
CPlan
AnOpen Source Library for Computational Analysis and Synthesis

Reinhard Koenig1
1ETH Zurich
1http://www.ia.arch.ethz.ch/koenig/
1reinhard.koenig@arch.ethz.ch

Some caad packages offer additional support for the optimization of spatial
configurations, but the possibilities for applying optimization are usually limited
either by the complexity of the data model or by the constraints of the underlying
caad system. Since we missed a system that allows to experiment with
optimization techniques for the synthesis of spatial configurations, we developed
a collection of methods over the past years. This collection is now combined in
the presented open source library for computational planning synthesis, called
CPlan. The aim of the library is to provide an easy to use programming
framework with a flat learning curve for people with basic programming
knowledge. It offers an extensible structure that allows to add new customized
parts for various purposes. In this paper the existing functionality of the CPlan
library is described.

Keywords: Evolutionary algorithms, Open source, Planning synthesis, C-Sharp,
Spatial configurations

INTRODUCTION
To be independent from existing CAAD packages we
implemented basic geometry objects with a com-
putational geometry library as well as a geometry
viewer with corresponding mouse interaction (see
section "Geometry library, viewer and mouse inter-
action"). For evaluating spatial configurations we
provide a collection of computational analysis meth-
ods (see section "Computational analysis"). For the
automatic generation of spatial configurations there
are various methods described in section "Genera-
tivemethods". The synthesis methods of the CPlan li-
brary combines everything by using single- or multi-
criteria optimization methods (see section "Synthe-

sis methods"). Section "Visualization" describes our
approach for mapping a multi-dimensional solution
space to 2D by using Self-Organizing-Maps. All parts
of the CPlan library are open source and are designed
that they can be extended using the provided inter-
face classes.

GEOMETRY LIBRARY, VIEWER AND
MOUSE INTERACTION
Thebasic component is a viewer for 2Dand3D,which
includes the usual basic view controls like pan, zoom,
and rotate. In addition there is a set of geometry ob-
jects that canbe visualizedby the viewer in away that

Design Tools - Exploration - Volume 1 - eCAADe 33 | 245

the program code to add geometries is minimized
and as simple as possible. Basic mouse interaction
methods like pick, move, and rotate are already im-
plemented for eachgeometry object. There are inter-
faces for lines, surfaces, and bodies that allow a user
to add own geometrical objects that can be visual-
ized and used for mouse interaction in the same way
as the existing objects. On the project website there
are already samples for the introduction how to use
the viewer and the geometry classes with integrated
mouse interaction. It is basically a very rudimentary
cad system (see figure 1).

Figure 1
Two examples for
using the geometry
objects and the
viewer. Top: A
simple 2D
rectangle. Bottom:
Objects in 3D view.

COMPUTATIONAL ANALYSIS
Amore advanced part of the CPlan library covers var-
ious evaluation methods for spatial configurations.

So far there are graphmeasure to calculate centrality
measures for street networks as known from Space
Syntax (Hillier, 2007; Turner, 2001): Integration (cen-
trality) andChoice (in-betweenness centrality), which
canbe calculated for custom radii (figure 2b). We also
offer the following Isovists field calculations (Batty,
2001; Benedikt, 1979; Turner, Doxa, O'Sullivan, &
Penn, 2001) for the analysis of the view field proper-
ties: Area, compactness, occlusivity, perimeter, min
radial,max radial (figure3bandc). Furthermore there
are visibility graph analysis (Turner et al., 2001) for the
evaluation of visual centralities, and solar analysis to
calculate the shadowing or the solar exposure during
a defined period of time using HDRI maps [3] (figure
3d). All evaluation methods are prepared to be run
on a distributed system (LUCI) that is developed for
parallel evaluation of larger sets of spatial configura-
tions. This is necessary for theusageof the evaluation
methods for objective functions in the context of op-
timization. The LUCI middleware itself is not part of
the CPlan library but a separate project [4].

GENERATIVEMETHODS
There are generators for street networks, parceling,
building layouts, and building floorplans. Figure 2a
shows a street network generated with random pa-
rameters using the algorithm from Koenig, Treyer,
and Schmitt (2013). Figure 2b illustrates the central-
ity analysis (choice) of thenetwork. Theblocks, which
are automatically generated for the street network
(figure 2a) can be used for the parceling algorithm
from Knecht and Koenig (2012). Based on the block
or parcel structure we can generate layouts for build-
ing volumes (figure 3a). Figure 3b and c show Isovist
analysis and figure 3c a solar analysis for the gener-
ated building layout.

SYNTHESIS METHODS
The classes for evolutionary multi-criteria optimiza-
tion (EMO) aremost important ones that enableplan-
ning synthesis. They are also the most sophisticated
part of the CPlan library. We have not implemented
new EMOalgorithms, but used a set of well tested ex-

246 | eCAADe 33 - Design Tools - Exploration - Volume 1

isting ones. As blueprint for the classes for popula-
tions, chromosomes, and fitness functions we build
on the AForge.Net framework [2]. The classes from
this framework are adapted for multi-criteria opti-
mization. As multi-criteria selection mechanism we
implemented awrapper to thePISA selectors [5]. This
basic setup is applicable for any kind of optimization
problem.

