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The Theory of Difference Potentials in the Three-Dimensional Case 
 
                                          Angela Hommel 
 
In the following a discrete method to solve elliptic boundary value problems will be 
presented. In analogy to the classical potential theory, the main idea consists in 
solving an equation on the boundary, where the equivalence to the original problem is 
preserved. In the classical case this boundary equation is an integral equation, which 
can not immediately be solved. In general a quadrature formula is used to calculate an 
approximate solution of the integral equation. In the discrete case, where all 
derivatives are approximated by finite differences, the boundary equation is a linear 
equation system. This equation system can be solved exactly. Using the discrete 
single-layer or double-layer potential the solution can be calculated at the mesh points 
of the interior or exterior domain. The described method of difference potentials is  
based on the discrete Laplace equation in the three-dimensional case. In order to give 
only a survey of this theory the main results are presented without any proof.  
 
1. Introduction 
 
Let 3R be the three-dimensional Euclidean space. An equidistant lattice of the mesh 
width 0>h  is defined by  ( ){ }.3,2,1,:,,R 321

3 =∈== iZmhmhmhmmh ih  In the 
following the domain 3R∈G  is bounded and simply connected with a piecewise 
smooth boundary Γ . To describe the method of difference potentials the set 

( ) ( ) ( ){ }3
321321 R,,,3,2,1,:,, hi GhmhmhmiZmmmmmM ∩∈=∈==  and the set 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1,0,0,1,0,0,0,1,0,0,1,0,0,0,1,0,0,1,0,0,0 −−−=K  are introduced. For all 
points Mm∈  the seven-point star { }KkkmNm ∈+= :  is considered. The union 

U
Mm

mN
∈

 is denoted by N . Furthermore at all points ( ) Nrrrr ∈= 321 ,,  the set  

{ }MkrKkKr ∉+∈= :  is defined. Similar to the bounded domain G  the discrete 
domain ( ) ( ){ }MmmmmhmhmhmGh ∈== 321321 ,,:,,  with the double-layer 
boundary { }0and: /≠∈= rh KNrrhγ  will be studied. In more detail the mesh 
points  rh , in which the set rK  contains the element ( )0,0,0=k , are mesh points of 
the outer boundary layer −

hγ . The mesh points  hrh γ∈ \ −
hγ  are points of the inner 

boundary layer +
hγ . There is to remark, that the outer edges of the domain do not play 

any role in this theory. 
 
In the following  the difference equation  
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is considered. 
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The basis to develop a discrete potential theory is the existence of the discrete 
fundamental solution ( )mhEh , which fulfils the equation 
 

( ) ( )
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⎨
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=∆−
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mh
mhh
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This discrete fundamental solution can be calculated by the help of the discrete 
Fourier transform. The obtained integral representation has the form 
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Additionally at each mesh point  3R hmh∈  the inequality  ( )
hmh

CmhEh +
≤

||
||  can be 

proved (see [4]). In relation with the continuous fundamental solution 
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an estimation in the form  ( ) ( ) 2||
||

mh
hCmhEmhEh ≤−    is possible   ( )0,0,0≠∀m .   

Furthermore for each mesh width  1−≤ eh  it can be proved that 
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where ( ){ }0,0,0:* ≠∈= mhGmhG hh  and lhL 2=  is the length of the smallest cube 

)( hGQ  with the center ( )0,0,0 , which covers the discrete domain hG . By the same 
way it follows    
 

( ) ( ) ( )( )
p

lh hCmhEmhE
hp

/31
0,0,0\R 3|||| +−≤−    for     .32/3 << p  

 
If the discrete fundamental solution is not only considered at the mesh points 

3R hmh∈ , then the convergence of the discrete fundamental solution can be 
investigated in the space pL , too. In more detail for 32 <≤ p  it can be proved  that  
      

( ) ( ) ( )
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2. Difference Potentials 
 
The numerical algorithm for solving elliptic boundary value problems is based on the 
following ideas. The discrete analogue of the integral representation for functions in 

2C  can be written in the form 
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If the boundary values on −

hγ  are denoted by  ( ) ( )rhurhu hR =  and the discrete normal 
derivatives are defined by ( ) ( ) ( )( )( ) ,

\

1 ∑
∈

− +−=
rKKk

hhA hkrurhuhrhu  then it can be 

proved that 
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with the discrete single-layer potential  ( )( ) ( ) ( ) 2hrhlhErhulhuP h

rh
AA

E
h

h

−= ∑
−∈γ

 and the 

discrete double-layer potential 
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There is ,0=χ  if  hGlh∈  and  ,1=χ  if  −∈ hlh γ . 
This difference potentials are the basis to find a special ansatz for the equation system 
on the boundary and to calculate the solution of the boundary value problem at the 
mesh points inside the domain. 
 
The potential ( )( )lhuP A

E
h  as well as the potential ( )( )lhuP R

D
h  are  discrete harmonic 

functions in the domain ,hG  that means functions with the properties 
( )( ) 0=∆− lhuP A

E
hh  or ( )( ) 0=∆− lhuP R

D
hh   hGlh∈∀ , respectively. 

 
To prove uniqueness theorems, the discrete analogues of the first and second Green’s 
formula will be considered. 
 
Because the potential theory can be used to solve exterior boundary value problems in 
a very simply way, the main ideas in the discrete case will be presented now. 
 
