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Summary 

 

Microorganisms contribute immensely to shaping our environment and lives. Understanding 

them, especially their complex interactions with the biotic and abiotic environment, is an 

important goal of the microbiological research field. Recent work has revealed that social 

theory can also be applied to microorganisms. Various examples, particularly of bacteria and 

yeast, have established how they engage in social interactions with other microbes, resulting 

in the development of the novel research field of Sociomicrobiology. Social interactions of 

microbes do not only comprise competitive interactions involving competition over resources 

for the own benefit, but also cooperative interactions where a cell or population provides help 

for another. Both can occur within one species as well as interspecifically. 

In this dissertation, intraspecific social interactions of the Gram-positive model organism 

Bacillus subtilis were investigated. The focus of this work lies on the social behavior of biofilm 

formation and motility, with an emphasis on flagellum-mediated swimming and collective 

sliding motility. Interactions of strains capable of and lacking these behaviors were analyzed 

with the help of molecular biology techniques, fluorescence microscopy and experimental 

evolution setups. Further, the connection of different social phenotypes through the regulatory 

networks controlling them, were explored. The investigated social behaviors were 

demonstrated to be additionally linked through their functions in different lifestyles of B. subtilis.  

In particular, regulatory connections of motility and competence for DNA uptake as well as 

motility and biofilm formation were exposed. The importance of the influence of swimming 

motility and chemotaxis on competitiveness during pellicle biofilm development of B. subtilis 

was determined and matrix overproducers that evolved predominantly during pellicle formation 

of non-motile strains were examined. A matrix non-producer developed better incorporation 

abilities into a wild type pellicle during a long-term experiment, which was found to be coupled 

to the evolution of a phage-mediated interference competition. Moreover, the transition from 

collective sliding motility to the sessile biofilm state was shown to be governed by the regulator 

Spo0A and sliding was revealed as a possibility of expansion for mature colony biofilms in the 

absence of calcium ions. Finally, secreted sliding facilitating substances were demonstrated 

to differ in their availability to neighboring cells and, consequently, their exploitability by non-

producers. 
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Zusammenfassung 

 

Mikroorganismen tragen immens zur Gestaltung unserer Umwelt und unseres Lebens bei. Sie 

zu verstehen, besonders ihre komplexen Interaktionen mit der biotischen und abiotischen 

Umwelt, ist ein wichtiges Ziel des mikrobiologischen Forschungsgebiets. Neuste 

Untersuchungen haben ergeben, dass Sozialtheorie auch auf Mikroorganismen angewendet 

werden kann. Verschiedene Beispiele, besonders von Bakterien und Hefen, haben gezeigt, 

wie sie soziale Interaktionen mit anderen Mikroben eingehen, was in der Entwicklung des 

neuen Forschungsfeldes der Soziomikrobiologie resultierte. Soziale Interaktionen von 

Mikroben beinhalten nicht nur wettbewerbsorientierte Interaktionen mit Wettbewerb um 

Ressourcen zum eigenen Vorteil, sondern auch kooperative Interaktionen, bei denen eine 

Zelle oder Population Hilfe für eine andere bereitstellt. Beide Formen können innerhalb einer 

Spezies oder interspezifisch auftreten.  

In dieser Dissertation wurden intraspezifische soziale Interaktionen des grampositiven 

Modellorganismus Bacillus subtilis untersucht. Der Fokus dieser Arbeit lag auf dem sozialen 

Verhalten der Biofilmbildung und Bewegung mit Schwerpunkt auf Flagellum-vermitteltem 

Schwimmen und kollektiver Fortbewegung mittels sliding. Interaktionen von Stämmen mit und 

ohne Befähigung zu diesem Verhalten wurden mit Hilfe von molekularbiologischen Methoden, 

Fluoreszenzmikroskopie und experimenteller Evolution analysiert. Weiterhin wurde die 

Verbindung von unterschiedlichen sozialen Phänotypen durch die regulatorischen Netzwerke, 

die diese kontrollieren, erforscht. Es wurde demonstriert, dass die untersuchten sozialen 

Verhaltensweisen zusätzlich durch ihre Funktion in verschiedenen Lebensstilen von B. subtilis 

verbunden sind. 

Insbesondere wurden die regulatorische Verbindung von Bewegung und Kompetenz zur DNA 

Aufnahme, sowie Bewegung und Biofilmbildung aufgedeckt. Die Bedeutsamkeit des 

Einflusses der Schwimmbewegung und Chemotaxis auf die Wettbewerbsfähigkeit während 

der Entwicklung eines pellicle Biofilms von B. subtilis wurde festgestellt und Matrix-

Überproduzenten, die hauptsächlich während der pellicle Bildung von unbeweglichen 

Stämmen entstanden, wurden untersucht. Zusätzlich entwickelte ein Nicht-Produzent der 

Biofilmmatrix die Fähigkeit zur besseren Eingliederung in pellicles des Wildtyps, was mit der 

Evolution eines Phagen-vermittelten Interferenzwettbewerbs gekoppelt war. Weiterhin wurde 

gezeigt, dass der Übergang von kollektivem sliding zum sessilen Biofilm von dem Regulator 

Spo0A gesteuert wird und dass sliding eine Möglichkeit zur Expansion von ausgereiften 

Koloniebiofilmen in Abwesenheit von Calciumionen darstellt. Schließlich wurde bewiesen, wie 

sich sekretierte, sliding unterstützende Substanzen in ihrer Verfügbarkeit für Nachbarzellen 

und daher in ihrer Ausbeutbarkeit durch Nicht-Produzenten unterscheiden. 
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Introduction 

 

Microorganisms represent the smallest form of life on earth, yet without them the evolution of 

other multicellular life forms would not have been possible. They are involved in an 

abundance of environmental processes as well as nutrient cycles, and are playing a crucial 

role in balancing and sustaining life on earth1. Additionally, all higher organisms are 

associated in some way or another with microbial populations affecting them and their 

surroundings.  Due to their vast impact on the environment, animals and human beings, 

microbiology is a most important field of research. Lately, it has been recognized that a 

common lifestyle among microbes, especially bacteria, is the formation of communities 

enclosed in an extracellular matrix, the so called biofilm2. This shifted research focus towards 

interactions between bacteria, especially in these agglomerations. Moreover, researchers 

began to apply social theory to bacteria, finding that they also engage in social behavior. As 

a result of their large population size, possible genetic manipulation and short generation 

time, bacteria are employed more and more to analyze social behavior in general, test social 

theories and find answers to problems such as the evolution of cooperation3–6. 

 

1. Sociomicrobiology 

Microorganisms engage in a variety of interactions with their biotic environment, not only 

members of their own species but also other microorganisms and higher organisms such as 

plants. The recently developed field of sociomicrobiology investigates the social interactions 

among microbes and their behavior in microbial groups or communities. The term 

sociomicrobiology was first introduced by Parsek and Greenberg7 as researchers became 

increasingly interested in social behavior in microorganisms. Especially the collective 

bacterial activities of biofilm formation (also see below) and quorum sensing received  

attention with regard to cooperation of several cell types and species8. Research in this 

direction also increased due to better understanding of the natural lifestyle of bacterial 

communities which is often in contrast to shaken clonal cultures in liquid medium employed 

in many laboratory settings so far2,9. This resulted in the development of a new field of 

research that combines social evolution theory and microbiology. Exploring social 

interactions of microbes is not only important because we can gain a better understanding of 

the behavior of microbial populations, but it also allows the development of applications 

improving human everyday life, such as new approaches to treat diseases or the 

optimization of microbial communities used in waste water treatment plants10,11.  

To date, numerous different social phenotypes have been recognized and explored in 

microbes. Their social interactions are commonly classified in four different categories 
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depending on their effect for recipient and donor in terms of fitness (see Fig. 1;4): A positive 

effect for the actor (with the benefit of the social behavior outweighing the costs) as well as 

the recipient is defined as mutual benefit, whereas behavior with a positive effect for only the 

actor is referred to as selfishness. If the interaction is beneficial for the recipient but comes 

with a cost for the actor that is higher than the benefit, it is altruistic, but is defined as spite if 

it has only negative consequences for both. Therefore, interactions leading to a benefit of the 

recipient (mutual benefit and altruism) are cooperative whereas interactions with a negative 

effect on the recipient (selfishness and spite) can be classified as competition. 

 

Figure 1. Social interaction classifications. Modified after West et al., 20064. 

 

1.1 Social interactions - competition 

Competition is probably the more explicable and prevalent type of interaction (e.g. 12,13). Most 

habitats are populated with microorganisms, which inevitably leads to conflicts over 

resources if several species or cells have the same needs. The conditions, under which 

competition can occur, require therefore an intersection of used resources that mainly 

comprise nutrients and metabolic niches as well as space. Thereby, the resources have to 

be limiting to promote competition as a distinct selective pressure is required, occurring in 

environments with rare nutrients or high cell density. Consequently, environmental factors 

like habitat heterogeneity, disturbance rate, nutrient availability, abundance and complexity 

or species diversity have a large influence on the outcome of competitive interactions and 

possible coexistence of microorganisms. In general, competitive interactions can either be 

passive, meaning the competitors decrease the resource by using it up (exploitative 

competition) or the competitors can actively inhibit or harm each other (interference 

competition) (see Fig. 2). Passive competition is usually classified as selfish since the uptake 

of e.g. the limiting nutrient source is benefiting the actor, but has a negative effect on the 

recipient as less of the nutrients are available. One example of passive competition is the 

investment in a high growth rate that facilitates maximal uptake and usage of nutrients 

leading to an advantage of the competitor in a well-mixed environment14. In other cases, 

motility can be employed to reach a favorable environment ahead of competitors and 

supports the often competitive initial colonization. The role of motility was demonstrated for 
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example during root colonization of Pseudomonas fluorescens, where less or non-motile 

strains were largely excluded from the root population15,16.  

An important and widespread example for an active competition mechanism is the production 

of antimicrobial substances targeting cells of other species or distant relatives of the same 

species. Although spiteful behavior does not seem to be common in nature, production of 

antimicrobials belongs in this category as along with the inflicted damage on the recipient, it 

is accompanied by the metabolic burden of production for the actor. However, for this 

classification I disregard the theory of signaling as another purpose of antimicrobial 

substances in sub-inhibitory concentrations. Another straightforward example of contact 

dependent active competition is the type VI secretion system of several Gram-negative 

bacteria like Pseudomonas aeruginosa or Vibrio cholerae that actively injects toxins into 

specific target cells17,18. 

Competition often results in specialization and adaptation to specific niches facilitated by 

specific mutations as it allows coexistence of strains or organisms. Culturing the Gram-

negative bacterium P. fluorescens in the spatially heterogeneous environment of a medium 

containing tube resulted in diversification into three coexisting variants that inhabited three 

different niches (bottom, medium and air-liquid interface)19. The emergence and properties of 

the three variants is reviewed in more detail in Chapter 4 of this thesis. One of the P. 

fluorescens variants that evolved during the above mentioned experiment showed a colony 

biofilm phenotype with a highly wrinkled structure which was connected to overproduction of 

a polysaccharide20. This phenotype readily emerges also in various other bacterial species 

such as Burkholderia cenocepacia21, Pseudomonas aeruginosa22 and Bacillus subtilis23 

during adaptation to heterogenous environments. It seems to be directly or indirectly related 

to overproduction of the biofilm matrix that often leads to a fitness advantage of these 

variants in their specific niche19,20,24. In contrast, if a formerly spatially structured environment 

is disturbed causing higher homogeneity, one competitor might gain dominance over 

otherwise stable phenotypes due to the lack of suitable niches. 

However, the definition of a competitive behavior also depends on the context it is described 

in. A well analyzed example is represented by siderophore production of pseudomonads. 

These Gram-negative bacteria produce amongst others pyoverdin, a molecule that is 

secreted into the environment and able to chelate iron there25. Successful iron acquisition is 

crucial for survival in many habitats, making siderophore production advantageous for 

nutrient acquisition and therefore a competitive trait26,27. On the other hand, siderophore 

production is cooperative for cells of the same species and population since they are 

secreted and can be used by neighbors as well as by the producer28,29. 
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Figure 2. Examples of competitive strategies. Illustration shows passive and active competition mechanisms, 

such as nutrient uptake and consumption, movement towards nutrient sources, secretion of siderophores and 

exoproteases, toxin production as well as attack via a type VI secretion system. 

 

1.2 Social interactions - cooperation 

Probably the largest topic of interest in sociomicrobiology is the field of cooperation, where 

researches strive to explain the existence of microbial phenotypes engaging in behaviors that 

benefit one or more cells other than the actor. Here, I use this broad definition of cooperation 

as increasing the fitness of a recipient4,30, although sometimes the fitness cost for the actor is 

implemented as well. The focus lies mainly on the question how cooperation could evolve 

and how it is maintained despite the common principle of “survival of the fittest” described by 
Charles Darwin31. Although we observe cooperative behaviors in nature, they can 

theoretically be exploited by individuals who neglect to pay the costs of engaging in the 

cooperative behavior but gain the benefits. This leads to a competitive advantage of these so 

called “cheaters” who could take over and possibly collapse the population32. As evolutionary 

stability and success is defined by the amount of offspring or genes passed to the next 

generation, such exploitation would diminish the offspring of cooperators and finally result in 

extinction of the cooperative behavior. In social theory, this problem is referred to as “tragedy 

of the commons”. It was explained on the example of herdsmen that add sheep to a common 

pasture for their own gain, which is larger for the individual herdsman than the general loss 

due to overgrazing4,33. Therefore, despite the benefit of long-term cooperation (no 

overgrazing), selfish behavior with smaller short-term benefits that is employed by individuals 

(profit of more sheep) destabilizes cooperation. 

Cooperation can take form in various types of behavior like for example altruistic sacrifice, 

metabolic cross-feeding or public good production3,5 (see Fig. 3). Among the first recognized 

forms of cooperation is the altruistic behavior of Myxococcus xanthus. During starvation this 

Gram-negative myxobacterium forms spores on elevated multicellular fruiting bodies thereby 
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sacrificing the vegetative cells forming the support structures34. In contrast, during 

bidirectional metabolic cross-feeding, two strains or genotypes benefit by feeding on the 

secreted byproducts of each other or through the connection by intercellular nanotubes35,36. 

This form of cooperation is debated since it is claimed to be only an incidental result of 

selfish behavior, but fits into the broad definition of cooperation benefitting a recipient4. 

Additionally, the recently developed Black Queen hypothesis argues that metabolic 

dependencies can evolve based on the inherent leakiness of many cellular functions (and 

therefore the production of commonly available extracellular products) and a higher fitness 

due to the loss of unnecessary genes37,38. This selfish usage of another cells’ byproducts 
could lead to genome reduction due to cost efficiency resulting in metabolic dependency. 

Then, the dependency has to be maintained to survive which allows the development of 

costly cooperative behaviors37–39.  

Another common form of cooperation is the production of so called public goods, substances 

that are usually costly to produce and excreted into the environment for the profit of the 

producer as well as neighboring cells (mutual benefit, e.g. 5). Public goods are widespread in 

nature and range from digestive enzymes40,41 and siderophores42,43 over toxins targeting 

competitors to structural components of the biofilm matrix44,45 and surfactants facilitating 

collective motility16,46. Many of these behaviors are controlled by quorum sensing, a 

mechanism for bacteria to assess the density of their population by small diffusible molecules 

followed by a gene regulatory response at a certain density threshold47,48. Quorum sensing 

already represents a possibility to stabilize cooperation since it ensures the expression of the 

cooperative behavior only when enough cells are present in the population49,50. Thus, this 

kind of facultative cooperation facilitates a higher advantage of the potentially costly 

cooperative behavior due to the presence of enough recipients and protects the cells at least 

to some degree from exploitation51. Facultative cooperation can also be regulated by the 

nutrient level like in swarming of P. aeruginosa where rhamnolipids necessary for this 

collective motility are only produced at a certain carbon/nitrogen ratio thereby keeping the 

costs at a minimum52. 
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Figure 3. Examples of cooperation. (A) Altruism of M. xanthus: Sacrifice of the vegetative cells (blue circle) in 

favour of spores during fruiting body formation (from Xavier, 2011 6). (B) Invasion of cheaters in M. xanthus 

fruiting body (from Xavier, 2011 6). (C) Cooperation through production of public goods. (D) Bidirectional 

metabolic cross-feeding. 

The maintenance of cooperation during evolution is only possible, if the cooperative behavior 

can be directed towards the cooperators rather than towards non-contributive individuals. 

Such an effect can be reached via the mechanism of kin selection, especially useful to 

explain altruistic behaviors5,53: If the cooperative behavior is predominantly directed towards 

close relatives, the costly trait persists since those relatives carry the same or very similar 

genes (e.g. 54,29). This theory was formulated in Hamilton’s rule that predicts a stable 
cooperation if relatedness or the benefit of the cooperative behavior is high55,56. The most 

intuitive example for this would be clonal populations which are of course less common in 

nature than in the laboratory, but can nevertheless exist if few cells colonize new habitat 

patches. 

A more direct mechanism of kin selection is kin discrimination where cells recognize their kin 

or non-kin by means of certain features providing them with the possibility to direct the 

cooperative behavior towards or away from them. Consequently, cells can either cooperate 

with their kin or withhold cooperation from non-kin. This difference can be illustrated by two 

examples. Proteus mirabilis swarming cell populations recognize their kin with the same 

genes, so called ids genes, and include them in the swarm, but kill non-kin via toxin 

secretion57. On the other hand, swarms of B. subtilis attack all other cells – only kin survive 

because they have the matching immunity system58 (see also below). 
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Another key condition in the stabilization of cooperation is limited dispersal or proximity of 

cells and/or public goods and therefore spatial structure of a microbial population59. In 

homogenous environments with high dispersal such as laboratory liquid shaken cultures, the 

public goods or related cells would diffuse or move away, rendering the cooperative behavior 

ineffective. However, if the cooperator is surrounded by its offspring i.e. other cooperators 

that stay in its vicinity or diffusion of the public goods is limited and they are thus 

concentrated locally, cooperation is much more stable49,60–62 (see Fig. 4). This is the case for 

example in biofilms, where the cells are encased in an extracellular matrix that reduces the 

diffusion of public goods and confines the cells to a defined area63,64, This way, spatial 

structure can allow the exclusion of “cheaters” since they are less likely to interact with 
cooperators and exploit the cooperative behavior63,65. Moreover, there is evidence that 

cooperators can organize themselves into spatially distinct groups or patches, excluding 

cheaters66,67. A recent study suggests in addition, that the spatial clustering of cheaters 

relative to the cooperator structure also has to be considered for the cooperation stabilizing 

effect of spatial structure68. Similar to biofilms, positive assortment can structure the 

population of expanding colonies on a surface. Due to genetic drift, an expanding colony 

composed of initially well mixed cells forms sectors the consisting of the same genotype69. 

Consequently, it is possible that sectors are composed entirely of cooperators facilitating 

maintenance of cooperation59,70,71 (also see below and Chapter 9, 10) which was shown for 

example for expanding populations of yeast72. Additionally, resource availability was shown 

to have an influence on the spatial segregation and sector formation73. 

Although, as described above, there are many examples where cheaters are excluded from 

cooperator populations or areas, both types can also co-exist74–76. MacLean et al. revealed 

that under certain conditions, the presence of “cheaters” can even lead to a maximized 
population fitness77. However, the outcome is often dependent on the environmental 

conditions and on the scale, that is examined. Likewise, the relation between cooperation 

and competition is not always easy to untangle: competition for e.g. nutrients might still play 

a role in populations of cooperators whereas cooperation of one species can also be 

stabilized by interspecific competition78.  
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Figure 4. Spatial structure promotes cooperation. (A) Spatial expansion of cooperators (red) and cheaters (green) 

of Saccharomyces cerevisiae (adapted from van Dyken et al., 201372). (B) During V. cholerae submerged biofilm 

formation matrix secreting cells (co-operators, red) dominate over non-secretors (blue) (adapted from Nadell et 

al., 201664). 

 

2. Sociomicrobiology of Bacillus subtilis 

In this work, the bacterium Bacillus subtilis was employed to analyze social interactions in 

relation to the development of biofilms as well as collective movement. B. subtilis is a Gram-

positive model organism that is commonly present in soil and assumed to be ubiquitous in 

nature79. It is employed to investigate various processes such as cell differentiation and 

population heterogeneity (e.g. 80), gene regulation1,81, natural competence82, endospore 

formation1,83 and biofilm formation84–87. As B. subtilis is present in densely populated habitats 

such as the soil, it constantly encounters other organisms. Consequently, B. subtilis engages 

in inter- as well as intra-species social interactions, including both competition and 

cooperation, examples of which are described below.  

 

2.1 Competition of B. subtilis 

Besides the common passive competition for nutrient sources through production of secreted 

digestive enzymes such as for example the starch degrading alpha-amylase88,89, B. subtilis 

employs a number of active mechanisms to gain an advantage over competitors. An 

important secreted substance produced under various conditions and several developmental 

stages of B. subtilis is the cyclic lipopeptide surfactin. Surfactin is an amphiphilic molecule 

and exhibits strong biosurfactant properties90, reducing the surface tension of water. In 
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addition, surfactin is also an unspecific antimicrobial: It can target the cellular membrane, 

resulting in a disturbance of the lipid bilayer integrity, leakage of cytoplasmic content and 

eventually cell death91,92. The antimicrobial features of surfactin make it a useful weapon for 

B. subtilis in interspecific competition, contributing for example to the inhibition of 

Staphylococcus aureus growth in co-cultures93. Besides surfactin, Bacillus species are able 

to produce other lipopeptides, various iturins that exhibit amongst others anti-inflammatory, 

anti-tumor and anti-fungal activities94, as well as other antimicrobial natural products such as 

bacillaene that enhance competitiveness in soil95. 

Biofilm formation is another competitive strategy of B. subtilis. Biofilms are three-dimensional 

aggregates of cells that reside in a self-produced matrix composed of different substances 

(extracellular polysaccharides, proteins, and DNA amongst others)2,96–98. They can confer 

protection against for example environmental disturbances or antimicrobials99–102 and thus 

provide a competitive advantage. Additionally, some toxic molecules can be integrated into 

the biofilm matrix and thereby rendered harmless103. On the other hand, also the inhibition of 

the competitors’ biofilm formation can confer a benefit due to increased vulnerability (see 

below). Likewise, the existence of any kind of motile behavior can facilitate the initial 

establishment in a new habitat where it is often crucial to be faster than any competitors (see 

Chapter 2, also Chapter 8). In B. subtilis, the bistable expression of motility related genes 

allows the rapid adaptation to conditions where motility provides a competitive advantage 

without the potentially crucial delay of flagellar synthesis (see below)104. On the other hand, 

B. subtilis can employ motility to escape a competitive environment and probable cell 

death105. The interspecies interaction between B. subtilis and Bacillus simplex is an example 

of how different competitive mechanisms can work together: During biofilm formation of B. 

subtilis in the vicinity of a B. simplex colony, surfactin and two toxins are produced that target 

B. simplex at concentrations which are inert for B. subtilis 106. Additionally, B. subtilis cells 

engulf the B. simplex colony in a flagellum-dependent manner, leading to the elimination of 

B. simplex106. The toxins involved in killing B. simplex have been reported to also facilitate a 

cannibalistic behavior i.e. intraspecific competition of B. subtilis. Under starvation conditions, 

B. subtilis enters the developmental program of sporulation that is irreversible after a certain 

stage83 but subject of a bet-hedging strategy107. However, sporulation can be delayed by 

killing some siblings and feeding off the thereby liberated nutrients (cannibalism). The killing 

is mediated by the extracellular toxins SkfA and SdpC that are produced by a subpopulation 

of cells along with immunity mechanisms, thus eliminating the non-producers108,109. 

Moreover, competition between cells of the same species and even with the same ancestor 

can develop during evolution of niche specialists in a biofilm. Dragoš et al. showed that an 

evolved B. subtilis variant that does not contribute to matrix production, is able to reside in a 

biofilm with the matrix-producers and exploit them110. 

Members of the genus Bacillus also developed the ability to interfere with quorum sensing 

signals from Gram-negative bacteria26. N-acyl homoserine lactones, so called AHLs, are 
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employed by various Gram-negative bacteria to assess population density and regulate 

different phenotypes via quorum sensing. Researchers discovered that Bacillus species 

isolated from soil produce an AHL lactonase able to disintegrate the AHL quorum sensing 

signal, thus inhibiting their quorum dependent behavior111,112. This was demonstrated for 

biofilm formation of V. cholerae which is controlled in response to quorum sensing and 

accumulation of the AHL signal113,114. Presence of the AHL lactonase resulted in reduced 

biofilm formation of V. cholerae111 possibly providing a competitive advantage at least in the 

colonization of free space. 

 

2.2 Cooperation of B. subtilis 

In addition to many competitive traits, B. subtilis employs various cooperative mechanisms, 

especially intraspecific ones. As mentioned above, biofilm formation is a possible competitive 

strategy in a challenge of different bacterial species, but viewed with focus on a population or 

intraspecific interactions it can also be a cooperative behavior. B. subtilis biofilm formation is 

achieved by the cooperative production of structural matrix components by subpopulations of 

cells that differentiate into distinct cell types115,116. Biofilms can exhibit different forms, but the 

in B. subtilis commonly studied ones are pellicles swimming on top of the medium, in 

medium submerged biofilms and colony biofilms on agar surfaces (see Fig. 5).  

Some matrix components are assumed to be public goods since they are excreted and 

commonly available71,117 like for example proteases115,118 or the protein component TasA and 

exopolysaccharides, where it has been shown that non-producers can complement each 

other in pellicle biofilms117 (see also Chapter 5). Besides, van Gestel et al. demonstrated that 

exopolysaccharide production is a cooperative trait that although it can be exploited by non-

producers in mixed conditions, it is protected in a spatially well structured environment with 

positive assortment71. Cooperative growth of B. subtilis by amylase secretion was also shown 

to generate patches of cells (i.e. spatial structure) that could survive with lower starting cell 

densities than well-mixed populations67. Further, submerged biofilms of B. subtilis were found 

to be coordinated in their growth behavior, displaying coupled metabolic oscillations of 

growth and growth arrest mediated by electric signaling119,120. This would generate 

competition for nutrients but B. subtilis resolves this conflict between cooperation and 

competition by switching to alternate growth cycles at low nutrient supply – if one biofilm 

grows, the other halts120. 
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Figure 5. B. subtilis biofilm formation. The images depict three types of biofilms formed by B. subtilis: (A) Pellicle 

at the air-liquid interface, (B) a submerged biofilm at the surface-liquid interface and (C) a colony biofilm at the 

surface-air interface. The upper part represents the simplified schematic of the photo (A) or microscopic image (B, 

C) in the lower section. Images A and B were obtained by Marivic Martin and Eisha Mhatre, respectively. 

Moreover, cooperation in B. subtilis occurs in two collective types of movement, swarming 

and sliding. Swarming is a flagellum-mediated multicellular motility that allows rapid 

translocation over surfaces and additionally requires the quorum sensing controlled secretion 

of surfactin by a subpopulation of cells46,121–123. Thus, a sufficiently high cell density for the 

secretion of the public good surfactin is guaranteed so that it effectively facilitates swarming. 

During analyses of swarms of soil isolates it was discovered that B. subtilis is able to 

discriminate between kin and non-kin at a high level. Strains with up to 99.8 % identity of 

housekeeping genes formed distinct boundaries between swarms, avoiding cooperation, 

whereas closely related strains merged124. This discrimination based upon non-kin exclusion 

rather than kin recognition, was less strict in the interaction with more distant species like 

Bacillus cereus and the antagonistic interaction seemed to correlate with a possible public 

good exploitation58,125. Therefore, B. subtilis probably cooperates only with closely related 

strains and with other species that do not represent a threat due to public good exploitation. 

Similar to swarming, surfactin supports a second type of surface translocation, called sliding, 

where the collective movement of cells is powered by cell division (passive)121,123,126 (see also 

Chapter 6). In B. subtilis, sliding also requires the secretion of exopolysaccharides and the 

bacterial hydrophobin BslA127 (see also Chapter 7). In addition to secretion of potential public 

goods (see Chapter 10), division of labor between exopolysaccharide producing cells and 

surfactin producers was demonstrated to be crucial for the structure of dendritic sliding 

colonies of B. subtilis127. 

As many other bacteria, B. subtilis has been studied at single cell level in the past and so 

called domesticated strains like B. subtilis 168 were mainly used for research128,129. These 

domesticated strains exhibit changes in many characteristics compared to wild strains that 
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were developed through long use in the laboratory or X-ray and UV treatments129,130. 

Therefore, the domesticated strains possess several mutations128 or lack entire plasmids 

leading for example to better transformability131. Notably, some of the cooperative behaviors 

exhibited by wild strains like NCIB3610 are lost or diminished in domesticated strains. Thus, 

most domesticated strains lack the ability to swarm and form reduced biofilms in comparison 

to wild strains132,133, although there are striking differences between subgroups of the same 

strain and some domesticated strains are still biofilm proficient 134. A somehow special case 

is represented by the strain B. subtilis natto, which was not domesticated in the laboratory 

but used for a long time to produce the Japanese fermented soybean dish natto135,136. Many 

variants of this strain lost their ability to swim and swarm possibly due to producing high 

amounts of the polymer poly-γ-glutamate137,138 but are able to slide over surfaces (see 

Chapter 7). 

 

3. Regulation of B. subtilis swimming motility, biofilm formation and 

sliding motility 

3.1 Regulation of B. subtilis swimming motility and flagellar assembly 

As many other bacteria, B. subtilis is capable of swimming motility in a liquid environment 

and possesses several peritrichously arranged flagella per cell139. The bacterial flagellum is a 

molecular machine composed of many subunits and proteins which require tight regulation 

and well-timed gene expression. The flagellum can be dissected into the filament, the hook 

and the basal body with attached stator units140,141 (see Fig. 6). The basal body attaches the 

flagellum to the cytoplasmic membrane with a rod extending into the peptidoglycan layer and 

provides structural functions such as facilitating secretion of hook and filament proteins or 

torque generation for rotation of the flagellum142. It is the first part of the flagellum to be 

assembled, starting with the secretion apparatus which resembles a type III secretion 

system. Besides the secretion apparatus, the basal body is composed of a central rod, the 

surrounding basal ring consisting of the protein FliF143 with the rotor structure composed of 

FliG located below. Together with the motor and stator (MotA and MotB), the rotor is 

responsible for torque generation and rotation of the flagellum142,144,145. Attached to the rotor, 

protein rings of FliM and FliY regulate the directional switch of flagellar rotation142,146,147. The 

hook determines the angle of rotation of the flagellum and connects the filament with the 

basal body. It is secreted through the rod and assembled from units of the protein FlgE148,149. 

After a change in substrate specificity, the Hag monomer (or flagellin) is secreted, forming 

the tightly packed helical filament as last part in the construction of the flagellum142,150,151. 

FliM and FliY additionally mediate the connection to the chemotaxis system of B. subtilis 

through their interaction with the chemotaxis response regulator CheY (e.g. 152). If CheY is 

phosphorylated by the main chemotaxis kinase CheA in response to a chemoeffector binding 
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to its receptor, it can bind to FliM, causing a directional switch to anticlockwise rotation and 

therefore a forward motion of the cell. FliY is able to de-phosphorylate CheY thus supporting 

adaptation and reset of the chemotaxis system (153 amongst other adaptation systems, see 

also154). Additional modulation and adaptation of the B. subtilis chemotaxis system is 

ensured by the methylation circuit consisting of CheR and CheB since chemoreceptor 

methylation inhibits the phosphorylation of CheA. This is assisted by CheD which indirectly 

facilitates methylation. Further, in a negative feedback loop, CheV potentially hinders CheA 

kinase activity, when it is phosphorylated by CheA152. 

 

Figure 6. B. subtilis flagellum and main flagellar genes. The upper part of the image depicts the flagellum with 

color coded structural parts. The same color code is used for the main flagellar genes which are encoded in the 

fla/che operon depicted below. Arrows represent promoters (adapted from Mukherjee and Kearns, 2014142). 

The flagellar proteins of B. subtilis are encoded mainly by genes of the fla/che operon (see 

Fig. 6) and some additional smaller gene clusters104. These genes are organized in a 

hierarchical manner: the fla/che operon contains basal body and hook genes and is 

transcribed first155. At the end of the fla/che operon, the gene for the alternative sigma factor 

σD is located, controlling the transcription of secondary flagellar genes like for example hag, 

encoding the flagellar filament protein156,157.  

Expression of the fla/che operon is governed by different regulators. An important global 

regulator of B. subtilis that is also involved in flagellar motility is DegU (e.g. 158). In its 

phosphorylated form, DegU~P can bind one promoter of the fla/che operon and thus inhibit 

expression of flagellar genes159. Additionally, DegU~P can bind to the promoter region of 

flgM, a gene encoding an anti-sigma factor antagonizing σD, and activate its transcription160 

so that late flagellar genes are not expressed and the flagellar assembly cannot be 

completed. On the other hand, in the presence of the regulator SwrA which seems to interact 
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with DegU~P, the latter is converted to an activator of the fla/che operon, also resulting in 

higher levels of σD 161–163.  

Moreover, σD was demonstrated to play an important role during bistable expression of 

flagellar genes. In a planktonic culture of growing B. subtilis cells, two phenotypes can be 

observed: cells exist either as motile single cells or as non-motile chains104,142,163. One 

explanation for this phenomenon is bistability, the cells have either a sufficient level of σD to 

promote assembly of functional flagella or the level is below the threshold and late flagellar 

genes are not expressed81,155. To those belongs not only hag, but also genes encoding 

autolysins responsible for cell separation after division, so that a low level of σD results in 

chaining164. In this scenario, the threshold of σD is reached due to noise in the transcription of 

the fla/che operon and the position of its gene: it was shown that the transcription of the long 

operon lessens at the end and as σD is located towards the end, its amount in the cell can 

vary81,155,165.  

A partly conflicting mechanism involves an epigenetic switch created by the regulators SinR 

and SlrR that also controls whether cells are motile or form chains81,116,166 (see Fig. 7). In 

motile cells, the level of the regulator SinR is high, which represses genes encoding 

components of the biofilm extracellular matrix that is also associated with cell chaining166–169. 

Additionally, SinR represses the expression of the slrR regulatory gene, so that the level of 

the SlrR regulator is low170. However, in the presence of SinR-antagonist SinI, slrR is de-

repressed, SlrR can be produced and binds SinR. This SlrR-SinR complex represses motility 

and autolysin genes, turning motility off and the complex formation prevents SinR from 

repressing matrix genes leading to cell chaining166. Both mechanisms certainly exist in B. 

subtilis cells, but until now it is not clear which one controls the transition between motile 

cells and chains or whether they somehow act jointly. However, it has been suggested that 

the epigenetic switch can occur stochastically in a planktonic population or in a determined 

way at the onset of biofilm formation (see below)166,171. 

 

Figure 7. SinR-SlrR switch. The double-negative feedback loop between SlrR and SinR results in SlrR high and 

low states and ensures controlled expression of matrix or motility genes. T-bars represent inhibition (adapted from 

Chai et al., 2010172). 
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3.2 B. subtilis biofilm formation and regulation of multicellular behavior 

As sessile communities enclosed in an extracellular matrix, the requirement of motility in a 

biofilm is low and most cells are non-motile. Therefore, the start of biofilm formation is 

characterized by a general transition from motile to sessile cells, although both planktonic 

populations and biofilms of B. subtilis exhibit phenotypic heterogeneity and contain 

subpopulations of distinctly differentiated cells84,116. Thus, motility and biofilm formation are 

generally believed to be opposite and mutually exclusive developmental states which is 

reflected in their regulation. Biofilm formation is a complex process involving many regulatory 

elements, which is why the most important regulators and connections are mentioned in this 

section. 

B. subtilits biofilm formation can be initiated by mainly two mechanisms that potentially occur 

in parallel (overview in Fig. 8). First, B. subtilis can integrate various environmental signals 

and respond to certain condtions with the onset of biofilm formation. Several membrane 

bound and cytoplasmic histidine kinases (KinA, KinB, KinC, KinD and KinE) are responsible 

for the integration of these signals which trigger autophosphorylation of the kinase173. The 

phosphoryl group is then transferred to the master regulator of biofilm formation and 

sporulation, Spo0A, via a phosphorelay involving the phosphotransferases Spo0F and 

Spo0B116,173–175. Spo0A is crucial for biofilm formation and its phosphorylated form activates 

transcription of many biofilm genes. It activates transcription of sinI, leading to production of 

SinI and the de-repression of matrix genes (see above)176 and represses the gene encoding 

the regulator AbrB which is a repressor of biofilm matrix genes in the absence of 

Spo0A~P177,178.  

The matrix of B. subtilis consists of three major components that were demonstrated to be 

essential for characteristic biofilm formation. The first is the exopolysaccharide component 

already mentioned above which is produced by enzymes encoded by the epsA-O operon 

and is secreted into the environment45,116,179. One of its structural components comprises for 

example poly-N-acetyl glucosamine but the final exopolysaccharide structure has not been 

revealed180,181. The second main component is the protein TasA which forms fibres and is 

anchored to the cell via a second protein TapA. Both are encoded in the tapA-sipW-tasA 

operon which, like the eps operon, is repressed by AbrB and SinR116,117,167,168,182–185. If both 

former components are missing, B. subtilis fails to form a biofilm45 (see also Chapter 5). 

Defects of biofilm formation in different mutants like for example ΔsinI can be rescued by 

suppressor mutations in sinR that lead to an elevated production of the biofilm matrix168. 

Thirdly, the protein BslA which is also secreted, forms a hydrophobic outer layer on the 

colony or pellicle biofilm surface and contributes to architectural complexity as well as 

protection of the biofilm186–190. 

At the onset of biofilm formation, various triggers can activate the kinases ranging from 

gycerol and Mn2+191,192 over plant polysaccharides193,194 to impaired oxidative 
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phosphorylation195. These signals are partly specifically sensed by one kinase but there is 

also a certain overlap between them and the kinase contribution varies depending on the 

conditions116,196. Moreover, the kinases seem to be organized in a spatio-temporal manner: 

while KinA and KinB are more active in the older parts of a colony biofilm possibly being 

more involved in sporulation, KinC and KinD control the young peripheral zone being rather 

involved in colony biofilm formation196,197. One particular trigger of biofilm formation, the 

leakage of potassium ions sensed by KinC, is caused by self-produced surfactin and 

therefore dependent on the cell density since surfactin production is regulated by quorum 

sensing198,199. This activation proved to be an example of paracrine signalling as a 

subpopulation senses the quorum sensing signal and responds with surfactin production. 

This subpopulation cannot sense the surfactin signal, but another subpopulation is triggered 

and starts to produce the biofilm matrix200. However, biofilm formation through potassium 

leakage can also be triggered by other natural products such as the fungicide nystatin198. 

A second mechanism by which the transition from motile to biofilm forming cells can be 

promoted is the mechanosensory property of the flagellum. The inhibition of flagellar rotation, 

e.g. upon surface contact, activates the DegS-DegU two component system, resulting in 

elevated levels of the phosphorylated form of the DegU regulator201. In turn, DegU~P 

stimulates transcription of biofilm related target genes202–204 and especially activates indirectly 

the production of the protein BslA which is part of the matrix and crucial for the hydrophobic 

properties of the B. subtilis biofilm177,189,202,205. DegU also functions in the connection between 

motility and biofilm formation by the activation of poly-γ-glutamate production which was 

shown to be elevated in cells with a defective flagellar motor137. Additionally, flagellar rotation 

is inhibited in matrix producing cells during B. subtilis biofilm formation, since one protein 

involved in exopolysaccharide production, EpsE, has a second function and acts as a 

flagellar clutch201,203. It interacts with the rotor protein FliG, causing the uncoupling of power 

source and flagellar rotation apparatus207. Thus, the flagellar clutch is a rapid mechanism that 

can act without the delay occuring while inhibiting transcription of flagellar genes208. 

Once phosphorylated, Spo0A initiates transcription of biofilm genes but in a heterogenous 

manner: only a subpopulation becomes matrix producers due to the bistability of Spo0A 

activation and its connection to SinI and SinR (see above)209. The reason for this bistability 

was first assumed to be the positive autoregulatory loop that acts on spo0A and modulation 

of the phosphorelay by external phosphatases210,211. More recent studies however implicate 

that a stochastic activity of gene transcription of the phosphorelay elements and 

posttranslational modifications suffice to generate heterogeneous levels of Spo0A in the 

population212. The phosphorelay was identified as a noise generator and since its phosphate 

flux seems to be the limiting element for Spo0A activation, heterogeneity in the latter is the 

consequence213,214. Therefore, the level of phosphorylated Spo0A as a regulator for a lot of 

processes, is involved in the control of phenotypic heterogeneity in B. subtilis (also see 

below). 
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Spo0A was initially discovered as the master regulator for sporulation in B. subtilis and the 

process of biofilm formation was found to be tightly connected to endospore production. At 

intermediate concentrations of Spo0A~P, matrix genes are expressed whereas a high level 

of Spo0A~P leads to entry into the sporulation pathway. Both types of differentiated cells 

exist in a biofilm but spores develop from matrix producers due to their regulation by 

Spo0A215–217 with KinD potentially acting as a checkpoint in response to sensing the 

extracellular matrix218. Moreover, a spatio-temporal organization of the subpopulations was 

demonstrated by Vlamakis et al. for colony biofilms, showing that sporulating cells are 

localized at the top whereas matrix producers exist throughout the biofilm217. 

Apart from surfactin- or matrix producers and sporulating cells, the B. subtilis biofilm retains a 

subpopulation of motile cells in which Spo0A is in the off state and that reside mainly in the 

bottom part of a biofilm colony or possibly in water channels formed by the matrix217,219. Thus, 

the level of Spo0A~P determines the fate of the cell and governs differentiation: with 

maturation of the biofilm cells transition from motile over matrix producing to sporulating 

cells. 

 

Figure 8. Simplified overview of the gene regulation during biofilm formation. T-bars represent repression, arrows 

represent activation, grey areas indicate inactivity, rounded rectangles represent proteins, open arrow boxes 

represent genes and the pink structure represents the flagellum (modified from Cairns et al., 201484). 
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3.3 Regulation of B. subtilis sliding motility  

In this section, sliding of B. subtilis is described only briefly, as detailed information can be 

found in published papers, included in this thesis as Chapters 6 and 7, as well as Chapter 

10. 

Besides biofilm formation and sporulation, Spo0A also controls sliding, a collective and 

passive type of surface motility powered by the expansive force of dividing cells123,220 (see 

Chapter 6). Sliding of B. subtilis was first observed during experiments on B. subtilis 

colonization of plant roots126 and was shown to be dependent on sufficient amounts of 

several macro- and micronutrients but especially potassium and a high affinity potassium 

transporter were essential for sliding126,221,222. Potassium seems to activate sliding via the 

histidine kinase KinB (see Chapter 7) that is also involved in biofilm formation. The 

phenotype of the sliding colony is controlled by potassium as well: In an environment with 

higher potassium concentrations, sliding is planar whereas dendrites appear at lower (but still 

sufficient) potassium levels126,222. In addition to KinB, KinC was also shown to be important 

for triggering sliding motility. Both kinases activate Spo0A through the already described 

phosphorelay leading to the expression of matrix genes, especially the epsA-O operon which 

was demonstrated to be vital for sliding motility127. In addition to exopolysaccharides, the 

hydrophobin protein BslA and surfactin were also revealed to be required for sliding motility 

and aid the translocation across the surface through their hydrophobic and lubricant 

properties126,127,221 (see Chapter 7). 

Similar to biofilms, sliding colonies seem to be highly organized in a spatio-temporal manner. 

Van Gestel et al. uncovered that matrix and surfactin producers are spatially segregated in 

the sliding colony. Matrix producers form tightly packed bundles of cell chains that are 

surrounded by surfactin producing cells127. In addition, these bundles formed larger loops at 

the edge of the colony, termed van Gogh bundles, that were hypothesized to support 

migration of dendritic sliding127. The development of the sliding colony is characterized by a 

first phase with many surfactin producers followed by a second phase with an increase in 

matrix producers127.  Moreover, the two kinases KinB and KinC seem to have organized roles 

in controlling sliding. While KinB is assumed to be more active in the young peripheral parts 

of the sliding colony, KinC probably regulates sliding in the inner and older regions (see 

Chapter 7). 

In general, sliding is assumed to be an intermediate state between planktonic or single cells 

and biofilm formation. Its regulatory control by the biofilm master regulator Spo0A and biofilm 

involved kinases suggest that sliding precedes biofilm formation and a gradual transition 

occurs depending on the level of phosphorylated Spo0A197 (see Fig. 9). 
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Figure 9. Level of Spo0A~P controls differentiation of B. subtilis. Low amounts of Spo0A~P activate sliding mainly 

through KinB and KinC, biofilm formation is activated by medium amounts of Spo0A~P (mainly KinC, KinD) and at 

high levels of Spo0A~P the cells sporulate (mainly KinA, KinB) (adapted from Kovács, 2015197). 
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Aim and outline of the dissertation 

 

This cumulative dissertation aims to analyze the social interactions of the bacterium Bacillus 

subtilis with focus on the cooperative behaviors of biofilm formation and motility, especially 

the collective sliding, including the regulatory processes controlling them. It comprises ten 

Chapters of published and one unpublished manuscript which are framed by an introduction 

and general discussion.  

The introduction provides background information for the Chapters and outlines the concepts 

of sociomicrobiology with representative examples. It introduces the Gram-positive model 

organism B. subtilis and gives an overview over biofilm formation and motility as well as the 

regulation apparatus governing those processes. 

In the first part, Chapter 1 investigated the regulatory connection of flagellar motility and 

competence and the involvement of the global regulator DegU which also influences biofilm 

formation. The objective of the following Chapter 2 was to examine the role of flagellar 

motility during pellicle biofilm formation as well as the influence of chemotaxis, specifically 

aerotaxis, and their contribution to competitiveness of B. subtilis and P. aeruginosa. In 

Chapter 3, biofilm matrix overproducers with a wrinkly phenotype that evolved predominantly 

in strains lacking functional flagella during pellicle formation were studied and found to 

contain mutations in the regulator SinR. 

Experimental evolution in the laboratory can help to understand adaptive evolutionary 

processes and the development of social interactions over time. Chapter 4 serves as more 

detailed introduction to the technique of laboratory evolution with emphasis on biofilms as 

spatially structured environment and demonstrates its usefulness by means of two main 

example studies. Subsequently, in Chapter 5 we conducted our own evolution experiment 

with B. subtilis regarding the possibility of exploitation of matrix production by evolved 

defectors during biofilm formation and the underlying evolutionary changes. 

Chapter 6 aimed to give an overview of sliding motility in various bacteria, the different 

compounds facilitating it and, if possible, its regulatory basis in the respective organism. This 

provided the basis for the following Chapters concerning sliding motility. Chapter 7 

determined the genetic requirements of sliding motility and identified regulators involved in 

controlling it, complementing previous studies. Furthermore, sliding was analyzed in relation 

to colony biofilm expansion in Chapter 8, which was hindered by calcium ions through 

surfactin inhibition.  

In the video based article of Chapter 9 the usefulness of fluorescent markers, advanced 

microscopic techniques and image analysis tools for the investigation of social interactions in 
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spatially structured populations was explained and emphasized. This was complemented by 

the following Chapter 10 which applied those techniques to analyze the shareability of the 

three main sliding facilitating compounds and the social interactions of engineered producer 

and non-producer strains during sliding motility.  

In the last section of the general discussion, I discuss the major conclusions of the thesis 

Chapters, the relevance of the findings for microbial life of B. subtilis in nature and their 

implications for social interactions of B. subtilis with its biotic environment.  
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Chapter 1 

 

Impaired competence in flagellar mutants of Bacillus subtilis is connected 
to the regulatory network governed by DegU 
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Summary

The competent state is a developmentally distinct

phase, in which bacteria are able to take up and

integrate exogenous DNA into their genome. Bacillus

subtilis is one of the naturally competent bacterial

species and the domesticated laboratory strain 168

is easily transformable. In this study, we report a

reduced transformation frequency of B. subtilis

mutants lacking functional and structural flagellar

components. This includes hag, the gene encoding

the flagellin protein forming the filament of the flagel-

lum. We confirm that the observed decrease of the

transformation frequency is due to reduced expres-

sion of competence genes, particularly of the main

competence regulator gene comK. The impaired com-

petence is due to an increase in the phosphorylated

form of the response regulator DegU, which is

involved in regulation of both flagellar motility and

competence. Altogether, our study identified a close

link between motility and natural competence in

B. subtilis suggesting that hindrance in motility has

great impact on differentiation of this bacterium

not restricted only to the transition towards sessile

growth stage.

Introduction

When facing stressful environmental conditions, bacteria

can respond with a variety of post-exponential modifica-

tions including secretion of degradative enzymes, sporu-

lation or genetic competence. Bacillus subtilis is one of

the bacterial species that are able to take up free DNA

from the environment and incorporate it into its own

genome, a phenomenon referred to as natural compe-

tence (Dubnau, 1991). To import extracellular DNA into

B. subtilis cells, a pseudopilus formed by proteins

encoded by the comG operon facilitates binding to the

receptor protein ComEA, which is located in the bacte-

rial cell membrane (Inamine and Dubnau, 1995; Chen

et al., 2005). As only single stranded DNA is imported,

the membrane-associated nuclease NucA catalyzes

cleavage of the DNA after successful binding (Provvedi

et al., 2001). Subsequent transport of the DNA through

a membrane channel formed by the protein ComEC is

mediated by the ATPase ComFA that probably requires

the transmembrane proton motive force (Maier et al.,

2004).

To take up DNA, cells have to be in a developmental

state, in which a specific set of genes and regulators

are expressed (Dubnau, 1991; Berka et al., 2002). Reg-

ulation of the whole apparatus required for competence

development is complex. Briefly, entry into the compe-

tence state occurs in a bistable manner during the early

stationary phase, where a minority of cells produces

high level of the competence master regulator ComK

above a certain threshold that is required to switch on

competence development, the so called ‘K-state’ (van

Sinderen et al., 1995; Maamar and Dubnau, 2005; Smits

et al., 2005; Dubnau and Losick, 2006). It was demon-

strated that noise in the expression of comK determines

the competent subpopulation and allows a dynamic

stress response regarding competence development

(Maamar et al., 2007; Mugler et al., 2016). Eventually,

ComK activates the expression of late competence oper-

ons encoding the DNA-binding and -uptake machinery

as well as genes, whose products are responsible for

DNA integration (Berka et al., 2002; Ogura et al., 2002;

Hamoen et al., 2003). Increase of the ComK level is

linked to a quorum sensing-mediated accumulation of
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the small ComS protein, which interferes with ComK

degradation during the exponential phase (Turgay et al.,

1998). ComK is able to bind the comK promoter,

triggering its own transcription, thus creating an auto-

stimulatory loop (van Sinderen and Venema, 1994). This

binding is further stabilized by the non-phosphorylated

form of the regulator DegU to increase the level of

ComK above the threshold sufficient for competence

development (Hamoen et al., 2000).

However, DegU is not only crucial for competence

initiation, but also involved in the regulation of many

other processes including protease production, biofilm

development, and, particularly, flagellar motility (Murray

et al., 2009; Mukherjee and Kearns, 2014). The main

components of the hook and basal body of the

flagellum are encoded by the large fla/che operon.

Transcription of this operon is activated by a complex

formed by the regulator SwrA and phosphorylated

DegU (DegU�P), which binds to one of the fla/che pro-

moters (Mordini et al., 2013; Mukherjee and Kearns,

2014). Amongst other genes, the operon contains the

gene encoding the sigma factor r
D that activates tran-

scription of motility genes outside the fla/che operon

like the hag gene (encoding flagellin), motA and motB

(encoding flagellar stator proteins), as well as transcrip-

tion of lytF, which is necessary for separation of motile

cells after cell division (Serizawa et al., 2004; Chen

et al., 2009). The level of rD and its position in the fla/

che operon determines the cell fate, i.e. subpopulations

of motile single cells or non-motile chains (Cozy and

Kearns, 2010). The function of DegU�P changes in the

absence of SwrA. In this case, DegU�P seems to

inhibit motility via the same promoter of the fla/che

operon (Amati et al., 2004). Additionally, DegU�P can

activate the anti-sigma factor FlgM by binding to its pro-

moter region in the absence of SwrA (Hsueh et al.,

2011) allowing FlgM to antagonize r
D (Caramori et al.,

1996). Consequently, DegU�P indirectly suppresses

transcription of r
D-dependent genes (Hsueh et al.,

2011). It was suggested that a completion of flagellum

assembly can be sensed by the DegSU two component

system: FlgM, which is activated by DegU�P, causes

inhibition of r
D-dependent genes, when the assembly

of the flagellum is impeded (Cozy and Kearns, 2010;

Hsueh et al., 2011).

In addition to its role on modulating the expression of

flagellum-related genes in B. subtilis, the phosphoryla-

tion and therefore the activity of DegU, has been shown

to be influenced by a mechanical signal transmitted by

the flagellum (Cairns et al., 2013). Inhibition of flagellar

rotation by the flagellar clutch or by tethering the flagella

results in an increased DegU�P level in the cell.

In this study, we report a correlation between

motility function and competence development, which in

B. subtilis is connected by the multifunctional response

regulator DegU. We show that mutants lacking a

functional flagellum such as Dhag, DmotA and DflgE

exhibited a reduced transformation frequency. This was

due to a decrease in competence gene expression,

particularly reduced levels of the competence master

regulator ComK, which can be reverted by overexpress-

ing comK in the hag-mutant. Finally, we suggest that the

reduced transformation frequency was likely due to an

imbalance in the phosphorylation level of DegU.

Results

Lack of active flagella impairs competence for DNA

uptake in B. subtilis

While genetically modifying various B. subtilis strains, a

striking difference in transformation frequency was

observed between the wild type and a non-motile

mutant lacking the gene encoding flagellin, hag. To

explore this phenomenon, we tested the transformability

of wild type (strain 168) and hag-mutant in competence

medium (see section “Experimental Procedures”), where

the hag-mutant showed a more than 100-fold reduced

transformation frequency relative to the wild type

(Fig. 1A and B): while the transformation frequency of

the wild type ranged between 3 3 1025 and 5 3 1025,

that of the hag-mutant was reduced to values below 3 3

1027. Similarly, the undomesticated B. subtilis strains

DK1042 (transformable derivative of NCIB 3610) and

PS216 showed reduced transformation efficiency when

the hag gene of these strains was disrupted (Fig. S1).

To investigate whether this difference in transformation

frequency between the two strains resulted from a lower

growth rate of the hag-mutant, the growth behaviour of

wild type and hag-mutant grown in competence medium

was evaluated over time. As depicted in Fig. 1B, the

hag-mutant showed a clear growth advantage and

reached a higher OD compared to the wild type

(unpaired two-sample t-test with Welch Correction:

P5 0.001, n5 5), thus supporting our previous observa-

tions (H€olscher et al., 2015). Further, it was tested

whether the addition of DNA at different time points

would increase the transformation frequency of the hag-

mutant. However, the mutant showed a consistently low

transformation frequency over the course of several

hours, indicating that a shifted timing of the initiation of

the competence state is unlikely to be the reason for the

observed decrease in transformation frequency (Fig.

1C). To test whether this phenomenon is restricted to

the hag-mutant or connected to the lack of an active

motility apparatus in general, mutants lacking other

functional flagellum-related genes were investigated.

The transformation frequencies of mutants lacking the

gene encoding one of the flagellar motor units, motA
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and the gene encoding the hook protein, flgE, were

decreased in both cases compared to the wild type

(Fig. 2; unpaired two-sample t-test with Welch Correction:

P5 0.01 for WT2DmotA, P5 0.039 for WT2DflgE,

n59 for both). Although the wild type transformation

frequency was slightly different, the transformation

frequencies of both DmotA and DflgE were around

10-times lower than that of the wild type (Fig. 2). In con-

trast, a cheA-mutant lacking the main chemotaxis sensor

kinase showed a similar transformation frequency than

the wild type (Fig. S2; unpaired two-sample t-test with

Welch Correction: P5 0.232, n53), suggesting that the

presence of an active flagellum, but not directed motility

per se is required for full competence development. In

sum, these results demonstrate that the observed

impaired competence is linked to a loss of flagellar

function.

Lack of competence in flagellar mutants is due to the

reduced expression of competence genes

To determine if the detected diminished transformation

frequency of flagellar mutants was due to altered com-

petence gene expression, the fluorescent reporter

PcomG-gfp was introduced into these strains. This

reporter allows the detection of cells expressing the

comG operon-encoding genes required for pseudopilus

formation and DNA uptake. In addition, this reporter pro-

vides a proxy on the activity of the ComK protein, the

master regulator of competence. Qualitative microscopy

analyses of cultures harbouring the reporter, and which

were grown in competence medium for 5 h, showed

indeed a decreased number of fluorescent (i.e. comG

expressing) cells in the hag-mutant compared to the wild

type, whereas a control strain lacking comK showed no

fluorescence (Fig. 3A). For quantitative determination of

Fig. 1. Transformation frequency is reduced in a mutant lacking flagellin protein.

A. Transformation frequency of B. subtilis wild type and hag-mutant after 6 h incubation in competence medium (unpaired two-sample t-test

with Welch Correction: P53.1 3 1025, n59). The inset shows a zoom-in of the hag-mutant data.

B. Growth dynamics of wild type and hag-mutant during 12 h incubation in competence medium. Standard deviations for the measurements
are depicted in light grey (unpaired two-sample t-test with Welch Correction: P5 0.001, n55).

Arrows indicate the time points of DNA addition to investigate the transformation frequency over time, which is shown as box-and-whisker plot

in (C). The line in the boxes represents the median and the box indicates the 25th to 75th percentile. Asterisks indicate statistically significant

differences between wild type and hag-mutant (unpaired two-sample t-test with Welch Correction for WT2Dhag:, P50.125 for 3 h, P< 0.01
for 4 h, 5 h, 6 h; n56).
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competence gene expression within the population, flow

cytometric measurements were performed that revealed

24.7% of fluorescent cells in wild type cultures (mean

value), but only 4.6% of fluorescent cells for the hag-

mutant (Fig. 3B and C; unpaired two-sample t-test with

Welch Correction: P50.004, n5 3), thus confirming the

microscopy results. Similarly, the motA and flgE mutants

were analysed microscopically as well as by using flow

cytometry. Both methods revealed fewer cells activated

transcription of competence genes in these mutants

compared to the wild type (Fig. 4; unpaired two-sample

t-test with Welch Correction: P50.017 for WT2DmotA,

P51.3 3 1029 for WT2DflgE, n53 for both; mean

percentage of fluorescent cells: 16.7% for wild type,

4.5% for DmotA, 4.2% for DflgE). Flow cytometry

measurements at different time points during growth in

Fig. 2. Mutants impaired in flagellar function exhibit lower transformation frequencies.

Deletion of the gene encoding a flagellar stator (motA; A) or the gene encoding the hook protein (flgE; B) results in significantly lower transfor-
mation frequency of the respective strain compared to the wild type after incubation in competence medium for 6 h. The line in the boxes

represents the median, the box indicates 25th to 75th percentile. Asterisks indicate statistically significant differences (unpaired two-sample

t-test with Welch Correction: P5 0.01 for DmotA; P50.039 for DflgE; n59 for all).

Fig. 3. Fewer cells of the hag-mutant express competence genes compared to the wild type.
A. Representative microscopy images of strains harbouring the PcomG-gfp reporter in wild type, Dhag or DcomK genetic background. Images

were recorded after incubation in competence medium for 5 h. The scale bar represents 50 mm.

B. Histograms of flow cytometric measurements showing the cell count and the fluorescence in arbitrary units for wild type, Dhag and DcomK

including background fluorescence. Representative images are shown for each strain.
C. Percentage of fluorescent cells determined from the data in (B) for wild type and hag-mutant by isolating the fluorescent population

with fluorescence intensities above 3 A.U. Asterisks indicate significant differences (unpaired two-sample t-test with Welch Correction:

P50.036, n53).
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competence medium confirmed a similarly reduced

fraction of competent cells in the hag-mutant compared

to the wild type strain (Fig. S3).

