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Abstract. The present research analyses the error on prediction obtained under different data
availability scenarios to determine which measurements contribute to an improvement of model
prognosis and which not.

A fully coupled 2D hydromechanical model of a water retaining dam is taken as an example.
Here, the mean effective stress in the porous skeleton is reduced due to an increase in pore water
pressure under drawdown conditions.

Relevant model parameters are ranked by scaled sensitivities, Particle Swarm Optimization
is applied to determine the optimal parameter values and model validation is performed to
determine the magnitude of error forecast. We compare the predictions of the optimized models
with results from a forward run of the reference model to obtain actual prediction errors.

The analyses presented here were performed to 31 data sets of 100 observations of varying
data types. Calibrating with multiple information types instead of only one sort, brings better
calibration results and improvement in model prognosis. However, when using several types of
information the number of observations have to be increased to be able to cover a representa-
tive part of the model domain; otherwise a compromise between data availability and domain
coverage prove best.

Which type of information for calibration contributes to the best prognoses, could not be
determined in advance. For the error in model prognosis does not depends on the error in
calibration, but on the parameter error, which unfortunately can not be determined in reality
since we do not know its real value. Excellent calibration fits with parameters’ values near the
limits of reasonable physical values, provided the highest prognosis errors. While models which
included excess pore pressure values for calibration provided the best prognosis, independent
of the calibration fit.



1 INTRODUCTION

There has been a growing need to better understand model quality of numerical models in
all branches of science. This issue has been recently addressed by [11} 12, 3, 4} 5] among others.

Models have grown in complexity and scope. In civil engineering, different models have
to be coupled to simulate behavior of complex structures. Type, location and quality of mea-
surements significantly impact model calibration and validation in these coupled models. This
information either contributes to model quality by improving model forecast or to model uncer-
tainty when neglecting important information. Models have to be parameterized; however, the
values of the parameters are usually not known and have to be calibrated by inverse methods
using observations [6]]. This study focus on the influence of using different observation types
for calibration on model prediction.

An advantage of calibrating with different observation types is to overcome systematic errors.
Systematic errors are difficult to detect and cannot be analyzed statistically, because all of the
data is off in the same direction, either too high or too low. The approach to overcome this is
similar to that of investing in stokes of different branches, the risk of having the wrong numbers
is disperse. Experience with the specific data type and measurement conditions are required to
detect this errors. A way around this is to use different types of observations for calibration.
If one set is wrong the others will push the values still in the right direction. By working with
many data sets, even if you do not notice that one of them is wrong, the model could still be
calibrated properly by the weight of other ’correct” data sets.

To analyze the effects of the observation types in the numerical model, the drawdown of an
embankment will serve as illustrative example. This is a typical flow and deformation coupled
problem in geotechnical engineering.

It is not the goal of this paper to find the best model description for hydromechanical models,
but to quantify the error related to model calibration with different data type availability. The
objective is to identify the data relationships which are necessary to correctly predict deforma-
tion, strain and excess pore pressure development within a coupled hydromechanical model.

2 METHODOLOGY

A reference model of a water retaining dam is generated to assess the impact of data availabil-
ity to model error prognosis. Such a model provides different types of synthetic measurements,
in this case, under slow drawdown conditions. The same model can be then, calibrated to all
possible combinations of these measurement sets. Finally, the models with the optimized sets
of parameters can be validated under rapid drawdown conditions and the prognosis error be
compared.

With the reference model we create a total of five different data sets: horizontal and vertical
deformation, horizontal and vertical strain and excess pore pressure. Based on these sets we
generate 31 combinations (2°%@Wpes _ 1 = 3] data sets) of equal number of observations but
different type of data. In order to determine the effect of “data type” in model forecast, we
calibrate the more important parameters to the different 31 data sets using the same model
which generated the data. This is necessary to avoid external influences other than data type,
and compare their forecasts to the reference model.

Before calibration, a sensitivity analysis is performed to determine the most important pa-
rameters of the model. The optimal parameter values are identified with Particle Swarm Op-



timization on a surrogate model. Finally, the calibrated models are validated under a rapid
drawdown scenario and the actual forecast errors are determined.

