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Abstract

We study the Weinstein equation

∆u− k

x2

∂u

∂xn
+
l

x22
u = 0,

on the upper half space R3+ =
{

(x0, x1, x2) ∈ R3
}
for 4l ≤ (k + 1)2. If

l = 0, the operator x2k2
(

∆u− k
x2

∂u
∂x2

)
is the Laplace-Beltrami operator

with respect to the Riemannian metric ds2 = x−2k2

(∑2
i=0 dx

2
i

)
. In case

k = 1 the Riemannian metric is the hyperbolic distance of Poincaré upper
half space. The Weinstein equation is connected to the axially symmetric
potentials. We compute solutions of the Weinstein equation depending on
the hyperbolic distance and x2. These results imply the explicit mean value
properties. We also compute the fundamental solution. The main tools are
the hyperbolic metric and its invariance properties.

1 Introduction

Weinstein introduced axially symmetric potential theory in [12]. The idea was to
consider the following simple elliptic differential equation with variable coefficients
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in the neighborhood of the singular plane xn = 0

xn4 h+ p
∂h

∂xn
= 0,

where as usual

4h = ∂2h

∂x20
+ ...+

∂2h

∂x2n
.

Note that if p is an integer then a axially symmetric harmonic function in p + 2-
dimensional space satisfies the preceding equation in the meridian plane (see for
example [9])
We consider the solutions of the generalized Weinstein equation

x224 h− kx2
∂h

∂x2
+ lh = 0 (1)

in an open domain whose closer is contained in the upper half space

R3+ = {(x0, x1, x2) | x0, x1, x2 ∈ R, x2 > 0} .

Our general technical assumption is that the constants l, k ∈ R satisfy 4l ≤
(k + 1)2. This equation has been researched for example by Leutwiler and Akin
in [10] and in [1]. We transfer solutions of this equation to solutions of Laplace-
Beltrami equation of the hyperbolic metric in the Poincaré upper half space. In
the main result, we present the fundamental solution of the equation (1) in terms
of the hyperbolic distance function.
We recall that the operator

∆hf = x22∆f − x2
∂f

∂x2

is the hyperbolic Laplace-Beltrami operator with respect to the hyperbolic Rie-
mannian metric

ds2 =
dx20 + dx21 + dx22

x22

in the Poincaré upper half space model.
The hyperbolic distance may be computed as follows (see the proof for example

in [11]).

Lemma 1 The hyperbolic distance dh(x, a) between the points x = (x0, x1, x2) and
a = (a0, a1, a2) in R3+ is

dh(x, a) = arcosh λ(x, a),

where

λ(x, a) =
(x0 − a0)2 + (x1 − a1)2 + x22 + a22

2x2a2
=
|x− a|2

2x2a2
+ 1

and |x− a| is the usual Euclidean distance between the points a and x.
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We also apply the simple calculation rules of the hyperbolic distance stated
next.

Lemma 2 If x = (x0, x1, x2) and a = (a0, a1, a2) are points in R3+ then

|x− a|2 = 2x2a2 (λ(x, a)− 1) , (2)

|x− â|2 = 2x2a2 (λ(x, a) + 1) , (3)

|x− a|2
|x− â|2 =

λ(x, a)− 1
λ(x, a) + 1

= tanh2(
dh (x, a)

2
), (4)

where â = (a0, a1,−a2).

We also note the relation between the Euclidean and hyperbolic balls.

Proposition 3 The hyperbolic ball Bh (a, rh) with the center a = (a0, a1, a2) and
the radius rh is the same as the Euclidean ball with the Euclidean center (a0, a1, a2 cosh rh)
and the Euclidean radius re = a2 sinh rh.

2 The hyperbolic Laplace operator depending
on the hyperbolic distance in R3+

We need the computations of the hyperbolic Laplace operator of functions de-
pending on λ, computed in [2].

Lemma 4 If f is twice continuously differentiable depending only on λ = λ (x, en)
then

4hf (x) =
(
λ2 − 1

) ∂2f
∂λ2

+ 3λ
∂f

∂λ
.

Using this it is relatively easy to compute the result.

Lemma 5 If f is twice continuously differentiable depending only on rh = dh (x, en)
then the hyperbolic Laplace in R3+ is given by

4hf (rh) =
∂2f

∂r2h
+ 2 coth rh

∂f

∂rh
.

