
Page 1 of 10

A Concept for CAD Systems with Persistent Versioned Data Models

D. G. Beer, Bauhaus University Weimar; Informatik im Bauwesen (daniel.beer@bauing.uni-weimar.de)
B. Firmenich, Bauhaus University Weimar; CAD in der Bauinformatik (berthold.firmenich@bauing.uni-weimar.de)

T. Richter, Bauhaus University Weimar; Informatik im Bauwesen (torsten.richter@bauing.uni-weimar.de)
K. Beucke, Bauhaus University Weimar; Informatik im Bauwesen (karl.beucke@bauing.uni-weimar.de)

Summary
The synchronous distributed processing of common source code in the software development
process is supported by well proven methods. The planning process has similarities with the
software development process. However, there are no consistent and similarly successful
methods for applications in construction projects. A new approach is proposed in this
contribution.

1 Introduction
Distributed processing: The distributed processing of a shared product model instance is
characterized by three iterative phases (figure 1): a) the phase of loading subsets of the product
model instance (Firmenich 2002), (Beer and Firmenich 2003), (Beer et al. 2003), b) the phase of
the local and independent processing of this subset and c) the phase of discarding or storing the
results (Richter et al. 2003). These three phases belong to a single long transaction that can take
up to weeks. In this process the second phase generally governs the time demands for executing
the long transaction.

Load

Distributed
co-operation

Store

Figure 1: Distributed processing of a shared product model instance (Firmenich 2002)

Conflict management: It is proposed to provide copies of the selected product model objects to
allow for synchronous parallel co-operation. If the processed copies are stored as new object
versions, the history of the planning process is available and the evolution of the planning
process may be traced (Firmenich 2002). Processing copies of objects ensures the consistency
of the existing product model instance. This procedure also guarantees that the work of the
planners can be stored without violating data integrity. It is assumed that the merging of two or
more versions is executed at a later stage: This has to be done interactively by the user.

2 Solution Approach
Solution approach: The solution approach is based upon two elements (figure 2): a shared
project and a private workspace for each planner. The workspace is represented by available
CAD systems that have to be augmented by operations for the distributed co-operation.

Page 2 of 10

projectworkspace
load

store
CAD system

observe

CAD
file

data
store

st
or

e

lo
ad

sy
nc

hr
o-

ni
ze

d

Figure 2: Solution approach

Implementation concept: The general implementation concept derived from figure 2 is shown
in figure 3.

The project is represented by the class Project. It uses the functionality of a server,
implemented by the class Server. The server is multi-threaded to manage multiple sessions.
Thus, more than one workspace may communicate with the project at the same time. The
persistency functionality comes with an own persistence framework implementation. This
framework is described in detail in (Beer et al. 2004). The project class is executable (shown
as bold letters).

The workspace is represented by the interface Workspace. The class WorkspaceAdapter
is a specific implementation of this interface. It defines the operations for the distributed co-
operation. The connection with the CAD system is a specific task: The class WorkspaceCIB
implements the connection with the CAD system of the pilot implementation. This class is
executable. All workspaces use the functionality of a client, given by the class Client.

Messages are exchanged between the clients and the server sessions. An abstract class Msg
defines the interface. All types of messages to be sent via the Internet are represented by classes
inherited from class Msg. Thus, the message handling is simplified.

 internet
interCAD.net.server interCAD.net.msg interCAD.net.client

Client Session

Server

 *
 1

Msg

MsgStore

MsgLoad

Msg...

Workspace

Project

 1
 1

Workspace
Adapter

WorkspaceCIB Instance 1 1

 1
 1

interCAD.version.workspace

cib.cad interCAD.version.project interCAD.version.workspace.cib

Figure 3: Implementation concept

The elements of the solution approach and the simplified class protocols are given in the
following sections.

Page 3 of 10

3 Project
Introduction: The project manages the persistent versioned product model instance shared
between all planners. However, objects can not be edited directly: Instead, new object versions
must be derived and loaded in the workspace where they can be edited. The versioned product
model is described by (Firmenich 2002). A short introduction follows.

