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Abstract.  Due to the complex interactions between the ground, the driving machine, the
lining tube and the built environment, the accurate assignment of in-situ system parameters
for numerical simulation in mechanized tunneling is always subject to tremendous difficulties.
However, the more accurate these parameters are, the more applicable the responses gained
from computations will be. In particular, if the entire length of the tunnel lining is examined,
then, the appropriate selection of various kinds of ground parameters is accountable for the
success of a tunnel project and, more importantly, will prevent potential casualties. In this
context, methods of system identification for the adaptation of numerical simulation of ground
models are presented. Hereby, both deterministic and probabilistic approaches are considered
for typical scenarios representing notable variations or changes in the ground model.



1 INTRODUCTION

In July 2010 a new collaborative research center (SFB 837) started at Ruhr-Universitt Bochum
Germany, entitled Interaction Models in Mechanized Tunneling. The center consists of 14 sub-
projects and it is funded by the German Research Foundation (DFG). This paper is part of the
work conducted in the subproject C2 Methods of System Identification for the Adaptation of
Numerical Simulation Models.

The ground model is central to computational tunneling, where a realistic ground model is
crucial for predicting the distributions and magnitudes of the strains and, consequently, reduc-
ing the surface settlements caused by the TBM propagation. Based upon the information of
bore holes sunken in the target area of the tunnel alignment, the ground model describes the
detailed spatial distribution of the constitutive soil properties along with the geometry of the
stratification. Customary bore holes, however, provide only an approximate insight into the real
world geologic realities. As a consequence, only the realization of the system identification
approach can result in improved and more sophisticated numerical predictions of the spatiotem-
poral ground behavior induced by driving the tunnel.

For system identification, a numerical simulation model is required. This model, how-
ever, represents a complex, mechanically-hydraulically coupled and a three dimensional initial
boundary value problem. Also, it is characterized by various physical nonlinearities as well as
various construction stages. For application in a later reference tunnel project, numerical simu-
lation models are needed which enable the appropriate forward computation of typical scenarios
describing relevant variations or changes in the ground model with respect to prescribed output
states.
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Figure 1: Subsoil scenarios for the forward computation.

According to Figure[I] the following scenarios have been defined:

e Scenario #1: advance in homogeneous soil.

e Scenario #2: advance in two homogeneous sub-soils where the parameters and inclination
of the second one are unknown.



e Scenario #3: advance in a homogeneous subsoil with a cubic impediment (unknown in
position, dimension and material parameters) in front of the tunnel face.

e Scenario #4: advance in an inhomogeneous subsoil with unknown parameters and spatial
distribution.

2 METHODOLOGY

Methodologically, the solution of a system identification problem is based on the concate-
nation of observations (measurements) and computations (numerical results) using the inverse
analysis procedure. By that, the defect between the measurement-based properties and the com-
puted ones is being minimized.

2.1 2.1 Deterministic Approach

In deterministic inverse analysis, the selected numerical model is calibrated by iteratively
changing a subset of its parameters until the discrepancies between the calculated/simulated
responses and the observed/measured data reach a predefined minimum [1]]. This procedure is

illustrated in Figure
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Figure 2: Scheme of inverse analysis procedure.

In the first step of the procedure, a priori estimation or guess of the unknown parameter set
is given or a reasonable range of each parameter is defined. After that, the forward model (nu-
merical simulation) is called for the initial guess of the parameters. Subsequently, the obtained
numerical results are compared with the observed/measured data in field. The discrepancy
between the two sets of data is quantified by an objective function which is to be minimized ap-
plying an optimization algorithm. The set of parameters which minimizes the objective function
is the best estimated set of the unknown model parameters. The objective function considered
in this approach is the least squares criterion:



f(m) = Z( Pos — gi(m))? (1)
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where g; is the calculated value for the point 7, m is the set of the model parameters, and d.,_ is

the observed value at the same point.