Reduced competence in hag-mutant can be rescued by

overexpression of comK

The reduced competence gene expression in the tested

flagellar mutants suggested a regulatory link between

flagellar motility and competence. To investigate if regu-

latory elements upstream of comK were responsible for

our observations and if a bypass of those could there-

fore rescue transformation frequency in the flagellar

mutant, we examined a strain with an additional copy of

comK under the control of a xylose-inducible promoter

(Pxyl-comK). Indeed, in combination with Pxyl-comK, the

transformation level of the hag-mutant increased back to

a level that was statistically indistinguishable from wild

type levels (mean transformation frequency of 5.3 3

1026 for the wild type and 8.5 3 1026 for Dhag Pxyl-

comK; Kruskal-Wallis test: P5 0.453, n5 9, Fig. 5A).

Despite this observed increase in the hag strain upon

comK overexpression, the wild type strain, which con-

tained an inducible copy of comK showed a higher

transformation frequency (Fig. 5A, Kruskal-Wallis test:

P53.4 3 1024 for WT2WT Pxyl-comK, P53.4 3 1024

for WT Pxyl-comK2Dhag Pxyl-comK, n5 9 for both),

which was probably due to higher levels of comK

transcription at the native locus as previously observed

(Hahn et al., 1996).

Reduced competence in flagellar mutants is likely

connected to unbalanced DegU phosphorylation

As the above results suggested that regulatory elements

in response to impaired flagellar motility are responsible

for the decreased comK expression, we investigated

DegU as a likely candidate causing the reduced compe-

tence in flagellar mutants. As non-phosphorylated DegU

was implicated to be required for comK transcription

(Dahl et al., 1992; Hamoen et al., 2000), two variants of

degU were tested: degU32, which harbours a mutation

resulting in an extended half-life and thus higher stability

of the phosphorylated form of the DegU protein

(DegU�P), and degU146, which cannot be phosphory-

lated (Dahl et al., 1991; 1992; Kunst et al., 1994). Both

variants were tested in wild type as well as the Dhag

background to observe differences in transformability

compared to the wild type strain. The results of this

experiment indicated that the transformation frequency

of the degU32 strain was slightly decreased (Fig. 5B),

which is consistent with previous publications, sugges-

ting that non-phosphorylated DegU is required for

priming comK transcription. The observed difference,

however, was only marginally significant in our experi-

mental setup (Fig. 5B; Kruskal-Wallis test: P50.078,

n5 6). Surprisingly, when combined with the Dhag

Fig. 4. Competence gene expression is reduced in mutants lacking a functional flagellum.

A. Representative microscopy images of strains harbouring the PcomG-gfp reporter in wild type, DmotA or DflgE genetic background. Images

were recorded after 5 h incubation in competence medium. The scale bar represents 50 mm.
B. Histograms of flow cytometric measurements showing the cell count and the fluorescence in arbitrary units for wild type, DmotA or DflgE.

Representative images are shown for each strain.

C. Percentage of fluorescent cells determined from the data in (B) by isolating the fluorescent population with fluorescence intensities above 3

A.U. showing a significant difference (asterisks) between wild type and DmotA (P50.017) as well as wild type and DflgE (P< 0.001) with
n53 for both (unpaired two-sample t-test with Welch Correction).
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mutation, the transformability of degU32 increased sig-

nificantly far above wild type levels, despite presumably

possessing low levels of non-phosphorylated DegU to

induce the ComK auto-stimulatory loop (Fig. 5B;

Kruskal-Wallis test: P50.004, n56). Furthermore, we

observed a tendency towards a reduced albeit non-

significant transformation frequency in the degU146

strain compared to the wild type (Fig. 5B; Kruskal-Wallis

test: P> 0.05, n5 6). This result was similar to the one

observed for degU32, although no negative impact on

transformability was expected in strain degU146 due to

the abolished phosphorylation of DegU. Interestingly, the

degU146 strain combined with the Dhag mutation

exhibited transformation frequencies at the same level

than the wild type strain (Fig. 5B; Kruskal-Wallis test:

P>0.05, n56) that was significantly higher than

the transformation frequency of the single degU146

mutant (Fig. 5B; Kruskal-Wallis test, P5 0.007, n5 6).

These results suggest that altering the phosphorylation

state of DegU in flagellar mutants can revert the

negative impact on competence, which was caused by a

lack of motility.

Increased viscosity enhances competence in B. subtilis

A recent study showed that restricting the flagellar rota-

tion by viscous medium results in induction of flagellar

gene transcription and activation of the DegSU two-

component system in Paenibacillus sp. NAIST15-1

(Kobayashi et al., 2017). Accordingly, we tested whether

an increased viscosity of the medium changes the trans-

formability in B. subtilis. Indeed, the average transforma-

tion frequency of the wild type strain was threefold

higher in a medium of increased viscosity. The corre-

sponding statistical test, however, indicated only a trend

towards a statistically significant difference (Fig. 6;

unpaired two-sample t-test: P5 0.095, n54).

Fig. 5. Synthetically induced comK and degU146 increase compe-

tence of Dhag.

A. Transformation frequencies of wild type compared to strains har-
bouring a xylose-inducible copy of comK (Pxyl-comK) with wild type

or Dhag genetic background (Kruskal-Wallis test for WT2WT

Pxyl-comK: P5 3.4 3 1024; for WT Pxyl-comK2Dhag Pxyl-comK:

P53.4 3 1024, n59 for both).
B. Transformation frequencies of WT compared to strains harbour-

ing either a phosphorylated DegU variant (degU32) or a non-

phosphorylatable DegU variant (degU146) in wild type or Dhag

background. Strain Dhag degU32 is significantly different from all
other strains (Kruskal-Wallis test: P< 0.05 for all, n5 6). The line in

the boxes represents the median, the box indicates 25th to 75th

percentile. Asterisks indicate statistically significant differences

(Kruskal-Wallis test: P5 0.007, n56).

Fig. 6. Competence is improved in viscous medium.

Transformation frequency of the wild type strain grown in normal

competence medium and in medium with increased viscosity. The
line in the boxes represents the median, the box indicates 25th to

75th percentile, # indicates marginally significant differences

(unpaired two-sample t-test: P5 0.095, n54).
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Discussion

Many cellular processes in B. subtilis are tightly con-

nected through their underlying regulatory networks.

Examples include motility and biofilm formation or biofilm

formation and sporulation (e.g. Vlamakis et al., 2013;

Marlow et al., 2014; H€olscher et al., 2015). Here, we

report an additional connection between flagellar motility

and competence development. We could show that

mutants with impaired flagellar function have defects in

competence development. Such mutants displayed a

considerably lower transformation frequency and expres-

sion of late competence genes, suggesting that it is due

to an altered expression of the competence master reg-

ulator gene comK. The rescue experiment with an induc-

ible comK confirmed that indeed competence could be

rescued in the Dhag strain, since Dhag Pxyl-comK exhib-

ited a wild type transformation level.

In a recently published study, similar effects were

observed even though different methods have been

used: Diethmaier and colleagues found that the expres-

sion of comK is lower in deletion mutants of the fla/che

operon, hag and the second stator gene motB (Diethma-

ier et al., 2017). While in their study the expression of

comK was primarily monitored using a comK promoter

fusion, our experiments predominantly assayed transfor-

mation frequency. Both studies, however, report a

negative effect of the deletion of flagellar components

on competence development. The extent to which wild

type and mutant differ in competence development is in

the same order of magnitude between the studies: for

example Diethmaier et al. observe a 10-fold reduced

number of comG expressing-cells in Dhag (Diethmaier

et al., 2017), whereas our flow cytometry experiments

showed a slightly lower, fivefold reduction. Additionally,

by investigating the transformation frequency in a cheA

mutant, we could also show that the chemotactic

response does not seem to have an influence on com-

petence development.

Investigating modified variants of the response regula-

tor DegU, we found that the transformation frequency of

the hag-mutant could be restored to wild type level

when the mutant carried a non-phosphorylatable DegU

variant (degU146). This result suggests that a high level

of DegU�P in the flagellar mutants was the reason for

the decreased expression of the competence genes and

comK, which could be counteracted by introducing a

non-phosphorylatable variant of DegU. By additionally

investigating a strain harbouring a degU-yfp fusion,

Diethmaier et al. also suggested an increased level of

DegU�P to be present in the hag-mutant (Diethmaier

et al., 2017), which is consistent with our conclusions. In

addition, the authors detected a reduced expression of

comK in a strain with the degU32 variant, which

produces a form of DegU�P with higher stability (Dieth-

maier et al., 2017). Comparable results were obtained

by Msadek et al., who found that high levels of DegU�P

inhibit competence (Msadek et al., 1990). We observed

a similar, although weak statistical trend towards a

reduced transformation frequency in degU32 strain.

Miras and Dubnau (2016) have recently highlighted that

differences in the DegU phosphorylation pathway among

diverse B. subtilis isolates were likely responsible for

variance in DNA transformation efficiency among certain

domesticated and undomesticated strains. Moreover,

slight differences in competence induction levels could

also be affected by strain-specific characteristics. For

example, B. subtilis 168 strains derived from different

laboratories can exhibit striking variations in biofilm

robustness (Gallegos-Monterrosa et al., 2016). As sug-

gested by Diethmaier and colleagues, the reduced trans-

formation frequency in degU32 might be caused by the

high DegU�P levels of this strain. However, the degU32

strain exhibits a non-motile phenotype and in the undo-

mesticated strains DegU32 is not able to interact with

SwrA at the PA promoter of the fla/che operon (swrA is

inactive in domesticated strains), leading to repression

of PA (fla/che) (Amati et al., 2004; Mordini et al., 2013).

Due to low or no expression of the basic flagellar genes,

this phenotype could mimic the situation observed in the

flagellar mutants. In addition, we observed an increased

transformation frequency when the hag gene was

deleted from the degU32 background. This is in contrast

to the model assuming that increased levels of phos-

phorylated DegU in the cells lowers competence. There-

fore, it is possible that yet unidentified factors are also

involved in connecting motility and competence develop-

ment that might be independent of DegU�P. At this

point however, we cannot provide a reasonable explana-

tion for the increased transformation frequency of Dhag

degU32.

Interestingly, induction of competence state has nega-

tive impact on motility in B. subtilis. ComK negatively

controls hag gene expression by stimulating the tran-

scription of comFA-C operon and the downstream

located anti-sigma factor coding gene, flgM (Liu and

Zuber, 1998). This feedback loop presents another

intriguing connection between these two cellular

processes.

Diethmaier et al. (2017) proposed that increased

DegU�P and lower comK expression in the flagellar

mutants and in a strain with straight flagella was caused

by a lower viscous load. In line with this report, we also

observed that higher viscosity in the medium resulted in

an increased transformation frequency. Nevertheless, a

possible role of the DegSU two-component system in

sensing incomplete assembly of flagella and dysfunction

as suggested previously (Hsueh et al., 2011; Cairns
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et al., 2013) could also explain the increased DegU�P

levels in the flagellar mutants.

Together, our results identify a connection between

two major physiological processes, providing another

example of the complexity of intracellular regulatory

networks and the vast amount of tasks a single regulator

can cover.

Experimental procedures

Strains and cultivating conditions

The strains used in this study and their mutant derivatives

are listed in Table S1. Mutants constructed in this study

were obtained by natural transformation of a B. subtilis

recipient strain with genomic DNA from a donor strain.

Strain TB831 was created by transformation of strain 168

Pxyl-comK with genomic DNA of strain GP902 (J. St€ulke

lab collection). To obtain strains TB926 and TB925, geno-

mic DNA of strain 168 PcomG-gfp was used to transform

strain TB710 and TB689 respectively. Strain TB928 was

obtained by transforming strain 168 Pxyl-comK with geno-

mic DNA of GP901 (J. St€ulke lab collection). To create

strain TB935 and TB936, strain 168 was transformed

with genomic DNA obtained from strain QB4371 (Kunst

et al., 1994) and QB4458 (Dahl et al., 1991) respectively.

Their derivatives harbouring also a mutation of hag

(TB923 and TB924) were created by transformation with

genomic DNA, which was obtained from GP901. In-frame

deletions of motA, flgE and cheA were created using

plasmids pEC1, pDP306 and pDP338, respectively, as

previously described (Courtney et al., 2012; Chan et al.,

2014; Calvo and Kearns, 2015). Strains were verified by

fluorescence microscopy (PcomG-gfp reporter), PCR (hag-

mutants) or sequencing (degU variants), using the oligo-

nucleotides listed in Table S2. For experiments with

strains harbouring the inducible construct Pxyl-comK, 1%

of xylose (final concentration) was added for induction

(see van den Esker et al., 2017). To increase medium

viscosity, 10% Ficoll400 (Carl Roth) was added to the

medium before culture inoculation and the mix was

vortexed vigorously for ca. 20 s.

Transformation frequency assay

To assess the transformation frequency of different

strains, a modified version of the transformation protocol

from Konkol et al. (2013) was used. One millilitre of each

culture grown in 3 ml Lysogeny broth (LB) medium

(LB-Lennox, Carl Roth; 10 g I21 tryptone, 5 g I21 yeast

extract and 5 g I21 NaCl) for 16 h was centrifuged for 2

min at 11 000 3 g. The pellet was washed twice in de-

ionized water and was re-suspended in 100 ml de-ionized

water. The re-suspended culture was diluted (1:80) in

complete competence medium (MC: 1.8 ml de-ionized

water, 6.7 ml 1 M MgSO4, 50 ml 0.2% L-Tryptophan,

200 ml 10xMC; per 100 ml 10xMC: 14 036 g K2HPO4

[33H2O], 5239 g KH2PO4, 20 g glucose, 10 ml 300 mM

tri-sodium citrate, 1 ml 83.97 mM ammonium iron (III) cit-

rate, 1 g casein hydrolysate, 2 g potassium glutamate

[H2O]) and incubated at 378C, 225 r.p.m. For experiments

with strains harbouring Pxyl-comK, 10xMC with fructose

instead of glucose was used. After 6 h incubation time, 5

ml DNA with an antibiotic marker (PY79 safA::Tet gDNA,

60 ng ml21) was added to 500 ml culture. Any alteration in

incubation time before addition of the DNA is indicated in

the results section. Each culture was incubated for 30

min, then 500 ml fresh LB medium was added and the

culture was incubated for another 1 h under the condi-

tions mentioned above. Serial dilutions of cultures supple-

mented with DNA were prepared and plated on LB

medium supplemented with 1.5% agar to determine the

number of colony-forming units (cfu). Additionally, 50 and

100 ml undiluted cultures supplemented with gDNA as

well as controls were plated on tetracycline (Tet) contain-

ing LB-agar plates (10 mg ml21 Tet) to determine the

number of transformant colonies. The transformation

frequency was calculated by dividing the number of trans-

formants per ml by cfu per ml.

Growth curve experiments

To examine growth properties, cultures were inoculated

in LB medium from frozen glycerol stocks and incubated

for ca. 16 h at 378C shaking at 225 r.p.m. Cultures were

diluted 1:100 in 200 ml fresh completed MC medium

(see above) and the OD590 nm was recorded for 16 h

using a TECAN Infinite F200 PRO microplate reader.

The cultures were incubated with orbital shaking with a

duration of 800 s and an amplitude of 3 mm at 378C

and the OD590 was measured every 15 min.

Fluorescence microscopy

Strains were investigated using a confocal laser scan-

ning microscope (LSM 780, Carl Zeiss) equipped with

an argon laser and a Plan-Apochromat/1.4 Oil DIC M27

633 objective. Cultures were grown prior microscopy for

5 h (if not indicated otherwise) in competence medium

under the same conditions as described above (see

section “Transformation Frequency Assay”). Excitation

of the fluorescent reporter (GFP) was performed at

488 nm and the emitted fluorescence was recorded at

493–598 nm. For image visualisation, Zen 2012 soft-

ware (Carl Zeiss) was used, brightness and contrast

were adjusted equally in all images.

Flow cytometry

Flow cytometric measurements were performed using

a Partec CyFlowVR Space (Sysmex Partec GmbH,
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Germany), which was equipped with a solid-state laser

for excitation of green/yellow fluorescent proteins at

488 nm. Single cells were detected in forward and side-

ward scatter channels as well as in one fluorescent

channel. A minimum of 40 000 cells were analysed for

the experiments. To define the background fluorescence

signal, non-labelled B. subtilis cultures were analysed as

control. Cultures used for measurements were grown for

5 h (if not indicated otherwise) in competence medium

under the same conditions as described above (see sec-

tion “Transformation Frequency Assay”). For evaluation

of the data, the FlowJoVR software (FlowJo LLC,

Ashland, KY, USA) was used and a gate was set at

three fluorescence units for all samples to isolate the

fluorescent population and determine the percentage of

fluorescent cells.

Statistics

Statistical analyses were performed using OriginPro 2016

(V93E, OriginLab Northampton, MA, USA). Unpaired

two-sample t-test with Welch Correction or a Kruskal-

Wallis test was used to test for significant differences.
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6 h (unpaired two-sample t-test with Welch Correction:

P5 0.232, n5 3). Error bars represent the standard

deviation.

Fig. S3. Fewer cells express competence genes in the hag-

mutant over time. Percentage of fluorescent (i.e. compe-
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Abstract

Biofilm formation is a complex process involving various signaling pathways and changes in gene expression.
Many of the sensory mechanisms and regulatory cascades involved have been defined for biofilms formed by
diverse organisms attached to solid surfaces. By comparison, our knowledge on the basic mechanisms
underlying the formation of biofilms at air–liquid interfaces, that is, pellicles, is much less complete. In
particular, the roles of flagella have been studied in multiple solid-surface biofilm models but remain largely
undefined for pellicles. In this work, we characterize the contributions of flagellum-based motility, chemotaxis
and oxygen sensing to pellicle formation in the Gram-positive Bacillus subtilis. We confirm that flagellum-
based motility is involved in, but is not absolutely essential for, B. subtilis pellicle formation. Further, we show
that flagellum-based motility, chemotaxis and oxygen sensing are important for successful competition during
B. subtilis pellicle formation. We report that flagellum-based motility similarly contributes to pellicle formation
and fitness in competition assays in the Gram-negative Pseudomonas aeruginosa. Time-lapse imaging of
static liquid cultures demonstrates that, in both B. subtilis and P. aeruginosa, a turbulent flow forms in the tube
and a zone of clearing appears below the air–liquid interface just before the formation of the pellicle but only in
strains that have flagella.

© 2015 Elsevier Ltd. All rights reserved.

Introduction

Research over the last several decades has
shown that natural bacterial communities exist
mainly as biofilms, cellular aggregates encased in
self-produced matrices that often form on surfaces
[1–3]. The term for a biofilm can depend on the type
of interface at which it is found: colonies form
on solid surfaces in air, submerged or flow cell
biofilms form on solid surfaces in liquid and pellicle
biofilms form on liquid in air [4]. Pellicle formation
has been described for various Gram-negative
and Gram-positive bacteria [5–11] and proceeds
through several stages. In early stages, a thin layer
of cells appears at the air–liquid interface. This layer

originates either from cells attached to the wall of
the vessel that spread over the liquid or from cell
clusters in the middle of the medium surface
that spread outward [6,12]. In later stages, three-
dimensional structures can develop as the pellicle
grows and thickens, resulting in the formation of
wrinkles [4,5,13].
The exact mechanisms underpinning the initial

stages of pellicle formation (i.e., how cells reach
the interface) are not well characterized. The
production of an extracellular matrix is essential
for pellicle formation in all species examined, while
most cells of the biofilm are non-motile [6,14].
Different types of motility, Brownian motion or
buoyancy could all influence whether or not cells

0022-2836/© 2015 Elsevier Ltd. All rights reserved. J Mol Biol (2015) 427, 3695–3708
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are close to the air–liquid interface during the
initiation stage [12]. As cells in a biofilm are sessile,
biofilm formation and motility are considered oppos-
ing mechanisms [15]. This is supported by the fact
that, in many investigated organisms, genes re-
quired for biofilm formation and flagellar motility
are inversely regulated, often with c-di-GMP being
involved [15–18]. However, many bacteria show
defects in pellicle formation when genes involved
in flagellum synthesis are mutated and the ability to
form a pellicle is completely abolished in some
species [7,9,12,19,20].
The air–liquid interface represents a favorable

environment especially for aerobic microorganisms,
since access to oxygen in high concentrations and
nutrients from the medium are provided. The
presence of oxygen as an electron acceptor in the
atmospheric phase is important for pellicle formation
in bacteria such as Escherichia coli and Shewanella
oneidensis, which do not form pellicles under
anaerobic conditions when alternative electron
acceptors are provided in the medium [10,19].
Further, the movement toward oxygen, that is,
positive aerotaxis, is proposed to control movement
of the cells toward the air–liquid interface in S.
oneidensis [7] and regulates biofilm formation on
abiotic surfaces in Ralstonia solanacearum [21].
Oxygen has been shown to be a crucial factor for
survival and growth of coexisting strains of Breviba-
cillus sp. and Pseudoxanthomonas sp. at the air–
liquid interface [22]. In Pseudomonas aeruginosa,
decreased availability of oxygen in the atmosphere
has been shown to be detrimental to pellicle integrity,
and provision of an alternative electron acceptor in
the medium promoted growth in the liquid phase
below the pellicle [23].
Bacillus subtilis is a highly tractable Gram-positive

model for biofilm formation. The regulation of B.
subtilis pellicle formation and morphogenesis has
been well characterized in undomesticated strains
[5,12,16,24–26], but the roles of flagellar motility and
aerotaxis in this process have not been fully
elucidated. Domesticated, laboratory strains of B.
subtilis have mostly reduced biofilm forming ability
[27]. Using the undomesticated strain ATCC 6051,
Kobayashi showed that flagellum-deficient mutants
exhibit a delay in pellicle formation [12]. However,
this effect was not observed in the minimal medium
MSgg, which is generally used to investigate both
colony biofilms and pellicles of B. subtilis wild
isolates. Based on these results, it was concluded
that flagella may rather play an indirect regulatory
role in pellicle formation [12]. It has been hypothe-
sized that B. subtilis cells migrate to the air–liquid
interface due to aerotaxis [5] but this has not been
demonstrated experimentally. Further, lack of flagel-
lar motility did not alter colony biofilm spreading on
agar medium as demonstrated by Seminara et al.
[28]. B. subtilis can also colonize a semisolid surface

via multicellular movements [29]. While hyperflagel-
lated cells move in rafts [30], flagellum-less isolates
of B. subtilis are able to slide in a surfactin-depen-
dent manner [31]. Notably, the flagellum serves as a
transmitter of mechanical signals during surface
attachment (i.e., initiation of biofilm formation) to
activate gene expression in B. subtilis via the DegS/
DegU two-component system [32]. Throughout
this paper, we will refer to the movement based on
individual cell as motility.
Motility also plays an important role in P. aerugi-

nosa biofilms as the structures of flow cell biofilms
are altered when motility and its switch-off during
biofilm formation is not tightly controlled [9,15,33–
35]. For example, evolved hyperswarmers are out-
competed by the less motile ancestral strain in
surface-attached biofilms indicating a trade-off be-
tween biofilm formation and flagellar motility [36]. In
P. aeruginosa, flagella and pili contribute to specific
types of motility (swimming/swarming and twitching,
respectively) [37]. It was also investigated whether
flagella and pili are involved in the formation of
pellicles of P. aeruginosa PAO1. Yamamoto et al.
observed that a flagellum-deficient mutant fails to
produce a normally structured pellicle and pellicle
formation is delayed. On the contrary, pili-deficient
mutants and mutants deficient in both pili and flagella
formed proper pellicles [9].
In this work, we characterized the roles of

flagellum-dependent motility, chemotaxis and oxy-
gen sensing in pellicle development of B. subtilis.
We found that, although flagellar motility was not
strictly required for pellicle formation, it conferred a
competitive advantage over non-motile mutants in
static competition assays. Mutants defective in
flagellar motility, chemotaxis or oxygen sensing
were also at a disadvantage when competed against
the parent strain under these conditions. P. aerugi-
nosa PA14 mutants lacking flagella showed a partial
defect in pellicle formation and a disadvantage in
competition assays. We reasoned that flagella might
facilitate localization near the surface and thereby
contribute to increased turbidity near the air–liquid
interface in static cultures. Time-lapse imaging
revealed formation of an intriguing transparent
zone near the air–liquid interface in wild-type B.
subtilis and P. aeruginosa static cultures during the
time preceding pellicle formation. Non-flagellated
mutants showed more culture turbidity in this region.

Results

Flagellar motility is required for wild-type pellicle
maturation dynamics in B. subtilis

To investigate the role and costs of flagellar
mo t i l i t y du r i n g pe l l i c l e f o rma t i on , t he
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flagellin-deficient and therefore immotile mutant
Δhag of B. subtilis strain NCIB3610 was used.
First, pellicle formation of Δhag and the wild type was
compared in the biofilm-promoting medium MSgg to
test whether the previously described delay of the
Δhagmutant in rich medium would also be present in
this minimal medium. As shown in Fig. 1a and Video
S1, planktonic growth of both strains could be
noticed at the same time (i.e., cultures became
turbid). Subsequently, the wild type formed a thick
layer of pellicle after 8 h of incubation (observable as
reduced light reflectivity of the medium surface on
Fig. 1b) and wrinkled after 19 h. The Δhag mutant
exhibited delayed pellicle formation, with initiation at
15 h after inoculation and wrinkle formation after
25 h. The wild-type-like appearance of the Δhag
mutant pellicle demonstrated that pellicle formation
and morphogenesis per se was not impeded by lack
of flagella. Further, when the wild type and the Δhag
mutant were inoculated at high starting cell densities

(~OD600 of 1.0), no delay in pellicle formation was
observed (data not shown). The delay of the Δhag
mutant was not due to disadvantages in growth as
the Δhagmutant reached higher OD (optical density)
values and therefore showed enhanced growth in
shaken cultures when compared to the wild type
(Fig. S1). The latter result suggests that the
production of flagellin is accompanied by energetic
costs for the wild type. The same growth advantage
was observed for mutants lacking components of the
flagellum indicating that both flagellum production
and flagellar activity are costly for the cell (Fig. S1).

The Δhag mutant is outcompeted by wild-type
cells during pellicle formation

To assay whether the cost of flagellin production
influences the competitiveness of the B. subtilis
wild-type strain, we performed a competition with the
Δhag mutant under pellicle promoting and

Fig. 1. (a) Pellicle formation of B. subtilis wild type (left petri dish) and its Δhag derivative (right petri dish) is shown in
35-mm-diameter petri dishes containing MSgg medium. (b) Magnified section of the petri dishes at selected time point
mentioned in the text. Scale bar indicates 2 mm. Arrows point to the reflected light on the medium surface before a thin
layer of pellicle is formed. The time points are presented from Video S1.
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non-promoting conditions. The wild type and the
Δhag mutant were inoculated together in MSgg
medium in a 1:1 ratio and incubated under static
(pellicle promoting) or shaking (pellicle non-promot-
ing) conditions. One of the strains was labeled with
constitutively expressed GFP (green fluorescent
protein) and the final ratio of the two strains was
determined by CFU (colony-forming units) counting.
The experiment was repeated with a switched label

to exclude any effects caused by the production of
GFP (NCIB3610 versus ΔhagGFP and NCIB3610GFP
versus Δhag). Under shaken, well-aerated condi-
tions, the wild type was outcompeted by the Δhag
mutant indicating that the cost of flagellin production
leads to disadvantages for the wild type under this
condition (Fig. 2a). However, under pellicle promot-
ing conditions, the Δhag mutant was strongly
outcompeted by the wild type (Fig. 2b). This finding
indicates that flagellar motility is important in the
competition for the favorable niche at the air–liquid
interface.

To verify the results, we repeated the pellicle
competition experiment with strains labeled with
different constitutively produced fluorescent markers
for green and red fluorescence (GFP and mKATE2,
respectively). The fluorescent strains were followed
in competition experiments (Video S2) and fluores-
cence intensities were measured after 3 days and
normalized against the fluorescence intensities of
control competitions (see Materials and Methods for
normalization details). The fluorescent signals in the
pellicles were analyzed by both fluorescence mi-
croscopy and a microplate fluorometer. In pellicles,
the Δhag mutant was outcompeted by the wild type
regardless of the fluorescent label as determined by
quantitative fluorescence intensity measurements
(Fig. 3a) and stereomicroscopy (Fig. 3b).
To investigate whether other strains with defects in

flagellar motility would show disadvantages in
pellicle competitions with the wild type, we engi-
neered mutants with deletions in motA (encoding

Fig. 2. Relative abundance of B. subtilis wild type (dark
gray) and Δhag (light gray) strains in competition exper-
iments performed under shaken (a) (n = 3, Student's t test
p b 0.05) or static (b) (n = 6, Student's t test p b 0.01)
conditions. Under planktonic conditions (a), the cultures
reached stationary phase (20 h of incubation) and grew for
about 5.8 generations. Bars represent percentages of
strains in the pellicles. Error bars indicate standard
deviation.

Fig. 3. Competition of GFP- or mKATE2-labeled wild type and Δhag strains of B. subtilis strains during pellicle
formation. Relative fluorescence level (arbitrary units) quantified in a plate reader (a) (n = 4, Student's t test p b 0.001) or
visualized using a stereomicroscope (b). Error bars indicate standard deviation. Certain wells (16 mm diameter) of a
24-well plate are shown in the green- or red-fluorescence channels (false-colored green and red) together with its
bright-light images.
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part of the motor complex), fliF (encoding the cell
wall anchor), flgE (encoding the hook protein) and
sigD (encoding the sigma factor regulating flagella,
motility, chemotaxis and autolysis) and added the
fluorescent tag constructs described above. Mutants
defective in swimming motility—namely ΔmotA,
ΔfliF, ΔflgE and ΔsigD—were outcompeted by the
wild type in 1:1 pellicle competitions (Fig. 4a, Fig. S2
and Table S1). A disadvantage was observed
regardless of whether the mutants lacked a specific
flagellar component or exhibited reduced gene
expression of the whole apparatus (i.e., in the
ΔsigD strain). Importantly, all mutant strains formed
pellicle structures comparable to those of the wild
type when grown as monocultures (Fig. S2).

Chemotaxis and oxygen sensing contribute to
B. subtilis competitiveness in pellicles

As chemotaxis and oxygen sensing have been
proposed to play roles in the initial stages of pellicle

formation in various bacterial species, we tested a
collection of B. subtilis NCIB3610 mutants defective
in chemotaxis for their competitiveness against the
wild type in pellicles. In B. subtilis, most of the
chemotaxis genes are located in the same operon as
the genes encoding flagellar proteins, namely, the
fla/che operon. The chemotaxis machinery includes
a two-component system that consists of the
receptor-coupled kinase CheA and the response
regulator CheY. Phosphorylated CheY binds to a
flagellar motor component leading to counterclock-
wise rotation of the flagellum and therefore swim-
ming. Additional proteins (e.g., CheV, CheR-CheB
and CheC-CheD circuits) are involved in adaptation,
the process by which the signaling state of the
chemotaxis pathway is reset to a background
concentration [38]. The mutants tested were
ΔmcpC (receptor involved in amino acid chemotax-
is), ΔcheA (receptor-coupled kinase), ΔcheB (in-
volved in methylation of receptors), ΔcheC and
ΔcheD (both regulating CheA autophosphorylation),

Fig. 4. Competition of GFP- or mKATE2-labeled B. subtilis strains during pellicle formation. Mutants are categorized by
the locus' involvement in (a) flagellum biosynthesis and regulation, (b) chemotaxis or (c) aerotaxis. Relative fluorescence
levels (arbitrary units are shown on the axis) were quantified in a fluorescence plate reader and are shown with bar charts
(n = 4). Green and red bars indicate relative GFP and mKATE2 levels, respectively. In each graph, the upper bars
represent the mix of NCIB3610GFP and mutantmKATE2 strains (WTgreen), while the down bars represent the mix of
NCIB3610mKATE2 and mutantGFP strains (WTred). Error bars indicate standard deviation. Significant differences (Student's
t test p b 0.05; see Materials and Methods) are indicated with a star next to the strains used for competitions.
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ΔcheV (link between receptors and CheA) and
ΔcheY (response regulator) [30,39]. All mutants
that retained some form of (albeit reduced) chemo-
taxis, that is, ΔmcpC, ΔcheC and ΔcheB, were able
to successfully compete with the wild type as
demonstrated by high intensities of the correspond-
ing fluorescence (Fig. 4b and Table S1). In contrast,
chemotaxis-null strains (ΔcheV, ΔcheY and ΔcheA)
were outcompeted by the wild type (Fig. 4b, Fig. S2
and Table S1) suggesting that the ability to sense
attractants or repellents provides benefits for coloni-
zation of the air–liquid interface.
Aerotaxis is a special form of chemotaxis in which

oxygen functions as the attractant or repellent. In
pellicle formation of aerobic bacteria, oxygen has
been suggested to be an important factor mediating
active movement toward the surface of the medium,
where the highest oxygen concentrations are pres-
ent [6]. A strain with a knockout of the hemAT gene,
encoding the B. subtilis oxygen sensor protein [40],
was constructed and competed against the wild
type. As can be seen in Fig. 4c and Fig. S2, the
ΔhemAT mutant was outcompeted by the wild type.
Further, the ΔhemAT mutant was competed against
the Δhag mutant to investigate which mutation leads
to greater disadvantage. Here, the Δhagmutant was
outcompeted by the ΔhemAT mutant showing that
immobility is more harmful than lack of oxygen
sensing for the individual cells during pellicle

co-colonization. However, during the competition of
a ΔhemAT Δhag double mutant with the Δhag
mutant, both were present in a more or less equal
ratio in the pellicle. This finding indicates that ability
to sense oxygen is not providing an advantage when
the bacteria are not able to actively swim. These
results suggest that oxygen sensing provides an
advantage during competition for the air–liquid
interface.

Pellicle intermixing depends on motility, but not
on chemotaxis

In the competition experiments described above,
strains were differentiated by their constitutive
expression of the fluorescent protein GFP or
mKATE2. Control experiments included genetically
identical strains that were only distinguished by their
labeling (e.g., WTGFP versus WTmKATE2 or ΔhagGFP
versus ΔhagmKATE2). Using stereomicroscopy, we
observed that the differentially labeled but otherwise
wild-type strains mixed well during pellicle formation
(Fig. 5, first column), similar to mutants lacking
certain chemotaxis- or aerotaxis-related genes, for
example, ΔmcpC∷MLS (Fig. 5, last column). How-
ever, strains that lacked functional flagella (Δhag,
ΔmotA, ΔfliF, ΔflgE and ΔsigD strains) showed
increased spatial assortment, that is, green- and
red-fluorescent patches of individual strains. These

Fig. 5. Stereomicroscopy images of B. subtilis wild type or mutant strains competed against its genetically identical but
differently labeled derivative. Wells (16 mm diameter) of a 24-well plate are shown in the green- or red-fluorescence
channels (false-colored green and red) together with merged and bright-light images. Representative examples for each
strain are shown.
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results suggest not only that active flagellar motility is
important for B. subtilis to reach the air–medium
interface but also that flagellar motility could be
required for mixing of cells during the initiation of the
pellicle.

P. aeruginosa pellicle formation is also
influenced by motility

To evaluate the broader relevance of our obser-
vations, we next examined the role of motility in
pellicle development of the Gram-negative biofilm
model organism P. aeruginosa. Pellicle formation of
P. aeruginosa PAO1 was previously shown to
require flagellar motility [9]. However, this work
suggested that cells lacking both flagella and pili

form pellicles that are comparable to the wild-type
strain. Here, we tested the importance of the
flagellum and the type IV pilus for pellicle develop-
ment in P. aeruginosa PA14. Pellicles of strains
lacking the genes flgK (flagellar hook-associated
protein), pilB (type IV pilus motor protein) or both
(ΔpilB ΔflgK) were investigated. The ΔflgK mutation
prevents swimming and swarming, while ΔpilB
prevents twitching in P. aeruginosa PA14 [36,41].
Mutants lacking the flgK gene showed delayed
pellicle development when compared to the wild
type, while the ΔpilB mutant showed pellicle devel-
opment that was similar to that of the wild type
(Fig. 6a). Interestingly, pellicle formation is not
abolished in the mutants, as after 102 h, a robust
pellicle comparable with that of the wild type was
observed. Patchy structures of the pellicles were
observed in early pellicle formation stages of the
ΔflgK and ΔpilB ΔflgK mutants (Fig. 6a, after 48 h
and 72 h) similar to a previous description [9] but
were not detected in later stages of pellicle
development.
Additionally, competition experiments similar to

those conducted with B. subtilis were performed with
P. aeruginosa PA14. The ΔpilB, ΔflgK and ΔpilB
ΔflgK mutants were competed against the wild type
in pellicles with initial ratios of 1:1. To distinguish the
competing strains, we fluorescently labeled one with
YFP. A fluorescence label swap indicated a slight
reduction in fitness for labeled strains. In these
experiments, all motility mutants were outcompeted
by the wild type (Fig. 6b). While the ΔflgK and the
ΔpilB ΔflgK mutant were strongly outcompeted
(b4% and b1% of the pellicle, respectively), the
ΔpilB mutant showed a less severe disadvantage
(5–26% of the pellicle) when grown together with the
wild type. These results demonstrate that, in P.
aeruginosa, motility is not required for pellicle
formation but provides a benefit against a non-motile
strain during the colonization of the air–liquid
interface.

Pellicle formation is preceded by population
mixing and the appearance of a cleared zone

The involvement of motility in the formation of
pellicles by diverse bacteria led us to hypothesize
that it enables cells to counteract sedimentation and
stay at the surface. Cells with impaired motility might
therefore be expected to sink, leading to decreased
culture turbidity. To evaluate this, we recorded the
side view of static liquid cultures over several days.
We were surprised to find that a zone of clearing
appeared specifically in strains capable of flagel-
lum-dependent motility, while flagellum-null mutants
showed homogenous turbidity over time (Fig. 7 and
Videos S3–S6). The clear zone was visible relatively
early after inoculation and eventually disappeared

Fig. 6. Pellicle formation of P. aeruginosa wild type and
mutant strains in borosilicate scintillation vials (28 mm
diameter) containing LB medium (a). Relative abundance
of P. aeruginosa wild type (dark gray) and mutant (light
gray) strains in competition experiments performed under
static conditions (b) (WT versusWTGFP: n = 6; others: n =
3). Bars represent percentages of strains indicated on the
side of the bar. Error bars indicate standard deviation.

3701Role of Flagellar Motility in Pellicle Development

51



when the pellicle started to thicken. The fact that the
transparent zone appears in strains exhibiting earlier
pellicle formation suggests that cells in this zone
abruptly exit and swim toward the surface of the
liquid to access more oxygen. However, the fact that
the B. subtilis ΔhemAT static cultures inoculated at
high cell density exhibit clear zones similar to those
formed by the wild type (Video S7) suggests that

oxygen is not the signal that stimulates exit from the
region just below the pellicle. Alternative potential
explanations are that a gradient of another nutrient
attracts cells away from this zone or that a waste
product/chemorepellent accumulates in the region
due to the high cell density of the pellicle immediately
above. Emergence of the zone of clearing coincided
with the appearance of a turbulent flow in the lower
portion of the culture tube, both at high cell density
and at low cell density (Videos S3–S6). This
flagellum-dependent turbulent flow is particularly
intriguing as it could serve to facilitate the mixing of
oxygen into the medium and represent a popula-
tion-level strategy for resource acquisition. Our
time-lapse observation of B. subtilis and P. aerugi-
nosa pellicle development indicates that motility
plays a central role in defining population dynamics
and conferring a growth advantage in this model
biofilm system.

Discussion

This study examined the contributions of motility to
fitness during bacterial pellicle biofilm development
of B. subtilis and P. aeruginosa, as well as the
relevance of oxygen availability to the behavior of B.
subtilis static cultures. We observed that, in both
organisms, pellicle formation was delayed in motili-
ty-deficient mutants. Despite this delay, the mutant
strains exhibited wild-type morphology demonstrat-
ing that motility is not essential for robust pellicle
formation. We hypothesize that, in the non-motile
strains, pellicle formation is delayed because of a
lack of directed movement toward the air–liquid
interface. The cell number may increase mainly by
division of the few cells that reached the air–liquid
interface by passive, non-directional Brownian mo-
tion, slowing down the process of pellicle formation.
This is supported by the fact that, at high initial cell
density, the delay of the B. subtilis Δhag and P.
aeruginosa ΔflgK mutants was abolished. Further,
we observed that motility-deficient strains of B.
subtilis and P. aeruginosa were outcompeted in
pellicle competition experiments with their respective
wild-type counterparts. This result can also be
explained by our hypothesis that the motility-defi-
cient cells make it to the liquid surface only by
chance and therefore only inefficiently contribute to
formation of a mixed pellicle. On the contrary, the
wild-type cells can move toward the air–liquid
interface in a directed manner at initial stages of
pellicle formation; these cells are therefore present in
the pellicle in higher abundance. These results
suggest that it is important for successful competition
with other strains to reach the air–liquid interface
efficiently. We conclude that motility contributes to
successful competition for residence at the air–liquid
interface although it is not essential for pellicle

Fig. 7. Pellicle formation of B. subtilis wild type and its
Δhag derivative in MSgg medium, shown from the side (a).
Pellicle formation of P. aeruginosa wild type and ΔflgK,
ΔpilB and ΔflgK ΔpilB strains in LB medium, shown from
the side (b). Selected time points are presented from
Videos S3 and S5.
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formation per se. It is also important to note that motility
is a costly trait, which was shown for B. subtilis in
competition experiments performed under conditions
that do not promote pellicle formation (Fig. 2a).
Most probably, cells perceive the location of the

air–liquid interface by the sensing of an attractant,
which is then translated into directed movement by
the chemotaxis system [38]. B. subtilis mutants
lacking core components of the chemotaxis machin-
ery were also outcompeted by wild-type cells during
pellicle development. This suggests that sensing of
certain signals is important for successful pellicle
co-colonization. In these chemotaxis mutant strains,
even if the cells are able to move and sense an
attractant, they lack the translation of signals into
directed movement. Thus the cells move around
randomly and only the cells that are located at the
air–liquid interface by chance can participate in
pellicle formation. In B. subtilis, we identified oxygen
as a putative trigger for active movement toward the
air–liquid interface since the ΔhemAT mutant, which
is not able to sense oxygen [40], was outcompeted
by the wild type in static co-cultures. Thus, it was
able to move but lacked information regarding the
direction of the most favorable conditions in its
surroundings, resulting again in random distribution
in the liquid. Yamamoto et al. showed that, in P.
aeruginosa PAO1, pellicle formation was reduced
under oxygen-depleted conditions [23], suggesting
that aerotaxis might be important for localization to
the air–liquid interface in this organism as well. In S.
oneidensis, aerotaxis was also found to be important
since, without oxygen, pellicle initiation was abol-
ished [7]. Further, pellicle maturation of S. oneidensis
was blocked under anoxic conditions in cultures
where pellicle formation was allowed to be initiated
in the presence of oxygen. Similarly, E. coli does not
form biofilms at the air–liquid interface under anoxic
conditions [10]. These findings indicate that oxygen
and aerotaxismight begenerally important for locating
the air–liquid interface and proper initiation of pellicle
formation in diverse bacterial species. Armitano et al.
also concluded that chemotaxis and a functional
flagellum are essential for pellicle formation in S.
oneidensis since the respectivemutants did not forma
pellicle [7]. However, the pellicle formation ability was
investigated after only 20 h; it is therefore possible
that pellicle formation is just delayed in both mutants.
Nevertheless, their results show that, in diverse
bacteria, functional flagella and the chemotaxis
system are important for normal progress of at least
the initial stages of pellicle formation.
Interestingly, flagellar motility, but not chemotaxis,

also influences population intermixing in B. subtilis
pellicles. Spatial segregation has been shown to
facilitate the stabilization of cooperative traits in B.
subtilis colony biofilms [42] and also influences
interaction in microbial populations [43]. Non-motile
strains show increased spatial segregation. This

elevated assortment could be due to reduced
flagellar motility within a newly formed and still
dynamic layer of pellicle or, alternatively, it could be
caused by a dissimilar surface colonization mecha-
nism of the motile and non-motile strains. Kobayashi
previously proposed a model in which B. subtilis cell
clusters float to the surface of a biofilm-promoting,
nutrient-rich medium during pellicle formation [12].
While our experiments highlight the importance of an
active signal-driven motility, non-motile strains might
colonize the air–medium interface via clusters of cells
that expand to form a convergent layer. This could
then be observed as spatially segregated clusters of
cells initiated by two strains with distinct fluorescent
labels, as we present here. We hypothesize that the
two putative mechanisms, single-cell and cluster--
based pellicle initiation, might coexist in the wild-type
strain or depend on the culturing conditions.
We further observed a zone of clearing below the

initial pellicle layer in wild-type B. subtilis, wild-type P.
aeruginosa and the P. aeruginosa ΔpilB mutant but
not in B. subtilis or P. aeruginosa flagellum-deficient
mutants. The formation of this zone may be triggered
by the higher abundance of oxygen close to the air–
liquid interface. However, time-lapse experiments of
the ΔhemAT B. subtilis strain initiated with high cell
densities showed the presence of the clearing zone
suggesting that, under such conditions, sensing of
oxygen plays no significant role. In contrast, the B.
subtilis Δhag strain was not delayed in pellicle
formation when a high initial cell density was used.
As the clearing occurs in the Gram-positive B. subtilis
and the Gram-negative P. aeruginosa, we speculate
that the occurrence of this clear zone may be a
general property of pellicle-forming, facultative aer-
obes. The mechanism underlying the formation of the
clear zone remains to be investigated.

Materials and methods

Bacterial strains, plasmids and materials

All strains used in this study are listed in Table 1. The B.
subtilis strains are derivatives of the wild isolate NCIB3610
(referred to as the wild type) otherwise indicated. The P.
aeruginosa strains are derivatives of strain PA14 (referred
to as the wild type) and were created as described below.
B. subtilis fluorescently labeled strains were created by
phage transduction. E. coli MC1061 and UQ950 strains
were used for cloning.

Growth conditions, biofilm conditions and
competition experiments

B. subtilis overnight cultures were grown aerobically in
3 mL Lenox broth (Carl-Roth GmbH, Karlsruhe, Germany)
medium at 37 °C, shaking at 225 rpm. For routine liquid
cultures of P. aeruginosa PA14, the cells were grown in
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Table 1. Strains and plasmids used in this study

Strains/plasmids Characteristics Source or
reference

B. subtilis
NCIB3610 prototroph [5]
168hyGFP 168 amyE∷Phyperspank-GFP (CmR) [42]
168hymKATE2 168 amyE∷Phyperspank-mKATE2 (CmR) [42]
DS1677 NCIB3610 Δhag [50]
TB201 DS1677 transduced with Phy-mKATE2 This study
TB185 DS1677 transduced with Phy-GFP This study
DS4681 NCIB3610 ΔflgE [51]
TB203 DS4681 transduced with Phy-mKATE2 This study
TB187 DS4681 transduced with Phy-GFP This study
DS7080 NCIB3610 ΔfliF [52]
TB208 DS7080 transduced with Phy-mKATE2 This study
TB192 DS7080 transduced with Phy-GFP This study
DS7498 NCIB3610 ΔmotA [52]
TB210 DS7498 transduced with Phy-mKATE2 This study
TB193 DS7498 transduced with Phy-GFP This study
DS6420 NCIB3610 ΔsigD [53]
TB204 DS6420 transduced with Phy-mKATE2 This study
TB188 DS6420 transduced with Phy-GFP This study
DS6887 NCIB3610 ΔcheA [39]
TB213 DS6887 transduced with Phy-mKATE2 This study
TB197 DS6887 transduced with Phy-GFP This study
DS7306 NCIB3610 ΔcheB [39]
TB209 DS7306 transduced with Phy-mKATE2 This study
TB194 DS7306 transduced with Phy-GFP This study
DS6867 NCIB3610 ΔcheC [39]
TB205 DS6867 transduced with Phy-mKATE2 This study
TB189 DS6867 transduced with Phy-GFP This study
DS6868 NCIB3610 ΔcheD [39]
TB206 DS6868 transduced with Phy-mKATE2 This study
TB190 DS6868 transduced with Phy-GFP This study
DS70 NCIB3610 ΔcheV∷MLS [30]
TB199 DS70 transduced with Phy-mKATE2 This study
TB183 DS70 transduced with Phy-GFP This study
DS6870 NCIB3610 ΔcheY [39]
TB207 DS6870 transduced with Phy-mKATE2 This study
TB191 DS6870 transduced with Phy-GFP This study
DS180 NCIB3610 ΔmcpC∷MLS [30]
TB200 DS180 transduced with Phy-mKATE2 This study
TB184 DS180 transduced with Phy-GFP This study
TB239 168 ΔhemAT∷Nm This study
TB241 3610 transduced with hemAT∷Nm This study
TB243 TB241 transduced with Phy-mKATE2 This study
TB244 TB241 transduced with Phy-GFP This study
TB242 DS1677 transduced with hemAT∷Nm This study
TB245 TB242 transduced with Phy-mKATE2 This study
TB246 TB242 transduced with Phy-GFP This study

P. aeruginosa
PA14 Clinical isolate UCBPP-PA14 [54]
LD592 PA14 with chromosomally integrated constitutive eYFP [55]
LD371 PA14 ΔflgK This study
LD2221 PA14 ΔflgK (LD371) with chromosomally integrated constitutive eYFP This study
LD369 PA14 ΔpilB This study
LD2222 PA14 ΔpilB (LD369) with chromosomally integrated constitutive eYFP This study
LD384 PA14 ΔpilB ΔflgK This study
LD2151 PA14 ΔpilB ΔflgK (LD384) with chromosomally integrated constitutive eYFP This study

E. coli
MC1061 host for cloning; araD139, Δ(ara, leu)7694, ΔlacX74, galU−, galK−, hsr−, hsm−, strA [56]
UQ950 DH5α λ (pir) host for cloning; F− (argF-lac)169 φ80dlacZ58(ΔM15) glnV44(AS) rfbD1

gyrA96(Nalr) recA1 endA1 spoT1 thi-1 hsdR17 deoR λpir+
D. Lies

BW29427 donor strain for conjugation; thrB1004 pro thi rpsL hsdS lacZ ΔM15RP4–1360
Δ(araBAD)567 ΔdapA1341∷[erm pir(wt)]

B. Wanner

β-2155 donor strain for conjugation; thrB1004 pro thi strA hsdS lacZΔM15 ΔdapA∷erm (Ermr)
pir∷RP4 [∷kan (Kmr) from SM10]

[57]
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2 mL lysogeny broth [44] in tubes that are
12 mm × 100 mm at 37 °C with shaking at 250 rpm.
Growth conditions for pellicles are described below.

Construction of B. subtilis strains

GFP- and mKATE-labeled B. subtilis strains and
ΔhemAT mutants in B. subtilis NCIB3610 were obtained
via phage transduction. Constructs were then transferred
to selected NCIB3610 derivatives using SPP1-mediated
generalized phage transduction [45]. For the construction
of the ΔhemAT mutant, first, a PCR fragment containing a
neomycin resistance cassette was amplified with primer
pair oRGM2 and oRGM7 (see primer sequences in
Table 2) from pBEST501 and cloned into the SmaI site
of pBluescriptSK+ to create pTB120. Upstream and
downstream regions of hemAT gene were PCR amplified
with primer pairs oTB78-oTB79 and oTB80-oTB81 and

were sequentially cloned into the XhoI-PstI and BamHI-
SacI sites of pTB120, respectively, resulting in pTB235.
Plasmid pTB235 was confirmed through sequencing. The
Eam1101I linearized pTB235 was transformed into B.
subtilis 168 with natural competence [46] and transfor-
mants were selected on LB agar medium with 5 μg/mL
kanamycin. Deletion in the hemAT gene was confirmed by
PCR with primer pair oTB82-oTB83 and by sequencing.

Construction of P. aeruginosa strains

Construction of deletion and complementation plasmids

Unmarked deletions were generated for the genes flgK
(PA14_50360) and pilB (PA14_58750) in wild-type PA14
as previously described [47]. Deletion plasmids were
generated using yeast gap repair cloning. Flanking regions
(~1 kb in length) for flgK and pilB were generated using
primers listed in Table 2. The flanking regions and the

Table 2. Primers used in this study

Primers Sequence (5′ to 3′)

For B. subtilis constructs
oRGM2 TACCGTTCGTATAATGTATGCTATACGAAGTTATAGATCAATTTGATAATTACTAATAC
oRGM7 TACCGTTCGTATAGCATACATTATACGAAGTTATTAGAGCTTGGGTTACAGGCATGG
oTB78 GATCCTCGAGAAGCCGGCACGCCATTAAG
oTB79 TTATCGGCCAAGGGAAAC
oTB80 GATCGGATCCAAACCGGTCTGCCATACG
oTB81 CACGGAGCTCATGGGAATGGCCGTACATC
oTB82 GGCCGAATTTATGAAGAGAC
oTB83 AAGATCCGCATTGCTTATGG

For P. aeruginosa constructs
ΔflgK 5′ flank-1 GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTAGGTGATGAAGTCGCTGGTC
ΔflgK 5′ flank-2 ACTGACCCATGTCCGACCTACCAACCTGATCCAGTTCCAG
ΔflgK 3′ flank-1 CTGGAACTGGATCAGGTTGGTAGGTCGGACATGGGTCAGT
ΔflgK 3′ flank-2 CCAGGCAAATTCTGTTTTATCAGACCGCTTCTGCGTTCTGATCACCAAGCAGTACCAGGACA
ΔpilB 5′ flank-1 GGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGCTTGCCATCCTCCTGCTATTTC
ΔpilB 5′ flank-2 GCAGATCGTTGAAGCCTTCTGCCTTTTCATCGAGAAGTTCA
ΔpilB 3′ flank-1 TGAACTTCTCGATGAAAAGGCAGAAGGCTTCAACGATCTGC
ΔpilB 3′ flank-2 CCAGGCAAATTCTGTTTTATCAGACCGCTTCTGCGTTCTGATGCTGGACACGTCTTGTTTGA

Table 1 (continued)

Strains/plasmids Characteristics Source or
reference

Saccharomyces cerevisiae
InvSc1 MATa/MATα leu2/leu2 trp1-289/trp1-289 ura3-52/ura3-52 his3-Δ1/his3-Δ1 [48]

Plasmids
pBEST501 PrepU-neo, AmpR [58]
pBluescript SK+ cloning vector, AmpR Stratagene
pTB120 NmR cassette cloned into pBluescript SK+ This study
pTB235 NmR cassette with upstream and downstream regions of B. subtilis hemAT This study
pMQ30 Yeast-based allelic-exchange vector; sacBa CEN/ARSH URA3+ Genr [48]
pLD348 flgK deletion fragments cloned into pMQ30 This study
pLD349 pilB deletion fragments cloned into pMQ30 This study
pAKN69 Mini-Tn7 derived fluorescent labeling vector; mini-Tn7(Gm)PA1/04/03∷eyfp [49]
pUX-BF13 R6K replicon-based helper plasmid providing the Tn7 transposition function in trans;

Ampr
[59]

For phage transduction, strains 168hyGFP, 168hymKATE2 and TB239 were used as donor.
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linearized allelic-replacement vector pMQ30 were assem-
bled by gap repair cloning using the yeast strain InvSc1
[48]. The resulting deletion plasmid was transformed into
E. coli BW29427 and mobilized into PA14 using biparental
conjugation. PA14 single recombinants were selected on
LB agar containing 100 μg/mL gentamicin. Potential flgK
or pilB deletion mutants were generated by selecting for
double recombinants that grew in the presence of 10%
sucrose. These candidates were further analyzed by PCR
to detect the desired deletion.

Constitutive eYFP expressing strains

The construct containing the eyfp gene under a
constitutive promoter was genomically inserted through a
Tn7 transposon-based system [49]. The eyfp-containing
plasmid pAKN69 was mobilized into PA14 via triparental
conjugation, which involves (1) donor strain E. coli
BW29427 harboring pAKN69, (2) donor strain E. coli
β-2155 harboring the helper plasmid pUX-BF13 and (3) the
recipient PA14 strains. YFP-tagged PA14 clones were
selected on LB agar containing 100 μg/mL gentamicin.

Biofilm growth and pellicle competition experiments
in B. subtilis

For pellicle formation of B. subtilis, 20 μL of overnight
culture was mixed with 2 mL of biofilm promoting minimal
medium MSgg [5] in a well (16 mm diameter) of a 24-well
plate. The culture was statically incubated at 30 °C for
3 days. For pellicle competition experiments with CFU
determination, each competitor was inoculated to a final
OD of 0.05 in 2 mL MSgg in a well of a 24-well plate and
incubated statically at 30 °C. After incubation, the pellicles
were harvested, disrupted by sonication (2 × 12 pulses of
1 s with 30% amplitude; Ultrasonic Processor VCX-130,
Zinsser Analytics, Frankfurt am Main, Germany) and
plated on LB and chloramphenicol containing (5 μg/mL)
agar plates in dilutions. The CFU count was recorded and
the relative percentage of each competitor in the pellicle
was calculated based on their antibiotic resistance. For
competition experiments under shaking conditions, each
competitor was inoculated to a final OD of 0.05 in 5 mL
MSgg in a 100-mL bottle and incubated at 30 °C and
225 rpm shaking for 20 h. The cultures reached the
stationary phase and grew for about 5.8 generations.
Afterwards, the CFU count was determined as previously
described for the pellicle competition (see above). A
two-sided Student's t test was performed.
For fluorescence competition experiments, 10 μL of

overnight cultures of each competitor was mixed with 2 mL
MSgg in a well of a 24-well plate and incubated as
described above. The fluorescence intensity was mea-
sured using an infinite F200PRO plate reader (TECAN
Group Ltd., Männedorf, Switzerland). Fluorescence inten-
sities of mutant strains against wild-type competitions
(“assay competitions”) measured with the plate reader
were normalized against the fluorescence intensities of
competitions of wild typeGFP against wild typemKATE2
(“wild-type control competition”) or mutantGFP against
mutantmKATE2 (“mutant control competition”). Wild-type
signals were normalized based on the “wild type against
wild type” control competition. Analogously, signals of

mutant fluorescence were normalized, resulting in per-
centage numbers. Each competition was performed in four
replicates, if not stated otherwise. A two-sided Student's t
test was applied to check whether obtained fluorescence
intensity measurements were statistically significantly
different (significance level α = 0.05; number of replicates
n = 4; degrees of freedom f = 3; critical value c = 3.182).
Results were deemed significantly different if the calculat-
ed t value was outside of the critical interval −c ≤ t ≥ c.

Biofilm growth and pellicle competition experiments
in P. aeruginosa

Overnight cultures were diluted 100×, subcultured for
~2.5 h to OD500 of 0.5–0.7 and then diluted to OD500 of 0.5.
For the pellicle morphology assay, 230 μL of the exponen-
tial-phase culture (OD500 of 0.5) was diluted in 23 mL of LB
in a borosilicate scintillation vial (9718G12; Thomas
Scientific) and grown at 37 °C for 2 days to form pellicles.
For competition assays, cells were mixed at 500 μL:500 μL,
and 50 μL of each mix was then diluted in 5 mL of LB in a
borosilicate tube (18 mm × 150 mm) and incubated without
shaking at 37 °C for 2 days. For CFU counts of samples
from competition experiments, each pellicle was transferred
to 1 mL of 1% tryptone in a bead beating tube containing
0.5 g of zirconium beads (1.4 mm; OPS Diagnostics).
Pellicles were homogenized at 400 rpm for 5 min at 4 °C.
We plated 10−7 of the total amount of cells from each
pellicle on 1% tryptone agar medium for CFU counting.
YFP-tagged strains were identified using a Typhoon FLA
7000 scanner (GE Healthcare).

Fluorescence microscopy

Bright-field, green- and red-fluorescence images of the
pellicles were taken with an Axio Zoom V16 stereomicro-
scope (Carl Zeiss, Jena, Germany) at a magnification of
3.5× equipped with a Zeiss CL 9000 LED light source, HE
eGFP filter set (excitation at 470/40 nm and emission at
525/50 nm), HE mRFP filter set (excitation at 572/25 nm
and emission at 629/62 nm) and an AxioCam MRm
monochrome camera (Carl Zeiss). The exposure times
were set to 0.1 s, 0.85 s and 3 s for bright field, green
fluorescence and red fluorescence, respectively. ImageJ
(National Institute of Health, Bethesda, MD, USA) was used
for background subtraction and channel merging. For
time-lapse experiments, cultures in 35-mm-diameter Falcon
petri dishes (VWR, Darmstadt, Germany) were incubated in
INUL-MS2-F1 incubators (Tokai Hit, Shizuoka, Japan) at
30 °C and images were recorded every 30 min.

