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Introduction 
 

The steel structure design codes [1,2,3] require to check up the member strength when 
evaluating plastic deformations. The model of perfectly plastic material is accepted. The 
strength criteria for simple cross-sections (I section, etc.) of steel members are given in design 
codes. However, evaluating complicated cross sections (open thin walled, etc.) that are used 
in contemporary steel constructions, it is necessary to extend the given strength criterion 
range in design codes or to use modern methods of checking carrying capacity of the cross-
sections. One of the ways for checking the carrying capacity of cross-sections is the use of 
methods that are applied for defining strain-deformed state of elastic perfectly plastic systems. 

In this article, two formulations for checking cross-section carrying capacity are 
presented. First, the carrying capacity of cross-section is verified according to extremum 
principle of plastic fail under monotonically loading [4]. Second, the strain-deformed state of 
cross-section is defined and in the same time carrying capacity of cross-section is checked 
according to extremum energy principals of elastic potential of residual stresses and 
complementary work of residual displacements [4]. Principal differences between the two 
approaches is that according to the first one, there can be obtained parameter of carrying 
capacity for given distribution of internal forces and the actual distribution of stresses in limit 
state of cross-section. According to the second approach, there can be verified the carrying 
capacity of cross-section for given internal forces as well as stress and strain distribution in 
cross-section. It is very important to define the deformed state, because in some design codes, 
for example [2], the strength criteria are obtained when limiting the residual deformations in 
cross-section boundary fiber. 

The methods offered here could be used not only for cross-sections of steel members, 
but also for the analysis of cross-sections combined from different materials. 
 
 

Formulating the problem 
 

The carrying capacity of cross-section is obtained according to the principle of simple 
plastic fail and the mathematical expression of this principal for discrete system, using linear 
yield conditions, as follows: 

 
Static formulation   Kinematics formulation 
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The actual strain-deformed state is defined according to extremum energy principals of 

elastic potential of residual stresses and complementary work of residual displacements. The 
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mathematical expression of these principals for discrete system, using linear yield conditions, 
is as follows: 
 

Static formulation  Kinematics formulation 
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 In mathematical models (1) and (2) 0er S,S,SS,  - vectors respectively of actual, 
residual, elastic and limit generalized stresses, [ ]A - coefficient matrix of equilibrium 
equations, [ ]Φ - coefficient matrix of linear yield conditions, [ ]D - flexibility matrix of 
discrete system, λ - the vector of plastic multiplying, ru - vector of residual displacements, u&  
- vector of displacement velocities, ν  - parameter of limit load and F  - given vector of cross-
section forces. 

The mathematical model (1) is linear convex mathematical programming problem and 
the solution of this problem is the parameter of limit load ν  and the vector of actual stresses 
S . The strength of cross-section is satisfied, if 1≥ν . The cross-section limit load vector is 
Fν .  

Solving the quadratic programming problem (2), vectors rr uλS ,,  are obtained. The 
strength of cross-section is sufficient if the mathematical programming problem (2) has the 
solution. The actual strain-deformed state of cross-section is obtained in the following way: 
 

,q+qq,u+uu,SSS rerere ==+=                     (3) 
here rere q,qq,,u,uu,  are the vectors respectively of actual, elastic and residual generalized 
stresses, displacements and deformations. 
 The following residual deformations are obtained: 
 

[ ] [ ]λΦSDq rr += .              (4) 
 The elastic solution is calculated according to well-known formulas: 
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Discrete relationships 
 
 In this article the relationships of finite elements for static formulation of the problem 
(1,2) are formed so, that kinematics formulation relationships could be obtained in a formal 
way using the theory of duality [5]. 
 The cross-section of steel member using finite element method is divided into free 
form plane elements. The constant distribution of stresses along the finite element is accepted. 
The constant distribution of stresses does not require the continuity between the elements and 
enables to evaluate possible breaks of stresses, which can occur using the model of elastic 
perfectly plastic material. 
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 The cross-section is analysed in x,y,z coordinate system. All relationships for finite 
elements given below are for the actual stress-strained state. These relationships have the 
same form for elastic and residual stress-strained states. 
 The approximating stress matrix for element k, when distribution of stresses along the 
element is constant, has the following expression:  
 

( )[ ] [ ]EN =zyk , ,              (6) 
 
here [ ]E  - unit matrix. 
 The forces of element is defined by a vector: 
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here 
T

kzkykxk QQN ,,=S -vector of finite element forces, kxN  and kzky QQ ,  -the axial and shear 

forces added at the gravity center of element, 
T

xzxyxx ττσ ,,=σ - vector of stresses, kA - area 
of finite element. 
 The flexibility matrix of the element, evaluating transition from stresses to forces of 
element is obtained in the following way: 
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here the flexibility matrix has this expression: 
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where E - module of elasticity, G - module of shear, ψ - coefficient of cross section form. 
 Having integrated expression (8), we obtain the flexibility matrix of element: 
 