3.1 Concepts
Object versions: The object versions of the project are included in set MP. The elements of this
set may not be modified.

MP Set of object versions of the project.

Virtual object versions: Virtual object versions are used to show that an object version was
created for the first time or that an object version was deleted (figure 4). Virtual object versions
are stored in set ∆. All (virtual) object versions are stored in set M∆.

∆ Set of virtual object versions.

M∆ Set of object versions and virtual object versions. M∆ = MP ∪ ∆

Identification: Object versions are copied for the distributed processing of the instance of a
shared product model. The identity of an object version differs from the identity of the object
version’s copy. This is why separate persistent identifiers are used with the project as identifier
space (namespace). A unique persistent identifier is assigned to each object version.

IP Set of persistent identifiers, created by the project.

I Identification relation. Bijective mapping MP → IP

Dependencies between object versions are not considered in this paper in order to reduce
complexity. Structured sets of object versions are described in (Firmenich 2002). The
importance of such dependencies – abstracted as mathematical relations – are shown in (Pahl
and Beucke 2000). An update mechanism for structured sets is given by (Hanff 2003).

Version history: All pairs of object versions − whereas the second object version is derived
from the first object version − are stored in V. An example is given in figure 4.

V Version history. V ⊆ M∆ × M∆

 (δa, a) ∈ V Initial object version a without previous version(s).

 (a, b) ∈ V Object version a with revision b.

 (e, δe) ∈ V Deleted object version e.

a b

c

d

variant 1

revision
variant 2

e

branch merge

deleted (virtual)
object version

first (initial)
object versionδa δe

Figure 4: Version history and kinds of object versions

Page 4 of 10

3.2 Implementation concept
Project: The protocol of the Project class is given in figure 5. The main method of the
project creates a new project instance. The constructor initializes the persistence framework
(Beer et al. 2004), the message handling and starts the server. The methods load and store
handle corresponding messages. They load copies of existing object versions from the project
and store newly derived object versions to the project.

class Project {
 static void main(String[] args);
 Project();
 Msg load(MsgLoad msg);
 Msg store(MsgStore msg);
}

Figure 5: Class Project

Server: The Server class is shown in figure 6. The Server class defines a constructor that
needs a port number and a listener that reacts on incoming messages. The constructor starts an
infinite loop to wait for new clients to connect. For each client a new session is created that
communicates with the client via messages.

class Server {
 public Server(int port, MsgListener msgListener);
}

Figure 6: Class Server

Session: The class Session (figure 7) is a thread that is started for each client. The
constructor needs the name of the workspace, the listener that reacts on incoming messages as
well as two streams for incoming and outgoing message objects. The method run – inherited
from class Thread − is the main method of the thread. It waits for incoming messages and
handles them. Therefore it uses the listener methods for access to the data of the project.

class Session extends Thread {
 public Session(String name, MsgListener msgListener,
 ObjectOutputStream out, ObjectInputStream in);
 public final void run();
}

Figure 7: Class Session

Messages: The protocol of the abstract message class Msg is given in figure 8. There are only
methods for accessing private attributes: the request and the response of the message modeled is
as Object. Specific messages are derived from class Msg.

abstract class Msg implements Serializable {
 void setRequest(Object request);
 Object getRequest();
 void setResponse(Object response);
 Object getResponse();
}

Figure 8: Class Msg

Page 5 of 10

Example: The request of the MsgLoad class (figure 9) is a string that defines a subset of the
versioned product model instance. The string represents a feature logic (Zeller 1997) term. The
response is a map of persistent identifiers and newly created object versions.

class MsgLoad extends Msg implements Serializable {
 void setRequest(String request);
 String getRequest();
 void setResponse(Map response);
 Map getResponse();
}

Figure 9: Class MsgLoad

Conclusion: The versioned product model instance is the basis for the parallel co-operation.