Time-lapse experiments (side view)

For P. aeruginosa time-lapse videos, the growth condi-
tions were the same as those described for competition
experiments, starting at OD (500 nm) of 0.005 or 2.0 at
37 °C. ForB. subtilis, pellicles were grown inMSggmedium,
starting at OD = 0.005 or 1.2 at 30 °C. Images were
recorded every minute using an iPod touch (Apple) or a
customized recording system (Logitech HDWebcam C525)
under LED illumination. Image acquisition and lighting were
synchronized with LabVIEW (National Instruments).
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Supplementary data to this article can be found online at
http://dx.doi.org/10.1016/j.jmb.2015.06.014.
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Abbreviated Summary 

During biofilm establishment at the 
air-liquid interface, Bacillus subtilis 
evolves matrix overproducers with 
a wrinkly colony phenotype (WS). 
This is caused by mutations in the 
regulator SinR which alter its 
dimerization and DNA interaction 
properties. The matrix 
overproducers appear mostly in a 
non-motile mutant where they 
possess a competitive advantage 
for biofilm formation, which is not 
present in the wild type 
background.
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Summary 

Selection for a certain trait in microbes depends on the genetic background of the strain and 

the selection pressure of the environmental conditions acting on the cells. In contrast to the 

sessile state in the biofilm, various bacterial cells employ flagellum-dependent motility under 

planktonic conditions suggesting that the two phenotypes are mutually exclusive. However, 

flagellum dependent motility facilitates the prompt establishment of floating biofilms on the 

air-medium interface, called pellicles. Previously, pellicles of B. subtilis were shown to be 

preferably established by motile cells, causing a reduced fitness of non-motile derivatives in 

the presence of the wild type strain. Here, we show that lack of fully assembled flagella 

promotes the evolution of matrix overproducers that can be distinguished by the 

characteristic wrinkled colony morphotype. The wrinkly phenotype is associated with amino 

acid substitutions in the master repressor of biofilm-related genes, SinR. By analyzing one of 

the mutations, we show that it alters the tetramerization and DNA binding properties of SinR, 

allowing an increased expression of the operon responsible for exopolysaccharide 

production. Finally, we demonstrate that the wrinkly phenotype is advantageous when cells 

lack flagella, but not in the wild type background. 
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Introduction 

Trait loss can have detrimental or beneficial consequences on the fitness of individuals. 

Eventually, loss in certain phenotypic attributes can have both negative and positive impact 

depending on the environmental conditions. However, impairment of certain paths might 

allow the evolution of new traits to compensate for the fitness loss. Such a trait loss and 

evolution can be easily detected in microbes that are able to promptly adapt to the selection 

pressure of their environment. Due to their rapid reproduction and pheno- or genotypic 

adaptation, evolution can be recognized even within few days. For example, Pseudomonas 

fluorescens rapidly adapts to static conditions and produces a microcosm at the air-medium 

interface, established by cellulose polymer overproducing derivatives (Rainey and Rainey, 

2003). These matrix overproducers, distinguished by their typical wrinkled colony 

morphotype in the laboratory can emerge in numerous bacterial species (Hansen et al., 

2007; Poltak and Cooper, 2011; Flynn et al., 2016). The evolution of these wrinkly 

morphotypes in Pseudomonas is governed by the altered bis-(3´-5´)-cyclic dimeric guanosine 

monophosphate (c-di-GMP) levels in the cells (Goymer et al., 2006; Traverse et al., 2013). It 

is suggested that the complexity and flexibility of the regulatory system around c-di-GMP 

facilitates adaptation to new environments (Lind et al., 2015). Interestingly, elimination of the 

major c-di-GMP modulating components revealed several other mutational pathways 

allowing the appearance of wrinkly morphotypes. In addition, the appearance and fixation of 

newly evolved genotypes is facilitated by the spatial structure present in biofilms (Martin et 

al., 2016).  

Various biofilm types are established by Bacillus subtilis under laboratory conditions, 

including pellicles at the air-medium interface (Branda et al., 2001; Gallegos-Monterrosa et 

al., 2016; Mhatre et al., 2016). B. subtilis cells inhabiting the biofilms are sessile and produce 

a matrix consisting of exopolysaccharides (EPS), protein fibers (TasA) and hydrophobin 

protein (BslA) (Branda et al., 2004; Romero et al., 2010; Kobayashi and Iwano, 2012; Hobley 

et al., 2013). Complex regulatory pathways ensure the mutually exclusive expressions of 

genes related to biofilm matrix production and motility (Chai, Kolter, et al., 2010; Chai, 

Norman, et al., 2010). In addition to its role as the major repressor of biofilm formation, SinR 

also affects the expression of genes related to motility and cell separation collectively with 

other regulatory proteins (Chai, Norman, et al., 2010). Therefore, SinR has a central role in 

coordinating the exclusive expression of genes responsible for motile and sessile states.  

While flagellum-dependent motility is not essential for the establishment of pellicles in B. 

subtilis, it facilitates the rapid formation of new biofilms (Hölscher et al., 2015). Therefore, 

strains lacking motility are delayed in pellicle formation and are outcompeted by cells 

possessing the functional motility apparatus and exhibiting aerotaxis (Hölscher et al., 2015). 
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Rapid appearance of distinct B. subtilis morphotypes has been previously described in a 2-

month-long batch culture experiment under static and shaken conditions (Leiman et al., 

2014). Under both conditions, versatile morphotypes evolved including derivatives with 

reduced matrix production and linages with enhanced matrix expression. In the latter case, 

mutation in the sinR gene was identified by candidate-gene approach. Interestingly, 

mutations in sinR rapidly emerge in colonies of B. subtilis lacking SinI, an antagonist of SinR 

function (Kearns et al., 2005). Additionally, emergence of sinR mutants solves the problem of 

toxic galactose metabolites accumulation in the galE mutant, where elevated EPS production 

functions as a shunt for the toxic molecule (Chai et al., 2012). Therefore, the adaptation 

pathway though sinR mutations appears to be a general dénouement for numerous 

adaptation processes in B. subtilis biofilms. 

Here, we study how the lack of functionally assembled flagella influences the evolution of 

wrinkly morphotypes in B. subtilis and demonstrate that matrix-overproduction caused by 

non-synonymous mutations in SinR primarily aids non-motile cells. 
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Results and Discussion 

Evolution of wrinkly morphotypes in pellicles of B. subtilis 

Lack of motility delays the establishment of B. subtilis pellicles (Hölscher et al., 2015). During 

the previous study, when various biofilm competition experiments were performed using non-

motile B. subtilis strains and colony-forming units (CFU) were assayed on LB plates, the 

appearance of a distinct colony phenotype was noticeable. The wrinkles and size of the 

observed colonies were clearly increased compared to their ancestors used for the study 

(Fig. 1a). Interestingly, these wrinkled spreader colonies (hereafter called WS morphotypes) 

were mostly apparent for the strain lacking the gene coding for the flagellin protein (i.e. hag). 

Therefore, a series of mutant strains used in our previous study (Hölscher et al., 2015) was 

examined for the frequency of wrinkled derivatives during pellicle formation. Strains lacking 

various parts of the flagellum (flagellin (hag), hook (flgE), or basal body (fliF)), having 

disrupted regulation of motility (sigD mutant) or harboring a non-active flagellum (motA 

mutant) contained an increased amount of WS colonies during pellicle formation compared 

to the wild type (Fig. 1b). 

 

 
Figure 1. WS morphotypes exhibit elevated wrinkle formation and appear especially in non-motile mutant. 

(a) Microscopy images of WS morphotypes isolated from WT and Δhag strains. Representative images for the 
phenotype of each detected mutation, indicated in parentheses, are displayed. The scale bar represents 2 mm. 
(b) Frequency of WS morphotypes in various derivatives of B. subtilis. Boxes represent quartile 1-3, the line 
represents the median and whiskers indicate the upper and lower inner fence and dots represent outliers. 
Asterisks indicate significant differences (two sample Student’s t test assuming unequal variances: P values: 
Δhag, 8.27∙10-6; ΔflgE, 0.013; ΔfliF, 1.23∙10-7; ΔsigD, 2.21∙10-5, ΔmotA, 0.0125; n ≥ 9). (c) Schematic 
representation of the SinR protein with domains and location of the detected mutations depicted. 
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WS morphotypes harbor non-synonymous mutations in sinR  

After isolation of ten WS morphotypes each from cultures of wild type and flagellin-lacking 

mutant (WTWS1-10 and ΔhagWS1-10, respectively), we analyzed the sinR gene encoding a 

major regulator of B. subtilis motility and biofilm formation, since wrinkle formation is among 

other factors associated with matrix production (Branda et al., 2004; Asally et al., 2012). 

Sequencing revealed several non-synonymous substitutions resulting in SinR variants with 

the following changes in amino acid composition: V26G, A85T, L99S and Q108stop. 

V26G was located in the DNA-binding domain of SinR, whereas the other three mutations 

were found in the SinI-binding domain (Fig. 1c). All isolated morphotypes contained one of 

those mutations and exhibited a phenotype with increased wrinkles (Fig. 1a). Therefore, one 

of these mutations was sufficient to induce increased wrinkle formation in B. subtilis. While 

we cannot exclude the possibility of additional mutations present in the WS morphotypes that 

also contributes to the observed phenotypes, it is unlikely due to the relatively short time 

span of the experiments. In our further experiments, we investigated strains representative 

for one of the detected mutations. 

 

WS morphotypes exhibit increased expression of matrix genes 

As SinR is responsible for repression of the biofilm matrix genes, we examined their 

expression using strains containing the PtapA-yfp reporter, which is an indicator for the 

expression of the matrix operon tapA-sipW-tasA. Matrix gene expression of different WS 

morphotypes, a sinR mutant, as well as the ancestral strains of the wild type and hag mutant 

was qualitatively analyzed using fluorescence microscopy (Fig. 2a). While PtapA-yfp 

expression was scarcely present in the wild type and hag mutant, it notably increased in the 

sinR mutant as well as in the WS morphotypes, whose cells occurred also primarily in 

chains. Mutation in sinR increases chain formation in planktonic cultures of B. subtilis as 

observed before (Kearns et al., 2005). Interestingly, the wild type and hag mutant showed 

detectable, although heterogeneous matrix gene expression in small clusters appearing after 

prolonged incubation, but they represented only a minor portion of the culture (Fig. S1). In 

comparison, the matrix gene expression of the sinR mutant and the WS morphotypes 

seemed to be very homogeneous (Fig. 2a). These results were confirmed by a quantitative 

analysis of the PtapA-yfp expression of the same strains over the course of 24 h (Fig. 2b). 

Here, the difference in expression level between sinR deletion mutant and the WS 

morphotypes became apparent, indicating that the mutations of the sinR variants did not 

abrogate the function of SinR completely. 
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Figure 2. Increased matrix gene expression of WS morphotypes. (a) Representative confocal microscopy 
images of strains with PtapA-yfp reporter (false colored green) indicating matrix gene expression. Wild type, Δhag 
and ΔsinR were compared to representative WS morphotypes of each wild type and Δhag background harboring 
the mutations V26G (WTWS9 and ΔhagWS9) and L99S (WTWS1 and ΔhagWS2). The scale bar represents 10 
µm. (b) OD normalized expression of PtapA-yfp of strains from (a) over time. Error bars represent the standard 
deviation. 

 

SinR-L99S differs from wildtype in its interaction with SinI and the SinR operator 

Due to the increased matrix gene expression, we hypothesized that the mutated SinR 

variants exhibit altered interaction properties with SinI or DNA. To test this hypothesis, the 

interaction of the SinR-L99S variant and SinI was investigated and compared to the 

interaction with the wild-type SinR. Variants SinR-V26G and SinR-A85T were not tested due 

to insolubility after overexpression under the conditions described in the Experimental 

Procedures section. To quantify the interaction between SinI and SinR or the SinR-L99S 

variant, we performed isothermal titration calorimetry (ITC), where SinR was titrated with 

SinI. In these experiments, a truncated version of SinI was used, a synthetic peptide 

consisting of amino acids 9-39 (encoded by sinI9-39). However, this short version was able to 

induce cell chaining when overexpressed in B. subtilis cells, similar to an overexpression of 

the full sinI (Fig. 3). Therefore, the short SinI version was sufficient to bind in vivo to SinR 

leading to a de-repression of the matrix genes and, thus formation of chains. 
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Figure 3. Truncated SinI supports cell chaining. Microscopy images of wild type and two B. subtilis strains 
harboring a sinI overexpression construct of the full gene (sinIfull) or a truncated version (sinI9-39). The scale bar 
represents 10 µm. 

 

We observed tight binding of SinI to SinR with an apparent dissociation constant (KD) of 

approximately 7 nM and a stoichiometry of N = 1.2 +/- 0.02 assuming a one-site binding 

model (Fig. 4a). This data are in good agreement with the previously reported KD of below 10 

nM for the SinR/SinI interaction (Newman et al., 2013). When we titrated the SinR L99S 

variant with the SinI peptide, we observed two distinct binding events (Fig. 4a). Applying a 

two-sites binding model, KDs of approximately 162 nM and 571 nM for the binding sites 1 and 

2, respectively, were determined (Fig. 4a). These data suggest that binding of SinI to the 

SinR-L99S is weaker than for the wildtype and occurs in two different binding events. 

However, the summed stoichiometry of binding event 1 (N1 = 0.898 +/- 0.358) and 2 (N2 = 

0.448 +/- 0.382) of N ≈ 1.35 suggests to us that no additional binding site is present. 

Interpreting our findings in the context of the SinI/SinR crystal structure delivers a plausible 

explanation for the bi-phasic binding of SinI to the SinR-L99S variant: In brief, SinR homo-

dimerization with SinR and hetero-dimerization with SinI is mainly facilitated via the two C-

terminal α-helices of SinR and is characterized by a hydrophobic core at the interface 

surrounded by polar interactions (Fig. 4c). Exchange of leucine to serine at position 99 at the 

border of the hydrophobic core creates a polar environment that should disturb the 

interaction with the unpolar interaction interface of SinI. This might also be the reason why 

we observed a two-phased binding event of the SinI peptide to SinR-L99S. It might well be 

that the SinI/SinR-L99S interaction occurs in a sequential manner and is first established by 

the N-terminal α-helix of SinI, before the C-terminal α-helix interlocks at the opposed site at 

the altered dimer interface. Closer inspection of the thermodynamic parameters revealed that 

SinI binding to wildtype SinR is entropy driven, as suggested by the positive ΔS of 24.7 cal 

mol-1 deg-1 and negative ΔH of -3752 +/- 135.6 cal mol-1 and might therefore be largely 

established by hydrophobic interactions. In contrast, binding of SinI to the SinR-L99S variant 

occurs in two steps with binding event 1 being characterized by a positive ΔS of 17.9 cal mol-

1 deg-1 and a negative ΔH of -3928 +/- 1450 cal mol-1 indicative of an interaction that is 

mainly established via hydrophobic interaction. However, binding event 2 is characterized by 
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a negative ΔS of -22.9 cal mol-1 deg-1 and a negative ΔH of -1.524E4 +/- 1.24E4 cal mol-1. 

Hence, the mechanism of binding event 2 seems enthalpic and entropic, and might involve 

expulsion of structured H2O molecules from the binding site. This observation supports the 

model in which SinI association to SinR-L99S occurs in two steps with the second binding 

step being affected by an impaired hydrophilic interface caused by the polar serine in 

position 99. 

Next, we reasoned that the presence of serine at position 99 might affect the formation and 

stability of the SinR tetramer. We therefore analyzed the oligomeric properties of SinR and 

SinR-L99S by analytical size exclusion chromatography (SEC), revealing that wildtype SinR 

and SinR-L99S both occur almost exclusively as tetramers (Fig. S2a). However, the L99S 

mutation might affect tetramer stability. Therefore, we assayed the tetramer dissociation 

properties of the wildtype and SinR-L99S by ITC. To do so, wild-type or mutant SinR protein 

was titrated into buffer. Strikingly, while the wild-type SinR did not dissociate, the L99S 

variant showed reproducibly detectable reduction in tetramer stability upon rapid dilution (Fig. 

4b). It might well be that this subtle defect has significant consequences at the functional 

level, i.e. the interaction of SinR with the DNA operator sequence. However, analytical SEC 

of reconstituted SinR/IR-DNA and SinR-L99S/IR-DNA complexes revealed that interaction of 

SinR or SinR-L99S with the IR-DNA SinR operator occurs in the tetrameric state (Fig. S2b). 

Taken together, these findings agree well with the binding model proposed by Newman and 

co-workers (Newman et al., 2013). 
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Figure 4. SinR-L99S differs in its interaction with SinI and DNA. (a) ITC measurments of the interaction 

between the SinI peptide and SinR (left thermogram) and SinR-L99S (right thermogram). Derived thermodynamic 

parameters are shown on the right site. (b) ITC complex dissociation experiments of SinR (left thermogram) and 

SinR-L99S (right thermogram). (c) Cartoon representation of the B. subtilis SinR/SinI complex crystal structure 

(PDB-ID: 1B0N; Newman et al. 2013). SinR is colored in grey and SinI is colored in yellow. Leucine 99 (cyan) and 

the sourrunding SinR/SinI interface region is shown in stick representation. N and C indicate N-termini and C-

termini, respectively. (d) ITC measurments of the interaction between the inverted repeat DNA and SinR (left 

thermogram) and SinR-L99S (right thermogram). Derived thermodynamic parameters are shown on the right site. 
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SinR-L99S shows impaired interaction with the SinR operator 

Having demonstrated that SinR-L99S interacts as tetramers with the IR-DNA SinR operator, 

we wondered whether the interaction of SinR-L99S with IR-DNA differs from wildtype SinR in 

respect to the binding affinity. We performed ITC on SinR, respectively SinR-L99S, in the 

sample cell and titrated the IR-DNA into the cell. ITC revealed that interaction of SinR with 

the IR-DNA occurs in a bi-phasic manner. We therefore applied a two-sites binding model to 

the data, revealing that the two binding events are characterized by KDs of approximately 121 

nM and 6 nM for the binding sites 1 and 2, respectively (Fig. 4d). Our study confirms 

previous experiments stating the high-affinity interaction of SinR with IR-DNA (Newman et 

al., 2013). The summed stoichiometry of binding event 1 (N1 = 0.264 +/- 0.0114) and 2 (N2 = 

0.143 +/- 0.0123) of N ≈ 0.41 further suggests to us that one IR-DNA fragment is able to 

interact with two SinR proteins, which is in good agreement with the crystal structure of SinR 

in complex with the IR-DNA SinR operator (Fig. S3) (Newman et al., 2013). As shown above 

by analytical size exclusion chromatography, interaction of the IR-DNA occurs at the 

tetramer, likely in a 4:2 stoichiometry (SinR:IR-DNA). It is therefore unclear if the two 

observed binding events represent cooperative binding events at the same IR-DNA fragment 

or cooperative binding events at the opposed sites of the tetramer, relayed via the 

dimerization domain of SinR.  

Strikingly, ITC titration of the L99S variant SinR protein with the IR-DNA fragment revealed 

that the interaction was impaired, as suggested by the KDs of approximately 99 nM for site 1 

and 288 nM for site 2 (Fig. 4d). Interestingly, while binding event 1 is comparable to the 

wildtype interaction for binding site 1 in the affinity and thermodynamic parameters ΔS1 and 

ΔH1, the thermodynamic parameters for binding event 2 changed from a ΔS2 of 76.9 cal 

mol-1 deg-1 and a ΔH2 of 1.173E4 +/- 570 cal mol-1 for the wildtype interaction to a ΔS2 of -

9.61 cal mol-1 deg-1 and a ΔH2 of -1.18E4 +/- 5.06E3 cal mol-1 for the SinR-L99S/SinI 

interaction. In summary, the interaction of SinR with the IR-DNA is changed by serine in 

position 99 at the SinR dimerization interface in that it seems to alter not only the affinity for 

the IR-DNA at the DNA binding site in the second binding step, but also the mechanism by 

which the interaction is established. Hence, the interaction of wild-type SinR with the IR-DNA 

is characterized by positive cooperativity, while the SinR-L99S/IR-DNA interaction is 

impaired and displays features of negative cooperativity. This might result in de-repression of 

SinR target operons in case of the SinR-L99S variant and is in good agreement with the 

observed phenotype. 
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WS morphotype in Δhag background is advantageous during pellicle establishment 

Next, we were interested in whether the WS morphotypes success during colonization of the 

air-liquid interface is altered, since they appeared frequently under these conditions. To test 

this, we competed the WS morphotype SinRL99S (WTWS1 and ΔhagWS2) against their 

respective ancestral strains (i.e. wild type or hag mutant) under conditions allowing pellicle 

formation and detected the strains using constitutively expressed fluorescence reporters. 

Figure 5a shows that both wild type and WS morphotype were equally successful in 

colonization of the air-liquid interface, which was comparable to the controls with 

competitions of the same strain. In contrast, the competition between the hag mutant and its 

derived WS morphotype revealed that the ΔhagWS morphotype was able to outcompete the 

hag mutant during pellicle establishment (Fig. 5a). Interestingly, in each competition with the 

WS morphotype, the structure of the pellicle displayed a higher spatial segregation of cells 

than the wild type control competition that was visible as patches of red or green fluorescent 

regions. In the Δhag background, this effect can be explained by the inability to mix due to 

lack of flagella (comparable with the Δhag control competition as described previously by 

(Hölscher et al., 2015)). However, in the WTWS morphotypes, this assortment could be due 

to a reduced motility that accompanies the increased matrix production. Additionally, the high 

amount of produced matrix might add to the adhesiveness of the cells, so that they clump 

together after cell division. The semi-quantitative analysis of the signal abundance for these 

competition experiments confirmed the superior surface colonization of the WS morphotypes 

compared to the ancestor in the Δhag but not the wild type background (Fig. 5b). In addition, 

the ΔhagWS morphotype was able to establish a thin pellicle at the air-liquid interface faster 

than the hag mutant when compared as single strain cultures (Video S1).  
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Figure 5. WS morphotypes outcompete ancestor in Δhag but not wild type background. (a) Microscopy 
images of competitions between green (GFP) and red (mKATE) fluorescently labelled wild type (left) or hag 
mutant (right) and derived WS morphotypes (SinRL99S). False colored images of wells of a 24-well plate (diameter: 
16 mm) are displayed. Control competitions with swapped fluorescent reporters (2nd row) and between otherwise 
identical strains (3rd and 4th row) were performed for each. (b) Semi-quantitative analysis of relative signal 
abundance for competitions of ancestor and WS morphotype from (a) (two sample Student’s t test assuming 
unequal variances: WTGFP + WTWSmKATE P = 0.005; WTWSGFP + WTmKATE P = 0.134; ΔhagGFP + ΔhagWSmKATE P 
= 2.8∙10-4; ΔhagWSGFP + ΔhagmKATE P = 0.0027; n = 4). Error bars represent the standard deviation. 

 

Selection pressure, not mutation rate is responsible for WS morphotype appearance 

To investigate if an increased mutability of the hag mutant compared to the wild type is 

responsible for the primary occurrence of WS morphotypes in this strain, we determined the 

frequency of streptomycin-resistant mutants in both strains. Since the frequency of mutants 

in wild type and Δhag with respective mean values of 8,05∙10-6 (standard deviation: 5,01∙10-

6) and 8,26∙10-6 (standard deviation: 2,35∙10-6) were comparable, we could exclude the 

mutation rate as reason for the frequent appearance of WS morphotypes. Because of the 

advantage of the WS morphotype in surface colonization in the Δhag background, we 
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conclude that there the selection pressure was high enough to result in mutations aiding the 

establishment of a pellicle at the air-liquid interface. This was probably caused by decreasing 

oxygen levels towards the bottom of the vessel as well as the limited number of cells that 

reach the liquid surface due to the lack of swimming motility, which is present in the wild 

type. Besides or because of an increased adhesiveness, the elevated matrix production of 

the WS morphotypes possibly results in a higher buoyancy, which counterbalances the lack 

of swimming and facilitates the fast surface colonization as indicated by video S1. Therefore, 

an increased selection pressure was likely responsible for the primary occurrence of WS 

morphotypes in the hag mutant. Although suppressor mutants of sinR were found under 

different conditions in the laboratory (Chai et al., 2012; Leiman et al., 2014), in nature, the 

observed mutations in SinR probably appear less frequent since most environmental isolates 

of B. subtilis are motile. Therefore, we hypothesize that the prerequisites for a selection of 

WS morphotypes in environmental setting is not significant in contrast to laboratory 

conditions. 

 

Conclusions 

Bacteria possess the ability to adapt to a huge variety of environments and conditions, with 

often impressive solutions to their challenges. To overcome their disadvantage of slow 

surface colonization in small numbers during pellicle establishment, non-motile B. subtilis 

strains develop suppressor mutations in sinR, encoding an important regulator and part of 

the intricate regulatory network governing biofilm formation in B. subtilis. These mutations 

alter its DNA- and protein-binding properties, leading to increased production of the biofilm 

matrix. In turn, matrix overproduction allows a faster surface colonization than the ancestor, 

successfully outcompeting it. Therefore, B. subtilis provides an interesting example of 

bacterial adaptability and resourcefulness in conditions with a specific selective pressure as 

well as it might explain their success on earth.  
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Experimental Procedures 

Media composition and culturing conditions 

All the strains used in this study are listed in Table S1. For cloning, mutant generation and 

colony morphology experiments, strains were cultivated in Lysogeny Broth medium (LB-

Lennox, Carl Roth, Germany; 10 g l-1 tryptone, 5 g l-1 yeast extract and 5 g l-1 NaCl) 

supplemented with 1.5 % Bacto agar if required. To select for wrinkly phenotypes in pellicles, 

strains were pre-grown in LB medium overnight and diluted 1:100 in MSgg medium (5 mM 

potassium phosphates buffer (pH 7), 100 mM MOPS, 2 mM MgCl2, 700 µM CaCl2, 100 µM 

MnCl2, 50 µM FeCl3, 1 µM ZnCl2, 2 µM thiamine, 0.5 % glycerol, 0.5 % glutamate (Branda et 

al., 2001)). When 2 ml culture was incubated in a 24-well plate under static conditions at 30 

C, pellicles were formed at the air-medium interface after 72 h. If appropriate, the following 

antibiotics were used: Kanamycin (Km, 5 µg ml-1), Lincomycin + Erythromycin (MLS, 12.5 µg 

ml-1 + 1 µg ml-1, respectively), Chloramphenicol (Cm, 5 µg ml-1), Spectinomycin (Spec, 100 

µg ml-1) and Ampicillin (Amp, 100 µg ml-1). 

 

Isolation of WS strains and genetic analysis of the sinIR locus 

Wild type or various mutant strains of B. subtilis were grown in MSgg medium under static 

conditions and adequate dilutions were spread on LB agar plates to obtain single colonies. 

Colonies with wrinkly phenotypes were counted. Selected colonies were cultivated in LB 

medium, genomic DNA was extracted using EURex Bacterial & Yeast Genomic DNA Kit 

(Roboklon GmbH, Berlin, Germany), the sinIR locus was PCR amplified using primers oTB98 

and oTB99 (see Table S2 for oligonucleotide sequences), and PCR products were 

sequenced (GATC GmbH, Cologne, Germany). 

 

Constructions of plasmids and strains 

B. subtilis strains (using DK1042 based strains that is naturally competent version of 

NCIB3610 (Konkol et al., 2013)) were obtained via natural competence transformation using 

genomic or plasmid DNA (Kunst and Rapoport, 1995). Strains with constitutively expressing 

green- or red-fluorescent reporters were obtained by transforming genomic DNA from 

168hyGFP or 168hymKATE, respectively (van Gestel et al., 2014). Biofilm specific reporter 

strains were created using genomic DNA from DL821 harboring a PtapA-yfp reporter construct 

(López et al., 2009). To overexpress the sinI and sinI9-39 genes, the full and the truncated 

genes were obtained using oligonucleotides oTB124-oTB125 and oTB126-oTB127 (Table 

S2), respectively, digested with HindIII and SphI enzymes, and cloned into the corresponding 

sites of pDR111 (kind gift from David Rudner), resulting in pTB695 and pTB696, respectively. 

The obtained plasmids were verified using sequencing and introduced into B. subtilis 

DK1042 using natural competence (Kunst and Rapoport, 1995). Transformants were 
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selected on LB plates with appropriate antibiotics. When appropriate, successful 

transformation was validated using the fluorescence reporter activity of the strains or 

amylase-negative phenotype on 1 % starch agar plates.  

To overexpress the sinR, the wild type gene was amplified by PCR from B. subtilis 168 

genomic DNA (sequence identical in NCIB 3610) using SinR_NcoI_F and 

SinR_H6_BamHI_R primers (Table S2), harboring a C-terminal hexa-histidine tag. The 

fragment was digested with NcoI and BamHI restriction enzymes and cloned into a pET24d 

vector for overexpression in E. coli. Mutagenesis of SinR was performed in a two-step PCR 

mutagenesis with the respective mutagenesis primer pairs (Table S2) and subsequent 

cloning as described above. 

 

Microscopy analysis of competition experiments and sinI overexpression 

For competition experiments, pre-grown GFP and mKATE labeled strains were mixed at 

equal optical density and diluted 1:100 in MSgg medium. After 72 h of growth, the 

fluorescence intensity was measured using an infinite F200PRO plate reader (TECAN Group 

Ltd, Männedorf, Switzerland). Bright field, green- and red-fluorescence images of the 

pellicles were taken with an Axio Zoom V16 stereomicroscope (Carl Zeiss, Jena, Germany) 

at 3.5x magnification equipped with a Zeiss CL 9000 LED light source, HE eGFP filter set 

(excitation at 470/40 nm and emission at 525/50 nm), HE mRFP filter set (excitation at 

572/25 nm and emission at 629/62 nm), and an AxioCam MRm monochrome camera (Carl 

Zeiss, Jena, Germany). The exposure times were set to 0.01 s, 1 s and 3 s for bright field, 

green- and red-fluorescence, respectively. ImageJ (National Institute of Health, Bethesda, 

MD, USA) was used for background subtraction and channel merging. 

For sinI overexpression, strains TB697 or TB698 were pre-grown in LB medium overnight, 

diluted 1:100 in fresh LB medium, and incubated in the absence or presence of 0.1 mM IPTG 

for 4 h. Samples were added to microscopy slides containing a thin layer of 1 % agarose, 

glass coverslips were placed on the samples and the cells were visualized using MOTIC 

BA310E phase contrast microscope equipped with a 100x/1.25 PHASE EC-H objective and 

a MOTICAM 3 camera (VWR, Darmstadt, Germany).  

 

Reporter assays 

To monitor biofilm coupled gene expression, wild type and selected wrinkly isolates 

harboring the PtapA-yfp reporter construct were pre-grown on LB agar plates. One colony was 

inoculated in 3 ml liquid LB medium and incubated for 5 h at 37 °C and 225 rpm, diluted to 

DO600 of 0.1 in LB medium, and 200 μl aliquots of the cultures were inoculated into a 96-well 

plate. The samples were incubated for 24 h at 30 °C with continuous shaking among 

measurements, and optical density and fluorescence was recorded every 15 minutes. 
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For single-cell level fluorescence microscopy, one colony from overnight grown plate was 

inoculated in 3 ml liquid LB and incubated for 5 h at 37 °C and 225 rpm. 5 μl of culture was 

spotted on a microscope slide coated with 0.8 % agarose, covered with a cover slip and 

examined under the fluorescence microscope (Olympus Bx51; 100× oil objective). Images 

were captured using bright light (exposure time 15 ms) and fluorescence light using the GFP 

filter (exposure time 500 ms). 

 

Fluctuation assay 

To determine the mutation rate, a fluctuation assay was performed with wild type and hag 

mutant as described in (Martin et al., 2017), except for the use of MSgg medium (n = 48). 

 

Expression and protein purification 

Constructs, pET24sinRWT and their mutagenized variants were transformed into E. coli 

BL21(DE3) for overexpression. Proteins were overexpressed in 1 l LB autoinduction media 

(1.8% w/v lactose) shaking at 30 °C overnight. Cells were harvested the next morning and 

resuspended in 20 ml buffer A (20 mM HEPES/NaOH pH 8.0, 500 mM NaCl, 40 mM 

imidazole). Cells were lysed two times with a M-110L Microfluidizer (Microfluidics) and 

centrifuged at 20,000 r.p.m. for 20 min at 4 °C to remove cell debris. The supernatant was 

applied onto a 1 ml HisTrap HP column (GE Healthcare) for Ni-NTA affinity chromatography. 

The column was washed with 15 column volumes of buffer A and proteins were eluted with 5 

ml buffer B (20 mM HEPES/NaOH, pH 8.0, 500 mM NaCl, 500 mM imidazole). Proteins were 

concentrated to 1 ml and further purified by size-exclusion chromatography using a HiLoad 

26/60 Superdex 200 gel-filtration column in buffer C (20 mM HEPES/NaOH, 500 mM NaCl). 

 

Isothermal titration calorimetry 

ITC experiments were performed on a MicroCal ITC 200 instrument (GE Healthcare). The 

SinI9-39 peptide (SinI protein from amino acid 9 to 39) was synthesized with a free amine at 

the N-terminus and free acid group at the C-terminus (peptides&elephants GmbH, Potsdam, 

Germany). The peptide was dissolved in an appropriate volume of buffer C, which was used 

for the purification of SinRWT and SinRL99S. Concentrations were determined by measuring 

the A280 using a NanoDrop Lite spectrophotometer (Thermo Scientific). For the ITC SinR/SinI 

interaction experiment, 200 μl of SinRWT or SinRL99S (25 μM) was added to the sample cell 

and 250 μM SinI9-39 peptide solution were titrated in at 25 °C for a total of 20 injections, each 

separated by 150 s, consisting of 0.2 μl SinI9-39 peptide for the initial injection and 2 μl for the 

following 19 injections. For the SinR dissociation ITC experiment, 200 μl of buffer C was 

added to the sample cell and 2 mM SinRWT or SinRL99S were titrated in at 25 °C for a total of 

20 injections, each separated by 150 s, consisting of 0.2 μl SinI9-39 peptide for the initial 
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injection and 2 μl for the following 19 injections. For the ITC SinR-inverted repeat DNA 

interaction experiment, 200 μl of SinRWT or SinRL99S (30 μM) was added to the sample cell 

and 150 μM inverted repeat DNA was titrated in at 25 °C for a total of 20 injections, each 

separated by 150 s, consisting of 0.2 μl SinI9-39 peptide for the initial injection and 2 μl for the 

following 19 injections. The inverted repeat primers were prior to the experiment dissolved in 

buffer C and annealed by heating to 95 °C for 5 min and a subsequent controlled cooling 

down to 10 °C for 1 h, using a PCR cycler. ITC data were processed using the Origin ITC 

software (OriginLab) and thermodynamic parameters were obtained by fitting the data to a 

one set of sites binding model or a two sets of sites binding model, depending on the data.   
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Laboratory Evolution of Microbial Interactions in Bacterial Biofilms

Marivic Martin,a Theresa Hölscher,a Anna Dragoš,a Vaughn S. Cooper,b Ákos T. Kovácsa

Terrestrial Biofilms Group, Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germanya; Department of Microbiology and Molecular Genetics, University of

Pittsburgh, Pittsburgh, Pennsylvania, USAb

Microbial adaptation is conspicuous in essentially every environment, but the mechanisms of adaptive evolution are poorly un-

derstood. Studying evolution in the laboratory under controlled conditions can be a tractable approach, particularly when new,

discernible phenotypes evolve rapidly. This is especially the case in the spatially structured environments of biofilms, which pro-

mote the occurrence and stability of new, heritable phenotypes. Further, diversity in biofilms can give rise to nascent social inter-

actions among coexisting mutants and enable the study of the emerging field of sociomicrobiology. Here, we review findings

from laboratory evolution experiments with either Pseudomonas fluorescens or Burkholderia cenocepacia in spatially structured

environments that promote biofilm formation. In both systems, ecotypes with overlapping niches evolve and produce competi-

tive or facilitative interactions that lead to novel community attributes, demonstrating the parallelism of adaptive processes cap-

tured in the lab.

Since the pioneering discoveries of Robert Koch, most bacteria
generally have been studied in planktonic cultures, wherein

cells grow dispersed from one another. Recently, the spatially
structured environments (definitions of terminology are given in
Table 1) of tightly packed bacterial biofilms have been recognized
as more appropriate models to study microbial growth and inter-
actions (1), because microbes may live more frequently in biofilms
on inanimate or host surfaces (2) and the physiology of biofilm
cells differs from that of planktonic cultures (3). The regulation of
biofilm formation, persistence, and dispersal has been investi-
gated at the molecular level for many years now, but much more
remains to be discovered, particularly related to how biofilm cells
interact when attached to one another (4, 5). The increasing in-
terest in biofilm models has revealed the complexity of microbial
social interactions (6). Since microbes, to some extent, share the
structural components of biofilms (e.g., exopolysaccharides), the
process of biofilm construction can be viewed as a form of coop-
eration, at least within a single lineage of cells (7–9). In addition,
biofilm itself provides a structured environment that promotes
other types of resource exchange among clonemates or metabol-
ically interdependent strains (10–12). However, biofilm forma-
tion may also be triggered as a competitive or defensive response
against other strains or species (13). In addition, the structured
environment of biofilms creates gradients of nutrients that poten-
tiate the competition for limiting resources, resulting in exploit-
ative competition between cohabiting species (14).

Despite the increasing knowledge of the ecology (13, 15, 16),
genetics (17–19), or physical mechanisms (20, 21) of biofilm de-
velopment and the mechanisms that stabilize cooperation during
biofilm formation (7, 9, 10, 22), we still know little about the
long-term evolutionary dynamics within biofilm communities. It
is unclear how social interactions shape biofilm evolution and
how evolution in structured environments shift the balance be-
tween competition and mutualism. Long-term serial transfer ex-
periments provide a key approach to fill this gap. Experimental
evolution allows studying adaptation under controlled conditions
and identification of the evolutionary forces and ecological pro-
cesses that shape microbial cultures (23, 24). Today, the genomic
changes of experimentally evolved bacteria can be easily explored

using next-generation sequencing methods (25) that allow under-
standing of the molecular basis of evolutionary adaptation.

Here, by reviewing a set of experimental evolution studies, we
demonstrate that biofilms are both good models to study the ori-
gins of social interactions and to examine how these interactions
are shaped in time and space. We focus on the form and strength
of interactions between microbial species, ecotypes, or early dif-
ferentiated lineages cohabiting structured environments of bio-
films. Based on the existing literature, we describe how such
interactions influence the evolution of microbial communities.
Importantly, evolutionary changes in microbial communities
may be driven by a set of abiotic factors (e.g., fluctuations in the
environment) or biotic components other than microbes (e.g.,
plant, animal, and human host or symbiont), which are not dis-
cussed in the paper. The study of evolutionary dynamics within
biofilms and the origin of microbial interactions are significant for
several reasons (26). First, biotic interactions among neighbors
generate major selective forces that drive the development of
many important traits of microbes, such as antibiotic resistance
(27). Second, understanding how biofilms evolve can aid in pre-
dicting of evolutionary outcomes. Third, tracking molecular evo-
lution in biofilms helps to unravel new regulatory pathways re-
lated to biofilm formation, persistence, or dispersal. Here, we
present how recent advances in experimental evolution of biofilm
systems fulfill this potential.

LABORATORY EVOLUTION OF COOPERATION AND

INTERFERENCE IN STRUCTURED ENVIRONMENTS

A pioneering long-term evolution experiment with Escherichia
coli started in 1988 by Richard Lenski provided direct evidence
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that microbes can be evolved in the lab and their phenotypic and
genotypic changes can be tracked over time (28). Lenski’s experi-
ment is still in progress, reaching 64,000 generations in January
2016, and many similar studies have been performed by other
researchers on different microbial species (not only bacteria but
also yeasts, phages, or protists) covering basic scientific questions
(29, 30) or even in directly applicative projects (31). While plank-
tonic cultures offer a simple setup to study the evolution of bac-
teria (23, 28, 31, 32), several studies have shown that the selective
pressures in unstructured conditions differ from those in biofilms
(33–36). For example, homogeneous, well-mixed environments
may select against “social” genotypes that secrete costly metabo-
lites, so-called “public goods,” and rather favor fast-reproducing
selfish individuals (37). This is not surprising since mixing de-
creases the likelihood for such metabolites to be retained in the
vicinity of the secretor and does not guarantee that the secretions
will benefit its closest relatives or offspring cells (38), one of the
core preconditions required for the evolution of sociality (39).
Recent reports have shown that the situation differs dramatically
in biofilms, where the secretors have the primary access to the
substances produced, allowing the public good producers to easily
outnumber the nonproducers (12, 22, 40, 41). It is therefore ex-
pected that structured environments would select for “social” ad-
aptation strategies of microbes.

Experimental evolution studies provide evidence for the pre-
diction that evolution in structured environments can favor ad-

aptations to sociality (34, 35, 42–44). For example, Koch and col-
leagues demonstrated how the emergence of a strain with an
increased level of cell-cell communication can eventually lead to
evolution of antibiotic resistance to vancomycin, a last-resort an-
tibiotic (27). Briefly, methicillin-resistant Staphylococcus aureus
grown in a colony biofilm diversifies sequentially into mutants in
which the first clones (named W) are selected due to increased
cell-cell signaling, which triggered more surfactin and toxic bac-
teriocin secretion. Next, bacteriocin-resistant mutants that are
also resistant to intermediate levels of vancomycin evolved in re-
sponse to this new environment (27). Although overall diversifi-
cation of S. aureus was driven by competition, the success of the W
variant was due to an increased level of cooperation via the Agr
quorum-sensing system that in addition triggered increased levels
of bacteriocin secretion (27). This dynamic of evolved resistance
depends on the structured environment that promotes both effi-
cient cell-cell communication and intimate interactions between
the strains. Bacteriocin producers trigger the appearance of a re-
sistant variant in their vicinity due to local increased exposure to
the toxic compound. Another study demonstrated that spontane-
ous mutants of Pseudomonas fluorescens with increased polysac-
charide secretions (i.e., mucoid isolates) are able to use these se-
cretions to position themselves on the oxygen-rich surface of the
colony and dominate the population (45). The emergence of such
mucoid isolates is not observed when the spatial structure of the
colony is manually disturbed during development. Therefore,

TABLE 1 Description of terms originating from ecology or evolutionary biology that are used in the texta

Term Definition Reference(s)

Competition Negative interaction among organisms resulting from overlapping resource requirements
or chemical warfare, which leads to reduced fitness of the interacting individuals

Antagonism (parasitism, predation) Interaction between two organisms in which one profits at the expense of the other (in
terms of fitness); the behavior is a derived strategy

Synergistic interaction/facilitation Interaction that leads to an increased fitness of the interacting individuals relative to
monocultures

35, 66, 72

Productivity Increase in biomass or cell numbers over time that reflects the efficiency with which a
given organism converts energy into biomass

Niche complementation When species inhabit functionally complementary niches or environments resulting in
reduced competition

71, 73

Generalist An ecotype that can tolerate a broad range of conditions (e.g., food sources, temperature
stress, etc.)

69

Specialist An ecotype that can tolerate a rather narrow range of conditions (e.g., food sources,
temperature stress, etc.)

69

Ecotype Organism that pursues a certain ecological strategy and differs in some fitness-relevant
traits from other organisms

68

Morphotype Different colony morphology 35, 69
Spatial structure/structured conditions Environment with low degree of mixing
Biotic interactions Any ecological interactions that occurs between two living organisms; in contrast,

interactions are termed abiotic when they involve nonliving elements, e.g., sunlight,
temp, pH, etc.

Social interactions Interaction/behaviors in which the performance of two individuals influences each
other’s fitness positively or negatively; here, the definition of social interactions refers
to microbes

74

Sociality The ability and extent of a group or an individual to engage in social interactions
Sociomicrobiology Research field in which social interactions of microorganisms are investigated
Cooperation Costly behavior of one individual that increases the fitness of another individual and

which has evolved for this purpose
74, 75

Public goods Secreted compounds which are freely available for each member of the population, i.e.,
“public.” These substances benefit the population or community yet do not have to be
costly to produce

74

a The definitions explain the context of their usage in the text.
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spatial assortment not only promotes stability of cooperation in
biofilms (22, 40) but also supports the evolution of novel public
good producers that results in increased biofilm matrix produc-
tion (34, 45). Spatial structure can also promote diversification
into strong and weak secretors as shown in Pseudomonas aerugi-
nosa colonies, where repetitive reinoculation of P. aeruginosa from
the edge or the middle of colony biofilms resulted in clones with
reduced or diversified matrix production levels, respectively (34).
Structured environments can also support stable coexistence of
cooperative and noncooperative strains, thereby promoting di-
versity within species (46).

In fact, environmental spatial structure is probably the major
factor promoting diversity in the microbial world (47). Although
spatial structure limits the number of possible interactions with
nonrelatives and therefore promotes the evolution of public good
production, it also facilitates intimate local interactions between
neighboring species. Based on cocultivation studies of various
natural isolates, interaction with nonrelatives seems to be domi-
nated by competition (48, 49). Coevolution experiments docu-
ment how such competition between two closely interacting spe-
cies can progress into more exploitative interaction (50, 51). For
example, an experimental community of Pseudomonas putida and
Acinetobacter sp. was evolved and shown to produce an intimate
and specialized association that results in more stable and more
productive community than the ancestors. In the ancestral com-
munity, P. putida was dependent on Acinetobacter for benzoate
that manifested in an exploitative interaction between the two
strains (50). During coevolution, P. putida increased its stickiness
due to mutations in a gene related to lipopolysaccharide synthesis.
This enabled a more intimate relationship between the two species
and more efficient exploitation of Acinetobacter by P. putida. Al-
though coevolution resulted in a more exploitative interaction
that was detrimental for one of the partners, the overall produc-
tivity of the community was doubled (50).

A similar pattern was recently observed by Kim and colleagues
(52) where clonal populations of P. fluorescens rapidly diversified
into morphotypes M (mucoid) and D (dry and wrinkly). The two
morphotypes spread collectively faster than either of them in
monoculture, which the authors describe as “division of labor.”
Microscopy analyses revealed that D dominates the spreading
bulk of the colony sitting at the top of M. The authors proposed
that the role of M is to reduce the tension of the solid surface, while
D aids M by pushing it outward. Although D constitutes only 90%
of the spreading colony and its interaction with M is exploitative,
the performance of the whole community is improved as in the
case of P. putida and Acinetobacter. Importantly, in contrast to the
preassembled community of P. putida and Acinetobacter, the ex-
ploitative (and at the same time group beneficial) relationship
between D and M evolved de novo from a monoclonal ancestor
(52). In another study, new colony structures observed on agar
medium were found to be indicative of altered biofilm formation
or adaptation to a particular biofilm niche requirement (53).
Studies on P. fluorescens microcosms revealed that certain mor-
photypes (e.g., the wrinkly morphotype) can be selected only un-
der static conditions but not in shaking cultures (36). Similarly,
the diversification of the Gram-positive Bacillus subtilis is also
highly dependent on the condition used in experimental evolu-
tion (33). Namely, colony types with intermediate biofilm robust-
ness dominated under static conditions, whereas those of mar-
ginal biofilm robustness (very high or very low) were much less

common than shaking cultures (33). This result again highlights
the impact of spatial structure on the outcome of laboratory evo-
lution experiments.

EXPERIMENTALLY EVOLVED BIOFILMS OF P. FLUORESCENS

AND BURKHOLDERIA CENOCEPACIA: MODELS OF BIOFILM

DIVERSIFICATION

Below, we describe in greater detail studies of the laboratory evo-
lution of P. fluorescens and B. cenocepacia in spatially structured
biofilm environments, in which a mixture of ecological generalists
and specialists evolve and coexist. The first project began in 1998
when Rainey and Travisano reported rapid diversification of P.
fluorescens into 3 different colony types, preferentially inhabiting
different niches of static liquid medium (surface, bottom, and the
medium) (36). The story of B. cenocepacia began 13 years later,
when the field of experimental evolution was already more ad-
vanced (e.g., the Lenski’s evolution experiment had exceeded
50,000 generations). In 2011, Poltak and Cooper tracked the evo-
lution of a B. cenocepacia community in a carefully designed mi-
crocosm equipped with floating beads that can be repeatedly col-
onized and decolonized by the evolving community. These two
projects resulted in more than 30 research papers that vastly im-
proved our understanding of ecological and molecular dynamics
of adaptation in biofilms, making the two pioneering studies (35,
36) milestones in the field of experimental evolution. In the fol-
lowing sections, we examine each experimental design and find-
ings separately, focusing mainly on the social interactions within
the evolving microcosms.

EVOLUTION OF COOPERATION AND EXPLOITATION WITHIN

AND BETWEEN ECOTYPES IN P. FLUORESCENS STATIC

MICROCOSM

When P. fluorescens natural isolate SBW25 is incubated in un-
shaken glass vials (“static microcosms”) in nutrient-rich medium,
this strain rapidly diversifies into three main phenotypically and
genotypically different variants (36). Each of these variants is spe-
cialized for a certain niche in the spatially structured microcosm
and forms phenotypically distinct colonies when grown on agar
plates (Fig. 1A). The ancestral smooth morphotype (S) grows pre-
dominantly in the liquid column of the microcosm, whereas the
fuzzy spreader (F) forms aggregates at the bottom of the tube. The
third colony variant is called the wrinkly spreader (W) and occu-
pies the air-liquid interface where it forms a robust pellicle or
biofilm (36, 44).

The diversification of the ancestral strain is greatly influenced
by the oxygen gradient that is created by the ancestor itself shortly
after inoculation of the microcosm (54). Close to the air-liquid
interface, the oxygen level is high but decreases rapidly with in-
creasing depth. This spatially heterogeneous environment there-
fore selects for specialist mutants that prevail under different lev-
els of oxygen availability (54). Without such spatial heterogeneity,
no morphologically different variants evolved, and this heteroge-
neous environment was also essential for maintenance of diversity
(36). The W variant in particular is very successful in the spatially
structured microcosm since it rapidly accounts for 30 to 50% of
the whole population (36, 54) and achieves higher fitness than the
S morphotype (53). This advantage and the rise of the W variant
depends on its ability to access the elevated oxygen levels in the
upper zone of the microcosm by forming a floating pellicle, while
other variants grow slower in low-oxygen conditions (54).
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To form biofilms at the air-liquid interface, W mutants adapt
by producing more cellulose polymers (53) that constitute the
biofilm matrix and provide the robustness and structure necessary
for a floating mat. It is important to note that in producing this
cellulose pellicle, W mutants inherently become more cooperative
by producing a public good, but similarly to other biofilm-based
cooperative traits (22, 55), it is costly for the individuals to pro-
duce (53). Intriguingly, Rainey and Rainey (43) showed that non-
cooperators that were evolved in the presence of cooperators
could invade biofilms formed by cooperating cells. These nonco-
operators showed an S-like morphology with no aggregation
properties and their invasion caused biofilm collapse. Brockhurst
et al. (42) also showed that the frequency of cooperators was
higher when more resources were provided for the microcosm
since relatively less energy was invested toward public good pro-
duction. However, even under such conditions, competition
might occur within the biofilm among different W variants.

Most studies addressing microbial cooperation describe non-
cooperators as “cheaters” or “free-loaders” and focus solely on
their social exploitation. Yet, a study of Hammerschmidt et al.
(56) used P. fluorescens to show that noncooperating cells carrying
the S phenotype can function as colonists of new habitats. They
reported that although S cells cause premature collapse of the
biofilm mat formed by the W, they can also found a new micro-
cosm where they diversify again and form W biofilms. Therefore,
the relationship between W and S resembles the one between a
vegetative cell and a spore, where only the latter can survive harsh
conditions and give rise to new population, often at the cost of
vegetative cells (57). The noncooperating S cells, therefore, could
serve as new founders (germ line), allowing the reestablishment of
the biofilm collective in another potential environment. This sim-
ple life cycle facilitated the maintenance of cooperative collectives.
In addition, rapid switching between phenotypes (W and S vari-
ants) can be also interpreted as a bet-hedging mechanism that

benefits simple organisms, like bacteria in fluctuating environ-
ments (58).

Genome sequencing of the P. fluorescens W variant revealed
mutations in the diguanylate cyclases (DGCs) WspR, AwsR, and
MwsR that catalyze the synthesis of cyclic diguanylate monophos-
phate (c-di-GMP) from GTP (59, 60). Initially, the impact of the
wsp operon was understood only in the evolution of the W variant
(53, 59, 61), while the influences of mutations in aws and mws
genes were revealed only after additional evolutionary experi-
ments (60). Specifically, when the static microcosm of P. fluore-
scens was allowed to adapt in a wsp-deficient background (using
�wspABCDEFR as the ancestor), the aws-dependent circuit was
discovered, resulting in a similar W variant. The third alternative
circuit (mws), leading to the evolution of W, was discovered after
evolvution of P. fluorescens that carried both �wspABCDEFR and
�awsXRO alleles (60). These mutations in all three loci are mainly
responsible for the increased c-di-GMP level that manifests in
elevated cellulose production by the W variant (60, 62). Specifi-
cally, increased c-di-GMP is responsible for the activation of a
membrane-bound enzyme complex responsible for cellulose syn-
thesis that is encoded by the wss operon (53).

Initially, a screen of the W variant transposon library for loss of
the wrinkly colony morphology supported the fact that the genes
of this operon (wssA-wssJ and wspR) are crucial for the W variant
(53). The operon encodes the DGC WspR and several proteins
exhibiting similarity to known cellulose biosynthesis components
and chemotaxis systems (53). Mutations in two genes of this
operon, wspE and wspF, were also shown to be responsible for WS
variant appearance. WspE represents a histidine kinase that acti-
vates WspR by phosphorylation, suggesting that certain muta-
tions in WspE might lead to WspR overactivation (44, 60). WspF
is thought to be involved in modulation of WspR activity, indicat-
ing that a mutation in the wspF gene might have effects similar to
those in WspE (61). Later analysis of wsp-independent circuits

FIG 1 Experimental setup of biofilm evolution in the P. fluorescens microcosm (A) and the B. cenocepacia bead selection method (B). Biofilm populations in both
setups reveal successive adaptive diversification into three ecotypes, namely, smooth or studded (S), fuzzy (F) or ruffled spreader (R), and wrinkly spreader (W).
Note that the evolved smooth variant of B. cenocepacia is distinct from the ancestor exhibiting enhanced biofilm formation.
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revealed the role of the aws locus in W variant formation. The
authors discovered deletions in awsX, a negative regulator of
diguanylate cyclase AwsR. They proposed that this new W variant
resulted from overproduction of the acetylated cellulose through
the wss pathway due to lack of AwsR regulation and increased
synthesis of c-di-GMP (60). Another wsp- and aws-independent
circuit resulting in the W phenotype was also related to increased
activity of another diguanylate cyclase MwsR, which, in contrast
to AwsR, was not caused by mutations in an extragenic negative
regulator but by mutations in the mwsR gene itself (60). These
experiments demonstrate that several pathways can lead to in-
creased production of c-di-GMP and therefore elevated expres-
sion of the wss cellulose operon in certain members of the popu-
lation that in turn increases overall fitness.

LONG-TERM EXPERIMENTAL EVOLUTION OF A COMPLETE

BIOFILM LIFE CYCLE USING B. CENOCEPACIA

Evolution during the full life cycle of a biofilm, from attachment
and maturation to dispersal, can be experimentally studied using a
simple bead selection method (Fig. 1B) (35). Here, bacteria grow-
ing in a test tube must attach to a plastic bead to be transferred to
a new tube with fresh medium each day. The new tube also con-
tains a new bead; thus, a new biofilm must form on an uninhab-
ited surface on a daily basis. Because tubes are incubated on a
roller drum, established biofilms are continually subjected to
shear forces that select for attachment, planktonic growth, and
reattachment. Importantly, this cycle enables easy archiving of the
evolving populations as well as precise reconstitution to study the
ecological and evolutionary forces prevailing at that time (35),
which renders the model especially suitable for long-term exper-
imental evolution (LTEE). Additionally, LTEE can be paired with
contemporary sequencing methods to identify the mutational
mechanisms, enabling adaptation in the laboratory (25, 63, 64).

Adaptation under these conditions with minimal galactose
growth medium has been studied for the opportunistic respira-
tory pathogen B. cenocepacia, but such an approach can be also
applied for microbes in natural settings or during host infections
(65). However, modifications of the bead-based experimental
evolution setup, such as changes in the number of beads or in
nutrient concentration, may allow the detailed study of social in-
teractions (35), the degree of facilitation or competition among
cells in the biofilm (66), and the predicted colonization and dis-
persal-dependent fitness (67).

With this novel approach, the biofilm population of B. cenoce-
pacia revealed sequential adaptive diversification into three classes
of heritable colony morphologies distinctive from that of the an-
cestor (35), similar to the diversification of P. fluorescens during
biofilm establishment. The B. cenocepacia morphotypes were clas-
sified as studded or smooth (S), ruffled spreader (R), and wrinkly
spreader (W) (35). Morphologically, the B. cenocepacia variants
are similar to the experimentally evolved P. fluorescens colony
types (36). As in P. fluorescens, these different B. cenocepacia mor-
photypes inhabit different niches in the test tube (35) and were
therefore characterized as separate ecotypes (35, 68). The W vari-
ant, possessing strong adhesion to the bead and tube walls in mon-
oculture, is an early colonist of the plastic bead. As the R frequency
increases, the W variant declines in frequency. S cells, on the other
hand, escalate steadily throughout the growth phase, suggesting
that the early evolved S variant adheres to the later-evolved R and
W variants, which are better surface colonizers. As S variants re-

main the dominant type in the community, their proportion de-
creases slightly prior to transfer as the frequencies of R and W
variants escalate from their low initial occurrence (35).

Intriguingly, the three coevolved ecotypes in such biofilm
community reach higher productivity than each one of them in
monoculture or their expected productivity in the mix. This in-
creased productivity is attributed to the prevailing facilitative ef-
fect of niche complementarity (35, 66), in which the ecotypes in-
habit different spatial regions of the biofilm. Further synergy
among these morphotypes was revealed in a cross-feeding assay
demonstrating that the specialists (R and W variants) profit from
metabolic by-products of other communal members but not from
their own metabolites. This suggests the evolution of a resilient
symbiotic food web wherein the generalist S variant achieves high
biomass by superior growth but attaches preferentially to the bio-
film produced by R and W cells, which in turn profit from secreted
metabolites (35). Nonetheless, only the late S variant increased its
productivity in the mix culture relative to that in its monoculture,
while total productivities of R and W in the mix were reduced
compared to those of their monocultures, although the per capita
production of R and W increased (66). This indicates that al-
though the competition in the late community was lessened both
by facilitative effects (66) and via cross-feeding between R and W
(35), it still affected the system.

The sequencing of evolved B. cenocepacia clones and popula-
tions revealed that the observed colony morphologies are the re-
sult of different mutations (69) that affect the regulation of the
“stick-or-swim” decision (66, 67, 69). Surprisingly, biofilm spe-
cialists (R and W variants) recurrently evolved from generalist
types (S variant) by adaptive mutations in the wsp locus homolo-
gous to the one first described in P. fluorescens (69). Sequencing of
both population samples and clones revealed complex dynamics
driving the evolution of the three ecotypes. Initially, cells that best
attached to the plastic beads achieved high frequencies by way of
mutations in genes related to the biofilm lifestyle regulator c-di-
GMP. These mutations produced distinct colony morphologies
and excluded the ancestor genotype. The independent occurrence
of these adaptive changes in parallel populations suggests that
changes in c-di-GMP production are sufficient for the adaptive
niche partitioning because they generate ecotypes with different
tendencies to attach or disperse (69). Subsequent mutations related
to central metabolism and polysaccharide biosynthesis influenced the
proliferation of the S variant and enhanced its competition against
earlier mutants. Surprisingly, new wsp mutations evolving from S
haplotypes gave rise to new R and W mutants, which invaded these
more specialized biofilm niches. Interestingly, competition among
ecotypes for limiting iron led to the remodelling of the entire com-
munity, as both S and W lineages independently acquired mutations
in the promoter sequence of bacterioferritin and excluded all cells
lacking either of these mutations (69).

A focused analysis on mutations evolved in replicate popula-
tion B1 (one out of six independently evolving biofilm popula-
tions) determined the molecular basis of ecological differentiation
of S, R, and W (69). In addition to the wsp mutations discussed
above, at least eight independent mutations in the gene yciR (also
known as rpfR) were discovered (69, 70). YciR harbors a PAS
sensor domain that binds the quorum-sensing molecule cis-2-do-
decenoic acid (BDSF) (70) as well as a diguanylate cyclase
(GGDEF) and a phosphodiesterase (EAL) domain. YciR has been
found in many bacterial species to function as a phosphodiesterase
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that is responsible for degradation of c-di-GMP and the attenuation
of biofilm development (66). A single mutation in yciR carried by the
R ecotype resulted in its increased biofilm formation. Moreover,
ecotype S carried a deletion of yciR along with 94 other neighboring
genes (69). The different phenotypes of the yciR mutants imply that
altering different domains can produce different ecological strategies
that coordinate quorum sensing of BDSF with c-di-GMP metabo-
lism and hence the stick-or-swim cell decision.