2.2 Probabilistic Approach
Customarily, the uncertainties associated with the geotechnical applications can be catego-

rized as follows [2]]:

e Natural variability (aleatory/objective uncertainty) associated with the inherent random-
ness of natural processes, like wind flow and geologic layers. In this case samples are
taken and inferences are drawn.

o Knowledge uncertainty (epistemic/subjective uncertainty) caused by the lack of data or
information about events and processes, and of understanding the physical laws, where
the following subcategories may be distinguished:

— Site characterization uncertainty.
— Model uncertainty.

— Parameter uncertainty.

In order to include the aforementioned uncertainties (inherent in the forward model and the
measured data) and the prior knowledge about the unknown parameters (indicating the trend
of the parameters), a Probabilistic Approach based on Bayes Theorem (Thomas Bayes, 1702-
1761) is incorporated in the inverse problem considered here. This approach yields a solution
that provides suitable uncertainty measures [3] as follows:

e The prior information of the model parameters and the uncertainties in the observed data
are represented in terms of two independent probability density functions (PDFs), py,(m)
and pp (D) respectively, with a joint PDF:

p(m,d) = kpy(m)pp(d) (2)
where k£ is the normalization constant.

e The effect of the modeling uncertainties is mapped by a PDF referred to as the forward
model probability:

O(m, d) = #(d|m)sp (m) (3)
where 11)7(m) is the homogeneous probability density over the model space M.

e Combining the prior information and the forward model probability by the conjunction
operation gives the probabilistic solution (see Figure [3)):
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where 11p(d) is the homogeneous probability density over the data space D.
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Figure 3: Conceptual depiction of the general probabilistic solution of an inverse problem.

pp(d)

e Once the posteriori probability in the DxM space has been defined, the posteriori proba-
bility in the model space is given by the marginal probability density:

o(m) = k:/Da(m,d)dd

_ pur(m)pp(d)d(d|m)

B k/ MD(d) d

— kpar(m PD(ZI)Q( d|m) dd

= kpy(m)L(m) &)

hereby, L(m) is the likelihood function which gives a measure of how good a model m

is in explaining the data.

By assuming Gaussian PDFs for both data and model uncertainties, we have

pp(d) = kexp(—0.5(d — dos)" Cp'(d — doss)) (6)
0(dlm) = kexp(—0.5(d —g(m))"Cy/(d — g(m))) (7)

and the likelihood function becomes Gaussian having a covariance matrix C;, = Cp + Cy; :

L(m) = Fkexp(—0.5(dys — g(m))'C;(dgps — g(m))) (8)

If no prior information about the model parameters is available and the components of the



observed and calculated data (d,s, g(m)) are independent as well as identically distributed
with standard deviations Sp and Sy, , respectively, the probabilistic solution simply becomes:

oc(m) = kL(m)

1 ]\i dis— (1M 2
— k(SZQD + S]2\4)—N/2 exp | — 5 Zzlngb—F S‘g ( )) (9)
D M
J(m.Sp.Snr)

where J(m, Sp, Syr) is the misfit function or least squares cost function.

For fixed values of Sp and S); over the model and the data spaces, maximizing the likelihood
function equals minimizing the least squares cost function. Thus, the probabilistic approach
converts to the deterministic approach.

The probabilistic solution is numerically evaluated by direct sampling. Generation of re-
alizations of the probabilistic density solution o(m) is accomplished by using Monte Carlo
Markov Chain method along with the Metropolis acceptance rules [4] and [S]: Given the target
probability distribution o(m|d), we consider a Markov chain with a given sample m,,. The
next sample m,,; is obtained from m,, as follows:

e Generate a candidate sample m from a jumping probability density function P(m*|m,,).

e Calculate
o(m*|d)P(m,|m")
o(m,|d) P(m*|m,,)

a=min |1,

e Generate a uniformly distributed sample U € (0.0; 1.0).

o If U < v accept m,,.; = m* otherwise m,,,; = m,,.

Repeating this sequence shows that the generated Markov Chain converges to the probability
distribution function o(m|d).

2.3 Sensitivity Analysis

Due to the highly nonlinear problem nature of geotechnical applications with respect to both
the physical and the geometrical characteristics, the numerical simulation is normally compu-
tationally expensive. In order to make the inverse analysis efficient as well as robust, it is favor-
able to reduce the number of the parameters to be identified by performing a sensitivity analysis.
This analysis evaluates the importance of each unknown model parameter with respect to the
system response resulting in a decrease of the number of the forward calculations.

