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In the following a discrete method to solve elliptic boundary value problems will be
presented. In analogy to the classical potential theory, the main idea consists in
solving an equation on the boundary, where the equivalence to the original problem is
preserved. In the classical case this boundary equation is an integral equation, which
can not immediately be solved. In general a quadrature formula is used to calculate an
approximate solution of the integral equation. In the discrete case, where all
derivatives are approximated by finite differences, the boundary equation is a linear
equation system. This equation system can be solved exactly. Using the discrete
single-layer or double-layer potential the solution can be calculated at the mesh points
of the interior or exterior domain. The described method of difference potentials is
based on the discrete Laplace equation in the three-dimensional case. In order to give
only a survey of this theory the main results are presented without any proof.

1. Introduction

Let R’ be the three-dimensional Euclidean space. An equidistant lattice of the mesh
width 7 >0 is defined by R} ={mh=(mh,mhmh): m eZ ,i=123} In the

following the domain G eR® is bounded and simply connected with a piecewise
smooth boundary I'. To describe the method of difference potentials the set

M = {m = (ml,mz,m3): m,e”Z, i=1273, (mlh,mzh,m3h)e (G mRz) } and the set
K ={(0,0,0), (~1,0,0), (1,0,0), (0,~1,0), (0,1,0), (0,0,~1), (0,0,1)} are introduced. For all
points m e M the seven-point star N, ={m+k: ke K} is considered. The union

m

UNm is denoted by N. Furthermore at all points »=(r,r,,r,)e N the set

meM

K, ={keK: r+keM} is defined. Similar to the bounded domain G the discrete
domain G, = {(m,h,m,h,m,h): m=(m,,m,,m;)e M} with the double-layer
boundary y,={rh: reN and K, #0} will be studied. In more detail the mesh
points rh, in which the set K, contains the element k = (0,0,0), are mesh points of
the outer boundary layer y,. The mesh points rhey,\y, are points of the inner
boundary layer y, . There is to remark, that the outer edges of the domain do not play
any role in this theory.

In the following the difference equation

—Au, (mh)= Zakuh(mh—kh):fh(mh) Vmhe G,
keK
with

a, =

—1/n*  for keK, k=(0,0,0)
6/h* for k=(0,0,0)

1s considered.



The basis to develop a discrete potential theory is the existence of the discrete
fundamental solution E, (mh), which fulfils the equation

/K if mh=(0,0,0)
0 if mh=(0,0,0)

—AhEh(mh)z{

This discrete fundamental solution can be calculated by the help of the discrete
Fourier transform. The obtained integral representation has the form

1 —imh&
E, (Mh) =

ey ith
Cr)y & s W

dzzhiz[sinzhjﬂin §2+sm fj andQ,,:{§GR3:—%<§,~<%J:L2,3}.

can be

Additionally at each mesh point mh e R’ the inequality |E, (mh)| < | hﬁ P
mh|+

proved (see [4]). In relation with the continuous fundamental solution

1 e 1
E = d =
) (27) Lw “ T anla]

an estimation in the form | E,(mh)— E(mh)| <

is possible  Vm #(0,0,0).

h|’
Furthermore for each mesh width 4 <e™ it can be proved that
% C(L)h 1<p<3/2
| E,(mh)— E(mh) || Z|E mh)— mh)|phJ <SChlInh? p=3/2
mheGh Ch—1+3/p 3/2 < p < 3,

where G, ={mhe G, :mh#(0,0,0)} and L=2Ih is the length of the smallest cube

O(G,) with the center (0,0,0), which covers the discrete domain G,. By the same
way it follows

I E,(mh)= Em)l|, (03 000y CH>7 for  3/2<p<3.

If the discrete fundamental solution is not only considered at the mesh points
mheR;, then the convergence of the discrete fundamental solution can be

investigated in the space L,, too. In more detail for 2 < p <3 it can be proved that

E,(x)—> E(x) in Lp(G) for h—->0 and
E,(x)-E(x)—>0 in L (R?) for h—>0.



2. Difference Potentials

The numerical algorithm for solving elliptic boundary value problems is based on the
following ideas. The discrete analogue of the integral representation for functions in

C? can be written in the form

Z(ZEhlh r+k)h)a hJu, rh)— 3 E, (th - mh) Ay, (mh) i {uh(lh) leN

rhey, \ keK meM 0 l & N

If the boundary values on y, are denoted by u, (rh) =u,(rh) and the discrete normal
derivatives are defined by u,(rk)=h" Z w,(rh)—u,((r+k)r)), then it can be

keK\K,
proved that

Z[ZE (th—(r +k)h)a hJuh(rh)z(Bqu)(lh)—(PhDuR)(lh)

rhey, \ keK

with the discrete single-layer potential (PhE u ) ZM ) rh lh — rh)h2 and the

rhey,
discrete double-layer potential

(PhDuR)(lh)= y ¥ Eh(zh—rh)—Eh(zh—(r+k)h)uR(rh)h2_ZMR(lh)_

rhe;/,; 1€EI<\I<r h

Thereis y =0, if lheG, and y=1 if lhey,.
This difference potentials are the basis to find a special ansatz for the equation system

on the boundary and to calculate the solution of the boundary value problem at the
mesh points inside the domain.

The potential (Bf u, )(lh) as well as the potential (PhD U, )(lh) are discrete harmonic
functions in the domain G,, that means functions with the properties
-A, (B,E u, )(lh) =0 or — Ah(PhD U, )(lh) =0 ViheG,, respectively.