Proof. Using rh = arcosh λ(x, en), we compute

∂rh
∂λ

=
1

sinh rh

and
∂2rh
∂λ2

= − cosh rh
sinh3 rh

.
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Hence applying the chain rule we obtain

∂f (rh)

∂λ
=

∂f

∂rh

∂rh
∂λ

=
∂f

∂rh

1

sinh rh
,

∂2f (λ)

∂λ2
=
∂2f

∂r2h

(
∂rh
∂λ

)2
+
∂f

∂rh

∂2rh
∂λ2

=
∂2f

∂r2h

1

sinh2 rh
− ∂f

∂rh

cosh rh

sinh3 rh
,

completing the proof by the preceding lemma.
If we know one strictly positive solution depending on rh, we may compute all

the solutions depending on rh.

Theorem 6 If µ is a strictly positive solution of the equation

4hf + γf =
∂2f

∂r2h
+ 2

∂f

∂rh

cosh rh
sinh rh

+ γf = 0 (5)

depending on rh = dh (x, en) then the general solution of this equation is

f (rh) =

(
C

∫ rh

r0

sinh−2 uµ−2 (u) du+ C0

)
µ (rh)

for some real constants C and C0.

Proof. Assume that µ (rh) is a particular positive solution of (5). Setting f (rh) =
g (rh)µ (rh) we obtain

0 = µ
d2g

dr2h
+ 2

dµ

drh

dg

drh
+ g

d2µ

dr2h

+ 2
cosh rh
sinh rh

g
dµ

drh
+ 2

cosh rh
sinh rh

µ
dg

drh
+ γµg

= µ
d2g

dr2h
+ 2

dµ

drh

dg

drh
+ 2

cosh rh
sinh rh

µ
dg

drh
.

Denoting dg
drh
= h, we deduce

µ
dh

drh
+

(
2
dµ

drh
+ 2

cosh rh
sinh rh

µ

)
h = 0.

Hence we solve
d

drh
(log h+ 2 log µ+ 2 log (sinh rh)) = 0

and therefore
∂g

∂rh
= h = C sinh−2 rhµ

−2 (rh) .

4



Consequently, the general solution isn
2−(k+1)2

4

f (rh) =

(
C

∫ rh

r0

sinh−2 uµ−2 (u) du+ C0

)
µ (rh) .

We recall the relation between solutions of (1) and eigenfunctions of the hy-
perbolic Laplace-Beltrami operator.

Proposition 7 ([10]) Let Ω ⊂ R3+ be an open subset Ω of R3+. If u is a solution
of (1) in Ω, then f(x) = x

1−k
2

2 u(x) is an eigenfunction of the hyperbolic Laplace
operator corresponding to the eigenvalue 1

4
((k + 1)2 − 4l − 4) . Conversely, if f

is the an eigenfunction of the hyperbolic Laplace operator corresponding to the

eigenvalue γ in Ω then u(x) = x
k−1
2

2 f(x) is the solution of the equation (1) in Ω
with l = 1

4
((k + 1)2 − 4γ − 4).

The mean value property for the solutions of (1) can be stated in terms of the
hypergeometric functions. We recall their definition:

2F1 (a, b; c;x) =
∞∑
m=0

(a)m (b)m
(c)m

xm

m!
,

where (a)m = a (a+ 1) ... (a+m− 1) and (a)0 = 1. This series converges for x
satisfying |x| < 1. We recall also an important Euler’s integral formula valid for
a, b, c ∈ C satisfying 0 < Re b < Re c

2F1(a, b; c; z) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tz)−adt.

where the Beta funtion has the representation

B (x, y) =
Γ (x) Γ (y)

Γ (x+ y)
.

The mean value property for solutions of (1) with respect to the hyperbolic
surface measure was proved in [8].