3 THEORY

Single scaled sensitivities (ss; ;) are used to determine the most relevant parameters of the
model. They provide the ratio of difference in model response at each i measuring point (y;) to
a small change in parameter value of every j parameter (p;) where i,j € N. They are calculated
as follow [7]]:

dyi
8Sij = 8—23]?]‘ (1)
J

In matrix form the scaled sensitivity matrix (SS) can be calculated as

_ %

SS =
dp

(2
where y is the calculated model response vector {y1, y2, ..., ¥;} and p is the model parameter
vector {p1, pa, ..., p; }. The partial derivatives are approximated by forward finite difference:
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The resulting sensitivities are ranked calculating the variance-covariance matrix, (SSTSS)!,
which is the inverted product of the transposed scaled sensitivity matrix times itself. The smaller
the value of the respective parameter in the main diagonal of the variance covariance matrix,
the more influential the parameter is.

The divergence between model response and reference measured values is quantified by the
objective function as follows:

n

(yi,meas - yi(pl:p% ---apn)calc)2
Flp)= > s 2 w; )
i=1 7j=1 yi,meas

where F'(p) is the average error sum, ¢ = 1,2, ..., n counts each measurement of a time series,
and w is a weighting factor, in this case equal to one. In F'(p) the absolute error of all obser-
vation types is sumed and then squared to get an average. The objective funtion sums unitless
values. This is achieved for each type of data by norming the squared residuals of a given type
at each measuring point, by the squared sum of the measurements at the given point.

An automated calibration is performed with Particle Swarm Optimization [8]] using the fol-
lowing surrogate model:

y(p)calc = g(p7 B) +¢€ (5)

by this means the numerical model is approximated with a fully quadratic function, ¢(p, 3), for
each time step [9]. Where (3 are the coefficients of the fully quadratic approximation and € is
the error between numerical and surrogate model.
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During optimization the sum of the objective function for each measurement series is mini-
mized:

1
Frotat(p) = — > Fj(p) — min. (6)

where m stands for the amount of test series.

4 ILLUSTRATIVE EXAMPLE: WATER RETAINING DAM

A numerical model of a water retaining dam under drawdown conditions is used to illustrate
the data availability influence on error prognosis of coupled numerical models in constructive
civil engineering. The simulations were performed with PLAXIS 2D [[10], a commercial Finite
Element Program.

4.1 Geometry and boundary conditions

The earth dam is of trapezoidal form (Figure [I)), 30 m high, trapezoid upper side is only 5
m long while the bottom side is 172.5 m long, from which 20 m correspond to the core. The
underline block is 260 m long and also 30 m height. The extension of this block was conceived
large enough to avoid effects of the boundary conditions inside the dam.

The mesh was constructed with 6-node triangular elements refined on the embankment itself
and consists of around 500 elements and ca. 1100 nodes. On Figure [I] it is also marked the
initial water level at 25 m (straight line) and the final water level at 5 m (dashed line).

Furthermore, the boundary condition at the bottom of the rectangular block is of full fixity,
no deformation in horizontal or vertical direction allowed. At the sides just vertical deformation
is allowed while the entire upper boundary is a free surface with a time dependent water level.

| y / y 6o m. ) , :

Figure 1: Mesh of water retaining dam with core (trapezoid in the center), fill (lateral triangles) and subsoil
(rectangular basement), showing schematic drawdown and water pressure distribution

4.2 Material model

The embankment has three distinctive parts of different materials which have to be param-
eterized: 1) an almost impermeable clay core to prevent flow through it; 2) the fill, normally
constructed of local material to protect the core from erosion and forces applied by the water;
and 3) the subsoil which is the foundation in which the dam is built on.

For all three soil materials, the Mohr-Coloumb model (MC) is used to represent the elastic-
plastic soil behavior. MC is suitable to analyze the stability of slopes and embankments [[11]].
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The hydraulic model is parameterized using the Hypres data set available in PLAXIS with Van
Genuchten parameterization. This parameterization is of coarse subsoil type for fill and subsoil
material and of very fine type for the core.

The values of the parameters are given in Table [I| and are synthetic since they were not
determined from an existing object.

Table 1: Soil parameter values for the three different materials

Soil parameters Core Fill Subsoil

Undrained Drained Drained
Saturated soil unit weight Yunsar [KN/m3] 16 16 17
Unsaturated soil unit weight 74, [KN/m?] 18 20 21
Shear Modulus G [kN/m?] 555.60 7518.80 19230.77
Poisson’s ratio v [-] 0.35 0.33 0.30
Cohesion Tes [KN/m?] 5 5 1
Friction angle ¢ [°] 25 31 35
Dilatancy angle v [°] 0 1 5
Hydraulic conductivity kzy [m/d] 0.0001 0.25 0.01
(isotropic)

4.3 Simulation

The hydraulics in PLAXIS are simulated with the Darcy law for fully saturated soil and with
the Richards equation which describes unsaturated groundwater flow. They are fully coupled to
the mechanical model using Biot’s theory of consolidation. This formulation contains a coupled
hydromechanical behaviour represented by both the equilibrium equation and the continuity
equation of the water-soil mixture [12].