Meanwhile, analogous to the P. fluorescens system, the genetic
causes of the wrinkly phenotype in B. cenocepacia are single mis-
sense mutations in either wspA or wspE, the products of which are
involved in the biofilm signal transduction cascade related to c-di-
GMP synthesis (71). Although the cognate diguanylate cyclase or
phosphodiesterase in this bacterium is not yet known, subsequent
evolution studies using W mutants as ancestors revealed a new
two-component regulator (Bcen2424_1436) that could relate to
the c-di-GMP response and explain this phenotype more gener-
ally. Further, growth of W mutants in planktonic culture gener-
ated strong selection to regain planktonic fitness, often favoring
loss-of-function mutations in Wsp (67). Such mutations could
limit subsequent evolution of the wrinkly biofilm in fluctuating
environments (67).

CONCLUDING REMARKS

These laboratory experimental systems used spatially structured
environments to demonstrate how microbial communities can
evolve from clonal ancestors and generate complex ecological in-
teractions. In both experimental setups (P. fluorescens static mi-
crocosms and B. cenocepacia biofilms on suspended beads), the
spatially heterogeneous environment facilitated the evolution of
distinct ecotypes. These systems allow for the study of adaptive
diversification in real time and provide direct insights into evolu-
tionary processes that used to be limited to theoretical models, like
the positive feedback between niche construction and natural se-
lection. Intriguingly, the diversified communities can be shaped
by the range of social and ecological interactions, including antag-
onism (i.e., social exploitation of the W by S variants observed in
P. fluorescens), niche complementation, or even synergistic inter-
actions via cross-feeding as observed in B. cenocepacia. Finally, the
interactions that arose between the ecotypes of the evolved com-
munity became a new factor determining biofilm productivity
that could not be observed with an isogenic ancestor community.
Importantly, parallel evolution experiments performed under un-
structured conditions (planktonic cultures) in both species did
not show diversification patterns similar to those of the structured
environments in the biofilms (Fig. 2) (35, 36). In addition to the
basic understanding of evolutionary processes, these studies pro-
vide insight into how microbes adapt at the molecular level. In
both systems, wrinkly phenotypes emerged from mutations re-
lated to wsp genes, two-component transcriptional regulators,
and polysaccharide production-associated genes. Understanding
how opportunistic pathogens (e.g., Burkholderia) or beneficial
root colonizers (e.g., P. fluorescens) undergo adaptive diversifica-
tion in biofilms could illuminate the ecological forces that drive
adaptation during chronic infections or plant biocontrol.

In the future, an experimental evolution approach using con-
structed microbial interactions might also provide a better under-
standing of the forces that govern assembly of natural mixed-
species biofilms as well as how best to engineer stabile, synthetic
microbial ecosystems. More broadly, laboratory evolution of bio-

film populations can be an important asset in our understanding
of ecoevolutionary dynamics within more complex communities
of multicellular organisms that are less amenable to manipulation.
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Biofilms are social entities where bacteria live in tightly packed agglomerations, surrounded

by self-secreted exopolymers. Since production of exopolymers is costly and potentially

exploitable by non-producers, mechanisms that prevent invasion of non-producing mutants

are hypothesized. Here we study long-term dynamics and evolution in Bacillus subtilis biofilm

populations consisting of wild-type (WT) matrix producers and mutant non-producers.

We show that non-producers initially fail to incorporate into biofilms formed by the WTcells,

resulting in 100-fold lower final frequency compared to the WT. However, this is modulated in

a long-term scenario, as non-producers evolve the ability to better incorporate into biofilms,

thereby slightly decreasing the productivity of the whole population. Detailed molecular

analysis reveals that the unexpected shift in the initially stable biofilm is coupled with newly

evolved phage-mediated interference competition. Our work therefore demonstrates

how collective behaviour can be disrupted as a result of rapid adaptation through mobile

genetic elements.
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B
iofilms, consisting of densely packed single- or multi-
species communities embedded in self-produced slimy
polymers, represent the most common microbial life

form1–3. Several recent studies have shown that the spatial
structure of biofilms has a major impact on competition and
cooperation among microbes and drives evolutionary changes
within microbial communities (reviewed in refs 4,5). One
particularly well-studied example used static cultures of
Pseudomonas fluorescens, where an oxygen gradient led to the
emergence of a new wrinkly (W) phenotype that secretes
polysaccharides and forms a biofilm at the air–liquid interface6,7.
Interestingly, biofilms formed by W undergo a premature
collapse caused by the incorporation of another phenotype into
the biofilm without sharing the metabolic costs of exopolymer
production8. This scenario of biofilm collapse reflects the
phenomenon known as ‘tragedy of the commons’, which
happens due to invasion by non-cooperators and depletion of an
overly-exploited resource (in this case the exopolymer)9.

How often the ‘tragedy of the commons’ happens in other
biofilm communities remains an open question in sociomicrobiol-
ogy. Several studies suggest that exopolymer production cannot
easily be exploited by non-producing defectors10,11. Such robustness
of cooperation-based biofilm formation is often explained by
limited sharing of matrix components10–12, the low costs of
polymer production11, the spatial assortment of cells in biofilms13

or even the intrinsic nature of certain matrix components that are
exclusively shared between mother and daughter cells14. Although
the key principles of certain non-producer exclusion mechanisms
are becoming clear, competition experiments involving producers
and non-producers are usually conducted over short timescales11–
14, leaving a window of opportunity for unexpected evolutionary
scenarios15. Data from various bacterial models suggest that
defectors can leave a fingerprint on the evolution of social strains
and promote the evolution of novel cheating-suppression
mechanisms16. These can be linked to lowering the cost of
cooperation by the wild-type (WT) cells17. Selection can also work
to the advantage of the non-producers, which can evolve better
exploitation skills15,17. In extreme cases, cooperators can be de novo
selected from the population of cheats18. In general, long-term
scenarios in socially heterogeneous populations of microbes are still
very difficult to predict.

In this manuscript, we study the long-term social dynamics of
co-cultures comprising matrix producer and non-producer
strains using the widespread soil bacterium Bacillus subtilis.
B. subtilis forms thick, robust structures at the air-liquid interface
(pellicle) facilitated by two crucial secreted compounds: an
exopolysaccharide, Eps (encoded by epsA-O), and a protein
component, TasA (encoded by tapA-sipW-tasA). In a standing
culture, driven by oxygen limitation, matrix-producing strains
form pellicles19. Strains lacking either one or both matrix
components cannot form robust biofilms at the air–liquid
interface and they barely colonize the liquid surface20.
Moreover, strains producing only one of the components are
able to complement each other and form a WT-like pellicle20.
This strongly suggests that both matrix components secreted by
producers are freely shared with non-producers and could
therefore be exploited by non-producing mutants.

Here we show that on a short timescale, B. subtilis matrix
non-producers have a tremendous disadvantage in co-culture
with the WT. We further demonstrate how unexpected
adaptive events involving mobile genetic elements can shift
the social dynamics in the population and reduce biofilm
formation.

Results
Biofilm non-producers are outcompeted from mixed pellicles.
A positive result in a complementation assay of B. subtilis
Deps and DtasA biofilm mutants suggests that both key biofilm
components, Eps and TasA, can be shared (Fig. 1a)20. We
therefore predicted that the double mutant Deps–DtasA, which
cannot form a pellicle in monoculture20, would still be able to
incorporate into the pellicle when co-cultured with the WT. To
test our hypothesis, we mixed WT and Deps–DtasA strains in a
1:1 ratio and allowed the pellicle to form (see Methods). The final
ratio of the WT to the Deps–DtasA strain was assessed by two
alternative methods: antibiotic marker based colony forming unit
(c.f.u.) counts (Fig. 1a) and fluorescence microscopy (here, GFP
and mKATE2 producing WT and Deps–DtasA mutants were
used, respectively, or we used the same strains with swapped
fluorescent markers; Fig. 1b,c). Surprisingly both c.f.u. assay and
microscopy indicated a dramatic advantage of the WT over
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Deps–DtasA; the latter was almost completely outcompeted from
the pellicle formed by the WT (Fig. 1a–c).

The incorporation success of Deps–DtasA into the pellicle was
positively dependent on its initial frequency (Pearson’s correla-
tion coefficient r¼ 0.74; Supplementary Fig. 1A). Specifically, the
mutant showed increased pellicle incorporation, up to 23±1.9%,
which also correlated with decline in total c.f.u. of the pellicle, but
only when its initial proportion was 450%, while at initial
frequencies o50%, the pellicle incorporation ranged from 0.11 to
5% (Supplementary Fig. 1A).

To understand if the availability of nutrients influenced
the ability of non-producers to incorporate into the pellicle,
the competition assay was repeated using a medium in which the
broth and other components were doubled (4� SG, see
Methods). It was observed that the Deps–DtasA strain could
incorporate better in richer medium (Supplementary Fig. 1B).
Using 2� SG, the incorporation ability of the Deps–DtasA strain
was 2% (mean; n¼ 5; s.d.¼ 1.37), while in 4� SG medium
pellicle incorporation increased to 6.72% (mean; n¼ 5;
s.d.¼ 3.40). Importantly, the starting ratios in these competition
assays were identical (46.72% Deps–DtasA; mean; n¼ 5;
s.d.¼ 14.4), therefore, the possibility of the initial frequency
influencing these results could be excluded.

Finally, to ensure that the above result was caused by a
mechanism that is specific to biofilm conditions and not simply
caused by a growth defect of the Deps–DtasA strain, WT versus
Deps–DtasA competition experiments were also performed in
planktonic cultures where oxygen distribution is more homo-
genous and no fitness benefits from biofilm formation are to be
expected11,13,21. In planktonic culture, Deps–DtasA had a strong
fitness advantage over the WT (Fig. 1d) that is likely due to the
release of the mutant from the metabolic costs of Eps and TasA
production13, as also indicated by its higher growth rate in
planktonic culture conditions (Supplementary Fig. 1C). We
therefore concluded that a specific mechanism prevents
incorporation of the Deps–DtasA mutant into B. subtilis pellicles.

The ratio of non-producers increases during co-evolution. For
the investigation of long-term dynamics in B. subtilis WT and
Deps–DtasA mutant co-culture over time, a serial transfer
experiment was conducted in conditions promoting pellicle for-
mation (see Methods). During the evolution experiment, two
transfer methods were applied: in transfer method A, the dis-
rupted biofilm suspension was used directly for the inoculation of
fresh medium; in transfer method B the disrupted biofilm sus-
pension was heat-treated, thereby selecting only spores for the
inoculation (for detailed description see Methods). Method B was
chosen to select for individuals that successfully went through the
entire biofilm life cycle.

The ratio of WT to the Deps–DtasA mutant was monitored by
selective plating of frozen stocks prepared at different timepoints
from the experiment, from the 2nd up to the final (10th) transfer.
Despite the initial incorporation failure of Deps–DtasA into the
pellicle (Fig. 1a–c), its representation in certain populations of
transfer method B was observed to increase dramatically over
longer timescales. Remarkably, in parallel populations where
transfer method B was applied (that is, selection for spores), the
fraction of the Deps–DtasA mutant was considerably higher after
the 10th transfer than at the start of the experimental evolution in
all but two replicates (Fig. 2b). Importantly, with several
exceptions (in replicates 2 that remained relatively stable
WT:Deps–DtasA ratio over time and replicate 4 that showed an
outlying outburst of Deps–DtasA at passage 8), the percentage of
the Deps–DtasA mutant was increased in each successive passage
of these populations (Fig. 2b). The values rose to 430% in

general and to a maximum of around 80% after the 10th transfer
of replicate 5. Also, in one out of five parallel populations that
were transferred by method A, the fraction of Deps–DtasA was
slightly higher after the 10th transfer compared to that at the
beginning of the evolution experiment (Fig. 2a).

Non-producers evolve to better incorporate into the pellicle. To
further investigate the evolutionary phenomena involved in
improved performance of Deps–DtasA in the evolved biofilm
population, single clones of both the WT and Deps–DtasAmutant
were isolated from three randomly chosen populations after the
10th transfer where an increase of Deps–DtasA in the pellicle was
observed (replicates 3, 4 and 5 from transfer method B) (Fig. 2b).
All evolved populations and single clones that were further ana-
lysed (or genetically modified) in this study are listed in
Supplementary Table 2. For clarity, we refer to evolved matrix
producers (WT strains) as eMP and to the evolved matrix non-
producers (Deps–DtasA) as eNMP.

First, to understand which of the co-cultured strains evolved to
facilitate better incorporation of the mutant into the pellicle, a
series of pellicle competition assays were performed. Competition
assays revealed that all but one tested eNMP strains from
populations B410m and B510m, and one isolate from population
B310m, could increase their fraction within the pellicles as
compared to their ancestor when co-cultured with the ancestor
WT (Fig. 3a,b). This result was confirmed by both c.f.u. assay
(Fig. 3a) and fluorescence microscopy (Fig. 3b). Moreover, the
ancestor Deps–DtasA performed even worse when co-cultured
with the eMP strains compared to its performance against the
WT ancestor (Fig. 3). Therefore, the eMPs completely suppressed
the ancestral Deps–DtasA.

The performance of three selected eMP and eNMP represen-
tatives (one from each evolved population) against the WT
ancestor was additionally determined by calculating the selection
rate coefficient. All eMPs showed a positive selection rate and
their relative c.f.u. in the pellicle was significantly higher that 50%
(Supplementary Fig. 3). However, the ancestor Deps–DtasA and
eNMPs had negative selection rates, which indicates poor
performance during competition with the ancestor WT. Never-
theless, the ancestor Deps–DtasA strain showed the poorest
performance (selection rate value of � 3.36) and all the eNMPs,
B310mA, B410mB and B510mC, revealed improved performance
compared to the ancestor mutant strain, with selection rate values
of � 2.59, � 1.14 and � 2.25, respectively.

Finally, the eNMPs were challenged with the eMPs selected
from the corresponding populations (that is, B310mA versus
B310wtA or B410mB versus B410wtB). We noticed that the
eNMPs from population B310m exhibited a slight decrease in
pellicle incorporation compared to their pellicle incorporation
when in competition with the ancestor WT (Fig. 3). Overall the
eMPs performed better at suppressing the eNMPs as compared to
the WT ancestor, however, certain eNMPs from populations
B410m and B510m still displayed significantly improved
incorporation whether competing against the evolved or ancestor
WT (Fig. 3). On the basis of these competition assays, we
conclude that evolutionary changes in the Deps–DtasA mutant,
rather than the WT, resulted in the improved performance of the
non-producers in mixed pellicles.

It was further revealed that the incorporation success of the
eNMPs did not depend on their initial frequency. Competition
assays with different starting ratios of the WT ancestor to each of the
eNMPs (B310mA, B410mB and B510mC) revealed that the eNMPs
exhibited higher levels of pellicle incorporation regardless of their
starting frequency (Supplementary Fig. 1D–F). B310mA, B410mB
and B510mC showed an average pellicle incorporation percentage of
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9.13% (Pearson’s correlation coefficient r¼ 0.17), 18% (r¼ 0.22)
and 27% (r¼ 0.16), respectively (Supplementary Fig. 1D–F).

Further experiments also revealed that, in contrast to the
ancestor mutant (Supplementary Fig. 1B), the incorporation
percentage of the eNMP B310mA was not affected by doubling
the concentration of resources in the medium (Supplementary
Fig. 1B); the incorporation of the evolved B310mA was
9.54%±3.04% in 2� SG medium and 9.88%±2.04% in 4� SG.
These results suggest that the incorporation efficiency of the
eNMPs might be driven by a different mechanism from that in
the ancestor Deps–DtasA.

Incorporation of eNMPs decreases biofilm productivity. A
productivity assay was performed to understand the effect of
increased incorporation of the eNMPs on the biofilm productivity
and to compare the productivity of the eMPs relative to the
ancestor WT. Productivity was measured by weighing the whole
biomass of the pellicle and is represented as relative
productivity compared with the ancestor WT (that is, ancestor
WT productivity¼ 1).

As expected, the productivity of the mixed pellicle consisting of
the WT ancestor and mutant ancestor was very similar to the
productivity of the WT ancestor grown alone, indicating that the
presence of the ancestor Deps–DtasA did not affect the biofilm
productivity (Fig. 4). This result agrees with our results showing
that ancestor Deps–DtasA was almost completely outcompeted
from the pellicle (Fig. 1a–c). In contrast, the productivity of
pellicles containing both the ancestor WT and the eNMPs was
lower than the productivity of the monoculture WT (productivity
values o1), indicating that the population was negatively affected
overall when eNMPs were present (Fig. 4). Interestingly, the
eMPs in monocultures (B310wtA, B410wtB and B510wtC) had
higher productivity than the WT ancestor (Fig. 4; Supplementary
Fig. 4A). Finally, we examined the productivities of the evolved
pairs with common evolutionary histories (B310wtAþB310mA;
B410wtBþB410mB; and B510wtCþB510mC). For all three
pairs, the productivity of the mixed pellicles was lower than the
productivity of the ancestor WT; however, these differences were
statistically significant only for the pairs B410wtBþB410mB and
B510wtCþB510mC (Fig. 4). Nevertheless, in all combinations,
the eNMPþ eMP productivities were significantly lower than
the corresponding eMP productivity, indicating reproducible
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negative effects of the eNMPs on the productivity of the entire
evolved population (Fig. 4). In addition, the pellicles formed by
the populations from sequential evolutionary timepoints showed
overall decreases in productivity in evolutionary time
(Supplementary Fig. 4B), presumably caused by the increasing
frequency of eNMPs in pellicles (Fig. 2b).

These results show that although matrix producers evolved a
higher productivity, higher incorporation of the coevolved matrix
non-producers into the pellicle eventually decreased the overall
population productivity.

eMPs and eNMPs contain multiple SNPs in prophage ele-
ments. To understand the genetic basis of the observed evolu-
tionary dynamics, the genomes of three eMP and three eNMP
populations separated from the 10th transfer of method B cul-
tures (replicates 3, 4 and 5), where the frequency
of non-producers was observed to increase during evolution
(either gradually or periodically), were subjected to high-

throughput sequencing (Supplementary Table 2). The genomes of
corresponding three single isolates of eMPs (B310wtA, B410wtB
and B510wtC) and three eNMPs (B310mA, B410mB and
B510mC) from those populations were also sequenced. In addi-
tion, the genomes of the WT ancestor and the Deps–DtasA
ancestor were resequenced to screen for any single SNPs that
emerged before the evolution experiment during standard stock
preparation and laboratory procedures. The sequencing of six
populations (eMPs B310wt, B410wt and B510wt and eNMPs
B310m, B410m and B510m) and six single isolates (B310wtA,
B410wtB, B510wtC, B310mA, B410mB and B510mC) revealed
multiple single-nucleotide polymorphisms (SNPs) exclusively
accumulated in three distinct sites on the chromosome compared
to the ancestors: two prophage-like regions previously described
as prophage-like element 5 and prophage-like element 6 (ref. 22),
and the SPb prophage region (Supplementary Data 1; Fig. 5a,b).
In population B310 there were 617 SNPs, while in populations
B410 and B510 the number of SNPs exceeded 1000. More than

GFP mKATE Overlay

WTGFP versus B410mBmKATE

I II

WT versus

∆eps-∆tasA

WT

∆eps-∆tasA

Evolved

WT(Bx10wtA-C)

∆eps-∆tasA

(Bx10mA-C)

100

80

60

40

20

0

R
e
la

ti
v
e
 c

.f
.u

. 
in

 t
h
e
 p

e
lli

c
le

 (
%

)
*

*
* * * *

*

*

*

*

* *
*

*

*
*

*

*

100

80

60

40

20

0

R
e
la

ti
v
e
 c

.f
.u

. 
in

 t
h
e
 p

e
lli

c
le

 (
%

)

100

80

60

40

20

0

R
e
la

ti
v
e
 c

.f
.u

. 
in

 t
h
e
 p

e
lli

c
le

 (
%

)

W
T v

er
su

s

B31
0m

A

W
T v

er
su

s

B31
0m

B

W
T v

er
su

s

B31
0m

C

W
T v

er
su

s

B41
0m

A

W
T v

er
su

s

B41
0m

B

W
T v

er
su

s

B41
0m

C

W
T v

er
su

s

B51
0m

A

W
T v

er
su

s

B51
0m

B

W
T v

er
su

s

B51
0m

C

∆ep
s-

∆ta
sA

ve
rs

us
 B

31
0w

tA

∆ep
s-

∆ta
sA

ve
rs

us
 B

31
0w

tB

∆ep
s-

∆ta
sA

ve
rs

us
 B

31
0w

tC

∆ep
s-

∆ta
sA

ve
rs

us
 B

41
0w

tA

∆ep
s-

∆ta
sA

ve
rs

us
 B

41
0w

tB

∆ep
s-

∆ta
sA

ve
rs

us
 B

41
0w

tC

∆ep
s-

∆ta
sA

ve
rs

us
 B

51
0w

tA

∆ep
s-

∆ta
sA

ve
rs

us
 B

51
0w

tB

∆ep
s-

∆ta
sA

ve
rs

us
 B

51
0w

tC

III

Ancestors

B
3
1
0
m

A
 v

e
rs

u
s

B
3
1
0
w

tA

B
3
1
0
m

B
 v

e
rs

u
s

B
3
1
0
w

tB

B
3
1
0
m

C
 v

e
rs

u
s

B
3
1
0
w

tC

B
4
1
0
m

A
 v

e
rs

u
s

B
4
1
0
w

tA

B
4
1
0
m

B
 v

e
rs

u
s

B
4
1
0
w

tB

B
4
1
0
m

C
 v

e
rs

u
s

B
4
1
0
w

tC

B
5
1
0
m

A
 v

e
rs

u
s

B
5
1
0
w

tA

B
5
1
0
m

B
 v

e
rs

u
s

B
5
1
0
w

tB

B
5
1
0
m

C
 v

e
rs

u
s

B
5
1
0
w

tC

IV

WTmKATE versus B410mBGFP

a

b

Figure 3 | Pellicle competition assay. (a) WT ancestor and Deps–DtasA mutant ancestor (I); and WT ancestor and eNMP strains 310mA, 310mB, 310mC,

410mA, 410mB, 410mC and 510mA, 510mB, 510mC (II). On a separate panel (above right): pellicle competition assay between WT ancestor and

Deps–DtasA mutant ancestor, eMP strains (three isolates per population, as in a) and Deps–DtasA mutant ancestor (III). On a panel below: pellicle competition

assay between WTancestor and Deps–DtasA mutant ancestor, eMP strains and eNMP strains sharing evolutionary history (IV). Boxes represent Q1–Q3, lines

represent the median, and bars span from max to min. Each competition assay was replicated in parallel with the ancestor WTversus Deps–DtasA combination

at least twice. * in sections II and IV indicate that the relative c.f.u. are significantly different from the relative c.f.u. of WT versus Deps-DtasA ancestor

competition. (b) Confocal microscopy images of pellicle biofilms (left) including swapped fluorescence marker proteins (right). Scale bars, 10 mm.
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50% of SNPs detected in single isolates overlapped with SNPs
found in the corresponding populations (Supplementary Data 1;
Fig. 6a,b).

Further analysis of the sequenced genomes revealed that
there was also a large parallel mutational overlap between the
evolutionarily unrelated populations and single isolates
(regardless of WT or Deps–DtasA background; Supplementary
Data 1; Fig. 6a,b). For visual representation of this overlap we
produced a windowed-average identity score for the alignment of
the entire 134 kbp SPb region of the evolved strains/populations
to the ancestral SPb (Supplementary Fig. 5A). A global analysis of
SNPs from all six single isolates showed that the majority of
SNPs represented synonymous substitutions (58%), 17% were
non-synonymous but evolutionarily conserved (that is, similar;
Blosum62 matrix scoreZ1), 9% were evolutionarily non-
conserved and non-synonymous (Blosum62 matrix scorer0),
and the remaining 16% of the substitutions were located in non-
coding regions (Supplementary Fig. 5B). We also compared the
distributions of SNPs in the eMPs and eNMPs by analysing the
functions of affected genes. We observed that eMPs accumulated
more SNPs than the corresponding eNMPs, especially in genes
related to the toxin production and secretion (Supplementary
Data 1; Supplementary Fig. 5D,E). However, most of the affected
genes belonged to the unknown function category.

More detailed analyses of the sequencing data on the evolved
strains suggested duplications of certain genome fragments and
genome rearrangements compared to the ancestors. Duplications
were indicated by the increased sequencing coverage within
the SNP-containing regions (Supplementary Fig. 6A) and the
striking pattern of SNP frequencies (Supplementary Data 1;
Supplementary Fig. 6B), which was confirmed by PCR and Sanger
sequencing of the particularly highly-mutated SPb fragment
(2,178,034–2,179,407) from the genomic DNA of B310mA and

B310wtA (Supplementary Fig. 6C). Interestingly, the PCR
product obtained from B310mA gave a clear chromatogram with
all SNPs present, whereas B310wtA showed a heterogeneous
chromatogram with double peaks in the positions of SNPs, one
peak coming from an ancestor-like base and the other from the
evolved-like base (Supplementary Fig. 6C). In addition, the
SPb fragments could still be amplified by PCR even after deletion
of the original SPb region from the chromosomes of B410mB
and B510mC (Supplementary Fig. 6D–F). The identification of
genome rearrangements was made after de novo assembly of
sequencing reads into contigs (Fig. 6c). All of the predicted
rearrangements involved sequences belonging to prophage-like
elements 5 and 6 and various SPb fragments, and included the
exact regions where multiple SNPs accumulated (Fig. 6c). The
presence of two randomly selected rearrangements (contig type 1
and type 4) was confirmed by PCR to occur exclusively in the
evolved strains; it did not occur in the ancestor WT or ancestor
Deps–DtasA (Supplementary Fig. 6G). Altogether, we conclude
that the emergence of multiple SNPs in all evolved strains
(both eMPs and eNMPs) was linked to duplications and
rearrangements within prophage elements in the B. subtilis
genome. It is important to note that the mutation frequencies of
the ancestor and the evolved strains were similar, as confirmed
using fluctuation assays (Supplementary Fig. 5C). The obtained
mutation frequencies were comparable to previously reported
data for other B. subtilis strains23, suggesting that the ancestor
strains used here were not hypermutators. Moreover, when the
same ancestor strain was evolved for B350 generations in
emulsion droplets, 60 SNPs and short deletions were identified
(Eisha Mhatre and Á.T. Kovács, unpublished data).

Hybrid SPb prophage shows lytic activity towards the ancestors.
Rearrangements involving SPb prophage regions have previously
been described as a result of the hybridization of SPb with
another B. subtilis phage, phi3T (ref. 24). A hybrid form of SPb
can undergo spontaneous excision from the chromosome to form
a pseudolysogen, or it can enter a lytic cycle leading to active
phage-particle release24. To verify whether the eMPs and eNMPs
in the present study spontaneously released phage particles
into the medium, phages were precipitated from the supernatants
of cultures of selected evolved strains and of the WT ancestor
(as a negative control) and visualized by transmission electron
microscopy.

No phage particles could be detected in the precipitate
obtained from the WT ancestor, which was in line with previous
findings25. When the WT ancestor was grown in the presence of
the prophage-inducing agent mitomycin C, PBSX-like phage
particles were detected in its supernatant, which again reproduced
previous results26 (Supplementary Fig. 7A). However, even in the
absence of mitomycin C, the evolved strains B410mB and
B410wtB released two types of phage particles—PBSX-like
particles with a small head and a rigid tail (assignment based
on ref. 26), and SPb-like particles with a big head and a longer,
flexible tail (assignment based on an image provided by Vladimir
Lazarevic, Hôpitaux Universitaires de Genève, Switzerland,
personal communication; Fig. 7a; Supplementary Fig. 7A). The
addition of mitomycin C to B410mB and B410wtB cultures
resulted in a dramatic increase in the number of SPb-like phage
particles in the culture supernatants (Supplementary Fig. 7A).
SPb-like particles could not be detected in the supernatant of
B310mASPb � cultures, but were still present in B410mBSPb �

cultures, which corresponded well with the results of molecular
analysis, which indicated successful deletion of SPb from strain
B310mASPb� but not from B410mBSPb � (Supplementary
Figs 6D–F and 7A).
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Figure 4 | Productivity assay based on biofilm biomass. Productivity of

Deps–DtasA ancestor and eNMPs B310mA, B410mB and B510mC,

respectively, in co-cultures with WT ancestor, monocultures of eMPs

B310wtA, B410wtB and B510wtC, and co-cultures of eNMPs with

corresponding eMPs compared to the WT ancestor (n¼ 10; t-Student;

two-tail Po0.05). Boxes represent Q1–Q3, lines represent the median, and

bars span from max to min. Each WT versus co-culture/eMP comparison

was replicated at least twice. *—productivities significantly different from

the WT ancestor. w—productivities significantly lower from the

corresponding eMP cultures.
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Next, the lytic activity of the SPb particles released by the
evolved strains was tested against the ancestor strains. A series of
plaque assays were performed where each strain served both as a
supernatant donor and as potential prey. Neither of the ancestor
strains (WT or Deps–DtasA) showed lytic activity when serving as
the supernatant donor, but they were both susceptible to the
lytic activity of almost all supernatants of the evolved strains
(Fig. 6b, Supplementary Fig. 7B). Strain B310mASPb� performed
exactly the same as the ancestors, showing no lytic activity but
displaying susceptibility to all supernatants, including that of
B310mA (from which it was derived; Fig. 6b; Supplementary
Fig. 7B). Despite the fact that all evolved strains showed lytic
activity and immunity, they could be differentiated into strong
(for example, B410mB) and moderate levels (for example,

B510wtC) (Fig. 6b; Supplementary Fig. 7B). The lytic activity of
the supernatants of all evolved populations was assessed,
including all five populations from transfer method A and all
five populations from transfer method B (Fig. 2). Strong lytic
activity towards the ancestor WT strain was found exclusively in
populations that showed an increased incorporation of
non-producers into the pellicle following the evolution experi-
ment, specifically population 2 from transfer method A, and
populations 1, 3, 4 and 5 from transfer method B (Supplementary
Fig. 7C). Further, populations that did not show increased
incorporation of non-producers and lacked lytic activity
towards the ancestor strains did not contain multiple SNPs
within the SPb regions, as confirmed by Sanger sequencing of the
2,178,034–2,179,407 genomic fragment.
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Figure 5 | Multiple SNPs and genome rearrangements are detected in the evolved strains. Genome wide distribution of SNP loci across the evolved

B. subtilis populations (a) and single isolates (b) generated using the DNAPlotter tool56. (a) SNPs from six populations are presented on separate tracks;

starting from the outside and moving towards the inside: B310wt, B410wt, B510wt (all shown in blue), B310m, B410m, and B510m (all shown in red).

(b) SNPs in six isolates are presented on separate tracks; starting from the outside and moving towards the inside: B310wtA, B410wtB, B510wtC (all shown

in blue), B310mA, B410mB, and B510mC (all shown in red). Internal black circles represent GC profiles. (c) Genome rearrangements predicted for the

evolved strains based on bioinformatics analysis of the sequencing data. Black lines represent de novo assembled contigs with their sizes indicated on the

right, grey boxes show aligned fragments of the reference genome (GenBank accession number AL009126), and stripes show SNP positions. Visualization

was performed using Geneious software57. Corresponding genes (or non-coding regions) in the reference B. subtilis genome are shown below the alignment

with different coloration used for each type of rearrangement. (d) DNA plotter graphical representation of predicted genome rearrangements (zoom view

on the SPb and prophage-like element 6 and 5 regions). The black histogram represents the GC profile, where three clusters of low-GC content directly
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Spontaneous phage release by the evolved strains and their lytic
activity towards the ancestors suggested that higher incorporation
of the eNMPs into pellicles may be the result of newly evolved
interference competition. We therefore examined whether the
ancestor mutant could acquire the evolved-like phenotype with
higher incorporation pellicle properties through a single-phage
transduction step. For the infection assay, a 1:1 mixture of the
WT and Deps–DtasA ancestors was introduced into standard
2� SG medium supplemented with phage precipitate obtained
from B410mB where the presence of SPb-like phage particles was
detected. After a single growth cycle, three colonies of the WT
and three colonies of Deps–DtasA were isolated and their
acquired lytic activity towards the ancestor strains was assessed.
Finally, pellicle competition assays were performed using the
WT ancestor and the three Deps–DtasA strains isolated from
the infected population (ImA, ImB and ImC). As expected, the
phage-infected strains behaved similarly to the evolved mutants,
showing 44-fold (in the case of ImA) and 42.5-fold (ImB and
ImC) increased incorporation rates into the pellicle compared
with the ancestor mutant (Fig. 7).

Phage release facilitates higher pellicle inclusion of eNMPs.
Finally, we asked whether the presence of an identical active
phage variant in both producers and non-producers is sufficient
to explain the higher incorporation of the eNMPs into pellicles.
This was first tested by assaying the infected mutants (ImA, ImB
and ImC) with the infected WT strains (Supplementary Fig. 8).
No increased pellicle incorporation of the mutants was observed,
indicating that higher incorporation of the mutants cannot be
explained by a general increase of phage activity in the entire

population (Supplementary Fig. 8), but is due instead to subtle
differences within phage elements of evolved non-producers and
producers.

This was further confirmed by a fitness assay that involved
Deps–DtasA and WT strains with an isogenic evolved back-
ground. Isogenic evolved WT and mutant strains were obtained
simply by introducing the Deps–DtasA deletions into eMPs.
Genome resequencing confirmed that the obtained Deps–DtasA
strains still contained the genetic background of corresponding
eMPs (Supplementary Data 1). When the eMPs B310wtA,
B410wtB and B510wtC were competed against their direct
derivatives B310wtADeps–DtasA, B410wtBDeps–DtasA, and
B510wtCDeps–DtasA, respectively, a very low pellicle incorporation
percentage of the mutants was observed, which was comparable
to the performance of the ancestor Deps–DtasA against the
ancestor WT (Supplementary Fig. 8). As expected, competition
assays with the WT ancestor revealed that the transformants had
comparable incorporation probabilities to the eNMPs (Fig. 7).
These results indicated that although producers and non-
producers showed very similar general adaptation patterns
involving major changes in mobile genetic elements, some of
these changes were specific to the evolved non-producers,
resulting in their improved incorporation into pellicles, most
likely through an advantage in interference competition.

Discussion
Stability of cooperative interactions can determine the perfor-
mance of microbes in most medically and biotechnologically
relevant situations27–32. In recent years, understanding of
microbial group behaviours and the mechanisms that prevent
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Figure 6 | Lytic phage activity appears in the evolved strains. (a) Electron micrographs of phage particles purified from B. subtilis supernatants. Upper

image shows PBSX-like phage particle released by the ancestor WT only in the presence of mitomycin C, and by all evolved strains in the absence of

mitomycin C. The lower image shows SPb-like phage particle spontaneously released by all evolved strains tested, but not by the ancestor WT or by

B310mASPb-. Scale bars, 70 nm. (b) Results of plaque assays performed with the ancestor WT, ancestor Deps–DtasA and all the evolved strains, where each

strain served both as a supernatant donor and as a potential host. Each strain was given 1 immunity point when resistant to a given supernatant (excluding

its own supernatant), and a number of lytic activity points when showing lytic activity towards a given host (excluding itself), depending on the strength of

lytic activity. Specifically, the number of points was equal to a maximal log dilution factor where lytic activity was still present (for example, a lytic activity

that can still be detected in a conditioned medium diluted to 10� 3 but not 10�4 is denoted with 3 points). Obtained immunity and lytic activity scores were

then divided by the maximum value of each and are presented as relative percentages. Darkness of the bars is proportional to immunity/lytic activity scores

values. High immunity/lytic activity scores correlated with presence of SPb-like particles (black in the right-hand column) isolated from the culture medium

of those strains. ‘nt’ indicates media were not tested by transmission electron microscopy. The experiment was independently replicated four times.
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spreading of non-cooperative mutants has become one of the key
aims of sociomicrobiology. Long timescale evolutionary
experiments have already demonstrated the evolutionary
plasticity of social interactions in various bacterial
models18,33,34. Here we describe a scenario where a biofilm
matrix non-producer that is initially eliminated from the
population increases its performance over longer timescales and
evolves the ability to better incorporate into the biofilm. The
evolution of improved invasion of biofilms by non-producers was
previously observed by Zhang et al.15. They excluded the
possibility of general adaptation being responsible for the
changed social dynamics in biofilms since the evolved producer
did not increase its performance towards the ancestor producer.
In the present work, an increased selection coefficient and
improved productivity of the evolved WT could be observed in
monocultures; the same, unfortunately, could not be tested for the
evolved mutants because of their inability to form pellicles in
monocultures. We therefore hypothesize that the evolved
increased-biofilm-incorporation-ability of the mutant was a side
effect of extremely fast general adaptation of both producer and
non-producers driven by mobile genetic elements. Interestingly,
the improved incorporation of the non-producers into biofilms
was not reproduced when both WT and non-producer strains
had identical evolved genetic backgrounds (that of the evolved
WT strains). This means that although the general adaptation
pattern in the entire population was very similar, the non-
producers are evolutionarily ahead of the producers and carry
certain specific changes that allow their improved performance in

incorporation into biofilms formed by the evolved WT strains.
We believe those specific differences are hidden within prophage
elements of the evolved strains, and they could be revealed by de
novo sequencing in the future.

In the ancestral population, the matrix non-producers
(Deps–DtasA, which do not secrete two key matrix components
Eps and TasA) can hardly incorporate into pellicle biofilms
formed by the WT. This result was rather unexpected for two
reasons: first, previous work demonstrated that both Eps and
TasA are shared with non-producing strains20, and, second, the
production of at least one of those compounds (Eps) was proven
to be costly and exploitable13. Although we did not study the
competition mechanism in detail, a positive correlation between
fitness, initial Deps–DtasA frequency and resource availability
suggests that in the ancestral population the growth of
Deps–DtasA is not only limited by the lack of oxygen, but also
by carbon resources. We speculate that this is caused by a delay in
surface co-colonization of Deps–DtasA, because the producer can
partially privatize the matrix components. Since the WT is
released from oxygen-limitation first, it can quickly deplete the
remaining carbon resources, preventing further growth of the
mutant. This model, however, awaits further studies.

The pellicle incorporation mechanism of evolved Deps–DtasA
does not depend on resource concentration or on the initial
frequency of the mutant in the co-culture. It is likely that new
antagonistic interactions involving infection and lysis of the
ancestor WT by the evolved mutant delay surface colonization by
the WT, giving the mutant a prolonged window of opportunity
for co-colonization. A similar mechanism could play a role in the
competition between the evolved mutant and the evolved WT,
since the evolved WT strains spontaneously release phages into
the medium and show a delay in pellicle formation.

How did the new lytic properties evolve? We believe that
multiple rearrangements in the genomes of the evolved strains,
combined with series of SNPs in regions that were rearranged,
resulted in new lytic properties of the normally inactive
domesticated SPb prophage. Since this scenario was more likely
to occur on sporulation treatment (that is, treatment method B),
we suspect that the multiple heat-treatments involved in this
treatment might have promoted phage activation35 or even
rearrangements of phage elements in the genome36. The
accumulation of multiple SNPs and rearrangements resembles
the previously reported evolutionary response of the Streptococcus
thermophilus phage to the host’s CRISPR system37, however, no
CRISPR/Cas has yet been identified in B. subtilis. Alternatively,
rapid diversification within prophage regions combined with lytic
induction may be a universal adaptive pattern of bacteria to
a biofilm lifestyle, as it was previously also observed during
experimental evolution of Pseudomonas aeruginosa biofilms38.
Our work also demonstrates how such newly evolved phage
warfare shifts social dynamics in the bacterial population in
favour of biofilm non-producers. The dynamics of host-phage
interactions is long studied in various experimental systems39.
It was previously observed that lytic phages can shift the balance
in competitive interactions by reducing the frequency of a
winning partner40, or impair biofilm formation ability as a trade-
off for phage immunity41. We hypothesize that in the case of the
B. subtilis pellicles, the disadvantage of matrix producers could
originate from the degeneration of toxin/secretion-related genes
in the evolved wild-types that in turn became less efficient
competitors than the evolved mutants.

The improved fitness of the evolved WT strain in monoculture
could be a direct result of the evolved spontaneous phage release.
Normally, the excision of the SPb prophage from the B. subtilis
chromosome takes place before sporulation and allows recon-
stitution of the spsM gene involved in spore polysaccharide
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Figure 7 | Evolved mutants and ancestor mutants hosting the evolved

phage have increased incorporations into the pellicle. Competition assay

between the WT ancestor and Deps–DtasA ancestor (control) (n¼ 7);

between the WT ancestor and three single colonies obtained after

transduction of the Deps–DtasA ancestor with phage particles released by

eNMP B410mB (n¼ 2); and between the WT ancestor and eMPs

(B310wtA, B410wtB, and B510wtC) with deleted eps and tasA (n¼ 10;

n¼ 10; n¼ 7, respectively). Boxes represent Q1–Q3, lines represent the

median, and bars span from max to min. Each competition assay in parallel

with the ancestor WT versus Deps–DtasA was replicated at least twice.
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biosynthesis42. Sanchez-Vizuete et al.43 demonstrated that
removal of SPb from the chromosome permanently restores
spsM, resulting in increased biofilm thickness. We presume that
frequent spontaneous excision of SPb, or even pseudolysogeny
(as demonstrated in ref. 24) in the evolved WT strains, could
positively contribute to the biofilm productivity through spsM
reconstitution. Excision of prophage from the host chromosome
was recently linked to improved biofilm formation by Shewanella
oneidensis facing cold stress44. Such a phage excision benefited
the host through gene inactivation rather than reconstitution
(as observed in ref. 43). Similar genetic switches triggered by
prophage excision were also described in several other species
(reviewed in ref. 45).

The B. subtilis SPb prophage carries a bacteriocin-immunity
system46, several putative toxin–antitoxin systems47 and cell wall
hydrolases48. Several SPb segments of 4250 nucleotides exhibit
490% identity with B. subtilis chromosomal regions25 promoting
recombination events, especially in naturally competent strains.
Not surprisingly, recent reports strongly indicate a key role of
phage elements in rapid evolution of kin recognition mechanisms
and antagonistic interactions between closely related, sympatric
B. subtilis strains49,50. Accumulation of SNPs in the SPb
region was also observed in the evolution experiments of
Overkamp et al.51, where B. subtilis was kept in zero-growth
conditions for 42 days. Among hundreds of SNPs discovered by
Overkamp et al.51, 80% overlapped with the SNPs reported in this
study. In addition, most of the SNPs detected were synonymous
and evolutionarily conserved, suggesting selection against loss of
function. Recent reports show that even non-synonymous
mutations can positively contribute to fitness52,53. This again
suggests that mutations or rearrangements within phage elements
can be a very important evolutionary force in B. subtilis, with a
major impact on social interactions. Recently, the profound
impact of prophages on the evolution of a pathogenic bacterium
was experimentally demonstrated in P. aeruginosa biofilms54,
where the presence of phages resulted in strong selection against
phage recognition elements (type IV pilus), at the same time
enhancing parallel evolution54. Similar selective pressure could
emerge after fast evolution of active SPb variants in B. subtilis
biofilms, resulting in striking parallelism in evolved populations
of both WT and Deps–DtasA bacteria.

Our work demonstrates how social dynamics in an initially
very robust biofilm can be shifted by unexpected evolutionary
events. We show that an adaptive genotype that is quickly tailored
by mobile genetic elements can easily spread through horizontal
gene transfer. The same adaptive path, although beneficial for the
producer, became maladaptive in a mixed population where
producers coexisted with non-producers.

Methods
Strains and cultivation conditions. Supplementary Table 1 describes strains used
in this study and construction of their mutant derivatives. Strain B. subtilis 168
hymKATE PtapA-yfp was obtained by transforming the laboratory strain, B. subtilis
168, with genomic DNA from DL821 and selecting for MLS resistance. Subse-
quently, the created strain was transformed with genomic DNA from 168 hymKate
and selecting on chloramphenicol resistance and for the loss of amylase activity.
The Deps and DtasA strains were obtained by transforming the 168 strains with
genomic DNA isolated from DL1032 and specifically selecting for tetracycline or
kanamycin resistance, respectively. The double mutant Deps–DtasA was obtained
by transforming 168 Deps with genomic DNA from DL1032 and selecting on the
kanamycin marker. The Deps–DtasA hyGFP and Deps–DtasA hymKate strains
were obtained by transforming the Deps–DtasA strain with genomic DNA obtained
from 168 hyGFP and 168 hymKate, respectively. Deletion of epsA-O and tasA
genes were confirmed with PCR using oligos described in Supplementary Table 3.
Strains were maintained in LB medium (Lennox broth; Carl Roth, Germany), while
2� SG medium was used for biofilm induction55.

Experimental evolution and competition assays. Experimental evolution was
performed using co-cultures of fluorescently labelled but otherwise WT and

Deps–DtasA strains grown in 2ml 2� SG medium statically in a 24-well plate at
30 �C for 2–3 days. For transfer method A, the mature pellicles were harvested,
mildly disrupted, and reinoculated after 100� dilution. For transfer method B, the
pellicles were additionally heat-treated after disruption and diluted � 20 during
reinoculation. The sporulation frequency in the conditions applied in the evolution
experiment was about 20% (Supplementary Fig. 2). To maintain similar selection
bottlenecks in the two transfer methods, a fivefold lower dilution factor was used in
transfer method B.

After the 2nd, 8th and 10th pellicle transfers, frozen stocks were preserved.
Evolved populations or single isolates were isolated by selecting with appropriate
antibiotics. Competition experiments were performed by mixing certain ratios of
100-fold diluted LB-pregrown cultures which were then incubated in static pellicle
forming conditions for 3 days or in agitated planktonic cultures for 16 h. The
numbers of c.f.u. of the inocula and the final cultures were determined on LB-agar
plates containing selective antibiotics, incubated overnight at 37 �C. Prior the c.f.u.
assays, pellicles were sonicated according to a protocol optimized in our laboratory
(2 cycles each containing 12� 1 s pulses at 20% amplitude with 1 s pause between
the pulses), that ensured efficient disruption of biofilm clumps (as verified by
microscopy) and therefore accurate total cell counts in the pellicles.

Microscopy. Bright field images of whole pellicles were obtained with an Axio
Zoom V16 stereomicroscope (Carl Zeiss, Jena, Germany) equipped with a Zeiss CL
9000 LED light source and an AxioCam MRm monochrome camera (Carl Zeiss).
The pellicles were also analysed using a confocal laser scanning microscope (LSM
780 equipped with an argon laser, Carl Zeiss) and Plan-Apochromat/1.4 Oil DIC
M27 � 63 objective. Fluorescent reporter excitation was performed with the argon
laser at 488 nm and the emitted fluorescence was recorded at 484–536 nm and
567–654 nm for GFP and mKate, respectively. To generate pellicle images, Z-stack
series with 1 mm steps were acquired. Zen 2012 Software (Carl Zeiss) was used for
both stereomicroscopy and CLSM image visualization.

Productivity assay. For productivity assays, pellicles were inoculated into 4ml of
2� SG medium placed in 35mm-diameter Petri dishes and incubated for 3 days at
30 �C. Next, the medium fraction was removed, and pellicles were dried at 55 �C for
3 h. The dry biomass was determined on an analytical balance.

Fluctuation assay. To determine the mutation rate, single colonies were picked
from LB-agar medium and cultivated for 18 h in LB broth at 37 �C. After 100-times
dilution in 2� SG medium, cultures (n¼ 10 for each strain) were subsequently
cultivated for 18 h with vigorous shaking, and dilution series were plated on
LB-agar medium to assay the frequency of streptomycin (50 mgml� l) resistant
c.f.u. after 18–24 h at 37 �C.

Genome resequencing and genome analysis. Genomic DNA of selected popu-
lations or isolated strains was isolated using the EURex Bacterial and Yeast
Genomic DNA Kit from cultures grown for 18 h. For the evolved population,
single-end fragment reads were sequenced using a Life Technologies SOLiD 5500xl
sequencer. Base-calling was carried out with the software provided by the supplier.
All other downstream analysis steps were done in CLC Genomics Workbench Tool
7.0.4. Reads were length-filtered, keeping only Z50 nucleotide long fragments.
Mapping used only those reads that displayed Z80% similarity to the reference
genome (GenBank accession number AL009126) over Z60% of the read length
(meaning an alignment of Z30 nucleotides having Z24 identical matches).
Non-specific reads were randomly placed to one of their possible genomic loca-
tions. Quality-based SNP and small in/del variant calling was carried out requiring
Z10� read coverage with Z20% variant frequency. Only variants suggested by
good quality bases (QZ20) were taken into account. Furthermore, mutations had
to be supported by evidence from both DNA strands.

For single isolate strains, paired-end fragment reads (2� 250 nucleotides) were
generated using an Illumina MiSeq sequencer. Primary data analysis (base-calling)
was carried out with MiSeq Reporter software (Illumina). All further analysis steps
were done in CLC Genomics Workbench Tool 8.0.2. Reads were quality-trimmed
using an error probability of 0.05 (Q13) as the threshold. Reads that displayed
Z80% similarity to the reference genome (GenBank accession number AL009126)
over Z80% of their read lengths were used in mapping. Non-specific reads were
randomly placed to one of their possible genomic locations. Quality-based SNP and
small In/Del variant calling was carried out requiring Z40� read coverage with
Z20% variant frequency. Only variants supported by good quality bases (QZ20)
were taken into account and only if they were supported by evidence from both
DNA strands. Selected genomic regions were validated by Sanger sequencing
(GATC Biotech, Konstanz, Germany) using oligos listed in Supplementary Table 3.

Transmission electron microscopy analysis. Selected bacterial strains were
grown overnight in LB medium at 37 �C with shaking at 200 r.p.m. In the case of
mitomycin-C-treated cultures, mitomycin C was added in late exponential phase to
a final concentration of 0.5 mgml� 1. Culture supernatants were collected, mixed at
a 1:4 ratio with PEG-8000 solution (PEG-8000 20%, 2 M NaCl), incubated on ice
for at least 90min and finally centrifuged (20min, 7,600 r.p.m.) to obtain
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precipitate. The pellet was resuspended in 10% of the original supernatant volume
in TBS solution (50mM Tris-HCl, 150mM NaCl, pH 7), incubated on ice for
90min and centrifuged (20min, 7600 r.p.m.). Supernatant was carefully transferred
to clean Eppendorf tubes. Purified samples (100 ml) were adsorbed onto duplicate
400 mesh carbon-coated Cu grids (Quantifoil, Gro�löbichau, Germany) for 2min.
Before use, the carbon grids were hydrophilized by 30 s of electric glow discharging.
The grids were washed twice in distilled water and stained for 30 s with 1% uranyl
acetate. Virus morphologies were examined using a Zeiss CEM 902A transmission
electron microscope (Carl Zeiss AG, Oberkochen, Germany). At least 20 images
were taken per sample at different magnifications using a 1k FastScan
CCD-Camera (camera and software from TVIPS, Munich, Germany).

Statistical analyses. Statistical differences between two experimental groups were
identified using two-tailed Student’s t-tests assuming equal variance. Variances in
the two main types of datasets (c.f.u. counts in competition assays and weight of
biomass) were similar across different samples. One data point with a value greater
than the mean plus 3 times the s.d. was removed from the dataset of n410 as an
outlier. Normal distributions within the two main data types (biomass and c.f.u.)
were confirmed by Kolmogorov–Smirnov (P40.05). No statistical methods were
used to predetermine sample size and the experiments were not randomized.

Data availability. The genome resequencing data are available in Supplementary
Data 1. The authors declare that all other relevant data supporting the findings of
the study are available within the article and its Supplementary Information files, or
from the corresponding author upon request.
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Sliding on the surface: bacterial spreading without an
active motor
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Summary

Bacteria are able to translocate over surfaces using

different types of active and passive motility

mechanisms. Sliding is one of the passive types of

movement since it is powered by the pushing force of

dividing cells and additional factors facilitating the

expansion over surfaces. In this review, we describe

the sliding proficient bacteria that were previously

investigated in details highlighting the sliding

facilitating compounds and the regulation of sliding

motility. Besides surfactants that reduce the friction

between cells and substratum, other compounds

including exopolysaccharides, hydrophobic proteins,

or glycopeptidolipids where discovered to promote

sliding. Therefore, we present the sliding bacteria in

three groups depending on the additional compound

required for sliding. Despite recent accomplishments

in sliding research there are still many open

questions about the mechanisms underlying sliding

motility and its regulation in diverse bacterial

species.

Introduction

Most natural habitats of bacteria include abiotic or biotic

surfaces like soil particles, the root mantle or even algal

clusters in the ocean. Bacteria have therefore developed

different mechanisms to move over such substrates,

ranging from active appendage-mediated motility to

passive spreading. The first landmark classification of

bacterial movement types was conducted by Henrichsen

in 1972. He examined the movement of over 30 bacterial

species on agar plates and classified them into the dis-

tinct types of swarming, swimming, gliding, twitching,

sliding and darting, although the latter is not used any-

more (Henrichsen, 1972). A major reason why his paper

is still cited today despite novel findings regarding the

underlying mechanisms is the precise definition he pro-

vided for each type of movement. These definitions are

still practical even though additional criteria were discov-

ered since. Before Henrichsen’s article, many of the

movement types were just described as swarming or

spreading and it was often not distinguished between

the different surface colonization modes that exploit an

active motor. In addition to the multicellular flagellum-

driven swarming, these include type IV pilus-dependent

twitching and focal adhesion complex supported gliding

(Kearns, 2010). Further, swarming-based collective

motility might be facilitated by additional secreted pro-

teins, promoting wandering colony formation during sur-

face colonization (Kobayashi et al., 2016). Contrary to

surface colonization that requires active appendages,

sliding is defined as a passive bacterial translocation

created by expansive forces accelerated by surfactants

that reduce surface tension (Henrichsen, 1972; Kearns,

2010). The original definition of sliding also incorporated

colony growth (Henrichsen, 1972). However, it was

recently recognized that bacterial sliding necessitates

more constituents than previously assumed. In this

review, we present an overview of the various compo-

nents required for expansion and describe bacteria in

which sliding was investigated in more detail to divide

them in three groups according to the so far character-

ized sliding facilitating machinery (Fig. 1). We are aware

that new discoveries of sliding mechanisms could possi-

bly require regrouping of the below discussed bacteria

or result in a system with additional groups. Some of the

spreading mechanisms characterized as sliding might

even have an underlying active part that is not known

yet, as suggested before (Shrout, 2015). However, we

provide a first attempt of classifying the sliding proficient
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bacteria since the current knowledge of different sliding

mechanisms is still very limited and does therefore not

allow a more sophisticated system.

In the first group, we describe bacteria that require

only the pushing force of cell division and a secreted

surfactant (considering state-of-the-art research). Bacte-

rial sliding that involves additional secreted components

like exopolysaccharides is illustrated in group II. Finally,

group III is composed of bacteria that necessitate

growth and another component, but no surfactant. In

this review we focus on the bacterial species in which

the sliding mechanism was investigated more extensive-

ly. Henrichsen (1972) depicted also other species

capable of sliding, however, to our knowledge the sliding

behaviour of those bacteria was not examined beyond

that article or like in case of Flavobacterium sp. and

Acinetobacter calcoaceticus surface spreading was

correctly identified as gliding and twitching respectively

(Henrichsen, 1984; Shrivastava and Berg, 2015; Shrout,

2015). In the following sections we will describe the slid-

ing behaviour of different bacteria assigned to the above

mentioned groups and elaborate about the so far known

requirements and regulatory pathways involved.

Growth and surfactant dependent sliding (group I)

The opportunistic pathogen Pseudomonas aeruginosa

belongs to group I since until now, rhamnolipid biosur-

factants were the only secreted components found to be

important for sliding (Fig. 2). Murray and colleagues dis-

covered the sliding ability of P. aeruginosa when a fliC

pilA double mutant, designed to be a negative control

that can neither swarm nor twitch, was also spreading

on semisolid agar plates (Murray and Kazmierczak,

2008). This type of movement was identified as sliding

since swimming, swarming and twitching was not possi-

ble due to a lack of flagellin (DfliC) and type IV pili

(DpilA). The requirement of rhamnolipids was confirmed

by using a mutant lacking the gene responsible for the

production of the rhamnolipid precursor that showed

severely decreased sliding (Murray and Kazmierczak,

2008). The regulatory components important for sliding

in P. aeruginosa overlap with the regulation of swarming

and biofilm formation. The regulators identified were the

two component system GacA/GacS (see the overview of

regulatory pathways related to sliding in Table 1) that

regulates swarming motility for which rhamnolipid pro-

duction is also necessary. GacA/GacS is proposed to

indirectly influence the expression of exopolysaccharide

genes during biofilm formation. A random transposon

mutagenesis experiment of the fliC pilA double mutant

resulted in mutants with increased sliding behaviour and

tendril formation that harboured transposon insertions in

gacA and gacS. As tests with these hyper-sliders (fliC

pilA gacA triple mutant) showed no difference in rham-

nolipid production and the lack of flagella and pili was

confirmed, the response regulator GacA seems to target

additional yet unknown genes responsible for the hyper-

slider phenotype (Murray and Kazmierczak, 2008). The

transposon mutagenesis also revealed another regulator,

RetS to be involved in sliding. The role of RetS during

sliding was not investigated further, however, rhamnoli-

pid production in the fliC pilA retS triple mutant was not

reduced (Murray and Kazmierczak, 2008). The third

type of regulatory pathway discovered to play a role in

sliding included cyclic di-GMP. The SadC and BifA

enzymes are responsible for cyclic di-GMP synthesis

and degradation respectively. Similar to swarming, over-

expression of sadC inhibited sliding whereas overex-

pression of bifA resulted in increased sliding (Kuchma

et al., 2007; Merritt et al., 2007; Murray and Kazmierc-

zak, 2008). In conclusion, it is possible that additional

factors under control of the revealed regulators are also

involved in sliding but not identified yet.

Another organism from the same genus, Pseudomo-

nas syringae pv. tomato DC3000 is also capable of slid-

ing over semi-solid surfaces with the help of a

surfactant. P. syringae uses another lipopeptide, syringa-

factin to reduce the surface tension and thereby facilitate

passive movement. While investigating the regulation of

motility in P. syringae, Nogales et al. discovered that a

fleQ mutant lacking the proposed master regulator of

motility can spread over semi-solid agar in a distinct pat-

tern despite lacking flagella (Nogales et al., 2015). This

spreading was proposed to be sliding motility based on

its flagellum-independency. Further, the essentiality of

syringafactin was demonstrated using a double mutant

(lacking the first gene of the operon encoding enzymes

for syringafactin production, syfA next to fleQ) that was

unable to spread. Interestingly, the fliC mutant lacking

only flagellin was unable to spread in comparison to the

fleQ mutant which was explained by the difference in

syringafactin production level: the authors discovered

that the amount of syringafactin is 40% higher in the

fleQ mutant compared with fliC mutant and wild-type

(Nogales et al., 2015). RNA-seq experiments revealed

that the expression of the syf operon and of syfR, the

transcriptional regulator presumably activating the syf

operon, is upregulated in the fleQ mutant. These results

suggest a negative regulation of syfR and therefore also

of the syf operon by FleQ. Additionally, in plant experi-

ments the fleQ syfA double mutant showed diminished

disease symptoms suggesting that sliding contributes to

P. syringae colonization of the leaf surface, a habitat

where flagella-dependent movement might not be opti-

mal (Nogales et al., 2015).

Similarly, a fleQ mutant of the plant-growth promoting

bacterium Pseudomonas fluorescens SBW25 was also
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discovered to exhibit sliding motility on semi-solid medi-

um with the same colony morphology. Here, the sliding

facilitating compound was identified to be the surfactant

viscosin (Alsohim et al., 2014).