Theorem 8 Let l and k be real numbers satisfying 4l ≤ (k + 1)2 and U ⊂ R3+ be
open. If

ψ2,k,l(rh) = e−
1+
√
(k+1)2−4l
2

rh
2F1(1 +

√
(k + 1)2 − 4l

2
, 1; 2; 1− e−2rh)

then ψ2,k,l(rh) is an eigenfunction of the hyperbolic Laplace operator corresponding
to the eigenvalue 1

4
((k + 1)2 − 4l − 4). Moreover, if u : U → R is a solution of

the Weinstein equation

∆u− k

x2

∂u

∂x2
+

l

x22
u = 0
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in U then

u(a) =
a
k−1
2

2

4π sinh2(rh)ψ2,k,l(rh)

∫
∂Bh(a,rh)

u(x)
dσ

x
3+k
2

2

for all hyperbolic balls satisfying Bh (a, rh) ⊂ U .

In our special case R3+, we can give a simple formula for the function ψ2,k,l(rh)
as follows.

Theorem 9 Let l and k be real numbers satisfying 4l ≤ (k + 1)2 and U ⊂ R3+ be
open. Denote

a = 1 +

√
(k + 1)2 − 4l

2

and rh = dh (x, en). Then

ψ2,k,l(rh) = e−arh2F1(a, 1; 2; 1− e−2rh)

=

{
sinh(rh(a−1))
(a−1) sinh rh , if 4l 6= (k + 1)2,

rh
sinh rh

, if 4l = (k + 1)2,

is the eigenfunction of the hyperbolic Laplace operator corresponding to the eigen-
value 1

4
((k + 1)2 − 4l − 4).

For the sake of completeness, we first prove the lemma.

Lemma 10 If |x| < 1 then

2F1(a, 1; 2;x) =

{
1−(1−x)−a+1
x(−a+1) if a 6= 1,
− log(1−x)

x
if a = 1.

Proof. If we replace t with 1− s in Euler’s integral we obtain

2F1(a, b; c;x) =
Γ (c)

Γ (b) Γ (c− b)

∫ 1

0

(1− x+ xs)−a (1− s)b−1 sc−b−1ds

=
(1− x)−a Γ (c)
Γ (b) Γ (c− b)

∫ 1

0

(
1 +

xs

1− x

)−a
(1− s)b−1 sc−b−1ds.

In case a 6= 1 we infer

2F1(a, 1; 2;x) = (1− x)−a
∫ 1

0

(
1 +

xs

1− x

)−a
dt

= (1− x)−a 1− x
x (−a+ 1)

((
1 +

x

1− x

)−a+1
− 1
)

= (1− x)−a x− 1
x (−a+ 1)

(
1

(1− x)−a+1
− 1
)

=
1− (1− x)−a+1

x (−a+ 1) .
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If a = 1 we compute

2F1(a, 1; 2;x) = (1− x)−a
∫ 1

0

(
1 +

xs

1− x

)−1
dt

= (1− x)−1 1− x
x

log

(
1 +

x

1− x

)
= − log (1− x)

x
.

We are ready to verify the preceding theorem.

Proof. Setting a = 1 +
√
(k+1)2−4`

2
6= 1 we obtain

ψ2,k,l(rh) = e−arh2F1(1 +

√
(k + 1)2 − 4`

2
, 1; 2; 1− e−2rh)

= e−arh
(

e2rh(a−1) − 1
(1− e−2rh) (a− 1)

)
= e−arherh(a−1)erh

erh(a−1)−e−rh(a−1)
2

(erh−e−rh)
2

(a− 1)

=
sinh (rh (a− 1))
(a− 1) sinh rh

.

If a = 1 then

ψ2,k,l(rh) = −e−rh
log e−2rh

(1− e−2rh) =
2rh

(erh − e−rh) =
rh

sinh rh
.

Note also that
lim
rh→0

ψ2,k,l(rh) = 1

and with this extension ψ2,k,l is a continuously differential function.
Substituting the values of ψ2,k,l for the mean value theorem we immediately

obtain the result.

Theorem 11 Let k be a real number and U ⊂ R3+ be open. If u : U → R is a
solution of the Weinstein equation

x22∆u− kx2
∂u

∂xn
= 0

in U then

u(a) =
a
k−1
2

n |k + 1|
8π sinh(rh) sinh

(
rh|k+1|

2

) ∫
∂Bh(a,rh)

x
− k+3

2
2 u(x)dσ

in case k 6= −1and in case k = −1

u(a) =
1

4πa2rh sinh(rh)

∫
∂Bh(a,rh)

x−1n u(x)dσ.
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Similarly, the general solution of the equation (5) has the representation.