4 Requirements on commercially available CAD Systems
Introduction: Object versions from the project are loaded as CAD components. The local data
management of available CAD systems allows offline processing in the distributed planning
process, e.g. on mobile devices and notebooks. The transaction ends by discarding or storing the
changed object versions in the project. It is convenient to use the functionality of available CAD
systems.

Requirements: A CAD system for the distributed co-operation has to offer an environment to
implement a workspace. The workspace acts as an observer on the CAD components. The CAD
system has to offer a suitable observer concept. Furthermore the workspace has to define new
commands in the CAD system for the loading from and the storing to the project. Thus, a
programming interface (API) that allows the access to the CAD components and the definition
of user commands is required. All these requirements are fulfilled by most available CAD
systems.

Conclusion: Although available CAD systems only support the second phase of the distributed
co-operation they are an ideal software environment for the implementation of a workspace.

5 Workspace
Introduction: Objects to be edited are loaded from the project as new object versions in the
planner’s workspace. The workspace provides CAD functionality and additional operations for
the distributed co-operation. This functionality is implemented within a specific CAD system:
The CAD operations must be observed in order to support the distributed co-operation of the
project.

5.1 Basics
Object versions: All object versions of the workspace are included in set M.

M Set of object versions of the workspace.

Identification: Object versions are copied during the exchange with the project. The identity of
an object version differs from the identity of the copy of the object version. This is why separate
identifiers are used. Loaded object versions are assigned to unique persistent identifiers, newly
created object versions are assigned to unique transient identifiers. The identifier space
(namespace) of the transient identifiers is the workspace.

Page 6 of 10

IW Set of all (transient and persistent) identifiers of the workspace.

I Identification relation. Bijective mapping M → IW

Dependencies between object versions are not considered in this paper in order to reduce
complexity. Structured sets of object versions are described by (Firmenich 2002). The
importance of such dependencies – abstracted as mathematical relations – are shown in (Pahl
and Beucke 2000). An update mechanism for structured sets is given by (Hanff 2003).

Object version types: There are four types of object versions that are included in disjunctive
sets. Unmodified object versions need not be stored. Deleted object versions, newly created
object versions and modified object versions have to be stored and uniquely distinguished in
order to be able to maintain the version history (figure 10).

MU Set of unmodified object versions after loading from project. MU ⊆ M

MD Set of deleted object versions. MD ⊆ M

MN Set of newly created object versions. MN ⊆ M

MM Set of modified object versions. MM ⊆ M

CAD operations: A planner can load CAD components from a file, modify these components
(e.g. translate, rotate, mirror, …) and delete these components. These operations have to be
observed by the workspace in order to ensure that all object versions are included in the correct
sets defined above. This is necessary to construct the version history of the project.

Version history: The version history built in the project depends on the operations executed in
the workspace. Figure 10 shows all eight combinations the operations that can be executed. The
first four cases are associated with object versions loaded from the project. The other four cases
are associated with newly created object versions. This is equivalent to the loading from a local
CAD file. Object versions can either be newly created or loaded.

load

create

modify

delete

store/
version
history

case 1 2 3 4 5 6 7 8

a

a'

a' a' a' a'

b b b b

a

b

set MU MM MD MN

Figure 10: Operations and the consequences on storage and version history

Object versions loaded but not processed (case 1) are not stored. Object versions loaded and
only modified are stored as derived object versions (case 2). Object versions loaded and finally
deleted are stored as virtual object versions (case 3 and 4).

Object versions newly created and not processed (case 5) or modified (case 6) are stored as first
versions of an object. Object versions newly created and finally deleted are not stored (case 7
and 8).