Likewise, Serratia marcescens is one of the organ-

isms where sliding was found to be dependent on the

pushing force of cell division and a secreted surfactant

without other sliding facilitating compounds being

revealed so far. This ubiquitous gram-negative enteric

bacterium was shown to translocate over agar surfaces

in the passive manner characteristic for sliding under

conditions that do not allow flagellum dependent move-

ment (i.e. high agar concentration)(Matsuyama et al.,

1992). Matsuyama and colleagues discovered that the

movement of S. marcescens is dependent on the lipo-

peptide surfactant Serrawettin since mutants unable to

produce it were not able to spread across the surface

(Matsuyama et al., 1992). Further, they showed that

non-flagellated mutants could also spread over plates

with a low agar concentration usually used to observe

flagellum-dependent movement (Matsuyama et al.,

1995). Spreading was abolished when the strain was

defective for Serrawettin production but was restored

with exogenously supplied Serrawettin. Notably, not only

Serrawettin promoted spreading but also several surfac-

tants of other bacterial species were able to complement

Serrawettin defective S. marcescens strains (Matsuyama

et al., 1995). This suggests a purely functional role of

lowering the surface tension to promote movement. As

surface colonization was not dependent on flagella or

chemotaxis components, the authors suggested a pas-

sive type of spreading which is fitting to the definition of

sliding.

The gram-negative pneumonia-causing bacterium

Legionella pneumophila also belongs to the group of

bacteria that slide over surfaces with the help of a sur-

factant. L. pneumophila can spread over semi-solid agar

plates in a ‘lobed, wavelike pattern’ as well as many oth-

er Legionella species (Stewart et al., 2009). This behav-

iour was the first observation of surface translocation in

L. pneumophila and was evident in the wild-type as well

as in single and double mutants lacking the genes for

flagellin (flaA mutant) and the type IV pilus (pilE mutant).

These results excluded the contribution of flagella and

pili to the observed surface spreading mechanism that

was therefore identified as sliding. Additionally, a translu-

cent film was detected for all spreading Legionella spe-

cies including the mentioned L. pneumophila mutants

advancing well in front of the cells. Extracts of spreading

plates with the film showed drop collapse and friction

reduction characteristics indicating the presence of a

surfactant molecule that presumably facilitates sliding

(Stewart et al., 2009). However, the composition of this

film was not analysed in detail.

Because of the evolutionary relation of the type IV

pilus and the type II secretion system (TIIS), mutants

lacking different components of the TIIS were also test-

ed for their sliding ability. Interestingly, all TIIS mutants

were defective in sliding and did not show the character-

istic film (Stewart et al., 2009). However, when spotted

on the film of the wild-type, sliding was restored sugges-

ting that the TIIS mutants lack the secreted surfactant of

L. pneumophila. There are several possible links

between the TIIS and surfactant secretion: (i) the surfac-

tant is secreted via the TIIS, (ii) the surfactant is modi-

fied by an enzyme secreted by the TIIS, and (iii) a

regulatory network involved in surfactant production is

influenced by the TIIS (Stewart et al., 2009). Although

the sliding-facilitating surfactant has not been identified

yet in this species, it was shown in a subsequent study

that L. pneumophila excretes a surfactant that exhibits

antimicrobial activity towards other Legionella species

and its production depends on lipid metabolism and the

outer membrane protein TolC (Stewart et al., 2011).

Exopolysaccharide facilitated sliding (group II)

Sliding motility of Bacillus subtilis, a gram-positive soil-

dwelling bacterium, depends on a surfactant as well as

exopolysaccharides, therefore it is presented in group II.

This type of surface motility of B. subtilis was discovered

while examining rhizosphere derived strains that exhib-

ited a distinct dendritic growth pattern in a flagellum-

independent manner (Kinsinger et al., 2003; Fall et al.,

2006). If sufficient amounts of potassium ions were sup-

plied in the medium, initial dendritic growth was followed

by planar spreading (Kinsinger et al., 2003). This transition

Table 1. Known sensing and regulatory components and their targets for several bacteria described in this review.

Organism Known sensing and regulatory components Target genes/operons

P. aeruginosa GacA/GacS two component system

RetS

cyclic di-GMP

rhlAB

?

P. syringae pv tomato DC3000 FleQ-dependent inhibition syfR operon

S. marcescens ExpR EPSII

B.s subtilis KinB/C dependent Spo0A phosphorylation epsA-O

S. enterica serovar Typhimurium PhoP/PhoQ two component system pagM
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to planar growth was also shown to be dependent on suffi-

cient levels of other macro- and micronutrients suggesting

a model where tendril sliding occurs at low nutrient con-

centrations and converts to planar sliding at higher nutrient

concentrations (Fall et al., 2006). The potassium seemed

to stimulate the production of surfactin, a cyclic lipopetide

surfactant which was shown to be necessary for B. subtilis

sliding (Kinsinger et al., 2003; Kinsinger et al., 2005). Isola-

tion of strains with reduced or diminished sliding using

directed and random mutant screens led to the identifica-

tion of additional genes connected to surfactin biosynthe-

sis, growth or potassium transport, emphasizing the

requirement of a surfactant and the pushing force of grow-

ing cells (Kinsinger et al., 2005).

The requirement of exopolysaccharides (EPS) for B.

subtilis sliding was recently demonstrated by two inde-

pendent studies via mutant analysis and microarray

experiments. Mutant strains lacking either the complete

or part of the epsA-O operon whose products are

responsible for exopolysaccharide biosynthesis were not

able to slide, showing that EPS is essential for sliding

(Grau et al., 2015; van Gestel et al., 2015). Interestingly,

the same eps gene cluster is also critical for B. subtilis

biofilm formation (Vlamakis et al., 2013).

The study by Grau et al. (2015) focussed on identifying

the regulatory network governing sliding motility. Spo0A, a

master regulator of various cellular processes in B. subtilis

such as biofilm formation, sporulation, and cannibalism

was found to be also the key modulator of sliding motility

(Grau et al., 2015). In addition to EPS, the microarray

approach highlighted the differential expression of the

bslA gene that encodes a bacterial hydrophobin protein.

Mutant analysis proved that BslA is as indispensable for

sliding as EPS production and surfactin secretion. The lev-

el of phosphorylated, and therefore transcriptionally active

Spo0A in B. subtilis is modulated by soluble and mem-

brane bound histidine kinases via a phosphorelay.

Detailed analysis demonstrated that two of these kinases,

Fig. 1. Mechanism of sliding motility.

(A) Top view of an expanding sliding colony (left). On the right, a magnification of the marked region on the edge of the colony is depicted

showing the expansion powered by the pushing force of dividing cells (arrows).

(B) Side view of a monolayer of cells at the edge of a sliding colony (left). The magnification highlights that sliding is promoted by a secreted

surfactant (Group I, left), by a surfactant and exopolysaccharides (Group II, middle) or by an additional compound in the absence of surfactant

(Group III, right).
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KinB and KinC are required for sliding (Grau et al., 2015),

while KinB is possibly active on the edge of the sliding col-

ony, KinC is rather active in the interior. Further, the level

of phosphorylated Spo0A sufficient to activate sliding

motility is lower than for triggering biofilm formation and

sporulation suggesting that sliding occurs before biofilm

formation (Grau et al., 2015). Therefore, the fine modula-

tion of active Spo0A-level allows the precise expression of

genes leading to the distinct developmental pathways in

B. subtilis (Kov�acs, 2016). In addition, the domain of the

KinB kinase that resembles the selectivity sequence of the

pore loop domain of eukaryotic potassium channels was

demonstrated to be essential for sliding in response to the

presence of potassium ions whose importance was also

shown before (see above).

In the study of Grau et al. (2015), sliding was investi-

gated mainly on rich medium with possibly higher potas-

sium concentrations resulting in planar sliding colonies

(Grau et al., 2015). In contrast, van Gestel and col-

leagues used a minimal medium with low potassium

levels promoting sliding in a dendritic form (Fall et al.,

2006; van Gestel et al., 2015). In this later study, the

focus was brought on the differentiation of cells during

sliding and how it affects migration. Additionally to EPS

and the already known surfactin the authors identified

also another component of the B. subtilis biofilm matrix,

the protein TasA to be necessary for sliding (van Gestel

et al., 2015). While tasA was found to be unnecessary

for sliding by Grau et al., the differences could originate

from different sliding modes. When mixed, different

mutants of these components (surfactin, EPS, TasA)

were able to at least partially complement each other for

sliding, occasionally even performing better than the

wild-type demonstrating the advantage of division of

labour (van Gestel et al., 2015). Using reporter strains,

the temporal expression of genes involved in surfactin

and matrix production was examined revealing a peak of

surfactin producing cells at the early stage of dendrite

formation followed by an increase of matrix producers.

These cell types showed a distinct spatial arrangement

Fig. 2. Bacteria discussed in this review are depicted that are capable of sliding.

The group species are categorized, the compound(s) that facilitate sliding, and the morphology of the individual sliding colonies are indicated.
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during the outgrowth of the dendrites. The matrix pro-

ducers were located in bundles formed by chains of cells

(so called ‘van Gogh bundles’) whereas the surfactin

producers surrounded these bundles in a less coordinat-

ed form. When mutant strains were mixed to comple-

ment the sliding behaviour, the bundles contained only

matrix producers, thereby demonstrating the require-

ment of the matrix producing cell type for bundle forma-

tion. The formation of bundles promoted the appearance

of larger loops at the rim of the sliding expansion as

demonstrated by time lapse experiments. These loops

were suggested to facilitate migration in agreement with

modelling experiments on the importance of loop forma-

tion on spreading (van Gestel et al., 2015).

In summary, two hypotheses were proposed on the

importance of EPS during sliding: van Gestel and col-

leagues demonstrated its requirement for bundle forma-

tion which in turn allows expansion, whereas Grau et al.

proposed that EPS promotes spreading by generating

osmotic pressure as shown for biofilms (Seminara et al.,

2012; Grau et al., 2015). However, both hypotheses

might actually be valid since two slightly different forms

of sliding (dendritic and planar) were investigated in

these studies. Importantly, both studies highlight the

alternative functions of the extracellular matrix that in

addition to be essential for biofilm development, also

necessary for other processes, including surface spread-

ing via sliding (Drago�s and Kov�acs, 2017).

In Sinorhizobium meliloti, sliding was also reported to

facilitate surface movement of this gram-negative soil-

dwelling bacterium. During investigations of discrepan-

cies about the requirement of the quorum-sensing

transcriptional regulator ExpR for swarming, it was dis-

covered that S. meliloti strains harbouring a functional

ExpR could spread over semisolid medium in a way

atypical for swarming whereas mutants lacking ExpR

were not able to spread (Nogales et al., 2012). As

strains lacking the flagellum behaved similarly, the sur-

face movement was suggested to be sliding. As ExpR is

among others responsible for the regulation of exopoly-

saccharide production in S. meliloti, a mutant unable to

produce EPSII (galactoglucan) was investigated and

found to be deficient in sliding (Nogales et al., 2012).

Similar to B. subtilis, EPSII could generate an osmotic

pressure gradient which drives surface spreading in S.

meliloti (Seminara et al., 2012). Additionally, the authors

claimed to have identified another type of movement

that is independent of ExpR and flagella since an expR

mutant without flagella was still able to colonize a semi-

solid minimal medium (Nogales et al., 2012). This

spreading was found to be dependent on siderophore

rhizobactin production since mutation in the correspond-

ing gene abolished spreading. It seems plausible that

rhizobactin can act as a wetting agent and thereby

contribute to facilitate spreading (Nogales et al., 2012).

We hypothesize that this second type of movement

could be also considered as sliding and while both rhizo-

bactin and EPSII could promote surface colonization,

secretion of either components is sufficient for spread-

ing. When ExpR is intact EPSII can be produced and

rhizobactin is not necessarily required but when ExpR

and therefore also EPSII are missing and the iron con-

centration is low, rhizobactin can be produced and res-

cue sliding by acting as a wetting agent.

In addition to the laboratory conditions, the importance

of sliding for S. meliloti in a natural habitat was demon-

strated. S. meliloti is one of the bacteria known as rhizo-

bia which can form a symbiotic interaction with legume

plants where they fix nitrogen and provide it to the plant

in exchange for nutrients. After recognition and entry

into the root hair, S. meliloti invades the apoplasm of the

root hair via so called infection threads (e.g. Gage and

Margolin, 2000). Fournier and colleagues found that S.

meliloti forms clusters in these threads that move for-

ward and become longer over time (Fournier et al.,

2008). This observation led them to conclude that sliding

might facilitate infection thread colonization, additionally

supported by the fact that rhizobia in the infection thread

lack flagella (Gage and Margolin, 2000; Fournier et al.,

2008). This study represents one of the few examples

where sliding was analysed in a natural setting and

shows that there are indeed conditions under which it

might be useful for a bacterium to slide.

Surfactant independent sliding (group III)

Bacteria belonging under the last category similarly

require the pressure of growing cells for sliding but rath-

er depend on an additional factor and not surfactant. For

sliding of Salmonella enterica serovar Typhimurium

under low Mg21 conditions, the protein PagM was identi-

fied by mutant analysis (Park et al., 2015). This protein

seems to facilitate spreading through a surface protein

(i.e. by being a surface protein itself or being connected

to a so far unidentified one) since the sliding ability of a

pagM mutant could be complemented in the presence of

a strain with an intact pagM gene while proteinase treat-

ment abolished this sliding. PagM is regulated by the

PhoP/PhoQ system which is induced under low Mg21

conditions (Park et al., 2015). Interestingly, this protein

can be identified uniquely in S. enterica which suggests

a form of sliding that is slightly different from the above

described mechanisms.

Another distinct sliding-facilitating mechanism was

described for Mycobacterium smegmatis. As this gram-

positive bacterium belongs to the generally non-

flagellated genus of Mycobacteria, it was long believed

to be impaired in any kind of translocation. Yet, it was
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discovered that after several days of incubation, M.

smegmatis is able to spread over the surface of semisol-

id plates (Mart�ınez et al., 1999). Interestingly, the

spreading morphology was dependent on whether the

medium was solidified using agar-agar or agarose,

resulting in thin finger-like structures or a circular

spreading front respectively. Using the circular spreading

as a model, electron microscopic analysis revealed a

distinct organization of cells in pseudo-filaments that

were connected at distinct positions of the cells and not

only at the poles. Further, it was confirmed that the

spreading is accompanied by growth and almost no re-

arrangement of the cells was observed in the spreading

zone, indicating sliding (Mart�ınez et al., 1999). An inves-

tigation of different M. smegmatis colony variants uncov-

ered the impaired sliding of a rough variant compared

with the rather smooth wild-type. This lead to the

hypothesis that glycopeptidolipids (GPLs), molecules

that are part of the outer layer of some mycobacterial

capsules, are connected to sliding since previous stud-

ies showed a correlation of a rough phenotype with a

reduced amount of GPLs. Lipid extracts were analysed

and showed a GPL characteristic pattern for the wild-

type which was absent in the rough variant indicating

that indeed GPL are facilitating M. smegmatis spreading

(Mart�ınez et al., 1999). In a subsequent study, a trans-

poson mutagenesis resulted in several mutants that lost

the ability to slide (Recht et al., 2000). All of them

showed rough colony morphology and no GPLs could

be detected in thin layer chromatography analyses.

Almost all of the transposon insertions were located in

the mps gene encoding a non-ribosomal peptide synthe-

tase involved in GPL biosynthesis thus providing a direct

evidence for the importance of GPLs for sliding motility

(Recht et al., 2000). Only one additional mutant exhibit-

ing a similar phenotype was identified to contain a trans-

poson insertion in a gene coding for a putative

membrane transporter (tmtpC) that could possibly be

Fig. 3. Dissimilar spatial segregation levels can be appreciated in sliding and swarming colonies of B. subtilis.

To initiate sliding, two strains of B. subtilis hag mutant with different fluorescent markers were used. Similarly, the two B. subtilis strains that

were used as inoculum for swarming possessed different fluorescent markers in the wild-type genetic background. Bright field images of sliding

(A) and swarming (C) colonies. Overlay of the two fluorescent images with false colours (B, D). The semi-solid agar plates were incubated for

24h and 10h at 378C for sliding and swarming, respectively, based on the methodology as described in H€olscher et al., (2016). The scale bars

correspond to 5 mm. [Color figure can be viewed at wileyonlinelibrary.com]
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involved in carrying the GPLs across the cytoplasmic

membrane. A defect in this type of sliding could not be

fully complemented by surfactants like Serrawettin, puri-

fied GPLs or the presence of a sliding-proficient strains

demonstrating the importance of cell envelope bound

GPLs (Recht et al., 2000).

Additionally, GPLs seem to be important for biofilm

formation since the GPL deficient rough variants were

not able to form biofilms attached to a plastic surface

(Recht et al., 2000). An additional screen of a transpo-

son mutant library for impaired biofilm formation

revealed a mutant with an intermediate phenotype in

which sliding and biofilm formation were both diminished

but not completely abolished (Recht and Kolter, 2001).

In this mutant, a transposon was inserted in the atf1

gene that encodes a putative acetyl transferase and is

located in a GPL biosynthesis gene cluster. An analysis

of the GPLs suggested that the product of atf1 is

responsible for acetylation of the GPLs. Based on these

studies the following model was proposed: GPLs in the

outermost layer of the M. smegmatis cell envelope

increase the cell surface hydrophobicity therefore facili-

tating sliding and biofilm formation. Without or with non-

acetylated GPLs, the cell surface is more hydrophilic

leading to abolished or reduced sliding and biofilm for-

mation respectively (Recht and Kolter, 2001).

Concluding remarks

In summary, a number of bacteria have been identified

that are capable of passively migrating over surfaces,

considered to be sliding. We described here three

groups according to the sliding mechanism and neces-

sary components. Notably, it is possible that some of the

organisms e.g. from Group I belong actually to Group II,

but the additional components contributing to sliding

motility are yet to be discovered.

In addition, social interactions during sliding can be

compared with swarming and biofilm formation. For

example, spatial segregation can be dissimilar (Fig. 3),

which might have an ultimately different impact on the

adaptation and evolution of bacteria (H€olscher et al.,

2016; Martin et al., 2016).

Many regulators and components important during

sliding are also necessary for other processes like sur-

factants for swarming and exopolysaccharides for biofilm

formation. Thus, it is possible that sliding motility repre-

sents an intermediate stage between different develop-

mental processes under conditions that favours neither

one nor the other and it might be an innovative way to

exploit components evolved for other processes. In con-

clusion, it is very likely that so far we have only seen the

tip of the iceberg and many other organisms are able to

slide over surfaces.
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A Duo of Potassium-Responsive Histidine Kinases Govern the
Multicellular Destiny of Bacillus subtilis
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ABSTRACT Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. How-

ever, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subti-

lis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent

mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the

important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization

showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin

BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histi-

dine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm forma-

tion, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selec-

tivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different

levels of the constitutively active form of Spo0A, Sad67, in �spo0A cells grown in optimized media that simultaneously stimulate

motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in

Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in

the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonis-

tic are coordinately activated in benefit of the bacterium and its interaction with the host.

IMPORTANCE Alternation between motile and sessile behaviors is central to bacterial adaptation, survival, and colonization.

However, how is the collective decision to move over or stay attached to a surface controlled? Here, we use the model plant-

beneficial bacterium Bacillus subtilis to answer this question. Remarkably, we discover that sessile biofilm formation and social

sliding motility share the same structural components and the Spo0A regulatory network via sensor kinases, KinB and KinC.

Potassium, an inhibitor of KinC-dependent biofilm formation, triggers sliding via a potassium-perceiving cytosolic domain of

KinB that resembles the selectivity filter of potassium channels. The spatiotemporal response of these kinases to variable potas-

sium levels and the gradual increase in Spo0A~Pi levels that orchestrates the activation of sliding before biofilm formation shed

light on how multicellular behaviors formerly believed to be antagonistic work together to benefit the population fitness.
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How do bacteria move from one location to another in natural
niches? Most bacteria are able to swim in aquatic environ-

ments powered by rotating flagella, whereas a range of different
mechanisms have evolved that facilitate surface spreading (1–4).
While swimming is considered to be an individual behavior, cells
are able to migrate together and cooperatively during surface
translocation (1, 3, 4). Surface movement can depend on the pres-
ence of flagella (i.e., swarming), the extension and retraction of
type IV pili (i.e., twitching motility), the involvement of focal ad-
hesion complexes (i.e., gliding), or “passive” surface translocation
(i.e., sliding). Although the mechanisms of swarming, twitching,
and gliding motilities have been extensively studied in most bac-

teria with appendages, the information about the mechanism of
sliding, its regulation, and its importance is sparse. Since its orig-
inal definition, more than 4 decades ago, the concept of sliding as
a passive surface translocation driven by expansive forces in the
growing colony has not varied much (2, 3). However, sliding mo-
tility represents a heavily exploited mechanism that different
pathogens of global importance (i.e., Bacillus anthracis, Salmo-
nella enterica, Staphylococcus aureus, Legionella pneumophila, and
mycobacteria) use for spreading (3, 5, 6).

Bacillus subtilis is a Gram-positive endospore-forming bacte-
rium that has been extensively studied due to its diverse differen-
tiation processes (7–11). Different B. subtilis strains swarm on
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semisolid agar plates (4, 12) or form architecturally complex bio-
films with vein-like structures and apical tips (fruiting bodies) that
project the formed spores into the air (7, 13–15). In addition, wild
and undomesticated B. subtilis isolates (7, 16) have beneficial
growth-promoting effects on plants and animals (17, 18) as well as
probiotic effects in humans (19–21). If biofilm formation and an
active surface motility are antagonistic but important attributes of
a bacterium, how then is the collective decision to move over or
stay attached to a surface taken and controlled? In this work, we
use the model organism B. subtilis to investigate the genetic mech-
anism and regulatory network of sliding for surface colonization
and their relationship with another prominent cooperative sur-
face behavior, i.e., biofilm formation.

RESULTS AND DISCUSSION

The master regulator of sporulation and multicellular biofilm
formation, Spo0A, controls sliding motility in B. subtilis. If bac-
teria use sliding in a cooperative manner to move across surfaces
without the necessity for flagella or any other appendages, how
does it take place and what are the regulatory networks that induce
and control it? To solve this puzzle, we used two wild (undomes-
ticated) B. subtilis strains of different genetic lineages, the
Marburg-related strain NCIB3610, able to swarm and slide (7, 12,
22), and the human-probiotic natto-related strain RG4365 (16,
21), which only slides (see Fig. S1 in the supplemental material). It
is known that the global transcription factor SinR is essential for
the swimming and swarming motilities in B. subtilis (23). While,

as expected, the inactivation of sinR in the NCIB3610 strain yields
a completely defective swarming phenotype (24), the inactivation
of sinR in the RG4365 B. subtilis natto strain yields an almost
unaffected sliding-proficient phenotype (Fig. 1A, B, and G). If
SinR is not required to slide, is there any other transcription factor
that contributes to the regulatory network of sliding? In B. subtilis,
other multicellular and developmental programs (biofilm forma-
tion, fruiting body formation, and sporulation) are governed by
the master transcription factor Spo0A of the phosphorelay signal-
ing pathway (7, 25). Taking into account the dispensability of
SinR activity for sliding proficiency, we wondered if this was
also the case for Spo0A in sliding. Although swarming of an
NCIB3610-isogenic spo0A-deletion strain was not affected (see
below), a spo0A-deletion RG4365-derived strain was completely
unable to slide on the agar surface (Fig. 1C and G). This result
suggested that the master regulator of sporulation and biofilm
formation, the protein Spo0A, would also be a key regulator of
social sliding. The inactivation of spoIIAC (sigF), the distal gene of
the tricistronic spoIIA operon, coding for the first compartment-
specific sporulation sigma transcription factor (�F), did not affect
the sliding phenotype of wild-type RG4365 cells (Fig. 1D and G)
and suggested the independency of sliding from the sporulation
program in B. subtilis. It is known that the absence of Spo0A ac-
tivity results in an increase of the activities of the transcription
factors SinR and AbrB (26) that could be responsible for the ab-
sence of sliding ability in the spo0A natto strain. If this were the
case, the regulatory proteins SinR and/or AbrB could be an inhib-

FIG 1 Revealing the genetic regulation of sliding motility in B. subtilis. (A to G) Sliding phenotype (A to F) and kinetic characterization (G) of different B. subtilis
natto strains (see Table S1 in the supplemental material) affected in the expression of key regulators of gene expression. B. subtilis cells were cultured and
inoculated on LB-0.7% agar plates as indicated in Materials and Methods. The arrows in panel G indicate the developmental times when the photographs shown
in panels A to F were taken. Strain references for the symbols in panel G correspond to the reference colors shown in panels A to F. The horizontal black line at
8.5 cm shows the maximal size of motility related to the size of the agar plate used. Each value is the average from three replicates. (H and I) Active Spo0A (Sad67)
triggers sliding motility in the B. subtilis natto strain. In the absence of IPTG supplementation, Spo0A-deficient but Sad67-positive cells are not motile on soft agar
plates (H), but in the presence of IPTG, these cells recover full sliding proficiency (I). Solid IPTG, one or two grains, was poured on top of the solidified LB-0.7%
agar (at the points indicated in panel I) in order to allow the dissolution of IPTG in the medium and the formation of a continuous gradient of the inducer.
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itor of sliding motility. As shown in Fig. 1E to G, the inactivation
of abrB but not sinR was able to restore (although only partially)
the sliding ability of Spo0A-deficient cells and suggested that AbrB
was negatively controlling the expression of at least one gene
whose product was necessary for sliding proficiency (see below).
To confirm the essential role of Spo0A for the proficiency of social
sliding in B. subtilis, we constructed an RG4365-derived strain that
harbored, in addition to a deletion of the wild-type copy of spo0A,
an isopropyl-�-D-thiogalactopyranoside (IPTG)-inducible form
of Spo0A (Sad67) that is active in the absence of phosphorylation
(phosphorelay independent) (27–29). As shown in Fig. 1H and I,
the supplementation with IPTG restored the sliding ability of the
spo0A-deletion but Sad67-carrying strain and confirmed the es-
sential role of Spo0A for social sliding proficiency in B. subtilis.

How widespread is sliding motility and how conserved is the
role of Spo0A in different B. subtilis isolates? Although flagellum
production is essential for swarming motility in the Marburg-
related strain NCIB3610 (12), it has been reported that
NCIB3610-derived hag strains (unable to make flagella) are able to
slide on solid surfaces after longer periods of incubation (24 h or
more) (30). Therefore, we wanted to know if the essential role of
Spo0A for sliding proficiency in the B. subtilis natto strain is also
manifest in Marburg-derived cells. To this end, we analyzed the
surface translocation ability of different NCIB3610-derived
strains under two experimental conditions: incubation on soft
Luria-Bertani (LB) medium as shown in previous work and the
conditions previously used by other groups, i.e., soft minimal salts
glycerol glutamate (MSgg) agar medium, to investigate the sliding

FIG 2 The key regulator of multicellular behavior, Spo0A, controls sliding motility in B. subtilis. (A and B) Spo0A activity is fully dispensable for the swarming
proficiency of NCIB3610 cells. (C and D) Inactivation of flagellar synthesis (hag mutation) impairs swarming motility in NCIB3610 cells (C), but after a longer
incubation (24 h or more), sliding proficiency is turned on in Hag-deficient cells (D). (E) Spo0A activity is essential for surface translocation ability of
Hag-deficient cells. Photos shown in panels A to C and panels D and E correspond to the sliding migration of the indicated strains after 15 h and 40 h of
incubation, respectively. (F) Kinetics of swarming and sliding motilities in Spo0A- and Hag-positive or -deficient NCIB3610 cells. (G) Important role of Spo0A
and sliding proficiency for plant root colonization. As indicated in the supplemental material, as soon as sanitized wheat seeds germinated on LB-diluted agar
plates, 3.0 �l of stationary-phase cultures of wild-type and spo0A mutant cells was inoculated at the points indicated by the white dotted circles in the top panel.
After 24 h of incubation, the wild-type (WT) and spo0A cells formed rounded colonies of similar size and appearance that were confined to the point of
inoculation (data not shown). After 3 days of bacterial inoculation, wild-type cells, but not the spo0A cells, efficiently slid on the agar surface (the boundaries of
the sliding disc are denoted by the orange dashed circle in the top panel). After 5 days (bottom panel), the wild-type cells were able to colonize the root rhizosphere
(blue dashed circle) while the spo0A cells remained immobilized. Representative images of several independent experiments are shown.
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ability of Marburg cells (31). As shown in Fig. 2, the inactivation of
spo0A in NCIB3610 cells did not affect their motility behavior
(compare Fig. 2A and B). As expected, the interruption of flagellin
synthesis in the NCIB3610 hag-derived strain RG4384 (see Ta-
ble S1 in the supplemental material) blocked the surface translo-
cation in both soft media as monitored at a developmental time of
20 h (Fig. 2C). However, after longer incubation, the NCIB3610
hag cells moved on the agar surface by a sliding mechanism as
previously reported (Fig. 2D) (31). Remarkably, the inactivation
of spo0A in the Marburg-derived hag strain (�hag �spo0A double
mutant strain RG4385 [see Table S1]) completely abolished the
ability of these flagellum-less and Spo0A-deficient NCIB3610-
derived cells to translocate on the agar surface and confirmed the
key role of Spo0A as the master regulator of social sliding motility
in B. subtilis (Fig. 2E and F).

What might be the importance of bacterial sliding in nature?
B. subtilis is a beneficial bacterium that improves plant and animal
growth (17, 18) as well as possessing advantageous probiotic
properties in humans (19, 21). One desired attribute of a host-
colonizing bacterium is the ability to spread over and colonize a
particular niche (i.e., the rhizosphere) and establish a long-lasting
community (i.e., a biofilm) associated with the host (19, 32). No-
tably, as shown in Fig. 2G, Spo0A plays a key role in the ability of
the plant growth-promoting rhizobacterium B. subtilis (33, 34) to
activate social sliding and colonize the root rhizosphere.

Microarray analysis of B. subtilis cells under sliding condi-
tions. Our initial analysis uncovered the novel roles of the tran-
scription factors AbrB and Spo0A as a repressor and an activator
of sliding, respectively. What other genes are important for sliding
proficiency in B. subtilis and what is the role of AbrB and Spo0A in
their expression? To answer these questions, we performed mi-
croarray experiments under different environmental conditions
and in various genetic backgrounds. On the one hand, we com-
pared the global gene expression of the spo0A mutant RG4370
with that of the wild-type natto strain RG4365 on LB plates with a
0.7% agar concentration, where, as was shown, the wild-type and
the spo0A mutant strains were proficient and impaired in sliding,
respectively (see Table S2A in the supplemental material). In a
second type of experiment, we examined wild-type cells under
sliding-restrictive conditions using LB plates with a 1.5% agar
concentration and compared their transcriptome with the pattern
of gene expression under sliding-permissive conditions on 0.7%
agar plates (see Table S2B). These microarray analyses showed
that 310 and 295 genes were significantly (P value, �10�4) up- or
downregulated in the spo0A mutant strain compared to the wild-
type strain, respectively, while 72 and 100 genes were found to be
up- and downregulated, respectively, at an increased agar concen-
tration (see Table S2).

Interestingly, most of the genes belonging to the �D regulon,
which is related to flagellum motility and chemotaxis, were acti-
vated in the spo0A mutant strain under sliding-permissive condi-
tions. However, the B. subtilis natto strain lacks flagella under this
and all tested genetic backgrounds (see Fig. S1E to G in the sup-
plemental material and data not shown). It has been suggested
that Marburg-related wild-type cells (i.e., NCIB3610) lack flagel-
lum production for translocation on solid surfaces depending on
extracellular surfactin and potassium ion (22). More recently, it
was shown that synthesis of the exopolysaccharide (EPS) of the
extracellular matrix is genetically coupled to the inhibition of

flagellum-mediated motility (23), and as we show below, EPS ex-
pression is increased under sliding-permissive conditions.

While mutation in spo0A resulted in differential expression of
various genes under sliding-permissive conditions on LB me-
dium, we did not find any sporulation-related gene in the wild-
type strain to be differentially expressed under this experimental
condition (sliding turned on [see Table S2A in the supplemental
material]). One simple explanation for this observation is that
under the condition used (i.e., rich LB medium and sliding-
permissive conditions), sporulation is not activated in the wild-
type strain and, therefore, mutation in spo0A has no effect on these
genes in the wild-type strain during sliding. In contrast, we ob-
served elevated expression of sporulation �G-dependent genes in
wild-type cells grown under non-sliding-permissive conditions
(higher agar concentration [see Table S2B in the supplemental
material]). This induction of sporulation genes in samples from
1.5% agar plates is probably due to the fact that under this sliding-
restrictive condition, B. subtilis cannot spread, nutrients around
cells become limited, and sporulation is started similarly to the
conditions during formation of complex colony biofilms (11, 35,
36).

Which other genes are expressed during active sliding? We
found that in wild-type cells under sliding-permissive conditions
(see Table S2B in the supplemental material) and in comparison
to the spo0A mutant strain (see Table S2A), genes related to bio-
film matrix production (sipW, tasA, and eps in the case of the
spo0A mutant), biofilm surface layer (bslA), fatty acid synthesis
(fab), and surfactin synthesis (srfAC in the case of the spo0A mu-
tant) were upregulated.

Sliding but not swarming depends on the bslA and eps genes.
The microarray experiments presented above showed that genes
related to biofilm formation and biofilm surface layer are upregu-
lated under the conditions when sliding is feasible and suggest that
this gene repertoire could include novel and necessary compo-
nents of the sliding machinery in B. subtilis (Fig. 3A). Therefore,
mutations in bslA, epsG, or tasA genes were introduced into the
wild-type B. subtilis natto strain RG4365. Mutations in bslA or
epsG abolished sliding of the B. subtilis natto strain (Fig. 3B). On
the other hand, mutation of the tasA gene did not alter the sliding
properties of the B. subtilis natto strain. Are EPS production and
BslA synthesis required for sliding proficiency? We examined the
effect of the mutations of bslA and epsG in the B. subtilis NCIB3610
wild-type strain (proficient in swarming and sliding) and its hag
derivative (proficient only in sliding). While swarming of bslA and
epsG mutants in the NCIB3610 background was not altered
(Fig. 3C), sliding properties of hag bslA and hag epsG double mu-
tant strains were decreased similarly to the bslA and epsG single
mutants of the B. subtilis natto strain (Fig. 3D). These experiments
show that both the BslA protein and the EPS, which are essential
components of the biofilm matrix in B. subtilis, are indispensable
for sliding. The microarray analysis showed that abrB was down-
regulated under sliding-permissive conditions (see Table S2A in
the supplemental material), which is in agreement with our exper-
imental results that showed the partial restoration of sliding pro-
ficiency of the spo0A mutant strain when abrB was also deleted
(Fig. 1E). Accordingly, AbrB is a repressor of bslA (37, 38), a gene
that here was shown as required for full sliding proficiency
(Fig. 3B).

In line with the experiments on the B. subtilis natto strain,
swarming and sliding were not decreased after a mutation was
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introduced into the tasA gene of NCIB3610 or into hag strains,
respectively (Fig. 3C and D), suggesting that the other essential
component of the biofilm matrix, TasA, has no role in the ability
of B. subtilis to slide. It is interesting that based on the microarray
analysis, several genes encoding antimicrobial metabolites (i.e.,
bacilysin, bacillibactin, and plipastatin) were increased under
sliding-permissive conditions (see Table S2 in the supplemental
material). In this scenario, the known antimicrobial activity of
TasA (39) might suggest a role of this protein in protection of
sliding cells against predators instead of a crucial role of this pro-
tein in motility.

Understanding the role of the cellular components of the
sliding machinery in B. subtilis. The array experiments showed
that the operon related to surfactin production (srf) was induced
under sliding-permissive conditions (see Table S2 in the supple-
mental material), a result that is in agreement with the essential

role of this surfactant in sliding proficiency (see Fig. S2A). Surfac-
tin is a secreted lipopeptide molecule that in addition to its func-
tion in cell-cell communication, as a paracrine signal during mul-
ticellularity (10, 40), has been proposed to allow the spreading of
multicellular colonies through the production of surfactant waves
that decrease the surface tension of the surrounding space (41). In
addition, the EPS overproduced during active sliding is also a
component of the extracellular matrix that has been identified as a
major force driving biofilm growth, due to the osmotic stress gen-
erated by its secretion in the extracellular space (42). Therefore, it
is feasible that during sliding the secreted surfactin and EPS, by
producing waves of surfactant and gradients of osmotic pressure
in the intercellular space of the motile community, respectively,
constitute two major forces driving the cooperative sliding of the
cells sitting on the surface.

In addition, the overexpression of the KinA inhibitor SivA (dif-

FIG 3 Sliding and swarming ability of mutant B. subtilis strains. (A) The cartoon highlights the B. subtilis genes with possible novel roles in sliding motility as
suggested by the microarray experiments performed (see text for details). (B) Sliding properties of B. subtilis natto strain derivatives; from top to bottom,
wild-type, tasA, epsG, and bslA strains. (C) Swarming of B. subtilis NCIB3610 and its derivatives comparable to those in panel B. (D) Sliding of B. subtilis
NCIB3610 hag strain and double mutant hag tasA, hag epsG, and hag bslA strains. (E) Transcomplementation of sliding-deficient strains. Neither bslA nor eps
mutant cells are able to slide separately, but when they are poured together, sliding proficiency is restored.
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ferential expression of sivA is indicated in Table S2A in the sup-
plemental material) (Fig. 3A) (43) would ensure that sporulation
is not triggered during active sliding and suggests that KinA is not
the histidine kinase involved in the activation of Spo0A for sliding
proficiency (see below).

What would be the role of BslA, the other major molecule
overproduced during active sliding? It has been shown that BslA is
a hydrophobin-like protein secreted to the extracellular space,
where it forms surface layers at both the agar-cell and air-cell
interfaces around the biofilm (44, 45). Because of its physiochemi-
cal properties, BslA behaves as an elastic and highly hydrophobic
layer coating the biofilm (44–46). Here, we also confirm that BslA
is a major contributor to the water repellence of sliding cells (see
Fig. S2B and C in the supplemental material). Moreover, the de-
ficiency in BslA synthesis allows the aqueous solution to pass
through the cells immediately (see Fig. S2C). These results suggest
that this hydrophobin-like protein could play a role during active
sliding as a protector of sliding cells against surface wetting, as was
proposed previously for biofilms (45, 47). In this scenario, we
hypothesize that the sliding-deficient phenotype of eps and bslA
cells could be circumvented when the two types of cells are present
together under sliding-permissive conditions. Supporting this hy-
pothesis, a previous study on B. subtilis biofilm formation also
suggests that these components can be shared among strains pro-
ducing one but not the other component (48). As shown in
Fig. 3E, mixing epsG and bslA derivatives of the B. subtilis natto
strain restores the sliding ability. Interestingly, during the time
that our work was under review, van Gestel et al. showed that
sliding of B. subtilis 3610 depends on the division of labor between
matrix (EPS) and surfactin producer subpopulations (49). Ana-
lyzing a specific set of mutants, they could also show the complete
deficiency in sliding of srfA and eps mutants. In contrast to our
observation of the dispensability of TasA activity for sliding in
B. subtilis natto and Hag-deficient NCIB3610 cells poured on LB
soft medium, sliding of wild-type 3610 on MSggN agar medium
was only partly impaired in colony expansion (49). This partially
different observation of the TasA requirement for sliding may be
due to the different media and growth conditions used for the
experiments.

While the genes involved in fatty acid (FA) synthesis (i.e., fabF,
fabHBA, fabG, etc.) were overexpressed in wild-type cells under
sliding-permissive conditions, those genes involved in FA degra-
dation (i.e., fadR, fadA, fadE, etc.) were downregulated at the same
time (see Table S2 in the supplemental material). Is an active lipid
synthesis, and therefore active membrane formation and remod-
eling, necessary to slide? In order to confirm the in silico results
and test the formulated hypothesis, we proceeded to specifically
block de novo FA synthesis in B. subtilis cells grown under
swarming- and sliding-supportive conditions. To this end, we
treated B. subtilis cells with the antibiotic cerulenin, which is a
specific inhibitor of the FabF condensing enzyme (14), at sub-
MICs (below 2 �g · ml�1), which do not affect the vegetative
growth of the NCIB3610 and RG4365 strains (50) (see Fig. S3A
and B). Our results show that sub-MICs of cerulenin produce a
dose-dependent impediment of sliding motility as well as swarm-
ing in B. subtilis (Fig. 4A; also see Fig. S3C and D). These results
confirm the microarray data and suggest that an active de novo FA
synthesis constitutes an overlooked requirement for surface (slid-
ing and swarming) motility.

Surprisingly, the supplementation with exogenous FAs (nC16:0

and nC18:1, palmitic and oleic acids, respectively) of LB soft agar
plates containing cerulenin (2 �g · ml�1) did not bypass the inhi-
bition of surface motility in B. subtilis but allowed the resumption
of the planktonic growth of a similar cerulenin-treated culture
incubated under shaking conditions (see Fig. S4A in the supple-
mental material). Why did the addition of nC16:0 and nC18:1 FAs
not suppress the negative effect of cerulenin on sliding but allow
the resumption of planktonic growth? To answer this question, we
analyzed the FA profile in samples of wild-type cells grown under
sliding-permissive conditions and liquid shaking culture (see
Fig. S4B). B. subtilis, unlike Escherichia coli, synthesizes linear and
branched (iso- and anteiso-) saturated fatty acids at 37°C to main-
tain an adequate membrane fluidity. We found that under active
sliding there is a predominance of the synthesis of saturated FAs
with lower melting points (anteiso-C15:0 and anteiso-C17:0) and a
decrease in the synthesis of the FAs with higher melting points
(linear nC15:0 and nC16:0). Overall, during active sliding, the per-
centage of linear FAs drops from 25.0 to 4.0% while the content of
anteiso-FAs rises from 26.0 to 54.0%. Simultaneously, the global
content of iso-FAs remains around 50.0%, independently of the
growth conditions (see Fig. S4B). The notable increase in the syn-
thesis of low-melting-point anteiso-FAs and the simultaneous de-
crease in the synthesis of linear FAs would allow the synthesis of
membrane lipids with lower melting points and therefore the bio-
genesis of membranes with higher fluidity. We hypothesize that

FIG 4 De novo branched fatty acid synthesis is required for swarming and
sliding proficiencies in B. subtilis. (A) Dose-dependent inhibitory effect of
sub-MICs of cerulenin on swarming and sliding proficiencies of NCIB3610-
related wild-type and bslA and hag mutant strains, respectively. Sliding and
swarming experiments were performed as indicated in the legend to Fig. 1 but
with the inclusion of the indicated cerulenin concentration in the soft agar
plates. (B) Exogenous branched FAs but not linear FAs (palmitic [nC16:0] and
oleic [nC18:1] acids) restore the sliding proficiency of the B. subtilis natto strain
in the absence of de novo FA synthesis.
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the synthesis of cellular membranes with a higher fluidity might
facilitate the group translocation of B. subtilis cells on solid sur-
faces in the absence of the propelling force of the flagella (see
Fig. S1B). In this scenario, the increase in membrane fluidity that
might be required to slide could not be reached with the supply of
linear FAs to cerulenin-treated cultures under sliding-permissive
conditions. To test this idea, we supplemented B. subtilis cells in-
cubated under sliding-permissive conditions in the presence of
cerulenin with branched FAs. As predicted by the hypothesis, the
sliding proficiency was fully restored when branched FAs were
added as a supplement to the cells with an interrupted de novo FA
synthesis (Fig. 4B).

The phosphorelay signaling system coordinates multiple
multicellular behaviors in B. subtilis. Until now, two multicellu-
lar behaviors of B. subtilis have been known to be under the con-
trol of the phosphorelay signaling system: fruiting body formation
(including spore formation) and biofilm development (7, 11, 51).
As demonstrated in this work, sliding motility is a type of cooper-
ative behavior under the novel control of Spo0A phosphorylated
by inorganic phosphate (Spo0A~Pi) and therefore of the phos-
phorelay.

Which phosphorelay histidine kinase governs sliding motility?
To solve this question, we constructed RG4365-isogenic
phosphorelay-kin mutant strains to analyze their sliding behavior.
As shown in Fig. 5A, the wild-type and the kinA, kinD, and kinE
single mutant strains show similar and proficient patterns of slid-
ing motility. On the other hand, mainly the kinB and, to a much
lesser extent, the kinC single mutant strains display a partial im-

pairment in sliding. To confirm that KinB and KinC are sensor
kinases involved in the control of sliding, we constructed a kinB
kinC double mutant strain and compared its sliding phenotype
with those of the spo0A mutant and the other phosphorelay-
defective control strain, the spo0F single mutant, which are com-
pletely impaired in surface translocation. As shown in Fig. 5B, the
kinB kinC double mutant strain displayed a complete impairment
in sliding proficiency that was equivalent in magnitude to the
sliding deficiency of the spo0A and spo0F mutant strains. In
Fig. 5C, the sliding kinetics of the different phosphorelay mutant
strains confirm that KinB and KinC are the two sensor kinases that
govern sliding motility in B. subtilis and that KinB activity is more
significant than KinC activity for the proficiency in that behavior.
As expected, the transcomplementation (into the nonessential
amyE locus) of the kinB and kinC mutant strains with a wild-type
copy of kinB and kinC, respectively, restored full sliding profi-
ciency (see Fig. S5 in the supplemental material).

Interestingly, the sliding-controlling KinC kinase (this work)
has been proposed (along with KinD) to govern the onset of bio-
film formation (10, 33–35, 52). Further, KinA and KinB have been
suggested to alter biofilm development on certain media and at
reduced oxygen levels (53). We confirm (data not shown) that in
the RG4365 natto strain, as well as in the NCIB3610 strain (33, 34),
both sensor kinases, KinC and KinD, govern the onset of biofilm
development and extracellular matrix production in response to
plant-derived polysaccharides that constitute one of the signals
able to induce both kinases (33).

In toto, B. subtilis employs duos of phosphorelay histidine ki-

FIG 5 The phosphorelay sensor kinases KinB and KinC govern social sliding motility in B. subtilis. (A) Sliding phenotype of single kin mutant B. subtilis natto
strains (see Table S1 in the supplemental material) after 40 h of incubation on soft LB agar plates at 37°C. (B) Complete sliding-deficient phenotype of spo0A,
spo0F, and double kinB kinC mutant strains of the B. subtilis natto strain under conditions of incubation similar to those indicated for panel A. (C) Kinetics of
sliding motility of different phosphorelay mutants over time. Note that the line with pink squares is common to the spo0A, spo0F, and kinB kinC mutant strains.
(D) Sporulation, biofilm formation (at atmospheric oxygen level), and sliding motility are Spo0A-dependent developmental programs that B. subtilis preferen-
tially regulates by duos of phosphorelay sensor kinases.
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nases to control different multicellular behaviors. The histidine
kinase duos KinA/KinB, KinC/KinD, and KinB/KinC govern the
onset of sporulation and fruiting body formation (7, 8, 28, 54, 55),
biofilm development under atmospheric oxygen pressure (10, 33–
35, 51, 52), and social sliding (this work), respectively (Fig. 5D).

The sliding signal. What is the nature of the signal, acting on
KinB and/or KinC, which is responsible for triggering sliding mo-
tility in B. subtilis? To answer this fundamental question, we had
two premises. First, the sliding-inducing signal, responsible for
the autophosphorylation of KinB and/or KinC, should not be
strong enough to trigger KinB~Pi-/KinC~Pi-dependent activa-
tion (phosphorylation) of Spo0A to the high levels of the regulator
(Spo0A~Pi) needed for spore formation, because we did not ob-
serve induction of sporulation genes under conditions of active
sliding (see Table S2 in the supplemental material). Second, the
same signal that activates the autophosphorylation of KinB and/or
KinC sensor kinases to make Spo0A~Pi and induce sliding motil-
ity would prevent initial KinB~Pi-dependent and/or KinC~Pi-
dependent biofilm formation.

A recent report suggested that KinB is controlled by the respi-
ratory apparatus via its second transmembrane segment (53). It is
proposed that under conditions of reduced electron transport,
KinB becomes active (formation of KinB~Pi) via a redox switch
involving its second transmembrane segment with one or more
cytochromes to induce biofilm formation and sporulation (53).
We envision that under active sliding, in rich soft medium, the
physiological conditions of the sliding cells would be different
from the conditions of sessile cells forming a biofilm. Under con-
ditions of biofilm formation, a crowded population of cells exists
encased in the biofilm matrix with nutrients that become rapidly
exhausted (11). Furthermore, if a reduced electron transport trig-
gers KinB~Pi-dependent biofilm formation and sporulation, sur-
face translocation (sliding) would not be activated at the same
time since the two are antagonist responses (53). Therefore, we
consider it unlikely that the status of the respiratory apparatus,
sensed by the second transmembrane domain of KinB, could be
the physiological condition triggering sliding.

Interestingly, it has been proved that intracellular potassium
represents a negative signal for KinC (10, 52). Potassium is a major
intracellular ion that impairs KinC activation through interaction
with the cytoplasmic PAS-PAC sensor domain of the kinase (10).
The intracellular potassium concentration decreases as B. subtilis
cells reach the late logarithmic phase when newly synthesized sur-
factin, through its membrane pore formation activity, and the
putative potassium channel YugO secrete the ion to the outside of
the cell (10, 52). In this model, the surfactin/YugO-mediated in-
tracellular drop in potassium concentration activates KinC. Curi-
ously, in contrast to the round colonies formed on LB and LBY
(LB medium supplemented with 4.0% yeast extract; see also ref-
erence 14) agar plates by the wild-type RG4365 strain and its iso-
genic kinC derivative, the kinB mutant strain forms colonies and
biofilms with a tendril-shaped morphology that are very similar to
the morphology of wild-type B. subtilis colonies grown on CM
(casein digest-mannitol medium) plates, a solid medium with po-
tassium deficiency (22) (Fig. 6A and B). Basically, low (micromo-
lar) and high (millimolar) levels of potassium ions favor tendril-
like and rounded colony formation, respectively (22). Due to the
similar colony phenotypes of the kinB mutant and the wild-type
strain grown on solid medium with low levels of potassium, we
were motivated to investigate if potassium is involved in the reg-

ulation of KinB. Remarkably, as shown in Fig. 6C, we discovered a
dose-dependent positive effect of potassium ions on sliding mo-
tility of the wild-type and kinC strains, which are proficient in kinB
expression. This sliding stimulation was observed at potassium
levels between 50 mM and 100 mM (data not shown) (with an
optimal sliding-stimulatory concentration of 75 mM) that are
comparable to the potassium concentrations that inhibited KinC
from triggering biofilm formation (10, 52). In contrast, there was
no effect of potassium supplementation on the sliding proficiency
of the kinB mutant (Fig. 6C). These results strongly suggest that
potassium represents a positive signal for KinB activation. A closer
examination of the colony and biofilm phenotypes of the kinB
mutant strain (Fig. 6A and B) seems to indicate that KinB might
inhibit KinC from stimulating biofilm formation, and we are cur-
rently investigating this phenomenon.

It is known that the sensor histidine kinase KinB is, in addition
to KinA, the main sporulation kinase of B. subtilis (54). Although
a kinB mutant strain is proficient in sporulation (Spo� pheno-
type), a double kinA kinB mutant strain is almost unable to spo-
rulate (Spo0 phenotype) (54). Therefore, we were interested to
investigate if the positive effect of potassium on KinB-dependent
sliding proficiency was also valid for spore formation. As shown in
Fig. 6D, potassium did not stimulate sporulation in either of the
two KinB-proficient strains, i.e., wild-type (KinA� KinB�) and
kinA mutant (KinA� KinB�), that were analyzed. Consequently,
potassium constitutes a specific signal for sliding motility that
precisely fulfills the two hypothesized premises to be ineffective in
triggering sporulation (first premise, Fig. 6D) but, at the same
time, strong enough to trigger sliding motility (second premise,
Fig. 6C) (10, 52). In addition, the dual role of potassium ions
(present at high intracellular levels at early times of growth) as
activators and inhibitors of KinB and KinC activities, respectively,
points to KinB as the phosphorelay kinase responsible for the start
of the cooperative sliding movement (see below).

Does potassium represent a direct or an indirect signal to acti-
vate KinB? Searching for conserved domains and sequence motifs
present in KinB that might be involved in the potassium response,
we discovered a disregarded sequence (SLKTNGTG) residing on
the ATP-binding region of KinB that is absent in the sequences of
the other four phosphorelay sensor kinases (56) (Fig. 7A). This
sequence possesses a significant homology to the highly conserved
K�-filter (selectivity) sequence of the pore loop domain (P-
domain) of potassium channels (T/S-x-x-T-x-G-x-G consensus
sequence) (57, 58). Despite the many protein motifs and domains
present in different types of potassium channels (58), the KinB
K�-selectivity-like sequence (here called K* for simplicity) is the
only common element related to K� channels. While active KinB
is a dimer (59), typical potassium channels are tetramers made up
of predominantly identical subunits clustered to form the ion per-
meation pathway across the membrane (60–62). In addition to the
absence of the pore motifs that surround the selectivity filter
(Fig. 7B), KinB also lacks the different domains that have been
described in different potassium channels (58, 60, 61). Further-
more, the K* resides in the cytosolic region of the kinase, while in
all known (eukaryotic and prokaryotic) potassium channels the
K�-filter resides in transmembrane domains. While these topo-
logical features exclude KinB as a potassium channel, they open
the possibility that the kinase might sense the intracellular con-
centration of the ion throughout its cytosolic K*. Therefore, we
tested if the K* plays a role or not in sliding motility. To this end,
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we constructed two types of kinB mutant strains harboring spe-
cific mutations in the K* (see Fig. S6 in the supplemental mate-
rial). In one case, three out of the four conserved amino acids of
the consensus K* were replaced by alanines (the fourth conserved
amino acid, G, of the consensus sequence was not altered as it
overlaps with a predicted ATPase motif of the kinase [Fig. 7A]) to
give rise to the mutant KinBK*¡A (see Fig. S6). In the second
constructed kinB mutant strain, 7 out of the 8 amino acids of the
K* were deleted (mutant strain KinB�K* [see Fig. S6]). One im-
portant consideration for both mutant strains before analysis of
their roles in sliding is that they must be functional (i.e., promote
spore formation). In this sense, the sliding-promoting activity of
KinB should be separable from its biofilm/sporulation-promoting
activities, a scenario that would explain why KinB-dependent slid-
ing proficiency and KinB-dependent biofilm/spore formation are
not simultaneously activated (see below).

Remarkably, while the complementation of a kinA kinB double
mutant strain (originally Spo0 and deficient in sliding) with a
wild-type copy of kinB restored sporulation and sliding proficien-
cies, both types of alterations in KinB (KinBK*¡A and KinB�K*)
were able to complement full sporulation proficiency but did not
restore the KinB-driven sliding proficiency in that genetic (kinA
kinB) background (Fig. 7B). Simultaneously, both constructed
KinB mutants failed to restore sliding proficiency of kinB (Fig. 7C)

and kinB kinC (Fig. 7D) mutant strains and were also insensitive to
the stimulation of sliding after potassium supplementation
(Fig. 7E). These results confirm that the K�-selectivity-like se-
quence present in KinB (K*) plays an essential role in potassium
sensing, leading to sliding proficiency that is located on a different
part of the KinB protein than the electron transport-sensing trans-
membrane segment 2 responsible for triggering biofilm and spore
formation (54).

Potassium constitutes the signal for the fine-tuned intercon-
nection of social sliding and biofilm development. Potassium
represents the most abundant ion in the cytoplasm (~200 mM in
E. coli versus 7 mM content in LB medium) (58). Unlike most
other intracellular cations, the high intracellular concentrations of
potassium do not interfere significantly with vegetative growth.
However, apart from the stimulatory effect of potassium on KinB
(this work), it is known that potassium is a strong inhibitor of
KinC activity (10, 52), but enigmatically, the activity of both his-
tidine kinases (KinB and KinC) is required for full sliding profi-
ciency (Fig. 5A and B). The simplest explanation for this apparent
paradox is that KinB and KinC should work at different times of
sliding development accompanying the drop in the intracellular
concentration of potassium that happens during the transition
from the log phase to the early stationary phase. We favor a sce-
nario (i.e., in LB soft agar plates) in which, at the onset of sliding

FIG 6 Potassium is the physiological signal that regulates sliding motility in B. subtilis. (A and B) Tendril-like morphology of RG4365-isogenic kinB colonies
and biofilms (complex colonies) formed on LB (A) or LBY (B) medium. (C) Potassium stimulates sliding of KinB-positive (wild-type and kinC mutant strains)
but not KinB-deficient (kinB strain) cells. (D) Potassium does not represent a signal for sporulation proficiency. Sporulation proficiencies of wild-type (wt)
(kinA� kinB�) and kinA mutant (kinA kinB�) strains in the presence and absence of added potassium ions (75 mM) are shown. Viable cells and spores were
determined after 30 h of growth in SM as previously described (27). Results presented in panels C and D are representative of three experiments performed
separately.
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and at the edge of an active sliding colony (where the youngest
cells would be present), the intracellular potassium concentration
would be high because cells have plenty of nutrients and are in log
phase. During this time, KinB (which is the first phosphorelay
kinase to be expressed and therefore is present early on in the cell)
(63) should be active (due to the potassium stimulus) in driving
the synthesis of the sliding machinery while KinC activity would
remain low because of its reduced expression at early times of
growth and because of the presence of high levels of intracellular
potassium (10, 52) (Fig. 8A, left image). As soon as sliding cells
approach the late log phase on LB soft agar plates (probably at the
inner, older portion of the sliding disc), surfactin and the potas-
sium exporter YugO are expressed on the cellular membrane (10,
52). Therefore, the intracellular potassium concentration de-
creases, and KinB activity is downregulated and replaced by active
KinC to maintain the appropriate levels of Spo0A~Pi required for
the continued expression of genes needed for full sliding profi-
ciency (i.e., bslA, srf, eps, and fab) and biofilm formation (see be-
low) at the inner part of the sliding disc (Fig. 8A, right image).
Supporting the view of this spatiotemporal regulation of the ki-
nases, when wild-type (KinA- and KinB-positive) B. subtilis cells

are loaded on an optimized soft agar medium that in addition to
sliding motility also allows biofilm formation (i.e., soft LBY agar)
(14), it is possible to observe the formation of structures typical of
a biofilm in the inner part of the sliding disc, while the outer
borders remain flat (Fig. 8B, left image). This result strongly sug-
gests that (under sliding-permissive conditions) KinC and KinB
are active at the interior and at the edge of the sliding disc, respec-
tively (Fig. 8A, right image). In agreement with this result, when
kinC (KinB-positive and KinC-deficient) cells were incubated un-
der similar conditions, the sliding disc, as expected, was smaller
than the sliding disc formed by wild-type cells, and more impor-
tantly, no structure that resembles a biofilm was formed (Fig. 8B,
middle image). Concordantly, a kinB strain (KinC-positive and
KinB-deficient) formed typical biofilm wrinkle-like structures at
the inside and outside regions of the slowly sliding cells (Fig. 8B,
bottom right images). Overall, the former results (Fig. 6 to 8)
suggest that potassium ions and KinB~Pi act earlier than KinC~Pi

to activate the onset of sliding and confirm, once the potassium
concentrations start to be different in distinct regions of the slid-
ing disc, the spatiotemporal regulation of KinB and KinC
(Fig. 8A). In addition, the KinC~Pi-dependent biofilm formation

FIG 7 KinB harbors a cytosolic selectivity filter motif responsive to potassium ions that specifically allows sliding proficiency. (A) Amino acid sequence of KinB.
The six continuous underlines indicate the six transmembrane domains of KinB. The histidine highlighted in green corresponds to the residue of autophos-
phorylation; the blue amino acid triplets represent the top and bottom sites of the ATP-binding domain of the kinase. The yellow box highlights the cytosolic
sequence in KinB with homology to the potassium selectivity filter sequence present in potassium channels. (B to D) Sporulation and sliding proficiencies are
separable KinB functions. KinB mutant strains affected in the integrity of the selective filter sequence were able to restore full sporulation proficiency of a Spo0
kinA kinB double mutant strain (A�B� in panel B) but did not restore KinB-dependent sliding activity in that A�B� background (B), either in kinB (B�) (C)-
or in kinB kinC (B�C�) (D)-deficient mutant strains. Bk�¡A and B�k� indicate KinB proteins with Ala-exchanged and Ala-deletion K�-filter domains,
respectively. (E) Mutation of the potassium selectivity sequence in KinB abolished the ability of B. subtilis to slide in response to potassium addition. Sliding and
sporulation proficiencies were measured as indicated in Materials and Methods. Results presented in panels B to E are representative of four experiments
performed separately after 40 h of incubation.
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FIG 8 Spatiotemporal regulation of the sliding-inducing kinases. (A) At the onset of sliding, as soon as cells were poured on LBY-0.7% agar plates, KinB was
the first-acting kinase while KinC remained inactive. This differential activity of KinB and KinC is due to the intracellular potassium input that activates and
inhibits each kinase, respectively (left panel). As progression of sliding continues, there is a drop in the intracellular potassium concentration in the cells at the
inner part of the sliding disc. Under this physiological condition, KinB and KinC become inactive and active inside the sliding disc, respectively, while KinB

(Continued)
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observed at the interior (older) part of the sliding disc after incu-
bation in a medium that allows biofilm and sliding (LBY soft agar
plates) (left and middle images in Fig. 8B) suggests that the
potassium-mediated activation of KinB to make Spo0A~Pi and
start sliding motility (Fig. 6C and 7) is not only insufficient to
induce KinB~Pi-dependent spore formation (Fig. 6D) but also
insufficient to trigger the onset of KinB~Pi-dependent biofilm
formation (middle image in Fig. 8B).

