discussion on spaces of square integrable
functions over R. With this outcome in mind, a complete orthogonal set

{€nts Fom :1l=0,...;n+1,m=1,....,n+1}

of polynomial nullsolutions of the well known Riesz system has been developed over 3D prolate
spheroids. The mentioned spheroidal monogenics are explicitly given byﬂ
Theorem 3.1. Monogenic polynomials of the form

Eni (11:0,0) = w Api(p,0) Ti(cos @)
T 1Ty At s (cos o) 4 sin 6 Ui(eon )

+ i m+1+0Dn+0)n—1014+2)A-1(1,0) [—T1—1(cos ¢)i + sin ¢ U;_a(cos ¢)j]

+

and

Fonlnt.0) = LI 4 0 6)sing U, (coso)
1

+ FYEp— Ay, 0) [sin ¢ Uy, (cos ¢)i — 111 (cos )]

_ 1 (m+1+m)(n+m)(n—m+2)A,m1(,0)[sin ¢ U,—o(cos ¢)i + T,—1(cos @)j],

4
forl=0,....n+1landm=1,...,n+ 1, with the notation
el 2n+1—-2k)(n+ 1) ;
Ani(p,0) = kX; (n+1—Dares Pr_gi(cosh ) By (cos ) (3.2)
such that A,, 1 = _mflml form a complete orthogonal system for the interior of the

prolate spheroid in the sense of the scalar product . Here P’ denotes the Ferrer’s as-
sociated Legendre functions of degree n and order | of the first kind, T} and U, are the Chebyshev
polynomials of the first and second kinds, respectively. Also, we set P,(cosh p1) = P?(cosh y)

and P! (cosh pi) = (—1)!(sinh p)* %[Pn(t)] ‘tCOShM.

I'The first author wishes to thank Mr. N.M. Hung, who has found a misprint in the expressions of the polyno-
mials introduced in [29]], and who has shown great interest in questions related to them.

6



We shall now be able to extend these results to a quaternionic Hilbert subspace; in particular, we
exploit a complete orthogonal system of polynomial nullsolutions of the Moisil-Théodoresco
system over 3D prolate spheroids. In continuation of [29] (cf. [16]) we designate the new n + 1
(prolate) spheroidal monogenics by

Sn,l = gn’l+1 1 —+ .7'-717l+1j, [ = 0, oo, n, (33)

namely functions with respect to the variables y, 6, and the azimuthal angle ¢ of the quaternion
form:

801 (1,0,6) = = (n+2+0) (n+1+1)(n—1+1) Au(,0) Ti(cos 6)

— N =

+ s (m+2+10) Ania(p, 0) Tipa(cos @) i

ol \)

+ 5 (n +2+ l) An,l-kl(:uv 9) Sin¢ UZ(COS ¢)J

— DN

-3 m+24+0)n+14+0)n—-101+1)Au(u,0) singpU,_1(cos ) k

with the subscript coefficient function A, ;(x, ) given by (3.2). It is easily verified that the
polynomials &, ; are the zero functions for [ > n + 1.

Remark 3.2. For the usual applications we define these n + 1 polynomials in a spheroid which
has an infinite boundary, because P'(cosh y1) becomes infinite with . Of course, the results
can be extended to the case of the region outside a spheroid as well. One has merely to replace
the Ferrer’s associated Legendre functions by the Legendre functions of second kind [21].

These n + 1 polynomials satisfy the first order partial differential equation

0 = cdS,,
_ < cosfsinhy 9S,;  sinfcoshpu 687%1)
sin?@ + sinh? 1 O sin?f + sinh?® . 90
. (sin ¢ cosh prcos ¢ 0S,,;  cosOsinh picos ¢ 0S,,; sing 08, )

sin?@ + sinh* 1 Op sin?@ + sinh* . 90 sinfsinhpu 0o
<sin 0 cosh pusin ¢ 0S,,;  cosfsinh pisin ¢ 0S,,; n cosp 0S8, )
sin?@ + sinh* 1 O sin?@ + sinh® . 96 sinfsinhpy 09 )

We further assume the reader to be familiar with the fact that 0 is a square root of the Laplace
operator in R? in the sense that

A3S,; = —0°S,,
_ 1 (828,171 0*°S .
c2(sin® @ + sinh? p) \ Op? 06?
1 08,
c2sin?@sinh? u 02
Remark 3.3. 1t is of interest to remark at this point that the Laplacian in (prolate) spheroidal

coordinates reduces to the classical Laplacian in spherical coordinates if a = b, which occurs
as u appoaches infinity, and in which case the two foci coincide at the origin.