[ ] [ ] kk A/DD = .             (10) 
 
The equilibrium equations express equilibrium between the stresses of elements and 

forces of cross-section. During the stresses these equations are written the following way: 
 

[ ]∫ =
A
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here 

T
zyxzyx QQMMMN ,,,,,=F - vector of cross-section forces, the elements of this 

vector are axial force, bending moments, moment of rotation and shear forces. Matrix 
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 Having used the expression (11), the equilibrium equations for discrete cross-section 
are described as follows: 
 

[ ] FSA kk =∑
k

,            (13) 

 
here matrix [ ]kA  is obtained from matrix [ ]),,( wyxA , using the coordinates of element 
gravity center and warping area center of element k. It is necessary to note that the 
relationship between shear stresses and shear forces of cross-section depending on member 
type could be different.  

The yield conditions should be formed for every node surrounding of finite element using 
stress approximating functions. The type of yield conditions, when the stress distribution is 
accepted as constant, is written: 
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here 'σ - residual stresses, arising in the member section during manufactory process. 
Performing analysis according to steel structures design codes, yield strain must be changed 
to yield strength, for example Myf γσ /0 =  [1], σ0 = Ry  [2]. 
 Having integrated the expression (14), the yield conditions for element k  are 
described as follows: 
 

[ ] k0SSΦ kk ≤ ,             (15) 
 
here [ ] [ ]ΦΦk = , [ ] )'(0 σΦσS 0 −= kk A . 
 The formulation of finite elements with equal stress distribution described here allows 
us to get the kinematics formulation of the problem using theory of duality. Then the elements 
of deformation vector are axial and shear deformations in the gravity center of element and 
the elements of displacement vector are the axial deformation, curvatures and shear 
deformations in the center of cross-section. 
 
 

Numerical example 
 
The I cross-section with extended upper flange (Fig. 1) is taken to demonstrate the 

given method. The cross-section forces vector is F = N M Mx y z
T

, , . Yield strength for bottom 

flange is MPa 2500 =σ and for other elements of cross-section it is MPa 2100 =σ . Module 
of elasticity is E = 206000 MPa.  



C

Y

Z

10

10

300

20
20

40
0

10
0

26
7.

5
17

2.
5

10

 The cross-section is covered with rectangular shape element mesh: upper flange – 
4x1, 2x12, 4x1; web – 16x2; bottom flange – 2x8. The convergence of solution depending on 
density of element mesh is not presented in this paper.  

Determination of cross-section strength. 
The cross-section force vector magnitudes are 

=
T

zyx MMN ,,=F  
TkNmkNmkN )(0.407),(1.70),(0.1070= . While 

solving the problem of checking the strength of 
cross-section it is necessary to apply the static 
formulation of mathematical models (1).  
 The solution of linear programming 
problem is limit load parameter 052.1=ν  and 
forces in finite elements for limit state of cross-
section. It should be noted that for given force 
vector element forces is kxk N≡S . The value of 
limit load parameter indicates that the strength 
of cross-section is sufficient for given 

static form
according 
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magnitudes of force vector. The limit 
magnitudes of cross-section force vector can be 
obtained multiplying it by parameter ν . 
 Composition of interaction curves. The 

ulation of mathematical models (1) can be used to obtain the interaction curves 
to standard curve fitting procedure. The points of the interaction curves are 
anging the ratio between the forces of cross-section and solving problem (1). The 

 curves for axial force and bending about strong and weak axis are shown in Fig. 2. 

lysis of cross-section strength. The actual stresses, deformations and 
nts are obtained by solving dual pair of quadratic programming problems (2) and 
 (3). Fig.3 shows the relationships between the moment about strong axis and 
or different level of axial force. Depending on magnitudes of bending moment and 
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axial force the cross-section remains purely elastic (vector of residual forces 0Sr = , vector of 
residual deformations 0qr =  and residual curvature 0=rφ ) or become elastic-plastic. 
 Here, it should be noticed that numerical values of deformations are important to 
know, because analytical strength criteria in some codes are obtained by limiting residual 
deformations in boundary fiber of cross-section. For example in code [3], strength criteria are 
obtained when limit value of residual deformation is 3)/( == yREεε . 

 
 
Conclusions 

 
 The proposed methods allow using numerical procedures to check the strength and to 
analyses strain-deformed state of cross-sections when the behaviour of material is perfectly 
elastoplastic. This approach is highly efficient for complicated form of cross-sections and 
could be successfully used CAD systems. One of attractiveness of proposed approach that no 
iteration 
s are needed to compare with stepwise methods.  

The element with constant distribution of strains allows achieving sufficient numerical 
results for practicable design needs. 
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