Page 7 of 10

5.2 Implementation concept
Client: The class Client (figure 11) has a constructor that creates a Socket for the
connection via the Internet. The address of the server and a port number are passed as
arguments. Currently, the client is not multi-threaded: it sends messages (method
communicate) and blocks until the server replies. Errors are handled by NetExceptions.
In the future, asynchronous communication will be supported.

class Client {
 Client (String server, int port) throws NetException;
 Msg communicate (Msg msg) throws NetException;
}

Figure 11: Class Client

Workspace: The main methods of the workspace are defined in the interface Workspace
(figure 12). The workspace uses a client for the communication with the project. The CAD
components are observed by an observable set. All other methods shown in figure 12 implement
the operations for the distributed co-operation. The workspace is implemented by an adapter.

interface Workspace {
 void setObservableSet(ObservableSet s);
 Set load() throws WorkspaceException;
 int store() throws WorkspaceException;
 public void shell();
 public void addLink();
 public void removeLink();
 public void update();
 public void unload();
 public void merge();
 public void modernize();
 public void reduce();
 ...
}

Figure 12: Interface Workspace

Workspace adapter: The WorkspaceAdapter class (figure 13) implements the
Workspace. It defines the sets and relations mentioned above as private attributes. The set M
of all object versions is observable. The constructor needs the address of the server and the port
number in order to instantiate the workspace’s client. The observable set has methods to react
on CAD operations (create/ load, modify, delete). Thus, the workspace adapter can react
adequately (figure 10).

class WorkspaceAdapter implements Workspace {
 private ObservableSet M;
 private Set M_M, M_U, M_N, M_D;
 private Map V, B;

 WorkspaceAdapter(String server, int port)
 throws WorkspaceException;
 final void setObservableSet(ObservableSet s);
}

Figure 13: Class WorkspaceAdapter

Page 8 of 10

Specific workspace: A specific workspace implementation (figure 14) is extended from the
workspace adapter. The constructor needs the parameters for the server to call the constructor of
the super class Workspace. Furthermore, the constructor defines commands for the distributed
co-operation and registers them with the CAD system. The graphical user interface (GUI) of the
CAD system is extended and the observable set M is connected with the CAD’s data model.

The method shell starts the CAD shell and the graphical user interface. The workspace itself
is started by the main method that defines the server parameters, starts the server and calls the
shell method.

class WorkspaceCIB extends WorkspaceAdapter {
 WorkspaceCIB(String server, int port)
 throws WorkspaceException;
 void shell();
 static void main(String[] args);
}

Figure 14: Class WorkspaceCIB

Conclusion: The implementation effort for a specific CAD system has been proven to be
relatively low.

6 Pilot implementation
Project: The project is a pure command line Java™ application with multi-threaded server
functionality. Important tasks are the access on persistent data and the communication with the
workspaces.

CAD system: The CAD system used for the pilot implementation ‘interCAD’ was developed in
Java™ at the professorship ‘CAD in der Bauinformatik’ of the Bauhaus University Weimar for
use in teaching and research (Firmenich and Beucke 2004). The source code is available as open
source. The CAD system supports user commands, the observation of the CAD model and the
extension of the graphical user interface. Thus, all requirements defined above are satisfied for
use as a workspace.

Figure 15: CAD system and workspace

Page 9 of 10

Workspace: For the implementation of the specific workspace with Java™ no adaptations of
the CAD system were required. Only new commands for loading and storing were defined as
well as the observation of CAD components via Java™ listeners and an extension of the CAD’s
user interface. Figure 15 shows the pilot implementation of the workspace with the graphical
user interface of the CAD system. The sets of the workspace are represented by a tree.

Operations: The operations for the distributed co-operation are available as Java™ classes
(Firmenich 2002). They were implemented using Feature Logic (Zeller 1997). The workspace
provides corresponding user dialogs (figure 16).

��� ��� �

��� ��� �

Figure 16: Operations for the distributed co-operation (example: merge)

Conclusion: The solution approach can be proven to support all three phases of the distributed
co-operation and the functionality of available CAD systems.

7 Outlook
Scenarios: Relevant AEC examples have to be described and checked to test the practical
applicability. The concept and the pilot implementation have to be verified with these examples.