Theorem 12 If γ = 1
4
(4 − (k + 1)2) and k 6= −1 the general solution of the

equation (5) is

f (rh) = C1
cosh

(
|k+1|rh

2

)
sinh rh

+ C0
sinh

(
rh|k+1|

2

)
sinh rh

for some real constants C1 and C0. If k = −1 the general solution for γ = 1 is

f (rh) = C1
1

sinh rh
+ C0

rh
sinh rh

.

Proof. Assuming k 6= −1 and substituting

µ (rh) =
sinh

(
rh|k+1|

2

)
sinh rh

in

f (rh) =

(
C

∫ rh

r0

sinh−2 uµ−2 (u) du+ C0

)
µ (rh) ,

we obtain

f (rh) =

C ∫ rh

r0

sinh−2 u
(k + 1)2 sinh−2

(
u|k+1|
2

)
4 sinh−2 u

du+ C0

 2 sinh
(
rh|k+1|

2

)
|k + 1| sinh rh

=

(
C

∫ |k+1|rh
2

|k+1|r0
2

sinh−2 (s) ds+ C0

)
sinh

(
rh|k+1|

2

)
sinh rh

=

(
C coth

(
|k + 1| r0

2

)
− C coth

(
|k + 1| rh

2

)
+ C0

) sinh( rh|k+1|
2

)
sinh rh

.

completing the proof, if we choose the constants properly. The case k = −1 is
proved similarly.

Corollary 13 The particular solution of (5) with γ = 1
4
(4− (k+ 1)2) outside the

point e2 is

F (x) =
cosh

(
|k+1|dh(x,e2)

2

)
sinh dh (x, e2)

=
cosh

(
|k+1|dh(x,e2)

2

)
|x− cosh dh (x, e2) e2|

and x
k−1
2

2 F (rh) is k-hyperbolic harmonic.

Denote

F (x, a) =
cosh

(
|k+1|dh(x,a)

2

)
sinh dh (x, a)

.

We obtain this function by transforming the preceding function with the transfor-
mation τ (x) = a2x+ Pa.
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Corollary 14 The function Fh (x, a) satisfies the equation

∂2f

∂r2h
+ 2

∂f

∂rh

cosh rh
sinh rh

+ γf = 0

with γ = 1
4
(4− (k+1)2) outside x = a and x

k−1
2

2 Fh (x, a) is k-hyperbolic harmonic
outside x = a .

Proof. Since the hyperbolic distance is invariant under Möbius transformation
mapping the upper half space onto itself, applying τ (x) = a2x+ Pa we infer

dh (τ (x) , a) = dh (x, e2)

and

F (x) =
cosh

(
|k+1|dh(τ(x),a)

2

)
sinh dh (τ (x) , a)

.

Since the hyperbolic Laplace operator is invariant under Möbius transformation
mapping the upper half space onto itself the function

F
(
τ−1 (x)

)
=
cosh

(
|k+1|dh(x,a)

2

)
sinh dh (x, a)

is the eigenfunction of the hyperbolic Laplace operator with the eigenvalue with
γ = 1

4
(4− (k + 1)2), completing the proof.

Lemma 15 The function Fh (x, a) is Lebesgue integrable in the hyperbolic ball
Bh (a, rh) and∫

Bh(a,rh)

x
− 5k+1

2
2 Fh (x, a) dx ≤M (a, rh)

(
(cosh rh − 1)2

6
+
sinh2 rh
2

)
,

for some function M (a, rh) > 0 with a bounded limit when rh → 0.

Proof. It is enough to prove the statement for a = e2. Note that

|x|2 + 1
2x2

= λ (x, e2) = cosh dh (x, e2) .

Since e−rh < x2 < erh in Bh (e, rh) = B (cosh rhe2, sinh rh) we obtain

x
− 1+5k

2
2 cosh

(
|k+1|dh(x,a)

2

)
sinh dh (x, e2)

=
x
− 1+5k

2
2 cosh

(
|k+1|dh(x,a)

2

)
√
λ− 1

√
λ+ 1

≤
x
− 1+5k

2
2 cosh

(
|k+1|rh

2

)
√
λ− 1

≤

√
2e

5k
2
rh cosh

(
|k+1|rh

2

)
√
|x|2 + 1− 2x2

9



in Bh (a, rh) it is enough to consider the integral∫
Bh(er,rh)

dx√
|x|2 + 1− 2x2∫

B(cosh rhe2,sinh rh)

dx√
|x|2 + 1− 2x2

.