08, 08,
+ coth o + cot 6 50 >

+
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In [31] it is shown that the above-mentioned polynomails are (MT)-solutions and form a com-
plete orthogonal system over the interior of 3D prolate spheroids. The principal point of interest
is that the orthogonality of the polynomials in question does not depend on the shape of the
spheroids, but only on the location of the foci of the ellipse generating the spheroid. It is shown
a corresponding orthogonality over the surface of these spheroids with respect to a suitable
weight function.

Theorem 3.4 (see [31]]). The monogenic polynomials S,, (11,6, ¢) (I =0,...,n) form a com-
plete orthogonal system over the surface of a prolate spheroid in the sense of the product

/ fgwdo, (3.4)
oS

where OS is the surface of S and do denotes the area element on 0S, and with weight function
w = |® — (cacosf +ichsin0)?|Y?(sin® @ + sinh? 1) (a > b)

equal to the square root of the product of the distances from any point inside of the spheroid to
the points (c,0,0) and (—c,0,0), and their norms are given by
(n+2+10)!
(n—1)!
x [(n+1+1)(n—1+1)P(cosha) sinha cosha P (cosha)

1+0)2%n—1+1
_n+ +2n> _|(_n3 1) [P (cosh )]? sinh o

+ P! (cosh @) sinh o cosh a PLH) (cosh a)

n+1
_ (n+2+410)
2n+3

||Sn,l||%2(88;H;H) = m(n+2+1)

[P (cosh a)]? sinh a| .

3.2 Properties
This subsection summarizes some basic properties of the prolate spheroidal monogenics.

Proposition 3.5 (see [32]]). The monogenic polynomials S,,; (I = 0, ..., n) satisfy the following
properties:

4)1)? [5] @i e
L. Sn’l(o’ 0, 0) = 2 Zk:o (n+1)2k+1 , 1=0 K
0 , [ >0

2. Sualp,0,m) = S (1) [ (14 1+ )0 = L4+ 1) Ana(11,0) = A (1,0)i:;

3. lirn(i)—>27r Sn,l (/1“7 07 ¢) = (n+2il) |:(TL + 1 + l)(n —1 + 1)An,l(lu’7 9) + An,l-l—l(:uu 9)1i| ,
4 8,a(p0,0) = 2t [n(n 4 2) A (11,0) + Apo(p, 0)ie ™0 |0,

5. The polynomials S, ; are 2m-periodic with respect to the variable .



3.3 Numerical examples

This subsection presents some numerical examples showing approximations up to degree 10 for
the image of a prolate spheroid under a special spheroidal monogenic mapping. To begin with,
a direct observation shows that for each degree n € N the polynomial S,, ( is monogenic from
both sides (08,0 = 8,00 = 0) and is such that [S, |3 = 0,i.e. S, : S — A. We use this
insight to motivate our numerical procedures for computing the image of a 3D prolate spheroid
under S, . We did not go further than n = 10, as our program becomes very time-consuming.
Figures 1 — 3 visualize approximations of degrees 3, 7 and 10 for the image of a prolate spheroid
with semi-axes a = 4 and b = v/15, and centered at the origin.

Fig. 1: Fig. 2: Fig. 3:

3.4 A special Fourier expansion by means of spheroidal monogenics

This subsection discusses a suitable Fourier expansion for monogenic functions over 3D prolate
spheroids in terms of orthogonal monogenic polynomials. To begin with, note that for each
degree n € Nj the set

{8p1:1=0,....n} (3.5)

is formed by n + 1 = dim M™(S; H; n) monogenic polynomials, and therefore, it is complete
in M*(S;H;n). Furthermore, based on the orthogonal decomposition

MT(SH) = @52 M (S H;n),
and the completeness of the system in each subspace M™(S; H; n), it follows the result.