Performance: The performance of the access on the versioned project data has to be measured
and improved. Minor tests with loading/ storing of unstructured sets from/ into the project show
the performance (figure 17). The complexity is polynomial (linear for storing and quadratic for
loading). Tests for structured sets (with relations between object versions) have been simulated,
too. They show similar results.

 Store: Performance

t = 18,315n + 229,39
R 2 = 0,9997

0
1000
2000 3000
4000
5000
6000 7000
8000
9000

10000

0 100 200 300 400 500
Objects n

Ti
m

e
t [

m
s]

Load: Performance

t = 0,0408n 2 + 11,337n - 103,87
R 2 = 0,9996

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

0 100 200 300 400 500
Objects n

Ti
m

e
t [

m
s]

Figure 17: Performance of project access via Internet

Page 10 of 10

Workspace: A further workspace implementation for a commercial CAD system will follow
the pilot implementation. The common part will be verified. New requirements will arise by the
use of different CAD systems: Objects of different applications have to be treated uniformly.
This fact proves the generalizability of the developed concepts for available CAD systems.

Intention: The final result will be a pilot implementation for the distributed processing of real
AEC projects with available CAD systems.

8 Acknowledgement
The authors gratefully acknowledge the financial support of this project by the German
Research Foundation (Deutsche Forschungsgemeinschaft − DFG) within the scope of the
priority program ‘Network-based Co-operative Planning Processes in Structural Engineering’
(SPP 1103).

9 References
Beer, D. G., and B. Firmenich (2003). Freigabestände von strukturierten Objektversionsmengen
in Bauprojekten. In Digital Proceedings des Internationalen Kolloquiums über Anwendungen
der Informatik und Mathematik in Architektur und Bauwesen (IKM). <http://euklid.bauing.uni-
weimar.de/papers.php?lang=de&what=20> (13 April 2004).

Beer, D. G., B. Firmenich, and K. Beucke (2003). Motivation für eine Sprache zur Handhabung
strukturierter Objekversionsmengen. In Tagungsband zum 15. Forum Bauinformatik. Aachen:
Shaker.

Beer, D. G., B. Firmenich, T. Richter, and K. Beucke (2004). A Persistence Interface for
Versioned Object Models. In Proceedings of the Vth European Conference of Product and
Process Modeling (ECPPM). Istanbul: Istanbul Technical University. − Planned paper.

Firmenich, B. (2002). CAD im Bauplanungsprozess: Verteilte Bearbeitung einer strukturierten
Menge von Objektversionen. < http://www.shaker.de/Online-
Gesamtkatalog/Details.idc?ISBN=3-8265-9924-1> (13 April 2004).

Firmenich, B., and K. Beucke (2004): CAD in Computer Aided Civil Engineering: a Particular
Approach for Research and Education. In: Proceedings of the Vth European Conference on
Product and Process Modelling (ECPPM). Istanbul: Istanbul Technical University. − Planned
paper.

Hanff, J. (2003). Abhängigkeiten zwischen Objekten in ingenieurwissenschaftlichen
Anwendungen. <http://www.shaker.de/Online-Gesamtkatalog/Details.idc?ISBN=3-8322-2280-
4> (13 April 2004).

Pahl, P.J., and K. Beucke (2000). Neuere Konzepte des CAD im Bauwesen: Stand und
Entwicklungen. In Digital Proceedings des Internationalen Kolloquiums über Anwendungen der
Informatik und Mathematik in Architektur und Bauwesen (IKM). <http://euklid.bauing.uni-
weimar.de/ikm2000/docs/089/089d.html> (13 April 2004).

Richter, T., B. Firmenich, and K. Beucke (2003). Ein Java-Paket zur Verarbeitung von
Datenstrukturen in beliebigen Datenquellen. In Tagungsband zum 15. Forum Bauinformatik.
Aachen: Shaker.

Zeller, A. (1997). Configuration Management with Version Sets − A Unified Software
Versioning Model and its Applications. Braunschweig: Fachbereich Mathematik und
Informatik.