In this paper, a variance based global sensitivity analysis, which explores the space of the
input parameters, has been utilized. In this analysis two different sensitivity measures have been
introduced, the first index, first order sensitivity index [6l], measures only the decoupled effect
on the system response,

sz‘ (Emwi (g(m> ’ml))

%= TV g(m))

(10)
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where V' (g(m)) is the unconditional variance of the model output and V,,,, (Ey, _,(g(m)|m;)) is
the variance of conditional expectation with m.; indicating the matrix of all parameters but m;.

In order to consider the coupling effects of the input parameters, the second index, total effect
index [7]], has been introduced,

Vin, (Em, (9(m)[m..;))
V(g(m))

where Vi, (Fom, (9(m)|m.;)) measures the first order effect of m.; on the system response

Sri=1—

(11)

that does not include any influence corresponding to m;.

For the estimation of the first and total sensitivity indices a numerical procedure introduced
by [8] have been utilized.
2.4 Model Approximation

The forward calculation, which is a three dimensional finite element simulation, needs a sig-
nificant computation time. Therefore, and due to the large number of the forward calculations
that are included in the optimization process of the deterministic approach, or the sampling
procedure of the probabilistic approach, or even in the global sensitivity analysis being adopted
in this work, using a meta-model that substitutes the finite element simulation runs is unavoid-
able. For this purpose, an approximation method based on polynomial regression has been
implemented.

Customarily, g(m) the system output can be represented by the approximated value and an
error €

g(m) = g(m) +e=p'(m)B+e (12)
where 3 is the vector of the unknown regression coefficients, and p is the vector of the polyno-
mial basis functions

p’(m) = [1 my mg ms...m2 m2m2...mimy mims ... mams ... (13)

The regression coefficients are estimated according to [9]:

B =(PTP)'PTg (14)
where P is a matrix containing the basis polynomials of the support points and g is the system
responses of the support points.

For the assessment of the approximation quality, the Coefficient of Determination
> 195 — 65)?
2 =195 = 95)?

according to [10] has been introduced, where, the closer the R? value to one is, the better the
approximation is.

R*=1-




3 APPLICATION

We use a three dimensional finite element model for scenario #1 of the tunnel excavation
(Figure [I)), using the FE-code PLAXIS 3D, version 2010. Since the geometry, the material
properties, the initial and excavation conditions are in total symmetric with respect to a verti-
cal plane parallel to the tunnel axis (X-axis), only one-half of the model needs to be analyzed
(see Figure d)). The chosen slurry shield Tunnel Boring Machine TBM being 9 m long is simu-
lated, along with the tunnel lining, by circular plate elements assuming linear elastic behavior.
The ground is modeled by the Hardening Soil Model [11]. In Table [I] the parameters of the
considered constitutive models are presented. More details about the model can be seen in [12]].

45 m 60 m
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Figure 4: The geometry and properties for a three dimensional model using Plaxis 3D.

In order to identify the ground model (HS-Model) parameters, the following steps have been
carried out:

e The model has been run for the parameter values stated in Table 1. Hereby, the vertical
displacements at the two points Oy, and S;, (see Figure d)) have been saved as observation
measurements d, for the whole excavation phases. Subsequently, the HS-Model param-
eters (i.e. ¢, ¢, B/ Eiel Erel with the conditions £/ = ELe/ | El < Eref /2) are
considered as unknowns that need to be estimated from the data set dps.

e An objective function, representing the discrepancy between the observed and calculated
measurements, has been adapted based on the least squares criterion (Equation I)).