How can sliding and the sessile lifestyle of biofilm formation,
which are social behaviors believed to be antagonistic to each
other, be positively controlled by the same regulatory pathway
(Spo0A~Pi), and why are the biofilm formation and sporulation
pathways not activated upon increased KinB autophosphoryla-
tion during promotion of sliding motility? Fujita and Losick re-
ported that a gradual increase in the levels and activity of Spo0A
results in the expression of different sets of genes in B. subtilis (28).
For instance, high levels of Spo0A~Pi stimulate sporulation (fruit-
ing body formation) and low levels of Spo0A~Pi stimulate biofilm
formation (64). Therefore, we hypothesize that sliding and bio-
film formation developments require, as suggested by Chai et al.
(64) for the cases of sporulation and biofilm formation, different
levels of Spo0A~Pi to become active. Until now, it was clearly
demonstrated that the sliding-permissive conditions used in this
work (i.e., soft LB agar) and the potassium input that activates
KinB (which at the same time inhibits KinC activity) (10) are
adequate to support sliding (Fig. 1 and 6C) but insufficient to
trigger sporulation (Fig. 6D) and biofilm formation (Fig. 8B, mid-
dle image, KinB� KinC� strain). Therefore, sliding motility in
B. subtilis seems to be activated before biofilm formation and spo-
rulation. But how is sliding and not the other developmental path-
ways triggered when KinB become active? In other words, which
behavior needs lower levels of Spo0A~Pi to be triggered? We hy-
pothesize two alternative progressions. In one scenario (Fig. 8C,
model I), the surface-committed cells first slide and later on form
the biofilm structures at the center. In the other situation (Fig. 8C,
model II), the surface-attached cells first produce a sessile biofilm
and cells at the edge of the biofilm engage in sliding later on. In
both scenarios, the social behavior that is triggered first (sliding or
biofilm formation) is the one that requires the smaller amount of
Spo0A~Pi (28, 64). One approach to monitor the in vivo levels of
Spo0A~Pi is to measure the expression of abrB, the most sensitive
reporter of the Spo0A~Pi levels present in the cell (27, 28).
Spo0A~Pi is a strong repressor of abrB, and very low levels of
Spo0A~Pi (insufficient to trigger biofilm and sporulation) are suf-
ficient to downregulate abrB (27, 28). Therefore, to obtain more

insight into the levels of Spo0A~Pi present during sliding and
biofilm, we measured the levels of �-galactosidase (�-Gal) activity
driven by the expression of an abrB-lacZ transcriptional fusion
under conditions that favor sporulation (growth on sporulation
medium [SM]-1.5% agar plates), sliding (growth on LB-0.7%
agar plates), biofilm (growth on LBY-1.5% agar plates), or none of
the abovementioned behaviors (growth on LB-1.5% agar plates).
At different times, cells were removed from the petri dishes and
the abrB-driven �-galactosidase activity was measured (Fig. 8D).
As expected, the abrB expression was the lowest and highest (in-
dicating the highest and smallest amounts of Spo0A~Pi, respec-
tively) when the cells were grown on SM- and LB-1.5% agar plates,
respectively (Fig. 8D). Interestingly, the levels of abrB expression
under conditions of active sliding (growth on LB-0.7% agar
plates) were significantly higher than the AbrB levels observed
under conditions of active biofilm formation (growth on LBY-
1.5% agar plates). These results (Fig. 8D) suggest that the levels of
Spo0A~Pi required to trigger sliding motility are lower than the
levels of Spo0A~Pi needed to trigger biofilm formation, and there-
fore, the former behavior (sliding motility) would be triggered
before biofilm formation when B. subtilis is attached and commit-
ted to a sessile differentiation (model I in Fig. 8C).

To confirm this interpretation, the �spo0A sad67 strain (see
Table S1 in the supplemental material) (27–29), where the synthe-
sized active Spo0A (Sad67) level depends on the supplemental
IPTG, was cultivated on LBY-0.7% agar plates supplemented with
different amounts of IPTG. In this experiment, we hypothesized
that the behavior (biofilm formation, sliding, or fruiting body
formation-sporulation) expressed at the lowest IPTG concentra-
tion would reflect the multicellular B. subtilis response that re-
quires the smallest amount of active Spo0A (Sad67) to be pro-
duced. As expected, in the absence of IPTG addition (Fig. 8E),
sad67 is not expressed and B. subtilis is unable to display (because
Spo0A activity is completely absent in �spo0A cells) any of its
different multicellular behaviors. As soon as the LBY-0.7% agar
medium is supplemented with a small amount of IPTG
(0.01 �M), B. subtilis cells start to slide (Fig. 8F). When the IPTG
concentration is increased to 10 �M (and therefore more active
Spo0A is produced in the surface-committed cells), B. subtilis trig-
gers complex colony biofilm formation (Fig. 8G). At the largest
amount of supplemental IPTG (1,000 �M), the growth of B. sub-
tilis is restricted (because high levels of active Spo0A inhibit vege-
tative division) (27–29) and B. subtilis directly induces the forma-
tion of fruiting bodies filled with spores (Fig. 8H). Overall, these
results strongly suggest that the increase in the levels of active

Figure Legend Continued

remains active at the newest part (border) of the sliding community. (B) Wild-type B. subtilis RG4365 and its isogenic derivatives mutated in kinC or kinB were
loaded on soft agar plates of LBY medium and incubated for 20 h at 37°C. Under these conditions of simultaneous stimulation of sliding and biofilm formation
proficiencies, the formation of a structured biofilm in the inner part of the wild-type sliding disc is observed. In contrast, in the sliding disc of the kinC strain no
biofilm structure is formed, suggesting that the biofilm observed in the inner part of the sliding disc of wild-type cells is a product of the KinC activity. In both
cases (wild-type and kinC strains), the borders of the sliding discs are flat and unstructured. In the case of the kinB cells (right panel), KinC activity drives the
formation of typical wrinkled structures, representative of a mature biofilm, inside and at the borders of the colony. (C) Two models for the temporal progression
of multicellularity in B. subtilis as described in the text. (D) �-Galactosidase production from PabrB-lacZ in B. subtilis cells grown on petri dishes filled with media
that favor the expression of different social behaviors under the control of Spo0A~Pi: sliding motility (LB-0.7% agar; green line), biofilm formation (LBY-1.5%
agar; red line), sporulation (SM-1.5% agar; black line), or none (LB-1.5% agar; blue line) (see text for details). Cells were taken from the petri dishes at the times
indicated in the figure and assayed as described in the supplemental material. The results shown are representative of three independent experiments made in
duplicate. M.U., Miller units. (E to H) Five microliters of an overnight culture of the natto strain RG4382 (�spo0A::Ery/Pspac-spo0A-sad67Cat) was inoculated on
the middle of solidified LBY-0.7% agar medium prepared with different concentrations of IPTG as shown in the figure. After 20 h of incubation at 37°C,
photographs were taken and the sporulation frequency (after elution of the cells from the petri dishes) was determined as described in Materials and Methods.
The results are representative of seven independent experiments performed in triplicate.
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Spo0A (Spo0A~Pi) (28, 64) allows the expression of the different
behaviors of B. subtilis following a temporal sequence of social
sliding motility, multicellular biofilm formation, and finally fruit-
ing body formation (sporulation) (see Fig. S7).

Conclusions. In toto, we demonstrated how the model organ-
ism B. subtilis can cope with the basic, although fundamental,
decision that it must take when it is attached and committed to a
surface: to move or remain in place. We present a novel mecha-
nistic model, containing a Spo0A command that explains the co-
ordinated expression of the different behaviors of B. subtilis. In
this model, the spatiotemporal regulation of KinB and KinC by
potassium determines the Spo0A~Pi amount, which in turn or-
chestrates the onset and sequential progression of sliding motility,
biofilm formation, and finally sporulation/fruiting body forma-
tion (Fig. 8; see also Fig. S7 in the supplemental material). Recent
publications demonstrate the necessity of biofilm formation for
the efficient colonization of the root surface and biocontrol prop-
erties of B. subtilis (33, 34). The common signal (potassium) and
the common regulatory network under Spo0A control (the phos-
phorelay) (25) for sliding (this work), biofilm formation (this
work and references 10 and 32 to34), and sporulation-fruiting
body formation (54) and our in vitro experiments (Fig. 2G) sug-
gest that sliding might also contribute to the ability of the plant
growth-promoting and biocontrol bacterium B. subtilis to reach
the root surface and efficiently colonize the rhizosphere. Once
again, B. subtilis offers an example of simplicity in how distinct
prokaryotic social behaviors previously believed to be antagonistic
and independent from each other, i.e., surface motility, biofilm
formation, and sporulation, might work together to benefit the
bacterium and the host.

MATERIALS AND METHODS

Strains and growth media. The three wild-type B. subtilis strains used in
this study were the domesticated, laboratory reference strain JH642 and
the two undomesticated and wild B. subtilis strains NCIB3610 and natto
RG4365. These strains and their isogenic derivatives (see Table S1 in the
supplemental material) were grown in Luria-Bertani (LB) and Schaeffer’s
sporulation medium (SM) as indicated previously (27). For experiments
in biofilm formation, the biofilm-enhancer medium LBY was used (14).
Cloning of kinB and kinC genes for complementation and site-directed
mutagenesis is described below and in Table S3 in the supplemental ma-
terial.

Spreading (swarming and sliding) experiments. For surface motility
(swarming and sliding), LB plates fortified with 0.7% agar and dried for
1 h were inoculated with 1 �l of 8 � 107 cells · ml�1 grown to mid-log
phase at 37°C in LB broth. The inoculated petri dishes were then incu-
bated at 37°C for 40 h. Each data point shown in the figures represents an
average from 6 independent experiments. Data from one representative
experiment are shown. Flagellum staining was performed as described
previously (14).

DNA transformation and complementation experiments. Transfor-
mation of B. subtilis, to obtain isogenic derivatives of the parental strains,
was carried out as previously described (27, 50). When appropriate, anti-
biotics were included at the following final concentrations: 1 �g · ml�1

erythromycin (Ery), 5 �g · ml�1 kanamycin (Kan), 5 �g · ml�1 chloram-
phenicol (Cat), 75 �g · ml�1 spectinomycin (Spc), and 2.5 �g · ml�1

phleomycin (Pheo). Surfactin and cerulenin were obtained from Sigma-
Aldrich. For those plates supplemented with IPTG in Fig. 1I, one or two
grains of IPTG was carefully added on top of the soft LB agar after solid-
ification in order to allow IPTG diffusion and gradient formation.

�-Gal assays. The �-galactosidase (�-Gal) activity from liquid cul-
tures was assayed as previously described (14, 27). In the case of the assays
of �-Gal activity driven from colonies, cells were resuspended at a final

concentration of 3 � 109 CFU · ml�1 before measurement of the
�-galactosidase activity (14, 27).

Transcriptome analysis. Cultures of the B. subtilis natto strain
(RG4365) and its spo0A derivative (RG4370) were inoculated onto the
middle of LB plates containing 0.7% or 1.5% agar. The bacterial biomass
was removed from the plates with a spatula after 24 h of growth, and
samples were stored at �80°C. At least three independent biological rep-
licates were included. The pellets were immediately frozen in liquid
nitrogen and stored at �80°C. RNA extraction was performed with the
Macaloid/Roche protocol (37, 65) with two additional steps of phenol-
chloroform washing. RNA concentration and purity were assessed using a
NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific).
RNA samples were reverse transcribed into cDNA using the Superscript
III reverse transcriptase kit (Invitrogen, Carlsbad, CA, USA) and labeled
with Cy3 or Cy5 monoreactive dye (GE Healthcare Amersham, The Neth-
erlands). Labeled and purified cDNA samples (NucleoSpin extract II;
Biokè, Leiden, The Netherlands) were hybridized in Ambion Slidehyb #1
buffer (Ambion Europe Ltd.) at 48°C for 16 h. The arrays were con-
structed as described elsewhere (66). Briefly, specific oligonucleotides for
all 4,107 open reading frames of B. subtilis 168 were spotted in duplicate
onto aldehyde-coated slides (Cell Associates) and further handled using
standard protocols for aldehyde slides. Slide spotting, slide treatment after
spotting, and slide quality control determination were done as described
previously (67). After hybridization, slides were washed for 5 min in 2�

SSC (1� SSC is 0.15 M NaCl plus 0.015 M sodium citrate) with 0.5% SDS,
washed 2 times for 5 min each in 1� SSC with 0.25% SDS, washed for
5 min in 1� SSC-0.1% SDS, dried by centrifugation (2 min, 2,000 rpm),
and scanned in a GenePix 4200AL microarray scanner (Axon Instru-
ments, CA, USA). Fluorescent signals were quantified using ArrayPro 4.5
(Media Cybernetics Inc., Silver Spring, MD) and further processed and
normalized with MicroPrep (68). CyberT (69) was used to perform sta-
tistical analysis. Genes with a Bayes P value of �1.0 � 10�4 were consid-
ered significantly affected.

Cloning of kinB and kinC genes and site-directed mutagenesis. The
coding regions of kinB and kinC were amplified with oTB56-oTB57 and
oTB61-oTB62 oligonucleotide pairs, respectively (oligonucleotide se-
quences are indicated in Table S3 in the supplemental material). The PCR
products were digested with BamHI and EcoRI enzymes and cloned into
the corresponding sites of pTB16. pTB16 is an amyE integration vector
with a kanamycin resistance gene. pTB16 was created by amplifying the
kanamycin resistance gene from pDG782 (70) with primers oDG1 and
oDG2, restricting it with StuI and BamHI, and ligating it to the corre-
sponding sites of PCR-amplified vector that was obtained with oX1 and
oX2 on pX (71) plasmid as the template (see Table S3). Site-directed
mutants of the kinB gene were obtained using an overlapping fragment
PCR method (72), using polymerase X enzyme (Roboklon GmbH, Berlin,
Germany). The 5= region of kinB was amplified with oTB56-oTB58 oligo-
nucleotides, while the 3= region, containing mutations for 3 amino acid
exchanges (S383A, T386A, and G388A) or a 7-amino-acid deletion (S383 to
T389), was obtained with oTB59-oTB57 or oTB60-oTB57, respectively
(see Table S3). The PCR fragments were used in a second round of PCR as
a template accompanied with oTB56-oTB57 oligonucleotides, and fusion
fragments were cloned in the same way as the wild-type kinB gene. The
plasmid constructs obtained were sequenced before transformation into
B. subtilis integrating into the amyE locus.

Fatty acid analysis. Approximately 20 mg of the sample was weighed
in a screw-cap 4-ml glass vessel. For the transesterification, a methanol-
hydrochloric acid solution was freshly prepared by adding 1 ml of acetyl
chloride to 20 ml of methanol (73). Butylated hydroxytoluene (BHT;
3 �g · ml�1) was added to prevent autoxidation of polyunsaturated fatty
acids. Afterward, 1.5 ml of this solution was added to the sample. The
solution was overlaid with nitrogen, and the vessel was tightly closed.
After vortexing, the vessel was heated at 90°C for 1 h. Once cooled to room
temperature, 1 ml of water and 1.5 ml of hexane were added for extraction
of fatty acid methyl esters (FAMEs). The tubes were vortexed and centri-
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fuged (6 min at 720 relative centrifugal force [RCF]). The hexane phase
was isolated. The extraction procedure with hexane was repeated, and the
combined organic solutions were dried over anhydrous Na2SO4 and con-
centrated to dryness under a gentle stream of nitrogen. The residue was
redissolved in 0.2 ml (or 0.1 ml) of hexane (depending on the final con-
centration).

The Supelco 37-component FAME mix, the Supelco bacterial acid
methyl ester mix, and the Supelco triglyceride mix (Supelco, Bellefonte,
PA, USA) were used as reference standards to identify the FAMEs.

An aliquot of the sample (1 �l) was analyzed on a Finnigan trace
instrument (Thermo Fisher Scientific, Dreieich, Germany) equipped with
a ZB5 column (15 m by 0.25 mm by 0.25 �m) with a 10-m Guardian end
(Phenomenex, Aschaffenburg, Germany). Mass spectra were measured in
electron impact (EI) mode at 70 eV. Helium at 1.5 ml · min�1 served as the
carrier gas. The gas chromatography (GC) injector (split ratio, 1:15),
transfer line, and ion source were set at 250°C, 280°C, and 200°C, respec-
tively. FAMEs were eluted under programmed conditions from 50°C
(2 min) followed by 10°C · min�1 to 168°C, 1°C · min�1 to 177°C, and
10°C · min�1 to 320°C.

Preparation of branched fatty acid extract from B. subtilis. One hun-
dred milliliters of a B. subtilis RG3465 culture was grown in LB broth at
37°C until the end of the vegetative phase (~6 h of growth); only saturated
fatty acids, mainly branched fatty acids, are made at this temperature (74).
Total membrane lipids (phospholipids [PLs] and glycolipids [GLs]) were
extracted as previously described (74). Then, the PLs and GLs were hy-
drolyzed with cold diazomethane to obtain free fatty acids (FAs), which
were completely dried and resuspended in 1 ml of ethanol (74). For the
complementation experiments on cerulenin-treated B. subtilis cells, the
free FAs were used at a 1:100 dilution rate.

Light microscopy and photography. The developed swarm and slide
plates were visualized with a Stemi 2000 (Zeiss) stereomicroscope using a
KL1500LCD (Zeiss) illumination system. A Power-Shot A80 (Canon) sys-
tem was used to capture the photographs for swarm and slide images.

Plant root colonization experiments. Two sanitized wheat seeds were
deposited on top of previously solidified 1/10-diluted LB in 0.7% agar
plates and incubated in moisture chambers at 25°C with exposure to pe-
riods of 12 h of illumination. After 3 days of incubation, when wheat seeds
started to germinate, 3.0 �l of stationary-phase cultures of wild-type and
spo0A mutant cells was inoculated at the points indicated by the white
dashed circles in Fig. 2. After 24 h of incubation and during the subse-
quent days, top-to-bottom pictures were taken to show the sliding and
plant root colonization abilities of wild-type and spo0A B. subtilis cells.

Microarray data accession number. Microarray data have been de-
posited in the Gene Expression Omnibus database under accession no.
GSE43840.
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Abstract: Robust colony formation by Bacillus subtilis is recognized as one of the sessile,
multicellular lifestyles of this bacterium. Numerous pathways and genes are responsible for the
architecturally complex colony structure development. Cells in the biofilm colony secrete extracellular
polysaccharides (EPS) and protein components (TasA and the hydrophobin BslA) that hold them
together and provide a protective hydrophobic shield. Cells also secrete surfactin with antimicrobial
as well as surface tension reducing properties that aid cells to colonize the solid surface. Depending
on the environmental conditions, these secreted components of the colony biofilm can also promote
the flagellum-independent surface spreading of B. subtilis, called sliding. In this study, we emphasize
the influence of Ca2+ in the medium on colony expansion of B. subtilis. Interestingly, the availability of
Ca2+ has no major impact on the induction of complex colony morphology. However, in the absence
of this divalent ion, peripheral cells of the colony expand radially at later stages of development,
causing colony size to increase. We demonstrate that the secreted extracellular compounds, EPS, BslA,
and surfactin facilitate colony expansion after biofilm maturation. We propose that Ca2+ hinders
biofilm colony expansion by modifying the amphiphilic properties of surfactin.

Keywords: Bacillus subtilis; biofilm; calcium; surfactin; sliding; colony expansion

1. Introduction

Bacteria tend to form sessile, multicellular communities under environmental settings, known
as biofilms. In these communities, cells embed themselves in secreted substances that facilitate
adherence to surfaces as well as to neighbouring cells. The structures of architecturally complex
colonies have been correlated to the general ability of bacteria to develop biofilms [1,2]. When
establishing a biofilm, cells of the Gram-positive soil dwelling microbe Bacillus subtilis secrete
extracellular polysaccharides (EPS), a matrix protein component (TasA), and a hydrophobin protein
that assembles on the surface (BslA) [3–6]. In addition, antimicrobial compounds, including surfactin,
are secreted that increase the competitiveness of B. subtilis against other microbes [7]. The biofilm
matrix components carry out numerous functions in addition to the attachment and the colony
structure complexity [8], such as protection from environmental attacks [9], colony spreading [10],
or sliding [11,12]. Importantly, colonies lacking EPS and TasA production have reduced morphologies
and appear smooth [3]. Cells devoid of BslA lose their hydrophobicity and are prone to water-soluble
antimicrobials [4,5]. These above described components, EPS, BslA, and surfactin seem to collectively
aid flagellum-independent surface spreading, a coordinated behaviour observed in bacteria [11–13].
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The expression and synthesis of these secreted products that facilitate biofilm formation and
surface spreading are tightly regulated at the level of transcription and affected by various histidine
kinases and subsequent cytoplasmic response regulators [6,14,15]. The cytoplasmic and membrane
bound histidine kinases (KinA, KinB, KinC, and KinD), in response to dynamic and challenging
environmental cues, initiate the phosphorylation of Spo0A (Spo0A~P), the main regulator of various
stationary stage processes, via a phosphorelay. The gradual increase in Spo0A~P level influences the
cells’ commitment towards certain differentiation processes. KinA and KinB activation results in a
large pool of Spo0A~P, sufficient for the cells to undergo sporulation [16,17]. Moreover, KinC and
KinD were described to respond to a plethora of signals to maintain a low amount of Spo0A~P that is
sufficient to activate the expression of genes responsible for biofilm matrix production [6,15]. Recently,
it was demonstrated that KinB and KinC collectively induce B. subtilis sliding in a spatiotemporal
manner [11]. Apart from being a collective behaviour strategy, sliding is also studied in the context
of cooperative strategies in bacteria. Heterogeneity in expression of genes required for the secreted
components that aid sliding creates a division of labour between surfactin- and matrix-producing cells
at the expanding front of the colony [12].

Examination of the factors and processes that influence colony growth and spreading properties
in bacteria facilitate our understanding of bacterial population level behaviours. Here, we report
that the presence of Ca2+ ions in the environment restricts colony expansion following colony biofilm
development. The mature colony formation of B. subtilis under laboratory conditions requires three to
four days after which the colonies are rugose, structurally complex, and display white chalky patterns
attributed to sporulation [1,15]. After maturation of B. subtilis biofilms, cells in the middle grow slowly,
are encapsulated and well protected, while the peripheral cells continue to grow in the direction of new
nutrient sources [18]. Our experiments show that when the growth medium was lacking Ca2+ salts,
biofilm colonies continue to expand in a way that resembles sliding. Considering that most media used
to study biofilm colony structures contain Ca2+ salts, this phenomenon is seldom observed. Further,
we propose that an interaction between Ca2+ and surfactin might be responsible for preventing the
colony expansion in the presence of Ca2+ in the medium.

2. Materials and Methods

2.1. Bacterial Strains, Plasmids, and Media

B. subtilis DK1042 (naturally competent derivative of the undomesticated NCIB 3610) and its
derived mutants were used in this study (Table 1). The strains were inoculated from glycerol cryo-stocks
in LB medium (Lysogeny broth, 1% tryptone, 0.5% yeast extract, 0.5% NaCl) overnight before spotting
them on the agar plates for complex colony formation. The media used for colony studies are 2×SG [19]
and MSgg [1] with 1.5% or 0.7% agar concentration. The original recipes of 2×SG and MSgg contain
Ca(NO)3 and CaCl2, respectively. For generation of strains, genomic or plasmid DNA was transformed
into DK1042 using natural competence [20] and the cells were selected on the LB agar with respective
antibiotic concentrations. The antibiotic concentrations used were the same as stated previously [15].

For the construction of the PbslA-gfp reporter plasmid (pTB670), the bslA promoter region was PCR
amplified using primers oTH23 (5′-ACTGAATTCGGGAGCGGGAGGTTCAAGTG-3′) and oTH24
(5′-GCAGCTAGCGCGTTTCATAACAAAATTCC-3’) from B. subtilis 3610 genomic DNA, restricted
with EcoRI and NheI, cloned into the corresponding sites of prrnB-GFP plasmid [21], and transformed
into Escherichia coli MC1061.

To construct plasmid pTB497 harbouring a constitutively expressed gfp gene, the Phyperspank-gfp

fragment was PCR amplified with primers oTH1 (5′-GCATCTAGAGTTGCTCGCGGGTAAATGTG-3′)
and oTH2 (5′-CGAGAATTCATCCAGAAGCCTTGCATATC-3′) from plasmid phy-GFP [22], digested
with XbaI and EcoRI, ligated into plasmid pWK-Sp [23], and transformed into E. coli MC1061. Resulting
plasmids were verified by sequencing.
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Table 1. Strains used in the study.

Strain Genotype Reference, Source, or Construction

DK1042 3610 comIQ12I [20]
TB500 3610 comIQ12I amyE::Physperpank-gfp(specR) pTB497 → DK1042
TB602 3610 comIQ12I

∆tasA::specR TB163 [11] → DK1042
TB277 3610 comIQ12I

∆srfAA::Cm RG551 [11] → DK1042
TB530 3610 comIQ12I

∆hag::neo TB24 [11] → TB500
TB524 3610 comIQ12I

∆epsA-O::tetR DL1032 [24] → TB500
TB526 3610 comIQ12I

∆bslA::cmR NRS 2097 [25] → TB500
TB398 3610 comIQ12I

∆kinA::mlsR JH12638 [11] → DK1042
TB399 3610 comIQ12I

∆kinB::tetR JH19980 [11] → DK1042
TB400 3610 comIQ12I

∆kinC::specR BAL393 [11] → DK1042
TB401 3610 comIQ12I

∆kinD::cmR BAL691 [11] → DK1042
TB402 3610 comIQ12I

∆kinE::cmR BAL692 [11] → DK1042
TB672 3610 comIQ12I

∆kinB::tetR
∆kinC::specR TB400 → TB399

TB656 3610 comIQ12I
∆kinC::specR

∆kinD::cmR TB400 → TB401
TB671 3610 comIQ12I

∆degU::neoR ∆degU [26]→ DK1042
TB51 3610 comIQ12I

∆lcfA::mlsR MW2 [27] → DK1042
TB363 3610 comIQ12I sacA::PepsA-gfp(neoR) [28]
TB373 3610 comIQ12I sacA::PtapA-gfp(neoR) [28]
TB685 3610 comIQ12I amyE::PbslA-gfp(cmR) pTB670 → DK1042
TB740 3610 comIQ12I PsrfAA-gfp(specR) BD4720 [29] → DK1042

2.2. Colony Biofilm Formation

For colony spotting, 2×SG or MSgg medium with 1.5% agar were poured and allowed to solidify
with closed petri dish lid. Both media were prepared with or without the supplementation of 1 mM
Ca(NO3)2. Once solidified, the plates were opened completely under sterile laminar airflow conditions,
and dried for 20 min. Once dried, 2 µL of the overnight grown cultures were spotted on the plate (not
more than two colonies per plate), and the lids were closed once the spotted culture dried. The plates
were incubated at 30 ◦C for seven to eight days.

2.3. Swarming and Sliding

Swarming and sliding was assayed on LB or 2×SG medium solidified with 0.7% agar. The exact
preparation of media and plates were previously described [30]. Plates were incubated at 37 ◦C and
swarming diameter was recorded every hour between 3 and 7 h after inoculation, while sliding was
documented after 24 and 48 h.

2.4. Imaging and Colony Size Measurements

The colonies grown on the 1.5% agar plates were imaged depending on the medium using
an AxioZoom V16 microscope equipped with an AxioCam MRm monochrome camera (Carl Zeiss
Microscopy GmbH, Jena, Germany). The colony diameters were also measured to quantitate the
colony spread in the presence and absence of the supplemented Ca2+. Images were calibrated using
Image J version 2.0.0-rc-15. Sliding and swarming disks were recorded using a Nikon D3300 camera
(Düsseldorf, Germany) equipped with a Nikon AF-S DX Nikkor 18–55 mm objective.

2.5. Growth and Fluorescent Reporter Assays

Overnight cultures of B. subtilis strains were diluted 100-fold in 2×SG medium supplemented with
different amounts of Ca(NO3)2; 200 µL aliquots of the culture were placed in the wells of a 96-well plate
and incubated under shaken conditions at 30 ◦C. Growth and fluorescence intensity were recorded
every 15 min using an infinite F200PRO plate reader (TECAN Group Ltd., Männedorf, Switzerland).
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2.6. Surface Tension Measurements

Wild-type or mutant strains were grown overnight in 20 mL 2×SG medium in 50 mL bottles
at 37 ◦C under well agitated conditions. The cells were removed by centrifugation and the culture
supernatant was used. The surface tension was measured according to the Wilhelmy plate method
using a tensiometer (DCAT 21, DataPhysics, Filderstadt, Germany) interfaced to a computer using
the SCAT-33 software, at room temperature (25 ◦C) and atmosphere pressure. Briefly, 5–10 mL of
the supernatant was added to the vessel. The Wilhelmy plate (platinum-iridium plate) used in this
study has a wetted length of 40.20 mm. Before each measurement run, the Wilhelmy plate was
rinsed with deionized water and subsequently flamed red-hot with a butylene burner. To detect the
supernatant’s surface the Wilhelmy plate was moved towards the supernatant’s surface using a motor
speed of 1 mm/s and a detection weight threshold of 8.00 mg. Afterwards, the Wilhelmy plate was
immersed 3 mm into the supernatant. The measurement was performed at 5 Hz and stopped after
attaining a standard deviation below 0.03 mN/m for 50 consecutive measuring points. To calculate
the force from the equivalent mass value obtained by the microbalance, the local gravitational
acceleration value (9.81485 m/s2) for the Otto-Schott-Institute of Materials Research (Jena, Germany),
was used. Ten measurements were recorded for each sample, and the experiment was repeated for
three biological samples and performed independently twice. The measurements on the various
samples were also performed with increasing concentrations of Ca(NO3)2 to observe the alteration in
liquid surface tension.

3. Results

3.1. Presence of Ca2+ Prevents Cells to Spread Out from Matured Biofilm Colonies

When previously examining the impact on Mn2+ on colony biofilm development of B. subtilis [15],
we also tested whether the lack of other components in the medium 2×SG has an effect on the colony
biofilm development of various B. subtilis strains. Interestingly, we observed that the colonies of
B. subtilis DK1042 (the naturally competent derivative of the undomesticated NCIB 3610 that forms
comparable colony biofilms to NCIB 3610) grown on 2×SG plates without the supplemented Ca(NO3)2

grew normally until day 3, after which the peripheral cells began to spread and the colony size kept on
increasing (Figure 1A). Importantly, no difference in colony growth was observed until three days,
and only minor difference was observed in structure. In this paper, we concentrate on the colony
size, thus the expansion of the biofilm colonies that denotes the radial expansion of cells after biofilm
colony maturation, thus the expansion observed after three days of cultivation. The 2×SG medium
contains Ca(NO3)2 as one of its components. Hence, under normal conditions where all the medium
components were supplemented, the colonies were rugose with concentric white chalky patterns
around (Figure 1A and [15]). In contrast, when the medium lacked Ca(NO3)2, the cells at the colony
periphery started to expand on the agar surface after three to four days of incubation. To test whether
omitting Ca2+ or NO3

− triggers the colony expansion at this later time point of colony development,
other salts were tested in 2×SG medium. Neither NO3

− nor other divalent cations restricted colony
expansion similar to Ca2+ (Figure S1).

In addition, omitting Ca2+ in the biofilm inducing minimal medium, MSgg had a similar impact
on the colony spreading (Figure 1B), although the colony biofilm structures differ in the two media.
Quantitative measurement of the colony size on 2×SG and MSgg medium revealed that in the absence
of Ca2+, biofilm colonies spread more and are significantly bigger in size than in the presence of
Ca2+ (Figure 1C,D). Excluding Ca2+ had no major impact on pellicle development on 2×SG medium
(Figure S2A).
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Figure 1. Presence of C  restricts colony expansion. Colonies of B. subtilis are shown in the presence

and absence of Ca  on 2×SG (A) and MSgg (B) media at different days after inoculation. The scale bar 

at the lower right corner denotes 5 mm. The colony expansion diameters are presented on 2×SG (C) 
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Figure 1. Presence of Ca2+ restricts colony expansion. Colonies of B. subtilis are shown in the presence
and absence of Ca2+ on 2×SG (A) and MSgg (B) media at different days after inoculation. The scale
bar at the lower right corner denotes 5 mm. The colony expansion diameters are presented on 2×SG
(C) and MSgg (D) media after three or four (striped), five or six (filled), and seven or eight (checked)
days, respectively, after inoculation in the presence (black bars) or absence (grey bars of Ca2. The error
bars indicate 95% confidence intervals. * denotes significant differences (p < 0.05) analysed with
paired t-test.

3.2. Ca2+ Restricts Flagellum-Independent Expansion of Biofilm Colonies

The colony expansion (observed after the three days of biofilm development) in the absence
of Ca2+ was also influenced by nutrient depletion, since cells showed no outgrowth when Ca2+

was omitted from 4×SG medium that consisted of twice as much nutrients as 2×SG, while colony
expansion was observed when nutrients were reduced (Figure S2B). Dispersal has been described
as the ultimate stage of the biofilm lifecycle following nutrient depletion and overcrowding of the
sessile population [31]. Colony expansion might be an alternative mechanism to those observed during
dispersal. Fleeing from the biofilm is generally facilitated by single cell motility or via small cluster of
cells breaking off. As the presence of Ca2+ ions restricted the dispersal of complex biofilm colonies,
we questioned whether flagellum-dependent motility is necessary for the observed surface spreading.
Colony expansion of B. subtilis strains lacking the hag gene that encoded the flagellin protein was
assayed in presence and absence of Ca2+. The ∆hag strain behaved similar to the B. subtilis wild type
(WT) as lack of Ca2+ supplementation in the medium increased spreading (Figure 2). Interestingly,
the spreading of ∆hag was more uniform compared to the WT where expansion was observable from
small sectors of the matured biofilm colonies (Figure 1).
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Figure 2. Colony expansion of various mutants of B  subtilis. (A) The colony images of Δhag ΔsrfAA

ΔepsA-O ΔbslA, and ΔtasA strains are shown three, five and seven days after inoculation on 2×SG 

medium in the presence or absence of Ca The scale bar indicates 5 mm  (B) The colony expansion 

diameters of the mutants presented in panel A are shown after three (striped), five (filled) and seven 

(checked) days. Black bars present data in the presence of Ca , while grey bars indicate the absence

of Ca . The error bars indicate 95% confidence intervals. Data was analysed with paired t-test for

significantly different s mples (* = 05). 

Importance of t e Com onents Required for Sliding on Colony Ex ansion 

Surf ce spreading of B. subtilis h s been gener lly examined using semi-solid medium 

containing 5%– % ag r. Under these conditions B. subtilis can colonize the agar medium

surface using fl gellum-dependent swarming or flagellum-independent sliding [ ]  As 

flagellum-dependent motility w s not required for colony expansion, we hypothesized that the

observed spreading is simil r to sliding that necessitates the collective secretion of EPS, TasA, BslA

and surfactin  Deletion of any of the genes essential for production of these components prevents 

colony exp nsion on SG medium without Ca  supplementation (Figure 2). Therefore  the sliding 

machinery facilitates the colony exp nsion after biofilm maturation. A simil r trend was observed 

when the colony sizes of the mutant strains were recorded on MSgg medium in the presence or 

Figure 2. Colony expansion of various mutants of B. subtilis. (A) The colony images of ∆hag, ∆srfAA,
∆epsA-O, ∆bslA, and ∆tasA strains are shown three, five, and seven days after inoculation on 2×SG
medium in the presence or absence of Ca2+. The scale bar indicates 5 mm. (B) The colony expansion
diameters of the mutants presented in panel A are shown after three (striped), five (filled), and seven
(checked) days. Black bars present data in the presence of Ca2+, while grey bars indicate the absence
of Ca2. The error bars indicate 95% confidence intervals. Data was analysed with paired t-test for
significantly different samples (* = p < 0.05).

3.3. Importance of the Components Required for Sliding on Colony Expansion

Surface spreading of B. subtilis has been generally examined using semi-solid medium containing
0.5%–0.7% agar. Under these conditions, B. subtilis can colonize the agar medium surface using
flagellum-dependent swarming or flagellum-independent sliding [11,12,32]. As flagellum-dependent
motility was not required for colony expansion, we hypothesized that the observed spreading is similar
to sliding that necessitates the collective secretion of EPS, TasA, BslA, and surfactin. Deletion of any of
the genes essential for production of these components prevents colony expansion on 2×SG medium
without Ca2+ supplementation (Figure 2). Therefore, the sliding machinery facilitates the colony
expansion after biofilm maturation. A similar trend was observed when the colony sizes of the mutant
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strains were recorded on MSgg medium in the presence or absence of Ca2+ (Figure S3A). To examine if
swarming or sliding are influenced by excess Ca2+ in the medium, surface colonization of wild-type
and ∆hag strains of B. subtilis exhibiting swarming and sliding, respectively, were assayed on both LB
and 2×SG media containing 0.7% agar and different levels of Ca(NO3)2 (Figure 3). B. subtilis swarming
diameter was diminished when 100 mM Ca2+ was supplemented in both media (Figure 3A,D), while
it was somewhat reduced in the presence of 1 and 10 mM Ca2+ on 2×SG medium (Figure 3B,D).
Moreover, the sliding disk of B. subtilis ∆hag strain was decreased in the presence of 10 mM Ca2+

supplementation in both LB and 2×SG media (Figure 3C,E). These data suggested that Ca2+ targeted a
component that was required for both swarming and sliding. Importantly, the increased Ca(NO3)2

concentration had no or minor impact on the growth rate of B. subtilis cultivated in liquid 2×SG
medium (Figure 3F).
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Figure 3. Impact of the presence of Ca2+ on swarming and sliding mediated surface colonization of B.

subtilis DK1042 and ∆hag strains, respectively, on Lysogeny broth (LB) and 2×SG medium. Swarming
diameter of B. subtilis DK1042 strain after 3 to 7 h on LB (A) and 2×SG (B) media with 0.7% agar
without (white bars) or with 1 (stripped bars), 10 (grey bars), 100 mM (black bars) Ca2+ supplemented.
Sliding diameter of B. subtilis ∆hag strain (C) after 24 and 48 h on LB (left) and 2×SG (right) media
supplemented with various amount of Ca(NO3)2 (labelling similar to S4A). Swarming (D) and sliding
(E) disk of wild type (WT) and ∆hag strains, respectively, 24 h after inoculation on LB (above) and 2×SG
(below) media with 0.7% agar in the absence or presence of various amounts of Ca2+ supplementation.
Scale bars indicate 2 cm. Growth properties of B. subtilis DK1042 (F) in 2×SG medium supplemented
with different amount Ca(NO3)2 from 1 mM to 100 mM.
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A recent study demonstrated that calcium mineralization in B. subtilis colonies impacts biofilm
rigidity and scaffolding. This study demonstrated the importance of lcfA in bio-mineralization
in colonies [33,34]. Incidentally, LcfA is also involved in fatty acid degradation during surfactin
production [27]. Nevertheless, mutation in lcfA gene did not prevent colony expansion in the absence
of Ca2+ (Figure S3B).

3.4. Colony Expansion on Ca2+ Limited Medium Depends on KinB and KinC, the Major Sliding-Inducing
Sensor Kinases

Since KinB and KinC were reported to activate sliding in B. subtilis [11], mutants lacking individual
genes coding for the Kin histidine kinases were tested for the colony expansion abilities in the absence
of Ca2+. None of the single mutants was reduced for colony expansion spreading in Ca2+-depleted
medium (Figure 4 and Figure S3B). While both KinB and KinC are important for full activation
of sliding in B. subtilis, only deletion of both kinases results in sliding-deficient phenotype [11].
Consistently, B. subtilis harbouring both kinB and kinC deletions lacked the ability to spread in the
absence of Ca2+ (Figure 4). As the DegS-DegU two component system was previously described to
indirectly activate bslA transcription [25,26,35], we tested a strain with a deletion of the degU gene for
colony expansion. However, the degU mutant colony spreading was increased in the absence of Ca2+

supplementation (Figure S3B). One explanation for this result could be that although expression of the
bslA gene is reduced in the degU mutant, expression of the epsA-O and the tapA-sipW-tasA operons is
increased [36,37].

3.5. Ca2+ Does Not Impact the Expression of the EPS, tasA, and srfA Genes in Planktonic Cultures

The colony expansion in the absence of Ca2+ could be related to changes in the expression
levels of the srfAA, epsA-O, tasA, or bslA genes. Therefore, the impact of Ca2+ supplementation in
the 2×SG liquid medium was tested on strain harbouring PsrfAA-yfp, PepsA-gfp, PtapA-gfp, or PbslA-gfp

fusions. Following the reporter activity over time revealed that the gene expressions of epsA-O, and
tapA-sipW-tasA, and srfAA-AC were unaffected, while bslA was barely decreased in liquid culture
grown in the presence of supplemented Ca2+ (Figure 4C–F). Expressions from PepsA-gfp and PtapA-gfp

were comparable in colonies in the presence or absence of supplemented Ca2+ (data not shown).
Importantly, we cannot exclude the possibility that gene expression of bslA and srfA in matured colony
biofilm is increased locally in the absence of Ca2+, influencing the expression of genes responsible for
colony expansion.

3.6. Influence of Ca2+ on the Amphiphilic Properties of Surfactin Molecules

Next, we addressed the question of how the presence of Ca2+ could disturb colony expansion
independent of affecting expression of genes related to sliding. Previous studies demonstrated that
divalent cations, including Ca2+, form complexes with surfactin secreted by B. subtilis [38]. Thus, if the
Ca2+ supplemented in the medium forms a complex with surfactin and alters its amphiphilic property
(i.e., surface tension reduction), surfactin facilitated sliding properties might change. To demonstrate
that Ca2+ can directly influence surfactin properties, surface tensions of spent media (overnight grown
culture supernatants) from different strains were recorded in the presence of increasing amounts of
Ca2+ by the Wilhelmy plate method using a DataPhysics tensiometer DCAT21 [39]. When culture
supernatant contained surfactin (e.g., WT and epsA-O strain), the liquid surface tension was lower
compared to the medium control and the supernatant of the ∆srfAA strain (Figure 5A).
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Figure 4. Colony expansion of histidine kinase mutant and expression of selected genes in the presence
or absence of Ca2+. (A) Colony expansion of the ∆kinB∆kinC double mutant after three, five, and seven
days. Scale bar indicates 5 mm. (B) The colony expansion diameters of the ∆kinB, ∆kinC single, and
∆kinB∆kinC double mutant are shown after three (striped), five (filled), and seven (checked) days.
Black bars present data in the presence of Ca2+, while grey bars indicate the absence of Ca2+. The error
bars indicate 95% confidence interval. * denotes significant differences (p < 0.05) analysed with paired
t-test. Relative fluorescence and growth profile (optical density) of B. subtilis strains harbouring the
PsrfAA-yfp (C), PepsA-gfp (D), PtapA-gfp (E), or PbslA-gfp (F) constructs in the presence (indicated in black)
or the absence (indicated in grey) of Ca2+ supplemented in the 2×SG medium.

Microorganisms 9 of

Figure 4  Colony expansion of histidine kinase mutant and expression of selected genes in the 

presence or absence of Ca . (A) Colony expansion of the ΔkinBΔkinC double mutant after three, five, 

and seven days. Scale bar indicates 5 mm. (B) The colony expansion diameters of the ΔkinB ΔkinC

single, and ΔkinBΔkinC double mutant are shown after three (striped), five (filled), and seven 

(checked) days. Black bars present data in the presence of Ca , while grey bars indicate the absence

of Ca  The error bars indicate 95% confidence interval. * denotes significant differences ( ) 

analysed with paired t-test. Relative fluorescence and growth profile (optical density) of B. subtilis

strains harbouring the PsrfAA-yfp (C), PepsA-gfp (D), PtapA-gf  (E), or PbslA-gf  (F) constructs in the presence

(indicated in black) or the absence (indicated in grey) of Ca  supplemented in the 2×SG medium. 

Figure 5. Cont.Figure 5. Cont.

145



Microorganisms 2017, 5, 7 10 of 13

Microorganisms 10 of

 

Figure 5. Surface tension measurement of the 2×SG medium and the supernatants of various B  subtilis

mutants in the presence of different Ca  levels. (A) Surface tension of the 2×SG medium (white b r)

wild type, ΔsrfAA, and ΔepsA-O mutant supernatants (black striped bars). (B) Surface tension of the 

2×SG medium (white bars)  the supernatants of WT (striped bars), and of ΔsrfAA (filled bars) strains 

in the presence of different Ca  concentrations. The error bars indicate 95% confidence intervals. Data 

was analysed with paired t-test for significantly different samples (* = 0.05). 

The absence or presence of 1 mM of Ca  had no significant impact on the surface tension of the 

2×SG medium. However, when the Ca  concentration was gradu lly incre sed to  mM, the 

surface tension values of the medium elevated (Figure B). The amount of surplus C  w s possibly

high enough to form complexes with most of the surf ctin molecules in the medium abolishing their 

surface tension reducing properties. When Ca  w s added to the medium control or the ΔsrfAA

supernatant  the surface tension w s not altered and stayed simil r to the WT supernatant with high

amounts of C

4. Discussion

The quantity of ions in the environment influences various cellular p thways in B. subtilis

including biofilm development [1 ]. In our study  we highlighted the role of Ca  in 

maint ining the integrity and robust structure of biofilm colonies. In commonly used laboratory 

media that promote colony biofilm development of B. subtilis, cells ttach to the ag r surface and 

produce complex robust structures within three to four days. The biofilm matrix components such as 

EPS, T sA and BslA play n essenti l role in colony wrinkleality as well as influence the indentation 

on the agar surface [4 ]  Interestingly, in the absence of C , peripheral cells in the complex

colonies exp nd r dially fter four d ys likely due to nutrient depletion. In the presence of C

however, the structure is maint ined nd colony si e barely incre ses. Here, we demonstrated that

extracellular polymeric subst nces and surfact nts that are essenti l for exp nsion by sliding play an

important role in the colony exp nsion  Mut nts that do not produce either surf ctin, EPS, the 

hydrophobin BslA, or the protein component TasA failed to expand from the matured biofilm 

colonies in medium with reduced Ca levels, while the presence or the absence of Ca  had no major 

influence on the structural properties of the developing biofilm colonies.

Divalent c tions, including C re known to influence electrostatic interactions nd bacterial

attachment processes [46,47]. C is lso required for poly-γ-glutamate acid production in B. subtilis

natto [48]. The influence of Ca  on surfactin h s been extensively studied in X-ray diffraction

experiments to demonstrate how the amphiphilic properties of surfactin are reduced during complex 

formation [3 ]. Moreover, Ca also c ptures and locali es the ionized surfactin molecules in the 

phospholipid bil yers of the cell membr ne. During colony development of B. subtilis, Ca -carbonate

present in the agar medium plays n important role during bio-minerali tion, est blishing scaffold 

formation and nutrient ch nnelling in the biofilms [ ]. The ability of Ca  to est blish complexes with 

surf ctin molecules might explain the lack of colony expansion on an agar medium supplemented

with Ca Surface tension measurements with bacterial supernatant demonstrated that the high

surplus of C  could preclude surfactin dependent reduction of the surface tension. Not bly, the 

amount of C  required for the in vitro inhibition of the surfactin ctivity was two magnitudes higher 

Figure 5. Surface tension measurement of the 2×SG medium and the supernatants of various B. subtilis

mutants in the presence of different Ca2+ levels. (A) Surface tension of the 2×SG medium (white bar),
wild type, ∆srfAA, and ∆epsA-O mutant supernatants (black striped bars). (B) Surface tension of the
2×SG medium (white bars), the supernatants of WT (striped bars), and of ∆srfAA (filled bars) strains
in the presence of different Ca2+ concentrations. The error bars indicate 95% confidence intervals. Data
was analysed with paired t-test for significantly different samples (* = p < 0.05).

The absence or presence of 1 mM of Ca2+ had no significant impact on the surface tension of
the 2×SG medium. However, when the Ca2+ concentration was gradually increased to 100–500 mM,
the surface tension values of the medium elevated (Figure 5B). The amount of surplus Ca2+ was possibly
high enough to form complexes with most of the surfactin molecules in the medium abolishing their
surface tension reducing properties. When Ca2+ was added to the medium control or the ∆srfAA

supernatant, the surface tension was not altered and stayed similar to the WT supernatant with high
amounts of Ca2+.

4. Discussion

The quantity of ions in the environment influences various cellular pathways in B. subtilis,
including biofilm development [15,40–43]. In our study, we highlighted the role of Ca2+ in maintaining
the integrity and robust structure of biofilm colonies. In commonly used laboratory media that promote
colony biofilm development of B. subtilis, cells attach to the agar surface and produce complex robust
structures within three to four days. The biofilm matrix components such as EPS, TasA, and BslA play
an essential role in colony wrinkleality as well as influence the indentation on the agar surface [44,45].
Interestingly, in the absence of Ca2+, peripheral cells in the complex colonies expand radially after four
days, likely due to nutrient depletion. In the presence of Ca2+, however, the structure is maintained
and colony size barely increases. Here, we demonstrated that extracellular polymeric substances and
surfactants that are essential for expansion by sliding play an important role in the colony expansion.
Mutants that do not produce either surfactin, EPS, the hydrophobin BslA, or the protein component
TasA failed to expand from the matured biofilm colonies in medium with reduced Ca2+ levels, while the
presence or the absence of Ca2+ had no major influence on the structural properties of the developing
biofilm colonies.

Divalent cations, including Ca2+, are known to influence electrostatic interactions and bacterial
attachment processes [46,47]. Ca2+ is also required for poly-γ-glutamate acid production in B. subtilis

natto [48]. The influence of Ca2+ on surfactin has been extensively studied in X-ray diffraction
experiments to demonstrate how the amphiphilic properties of surfactin are reduced during complex
formation [38,49]. Moreover, Ca2+ also captures and localizes the ionized surfactin molecules in the
phospholipid bilayers of the cell membrane. During colony development of B. subtilis, Ca2+-carbonate
present in the agar medium plays an important role during bio-mineralization, establishing scaffold
formation and nutrient channelling in the biofilms [33]. The ability of Ca2+ to establish complexes with
surfactin molecules might explain the lack of colony expansion on an agar medium supplemented with
Ca2+. Surface tension measurements with bacterial supernatant demonstrated that the high surplus of
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Ca2+ could preclude surfactin dependent reduction of the surface tension. Notably, the amount of Ca2+

required for the in vitro inhibition of the surfactin activity was two magnitudes higher than used in
the colony experiments. In addition, reduction of sliding and swarming also requires increased Ca2+

levels compared to the concentration used for colony biofilms. We hypothesize that this conflicting
observation might be resolved by the possibility that the presence of Ca2+ ions impact the freshly
secreted surfactin at the biofilm colony edge, while Ca2+-surfactin complex formation in fluids or
in soft agars with increased diffusion is less stable. Colony expansion observed in our experiments
on highly viscous medium (i.e., with 1.5% agar) might be more sensitive to alteration in surfactin
properties compared to swarming/sliding conditions or liquid medium. Importantly, elevated Ca2+

levels in various media were able to reduce swarming and sliding of B. subtilis. As both swarming and
sliding necessitates the reduction of surface tension by surfactin, these experiments further supported
that interaction of Ca2+ and surfactin has great impact on surface spreading on soft agar medium.

This study adds to our understanding of rugose colony structure development in B. subtilis

and the factors involved in maintaining these structures. The presence of Ca2+ in the medium
not only prevented the expansion of the cells from the colonies but also restricted them in the
nutritionally depleted environment, thus probably indirectly influencing late stationary processes
such as sporulation. The cells in the biofilm colonies were previously described to form white rugose
structures due to sporulation. Thus, Ca2+ has a substantial impact on the fate of colonies and the
differentiation properties of these complex biofilm populations. In addition, our results might have
implications towards surface engineering of various materials related to biofilm formation and bacterial
colonization in general.

Supplementary Materials: The following are available online at www.mdpi.com/2076-2607/5/1/7/s1, Figure S1:
Ca2+ specifically reduces colony expansion, Figure S2: Impact of Ca2+ on pellicle formation and colony spreading
at different nutrient concentrations, Figure S3: Colony expansion of various strains on MSgg and 2×SG medium.
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Abstract

Microbes provide an intriguing system to study social interaction among individuals within a population. The short generation times and relatively
simple genetic modification procedures of microbes facilitate the development of the sociomicrobiology field. To assess the fitness of certain
microbial species, selected strains or their genetically modified derivatives within one population, can be fluorescently labelled and tracked using
microscopy adapted with appropriate fluorescence filters. Expanding colonies of diverse microbial species on agar media can be used to monitor
the spatial distribution of cells producing distinctive fluorescent proteins.

Here, we present a detailed protocol for the use of green- and red-fluorescent protein producing bacterial strains to follow spatial arrangement
during surface colonization, including flagellum-driven community movement (swarming), exopolysaccharide- and hydrophobin-dependent
growth mediated spreading (sliding), and complex colony biofilm formation. Non-domesticated isolates of the Gram-positive bacterium, Bacillus
subtilis can be utilized to scrutinize certain surface spreading traits and their effect on two-dimensional distribution on the agar-solidified medium.
By altering the number of cells used to initiate colony biofilms, the assortment levels can be varied on a continuous scale. Time-lapse fluorescent
microscopy can be used to witness the interaction between different phenotypes and genotypes at a certain assortment level and to determine
the relative success of either.

Video Link

The video component of this article can be found at https://www.jove.com/video/54752/

Introduction

In the last decades, microbes have been recognized as social communities associated with various ecosystems on earth1,2. In contrast to
planktonic cultures used in general laboratory practice, microbes in the environment show a diverse range of spatial community structures
depending on the ecological setting. Simple microbial systems can be utilized to understand the consequence of spatial structures on the
evolution of social interactions3,4. Publications in the last 2-3 years using both eukaryotic and prokaryotic model systems highlighted the impact
of spatial structures on the stability of cooperation within microbial populations5-8. Additionally, obligate interactions among microbes, e.g.
metabolic cross-feeding, might also alter the spatial distribution of interacting partners9-11. The influence of spatial structure in these studies is
mostly examined using surface attached sessile cells inhabiting the so-called biofilms or in colonies growing on the surface of an agar medium.
Genetic drift resulting in high spatial assortment can be observed in microbial colonies where nutrient depletion at the edge of a cell division
mediated expansion results in series of genetic bottlenecks that causes high local fixation probability for certain clonal linages12. Genetic drift can
be therefore employed to examine the role of spatial segregation in microbial colonies.

In the environment, biofilms are multispecies communities surrounded by self-produced polymeric matrix13. Biofilm structure, function and
stability depend on a complex network of social interactions where bacteria exchange signals, matrix components and resources, or compete for
space and nutrients using toxins and antibiotics. Bacillus subtilis is a soil dwelling and root-colonizing bacterium that develops highly organized
biofilm communities14. In analogy to social insects, B. subtilis cells employ a division of labor strategy, developing subpopulations of extracellular
matrix producers and cannibals, motile cells, dormant spores and other cell types15,16. The differentiation process is dynamic and can be altered
by environmental conditions17,18.

Strategies of surface colonization by bacteria can be easily manipulated under laboratory conditions by modifying the agar concentration
in the growth media. At low agar levels (0.2-0.3%), bacteria harboring active flagella are able to swim, while semi-solid agar (0.7-1% agar)
facilitates flagellum driven community spreading, called swarming19-21. In the absence of flagellum, certain bacterial strains are able to move
over semi-solid medium via sliding, i.e. growth dependent population expansion facilitated by exopolysaccharide matrix and other secreted
hydrophobin compounds22-24. Finally, bacteria which are capable of biofilm development form architecturally complex colonies on hard agar
medium (1.2-2%)14,17,25. While these traits are examined in the laboratory by precisely adjusting the conditions, in natural habitats these surface-
spreading strategies might transit gradually from one to another depending on the environmental conditions26. While single cell based motility is
critical during initiation of biofilm development at the air-liquid interface in both Gram-positive and -negative bacteria27, complex colony biofilms
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of B. subtilis are not affected by deletion of flagellar motility28. However, spatial organization during the development of B. subtilis colony biofilms
depends on the density of the bacterial inoculum used to initiate the biofilm8.

Here, we use B. subtilis to show that spatial segregation during surface colonization depends on the mechanism of population level motility (i.e.
swarming or sliding), and colony biofilm development depends on the founder cell density. We present a fluorescent microscopy tool that can
be applied to continuously monitor microbial biofilm growth, surface colonization and assortment at the macro scale. Further, a quantification
method is presented to determine the relative strain abundance in the population.

Protocol

1. Preparation of Culture Media, Semi-solid Agar and Biofilm plates, Pre-cultures

1. Medium Preparation for Swarming and Sliding
1. Dissolve 2 g of Lenox Broth (LB) and 0.7 g of Agar-agar in 100 ml ion-exchanged water and autoclave for 20 min at 120 °C. Use small

volumes (50-200 ml) to improve reproducibility between experiments.
2. Immediately after sterilization, close the cap of the medium bottle to reduce evaporation and place in a 55 °C incubator for at least 2 hr.
3. After the medium temperature has tempered to 55 °C, pour 20 ml agar LB medium into a 90 mm diameter polystyrene Petri dish under

a laboratory sterile hood. For time-lapse experiments, pour 5 ml agar LB medium per 35 mm diameter polystyrene Petri dish.
4. Close the petri dish immediately after pouring, stack no more than 4 plates on top of each other and let the agar medium solidify for at

least 1 hr.

2. 2xSG Medium Preparation for Colony Biofilms
1. Dissolve 1.6 g of Nutrient Broth, 0.2 g of KCl, 0.05 g of MgSO47H2O, and 1.5 g of Agar-agar in 100 ml ion-exchanged water and

autoclave for 20 min at 120 °C. Use small volumes (50-200 ml) to improve reproducibility between experiments.
2. Immediately after sterilization, close the cap of the medium bottle to reduce evaporation and place the bottle in a 55 °C incubator for at

least 2 hr.
3. After the medium temperature has self-adjusted to 55 °C, add 0.1 ml filter sterilized 1M Ca(NO3)2 solution, 0.1 ml filter sterilized 100

mM MnCl2 solution, 0.1 ml filter sterilized 1 mM FeSO4 solution, and 0.5 ml sterile 20% glucose solution.
4. In a laboratory sterile hood, pour 20 ml agar 2x SG medium per 90 mm diameter polystyrene Petri dish. For time-lapse experiments,

pour 5 ml agar LB medium per 35 mm diameter polystyrene Petri dish.
5. Close the petri dish immediately after pouring, stack the plate on top of each other, but not more than 4 plates, and let the agar medium

to solidify for at least 1 hr.

3. Preparation of Starter Cultures
 

NOTE: The B. subtilis 168, NCIB 3610 derivative strains used in the methods described below constitutively produce green- or red-
fluorescence proteins and were described before8,27. Strains are stored routinely in the -80 °C freezer.

1. Inoculate starter cultures from -80 °C stocks in 3 ml LB medium and incubate overnight (16-18 hr) at 37 °C with horizontal shaking (225
rpm). Do not incubate the culture longer than 18 hr as wild isolates of B. subtilis are mostly prone to aggregate and form a biofilm in the
test tube.

2. Co-inoculation of Fluorescently Labelled Bacterial Strains for Surface Spreading

1. Drying of Semi-solid Agar Plates for Swarming and Sliding of B. subtilis.
1. Dry agar plates for swarming and sliding for 20 min prior to inoculation. Dry plates uncovered in a laminar flow hood (see Figure 1).

