On the factorization of the Schrödinger operator and its applications for studying some first order systems of mathematical physics

Viktor G. Kravchenko*, Vladislav V. Kravchenko**

*Faculdade de Ciencias y Tecnologia
Universidade do Algarve, Campus de Gambelas

8000 Faro, PORTUGAL

e-mail: vkravch@ualg.pt

**Depto. de Telecomunicaciones

SEPI ESIME Zacatenco
Instituto Politécnico Nacional

Av. IPN S/N, Edif. 1

C.P. 07738, D.F., MEXICO

vkravchenko@ipn.mx

April 9, 2003

Let D denote the well known Moisil-Theodoresco operator acting on biquaternion valued functions f according to the rule Df = ${1 \atop k=1}^3 e_k e_k f$, where $e_k = {e \atop e x_k}$, e_k are standard quaternionic imaginary units (see, e.g., [3], [6]) and the function f of real variables x_1 , x_2 , x_3 has the form $f = {1 \atop k=0}^3 f_k e_k$, where $f_k \ 2 \ C$, $k = \overline{0;3}$ are continuously dixerentiable functions.

Consider the Schrödinger operator $i \Delta + v$ applied to a scalar function '. Let be a purely vectorial biquaternion valued function such that $D + (b)^2 = i v$. Then, as was shown in [1], [2], the following equality is valid

$$(i \Delta + v)' = (D + M^{\bullet})(D i M^{\bullet})';$$
 (1)

where M $^{\bullet}$ stands for the operator of multiplication by $^{\bullet}$ from the right-hand side: M $^{\bullet}$ f = f $^{\bullet}$ $^{\bullet}$.

The operator $D+M^{\mbox{\ \ em}}$ is closely related to the static Maxwell system, to the classical Dirac operator as well as to the so called Beltrami or force-free fields (see [4]). In [5] the factorization (1) was used in order to obtain integral representations for solutions of the equations $(D+M^{\mbox{\ \ em}})f=0$, $(D+^{\circ})f=0$ and $\cot f+^{\circ}f=0$, where $\mbox{\ \ em}=\mbox{\ \ em}_1(x_1)e_1$ and $\mbox{\ \ em}=\mbox{\ \ em}_1(x_1)$ is a scalar function. These three equations were reduced to a set of Schrödinger equations.

In the present work we study the case when be has the form

$$^{\bullet} = ^{\circ}_{1}(x_{1})e_{1} + ^{\circ}_{2}(x_{2})e_{2} + ^{\circ}_{3}(x_{3})e_{3}$$
: (2)

For example, in a particular case when $^{\{ \!\!\!\ p \ \!\!\!\}} = i$ $((i\,!\,+\tilde{A}(x_1))e_1+me_2)$ with ! and m being constants, the operator $D+M^{\{ \!\!\!\ p \ \!\!\!\}}$ represents the Dirac operator for a particle of mass m, frequency ! moving in an electric field with the potential \tilde{A} [4].

Moreover, let the permittivity " of a medium be of the form " $(x) = "_1(x_1) \ \ "_2(x_2) \ \ \ "_3(x_3)$. Then the static Maxwell system

$$\operatorname{div}("(\mathbf{x}) \stackrel{!}{\mathbf{E}} (\mathbf{x})) = 0$$
 and $\operatorname{rot} \stackrel{!}{\mathbf{E}} (\mathbf{x}) = 0$

is equivalent to the equation

$$(D + M^{\bullet}(x))E(x) = 0;$$

where E = ${}^{D_{\pi}}\stackrel{!}{\not\models}$ and ${}^{\rlap}{\bullet}$ has the form (2) with ${}^{\circledR}{}_{k}={}^{@}{}_{k}{}^{"}{}_{k}=(2"_{k})$, k=1;2;3. Denote by ${}^{\rlap}{\bullet}$ (k) the result of the following involution:

where the bar stands for the quaternionic conjugation.

The following proposition is valid.

Proposition 1 Let f be a solution of the equation

$$(D + M^{\bullet})f = 0:$$
 (3)

Then the components f_k are solutions of the Schrödinger equations ($\mathbf{j} \Delta + w_k)f_k = 0$, k=0;1;2;3; where $w_k = D \stackrel{\text{\tiny le}}{\otimes} {}^{(k)} \mathbf{j}$ ($\stackrel{\text{\tiny le}}{\otimes} {}^{(k)})^2$.

The following fact gives us a method for constructing exact solutions of (3) having obtained solutions of the corresponding Schrödinger equations.

Proposition 2 Let four scalar functions g_k , k=0;1;2;3 satisfy the following equations $(i \Delta + v_k)g_k = 0$, where $v_k = i D^{(k)}(k)$. Then the function

$$f = (D i M^{\frac{1}{6}}) \sum_{k=0}^{\cancel{X}} g_k e_k$$
 (4)

is a solution of (3).

Moreover, we prove the following theorem which guarantees that under certain conditions any solution of (3) has the form (4).

Theorem 3 Let Ω be some domain in R^3 which can coincide with the whole space, $F(\Omega)$ and $G(\Omega)$ some functional spaces such that the equation

$$(i \Delta + w_k(x))u(x) = {}^{1}(x); x 2 \Omega; k = 0; 1; 2; 3$$

has a solution for any right part 1 2 F (Ω) and the solution u belongs to G($\Omega).$ Then any solution f 2 F (Ω) of (3) has the form f = (D $_i$ M $^{\textcircled{\bullet}}$)g, where g 2 im (D+M $^{\textcircled{\bullet}}$)(G(Ω)) and g_k satisfy the equations ($_i$ $\Delta+\nu_k$)g_k = 0 in Ω .

Finally, let u_k be a fundamental solution of the operator $_i\Delta + v_k$, $_k=0;1;2;3$. Then the integral operator $_i\Delta + v_k$, $_i=0;1;2;3$. Then the integral operator $_i\Delta + v_k$ under some natural conditions is a right inverse operator for the operator $_i\Delta + v_k$. Denote

$$T_{\, ^{\bigstar}} f = (D_{\ \ ^{\backprime}} \ M^{\, ^{\bigstar}}) (\underset{k=0}{\overset{\maltese}{\times}} (T_k f_k e_k)) :$$

It can be verified that T_{\bullet} is a right inverse operator for the operator $D+M^{\bullet}$.

References

[1] S. Bernstein Factorization of solutions of the Schrödinger equation. In: Proceedings of the symposium Analytical and numerical methods in quaternionic and Cli¤ord analysis, Sei¤en, 1996.

- [2] S. Bernstein, K. Gürlebeck On a higher dimensional Miura transform. Complex Variables, 1999, vol.38, 307-319.
- [3] K. Gürlebeck, W. Sprössig Quaternionic and Cli¤ord Calculus for Physicists and Engineers. John Wiley & Sons, 1997.
- [4] V. V. Kravchenko Applied quaternionic analysis. Heldermann-Verlag, Research and Exposition in Mathematics Series, v. 28, 2003.
- [5] V. V. Kravchenko On Beltrami *fi*elds with nonconstant proportionality factor. Journal of Physics A, 2003, v. 36, 1515-1522.
- [6] V. V. Kravchenko, M. V. Shapiro Integral representations for spatial models of mathematical physics. Addison Wesley Longman Ltd., Pitman Res. Notes in Math. Series, v. 351, 1996.