e Model approximation for the system response at the observation points Oy, and S15 have
been carried out using polynomial regression. The coefficients of determination show a



parameter Soil Tunnel lining  TBM-Shield
Hardening Soil Model Linear Elastic Linear Elastic

o[°] 35 - -
¥[°] 5 - -
c[kN/m?] 10 - -
EreT [N /m?) 35000 - -
E &N /m?] 35000 - -
Ere kN /m?] 10° - -
Pref kN /m?] 100 - -
m[—] 0.7 - -
Ryl-] 0.9 - -
Vur [—] 0.2 - -
Yunsat KN /m°] 17 - -
Vsat [KN /m?] 20 - -
Ringer[—] 0.6 : _
E[&N /m?] - 3.107 21.107
v|—| - 0.1 0.3
~[kN/m?] - 24 38
d[m) - 0.2 0.35

Table 1: Material properties for the models used in tunnel simulation for scenario #1.

good approximation for the forward model

R}, =0.98759 R% = 0.9997.

A variance based sensitivity analysis has been implemented for deciding which parame-
ters have to be identified. As a result, a parameter with small values for S; and S7; has a
negligible effect on the considered system response; and can be excluded from the iden-
tification. The analysis has shown that the four decisive parameters of the model need to
be identified, Figure[5]

The subsequent identification process has been performed following the inverse analysis
procedure presented in Figure |2, where two different optimization algorithms have been
applied, (i) Particle Swarm Optimization PSO [13]], and (ii) Differential Evolution Algo-
rithm [[14]. In both cases, the objective function is minimized until the parameters match
their real world values to a large extend (see Figure[6)).

In the probabilistic approach, we are currently still considering the simple case in which
a homogeneous PDF for the a priori information about the model parameters is assumed.
Also, Gaussian PDFs are used for both data and model uncertainties, according to Equa-
tion (8| The covariance matrix of the measured data (CD) depends usually on sensing
devices used in recording the observations. In [[15] different devices with their covariance
matrices are presented that can be used in our case, as well. For the present example,
the forward model is assumed to be exact and the influence of the data (measurements)
uncertainty is investigated in two cases with the assumption that the observation errors
are independent and identically distributed. In the first case, the standard deviation of
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Figure 5: First order and total effect sensitivity indices of the soil parameters.
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Figure 6: Quality of results; forward solver = back analysis solver.
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the observations error S is given a relatively small value in comparison to the system
response at the observing points, and in the second case, a relatively higher value for Sp
is considered. Using Monte Carlo Markov Chain method for sampling the probabilistic
solution

cm) = kL(m)

1 ]\i dZ) s — GilIm ?
k(S%)—N/Z exp | — 521_1( b52 gi(m)) (15)
D

for both cases. Analysing the generated samples gives the results in Table [2]and Table 3]

Where, the uncertainty of the parameters increases with the data uncertainty. In addition
to that, the parameters with higher sensitivity measures can be identified better than those
of lower sensitivity measures.

parameter Exact value Mean p Standard deviation 0 Coefficient of Variation CoV = o /pu

Erel 100000 102040 12809 0.1255
c 10 310.989 2.757 0.2508
¢ 35 333.85 2.1886 0.0655

E’ 35000 31941 5101 0.1597

Table 2: Statistical characteristics of the generated samples for the first case (relatively small data uncertainty).

parameter Exact value Mean ;¢ Standard deviation 0 Coefficient of Variation CoV = o/pu

Erel 100000 121065 18765 0.155
c 10 310.6 2.82 0.2665
¢ 35 335.85 3.715 0.1036

E'S 35000 35649 7419 0.208

Table 3: Statistical characteristics of the generated samples for the second case (relatively large data uncertainty).

By drawing the relative frequency diagram of two parameters for the tow cases, the dis-
tribution of parameters within their bounds is illustrated, Figure

4 CONCLUSIONS ANS OUTLOOKS

The two presented identification approaches, deterministic and probabilistic, are able to es-
timate the ground model parameters from observations. Where, the second approach is able
to capture and quantify parameter uncertainties that result from uncertainties associated with
measurement data. Different and more specific investigations are going to be considered in
the probabilistic approach for representing more realistic and general cases of uncertainties.
Furthermore, the captured and quantifies uncertainties are going to be utilized in the model as-
sessment process that enables choosing the most adequate ground model for the forward model
representing the tunnel excavation.
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Figure 7: Relative frequencies due to data uncertainties.
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