Calculations are performed in classical mode, which uses Terzaghi’s definition of stress. In
a first phase, the initial stress due to soil and material weight is calculated, as well as the initial
pore water pressure under undrained behaviour and steady state groundwater flow conditions.

To the previous Gravity loading phase follows a Nil-Step phase. This phase improves the
accuracy of the equilibrium stress field with a plastic drained long term calculation in which
no additional loading is applied [13]]. Finally, the effect of the drawdown can be simulated as a
consolidation phase with transient groundwater flow in which the dam is submitted to a linear
drawdown of 40 cm/d.

5 RESULTS AND CONCLUSIONS

5.1 Sensitivities

The Parameters of interest for the present study are those of the soft soil core, specially the
isotropic hydraulic conductivity (k,,), two parameters from Hooke’s law: shear modulus (G)
and Poisson’s ratio (/) and also the parameter to describe the flow rule, the dilatancy angle (1)).
Since we are working on the range of values where the dam is stable and cannot sample data
about its collapse, the parameters to define failure are not of interest for this study, these are the
friction angle and cohesion.

Eight nodes and five stress points within the core and the fill (Figure [2)) were selected for



measurements of five different types of data: horizontal and vertical deformation (u,, u,), hori-
zontal and vertical strain (¢, €,,) and excess pore pressure (EPP)

Figure 2: Observation points at the embankment

The Sensitivities were calculated with respect to the five different types of model answers
at those observation points using the equations presented on Section [3] The resulting variance-
covariance matrix is shown on Table@ The smaller the value on the diagonal, the more sensitive
the respective parameter is.

Table 2: Variance-Covariance Matrix (SSTSS)™! of the most relevant parameters of the impermeable core

G V/ 77Z) lg(k:vy)

G [ 4-100% —-8-10° 2-10% —=3-107% ]
v [ 7-107° 7-107° —1-1077 ]
0 [ 1-100* —1-107% ]
lg(kyy) [ symmetric 6-1077 ]

The more influential parameter is &, from the hydraulic model followed by G and v’ from
Hooke’s law of the material model.

5.2 Calibration

The four previous parameters, which were sensitive to a set of model answers of diverse type
in 13 different points, were calibrated to different data type availability. 31 data sets, shown in
Table |3, each with 100 observations were generated from the combinations of w, Uy, €44, €yy
and EPP.

The resulting combinations have a constant number of observations and vary in data type.
This generates a tradeoff between data type coverage and spatial domain coverage. The spatial
coverage of the first data set, considering all data types is shown at the left side of Figure
Measured in nodes A and B are u, and u,, EPP in nodes B and C, and ¢,,, €, in the stress
points K and L. In contrast, at the right side of Figure [3] data set 31, which uses just EPP
observations, shows a good spatial coverage of EPP in the core. As data type increases, spatial
coverage decreases and vice versa.

The model was calibrated to the 31 data sets with an automated algorithm using the Particle
Swarm Optimization method on a surrogate model. The resulting deviations to the respective
data sets are also given on Table[3|as average error sum in percent.
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Table 3: Combinations of data type availability for calibration purpose using 100 observations; number of points
per data type (10 measurements in time per point) and resulting average error sum [%]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

uw, 2 3 2 2 3 3 3 3 4 3 3

w, 2 2 2 2 33 3 3 4 3 3

eex 2 3 3 2 2 4 3003 303 3

) 302 2 4 3 3003 3003

EPP 2 3 3 3 3 4 4 4 4 4

Error 0.8 02 0.6 09 09 1.0 01 01 09 03 09 03 00 I.I 07 14
17 18 19 20 21 22 23 24 25 26 27 28 29 30 3l

Us 5 5 5 5 10

uy 5 5 5 5 10

Ean 5 5 5 5 10

€y 5 5 5 5 10

EPP 5 5 5 5 10

Error 02 00 02 01 01 06 07 02 1.I 17 01 02 09 07 15

Figure 3: Left: Observation points for data set 1, ; Right: Observation points for data set 31

The average error sum for all different calibrations is small, lower than 2 %. After sorting
the average error three classes were identified, as shown in Figure 4. These are, a first class with
excellent fit, up to 0.3 % average error (green oval), a second class with good fits on the range
0.5 - 1.2 % average error (orange oval) and a third class with relative bad fits from 1.4 to 1.7 %
average error (red oval). Most of the calibrations fall within the first two classes.

