
On the solution of spatial generalizations of 
Beltrami equations

Introduction

With the help of  functional analytical methods complex analysis is a powerful tool in treating non-linear first-
order partial differential equations in the plane. Some of the most important of these non-linear first-order partial
differential equations are the Beltrami equations. This is due to the fact that the theory of Beltrami systems is
related with many problems of geometry and analysis, like non-linear subsonic two-dimensional hydrodynamics,
problems of conformal and quasiconformal mappings of two-dimensional Riemannian manifolds, or complex
analytic dynamics. We illustrate this with a simple example. Let us consider the two-dimensional linear first-order
partial differential equations:
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This system of partial differential equations can be transformed into a generalized Cauchy-Riemann equation:
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where the coordinate transform has to satisfy the Beltrami equation
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Here  ( )q z depends on the coefficients aij and bij . In general the Beltrami equation
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is the complex form of the first-order  elliptic system
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where w u iv= + ,  z x iy= + ,  ad b− =2 1,  a > 0  and b > 0. Using the ansatz
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ξ ξ  is the complex Π -operator, defined as the derivative of the TΩ -

operator. Obviously, the theory of Beltrami equations is strongly connected with the Π -operator. This singular
integral operator is immediately recognized as two-dimesional Hilbert transform, known also under the name of
integral operator with Beurling kernel, acting as an isometry from ( )L C2  onto ( )L C2 . This means that the

starting point for investigating spatial Beltrami equations is the generalization of the complex Π -operator. But
before we deal with this problem we will make some necessary preliminaries.



Preliminaries

For all what follows we work in H , the skew-field of real quaternions. This means that if  z H∈  , then
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i i i i i3 1 1 3 2⋅ = − ⋅ = ,  { }z Rk ⊂ . Quaternion i0  is often called the real unit while all ik  are called imaginary

units. Reals z k  are called the real coordinates of a quaternion z . The natural operations of addition and
multiplication in H  turn it into a non-communtative, associative skew-field.

There is a main involution in H,  i.e. quaternionic conjugation, which plays an exceptionally important role. It is
defined in such a way that for the basis units

i i0 0= ,  i ik k= − , { }k ∈ 1 2 3, ,
and it is extended onto the whole H  as an R -linear mapping: if  z H∈  then
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In particular, it means that any { }z H∈ \ 0 has an inverse z −1:
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Also, for all what follows let Ω⊂ H  be a bounded domain with a sufficiently smooth boundary Γ Ω= ∂ .
Moreover, we will consider functions f  defined on Ω  with values in H.

Now, let { }ψ ψ ψ ψ ψ: , , ,= 0 1 2 3  be an orthonormalized (in the usual Euclidean sense) system of

quaternions. Sometimes we call ψ  a structural set or a structural 4-tupel. With our structural set ψ  we can
define the generalized Cauchy-Riemann operator by

ψ ψ
∂
∂

Df
f
x

k

kk
=

=
∑

0

3

and it’s conjugate operator by

ψ ψ ∂
∂

Df f
x

k

kk
=

=
∑

0

3

.

For this operator we have
ψ ψ ψ ψD D D D= = ∆,

where ∆  is the Laplacian. Of  some mayor importance are the functions which lie in the kernel of ψ D , or

with other words satisfy the equation ψ Df = 0 . These functions are called ψ -hyperholomorphic functions.
The Cauchy-Riemann operator has a right inverse of the form
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This operator acts continuously from ( )Wp
k Ω  into ( )Wp

k+1 Ω , { }1 0< < ∞ ∈ ∪p k N, (see [9]).
For more information about these topics and general quaternionic analysis we refer to [2].

Generalization of the complex Π -operator

As we stated above if we want to deal with spatial Beltrami equations then we have to generalize the complex Π -
operator to the quaternionic case. On the first view this should be an easy task. In the complex plane we have
defined the Π -operator as the derivative of the complex T -operator, so why we shall not go in the same way?
But here a problem arises. Mehlikhzon proved in the 40’s that a quaternionic derivative in the usual sense exist at
most for linear functions [7]. So we have the big problem how we generalize the derivative in a way, that

preserves most of it’s useful properties. One way is to use the ψ D -operator. Mitelman and Shapiro have shown
that this operator can be considered as the derivative-operator (hyperderivative called) in some sense [8].