Denote c = cosh rhe2. Changing the variables

x0 = r sin θ cosφ,

x1 = r sin θ sinφ,

x2 = r cos θ + c,

we obtain ∫
B(cosh rhe2,sinh rh)

dx√
|x|2 + 1− 2x2

=

∫ sinh rh

0

∫ 2π

0

∫ π

0

r2 sin θdθdφdr√
r2 + 2r (c− 1) cos θ + (c− 1)2

= 2π

∫ sinh rh

0

− 1

c− 1 (r (|r − c+ 1|)− r (r + c− 1)) dr

= 2π

∫ c−1

0

− 1

c− 1 (r (c− 1− r)− r (r + c− 1)) dr

+ 2π

∫ sinh rh

c−1
− 1

c− 1 (r (r − c+ 1)− r (r + c− 1)) dr

= 2π

∫ c−1

0

2r2

c− 1dr + 2π
∫ sinh rh

c−1
rdr

= 2π

(
2

3
(c− 1)2 + sinh

2 rh
2

− 1
2
(c− 1)2

)
= 2π

(
1

6
(c− 1)2 + sinh

2 rh
2

)
,

completing the proof.
We recall the Green formula in some Riemannian manifolds.

Proposition 16 ([1]) Let R ⊂ R3+ be a bounded open set with the smooth bound-
ary contained R3+ and denote the volume element corresponding to the Riemannian
metric

ds2 =
dx20 + dx21 + dx22

x2k2

by dm(k) = x−3k2 dm, the surface elements by dσ(k) = x−2k2 dσ and the outer normal
∂u
∂n(k)

= xk2
∂u
∂n
. where n is the outer normal to the the surface ∂R. Then the Laplace-

Beltrami operator is

4k = x2k2

(
4− k

x2

∂

∂x2

)
10



and ∫
R

(
u4kvdm(k) − v4kudm(k)

)
=

∫
∂R

(
u
∂v

∂nk
− v ∂u

∂nk

)
dσ(k)

for any functions u and v that are twice continuously differentiable functions in
an open set containing the closure Ω of Ω.

A function f : Ω→ R is called k-hyperbolic harmonic if

4kf = 0

in Ω. The theory of k-hyperbolic harmonic functions was developed in [3]. Denote

H (x, y) = y
k−1
2

2 x
k−1
2

2

cosh
(
|k+1|dh(x,y)

2

)
sinh dh (x, y)

.

We will show that H (x, y) is the fundamental k-hyperbolic harmonic functions
with a pole in x. We need following lemma.

Lemma 17 Let Ω ⊂ R3+ be open and x a point with Bh (x, rh) ⊂ Ω. Then

lim
rh→0

∫
∂Bh(x,rh)

u∂H(x,y)
∂nk

dσ(k) (y)

4π
= −u (x)

for any hyperbolic balls Bh (x, rh) satisfying Bh (x, rh) ⊂ Ω.

Proof. Using Proposition 3 we infer that in ∂Bh (x, rh) the outer normal at y is

n = (n0, n1, n2) =
(y0 − x0, y1 − x1, y2 − x2 cosh rh)

x2 sinh rh
.

Denote rh = d (x, y). We first compute

∂H (x, y)

∂nk
= yk2

∂H (x, y)

∂n
= yk2 (n, grad v) .

= y
3k−1
2

2 x
k−1
2

2

∂

∂rh

cosh
(
|k+1|rh

2

)
sinh rh

2∑
i=1

ni
∂rh
∂yi

+
k − 1
2

yk−12 n2H (x, y)

= yk2H (x, y)

(
|k + 1|
2

tanh

(
|k + 1| rh

2

)
− coth rh

) 2∑
i=1

ni
∂rh
∂yi

+
k − 1
2

yk−12 n2H (x, y) .

Applying Lemma 1 we infer

∂rh
∂yi

=
∂ arcoshλ (x, y)

∂yi
=
yi − xi − x2 (cosh rh − 1) δin

y2x2 sinh rh
,

11



and therefore we conclude
2∑
i=1

ni
∂rh
∂yi

=
1

y2
.