Theorem 3.6. For each n, the set forms an orthogonal basis in the subspace M™(S;H; n)
in the sense of the product ((3.4)) with weight function

w = |® — (cacosf + ichsin §)?|Y/2(sin? A + sinh? 11)
such that a > b. Consequently,
{8,,:1=0,...,n;n=0,1,...} (3.6)

is an orthogonal basis in M™*(S; H).



From now on we shall denote by S ; (I = 0,...,n) the new normalized basis functions S,
in L*(S; H; H) endowed with the inner product (3.4). Yet clearly we can easily write down the
Fourier expansion of a square integrable H-valued monogenic function over prolate spheroids
in R3. Next we formulate the result.

Lemma 3.7. Let f € M™(S;H). The function f can be uniquely represented with the orthogo-

nal system (3.6):
f@) =2 > Snitn (3.7)

n=0 [=0

where for each n € Ny, the associated (quaternion-valued) Fourier coefficients are given by

with weight function
w = |c* — (cacos B +icbsin §)?|Y/2(sin? § + sinh? ;1)

such that a > b.

4 MONOGENIC SZEGO KERNEL FUNCTION OVER 3D SPHEROIDS

Due to the absence of a direct analogue of the famous Riemann mapping theorem for higher
dimensions, at first glance it seems extremely difficult to get closed formulae for the Szegd ker-
nel on monogenic functions. However, in 2002 D. Constales and R. KrauBhar [4] provided an
important breakthrough in this research direction. As far as we know, before their work explicit
formulae for the Bergman kernels were only known for very special domains, such as for in-
stance the unit ball and the half-space. In several papers [} 16,7, 8], the authors were able to give
explicit representation formulae for the monogenic Bergman kernel for block domains, wedge
shaped domains, cylinders, triangular channels and hyperbolic polyhedron domains which are
bounded by parts of spheres and hyperplanes. Recently R. KrauBhar et al. also managed to
set up explicit formulae for the Bergman kernel of polynomial Dirac equations, including the
Maxwell-, Helmholtz- and Klein-Gordon equations as special subcases, for spheres and annular
shaped domains.

With the help of the above-mentioned polynomials we may now obtain an explicit representa-
tion for the monogenic Szegd kernel function over 3D prolate spheroids. Now, since the right
linear set M (S;H) is a subspace of L*(S; H; H), to each £ € S, if K(z, &) is a positive defi-
nite Hermitian quaternion element in M™(S; H), then it can be easily shown that there exists a
uniquely determined Hilbert space of functions admitting the reproducing kernel K(z, ¢), and
such that

£(e) = /8 K@ wdo(a).

for any f € M™(S;H). The function K(z, ), with (z,§) € S x S, is called the monogenic
Szegd kernel function of S with respect to &, and is given by

K(z,¢) :ZZS;;J/ S, K(z, & wdo(z).

n=0 =0 9s
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Next we formulate our main result.
Theorem 4.1 (see [32]). The monogenic Szegd kernel of S
K:Sx8§ —H

is given explicitly by the formula

K((10.0).(0.5.9)) =+ 3

n=0 =

n 2 B
(2Pt 1D — 1Y) g o
0

||Sn,l || %2(33;]141;]}11)

with the subscript coefficient functions

A = (0 14D — 14 1) A, 0) Auiln, )] cosli(6 — )] — sinfi(6 + o)k},

. An,l-i-l(,ua 0) An7l+1(77a 5y :
B = it ol 1)(6 = )]+ sinl(l+ 1)(6 — Pl

O = A1 6) Ania (. ){ coslie — (L + V)gli — sinflg — (1 + 1)l .

D = Ani1(p,0) An,z(n,ﬁ){COS[(H 1)¢ + lpli + sin[(l + 1)¢>+lso]j}'

forl=0,... n.

Ultimately, we recall some of the basic properties of K.

Proposition 4.2 (see [32]). The monogenic Szego kernel function K satisfies the following prop-
erties:

1 0422t |5~ 3] @nri-amma|®
1. K((0,0,0),(0,0,0)) = 4 H1F iztasny [0 (e ;

2. The function K is 2m-periodic with respect to the variables ¢ and .
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