 

NOTE: Bacterial swarming and sliding depends on the dryness of the semi-solid agar medium. Insufficient drying allows water
accumulation on the agar medium resulting in flagellum-mediated swimming. Prolonged drying time results in lack of swarming.

 

Figure 1: Experimental workflow. The common procedure is depicted in the figure, including preparation of the culturing medium, drying the
plate, inoculation and fluorescence microscopy detection (from left to right). Please click here to view a larger version of this figure.

2. Co-inoculation of Bacterial Cultures for Swarming and Sliding
1. Determine the optical densities of the overnight starter cultures at 600 nm and mix density normalized green- and red-fluorescent

protein producing strains of B. subtilis NCIB 3610 or its Δhag derivative in a 1.5 ml reaction tube. For example, mix 100 μl of strain
1 with (100*[OD600 of overnight culture of strain 1]/[OD600 of overnight culture of strain 2]) μl of strain 2. Mildly vortex (3 sec at max
speed) for homogenous distribution.
 

NOTE: B. subtilis NCIB 3610 strains are inoculated to observe swarming, while their Δhag derivatives are used for sliding.
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2. Spot 2 μl of mixed culture on the middle of a pre-dried plate (see Figure 1) and further dry the plate for 10 min after inoculation.
3. Incubate plates at 37 °C upright to allow excess moisture to condense on the lid and not on the agar surface.

 

NOTE: Incubation time for B. subtilis swarming is typically between 8-16 hr. Generally, the edge of the swarm reaches the side of the
90 mm Petri dish in 8 hr. Sliding is a slower process and requires at least 16 to 42 hr of incubation. After 36 hr, the sliding front reaches
the side of the 90 mm Petri dish.

4. For time-lapse experiments, place the 35 mm diameter Petri dishes in a preheated stage incubation chamber set at 37 °C. Ensure that
the lid of the Petri dish remains removed throughout the duration of the experiment. Set the cover of the stage incubator to 40 °C to
circumvent moisture formation on the top of the incubator.

3. Co-inoculation of Fluorescently Labelled Bacterial Strains with Different Initial Cell
Densities

1. Drying of Agar Plates for Colony Biofilm Formation of B. subtilis.
1. Dry the plates for colony biofilm development without cover in a laminar flow hood for 15 min prior to inoculation.

 

NOTE: Insufficient drying results in increased humidity and swimming or swarming may be possible29. Drying too long results in small
biofilm colonies.

2. Preparation of 10-fold Diluted Starter Cultures for Colony Biofilms
1. Mix 100 μl of green- and red-fluorescent protein producing overnight starter cultures of B. subtilis 168 in a 1.5 ml reaction tube and

mildly vortex for homogenous distribution. Prepare 10-fold dilution series in LB medium.
2. Spot 2 μl of non-diluted or 101, 102, 103, 104 diluted mixed cultures on the plate containing biofilm-inducing medium.

 

NOTE: 6 to 9 biofilm colonies can be initiated on a single 90 mm Petri dish taking into account that the colonies are separated at equal
distance from each other.

3. Incubate plates at 30 °C upright to allow excess moisture to condense on the lid and not on the agar surface.

 

NOTE: The incubation time for B. subtilis biofilm is between 1 to 3 days. Generally, the colony biofilm of B. subtilis reaches its average
size and complex structure in 2 days.

4. For time-lapse experiments, place a single inoculum in the middle of a 35 mm diameter Petri dish and place the dish in a preheated
stage incubation chamber set at 30 °C. Ensure that the top of the Petri dish remains removed throughout the duration of the
experiment. Set the cover of the stage incubator to 35 °C to circumvent moisture formation on the top of the incubator.

4. Fluorescent Microscopy Detection of Labelled Strains

1. Equipment Description for Imaging.
1. To detect surface colonization and fluorescence signal, use a motorized fluorescence stereo zoom microscope (see detailed list in

Materials Table) equipped with a 0.5X PlanApo Objective, two LED Cold-light sources (one for fluorescence detection and one for the
visible light), filter sets for GFP (excitation at 470/40 nm and emission at 525/50 nm) and mRFP (excitation at 572/25 nm and emission
at 629/62 nm), and a high resolution monochrome camera.

2. Perform image acquisition and processing with appropriate software available for the stereo zoom microscope including multichannel
and time-lapse modules. For time lapse experiment, use a standard heating stage incubator mounted to the stereo zoom microscope
with an adapter.

2. Imaging of Swarming and Sliding Expansion
1. Use the lowest magnification to capture the biggest possible area of the 90 mm plate. Set the origin of inoculation (middle of the 90 mm

Petri dish) to the corner of the visible field for monitoring radial bacterial expansion and fluorescence.
2. Adjust optimal exposure time depending on the strength of the fluorescence signal.

 

NOTE: For constitutively expressed fluorescence genes in B. subtilis, green- and red-fluorescence with 1.5 and 3 sec exposure times
can be used, respectively. Additionally, 10 msec exposure time is appropriate for visible light.

3. Use the magnification that allows the detection of the whole biofilm colony and adjust the colony in the middle of the field of view.

 

NOTE: As for swarming and sliding expansions, the optimal exposure times to detect the fluorescence signals in the biofilm colonies depends
on the expression level of the fluorescent protein coding genes. For the representative results below, green- and red-fluorescence was
detected using 1 and 3 sec exposure intervals, respectively.

4. For time-lapse imaging, obtain images at certain intervals using constant exposure times.
5. Save the fluorescence stereomicroscope recorded images in a file format that is recognized by ImageJ software for quantitative data

analysis.

5. Data Analysis

1. To analyze the area occupied by each differently labelled fluorescent strain, open the file of interest in ImageJ software expanded with a
BioVoxxel plugin.

1. When a window called "Bio-Formats Import Options" appears where only the options "Open all series" and "Autoscale" are selected,
open the file by clicking "OK".

 

NOTE: The files are displayed as a stack of three images, one for each channel used to record an image in the microscope (green-,
red-fluorescence and bright-field images).

2. Separate the stack into individual channel images by selecting "Image" - "Stacks" - "Stack to Images" in the ImageJ control panel.
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NOTE: Images appear and are numbered as 1/3 (green channel), 2/3 (red channel) and 3/3 (bright-field). Here, the bright-field image is
excluded from the analysis.

2. To analyze the images, transform each into an 8-bit image by selecting "Image" - "Type" - "8-bit".
3. To determine the occupied area in pixel2, reset the scale of the images using "Analyze" - "Set Scale". When a window pops up with different

scale options, reset the scale by selecting "Click to Remove Scale". Check the option "Global" to remove the scale for all open images.
4. To remove the background, draw an oval area (region of interest, ROI) outside the fluorescent area using the "Oval" tool in the ImageJ control

panel.
1. To ensure that the size of the background oval is the same for all analyzed images, add it to the ROI manager via the [t] character of

the keyboard. A ROI Manager window comes up where the background oval ROI can be saved via "More" - "Save" options.
2. If the background oval ROI is visible on the image, measure the intensity of the area by choosing "Analyze" - "Measure".

 

NOTE: A results window appears where amongst others the mean fluorescence intensity is displayed in the column labelled "Mean".
3. Subtract the value of the mean background fluorescence intensity from the image by unselecting the background oval ROI, clicking

"Process" - "Math" - "Subtract" and inserting the measured value.

5. Apply a threshold to the image via the "Image" - "Adjust" - "Threshold" option. Select the method Otsu and black & white (B&W). Check the
"Dark background" option and employ the threshold by clicking "Apply".
 

NOTE: The image changes to a binary image where the area above the threshold is shown in white and that below the threshold is shown in
black.

6. Select everything above the threshold via the "Analyze" - "Analyze Particles" option. In the window with the settings, keep the default options
and keep the "Display results" and "Summarize" options checked. Click "OK" to display the summary in the results window and the display
the occupied area in the column labelled "Total Area".

Representative Results

Laboratory systems of bacterial populations provide an appealing approach to explore ecological or evolutionary questions. Here, three surface
colonization modes of B. subtilis were used to examine the appearance of population assortment, i.e. the segregation of genetically identical,
but fluorescently different labelled strains. Swarming, which is a flagellum dependent collective surface movement of B. subtilis, results in a
highly mixed population. In these swarming colonies, the green- and red-fluorescent bacteria colonized areas were overlapping (see Figure 2A).
The rapid surface colonization can be followed in time (Video Figure 1). During swarming of B subtilis, a thin layer of cells expands from the
inoculation center after a few hours of incubation (see Figure 2B).

 

Figure 2: Swarming expansion of B. subtilis. The swarming colony contains green- and red-fluorescent strains that were mixed 1:1 before
inoculation. (A) After 15 hr, the green- and red-fluorescence (GFP and RFP, respectively) were detected with appropriate fluorescence filters. (B)
Images of thin layer of swarming B. subtilis are shown at selected time points extracted from Video Figure 1. Scale bar = 5 mm. Please click here
to view a larger version of this figure.
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However, when B. subtilis strains, that are lacking functional flagella but are able to spread with the help of produced exopolysaccharide,
hydrophobin and surfactin, were spotted on semi-solid agar medium, the differently labelled strains were separated in certain defined sectors
(see Figure 3A). The development of the sliding colony can be recorded in time (see Figure 3B or Video Figure 2).

 

Figure 3: Sliding colony of B. subtilis. The colony contains green- and red-fluorescent strains that were mixed 1:1 before inoculation. (A) After
24 hr, the green- and red-fluorescence (GFP and RFP, respectively) were detected with appropriate fluorescence filters. (B) Images of the B.
subtilis sliding disk are shown at selected time points extracted from Video Figure 2. Scale bar = 5 mm. Please click here to view a larger version
of this figure.

While the assortment levels of swarming and sliding expanding colonies could not be modified, the spatial segregation of differently labelled
fluorescent strains in the colony biofilm could be influenced by the starting cell densities. When a colony biofilm of B. subtilis was initiated with
high cell density of the mixed populations, the green- and red-fluorescent strains showed minor or no spatial assortment (see Figure 4). On
the contrary, when the cell density to initiate the biolfilm was low, clear green- and red-fluorescence sectors could be detected by fluorescence
microscopy. The assortment level was clearly dependent on the dilution level of the biofilm initiating population. Video Figure 3 and 4 present
the colony expansion for the lowest and highest dilution of the inoculated strains.
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Figure 4: Assortment level in colony biofilms of B. subtilis at various initial cell densities. The colony biofilms of green- and red-
fluorescence strains are shown after 2 days that were inoculated with different initial cell densities (from above to below: non-diluted to 105 times
diluted initiating cultures, respectively). Scale bar = 5 mm. Please click here to view a larger version of this figure.

The ratio of green- and red-fluorescent strains can be further quantified using ImageJ software that allows the quantitative characterization of
population structure and competiveness of the strains used for the experiments.

 

Video Figure 1: Time lapse images of swarming B. subtilis initiated with 1:1 mix of green- and red-fluorescent strains. (Right click to
download.) The video shows a time course of 10 hr. Scale bar = 7 mm.

 

Video Figure 2: Time lapse images of sliding B. subtilis initiated with 1:1 mix of green- and red-fluorescent strains. (Right click to
download.) The video shows a time course of 24 hr. Scale bar = 5 mm.
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Video Figure 3: Time lapse images of B. subtilis colony biofilms initiated with 1:1 mix of green- and red-fluorescent strains at high cell
densities. (Right click to download.) The video shows a time course of 48 hr. Scale bar = 5 mm.

 

Video Figure 4: Time lapse images of B. subtilis colony biofilms initiated with 1:1 mix of green- and red-fluorescent strains at low cell
densities.  (Right click to download.) The video shows a time course of 48 hr. Scale bar = 5 mm.

Discussion

The availability of a fluorescent toolbox for bacteria facilitates not only the study of heterogeneous gene expression30,31 and protein localization32,
but also the analysis of spatial distribution of strains within a population8. Fluorescent markers with sufficiently different excitation and emission
wavelengths allow to distinctly localize two strains that otherwise are indistinguishable from each other when mixed. The described protocol can
be employed for observing the population dynamics in mixed cultures, e.g. competition experiments or synergism between strains or species.
The ability to determine the relative abundances of fluorescently labelled strains in a mixed population is not restricted to surface attached
swarming, sliding, or biofilm colonies, but can also be used for other multicellular biofilm systems, including submerged, flow cell or air-medium
interface biofilms27,33-35.

While the presented technique is a powerful tool to detect spatial distribution of strains and design competition experiments, it also allows
following gene expression heterogeneity in expanding colonies. The culturing conditions described here apply for B. subtilis and the exact
parameters for expansion on agar media might require optimization for other species or strains20. Placing the samples in an incubation chamber
while imaging permits the experimenter to follow the population dynamics in time, although attention should be given to the humidity level within
the chamber during the incubation.

The techniques described here also require the genetic modification of the examined bacterial strains so that the strains express fluorescent
markers which can be distinguished from each other. Moreover, besides having distinct excitation and emission spectra, it is recommended
that the two chosen fluorescent markers have similar quantum yields (i.e. ratio of absorbed photons that are emitted) and are expressed in
a comparable level. In addition, relative intensity changes in time can be measured and normalized to an early time-point of an experiment.
The relative increase or decrease can be then compared between different fluorophores with different quantum efficiencies. For the presented
experimental system, different green- and red-fluorescent proteins were tested previously36,37 to select for the most optimal fluorescent pairs
that can be detected in B. subtilis. The optimal exposure time should be determined for each fluorescent protein and sample. Certain cell
densities or multiple layers of cells might be required to detect the signal efficiently within the population. Certain fluorescent proteins might have
low intensities in the bacterial cells due to inefficient expression and/or translation of the protein and thus low quantum yield. Such inefficient
fluorescent markers could reduce the sensitivity of the system and extend the time needed to detect the bacterial strains possibly resulting
in cytotoxicity by the excitation light. The fluorescent intensities can be accordingly modified by altering the promoter used to express the
fluorescent reporter coding gene. An expression level that is too high could result in unnecessary overproduction of the fluorescent protein
leading to detrimental fitness costs for the bacterium. When performing competition experiments, one should consider the cost of particular
fluorescent protein production in the cells. Control experiments, where the fluorescent markers are swapped between competed strains or
where two isogenic strains differing only in their fluorescent markers are competed against each other, are always required to determine any
bias toward one marker. The lifetimes of the fluorescent proteins within the cells might also affect the measured intensity. In addition, the
autofluorescence of certain bacterial species might require the use of different fluorescent markers other than described here.

To precisely determine the spatial distributions and abundances of the distinct bacterial strains, the background signal originating from the
first fluorescent protein while using the fluorescence filter for the second fluorescent marker and vice versa should be individually tested on
monoculture samples (containing bacteria producing only one marker). This allows the subtraction of overlapping fluorescent signal intensities.
Importantly, as the stereomicroscope records the fluorescence signal from above the expanding colony, the presented protocol is convenient to
determine the spatial arrangement in two dimensions. The architecture of the expanding bacterial population could result in varying fluorescence
levels (i.e. wrinkle-like structures might contain more cells displaying higher local fluorescence intensities). Therefore, the described analysis
of the images determines the spatial distribution, but not the abundance of the strains within a certain location. Previous protocols described
the sample preparation for swarming20 or fluorescence imaging of population dynamics in bacterial colonies38, but our protocol combines these
techniques. Other microscopy techniques that permit the observation of three dimensional resolution of the population structure (e.g. confocal
laser scanning microscopy39,40 or structured illumination microscopy41) can be applied for samples with increased structural complexities. These
additional techniques also support single cell based detection of the strains31 that is not available using stereomicroscopes.
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Abstract 

Sliding is a collective and cooperative type of motility where cells passively move over semi-

solid surfaces powered by the force of cell division. In addition, sliding is usually promoted by 

a surfactant, extracellular polysaccharides or other secreted sliding facilitating compounds. 

Such secreted molecules are often assumed to be public goods since alongside the 

producer they should be available to the majority of cells in a population. Sliding of the 

Gram-positive model bacterium Bacillus subtilis is promoted by secretion of three potentially 

shareable goods: in addition to the surfactant surfactin, the bacterial hydrophobin protein 

BslA and exopolysaccharides (EPS) are required for sliding. Here, we investigated the 

cooperation promoting properties of these sliding facilitating goods, that is their shareability. 

Further, we analyzed the social interactions between producer and non-producer strains or 

among two non-producers of surfactin, BslA and EPS. We found that only surfactin is 

genuinely public whereas BslA and EPS are privatized to a certain extent i.e. shared less 

with neighboring cells. Therefore, surfactin production can be exploited by non-producers 

whereas BslA and EPS production is mostly protected from exploitation. The experimentally 

obtained results were confirmed by a simple mathematical model that examined the impact 

of diffusion properties of sliding facilitating compounds.  
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Introduction 

In the field of sociomicrobiology, one of the major research interests is the development and 

maintenance of cooperative behaviors. Cooperation in bacteria can be achieved for example 

by the production of commonly available resources, so called public goods, by different 

species or differentiated cell types of the same species, to reach a common goal (Tarnita, 

2017). Therefore, this kind of cooperation is often associated with division of labor. The 

common goal could be the formation of a biofilm (van Gestel et al., 2014, Brockhurst et al., 

2010), migration (van Gestel et al., 2015), access to nutrients (Griffin et al., 2004; Drescher 

et al., 2014) or dispersal (Velicer and Vos, 2009). However, an important problem arises 

while studying cooperation: If the cooperative behavior is costly to maintain and benefitting 

an interaction partner, it can in theory be exploited by cells that are not contributing to pay 

the cost but receiving the benefit. Therefore, it is a puzzling question, why we observe 

cooperative behaviors and how they are protected from exploitation by non-cooperators. 

This problem can be solved if, in one way or another, the benefit of the public good is 

predominantly directed towards the cooperators. Possible solutions for the maintenance of 

cooperation include limited diffusion or slow degradation of the public good (Allen et al., 

2013), kin discrimination (Stefanic et al., 2015; Lyons and Kolter, 2017), or spatial structuring 

and, thus, spatial separation of cooperators and cheaters (Momeni et al., 2013; Kovács, 

2014).  

Research has revealed cases of both exploitation and stability of the cooperative behavior in 

the presence on non-cooperative cells. For example, Drescher et al. (2014) showed that the 

public good chitinase (secreted chitin degrading enzyme) produced by Vibrio cholerae is 

exploitable by cheaters but certain population-level properties, e.g. the formation of a thick 

biofilm can prevent exploitation by limiting the diffusion of secreted enzymes from the 

producer and therefore the cheaters’ access to the public good. In another study, a 

population of yeast (Saccharomyces cerevisiae) cooperatively degrading sucrose with the 

enzyme invertase was found to be susceptible to invasion by “cheaters” that do not produce 

invertase (Gore et al., 2009). However, also the wildtype was able to invade “cheater” 

populations leading to coexistence of the two strains. Additionally, the wild type was shown 

to withhold a small part of the monosaccharides produced by the invertase, possibly 

providing enough benefit for the wildtype to maintain the cooperative behavior (Gore et al., 

2009).  

Here, we investigated the cooperative traits of shareable goods in social populations of the 

Gram-positive model organism Bacillus subtilis. Cooperative communities of B. subtilis that 

have been investigated in detail mostly comprise different forms of biofilms or swarming 

cells. Another type of cooperative movement is the so called sliding motility. Sliding is a 
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passive bacterial motility form that facilitates movement of populations of cells across semi-

solid surfaces powered by the pushing force of cell division (Henrichsen, 1972; Hölscher and 

Kovács, 2017). In general, sliding requires additional components but the nature of those 

varies between different bacterial species (Hölscher and Kovács, 2017). In this study, we 

investigate sliding of B. subtilis that is not only dependent on growth but also requires self-

produced and excreted exopolysaccharides (EPS), the bacterial hydrophobin protein BslA 

and the lipopeptide surfactant surfactin (Kinsinger et al., 2003, Grau et al., 2015). The 

exopolysaccharides are believed to aid the movement of the cells by swelling via hydration 

causing an osmotic pressure similar to biofilm formation (Seminara et al., 2012). As a 

surfactant, surfactin lowers the surface tension of water and thereby alleviates the 

movement of the cells across the surface. Through its hydrophobic properties, BslA is 

assumed to have a similar effect. Since these three compounds are excreted in the 

environment and are in theory available to all cells in the surrounding area, they can qualify 

as public goods. 

It was previously demonstrated by van Gestel et al. (2015) that division of labor between 

matrix-producers and surfactin producers shapes the sliding colony structure of B. subtilis, 

albeit under conditions promoting the dendritic sliding form (van Gestel et al., 2015; see also 

Hölscher and Kovács, 2017). Now, we investigated the possible public good and sharing 

properties of the sliding facilitating goods EPS, BslA and surfactin during continuous sliding 

of B. subtilis. 

We present how population dynamics of a wild-type strain was modulated in the presence of 

a non-producer lacking one of the secreted components in addition to examining the 

interaction of two non-producers, and determine the success of each strain during surface 

colonization. We reveal the limited sharing properties of EPS and BslA, and show that 

surfactin qualifies as a genuine public good as it is freely available and costly to produce 

under sliding promoting conditions. Additionally, surfactin but not BslA or EPS was 

exploitable by non-producers. 
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Results 

Assortment during sliding 

Strains of B. subtilis lacking a functional flagellum are able to colonize an agar surface by 

expansion of the sliding disk. All strains used in this study lacked single cell motility (Δhag) to 

eliminate the influence of swarming motility. Therefore, “wild type” refers to a strain harboring 

only Δhag without additional mutations. Unlike swarming, the sliding expansion of B. subtilis 

shows a noticeable spatial segregation independently from the founder cell density 

(Hölscher et al., 2016), however, the expanding front is uniform for both spreading types.  

To assess the progress of wild-type sliding in the presence of non-producers and their 

influence on sliding colony structure, we mixed green and red fluorescently labeled strains of 

wild-type and non-producer strains lacking EPS, BslA or surfactin in a 1:1 ratio and let them 

expand for 24 h on semi-solid medium (see Experimental Procedures). Similarly, different 

non-producers were mixed with each other and the structure of the sliding colony was 

evaluated. Results are presented for green fluorescent strain 1 versus red fluorescent strain 

2. As control, the same mixtures with swapped fluorescence markers were investigated and 

similar results were obtained (see Supplemental material, Fig S1). 

Usually, after a certain lag-phase, the expansion of a wildtype sliding colony was continuous 

and the diameter of the colony reached around 3 cm after 24 h (Fig. 1; see also Hölscher et 

al., 2016). As EPS, BslA and surfactin are crucial for sliding motility of B. subtilis, mutants 

lacking either one of these goods were not able to expand much beyond the inoculation 

point (Fig. 1). In the structure of the wild-type colony, a high degree of assortment was 

evident, visualized by fluorescence labeling. The two wildtype strains formed mostly evenly 

distributed sectors growing out from the middle of the colony which is caused by the passive 

nature of sliding (Fig. 2A; see also Hölscher et al., 2016).  
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Figure 1. Competition of sliding good producers and non-producers affects sliding expansion. Diameter of sliding 
colonies were recorded after incubation on semi-solid medium at 37°C for 24 h. For competition assays, 
fluorescently labeled wildtype (WT) and EPS, BslA and surfactin non-producers (Δeps, ΔbslA, ΔsrfAA 
respectively) were mixed at 1:1 initial ratio (G – green fluorescent strain, R – red fluorescent strain). Asterisks 
indicate significant differences; error bars indicate the standard deviation. 

 

Diminished expansion of EPS and BslA non-producers 

When combined with EPS or BslA non-producers, the expansion of the mixed population 

was similar to the colonies of wild type only samples (Fig. 1). In contrast, the expansion of 

the wild type and surfactin non-producer mix after 24 h was significantly higher than the 

wildtype expansion (Fig. 1, unpaired two-sample t-test with Welch Correction: P = 0.043, n = 

5). In addition, the expansion of the mix of EPS and BslA non-producers was also 

significantly different and considerably reduced in comparison to the wild type (Fig. 1 

unpaired two-sample t-test with Welch Correction: P = 0.007, n = 5). The mixtures of the 

surfactin non-producer with both EPS and BslA non-producer showed comparable 

expansion to the wild type (Fig. 1). These results indicated that the BslA and EPS non-

producers could not be fully complemented by another strain producing the respective good. 

The opposite seemed to be valid for surfactin: here, no reduction in expansion of the sliding 

colony could be observed, suggesting that the surfactin non-producer was able to utilize the 

surfactin produced by the partner strain in the mixture. 

The spatial structure of the sliding colony was qualitatively evaluated using fluorescence 

stereomicroscopy (Fig. 2A). Interestingly, the consistent sector-assortment observed for wild 

type only samples was absent for all other strain mixtures. EPS and BslA non-producers 

were located mostly in the center of the sliding colony, albeit the BslA non-producer reached 
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the rim in few places. Thus, both strains seemed to lack the ability to expand properly even 

though the respective good they cannot produce, was provided by the wild type. This was 

important for their success as the location at the rim of the sliding colony can be considered 

as the preferable environment since the cells there have access to new nutrients.  

When mixed with the surfactin non-producer, the wildtype seemed to have a disadvantage 

since it was underrepresented in the sliding colony (Fig. 2A). Likewise, in a mixture with the 

BslA and EPS non-producer, the surfactin non-producer seemed to be the dominant strain 

(Fig. 2A). Notably, the EPS non-producer was not confined to the center of the sliding colony 

like in the wild type + eps mixture, although it occupied less space than the surfactin non-

producer (see below). The structure of the sliding colony of the EPS and BslA non-producers 

was most striking: Besides the above described reduced size, the colonies often had an 

undulate rim with mainly the BslA non-producer occupying the indentation (Fig. 2A). A 

similar pattern could be observed for the other mixtures with the BslA non-producer, 

although not as pronounced.  
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Figure 2. Structure and success of individual strains in competition assay sliding colonies. (A) Overlay of green 
and red fluorescent images from representative sliding colonies of competition assay from Figure 1, with 1:1 
initial ratio. Green text indicates a green fluorescent strain; red text indicates a red fluorescent strain. The scale is 
equal for all images and the scale bar represents 5 mm. (B) Ratio of occupied area of strain 1 versus strain 2 (in 
pixel2) of the sliding colonies from (A) obtained by quantitative image analysis using ImageJ. G indicates a green 
fluorescent strain; R indicates a red fluorescent strain. Asterisks indicate significant differences to 1, error bars 
indicate the standard deviation. 

 

Surfactin production is exploitable 

To additionally estimate the success of each strain in the sliding colony in a quantitative 

manner, we determined the area each strain occupies using the different fluorescence labels 

(see Experimental Procedures). By calculating the ratio of the two strains’ areas we could 

assess whether one strain had an advantage over the other. When analyzing the ratio of 

mixed wild-type strains with different fluorescence markers as a control, the ratio was around 

1 as is expected (Fig. 2B, one-sample t-test, test mean = 1: P = 0.34, n = 5). However, as 

the fluorescence image already suggested, in the mixture of wildtype and EPS non-

producer, the wildtype clearly dominated in the sliding colony with a wild type to eps ratio of 
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around 6 (Fig. 2B, one-sample t-test, test mean = 1: P = 2∙10-.5, n = 5). The wild type had a 

similar advantage over the BslA non-producer with a ratio of ca. 1.9, although the difference 

here was not as distinct (Fig. 2B, one-sample t-test, test mean = 1: P = 0.01, n = 5). These 

results suggested that BslA and especially EPS could only be shared partially so that 

insufficient good was available for the respective mutant to achieve a wild-type level of 

sliding. The area ratios of all mixtures containing the surfactin non-producer were below one, 

indicating that the surfactin mutant dominated each sliding colony (Fig. 2B, one-sample t-

test, test mean = 1: P < 0.05, n = 5). This indicated a possible exploitation of surfactin 

production of the respective other strain by the surfactin non-producer.  

 

To test the impact of an initial advantage of one strain, we investigated different starting 

ratios and the resulting structure of the sliding colony as well as each strain’s success. Each 

combination of wild type and non-producers was tested with an initial ratio of 1:10 or 10:1. 

The resulting ratios of the area occupied by each strain in the sliding colony are depicted in 

Figure 3. In general, the same trends could be observed as in the assay with 1:1 initial ratio. 

As expected, the value of the wild type control mix ratio was below one for the 1:10 and 

above one for the 10:1 assay, however the advantage of the more abundant strain in the 

sliding colony was not linear. In the mixture of wild type and EPS non-producer, the 

established final ratio was scarcely affected by an initial higher abundance of cells of one 

strain, but the wildtype was always dominating the colony (Fig. 3A, B). The same was true 

for the mixture of EPS and BslA non-producer: the latter seemed to always have an 

advantage during sliding. Interestingly, when incubated together with a ten times higher 

number of surfactin non-producers, the resulting ratio of the occupied area was only slightly 

lower than 1 and just on the border of significant difference (Fig. 3A, one-sample t-test, test 

mean = 1: P = 0.048, n = 5). In the fluorescence image of the sliding colony, the surfactin 

non-producer seemed to be dominating, but a thin layer of EPS non-producer was spread 

almost over the complete area of the sliding colony (see Supplemental material, Fig. S2). 

This effect could be caused by the low amount of EPS non-producer strain and the therefore 

diminished abundance of surfactin. In the case of the reversed initial ratio, the EPS non-

producer continued to be outcompeted by the surfactin non-producer even if initiated at a 

high relative frequency in the inoculum (Fig. 3B). In the case of the BslA non-producer, an 

initial high abundance had more impact on the final sliding colony structure: with a final area 

ratio of one, it was not outcompeted any more by the wildtype (Fig. 3A, one-sample t-test, 

test mean = 1: P = 0.65, n = 5). However, its high abundance was clearly restricting the wild 

type since the sliding colony was smaller and exhibited an undulate rim indicating an overall 

decrease in sliding (see Supplemental material, Fig. S2). Similarly, in the competition of BslA 

and surfactin non-producers, the presence of high amounts of BslA non-producer was 
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accompanied with a ratio of around 1 and thus a decreased advantage of the surfactin non-

producer compared to the 1:1 assay (Fig. 3B, one-sample t-test, test mean = 1: P = 0.47, n = 

5; Fig. 2). We suggest that the high abundance of the BslA non-producer dampened the 

expansion of the surfactin non-producer, since the sliding colony structure showed sliding 

expansion only in distinct positions where the surfactin non-producer reached the colony rim 

and was able to diverge from the BslA non-producer abundant sections (see Supplemental 

material, Fig. S2). 

 
Figure 3. Sliding competition with initial advantage of one strain. Ratio of occupied area of strain 1 versus strain 
2 (in pixel2) of sliding colonies from competition assays with 1:10 (A) or 10:1 (B) initial ratio obtained by 
quantitative image analysis using ImageJ. Strains were incubated on semi-solid medium at 37°C for 24 h. G 
indicates a green fluorescent strain; R indicates a red fluorescent strain. Asterisks indicate significant differences 
to 1, error bars indicate the standard deviation. 

 

174



 

Privatization hypothesis 

The above described results indicated that the availability of the investigated goods to their 

neighbors was different for each one of them. Based on the experimental results we 

hypothesized that the privatization level for EPS was the highest (Fig. 4), since the EPS non-

producer seemed to be able to exploit only a small amount of EPS provided by another 

strain and was therefore not able to slide efficiently (see above). The sliding assay results 

suggested that BslA was also privatized partially but less than EPS (Fig. 4). The BslA non-

producer could expand partly along with a producer strain at distinct sectors, yet expansion 

of this strain was restricted. In contrast, surfactin seemed freely available to the surrounding 

cells and was not privatized (Fig. 4). 

 
Figure 4. Privatization hypothesis. Schematic hypothesis based on the high privatization (black color) of BslA 
and especially EPS and high sharing (white color) of surfactin during sliding in consort with the obtained results. 

 

Cost of sliding goods 

Since public good production is usually accompanied by an energetic cost, we tested 

whether the three sliding facilitating goods are costly under sliding promoting conditions. 

Therefore, we created strains with an IPTG-inducible promoter in front of the gene or operon 

encoding the respective good (see Experimental Procedures). This step was necessary 

since the spatial structure of the sliding colony makes a direct cost determination impossible 

and mixed liquid cultures had to be employed. Using the inducible sliding gene constructs, 

we could mimic the level of the good production to be comparable with wild-type sliding. The 

strains were incubated under sliding promoting conditions with different IPTG concentrations 

and the expansion of the sliding colony was used as a measure to determine the induction 

necessary to reach wild-type level (see Supplemental material, Fig. S3). To determine the 

cost of good production, a mutant strain was competed against the respective inducible 

strain in medium with and without supplemented IPTG and the relative fitness of the 

inducible strain towards the mutant was calculated from the initial and final cfu. Figure 5 

shows the relative fitness for each good production. Conspicuously, only surfactin production 

caused attenuation of the relative fitness, where the synthetic surfactin producer with 

supplemented IPTG, i.e. surfactin production similar to the wildtype, showed a significant 

difference to 1, indicating an energetic cost for surfactin production under these conditions 

(Fig. 5, one-sample t-test, test mean = 1: P = 6.9∙10-4, n = 6). This also means that EPS and 
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BslA did not have a measurable production cost in the medium used for sliding promoting 

conditions. 

 
Figure 5. Surfactin is costly to produce under sliding promoting conditions. Relative fitness calculated from initial 
and final cfu of competitions between a good non-producer against the respective IPTG-inducible strain. The 
competition was conducted in IPTG containing medium (+IPTG) and as control in medium lacking IPTG (-IPTG). 
The box indicates the 25th-75th percentile; the line in the boxes represents the median. The dashed line indicates 
a relative fitness of 1. The asterisk indicates a significant difference to 1. 

 

Complementation with externally supplied goods reflects privatization hypothesis 

Based on our privatization hypothesis we wondered if sliding of the good non-producers can 

be complemented or if the privatization of some goods prevents successful sliding with 

externally supplied goods. Therefore, we isolated the goods in different forms or used the 

commercially available form in case of surfactin. We isolated EPS from biofilms of the 

wildtype and tasA mutant (encoding the main protein component of the B. subtilis matrix) as 

well as from the eps mutant as control. These were spotted prior to the culture on sliding 

plates and sliding was evaluated after 24 h (see Experimental procedures). As shown in 

Figure 6A, supplementation of EPS could not restore sliding of the EPS non-producer since 

there was no significant difference between the EPS non-producer with and without supplied 

EPS (unpaired two-sample t-test with Welch Correction: P > 0.05, n = 6). The quality of the 

purified EPS was tested in complementation experiments, where pellicle biofilm formation of  

the eps strain was restored by the purified EPS (Fig. S4). For BslA, we used the 

supernatant of an Escherichia coli strain harbouring the BslA overproduction plasmid in 

addition to the supernatant of a strain lacking the bslA overexpressing plasmid as a control 

(see Experimental procedures). The non-diluted BslA containing supernatant was able to 

increase sliding of the BslA non-producer significantly in comparison to the mutant alone 

(Fig. 6B, unpaired two-sample t-test with Welch Correction: P = 1.2∙10-6, n = 6) or the control 
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(Fig. 6B, unpaired two-sample t-test with Welch Correction: P = 9.4∙10-7, n = 6), but 

incomparable to wild-type level (Fig. 6B, unpaired two-sample t-test with Welch Correction: P 

= 7.6∙10-8, n = 6). This effect ceased using ten times diluted BslA containing supernatant 

(unpaired two-sample t-test with Welch Correction: P = 0.21, n = 6). Again, the 

overexpressed BslA was shown to restore genuine biofilm formation and hydrophobicity of 

biofilms when added to the bslA mutant strain (Fig. S5). Surfactin was also supplied in 

different concentrations and since it was dissolved in methanol, this solvent was used as 

control. With a low surfactin concentration of 0.01 mg/ml, sliding was not increased 

compared to the surfactin non-producer or the methanol control (Fig. 6C, unpaired two-

sample t-test with Welch Correction: P = 0.2, n = 6). However higher surfactin concentrations 

resulted in increased sliding similar to the wildtype (1 mg/ml, unpaired two-sample t-test with 

Welch Correction: P = 0.049, n = 6) and in surprisingly fast sliding surpassing even the 

wildtype (10 mg/ml, unpaired two-sample t-test with Welch Correction: P = 6∙10-5, n = 6). 

These results reflected very well the results from the competition assays and the derived 

privatization hypothesis since the supposedly well shared surfactin could complement a 

surfactin non-producer. In contrast, the less shared BslA can only partially complement a 

non-producer, whereas the EPS non-producer could not be complemented with externally 

supplied EPS at all since it was supposedly privatized.  
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Figure 6. Complementation of non-producer sliding with supplied goods. Diameter of EPS (A), BslA (B) and 
surfactin (C) non-producers (Δeps, ΔbslA, ΔsrfAA respectively) incubated under sliding promoting conditions with 
supplied goods or a control substance as well as wildtype controls for 24 h. For EPS non-producer 
complementation (A), EPS isolated from wildtype, tasA mutant or eps mutant biofilms was used. For BslA non-
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producer complementation (B), BslA containing supernatant from an E. coli strain harboring a BslA production 
plasmid was used (+BslA); supernatant from an E. coli strain without the plasmid served as control (+BL21). For 
surfactin non-producer complementation (C), commercially available surfactin was used in different 
concentrations (0.01, 0.1, 1, and 10 mg/ml) dissolved in methanol, which was used as control (+MeOH). 
Asterisks indicate significant differences; error bars indicate the standard deviation. 

 

Model 

To obtain a better understanding of the competition assays between the different strains, we 

constructed a simple agent-based model that approximates colony growth as seen in the 

experiments. Although our model incorporates some of the growth parameters obtained from 

the experiments, and estimates others based on existing literature, the primary goal of the 

model was not to accurately represent the biophysical processes underlying colony growth. 

Rather, we intended to use this model to improve our intuition of what happens in the 

laboratory experiments. Thus, like in the experiments, we modeled colony growth in which 

two strains are mixed. These strains competed, while the colony growed, thereby changing 

their relative abundance and spatial configuration. 

The colonies resulting from the model are shown in Fig 7. It was evident that their structure 

closely resembled the structure of the experimental colonies (inset of Fig 7), although the 

EPS non-producer reached the edge of the sliding colony in few places in the model. Also, 

the success of each strain in the mixture was similar to the experimental data, with the wild 

type clearly dominating over the EPS non-producer and the surfactin non-producer having 

an advantage over the wild type as well as the EPS non-producer (Fig. 7). In total, our 

hypothesis of a different privatization extent of the goods based on the experimental results 

was confirmed by the outcome of a simple model that altered the shareability of secreted 

goods. 

 
Figure 7. Model of sliding colony structure resulting from competition assays. Outcome of an agent-based model 
of competitions between fluorescently labelled wildtype strains (WT vs. WT), wildtype and EPS non-producer 
(WT vs. Δeps) as well as wildtype and surfactin non-producer (WT vs. ΔsrfAA). The inset shows a representative 
image of experimentally obtained results of the same competitions. For model description and parameters see 
Experimental procedures and Supplemental material. 
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Discussion 

Cooperative interactions such as public good mediated cooperation can have a crucial 

influence on the ecology of microbial communities and collective behaviors like sliding. Here, 

we highlighted how the presence of cells not contributing to the cooperative behavior can 

influence the structure of a simple microbial population. The striking differences observed in 

a population consisting of only one species suggest that in more complex communities a 

vast amount of interactions is possible and the influence of non-cooperative subgroups or 

the dynamics of cooperative behaviors and therefore the community structure might be hard 

to analyze.  

Additionally, we find that although secreted in the environment, not all shareable goods can 

be qualified as truly “public”. In this case, although EPS and BslA have been shown to be 

present outside of the cell (Branda et al., 2006; Kobayashi and Iwano, 2012), during sliding 

these can be shared only to a limited extent with other cells in the population. This is 

interesting since especially EPS was already shown to be shared with non-producers during 

biofilm formation and mutants lacking either EPS or the protein components of the B. subtilis 

biofilm matrix were demonstrated to complement each other (Branda et al., 2006, Martin et 

al., 2017). However, the environmental differences of the two processes, biofilm formation 

and sliding motility have to be considered as well when comparing the sharing properties of 

EPS. The sharing properties of EPS were demonstrated in pellicles, i.e. biofilms at the air-

liquid interface whereas sliding is analyzed on semi-solid medium. The restriction and almost 

two-dimensional scale of the sliding environment might therefore result in different diffusion 

properties of EPS, reducing its availability for other cells. A limited diffusion of EPS would 

also explain the consensus of experiments and model where the diffusion of EPS was also 

assumed lower compared to surfactin (see Supplemental material). Moreover, we cannot 

exclude the possibility of additional components present during sliding, but not biofilm 

formation, possibly anchoring the EPS to the producer cell. For example, the secreted matrix 

protein RbmA of Vibrio cholerae links cells to each other and to the matrix polysaccharides 

(Nadell et al., 2015). It was also shown for the Pseudomonas aeruginosa Psl 

exopolysaccharide that it is anchored to the cell in early stages of biofilm formation (Ma et 

al., 2009) that might also be a possible privatization mechanism for EPS during sliding. This 

demonstrates that the availability of a substance and therefore qualification as public good 

can vary depending on the environmental conditions or the developmental stage of the 

producer. 

In contrast, we demonstrated that surfactin is publicly available and shared with other cells in 

the population, so that it is exploitable by non-producers. The latter have the advantage of 

not paying the production costs for surfactin that is therefore available for metabolism and 

growth. This could also explain an increased sliding observed in the competition experiment 
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of wild type and surfactin non-producer: after the quorum sensing controlled surfactin 

production starts in the wild type cells, the non-producer can simply out-grow the wildtype 

and utilize the secreted surfactin for sliding causing the observed dominance of the non-

producer in the sliding colony.  

The exploitation of the surfactin producers by the non-producer is also interesting with 

regard to the trend of enhanced sliding performance. Recent research has revealed that the 

presence of so called “cheaters” can be accompanied with an advantage for the whole 

population: For example, MacLean et al. (2010) demonstrated a maximized fitness of 

structured yeast populations consisting of cooperators and “cheaters” under certain 

conditions. Therefore, one might argue that the presence of non-producers in a sliding 

colony could be beneficial if it leads to enhanced sliding, i.e. faster access to new nutrient 

sources, especially since the wild type has to be present to allow sliding. However, additional 

investigations about long-term population dynamics of surfactin producers and non-

producers might reveal if such a mixed population is stable or collapses when the non-

producer becomes too dominant. 

The amount of surfactin produced by B. subtilis ranges from ca 0.1 mg/ml to ca. 6 mg/ml 

depending on the strain and culturing conditions (Arima et al., 1968, Chen et al., 2015). 

Therefore, the amount of externally supplied surfactin necessary to complement sliding to 

wild-type level is with ca. 1 mg/ml in the naturally possible production range. Interestingly, 

faster sliding than observed in the wild type is possible with higher amounts of surfactin as 

shown by the complementation assay. Even though, it might be too costly for B. subtilis to 

invest in slightly faster sliding since we showed that surfactin production is accompanied with 

a substantial cost and the benefit gained by more surfactin might be too small. Additionally, 

our experiments suggest that a relatively small amount of surfactin producing cells in a 

population is sufficient to promote sliding. These might explain why we don’t observe faster 

sliding naturally. 

In general, compounds produced by bacteria should be defined as a public good only after 

analyses of the social properties and the possible production costs. It is also important to be 

aware of the investigated environment and the possibility that a substance that is publicly 

available in condition A, but might be privatized in condition B.  
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Experimental Procedures 

 

Strains and cultivating conditions 

All B. subtilis strains used in this study are derivatives of a competence enhanced NCBI3610 

(DK1042, Konkol et al., 2013). A Δhag mutant lacking flagellin was used as “sliding wild 

type” since motile strains would swarm and sliding could not be investigated under the used 

conditions. The strains used in this study are listed in Table S1. To obtain mutants, a B. 

subtilis receptor strain was transformed with genomic DNA from a donor strain (slightly 

modified after Konkol et al., 2013) or with the respective plasmid. A detailed description of 

the strain construction can be found in the Supplemental material. The following antibiotic 

concentrations were used for respective resistant strains if appropriate: Ampicillin 100 µg/ml 

(Amp), Spectinomycin 100 µg/ml (Spec), Kanamycin 5 µg/ml (Km), Chloramphenicol 5 µg/ml 

(Cm), Tetracyclin 10 µg/ml (Tet), MLS: Erythromycin 1 µg/ml + Lincomycin 12.5 µg/ml. 

 

Sliding competition assay 

Sliding assays were performed as described previously (Hölscher et al., 2016). Briefly, 

overnight cultures of B. subtilis were density normalized and if required, mixed in a 1:1, 1:10 

or 10:1 ratio with a competitor strain. 2 µl of the strain or mixture were spotted on semi-solid 

LB (lysogeny broth, LB Lennox, Carl Roth) plates supplemented with 0.7 % Agar-agar which 

were dried 20 min prior and 10 min post inoculation. The plates were incubated at 37°C for 

24 h if not stated otherwise and sliding was evaluated by assessing the diameter of the 

sliding colony. Additionally, sliding and strain distribution of mixtures of fluorescently labeled 

strains were evaluated by detecting the fluorescence signal with an AxioZoom V16 

fluorescence stereomicroscope equipped with a Zeiss CL 9000 LED light source, HE eGFP 

filter set (excitation at 470/40 nm and emission at 525/50 nm), HE mRFP filter set (excitation 

at 572/25 nm and emission at 629/62 nm) and an AxioCam MRm monochrome camera (Carl 

Zeiss Microscopy GmbH; for details see Hölscher et al., 2016). For image display, the 

brightness of all fluorescence images was adjusted in the same way and the background 

was subtracted using the program ImageJ with the rolling ball option (1100 pixels radius). 

 

Determination of occupied area in the sliding colony 

The area each strain occupies in the sliding colony was determined using fluorescence 

stereomicroscope images of the mixtures of different fluorescently labelled strains and the 

software ImageJ (detailed description in Hölscher et al., 2016). Briefly, the images were 

opened in ImageJ, separated by channel and the scale was changed to pixel. After 

background removal, a defined threshold was applied to the image of the green and red 

channel to separate the fluorescence signal corresponding to the occupied area of the 
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respective strain. The total area above the threshold was selected and measured as number 

of pixels. To compare both strains in the sliding colony, the ratio of the two areas was 

calculated. A summary of the area and percentage calculation was not possible since there 

was often at least a small overlap between the areas of the different strains, especially in the 

center of the sliding colony. For this analysis, original images were used. 

 

Complementation assay 

To complement sliding of mutants with externally supplied goods, cultures and plates were 

prepared as described above (see Sliding competition assay). Additionally, 2 µl of the 

respective compound was spotted 5 min before the mutant culture (TB532, TB534, TB536) 

on the same inoculation point. The respective mutant and wild-type cultures alone were used 

as controls. For surfactin complementation, 10, 1, 0.1 and 0.01 mg/ml of commercial 

surfactin (Merck KGaA, Darmstadt, Germany) dissolved in methanol was used and pure 

methanol was spotted as control.  

For BslA complementation, the lysate of a BslA-producing Escherichia coli BL21 strain 

(NRS4110 containing plasmid pNW1128, Hobley et al., 2013) and an E. coli BL21 strain 

without the BslA-production plasmid was used. To obtain the E. coli lysate, the strains were 

grown overnight in LB medium and were afterwards inoculated 1:100 in autoinduction 

medium (Morris et al., 2016). The NRS4110 culture was always supplemented with 100 

µg/ml ampicillin. The cultures were grown for 7-8 h at 37°C with 225 rpm shaking and cells 

were collected by centrifugation at 4000 g for 15 min. The pellet was resuspended in 5ml 

PBS buffer supplemented with 1 mM EDTA and cooled on ice for 10 min. The suspension 

was then sonicated using an Ultrasonic Processor VCX-130 (Zinsser Analytics, Frankfurt am 

Main, Germany) with ten repeats of a 10 s pulse of 45 % amplitude. During sonication, the 

suspension was cooled on ice. To obtain the lysate, the suspension was centrifuged (5000 

g, 15 min), the supernatant was collected, filter sterilized and stored at 4°C. 

For exopolysaccharide complementation, EPS was isolated from pellicle biofilms of a B. 

subtilis 3610 wildtype strain, a ΔtasA and as control a Δeps mutant with slight modifications 

after Dogsa et al., (2013). Briefly, four wells of a 24-well plate containing 2 ml biofilm 

promoting liquid MSgg medium each (Branda et al., 2001) were inoculated 1:100 with 

overnight culture of the respective strain and incubated at 30°C for 2-3 d. The pellicle formed 

at the air-liquid interface was collected together with the medium, diluted 1:1 with PBS buffer 

and vortexed. The pellicles were sonicated (Ultrasonic Processor VCX-130, Zinsser 

Analytics, Frankfurt am Main, Germany; 2 × 12 pulses of 1 s with 30% amplitude), 0.2 M 

NaOH was added to a final concentration of 0.1 M and the samples were incubated at room 

temperature for 10 min with short periodic vortexing. Afterwards, the samples were chilled on 

ice for 5 min before adding cold 0.4 M HCl to a final concentration of 0.1 M. The samples 
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were centrifuged (7000 g for 15 min at 4°C), the supernatant was collected and transferred 

to a three-fold volume of cold 96% ethanol and incubated for ca. 20 h at 4°C. The 

precipitated EPS was collected by centrifugation (7000 g for 15 min at 4°C) and the pellet 

was dried overnight at 55°C. After drying, the EPS was re-dissolved with deionized water in 

a 1:10 ratio and NaCl was added to a final concentration of 0.5%. The precipitation, 

collection and dissolving step was repeated once and the isolated EPS was filter sterilized 

and stored at 4°C. 

The functionality of the BslA-containing lysate and the isolated EPS was successfully verified 

by testing them for biofilm formation (see supplemental material, supplemental figures S4, 

S5). 

 

Fitness assay 

To determine the relative fitness under sliding conditions, strains with inducible gene 

constructs of epsA, bslA and srfAA (TB875, TB873, TB977, respectively) were competed 

against the respective mutants (TB893, TB922, TB895, respectively). Therefore, the strains 

were density normalized and mixed in a 1:1 ratio in a reaction tube. This mixture was used to 

a) determine the colony forming units (cfu) at the start by plating on antibiotic containing 

plates selective for each strain and b) to inoculate a 50 ml Schott bottle containing 5 ml LB 

medium in a 1:100 dilution. The cultures were incubated at 37°C and 225 rpm shaking for 6-

6 ½ h after which they were diluted 1:100 and grown again for 6-6 ½ h under the same 

conditions. Following incubation, the final cfu of the two competing strains was determined 

as described above. Initial and final cfu were then used to calculate the relative fitness via 

the so called malthusian parameter after Lenski et al, (1991) with r = (m inducible strain)/(m 

mutant) and m = ln [(final cfu)/(initial cfu)]. 

 

Mathematical model 

To investigate the competition between producers and non-producers, an agent-based 

model was constructed. The parameters and variables used for the model are listed in Table 

S3 and S4, respectively. In short, we represent the agar surface by a discrete hexagonal 

lattice, in which each lattice element contains a certain quantity of resources (R) – i.e. 

limiting resource component in the medium. The colony is placed on top of this surface and 

is modelled in discrete units of biomass (B). Each biomass unit represents a certain quantity 

of cells. These cells consume the resources for division. In order to simplify the model, cell 

division is modelled implicitly, by an increase in the number of biomass units. Given the 

availability of resources, each unit of biomass can double with a given probability. This 

probability differs between strains (as shown by the competition experiments, surfactin-

producing strains have lower division rates as a surfactin mutants). Importantly, every unit of 
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biomass is assigned to a single strain only. Depending on the strain, cells inside the biomass 

also secrete molecules: surfactin (M1) and / or EPS (M2) (for now we do not consider BslA). 

These molecules are required for colony expansion, as will be described below. Biomass 

growth is modelled as a stochastic process, the diffusion of molecules (M1, M2 and R) over 

the hexagonal surface is modelled as a deterministic process, using Euler’s approximation. 

At the onset of colony growth, a number of biomass units of both strains (i.e. the particular 

strains that are part of the competition assay of interest) are evenly distributed within a small 

radius in the center of the surface. From that moment, cells can start consuming resources 

and producing molecules. These molecules diffuse through space and affect colony 

expansion. Upon a biomass doubling, every new unit can either accumulate on the same 

lattice element as the old unit, or move in space (e.g. cells might push each other out). We 

assume that the new unit moves away from the old grid element with a probability, m (which 

is the same for all strains), given that the concentrations of both surfactin (M1) and EPS (M2) 

are above a critical concentration, τ (i.e. it is known that both molecules are required for 

gliding). When there is colony expansion, we assume that new units of biomass always 

follow the path of least resistance, ending up in a neighbouring grid element with the lowest 

quantity of biomass. 
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General Discussion 

 

As has been recognized in the last two decades, microbes engage in intra- and interspecific 

social interactions and social theory can be applied to them. Social interactions can be 

complex in higher organisms which is also true for microorganisms. However, they provide 

useful systems to study the relationships of these interactions since we know a lot about the 

genes responsible for social phenotypes as well as their regulation, and their short 

generation time facilitates dissection of population level effects. Microbes are capable of a 

vast number of different traits and phenotypes and engage in a variety of interactions from 

beneficial to detrimental ones. The in this dissertation mainly discussed phenomena of 

biofilm formation and flagellar as well as sliding motility represent only a small part of 

possible behaviors of microbes. And although B. subtilis is only one bacterium among a huge 

number of other species, as a Gram-positive model organism we can transfer at least some 

of the insight gained from studying it to other bacteria or use them as basis for further 

investigations. 

 

1. Motility as social behavior 

Motility is a common microbial trait that was among the first to be recognized in the early 

years of the discovery of microorganisms. The pioneer microbiologist Antonie van 

Leeuwenhoek, called the “father of microbiology”, described various microorganisms, their 
form and behavior in detail in a set of letters shortly after the first documentation of fungi by 

Robert Hooke1. He also was probably the first person to observe and describe the motion of 

little “animalcules” as he called the examined small organisms223,224. Motility is widespread 

among bacteria since it confers several advantages in many different environments. It 

represents not only a means to reach nutrient sources and thus a favorable habitat, but it can 

also be for example a crucial trait for pathogenic bacteria to survive inside their host225. 

Besides, it also allows the fast escape from overwhelming competitors, which can be the 

difference between life and death in nature. The latter is not only true for different species but 

can also reduce competition between members of the same species. In this regard, motility is 

also an important dispersal mechanism, permitting the colonization of new habitats if for 

example the nutrients are exhausted. 

It could be naively assumed that motility is equal to swimming and only possible in liquid 

habitats. However, during the last century, various other forms of motile behavior have been 

recognized apart from flagellum-mediated swimming motility. Most of these types of 

movement mediate translocation over a surface121,123,220. Swarming motility requires flagella 

like swimming, but is a collective form of motility instead of an individual one. The second 
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collective but passive type of surface translocation is sliding whose requirements are 

described in detail in Chapter 6 and analyzed for B. subtilis in Chapters 7 to 10. Another form 

of individual surface motility encompasses so called twitching which involves the extension 

and retraction of pili. Besides twitching, gliding is also a type of individual movement 

requiring focal adhesion complexes distributed over the cell body121,123,220. An excellent 

example for the necessity of surface motility is Myxococcus xanthus, a bacterium that 

employs so called S-motility, a social type of twitching motility with the additional requirement 

of cell-cell contact34. It is used by M. xanthus to hunt for prey in groups on the one hand and 

to promote tight packing of spores in fruiting bodies, i.e. completion of the life cycle on the 

other hand34,226. Additional benefits of the collective types of motility like swarming include 

elevated resistance to antimicrobial substances227,228, the (for the bacterium) beneficial 

expression of virulence factors228, transportation of non-motile bacteria229 or a mechanism to 

move during the attack of other microorganims122,230. 

 

2. Phenotypic heterogeneity and bet-hedging  

Motile behavior mediated by flagella is a process based on a complex machinery that 

composes many structural parts and individual proteins and as a result is energetically 

expensive. This leads to a large energy load for the cell during flagellar assembly, especially 

if many other behaviors are expressed by the same cell that also require a lot of energy. To 

save this cost, many genetically identical populations are phenotypically diverse so that one 

task is performed by only a subpopulation of cells, a different task by a second subpopulation 

etc231. This way, the energetic of e.g. collective behaviors is not carried by all cells but 

divided between different, sometimes overlapping subpopulations, making the whole process 

more cost efficient. In consequence, phenotypic heterogeneity often creates trade-offs in 

processes like surface colonization and dispersal. The example of a study with evolving 

Burkholderia cenocepacia populations (also analyzed in Chapter 4) illustrates this possible 

trade-off well since it investigated the development of variants with effective colonization 

properties that had poor dispersal abilities21. In contrast, variants that could disperse well, 

showed weaker surface colonization. 

In B. subtilis, phenotypic heterogeneity is characteristic for a number of processes such as 

motility, competence and biofilm formation115,116,211. It is evident that a regulatory control is 

necessary to ensure phenotypic heterogeneity, although noise in e.g. transcription is also a 

possible mechanism to start the development into one phenotype. Therefore, positive as well 

as negative feedback loops are often ensuring the stability of a phenotype232. An example for 

such a control is represented by the autostimulatory effect of the ComK master regulator for 

competence, which can bind to the promoter of its own gene and stimulate transcription. This 

results in a strong amplification of ComK establishing the activation of ComK dependent 

processes like the competence system232,233. The regulatory control of different processes is 
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complex and intertwined in B. subtilis so that a disturbance of one mechanism has also 

consequences for other connected ones. This is evident from Chapter 1 where the 

disturbance of flagellar motility has a large impact on the success of B. subtilis to take up 

DNA. This connection is likely mediated by the global regulator DegU, possibly by elevated 

levels of its phosphorylated form that results in a decreased competence in mutants lacking 

structural components of the flagellum. Since we used selected mutants, we were not able to 

undeniably discern in our study whether the loss of function of the flagellum or the 

incomplete assembly is responsible for the observed effect on DegU and consequently on 

competence. The observed increase in competence in viscous medium points to a 

connection with flagellar rotation and therefore function, but as this is an indirect connection, 

other factors could also play a role here. Therefore, one approach for future experiments 

could be the overexpression of the flagellar clutch EpsE, which inhibits motility by interacting 

with the flagellar rotor and disabling rotation207, or a hybrid protein exhibiting only clutch 

function. This would cause a functional inhibition of the flagellum without disturbing its 

assembly. In addition, it would be interesting to investigate the competence in biofilms, since 

EpsE is also involved in matrix production and represents one mechanism to ensure that 

matrix-producing cells are non-motile116. Are matrix-producers more or less competent than 

non-producers in the biofilm? Especially the microscopic investigation of strains with different 

fluorescence reporters could give insight in whether there is a trade-off in competence 

between matrix-producers and non-producers in the biofilm. 

The observation of phenotypic heterogeneity further resulted in the development of the 

evolutionary theory of bet-hedging. Bet-hedging describes the investment in different 

strategies at the same time (conferred by phenotypic heterogeneity) which allows the fast 

adaptation to changing environmental conditions234,235. One strategy is likely to be 

advantageous in the adaptation to a new niche after a disturbance, facilitating the survival of 

the respective subpopulation and therefore the genotype without the potentially crucial time 

delay of establishing the respective strategy. This way, bet-hedging increases long-term 

fitness despite the risk of losing a part of the population which is not properly adapted 234,235. 

Although it might be a disadvantageous strategy in homogeneous environments, natural 

habitats have often fluctuating conditions, favoring bet-hedging (also see below).  One bet-

hedging strategy of B. subtilis is the development of motile cells with flagella and non-motile 

chains in planktonic cultures. If necessary, this allows the rapid development of a biofilm, for 

example on a submerged surface, but at the same time maintains the ability to reach 

possible new niches fast and distribute throughout the favorable habitat. 

