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Maxwell’s equations for chiral media

In [2] a quaternionic reformulation of the time-harmonic Maxwell equations
for chiral media was proposed and used in [4] in order to construct com-
plete systems of quaternionic fundamental solutions convenient for numerical
analysis of scattering boundary value problems. In the present contribution
we give a quaternionic reformulation of time-dependent Maxwell’s equations
for chiral media. The Maxwell system is written as a single quaternionic
equation. We obtain a fundamental solution of this equation and use it for

solving Maxwell’s system with sources.
Consider time-dependent Maxwell’s equations with sources

rot %(t; X) = i@té(t; X);



rotlﬂl(t; X) z@tﬁ)(t; x)+j'| (t; x);

div £t x) = 28X it = 0 )

and the constitutive relations of Drude-Born-Fedorov corresponding to the
chiral media (see, e.g., [7], [8], [9])

é(t; X) = 1(IE|(’[;X) + rotlﬂl(t; X));

ﬂ|)(t; X) = "(%(t: X) + " rot I&(t; X)); (2)

here ~ is the chirality measure of the medium. ~;"; 7 are real constants.
We use also the Maxwell system with incorporated constitutive relations

(2)

rot Iﬂl (t;x) = "(@t& (t; X) + @ rot Ii%(t; X)) +j (t; x); (3)
rot Igj(t; X) = j 1(@tlﬂl (t; X) + “e rot Iﬂl (t;x)): (4)

1 g
Separating E and i we obtain the equations which represent analogues
of the wave equations for non-chiral media

i i 1 i
rot rot E (X) + "1e? E(x)+ 27"1@ rot E(x)+ “2"1@? rot rot E (x)

] q
=i'eJ () i "erot § (x);
|I n 2 || -n 2 || -2n 2 |I i
rot rot H (x)+"1@2H (x)4+27 " 1@?rot H (x)+~2"1@? rot rot H (x) = rot §j (x):
(5)
It should be noted that when = = 0, (5) reduce to the wave equations for
non-chiral media.

2 Some notations from quaternionic analysis

We will consider biquaternion-valued functions defined in some domain §2 %2

R3: On the set of continuously dizerentiable such functions the well known

Moisil-Teodoresco operator is defined by the expression D := i15- + 25> +
@

iga (see, e.g., [1]). Denote De := D + ®, where ® 2 C. The fundamental
solution for this operator is known [5] (see also [6]):
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Ke(X) = i grad ©s(X) + ®0e(X) = (® + — | i®)0a(x);  (6)
JX JX
P
X = »_yXik: We assume that Im® _ 0; and the fundamental solution
©e(X) of the Helmholtz operator is chosen as follows
ei®jx_j

O (X) = i4%_jxj:

3 Field equations in quaternionic form

In this section we rewrite the field equations from Section 1 in quaternionic
form.
Let us introduce the following quaternionic operator

A= ‘pTT@tD + p'rT@t i iD (7

and consider the purely vectorial biquaternionic function

V(tx) = Ii%(t;x) ji 7lﬂl(t;x):

The quaternionic equation
r—
T 1h(t:
AVEX) = o () + i) ®

has the scalar and the vector parts in the form:

1 1 1
i Prre div Etx) + = div (6 x)+

i(div fl:(t; X) + ~1ediv b (X)) = iyz(tf, X). 9)
r_—
Prro ot E (t:x) + Po b (tx) | = rot B (x)
1 1 1 rT-l
ot E(t;x)+ Tecrot H(x) + TeH(tx) = = (tx):  (10)



The real part of (10) coincides with (3) and the imaginary part coincides
with (4). Applying divergence to the equations (3) and (4) gives us
q q
edivH(t;x) =0 and e.div E(t;x) = 0:

"!I'aking il_’lltO account the last two equalities we obtain from (9) that the vectors
E and [ satisfy the equation (1).

Thus the quaternionic equation (8) is equivalent to the Maxwell system
(1), (3) and (4).

It should be noted that for = = 0 from (7) we obtain the operator which
was studied in [3] with the aid of the factorization of the wave operator for
non-chiral media

"16? | Ay = (PTe, +iD)(PTe, ; iD):

In the case under consideration we obtain a similar result. Let us denote by
A* the complex conjugate operator of A

A® =" p““F@tD + p*”T@t +iD

For simplicity we consider now a sourceless situation. In this case the equa-
tions (5) are homogeneous and can be represented as follows

]
AA*D (t; x) =0;

i j i
where U stands for E or for H.

4 The fundamental solution for the operator
A

We construct the fundamental solution for the operator A using the results of
the previous section and well known facts from quaternionic analysis. Con-
sider the following equation

Af(t;x) = (“Pme,D + Pma, i iD)f(t; x) = +(0)£(x):

Applying the Fourier transform F with respect to the time-variable t we
arrive at

- Py Prriy . oy — :

( i'D+ il j iD)F (w;X) = £(X);
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where F (w; x) = Fff(t; x)g: The last equation can be rewritten as follows
(D +®)("PTTL{ DiF (wix) = £(x);

Por
where ® = —|9..1.—||1 The fundamental solution of De is given by (6), so we
have

P DiIFwix) = | grad Os(x) + ®0s(x) = (® + — | i1®2)Oe(X);
JX JX
from where
P BT e
FWX)= = lis T2 P —
( Lil) Mo il 4hjx

Applying the inverse Fourier transform we obtain the fundamental solu-
tion of the operator A:
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