Hence we have

∂H

∂nk
(x, y) = yk−12 H (x, y)

(
|k + 1|
2

tanh

(
|k + 1| rh

2

)
− coth rh +

k − 1
2

n2

)
.

Since Bh (x, rh) = B (xe, x2 sinh rh) for xe = (x0, x1, x2 cosh rh) and uy
3k−3
2

2 is con-
tinuous we obtain

lim
rh→0

|k + 1|x
k−1
2

2

8π

sinh
(
|k+1|rh

2

)
sinh rh

∫
∂Bh(x,rh)

u (y) y
3k−3
2

2 dσ(k) (y) = 0.

Similarly we deduce that

lim
rh→0

k − 1
8π

∫
∂Bh(x,rh)

yk−12 u (y)n2H (x, y)

x2 sinh rh
dσ(k) (y)

= lim
rh→0

(k − 1) x
k+1
2

2

8πx22 sinh
2 rh

∫
∂Bh(x,rh)

u (y) y
3k−1
2

2 (y2 − x2 cosh rh) cosh
|k + 1| rh

2
dσ(k) = 0.

Lastly we infer

lim
rh→0
−
x
k+3
2

2 cosh rh cosh
(
|k+1|rh

2

)
4πx22 sinh

2 rh

∫
∂Bh(x,rh)

u (y)

y
k+3
2

2

dσ (y) = −u (x) ,

completing the proof.

Theorem 18 Let Ω ⊂ R3+ be open and R a bounded open set with a smooth
boundary satisfying R ⊂ Ω. If u is twice continuously differentiable functions in
Ω and x ∈ R then

u (x) =
1

4π

∫
∂R

(
u
∂H

∂nk
−H ∂u

∂nk

)
dσk (y)−

1

4π

∫
R

H4kudm(k)

where dσk, dm(k) and ∂
∂nk
are the same as in Lemma 16. Moreover, if u ∈ C20 (R)

then

u (x) = − 1
4π

∫
R

H4kudm(k).

Proof. Applying Green formula in the set R\Bh (x, rh) we obtain∫
R\Bh(x,rh)

(H4ku− u4kH) dm(k) =

∫
∂R\Bh(x,rh)

(
H
∂u

∂nk
− u ∂H

∂nk

)
dσk

=

∫
∂R

(
H
∂u

∂nk
− u ∂H

∂nk

)
dσk

−
∫
∂Bh(x,rh)

(
H
∂u

∂nk
− u (y) ∂H

∂nk

)
dσk.
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Since H is k-hyperbolic harmonic in R\Bh (x, rh) we obtain∫
R\Bh(x,rh)

H (x, y)4ku (y) dm(k) (y) =

∫
∂R

(
H
∂u

∂nk
− u ∂H

∂nk

)
dσk (y)

−
∫
∂Bh(x,rh)

(
H
∂u

∂nk
− u ∂H

∂nk

)
dσk.

Since ∫
∂Bh(x,rh)

H
∂u

∂nk
dσk

= x
k−1
2

2

cosh
(
|k+1|rh

2

)
sinh rh

∫
∂Bh(x,rh)

∂u

∂nk
y
− 3k+1

2
2 dσ

and ∂u
∂nk

y
− 3k+1

2
2 is bounded in ∂Bh (x, rh) we obtain∫
∂Bh(x,rh)

∣∣∣∣H ∂u

∂nk

∣∣∣∣ dσk ≤ m (x, rh) x
k−1
2

2 4 cosh

(
|k + 1| rh

2

)
π sinh rh

for some founction m > 0 with bounded limit when rh → 0 and therefore

lim
rh→0

∫
∂Bh(x,rh)

H
∂u

∂nk
dσk = 0.

Since the function 4ku (y) is a continuous function and by Lemma 15 H (x, y) is
integrable in a bounded set R we obtain

lim
rh→0

∫
R\Bh(x,rh)

H4kuydm(k) =

∫
R

H4kudm(k).

Combining all the preceding steps and applying Lemma 17 we conclude the result.

Corollary 19 Let Ω ⊂ R3+ be open and R a bounded open set with a smooth
boundary satisfying R ⊂ Ω. If u is k-hyperbolic harmonic in Ω and x ∈ R then

u (x) =
1

4π

∫
∂R

(
u
∂H

∂nk
−H ∂u

∂nk

)
dσk (y)

where dσk, dm(k) and ∂
∂nk
are the same as in Lemma 16.