Definition 1.  Let ψ and ϕ  be two structural sets. The operator ψ ϕ, Π , defined by
ψ ϕ ψ ϕ, Πf D Tf=

is called generalized Π -operator [11].

This operator was first investigated by  Sprößig [10] in 1979 in the case of { }ϕ ψ= = i i i i0 1 2 3, , , , the usual
basis of the real quaternions. For this special case we refer to [3]. Our definition using the structural sets ψ and
ϕ  was first introduced by Shapiro and Vasilevski [9].
In general the generalized Π -operator has the representation formula:

( )
( ) ( )

( ) ( )ψ ϕ ψ ϕ

π

ψ ϕ

ξ

ξ ξ

ξ
ξ π ψ ϕ, Π Ω

Ω

f z
z

z z

z
f d f z

k k

k k k

k
= −

−

−
+

− −

−
−=

=

∑
∫ ∑1

2

4

22
0

3

4 6

2

0

3

.

In the case of  ψ ϕk
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0  we have the representation formula:
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This important special case was intensively studied by Shapiro and Vasilevski [9]. Up to know it is the only case
where a relationship between the Π -operator and the Bergman-operator could be derived.

Obviously, we have the following continuous mapping property
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By the help of the theory of Calderon and Zygmund we can estimate the norm of the Π -operator in the form
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where c4  is a constant [3], [5].
In the next section we see how we can solve non-linear first-order systems of partial differential

equations using our spatial generalization of the complex Π -operator.

Case of non-linear first-order partial differential equations



Let w H: .Ω→  We will consider the non-linear first-order system of partial differential equations

( )ϕ ϕDw F z w Dw= , , . ( )1

Furthermore, let ( )w w z=  be a solution of ( )1 , then we can define ( )Φ: , , .= −w TF z w Dwϕ ϕ

Obviously, Φ  is ϕ -hyperholomorphic and we have the equation

( )w TF z w Dw= +Φ ϕ ϕ, , . ( )2
From this equation we obtain the result, that for each solution w  there exist a ϕ -hyperholomorphic

function Φ,  such that ( )2  is fulfilled. Also, it holds the other way around: If Φ  is (ϕ -hyperholomorphic)

arbitrarily choosen and ( )2  is solvable with this Φ , then w is a solution of ( )1 .

This means we have the possibility to transform boundary value problems for ( )1  to boundary value
problems of ϕ -hyperholomorphic functions. Now, let us introduce the operator

( )W TF z w Dw= +Φ ϕ ϕ, ,

in ( )W2
1 Ω . We remark that Φ  depends on w . Solutions of ( )2  are fixed-points of this operator. Using the
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where h Dw= ϕ ,  H DW= ϕ , and our solutions of ( )2  are also fixed-points of  the operator ( )W H, .

We remark that in the case of a boundary condition Bw g= , we get the boundary condition

( ) ( ) ( )B w h g B TF w h Bw B TF w hΦ , , , , ,= − ⋅ = − ⋅ϕ ϕ .

Now we deal with an important special case of these non-linear first-order system’s of partial differential
equations.

Generalization of Beltrami equations

As we have seen before complex Beltrami equations are a starting point for the application of the theory of
generalized analytic functions in the sense of Bers or Vekua. The same holds for the hypercomplex case [6].
Spatial generalizations of Beltrami equations are also useful for the theory of quasiconformal mappings.
Now, let q H:Ω→  be a measurable function, ( )w Wp∈ 1 Ω , 1 < < ∞p , ψ and ϕ  are structural sets.  Then
we call the equation

ψ ϕDw q Dw= ( )3
generalized Beltrami equation. In the same way as in the last section we make the ansatz

w Th= +Φ ψ

where Φ  is a ψ -hyperholomorphic function, and transform ( )3  into the integral equation:

( )h q D h= +ϕ ϕ ψΦ Π, .

Investigating the norm of the operator q ϕ ψ, Π  we have that in the case of
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this operator is contractive. That means we can get a solution of our integral equation using Banach’s fixed-point
theorem (the other conditions of Banach’s fixed-point theorem can easily be verifed). Applying our norm estimate
for the generalized Π -operator we get the sufficient condition
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