Let 3R∈aG  be a bounded exterior domain with a piecewise smooth boundary. In 
analogy to the symbols in section 1, the discrete domain a

hG  with the double-layer 
boundary  +− ∪= a

h
a
h

a
h γγγ  is considered. To describe this domain, the sets  
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{ },: KkkmNm ∈+=  U
aMm

m
a NN

∈

=  and the set { }0with: /≠∈= a
r

aa
h KNrrhγ  of 

the mesh points on the boundary are introduced. If the boundary values on  −a
hγ  are 

denoted by  ( ) ( )rhurhu hR =   and the discrete normal derivatives are defined by 
( ) ( ) ( )( )( ) ,

\

1 ∑
∈

− +−=
a
rKKk

hhA hkrurhuhrhu  then the discrete single-layer potential can be 

written in the form ( )( ) ( ) ( ) ,2. hrhlhErhulhuP h
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 while the discrete double- 

layer potential has the representation 
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with ,0=χ  if   a

hGlh∈   and   1=χ , if   .−∈ a
hlh γ  There is to remark, that in general  

−− ≠ h
a
h γγ  is valid. By the help of this potentials it can be proved that 
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In the three-dimensional case a function  ( )mhuh  is called discrete  harmonic in  an  
exterior  domain , if at each mesh point a

hGmh∈  the equation ( ) 0=∆− mhuhh  is 

fulfilled and additionally the inequality ( ) 1|||| −≤ mhCmhuh  as  ∞→|| mh  is valid 
with an arbitrary constant  ∞<C . The  discrete single- and double-layer potential are 
discrete harmonic functions in the exterior domain. 
 
3. Uniqueness Theorems 
 
In this section the four kinds of discrete boundary value problems are presented, 
which will be solved in the following. 
 
Interior Dirichlet Problem ( )iD :  The boundary value problem 
 

( )
( )rhu
mhu

h

hh∆−   
=
=

  ( ) −∈∀
∈∀

hh

h

rhrh
Gmh
γϕ

0
 

 
has a unique solution for arbitrary boundary values ( )rhhϕ .     
 
Interior Neumann Problem ( )iN : The solution of the problem  
 

( )
( ) ( )( )( ) ( ) −
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− ∈∀=+−
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is unique up to a constant, if the necessary condition ( ) 02 =∑
−∈

hrh
hrh

h
γ

ψ   is fulfilled.                              
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Exterior Dirichlet Problem ( )aD :  The discrete problem 
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can be uniquely solved for arbitrary boundary values ( )rha

hϕ . 
 
Exterior Neumann Problem ( )aN :  If the necessary condition ( ) 02 =∑

−∈

hrh
a
hrh

a
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γ
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fulfilled, then the solution of the boundary value problem                                                
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is unique up to a constant.  
 
4. The Equation Systems on the Boundary 
 
In the following the linear equation systems on the boundary are presented, which are 
equivalent to the discrete boundary value problems. These formulas are based on the 
discrete single-layer potential. 
 
4.1.  Interior Dirichlet Problem 
 
Theorem 1: If it is possible to solve the linear equation system 
 

( ) ( ) ( ) ,2 −

∈

∈∀−= ∑
−

hh
rh

hh lhhrhlhErhvlh
h

γϕ
γ

 

 
then the single-layer potential  ( )( ) ( ) ( ) 2hrhmhErhvmhvP

hrh
hhh

E
h −= ∑

−∈γ

  is a solution of 

the interior Dirichlet problem at each mesh point  ( )−∪∈ hhGmh γ . 
 
Theorem 2: The linear equation system in Theorem 1 has a unique solution for 
arbitrary boundary values  ( )lhhϕ  on  −

hγ . 
 
4.2.   Interior Neumann Problem 
 
Theorem 3: If the equation system  
 

( ) ( ) ( )( )( ) ( ) ,
\ h

−

∈ ∈

∈∀−+−−= ∑ ∑
−

hh
KKk rh
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can be solved and the necessary condition  is fulfilled, then ( )−∪∈∀ hhGmh γ  the  
potential  ( )( ) ( ) ( ) 2hrhmhErhvmhvP

hrh
hhh

E
h −= ∑

−∈γ

 is a solution of the problem ( )iN . 

    
Theorem 4: The condition ( ) 02 =∑

−∈

hrh
hrh

h
γ

ψ  is necessary and sufficient for the 

solvability of the equation system in theorem 3. 
 
4.3.   Exterior  Dirichlet Problem 
 
Theorem 5: If the solution of the system  ( ) ( ) ( ) 2hrhlhErhvlh h

rh
h

a
h

a
h

−= ∑
−∈γ

ϕ  exists 

−∈∀ a
hlh γ , then the single-layer potential  ( )( ) ( ) ( ) 2, hrhmhErhvmhvP

a
hrh

hhh
aE

h −= ∑
−∈γ

 is a 

solution of the exterior Dirichlet problem at each mesh point ( ).−∪∈ a
h

a
hGmh γ  

 
Theorem 6: For arbitrary chosen boundary values  ( )lha

hϕ  on  −a
hγ  the equation 

system in Theorem 5 has a unique solution. 
 
4.4.   Exterior Neumann Problem     
 
Theorem 7: If the necessary condition  is fulfilled and the equation system 
 

( ) ( ) ( )( )( ) ( ) ,
\

−

∈ ∈

∈∀−+−−= ∑ ∑
−

a
hh

KKk rh
hh
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can be solved, then the single-layer potential ( )( ) ( ) ( ) 2, hrhmhErhvmhvP

a
hrh

hhh
aE

h −= ∑
−∈γ

 

is a  solution of the exterior Neumann problem at each mesh point ( ).−∪∈ a
h

a
hGmh γ  

 
Theorem 8: For arbitrary discrete normal derivatives  ( )lha

hψ  on  −a
hγ   with  

( ) 02 =∑
−∈

hrh
a
hrh

a
h

γ

ψ    the linear equation system in Theorem 7 has a unique solution. 
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