Furthermore, by sorting Figure 4] additionally by number of data types, see Figure[5| we can
determine that the best results are obtained by using 1 to 3 data types, however, also the worst
values. The choice of data type makes then the difference between best or worst case. It must
be noticed that most of the best calibration results can be attained with 2 and 3 data types. This
reflects the tradeoff between using different data types for calibration vs. the spatial coverage
of each single data type. For our case with 100 observations, a set with two or three data types,
might allow for variety in information for calibration while maintaining some representative
spatial coverage of the domain.

Every data type is used 16 times in different combinations. The calibrations using combina-
tions of data sets with u,, show the best fits, see Figure[6] In contrast, the worst fits are obtained
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Figure 5: Sorted average error sum of calibration results by number of data types used

when EPP is considered.

5.3 Validation

The model was validated for each of the resulting optimal parameter values. For this, 90
observations were taken on the 5 days period in which the water table decreased at a linear rate
of 4 m per day.

The average error sums of the validations were lower than those obtained during calibration.
However, the average error sums of both graphs are not comparable in magnitude, since the
validation values were measured at different points, at different times, with fewer measurements
and what is more important with other boundary conditions (under rapid falling water table).
What can be compared are the tendencies to analyze if there are correlations between them.

The maximum prediction average error sum was around 1 %, see Figure [7]] Most of the
validation results fall within the range 0.3 and 0.7 % average error sum.

When the average error sum of the prognosis is sorted also by number of data types, see
Figure 8] we see a similar trend as with the calibration results. The best and worst fits are
obtained with 2 or 3 types of data.

Which parameters are responsible for the best and worst cases is appreciable in Figure [J]
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where the results are sorted by type of observation used for calibration. Surprisingly the worst
prognosis were made by considering deformation or strain observations during calibration. In
contrast, a guarantee for good prognosis seemed to be attained by calibrating with EPP infor-
mation. This is the opposite as deducted from Figure [6] in which calibrating with deformation
while excluding EPP information is recommended to obtain best calibration results.

By plotting the sorted calibration results against the actual errors of the prognosis (left side
of Figure [TI0)), we observe that a decrease in calibration error does not improve the prognosis
accuracy. The prognosis error seems to be normal distributed around 0.4 % average error sum.
However, for the case of excellent calibration fits with average error sums lower than 0.3 % the
validation error becomes more variable, and the parameter set is susceptible of giving prognosis
with higher errors.

The right side of Figure[I0]shows the corresponding parameter error of the optimized param-
eter sets at the left side of the Figure. By very small calibration errors, the optimized parameter
values can be driven to values close to the limit of reasonable physical values, as it was here the

case for several combinations for £,,, which is the most sensitive parameter in this model.

5.4 Conclusion

The fit obtained by the automated Particle Swarm Optimization calibration was very good,
with an average error sum at all cases lower than 2 %. However, the error in prognosis does not
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correlate with the calibration effort, since when calibration error decreases, validation error does
not. Excellent calibration values, interestingly increased the variation in prognosis error. These
calibrations, with very small errors can drive the value of the optimized parameters to the limit
of reasonable physical values, as it is here the case. The error of the prognosis depends on the
parameter error. Unfortunately, the parameter error can not be determined since we normally
do not know the real value of the parameter.

Surprisingly, the model calibrated to all five different types did not provide the best results.
This could be explained by the reduction of the spatial coverage. Using 2 or 3 types of in-
formation, both, best and worst calibrations were obtained. Depending on which data sets are
considered, either the best or the worst results are obtained. The best calibrations usually were
obtained considering u, while the worst calibrations included a data set of EPP. The opposite
was the case for the prognosis. Good prognosis were attained with the data sets which con-
sidered EPP for calibration, while the worst prognosis were given by those considering wu, for
calibration. The information that contributes to the best prognoses, could not be determined in
advance. Information diversity for calibration and a good coverage of model domain is impor-
tant for a good prognosis. In order to obtain better prognosis it is preferable to accept higher
calibration errors and obtain optimized parameter values which are more likely to be expected
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Figure 10: Left: sorted average error sum of calibration results with corresponding validation error. Right: Corre-
sponding parameter errors

than excellent calibration fits with unreasonable parameter values. This could be implemented
in an automated optimization algorithm by using the expected value of the parameters as prior
information for calibration [14].
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