To prove uniqueness theorems, the discrete analogues of the first and second Green’s
formula will be considered.

Because the potential theory can be used to solve exterior boundary value problems in
a very simply way, the main ideas in the discrete case will be presented now.

Let G°eR’ be a bounded exterior domain with a piecewise smooth boundary. In
analogy to the symbols in section 1, the discrete domain G, with the double-layer

boundary  y, =y, Uy,  is considered. To describe this domain, the sets
M= {m :(ml,mz,m3):ml. eZ,i=123 mhe (G“ F\R,f)}, K'= {k eK:r+k %M“},



N,={m+k:keK}, N°= UNm and the set 7Z:{rh:reN“ with Kf;t([)}of
meM “

the mesh points on the boundary are introduced. If the boundary values on y,” are
denoted by u,(rh)=u,(rh) and the discrete normal derivatives are defined by
u,(rh)=h" Z(uh (rh)—u,((r + k)h)), then the discrete single-layer potential can be

keK\K/

written in the form (PE “u A) Ih)= Zu (rh)E,(Ih—rh)R*, while the discrete double-

rheyy”
layer potential has the representation

(reum= Y, 3 BB ), e )

rhey” keK\K}

with y =0, if /he G, and y=1,if [hey, . There is to remark, that in general
v, #y, isvalid. By the help of this potentials it can be proved that

(BEu, )in)— (PP u, ih)~ S E,(th — mh)A, u, (mh)R {“hgh) llejvv
& .

meM*“

In the three-dimensional case a function u,(mh) is called discrete harmonic in an
exterior domain , if at each mesh point mh e G, the equation —A, uh(mh):O is

fulfilled and additionally the inequality |u,(mh)|< C|mh|" as |mh|—> o is valid

with an arbitrary constant C <oo. The discrete single- and double-layer potential are
discrete harmonic functions in the exterior domain.

3. Uniqueness Theorems

In this section the four kinds of discrete boundary value problems are presented,
which will be solved in the following.

Interior Dirichlet Problem (D,): The boundary value problem

— A, u,(mh) 0 Vmhe G,
u,(rh) = @,(rh)  Vrhey,

has a unique solution for arbitrary boundary values ¢, (rh) .
Interior Neumann Problem (N, ): The solution of the problem

—Ahuh(mh) =0 Vmh e G,
w2 0h)=w(r+0)R) = k) Vrhey,

keK\K,

is unique up to a constant, if the necessary condition th (rh)h2 =0 is fulfilled.

rhey,



Exterior Dirichlet Problem (D, ): The discrete problem

—A,u,(mh) = 0 Vmh e G,
\u, (mh))| Clmh|" for|mh|—>
w,(rh) = @i(rh)  Vrhey,

IN

can be uniquely solved for arbitrary boundary values ¢, (rh) .

Exterior Neumann Problem (N, ): If the necessary condition Zw,f (rh)h* =0 s

rhey,”

fulfilled, then the solution of the boundary value problem

—Au,(mh) = 0 Vmh e G/
\u,(mh)| < C|mh[" for|mh|— o
w2 (rh)=u,((r+k)R) = wilh) ey
keK\K}

1S unique up to a constant.

4. The Equation Systems on the Boundary

In the following the linear equation systems on the boundary are presented, which are
equivalent to the discrete boundary value problems. These formulas are based on the
discrete single-layer potential.

4.1. Interior Dirichlet Problem

Theorem 1: If it is possible to solve the linear equation system

o,(ih)= > v,(rh)E,(Ih—rh)k*  Vihey, ,

rhey,

then the single-layer potential (Bf v, )(mh) = > v,(rh)E,(mh—rh)h* is a solution of

rhey;,

the interior Dirichlet problem at each mesh point mh e (Gh ) 7/;).

Theorem 2: The linear equation system in Theorem 1 has a unique solution for
arbitrary boundary values ¢, (lh) on y, .

4.2. Interior Neumann Problem

Theorem 3: If the equation system

v, (ih)= > S (E,(th-rh)-E,((+k)h—rh))v,(rh)h  Vihey,,

kEK\K[ rhe;/};



can be solved and the necessary condition is fulfilled, then Vmh e(Gh uyh’) the
potential (PE vh) mh) = ZVh (rh)E,(mh—rh)h* is a solution of the problem (N, ).

rhey,

Theorem 4: The condition Z“l//h(rh)h2 =0 1is necessary and sufficient for the
rhey,
solvability of the equation system in theorem 3.

4.3. Exterior Dirichlet Problem

Theorem 5: If the solution of the system ¢ (lh)= th(rh)Eh(lh—rh)h2 exists

rhe;/,’

Vih ey, then the single-layer potential (P,f’” ) ZVh )E, (mh—rh)h* is a

rheyy”

solution of the exterior Dirichlet problem at each mesh point mh € (G,f v 7/,‘,“).

Theorem 6: For arbitrary chosen boundary values (p,f(lh) on y,” the equation
system in Theorem 5 has a unique solution.

4.4. Exterior Neumann Problem

Theorem 7: If the necessary condition is fulfilled and the equation system

with)= > S(E,(th—rh)-E,((+k)h—rh))v,(ch)h  Vihey,

keK\K[ rheyj~

can be solved, then the single-layer potentlal( vh) th rh mh rh)h

rhey;”

is a solution of the exterior Neumann problem at each mesh point mh (G,f vy, )

Theorem 8: For arbitrary discrete normal derivatives w{(/h) on y/~ with

Zy/,f (rh)h2 =0 the linear equation system in Theorem 7 has a unique solution.
rhey;”
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