Figure 2
a) Generated street
network with
blocks, b) Network
analysis showing
the centrality
measure choice.

Beside the evaluation algorithms we added cus-
tomized algorithms for the generation of street net-
works and building layouts. These generators are ei-
ther directly encapsulated in a chromosome (as for
thebuilding layouts) or theyuse the chromosomes as
instructions for a more complex embryogeny, which
is the mapping process from a genotype to a phe-
notype. Both algorithms may serve as examples for
the implementation of own customized generators
for spatial configurations. The provided interfaces for
chromosomes and fitness functions ensure that own
algorithms are compatible with the population and
the selectors, which can remain always the same.

The last two figure show exemplary applications
of the CPlan library for planning synthesis in two dif-
ferent urban environment. Existing street networks
and building geometries can be imported via dxf. At
the top figure only building layouts are synthesized.
The figure below shows a process where first the
street network is synthesized and second the build-
ing layout for the blocks is created.

VISUALIZATION
Another important aspect for dealing with EMO is
the possibility to visualize the solution set in a mean-
ingful way. Since there is usually not one best solu-
tion, but a set of pareto-optimal solutions, we need a
method to show themona2Dmap. Thereforeweuse
SOMs. They are able to reduce a multi-dimensional
space to a 2D space, on which the solutions are
shown in an understandable way for an urban plan-
ner or an architect. To produce SOM visualizations
we have coupled the CPlan library to the Databionic
ESUM tools (Ultsch & Moerchen, 2005).

WOWTOUSE IT
In following we introduce the usage of the CPlan li-
brary for design synthesis applications. In the frame-
work of this paper we can only explain the basic con-
cepts. We are continuously working to extend the
documentation of the CPlan library and examples for
its usage on the project website [1].

Themain part for implementing a new optimiza-

Design Tools - Exploration - Volume 1 - eCAADe 33 | 247

Figure 3
a) Generated
building layout, b)
Isovist analysis
showing the area
property, c) Isovist
analysis showing
the min radial
property, d) Solar
analysis.

tion problem is to create a custom chromosome,
which contains all necessary information for a spa-
tial configuration (e.g. for a street network, a build-
ing volume layout, or a floorplan). A spatial config-
uration is composed out of spatial entities that are
stored as gens inside a chromosome. Gens usually
represent the smallest spatial entities like street seg-
ments, parcels, buildings, or rooms. Gens are manip-
ulated by mutation, crossover, and adaptation oper-
ators on the chromosome level. All chromosomes are
stored into a population class, from where all opera-
tors are called per iteration (also called generation or
time step).

The quality of a chromosome, respectively of a
variation of a spatial configuration is evaluated by
a corresponding fitness function. This function can
compute one (or formulti-criteria optimization prob-
lems many) objective values, which shall be mini-
mizedormaximizedduring theoptimizationprocess.
The computational analysis methods of the CPlan li-

brary are made for being used with fitness functions.
The structure of the optimization classes can be

summarized as follows: A set of chromosomes which
represents design variants are stored as a list in apop-
ulation. The chromosomes itself consist of a list of
gens. Each gen stores the information (e.g. param-
eters) of a spatial entity (e.g. a building). In the fol-
lowing we give some code examples.

To create a new chromosome we inherit from
one of the base chromosomes provided by the CPlan
library:

public class ChromosomeBuildingLayout
↪→ : ChromosomeBase

In the constructor of the custom chromosome usu-
ally the restrictions for a spatial configuration are de-
fined:

myBuildingLayout = new
↪→ ChromosomeBuildingLayout (
↪→ borderPolygon , MinNrBuildings ,

248 | eCAADe 33 - Design Tools - Exploration - Volume 1

↪→ MaxNrBuildings , Density ,
↪→ MinBuildingSideRatio);

A custom fitness function need to inherit from the
corresponding interface:

public class
↪→ FitnessFunctionBuldingLayout :
↪→ IFitnessFunction

We create an instance of our fitness function:

FitnessFunctionBuldingLayout
↪→ myFitnessFunction = new
↪→ FitnessFunctionBuldingLayout();

And send the chromosome and the fitness function
to the constructor of our population:

myPopulation = new
↪→ BuildingLayoutPopulation(
↪→ _populationSize , alpha, lambda, mu
↪→ , curChromosome , fitnessFunction);

The population class is always the same for all pos-
sible chromosomes. A generation of iteration of the
population is executed by:

myPopulation.RunEpoch();

Whereas the RunEpochmethod runs all operators on
the chromosomes:

public RunEpoch()
{

Crossover();
Mutate();
Adapt();

}

Like the other operators, the Adapt() method can
be implemented individually for customized chro-
mosome class. We use it to ensure that a variation
is valid, e.g. by a collision detection algorithm, which
avoids overlapping of buildings moved randomly by
the mutation operator. This makes the optimization
more efficient, since it do not need to test all impos-
sible designs.

