The theory of random matrices, or random matrix theory, RMT in what
follows, has been developed at the beginning of the fifties to describe the sta-
tistical properties of energy levels of complex quantum systems, [1], [2], [3]. In
the early eighties it has enjoyed renewed interest since it has been recognized
as a very useful tool in the study of numerous physical systems. Specifically,
it is very useful in the analysis of chaotic quantum systems. In fact, in the
last years many papers appeared about the problem of quantum chaos which
implies the quantization of systems whose underlying classical dynamics is
irregular (i.e. chaotic). The simplest models considered in this field are billi-
ards of various shapes. From the the classical point of view, a point particle
in a 2-dimensional billiard displays regular or irregular motion depending on
the shape of the billiard; for instance motion in a rectangular or circular billi-
ard is regular thanks to the symmetries of the boundary. On the other hand,
billiards of arbitrary shapes imply chaotic motion, i.e. exponential diver-
gence of initially nearby trajectories. In order to study quantum billiards we
have to consider the Schroedinger equation in various 2-dimensional domains.
The eigenvalues of the Schroedinger equation represent the allowed energy
levels of our quantum particle in the billiard under consideration, while the
eigenfunction norms represent the probability density of finding the particle
in a certain position. The question of quantum chaos is whether the charac-
ter of the classical motion (regular or chaotic) can influence some properties



of the corresponding quantum system. The connection with random matrix
theory came in 1984, in the wake of many numerical experiments suggesting
that the eigenvalues of strongly chaotic systems possess the same statistical
properties of the eigenvalues of a certain matrix ensemble (see below). Thus,
the random matrix theory applies not only in the study of complex quantum
systems but also in investigating simple quantum systems whose underlying
classical dynamics is chaotic. Actually, the latter are the most common in
nature since integrability, as opposite to chaotic behavior, represents the ex-
ception rather than the rule. This is the reason for which random matrices
are now considered to be a universal tool in quantum mechanics. The funda-
mental assumption lies in the fact that physical systems exhibiting the same
properties in terms of symmetries, although differing in the details and in
global properties, do possess the same statistical local properties.

Technically speaking, we consider an N x N matrix H together with a pro-
bability distribution function (pdf) assigned on its elements. If we assume
that H is invariant with respect to a certain symmetry operation O, then
H' = OHO '. Now the pdf p (H) of the entries of H is determined from the
condition p(H) = p(H'), together with the requirement that the probabili-
ties of the entries be independent. This statistical independence choice leads
to the so called Gaussian systems, respectively called GOFE, for § =1, GUE,
for 3 =2, GSE, for 3 = 4, see (1) below. The latter are characterized by the
following eigenvalue joint pdf
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Should the simplifying assumption of statistical independence fail, the joint
pdf is given by assigning the function V' (z) in the following expression

P(zy,..,zn)=Cnexp — V (x;) |$i_$j|ﬁ.
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In the development of the theory an extremely important quantity is the
correlation function of n points,

R, (z1,....,2,) =  Png(@1,..,08) dTpyis..doy. (2)



The simplest case is given by # = 2. In such case, all the correlation functions
can be written in terms of a single function

Rn (331, sy xn) = det [I{N ('I:ia 'I:_;i)]

i,j=1,....n
with
1 N-1
K (zi,25) = exp —3 (V(z) +V (y)) Py (z) Pa(y),
n=0

where P, (z) represents the orthogonal polynomial of degree n with respect
to the weight exp (—V (z)).

The universality assumption of RMT says that in the limit N — oo the
correlation functions and their related statistical quantities are independent
of V (z) and tend to “universal” functions. This statement holds provided
that by a change of variable the average density py (z) = Ky (z,z) is nor-
malized to 1. A simple example of such a universal function is given by the
sinc function
sin [7 (z — y)]

™ (z —y)
for every V' (z). This result is analytically proven for certain potential classes,
by means of the theory of orthogonal polynomials, and has been numerically
verified in numerous other instances.

The cases § = 1 and § = 4 are the most complicated ones. One of the
techniques used for their study is based on the use of quaternionic self-dual
matrices.

Let us consider the case of the Gaussian unitary ensemble, GUE, for
which V (z) = —%, # = 1. A method has been developed [1] to write the
joint pdf as

K (z,y) = = sinc(x),
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and the n—point correlation functions as
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Here the matrix Qn, = [ow, (), 2k)];,_, v is a self-dual quaternionic ma-
trix defined by
Sy +a DSy Sy (zy)+al(x) DSy (z,y)
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In the above expressions,
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Moreover the operators appearing in the other entries are
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u(z) = @ (t)dt, JSn (z,y) = ISy (z,y) —e(z—y) +u(x) —u(y).
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Another interesting statistical quantity is the probability that n points fall
in a given randomly chosen interval of length s. The latter is connected to
the probability that no eigenvalue lies in the interval of length s, and this
probability is given by
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Here, p; and f; (z) represent the eigenpairs of the following integral equation

pf ()= exp(imays/2) £ (u) dy

or, taking real parts, fi5; and fs; represent the eigenvalues and eigenfunctions

of
1 TITYS )
pf (x) =2 , cos ; f(y)dy. (3)
The eigenvalue problem for integral equations has been recently conside-
red in some cases, see e.g. [4], [5], [6], [7].




The asymptotic properties of the integral equation (3) are known, but these
depend on the particular situation discussed above. For more general situa-
tions, corresponding to arbitrary potentials V' (z), there are two possibilities
of proceeding. One can attempt either to find analytically the asymptotics
corresponding of the choice for V (z); alternatively, if a numerical method is
available, the latter can be used to study many physical situations, for many
forms of V (z). The former direction has the problem of being dependent
on the particular choice for V' (z). The second direction instead is a more
versatile tool for the study of various situations. We would like to pursue the
latter, although at the present stage the construction of a general purpose
routine might be a difficult task to achieve. Some preliminary results do
however show that it is a feasible path of research.
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