Note that if k = 1, then

H (x, y) = coth (dh (x, y)) =

∫ ∞
dh(x,y)

− du

sinh2 u

and if k = −1, then

H (x, y) =
1

x2y2 sinh dh (x, y)
=

1

x2y2
√
λ2 − 1

=
2

|x− y| |x− ŷ| .

13



These kernels were already used in integral formulas for hypermonogenic functions,
see for example in [2] and [6]. Mean value properties for hyperbolic harmonic
functions were verified in [7] .
We may prove also similar results for eigenfunctions of the hyperbolic Laplace

operator.

Theorem 20 Let Ω ⊂ R3+ be open and R a bounded domain with a smooth bound-
ary satisfying R ⊂ Ω. Denote γ = 1

4
(4 − (k + 1)2. If u is twice continuously

differentiable functions in Ω and x ∈ R then

u (x) =
1

4π

∫
∂R

(
u
∂F

∂nh
− F ∂u

∂nh

)
dσh (y)−

1

4π

∫
R

F (4hu− γu) dmh,

where dσh = dσ
y22
, dmh =

dm
y32
and ∂

∂nh
= y2

∂
∂n
. Moreover. if u ∈ C20 (R) then

u (x) = − 1
4π

∫
R

F (4hu− γu) dmh.

Proof. Using Green formula in the set R\Bh (x, rh) we obtain∫
R\Bh(x,rh)

(F (4hu− γu)− u (4hF − γF )) dmh =

∫
∂R\Bh(x,rh)

(
F
∂u

∂nh
− u ∂F

∂nh

)
dσh

=

∫
∂R

(
F
∂u

∂nh
− u ∂F

∂nh

)
dσh

−
∫
∂Bh(x,rh)

(
F
∂u

∂nh
− u ∂F

∂nh

)
dσh.

From 4hF (x, y)− γF (x, y) = 0 in R\Bh (x, rh) , it follows that∫
R\Bh(x,rh)

F (4hu− γu) dmh =

∫
∂R

(
F
∂u

∂nh
− u ∂F

∂nh

)
dσh

−
∫
∂Bh(x,rh)

(
F
∂u

∂nh
− u ∂F

∂nh

)
dσh.

Since ∂u
∂nk

is bounded in ∂Bh (x, rh) we obtain∫
∂Bh(x,rh)

∣∣∣∣F (x, y) ∂u (y)∂nh

∣∣∣∣ dσh (y) ≤ 4m (x, rh) cosh |k + 1| rh2
πx2 sinh rh

for some function m > 0 with a bounded limit when rh → 0 and therefore

lim
rh→0

∫
∂Bh(x,rh)

F (x, y)
∂u (y)

∂nh
dσh (y) = 0.

Since the function 4hu − γu is a continuous function and by Lemma 15 F (x, y)
is integrable in a bounded set R we obtain

lim
rh→0

∫
R\Bh(x,rh)

F (x, y) (4hu− γu) dmh (y) =

∫
R

F (x, y) (4hu− γu) dmh (y) .

14



The proof is completed when we verify that

lim
rh→0

∫
∂Bh(x,Rh)

u∂F (x,y)
∂nh

dσh (y)

4π
= −u (x) .

This follows from the preceding calculations similarly as earlier proof, since

∂F

∂nh
= F (x, y)

(
|k + 1|
2

tanh

(
|k + 1| rh

2

)
− coth rh

)
and

lim
rh→0

∫
∂Bh(x,rh)

u
∂F (x, y)

∂nh
dσh = − lim

rh→0

cosh
(
|k+1|rh

2

)
cosh rh

sinh2 rh

∫
∂Bh(x,rh)

udσ

y22

= −4πu (x) .

Corollary 21 Let Ω ⊂ R3+ be open and R a bounded open set with a smooth
boundary satisfying R ⊂ Ω. If u is an eigenfunction corresponding to the eigen-
value γ = 1

4
(4− (k + 1)2 in Ω and x ∈ R then

u (x) =
1

4π

∫
∂R

(
u
∂F (x, y)

∂nh
− F (x, y) ∂u

∂nh

)
dσh.
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