Figure 4
Software prototype
showing the main
areas of the
synthesis systems
user interface: a) a
3D view combines
one solution out of
each archive,
design solutions of
the archives for b)
buildings layouts
and c) street
networks, and d)
fields for the user
input of size of
population, number
of generations, etc.

Design Tools - Exploration - Volume 1 - eCAADe 33 | 249

Figure 4b shows a population of building layouts af-
ter a certain number of iterations. Whereas, the pre-
cise description in the context of a multi-criteria op-
timization is, that the set of solutions in figure 4b
shows the archive of all best so far found layouts.
Figure 3b, c, and d visualize results of possible fit-
ness functions. Theoretically each of the color val-
ues in the figures can be used as objective value. This
means that we can for example define a fitness func-
tion, which shall maximize the area value in the mid-
dle of the area of the building layouts in figure 3. As
shown by Schneider and Koenig (2012), the results
would be, that the buildings are placed at the border
of the area after some iterations.

CONCLUSION
The CPlan open source library is an easy to use and
well extensible programming framework for compu-
tational analysis and planning synthesis. It is pub-
lished under the GNU Lesser General Public License
and available via the project website [1]. The library
is written primarily in C-Sharp, while special parts are
implemented in managed C++.

There is an active development of the library es-
pecially for various application scenarios. The docu-
mentation is primarily done by xlm documentation
comments directly in the source code. Samples on
the project website help for the first steps in pro-
gramming an own application. We are looking for ac-
tive developers who support the project or use the
framework for aapplication scenarios.

ACKNOWLEDGEMENTS
The authowwant to thank the following contributors
of the CPlan library: Sven Schneider, Christian Tonn,
Martin Bielik, Artem Chirkin, Christine Meixner, Dr.
Bernhard Klein, Lukas Treyer, Zeng Wei, Pavol Bielik,
Matthias Standfest. The complete CPlan project with
all its libraries can be downloaded at www.cplan-
group.net.

REFERENCES
Batty, M 2001, 'Exploring Isovist Fields: Space and Shape

in Architectural and Urban Morphology', Environ-

ment and Planning B Planning and Design, 28(1), pp.
123-150

Benedikt, ML 1979, 'To take hold of space: isovists and
isovist fields', Environment and Planning B, 6(1), pp.
47 - 65

Hillier, B 2007, Space is themachine: A configurational the-
ory of architecture, Space Syntax

Knecht, K and Koenig, R 2012, 'Automatische Grund-
stuecksumlegung mithilfe von Unterteilungsalgo-
rithmen und typenbasierte Generierung von Stadt-
strukturen', Arbeitspapiere Informatik in der Architek-
tur, 15(15), pp. 1-21

Koenig, R and Knecht, K 2014, 'Comparing two evolu-
tionary algorithmbasedmethods for layout genera-
tion: Dense packing versus subdivision', Artificial In-
telligence for Engineering Design, Analysis andManu-
facturing, 28(03), pp. 285-299

Koenig, R, Treyer, L and Schmitt, G 2013 'Graphical
smalltalk with my optimization system for urban
planning tasks', Proceedings of the 31st eCAADe Con-
ference – Volume 2, Delft, Netherlands, pp. 195-203

Schneider, S, Fischer, JR and Koenig, R 2011, 'Rethinking
Automated Layout Design: Developing a Creative
Evolutionary Design Method for the Layout Prob-
lems in Architecture and Urban Design.', in Gero,
JS (eds) 2011, Design Computing and Cognition ’10,
Springer Netherlands, Stuttgart, pp. 367-386

Schneider, S and Koenig, R 2012 'Exploring the Gen-
erative Potential of Isovist Fields: The Evolutionary
Generation of Urban Layouts based on Isovist Field
Properties', 30th International Conference on Educa-
tion and research in Computer Aided Architectural De-
sign in Europe, Prague, pp. 355-363

Turner, A 2001 'Angular Analysis', 3rd International Space
Syntax Symposium, Atlanta

Turner, A, Doxa, M, O'Sullivan, D and Penn, A 2001,
'From isovists to visibility graphs: amethodology for
the analysis of architectural space', Environment and
Planning B: Planning and Design, 28(1), pp. 103-121

Ultsch, A and Moerchen, F 2005, 'ESOM-Maps: tools
for clustering, visualization, and classification with
Emergent SOM', Dept. of Mathematics and Computer
Science, University of Marburg, pp. 1-7

[1] http://cplan-group.net
[2] http://www.aforgenet.com/framework
[3] http://freac-x.de/freac/drupal/?q=download/hdri

_sky_generator
[4] https://bitbucket.org/treyerl/lucy
[5] http://www.tik.ee.ethz.ch/sop/pisa/

250 | eCAADe 33 - Design Tools - Exploration - Volume 1