The important effect of a time delay in niche colonization is illustrated by Chapter 2. Here, a 

mixture of B. subtilis or P. aeruginosa wild type and non-motile mutant cells was allowed to 

colonize the niche of the air-liquid interface and form a pellicle. The non-motile cells 

displayed a severe competitive disadvantage, since they relied on chance or Brownian 

motion to reach the surface resulting in a time delay of surface colonization. This is also the 
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case for single strains. In the competition experiments this delay proved fatal since the motile 

cells could reach the medium surface and establish a pellicle there, while the non-motile cells 

were a minority at the air-liquid interface at this timepoint (also see below). In addition, 

Chapter 2 emphasizes the competitive advantage of sensing the favorable environment via 

chemotaxis. Again, competition experiments revealed how motile cells that are unable to 

translate the signal into directed motility (i.e. lacking the chemotaxis receptor-coupled kinase 

CheA or regulator CheY) are inferior to the chemotaxis proficient wild type in pellicle 

formation. Further, the competitive disadvantage of a mutant lacking hemAT, the gene 

encoding the potential oxygen sensor of B. subtilis, indicates that our model bacterium 

senses the favorable habitat of the air-liquid interface by the declining oxygen gradient 

throughout the medium. Interestingly, several components of the chemotaxis adaptation 

system were tested as well and found to be of slightly different importance for the 

competitiveness of B. subtilis. While the ΔcheD mutant is more severely outcompeted by the 

wild type, the ΔcheV mutant fares better although still exhibiting a slight disadvantage and 

the ΔcheB mutant is roughly equal to the wild type in competitiveness. As here the specific 

case of oxygen sensing is investigated, it is possible that specific adaptation systems are 

involved in sensing different signals or are at least more effective for specific receptors. The 

results suggest that during aerotaxis, the three chemotaxis adaptation systems (CheV, 

CheC-CheD, methylation including CheB) are not exchangeable or redundant but may have 

distinct operating processes or preferences and are not able to assume all tasks of one 

another. This is in accordance with conclusions reached by Rao and colleagues, who 

proposed that the different adaptation systems of B. subtilis result in a higher robustness of 

the system154. Further, they argue that there are likely differences in the adaptation ability of 

the three systems to different attractant concentrations and gradients: It was suggested that 

the CheV and CheC-CheD system assist in chemotaxis adaptation to low attractant 

concentrations and small gradients whereas the methylation system facilitates adaptation to 

high attractant concentrations and large gradients154. The possible difference in adaptation 

for aerotaxis might also be connected to the solubility of the oxygen sensor236 in contrast to 

membrane-bound receptors such as McpC. 

 

3. The flexible strategy of B. subtilis 

B. subtilis employs a flexible strategy of different motile states like sliding or flagella-based 

movement and the sessile state of biofilm formation. But is this an advantageous strategy or 

does it confer drawbacks in a competition with other bacteria specialized in one of those 

strategies? This question was analyzed using V. cholerae populations that lived as either the 

motile or sessile form or could engage in both lifestyles237. The authors found that in an 

environment with frequent fluctuations, the flexible lifestyle was indeed the most beneficial 

strategy although being subdued by a specialist in the biofilm habitat237. Since soil, as an 
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environment in which B. subtilis is commonly found, is often characterized by inconstant 

conditions, it is likely that the result of Yan and colleagues can also be applied to our model 

bacterium. In fact, the advantage over specialists and the ability to adapt to various 

conditions as well as to survive the most extreme ones by spore formation, may well be the 

reason of the environmental success and assumed ubiquity of B. subtilis. 

The flexible strategy of B. subtilis confers the additional advantage of reaching favorable or 

escaping from unfavorable environments before or after establishing a sessile community. As 

Chapter 2 demonstrates, cells without flagellar motility are inferior to swimming proficient 

cells in the initial stages of biofilm formation at the air-liquid interface. The switch to biofilm 

formation, i.e. the sessile strategy allows then the extended utilization of the valuable 

resources and establishment of a persisting colony. The flagellum seems to play an 

important role at the onset of biofilm formation, not only in reaching the air-liquid interface to 

form pellicles but also as a so called mechanosensor in the identification and attachment to 

solid surfaces of many bacterial species238. This function of the flagellum in the initial stages 

of biofilm formation is not restricted to one specific group but is crucial in multiple biofilm 

forming bacterial species97,239, as was also demonstrated in Chapter 2. 

In the mature biofilm of B. subtilis, a small proportion of the cells is still motile217 and may 

escape from the biofilm via swimming or swarming motility if required. However, escape is 

not only possible by flagella-mediated motility but also by means of passive sliding 

movement. Chapter 8 shows that in the absence of Ca2+, colony biofilms on agar surfaces 

expand in late stages of biofilm formation via sliding motility whereas presence of Ca2+ 

restricts expansion due to complex formation with surfactin. The latter seems to alter the 

properties of surfactin so that it is unable to facilitate movement. This expansion is likely an 

escape mechanism from the biofilm that occurs when nutrient levels become low or depleted 

while the biofilm develops. Thus, sliding represents a means for the cells to reach a new and 

potentially more favourable environment. It is possible without many regulatory changes 

since many components necessary for biofilm formation are also important for sliding (see 

Chapter 6, 7 and below) and is therefore cost efficient. Besides, the sliding escape may also 

provide a way for B. subtilis populations to avoid intraspecific competition for nutrients, which 

likely increases with biofilm development, and therefore also a delay of the (after a critical 

point) irreversible differentiation into spores. 

 

4. Experimental evolution as a tool to investigate microbial social interactions 

As demonstrated by Chapter 4 and 5, laboratory evolution is a powerful tool to analyze 

possible evolutionary trajectories under certain selection pressure regimes. Especially the 

use of microorganisms facilitates testing of evolutionary theory which is difficult to examine in 

organisms with for example a long generation time or with uncontrollable habitat 
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conditions240–242. As useful as microorganisms are for answering evolutionary questions, 

experimental evolution with microorganisms is not always a straightforward process. Genes 

can be acquired by horizontal gene transfer from other species which is sometimes hard to 

identify and can be hard to track to the originating species. In general, mobile genetic 

elements can play an important role in obtaining beneficial traits, genome rearrangements or 

ecological strain dynamics243 with transposable elements, plasmids or bacteriophages 

representing the transition vehicles. 

In Chapter 5, we evolved B. subtilis matrix-producers and non-producers under pellicle 

formation promoting condition in the absence and presence of a sporulation bottleneck. In 

the bottleneck regime, the initially underrepresented non-producer was able to incorporate 

into the pellicle which was coupled to the appearance of hybrid prophages with higher lytic 

activity. A recent study examined P. aeruginosa public good producer and non-producer 

dynamics in the presence of a lytic phage244. Similar to Chapter 5, the authors found that the 

phage pressure benefited the non-producers. This was potentially due to an increased 

production of public goods by the producers and a thus increased cost for them244. This could 

also happen in case of B. subtilis in addition to the already discussed mechanisms and would 

also explain the stability of the pellicles despite high non-producer frequency (see below). 

However, if this hypothesis is true, the matrix production in the presence of non-producers 

and phages would probably be still lower than in wild type pellicles since the productivity of 

the evolved pellicles is lower in comparison to the ancestor. 

Although the matrix components were demonstrated to be public goods and shared with 

neighboring cells of the pellicle also in other studies117,245, the wild type seems to be 

somehow protected from “cheater” invasion since non-producers could not invade the pellicle 

without being evolved. In addition, traits to enhance incorporation did not evolve without heat 

treatment to select for spores, indicating a high robustness of B. subtilis cooperative pellicle 

formation. After long-term incubation with a sporulation bottleneck, the non-producer was not 

able to invade via improving evolution of a single or small set of altered genes, but the better 

pellicle incorporation was connected to a newly developed competitive strategy. It is possible 

that on account of the large number of mutations, we overlooked an evolved gene 

specifically contributing to pellicle incorporation of the non-producers. However, mutations 

contributing to increased incorporation could also be transferred via phage infection. At the 

end of the evolution experiment, the non-producer percentage of the pellicle population 

increased above 30%, and even to 80% in one population without collapsing. As the non-

producer percentage was partly fluctuating during the experiment, it would be interesting to 

examine, if in an extended experiment the non-producer reaches an equilibrium state or 

continues to fluctuate. Since the total productivity of the pellicle was lower with invaded non-

producers than with solely the wild type, a robustness of pellicle formation and minimum 

number of producers is necessary to maintain sufficient matrix production. A low relative 

level of producers should lead to a collapse of the pellicle as shown for other systems (e.g.44) 
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and it is astonishing that this did not happen for B. subtilis despite one pellicle consisting of 

80% non-producers. Nevertheless, this low percentage of producers might result in an 

architectural instability causing higher susceptibility to a predator attack or antimicrobials. 

Chapter 2 showed that during competition of two different fluorescently labeled and non-

motile, but otherwise matrix producing biofilm proficient strains, large patches of identical 

cells are formed in the pellicle in comparison to the at macroscale more uniform distribution 

of the wild type. This spatial organization leads to a more pronounced separation of two 

different cultures, which could affect interaction between different subpopulations or strains. 

Interestingly, it was shown in a recent study that the high spatial segregation in pellicles of 

non-motile strains has a negative effect on the genetic division of labor of different matrix 

non-producers245 (see also Chapter 5), demonstrating that sufficient exchange of matrix 

components is necessary. 

Chapter 2 and Chapter 3 also highlight, that evolution can be observed already at a very 

short time scale, at least if sufficient selection pressure is present. It seems the pressure of 

reaching the air-liquid interface during pellicle formation of non-motile strains was high 

enough to promote evolution of an alternative way to reach the medium surface, in this case 

overproduction of the biofilm matrix. Here, the limiting factor could be oxygen availability, 

since it was also discovered to be the driving force leading to matrix overproducer evolution 

in other strains246. As matrix overproduction was achieved by probably one single mutation 

(per strain), other alternatives might exist that require several mutations or confer a smaller 

advantage and were thus not observed during the pellicle experiments. However, in previous 

studies different genetical alterations were discovered that lead to a similar effect or 

phenotype, like the different mutational routes to the wrinkly spreader phenotype of P. 

fluorescens which were discovered by removing the initial mutation targets of the regulatory 

pathway247,248. Therefore, removal of one regulatory component or gene, i.e. the use of 

mutants facilitates the detection of new possible regulatory connections and solutions for 

better adaptation, as also demonstrated by Chapter 1 and 3. Further, more mutations leading 

to the same advantage might be discovered under conditions with a slightly relaxed selective 

pressure. Further, sinR seems to be a likely target for adjusting matrix production or rescuing 

defective biofilm formation in B. subtilis, which was confirmed by other studies23,249103. 

Probably because slight changes in the amino acid composition are sufficient to alter the 

DNA or dimerization properties and therefore its effectiveness as matrix gene repressor, 

SinR can facilitate fast adaptation.  

 

 

 

195



5. The purpose of sliding motility 

Sliding is a collective and cooperative type of movement over surfaces123. As described in 

Chapter 6, sliding of different bacterial species often seems to require secreted substances 

which can be considered potential public goods. However, as the nature and type of the 

sliding facilitating goods varies in between species, it can be concluded that there are 

different functional solutions to overcome the friction between cell and substratum. The 

purpose of sliding movement appears to be the translocation over surfaces for bacteria that 

lack flagella and pili or the movement in conditions where other types of motility are 

impossible such as the movement of rhizobia through infection threads during nodule 

formation250. Although it is slower than e.g. swarming, sliding might be an efficient type of 

motility when the required substances are already produced, since it allows rapid reaction 

and the formation of new flagella is complex, costly and requires time139,141,142,149. The exact 

difference in necessary energy needs to be investigated in detail, but sliding could be 

employed under conditions in which the cell has to move forward but save energy for other 

processes as well. However, I consider it very likely that in nature, the transition between 

different types of movement, for example swarming and sliding, is smooth and dependent on 

the micro-environmental conditions.  

The experiments in Chapter 7 suggest that in B. subtilis one function of sliding motility could 

be to cover the distance towards plant roots in the soil and reaching the rhizosphere to 

eventually establish a biofilm in this favorable habitat (see Fig. 1). In combination with 

swimming motility along an oxygen gradient towards the air-liquid interface indicated by 

Chapter 2, this suggestion provides us with a possible model of B. subtilis movement through 

the soil. It can move by either sliding or swarming in moist but not liquid conditions and swim 

through water-filled areas to reach a favorable habitat such as the rhizosphere. Once on 

location, B. subtilis can form pellicles if a standing water surface is present or colonize plant 

roots and form surface attached biofilms (see Fig. 1). 
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Figure 1. Model for B. subtilis soil ecology and mechanisms of plant root colonization. a) Biofilm formation on the 

surface of a plant root. B. subtilis reaches the rhizosphere by means of b) sliding or swarming and c) swimming 

motility. 

 

6. Sliding as byproduct or distinct process? 

Van Gestel et al. as well as Chapters 7 and 10 demonstrate that sliding motility is one of the 

social behaviors of B. subtilis 127. Nevertheless, it is not clear whether sliding of B. subtilis is 

just a side effect of biofilm formation or a distinct process that can be viewed irrespective of 

biofilms 104. At first glance, the former seems to be true, since B. subtilis sliding is regulated 

by the same pathways and regulatory components than biofilm formation and requires similar 

extracellular molecules (although the TasA requirement is debatable). Similar to biofilm 

formation the master regulator Spo0A controls sliding, the inducing signal potassium also is 

known to trigger biofilm formation and is transmitted by the same set of kinases. However, as 

established in Chapter 7, although the regulation is tightly linked, there are small differences 

like the level of Spo0A required for each process. The results suggest that a lower level of 

Spo0A is necessary for sliding compared to biofilm formation. This indicates sliding as a 

distinct process which allows movement prior to biofilm formation since it is already induced 

when biofilm formation is not yet possible. Further, the so far identified sliding inducing 

signal, potassium, is sensed by KinB at the intracellular level whereas potassium leakage as 

a biofilm inducer was shown to be sensed by KinC although the sensing mechanism is not 

clear 198. This differentiation suggests distinct processes, although it is possible that a 

potential link between them has not yet been discovered. In addition, it seems likely that 

sliding does not have to be inevitably followed by biofilm formation. This is indicated by 

experiments investigating planar as well as dendritic sliding, since the sliding colony usually 
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expands till the edge of the petri dish is reached and usually lacks wrinkles and the 

architectural complexity of biofilms even after three days of incubation127127 (also see 

Chapters 7, 9, 10). After this time, a B. subtilis biofilm is matured and sufficient levels of 

Spo0A should be present to promote biofilm formation. Hence, a control mechanism or signal 

could exist that ensures maintenance of low Spo0A levels if expansion via sliding is possible. 

 I therefore suggest that sliding should be regarded as a distinct process, but it is 

nevertheless likely that it developed as a byproduct of biofilm formation. In general, it is 

evident from the close regulatory connections, that social behaviors in B. subtilis, especially 

the collective motilities swarming and sliding as well as biofilm formation, are not totally 

secluded phenomena. Rather, there is a flowing transition between these three processes 

depending on the environmental conditions and requirements. It is highly probable, that this 

transition also occurs in nature and B. subtilis employs these sessile and motile lifestyles to 

be able to adapt to as many conditions as possible. Soil as habitat reflects the necessity for 

such adaptations as it exhibits various and changing conditions like high to low nutrient 

levels,humidity, granularity, porosity, etc. The assumed ubiquity and success of B. subtilis is 

likely caused by its adaptation potential and endospore formation as the last option to survive 

a large number of stress conditions251,252. 

 

7. Public goods and the maintenance of cooperation during sliding 

Fluorescent markers represent excellent tools to follow the spatial distribution of different 

strains throughout an experiment. This is not only possible at microscale with e.g. Confocal 

laser scanning microscopy as demonstrated in Chapter 5, but also at lower magnification so 

that the analysis of an entire surface colonizing colony is possible like explained in Chapter 

9. Since spatial segregation is an important mechanism in social interactions, especially as a 

means to promote cooperation, this method can lead to discoveries about the impact of 

spatial dynamics on microbial sociality. 

It was indeed demonstrated for different bacteria, B. subtilis among them71, that spatial 

structure is able to promote and maintain cooperation63,66.However, exceptions exist, where 

this might not be the case. One such example was presented in Chapter 10 where we 

showed that surfactin production is exploitable by a non-producer. This is in contrast to 

microbial social theory which predicts that in spatially segregated environments, potential 

cheaters should not be favored since the benefit of a public good is preferentially directed to 

neighbors of the producer which are likely other cooperators. Therefore, the question arises, 

why exploitation is possible in the case of surfactin production.  

In this regard, the inherent properties of sliding with its genetic drift and therefore high 

assortment may have some influence. Some studies demonstrate that a strong mutualistic 

interaction can have an anti-assorting effect and lead to mixing of the interaction partners 
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despite genetic drift253,254. Yet, the dependence of for example BslA and surfactin non-

producer on each other seems to be too weak to oppose the effect of genetic drift. This is 

connected to the proposed difference in diffusion properties or sharing of e.g. BslA and 

surfactin. Since surfactin seems to diffuse very well throughout the sliding colony, the 

surfactin non-producer can use the available surfactin without requiring to be very close to its 

producer. In contrast, the BslA and also the exopolysaccharide non-producers are dependent 

on their partner being in the vicinity, since BslA and exopolysaccharides seem to be 

privatized to some extent. However, this provides an advantage of a certain protection from 

exploitation as the results of Chapter 10 demonstrate, which verifies one social theory of 

possible maintenance of cooperation through public good privatization. 

Hence, to achieve a genetic division of labor during sliding, the diffusion and sharing 

properties of the goods need to be similar. This seems to be possible in dendritic sliding, 

although the distribution of both strains in the resulting sliding colony was not tested in the 

study of van Gestel et al.127. It would be interesting to investigate the distribution of e.g. 

surfactin and exopolysaccharide non-producers at macroscale in dendritic sliding. 

 

8. Cooperative interactions in nature 

So far, cooperative interactions have been mainly analyzed in laboratory settings and under 

defined conditions. But how robust is cooperation in nature and under ever changing 

conditions that are characteristic for many a natural habitat? Lately, it has become clear, that 

it is not enough to study social interactions in an isolated system, but in the ecological 

context in which they exist255. It is therefore necessary to set up experiments that include 

components reflecting natural habitats to investigate the microbial behavior there. Most 

studies regarding disturbance and natural settings have been conducted with focus on 

diversity, competitive interactions or metabolic pathways256,257. Nevertheless, several studies 

already tried to at least partly include the influence of ecological fluctuations. For example, 

Connelly and colleagues investigated the impact of different levels of resource abundance on 

cooperation in a model system as well as laboratory experiments258. In the model, a resource 

level above a critical threshold was necessary for cooperation and the cooperating 

population reached higher cell densities. In contrast, a transition to lower resource levels 

decreased cooperation and resulted in lower proportion of cooperators in the population. This 

was confirmed by experiments with biofilm formation of the bacterium V. cholerae as 

cooperative behavior258.  

As Chapter 5 and 10 show, the invasion of non-producers is possible under mostly stable 

conditions in the laboratory, the question arises whether fluctuating natural settings enhance 

or diminish this possibility. Brockhurst et al. examined different levels of disturbance in a 

mathematical model, which predicted that intermediate disturbance levels support 
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cooperation. Sparse disturbance promotes evolution of cheaters but high levels of 

disturbance cause inadequate cell density for cooperation259.  Interestingly, the latter effect 

seems to be reduced if resource availability is higher, leading to the conclusion that indeed a 

variety of environmental conditions can promote cooperation260. Further, in a recent study, 

biofilm formation of P. aeruginosa in different flow conditions was examined with respect to 

matrix producer (i.e. cooperator) and non-producer dynamics261. These experiments revealed 

that in the environment most resembling natural settings with irregular flow patterns, 

cooperators and non-cooperators could stably coexist261.  

This as well as the examples mentioned above, demonstrate that despite the presence of 

non-producers, the potential for maintenance of cooperation is also present under unstable 

environmental conditions. Thus, the mechanisms of preservation and evolution of 

cooperation revealed so far can possibly be applied to natural environments. Especially 

surface attached submerged biofilms are argued to be more resistant to environmental 

changes because of their architectural plasticity262. However, this potential has to be 

regarded carefully, since it is clear from many studies, that the conditions of the experiments 

and also the number and identity of the interaction partners have a large influence. Hence, it 

is possible that if a third, fourth, etc. interaction partner of another species would be 

introduced in the flow system described above, cooperation might not be stable anymore. 

The difficulty to translate results from laboratory experiments to natural environments leads 

to a requirement of experimental setups with a higher transferability, especially since the 

specific conditions seem to be important as discussed above. Numerous attempts have 

already been conducted to generate a laboratory system that can be manipulated and 

resembles the soil more closely than agar surfaces or liquid cultures. To name two 

examples, Downie et al. developed a substratum that possesses physical and chemical 

properties similar to soil and is suitable for plant growth263. Moreover, it is transparent so that 

fluorescently labelled root colonizing bacteria and plant roots can be imaged easily also in 3D 

and interactions in the rhizosphere can be studied in greater depth without the need for liquid 

media. In the second example study, the use of microfluidics systems as possible 

heterogeneous environment to answer questions in soil microbial ecology was investigated264 

(see Fig. 2). The authors argued that spatio-temporal heterogeneity is, among others, an 

important feature of soil habitats and is being neglected by many artificial soil systems but is 

possible at the right scale utilizing the microfluidics technique. Further, the conditions are 

control- and changeable and can be set up with minimum amount of space and material, for 

example on microchips264. Undoubtedly, more sophisticated systems or possibly 

combinations will be developed in the future, allowing a detailed analysis of microbial 

interactions in complex systems. 
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Figure 2. Possible applications of microfluidic devices for the investigation of microbial ecology in soil (adapted 

from Aleklett et al., 2017264). 

However, as important as it is to answer the questions about cooperative and social 

interactions in general and in natural settings, I believe that the understanding of cooperation 

principles, obtained by investigating defined conditions and strains in the laboratory, is the 

basis from where to start. This way, already understanding the underlying mechanics, 

complex ecological interactions and relationships in multispecies communities as occurring in 

a gut microbiome or the rhizosphere, are more likely and potentially easier to unravel. 
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Concluding remarks 

The understanding of social interactions gained from the work presented in this dissertation 

expands the view on collective microbial behaviors with special emphasis on intraspecific 

interactions of B. subtilis. The social behaviors of biofilm formation and different motile 

behaviors, especially sliding motility analyzed and discussed here were shown to be 

connected not only by their regulatory elements, but also through their function governing 

different life styles of B. subtilis. Those processes are however not only characteristic for  

B. subtilis but occur in many other bacterial species, so hopefully parts of the knowledge 

gained in this dissertation can be transferred to other bacterial systems. Future work will also 

encompass transferring these findings mostly obtained in experimental laboratory settings 

into setups which mimic natural conditions and investigate specific social interactions in their 

relevant ecological context. 
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Supplementary	materials	for	Hölscher,	Schiklang	et	al	

	

	

Figure	 S1.	 Reduced	 competence	 in	 different	 B.	 subtilis	 strains.	 Transformation	 frequency	 of	 B.	

subtilis	wild-type	and	hag-mutant	of	strains	PS216	and	3610	after	incubation	in	competence	medium	

for	6	h	(n	=	3).	Error	bars	represent	the	standard	deviation.	

	

	

Figure	S2.	Chemotactic	response	is	not	connected	to	competence.	 	Transformation	frequency	of	B.	

subtilis	wild-type	and	cheA-mutant,	encoding	the	main	sensor	kinase	of	the	chemotaxis	system,	after	

incubation	 in	competence	medium	for	6	h	 (unpaired	two-sample	t-test	with	Welch	Correction:	P	=	

0.232,	n	=	3).	Error	bars	represent	the	standard	deviation.	

216



	

Figure	 S3.	 Fewer	 cells	 express	 competence	 genes	 in	 the	 hag-mutant	 over	 time.	 	 Percentage	 of	

fluorescent	(i.e.	competence	gene	expressing)	cells	determined	from	flow	cytometric	measurements	

of	wild-type	and	hag-mutant	harboring	PcomG-gfp	 after	3	h,	4	h	and	5	h	 incubation	 in	 competence	

medium	(unpaired	two-sample	t-test	with	Welch	Correction:	P	<	0.05,	n	=	3).	A	gate	at	fluorescence	

intensities	 above	 3	 A.U.	 was	 used	 to	 isolate	 the	 fluorescent	 population.	 Error	 bars	 represent	 the	

standard	deviation.	
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Table	S1.	Strains	used	in	this	study.	Antibiotics	are	abbreviated	as	follows:	Kanamycin	–	Kan,	

Chloramphenicol	–	Chl,	Tetracyclin	–	Tet.	

Strain	 Genotype	 Reference	

168	 ∆trpC	 Gallegos-Monterrosa	et	al.,	

2016	

TB115	 ∆trpC;	hag::Kan	 This	study	

TB710	 ∆trpC;	∆motA	 This	study	

TB689	 ∆trpC;	∆flgE	 This	study	

PcomG-gfp	 ∆trpC;	PcomG-gfp	Chl
R
	 Veening	et	al.,	2006	

PcomG-gfp	∆comK	 ∆trpC;	PcomG	-gfp	Chl
R
;	comK::Kan	 Veening	et	al.,	2006	

TB831	 	 ∆trpC;	PcomG	-gfp	Chl
R
;	hag::Tet	 This	study	

TB926	 ∆trpC;	PcomG	-gfp	Chl
R
;	∆motA	 This	study	

TB925	 ∆trpC;	PcomG	-gfp	Chl
R
;	∆flgE	 This	study	

168	Pxyl-comK	 ∆trpC;	amyE::	Pxyl-comK	xylR		Chl
R
	 van	den	Esker	et	al.,	2017	

TB928	 ∆trpC;	amyE::	Pxyl-comK	Chl
R
	xylR	;	hag::Kan	 This	study	

TB935	 ∆trpC;	degU(Hy)32::Kan	 This	study	

TB936	 ∆trpC;	degU146::Kan	 This	study	

TB923	 ∆trpC;	degU(Hy)32::Kan;	hag::Chl	 This	study	

TB924	 ∆trpC;	degU146::Kan;	hag::Chl	 This	study	

TB779	 ∆trpC;	∆cheA	 This	study	

PE277		 PY79	safA::Tet	 Eichenberger	et	al.,	2001	

	

	

Table	S2.	Oligonucleotides	used	in	this	study	

Oligo	 Experimental	purpose	 Sequence	(5’	to	3’)	

oTB90	 confirmation	of	hag	deletion	 ACAGGTTGTAACGTAGTG	

oTB91	 confirmation	of	hag	deletion	 TCCAGCGATGTGATCTCC	

oAR11	 confirmation	of	motA	deletion	 GGAGTGACACTGGAGTAG	

oAR12	 confirmation	of	motA	deletion	 CCGCTTAGAAGAACCATC	

oAR3	 confirmation	of	flgE	deletion	 ATCCGCTTAACCCGATTG	

oAR4	 confirmation	of	flgE	deletion	 TTCCGGTTCCTCTATTCC	

oAR7	 confirmation	of	cheA	deletion	 GGCACTGCTGGACTAAAG	

oAR8	 confirmation	of	cheA	deletion	 CCAGCCGACTTCAATATC	

oTH37	 confirmation	of	degU32	and	degU146	

point	mutations	

GGTTCCGTTATCTCTTTGAC	
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Fig. S1 Growth curves of B. subtilis strains lacking certain genes involved in flagellum 

synthesis and regulation (A), chemotaxis (B), and aerotaxis (C) compared to the wild-type 

strain (black line). Growth in LB medium was followed by recording optical density at 595 nm 

in a microtiter-plate reader. Growth curves represent the average of 6 replicates and error 

bars indicate standard deviation.  
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3 

 

 

Fig. S2 Competition of GFP or mKATE2 labelled strains of B. subtilis strains during pellicle 

formation. Wells of a 24-well plate containing mixes of cells are shown in the green- or red-

fluorescence channels (false coloured in green and red, respectively) together with its bright 

light images. The images in the right side of the figure show the pellicle pictures of the pure 

mutant cultures. 
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Table S1. Competition experiments of various B. subtilis mutant strains lacking motility, 

chemotaxis or oxygen sensing against wild-type strain (3610) during pellicle formation. 

Values are arbitrary units as described in the Materials and Methods. 

Strains 
Signal abundance 

Strains 
Signal abundance 

GFP mKATE2 GFP mKATE2 
 
flagellum synthesis and function 
 

3610GFP vs hagmKATE2 2.41±0.53 0.03±0.02 3610mKATE2 vs hagGFP 0.08±0.05 2.51±0.29 
3610GFP vs flgEmKATE2 1.67±0.37 0.16±0.08 3610mKATE2 vs flgEGFP 0.16±0.11 5.24±2.69 
3610GFP vs fliF mKATE2 1.43±0.25 0.11±0.02 3610mKATE2 vs fliFGFP 0.59±0.21 2.20±0.35 
3610GFP vs motAmKATE2 2.08±0.92 0.21±0.08 3610mKATE2 vs motAGFP 0.33±0.17 3.38±0.98 
3610GFP vs sigDmKATE2 1.41±0.42 0.04±0.01 3610mKATE2 vs sigDGFP 0.38±0.29 2.29±0.24 
 
chemotaxis 
 

3610GFP vs cheAmKATE2 2.35±0.57 0.03±0.01 3610mKATE2 vs cheAGFP 0.26±0.18 3.18±0.56 
3610GFP vs cheYmKATE2 1.82±0.25 0.05±0.03 3610mKATE2 vs cheYGFP 0.11±0.02 2.32±0.34 
3610GFP vs cheVmKATE2 1.31±0.41 0.48±0.15 3610mKATE2 vs cheVGFP 0.63±0.12 1.54±0.24 
3610GFP vs cheDmKATE2 2.11±0.27 0.09±0.04 3610mKATE2 vs cheDGFP 0.09±0.03 2.66±0.44 
3610GFP vs cheCmKATE2 0.60±0.18 1.61±0.35 3610mKATE2 vs cheCGFP 1.27±0.15 0.76±0.47 
3610GFP vs cheBmKATE2 0.75±0.23 1.02±0.28 3610mKATE2 vs cheBGFP 1.33±0.46 1.39±0.65 
3610GFP vs mcpCmKATE2 0.70±0.14 1.14±0.12 3610mKATE2 vs mcpCGFP 1.11±0.11 0.7±0.17 
 
aerotaxis 
 

3610GFP vs hemATmKATE2 1.72±0.33 0.10±0.09 3610mKATE2 vs hemATGFP 0.55±0.33 2.20±0.46 
hagGFP vs hemATmKATE2 0.59±0.37 1.66±0.24 hagmKATE2 vs hemATGFP 1.56±0.26 0.05±0.05 
hagGFP vs  
hag hemATmKATE2 

1.57±1.30 1.30±0.40 hagmKATE2 vs  
hag hemATGFP 

1.87±0.86 0.69±0.35 
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Video S1 Pellicle formation of B. subtilis wild-type (left petri-dish) and its hag derivative 

(right petri-dish) is shown in MSgg medium. Cultures were grown in 35 mm diameter Falcon 

petri dishes at 30 C and images were recorded every 30 min. 

 

 

Video S2 Competition of GFP or mKATE2 labelled wild-type and hag strains of B. subtilis 

strains during pellicle formation (GFP and mKATE2 signals were false coloured in green and 

red, respectively). Cultures were grown in 35 mm diameter Falcon petri dishes at 30 C and 

images were recorded every 15 min. Left: NCIB3610GFP co-inoculated with hagmKATE2 strain. 

Right: NCIB3610mKATE2 co-inoculated with hagGFP strain. 

 

 

Video S3 Pellicle formation of B. subtilis cultures recorded from the side of the glass tubes. 

Cultures were inoculated in MSgg medium at high cell densities (OD500 of 1.2) and incubated 

at 30 C. 
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Video S4 Pellicle formation of B. subtilis cultures recorded from the side of the glass tubes. 

Cultures were inoculated in MSgg medium at low cell densities (OD500 of 0.005) and 

incubated at 30 C. 

 

 

Video S5 Pellicle formation of P. aeruginosa cultures recorded from the side of the glass 

tubes. Cultures were inoculated in LB medium at high cell densities (OD500 of 2.0) and 

incubated at 37 C. 

 

 

Video S6 Pellicle formation of P. aeruginosa cultures recorded from the side of the glass 

tubes. Cultures were inoculated in LB medium at low cell densities (OD500 of 0.005) and 

incubated at 37 C. 
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Video S7 Pellicle formation of B. subtilis cultures recorded from the side of the glass tubes. 

Wild type, hag and hemAT cultures (from left to right) were inoculated in MSgg medium at 

high cell densities (OD500 of 1.0-1.2) and incubated at 30 C. 

 

 

 

 

Videos can be found at: 

Video S1: https://ars.els-cdn.com/content/image/1-s2.0-S002228361500354X-mmc2.mp4  

Video S2: https://ars.els-cdn.com/content/image/1-s2.0-S002228361500354X-mmc3.mp4  

Video S3: https://ars.els-cdn.com/content/image/1-s2.0-S002228361500354X-mmc4.mp4  

Video S4: https://ars.els-cdn.com/content/image/1-s2.0-S002228361500354X-mmc5.mp4  

Video S5: https://ars.els-cdn.com/content/image/1-s2.0-S002228361500354X-mmc6.mp4  

Video S6: https://ars.els-cdn.com/content/image/1-s2.0-S002228361500354X-mmc7.mp4  

Video S7: https://ars.els-cdn.com/content/image/1-s2.0-S002228361500354X-mmc8.mp4  
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Figure S1: Prolonged incubation of wild-type B. subtilis in LB medium results in aggregation 

with increased, but heterogeneous tapA expression. Representative microscopy images of 

strains harboring the PtapA-yfp reporter in wild type background. Images were recorded as in 

Fig. 2, but after longer (>12 h) incubation in LB medium. The presented aggregates were 

observed in addition to homogeneously dispersed cells similar to those observed in Fig. 2. 

The scale bar represents 10 µm.  

 
 
 
 

 
 
Figure S2: SinR and SinR-L99S function as tetramers. (a) Analytical size exclusion 

chromatograms of SinR (left) and SinR-L99S (right). Runs were performed on a Superdex 200 

Increase 10/300 GL column. The absorbance was recorded at 254 nm (red curve) and 280 nm 

(blue curve) in mAU (arbitrary units). (b) Analytical size exclusion chromatograms of the 

reconstituted SinR/IR-DNA complex (left), the SinR-L99S/IR-DNA complex (middle) and the 

individual IR-DNA duplex. Runs were performed on a Superdex 200 Increase 10/300 GL 

column. The absorbance was recorded at 254 nm (red curve) and 280 nm (blue curve) in mAU 

(arbitrary units). 
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Figure S3: Crystal structure of the SinR/DNA complex. The crystal structure of the B. subtilis 

SinR/IR-DNA complex is shown in cartoon representation (PDB-ID: 3ZKC; (Newman et al., 

2013)). Two SinR proteins (SinR-A, colored in light grey and SinR-B, colored in dark grey) bind 

via their N-terminal DNA interaction domain to inverted repeat DNA. N and C indicate N-

termini and C-termini, respectively. 

 

 

Video S1: Timing of pellicle initiation in B. subtilis Δhag and its WS derivative differs. Pellicle 

formation of B. subtilis Δhag (mixture of TB36 (ΔhagGFP) and TB37 (ΔhagmKATE), left petri-dish) 

and its WS derivative (mixture of TB775 (ΔhagWS2GFP) and TB776 (ΔhagWS2mKATE), right petri-

dish) is shown in MSgg medium. Cultures were grown in 35 mm diameter Falcon petri dishes 

at 30 °C and images were recorded every 30 min. 

 

For Video S1 see https://www.biorxiv.org/content/early/2018/03/27/288951   
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Table S1. Strains and plasmids used in the current study. 

 Strains labeled with *might contain additional mutations 
 

Name Genotype and features Source 

E. coli   

BL21 (DE3) fhuA2 [lon] ompT gal ;λDE3Ϳ [dcm] hsdS Novagen 

   

B. subtilis   

NCIB3610 prototroph (Branda et al., 2001) 

DS1677 NCIB36ϭϬ Δhag (Blair et al., 2008) 

DS4681 NCIB36ϭϬ ΔflgE (Courtney et al., 2012) 

DS7080 NCIB36ϭϬ ΔfliF (Chan et al., 2014) 

DS7498 NCIB36ϭϬ ΔmotA (Chan et al., 2014) 

DS6420 NCIB36ϭϬ ΔsigD (Cozy et al., 2012) 

DK1042 NCIB3610 comIQ12I (Konkol et al., 2013) 

GP901 hag::KmR Jörg Stülke, lab collection 

TB406 NCIB3610 comIQ12I sinR::Cm this work 

168 hyGFP 168 amyE::Phyperspank-GFP; CmR (van Gestel et al., 2014) 

168 hymKATE2 168 amyE::Phyperspank-mKATE2; CmR (van Gestel et al., 2014) 

TB34 NCIB3610 comIQ12I amyE::Phyperspank-GFP; CmR (Hölscher et al., 2016) 

TB35 NCIB3610 comIQ12I amyE::Phyperspank-mKATE2; CmR (Hölscher et al., 2016) 

WTWS1* comIQ12I sinRL99S this work 

WTWS4* comIQ12I sinRA85T this work 

WTWS8* comIQ12I sinRV26G this work 

WTWS9* comIQ12I sinRV26G this work 

hagWS1* comIQ12I hag::KmR sinRQ108stop this work 

hagWS2* comIQ12I hag::KmR sinRL99S this work 

hagWS9* comIQ12I hag::KmR sinRV26G this work 

TB773  WTWS1 comIQ12I sinRL99S amyE::Phyperspank-GFP; CmR this work 

TB774  WTWS1 comIQ12I sinRL99S amyE::Phyperspank-mKATE2; CmR this work 

TB282 NCIB3610 comIQ12I hag::KmR this work 

TB36 NCIB3610 comIQ12I hag::KmR amyE::Phyperspank-GFP; CmR this work 

TB37 NCIB3610 comIQ12I hag::KmR amyE::Phyperspank-mKATE2; CmR this work 

TB775  hagWS2 comIQ12I hag::KmR sinRL99S amyE::Phyperspank-GFP; 
CmR 

this work 

TB776  hagWS2 comIQ12I hag::KmR sinRL99S amyE::Phyperspank-
mKATE2; CmR 

this work 

TB697 NCIB3610 comIQ12I amyE::Phyperspank-sinI lacI; SpecR this work 

TB698 NCIB3610 comIQ12I amyE::Phyperspank-sinI9-39 lacI; SpecR this work 

DL821 NCIB3610 lacA::PtapA-yfp; MLSR (López et al., 2009) 

TB699 NCIB3610 comIQ12I lacA::PtapA-yfp; MLSR this work 

TB778 NCIB3610 comIQ12I Δhag; lacA::PtapA-yfp; MLSR this work 

TB777 NCIB3610 comIQ12I ΔsinR; lacA::PtapA-yfp; MLSR this work 

TB700 WTWS1 comIQ12I sinRL99S lacA::PtapA-yfp; MLSR this work 

TB701 WTWS8 comIQ12I sinRV26G lacA::PtapA-yfp; MLSR this work 

TB702  hagWS2 comIQ12I hag::KmR sinRL99S lacA::PtapA-yfp; MLSR this work 

TB703  hagWS9 comIQ12I hag::KmR sinRV26G lacA::PtapA-yfp; MLSR this work 

   

plasmids   

pDR111 amyE integration vector; Phyperspank; lacI; AmpR, SpecR David Rudner, lab collection 
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pTB695 sinI cloned into pDR111; AmpR, SpecR this work 

pTB696 sinI9-39 cloned into pDR111; AmpR, SpecR this work 

pET24d IPTG inducible overexpression vector; KmR Novagen 

pET24sinRWT wild type sinR cloned into pET24d; KmR this work 

pET24sinRV26G sinRV26G cloned into pET24d; KmR this work 

pET24sinRA85D sinRA85T cloned into pET24d; KmR this work 

pET24sinRL99S sinRL99S cloned into pET24d; KmR this work 

 
Table S2. Oligonucleotides used in the current study 

 
Name Sequence Feature 

oTB98 GGCCGTCTCGATGGTTATTG sinIR locus sequencing 

oTB99 GGCCGGACTGGCTGAAATAC sinIR locus sequencing 

oTB124 CTGAAGCTTAGGAGGAGAAACTGCATGAAG sinI cloning 

oTB125 CATGGCATGCGCACATTCAGAAAGGATTTAC sinI cloning 

oTB126 CTGAAGCTTAGGAGGAGAAACTGCATGTTTGAATTGGATCAAGAATGG sinI cloning 
(shortened) 

oTB127 CATGGCATGCGCACATTCAGTTTAAAAGTAAATATTTTCGTATTTC sinI cloning 
(shortened) 

SinR_NcoI_F TATACCATGGGCATTGGCCAGCGTATTAAAC sinR overexpression 

SinR_H6_BamHI_R TAATGGATCCTTAGTGATGGTGATGGTGATGCTCCTCTTTTTGGGATTTTCTCC sinR overexpression 

SinR_V26G_F GAAAAAGCTGGGGGCGCGAAGTCTTA V26G mutagenesis 

SinR_ V26G _R TAAGACTTCGCGCCCCCAGCTTTTTC V26G mutagenesis 

SinR_A85D_F GGTTCGCGATGATATGACATCCGG A85D mutagenesis 

SinR_ A85D _R CCGGATGTCATATCATCGCGAACC A85D mutagenesis 

SinR_L99S_F CGTGAATTTAGCGATTATCAAAAATG L99S mutagenesis 

SinR_ L99S_R CATTTTTGATAATCGCTAAATTCACG L99S mutagenesis 

SinR_IR_F TTTGTTCTCTAAAGAGAACTTA SinR binding site 

SinR_IR_R TAAGTTCTCTTTAGAGAACAAA SinR binding site 
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Supplementary Figure 1. Pellicle competition assays at different starting ratio of the producer and non-

producer. A. Pellicle competition assay of B. subtilis wild type against the non-producer ∆eps-∆tasA at different 

starting (%) ratio (n=28; r=0.74). The incorporation of the non-producer Δeps-ΔtasA into the pellicle is 

dependent on its initial frequency. Dashed line represents 1.0 slope. Total CFU in the pellcle for each final 

relative CFU on the non-producer were plotted in the upper-right corner. B. Pellicle competition assay of B. 

subtilis wild type against the non-producer ∆eps-∆tasA (left: ancestor, right: evolved) at different nutrient 

concentrations (n=5): 2xSG medium (standard nutrient concentration) and 4xSG medium (doubled nutrient 

concentration). Starting ratios were set to 50%. Pellicle incorporation of the ancestor non-producer ∆eps-∆tasA 

escalates as the nutrient concentration increases. On the contrary, nutrient concentration has no effect on 

incorporation of the eNMP into the pellicle. Values represent the mean and error bars s.d.m. C. Growth curve 

of the B. subtilis 168 wild-type and ∆eps-∆tasA mutant. OD595 was measured every 15 min using a TECAN 

Infinite F200 PRO microplate reader. The experiment was conducted in 2xSG medium at 30°C (n=9). Central 

values represent the mean and error bars s.d.m. Calculated growth rates [OD/h] for the WT and ∆eps-∆tasA 

were µ=0.65 and µ=0.71, respectively, indicating a faster growth of the mutant strain; t-Student, two-tail p < 

0.05. D-F. Pellicle incorporation of evolved non-producers at different starting (%) ratios. The incorporation 

success of the evolved non-producers B310mA (n=21; r=0.17) (D), B410mB (n=21; r=0.22) (E) and B510mC 

(n=18; r=0.16) (F) does not depend on their initial frequency. Dashed lines represent 1.0 slopes. Total CFU in 

the pellcle for each final relative CFU on the non-producer were plotted in the upper-right corner in each 

graph. Each experiment was performed at least twice.  
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Supplementary Figure 2. Sporulation frequency in B. subtilis 168 pellicle. Sporulation frequency in B. subtilis 

168 pellicle was determined after 2 and 3 days by comparing the total CFU (vegetative cells+spores) with the 

CFU after 20 min of incubation at 80°C (where only the spores survive) (n=7). Boxes represent Q1-Q3, lines 

represent the median and bars span from max to min. The experiment performed twice.        

 

Supplementary Figure 3. Improved selection rate of evolved non-producers and producers against the wild 

type ancestor. Performance of selected strains against the wild type ancestor in pellicle competition assay was 

examined and the selection rate for each strain was calculated.  The initial ratios of the strains in competition 

assays were in the range from 35% to 70% (n = 6-12). Boxes represent Q1-Q3, lines represent the median and 

bars span from max to min.  Each ∆eps-∆tasA vs eMP/eNMP comparison was performed at least twice. The 

incorporation of the eMPs B310wtA, B410wtB and B510wtC into pellicles were 73.2 ±6.4(%), 67.8 ±8.8(%) 

and 82.0 ±2.9(%), respectively.   
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Supplementary Figure 4. Viable cell counts and productivity changes in the evolved pellicles. A. Total cell 

count of pellicles of evolved WT strains, B310wtA, B410wtB, B510wtC (n=10) normalized to the CFU of WT 

ancestor showing no significant difference compared to WT ancestor. We did not observe increased viable cell 

numbers in the eMP, as was the case for the overall biomass. We hypothesize that increased frequency of cell 

lysis, linked to spontaneous lytic induction in the eMP, may lead to release of various substances that 

contribute to the extracellular matrix and overall biomass. B. Productivity estimates of pellicle population 

ŵiǆes of WT aŶd Δeps-ΔtasA in replicates 2, 3, 4 and 5 at different time points (2nd, 8th, and 10th transfer) 

(n=10); Boxes represent Q1-Q3, lines represent the median and bars span from max to min. The 

experiments were performed twice. 
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Supplementary Figure 5. Comparisons of SNPs patterns and mutation rates in the eMP and eNMP strains. A. 

The SPβ prophage regions of 6 evolved populations (the above panel) and corresponding single isolates (the 

below panel) were aligned with the SPβ sequence of the ancestor strain using VISTA tools 

(http://genome.lbl.gov/vista/index.shtml, 54). Peaks represent non-conserved regions based on scores for each 

base pair in the genomic interval of 100-bp and conservation identity 70%. A region is considered conserved if 

the conservation over this region is greater/equal to 70% and has minimum length of 100-bp. B. Percent 

distribution of different SNPs types detected in 6 evolved single isolates. Non-synonymous similar substitutions 

had Blosum62 matrix score шϭ. NoŶ-sǇŶoŶǇŵous Ŷot siŵilar suďstitutioŶs had BlosuŵϲϮ ŵatriǆ sĐore ч Ϭ. C. 

Fluctuation assay (n=10) was done to determine the frequency of streptomycin-resistaŶt ŵutaŶts iŶ Δeps-

ΔtasA ancestor, evolved mutant B410mB, evolved WT B310wtA and WT ancestor strains in liquid and in pellicle 

(P). Analysis was conducted using LB agar medium without and with ϱϬμg/ŵl streptoŵǇĐiŶ. Results show 

overlapping frequency rate of evolved strains with the ancestor wild type. Mutation rate estimates was 

determined using bz-rates web based tool (http://www.lcqb.upmc.fr/bzrates). Data points represent the 

mean and bars span from lower to upper CI (95%). D. Linear plots showing the number of SNPs per each 

mutated gene (genes are sorted according to their functional group) for eMPs (shown in blue) and eNMPs 

(shown in red). E. PCA biplot containing the mutated genes of eMPs (B310wtA, B410wtB and B510wtC) and 

eNMPs (B310mA, B410mB and B510mC) strains in two dimensions using their projections onto the first two 

principal components. All mutated genes are represented on the plot using their weights for the components. 

The genes are color-coded by functional category. The scales shown on x and y axis are for the strains; the 

scales shown above the plot and on the right are for genes. 
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Supplementary Figure 6. Detailed molecular analysis confirm presence of genome rearrangements in the 

evolved strains. A. Alignment of Vista curve (54) showing regions of SNPs accumulation within the evolved SPβ 

sequence (see also S5A) (blue) and the sequencing coverage curve (pink) indicates duplications of mutated SPβ 

fragments. B. Sequence reads obtained for the evolved B. subtilis strains that are mapped to reference 

genome. Color coding: green-reads mapped based on the FWD strand; red-reads mapped based on the REV 

strand; blue–paired reads. Mismatch SNPs are marked as vertical stripes. Two types of reads were identified: 

reference-matching reads without SNPs and reads with SNPs. C. Selected SPβ fragment was amplified by PCR 

using B310wtA and B310mA gDNA and re-sequenced by Sanger method. Product obtained from B310wtA 

showed double peaks on the sequencing chromatogram at the positions of SNPs detected by high-throughput 

sequencing. The double peaks correlated with ~50% SNPs frequency in SPβ region, confirming presence of two 

types of SPβ fragments in the B310wtA, but not in the B310mA. D. Presence of a selected SPβ fragment was 

confirmed by PCR using primer pair oTB86F/oTB87R (for oligo sequences, see Supplementary Table 3) in the 

straiŶs BϰϭϬŵB ∆SPβ aŶd BϱϭϬŵC ∆SPβ ďut Ŷot iŶ the BϯϭϬŵA ∆SPβ. Pc= positive control, amplified fragment 

outside SPβ. E. Comparison of Sanger sequencing chromatograms obtained for selected SPβ fragments before 

and after SPβ deletion in B410mB and B510mC strains. After deletion of SPβ PCR product could still be 

obtained (see Fig. S6D), but it produced clear sequencing result with single peaks at the SNPs positions 

containing solely the evolved sequence. F. Knockout of SPβ prophage regioŶ iŶ straiŶs BϰϭϬŵB ∆SPβ and 

BϱϭϬŵC ∆SPβ was confirmed by PCR using primers oAD1F/oAD2R. G. Presence of predicted genome 

rearrangements (see Fig. 5CD) of type 1 and type 4 was confirmed in the evolved strains and not in the 

ancestor strains using primer pairs AD4F/oAD5R and oAD6F/oAD7R, respectively. 
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Supplementary Figure 7. Evolved strains spontaneously release SPbeta-like phage that is lytic towards the 

ancestral strains. A. Electron micrographs of phage particles purified from B. subtilis supernatants. No phage 
particles were spontaneously released by the WT ancestor strain. All evolved strains tested spontaneously 
released SPβ-like phage particles and treatment with Mitomycin C dramatically increased the number of those 
particles. WT ancestor incubated with Mitomycin C and the evolved B310mA ∆SPβ produced solely PBSX-like 
phage particles. Scale bar equals 100 nm. B. Results of the plaque assays performed with the ancestor WT, 
ancestor ∆eps-∆tasA and all the evolved strains, where each strain served both as a supernatant donor and as a 
potential host. To better access lytic activity of the strains, their supernatants were diluted using saline solution 
and scored as shown on the scale below. Blank cell in the table translates into lack of lytic activity towards 
given host even if non-diluted supernatant was applied on the loan. C. Lytic activity of all evolved populations 
(transfer method A and transfer method B) against the WT ancestor was tested. All populations that showed 
increase of ∆eps-∆tasA ratio (see Fig. 2) thorough the evolutionary time showed lytic activity towards the WT 
ancestor.  
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Supplementary Figure 8. When producers and non-producers carry the same evolved genetic background, 

improved incorporation of non-producers is not observed. Pellicle competition assay performed for 3 

randomly selected WT and ∆eps-∆tasA colonies after the infection assay (n=2) (columns 2-4). In addition, 

pellicle competition assays between WT evolved strains and their corresponding strains with ∆eps-∆tasA 

markers (n=3) were performed (columns 5-7). Boxes represent Q1-Q3 and lines represent median values. 

Results show that the infected mutant strains cannot increase their performance when competed against 

infected WT strains. The same is true for the evolved WT strains with deleted eps and tasA that behave 

comparably as the ancestor Δeps-ΔtasA mutant when competed with WT (first column). The experiments 

were performed twice.  
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Supplementary Table 1. Strains used in this study 

 

Strain name Genotype Reference 

168  ∆trpC 1 

DL821 NCIB 3610 lacA::PtapA:yfp (MlsR) 2 

DL1032 NCIB 3610 ∆epsA-O::TetR ∆tasA::KmR amyE::PsrfAA-lacZ 2 

168 hymKATE PtapA-yfp ∆trpC amyE: Phyperspank-mKATE (CmR) lacA::PtapA:yfp (MlsR) this work 

∆eps-∆tasA ∆trpC ∆epsA-O::TetR ∆tasA::KmR this work 

∆eps ∆trpC ∆epsA-O::TetR this work 

∆tasA ∆trpC ∆tasA::KmR this work 

168 hyGFP ∆trpC amyE∷Phyperspank-GFP (CmR) 3 

168 hymKate ∆trpC amyE∷Phyperspank--mKATE2 (CmR) 3 

∆eps-∆tasA hyGFP ∆trpC ∆epsA-O::TetR ∆tasA::KmR  
amyE:Phyperspank-GFP (CmR) 

this work 

∆eps-∆tasA hymKate ∆trpC ∆epsA-O::TetR ∆tasA::KmR  
amyE:Phyperspank-mKATE (CmR) 

this work 
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Supplementary Table 2. Evolved populations and single isolates obtained in the study and used for further 

analyses.  

 

Co-culture name Population Single isolate 
Strains derived from 

single isolates 

B310 
 
 
 
 

B310wt 
B310wtA 

B310wtA GFP 

B310wtA mKate 
BϯϭϬwtA ∆eps∆tasA 

B310mB 
 

B310mC 

B310m 
B310mA 

B310mA GFP 
B310mA mKate 

BϯϭϬŵA ∆SPß 

B310mB 
 

B310mC 

 
B410 

 
 
 
 

B410wt 
B410wtB 

B410wtB GFP 
B410wtB mKate 

B410wtB ∆eps∆tasA 

B410wtA 
 

B410wtC 

B410m 
B410mB 

B410mB GFP 
B410mB mKate 

BϰϭϬŵB ∆SPß 

B410mA 
 

B410mC 

B510 
 
 
 
 

B510wt 
B510wtC 

B510wtC GFP 
B510wtC mKate 

B510wtC ∆eps∆tasA 

B510wtA 
 

B510wtB 

B510m 
B510mC 

B510mC GFP 
B510mC mKate 

BϱϭϬŵC ∆SPß 

B510mA 
 

B510mB 
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Supplementary Table 3.  Primers used in this study 

 

Primer Experimental purpose Sequence 

oAD1F confirm SPbeta deletion from the original position in the chromosome ATCTGGACTGGCACCTTATGGATACC 

oAD2R  confirm SPbeta deletion from the original positions in the chromosome CTGCTCTGGAAAGGAAGGCAGAGTAA 

oTB86F  check for additional copy of SPbeta, examine Sanger chromatogram CACGCTTGTCTCCAAACC 

oTB87R  check for additional copy of SPbeta, examine Sanger chromatogram GATTGGCCATAACAGACC 

oAD4F  confirm  SPbeta rearrangement type 1 CTAAGGAGAGATAGGGCAT 

oAD5R  confirm  SPbeta rearrangement type 1 TGGTTTGAAGGCCATCACA 

oAD6F  confirm  SPbeta rearrangement type 4 CGATTTCAGCTGCCAAATCC 

oAD7R  confirm  SPbeta rearrangement type 4 CAGGAAAACTGGTCAGAAAC 

oTB74 confirm eps deletion GGGAAGTGCAGTAAATTAG 

oTB75 confirm eps deletion GAAACGGATTCAGCATTTAG 

oTB73 confirm tasA deletion GATCAGCAGCGCCATTAGAG 

oTB72 confirm tasA deletion CATGGCATGCGCCTGAGCAGAGGCACTAAC 
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The list of detected SNPs of evolved strains and their functional analysis (Supplementary Data 1) can be found 

at: 

https://www.nature.com/articles/ncomms15127#supplementary-information  
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Figure S1   

Spreading behavior of the undomesticated B. subtilis natto strain. Surface motility of undomesticated B. subtilis 

Marburg-related strain NCIB3610 (A), human-probiotic natto-related strain RG4365 (B), and domesticated 

laboratory strain JH642 (C) 10 h, 18 h, and 36 h after inoculation. Briefly, petri dishes containing LB medium 

fortified with 0.7% agar were centrally inoculated with any of the three B. subtilis strains and incubated at 37°C (see 

Materials and Methods for details). (A) In these pictures, it is possible to appreciate the rapid ability of the 

NCIB3610 strain to swarm on the agar surface. It was previously reported that robust swarming motility, a type of 

social motility that relies on groups of cells (rafts) that express numerous flagella and differentiate to migrate 

coordinately along a solid substrate, was present in the NCIB3610 strain (4, 12). (B) The strain RG4365 needed a 

longer incubation to start to move (as would be expected from a strain that is able only to slide), but after the first 

5 h of incubation, it was possible to observe a uniform and highly hydrophobic monolayer of cells that cooperatively 

and uniformly advanced in large filaments made of close cell-to-cell contacts, predominantly along the longitudinal 

axis, across the agar plate; see amplified views (phase-contrast and fluorescence images) of RG4365 cells on the 

right. (C) As expected, the domesticated B. subtilis strain JH642 was unable to move because it harbors a mutation 

in a gene (sfp) needed for surfactin synthesis and a frameshift mutation in the regulatory gene swrA (24). In contrast, 

the undomesticated strains NCIB3610 and RG4365 do not harbor those mutations and therefore are able to spread 

on solid surfaces (12, 75). (D) Kinetics of motility diameter of the various strains: NCIB3610 (red diamonds), 

RG4365 (green circles), and JH642 (blue squares). Arrows in panel D indicate time points with representative 

pictures above, while a line at 8.5 cm shows the maximal size of motility related to the size of the plate used. The 

rate of surface motility was maximal (0.75 cm ⋅ h−1) for the strain NCIB3610, followed by the natto strain RG4365 

(0.30 cm ⋅ h−1). (E and F) One essential factor for the swimming and swarming ability of the strain NCIB3610 is the 

flagellum, the proposed motor for those motilities (12). In contrast, the RG4365 strain grown in shaking liquid 

culture was completely nonmotile (data not shown). Cell samples for flagellum visualization were prepared as 

indicated previously (12) after 10 h (for NCIB3610 strain [E]) and 20 h (for RG4365 strain [F]) of inoculation on 

motility plates. These time points represent the stages of maximal surface motility for each wild-type strain (see 

panel D). Samples were taken from the borders of the surface motility discs, and cells were carefully separated and 

diluted (from left to right in panels E and F) in order to improve the visualization of flagella. Pictures on the right 

side of panels E and F are representative photographs of wild-type NCIB3610 cells (E) and RG4365 cells (F) taken 

from liquid cultures grown until late exponential phase (optical density at 525 nm [OD525], 0.9) in LB medium with 

aeration (200 rpm). Under all the examined conditions (swarming and swimming), B. subtilis NCIB3610 cells 

harbored flagella and were motile (E). In contrast, wild-type B. subtilis RG4365 cells were motile only on soft agar 

plates but without harboring flagella (F). In liquid culture, the RG4365 cells also were devoid of flagella and 

completely nonmotile (right image in panel F). Cells were stained for flagella as described in Materials and 

Methods. Arrows indicate the positions of some flagella shown as examples. (G) To confirm the dispensability of 

flagellum production for the surface-associated motility (sliding) in RG4365, we proceeded to delete the hag gene 

(75), which is involved in the synthesis of the flagellin subunit of the flagellum (76). As shown (left photograph), 

the isogenic hag mutant strain RG4387 (see Table S1) was able to slide on the agar surface at the same rate as the 

wild-type parental strain RG4365 after 24 h of incubation at 37°C. Similarly, the hag inactivation in the NCIB3610 

strain abolished its ability to swarm under similar incubation conditions (right photograph). Alignment of the Hag 

protein sequences based on the available genomes (75) showed that the sequence of the Hag protein in the B. subtilis 

natto strain contains a 6-amino-acid insertion and a 5-amino-acid deletion at different positions; however, the total 

sizes of the proteins are similar in various Bacilli (304 and 305 amino acids in strain 168 and the natto strain, 

respectively). The promoter regions of the hag genes on the genomes of strain 168 and the natto strain are highly 

similar (98% identical), and the σD binding sites are identical in the two strains. 
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Figure S2   

Surfactin production and the hydrophobin BslA are essential for sliding motility in B. subtilis. (A) After addition of 

synthetic surfactin to surfactin-deficient RG4365 and NCIB3610 cells, surface motilities were reestablished. The 

supplementation of the petri dishes with synthetic surfactin (Sigma-Aldrich; see Materials and Methods) restored the 

sliding and swarming ability of B. subtilis natto strain and Marburg-derived sfrAA cells and confirmed that surfactin 

is the essential biosurfactant that allows the surface-associated translocation (sliding and swarming) of B. subtilis. 

(B) BslA contributes to the hydrophobicity of B. subtilis under surface motility conditions. Cellular hydrophobicity 

was calculated using the BATH assay (77) between a hydrocarbon (octane or heptane) and cultures of NCIB3610, 

RG4365, and bslA natto cells. (C) Surface water repellence of wild-type and bslA natto cells. After overnight 

incubation on soft LB agar plates at 37°C, 5.0 µl of a hydrophilic staining solution was carefully poured on the patch 

of motile cells and the colony of the bslA mutant. The swarming- and sliding-proficient cells (NCIB3610 and 

RG4365, respectively) prevented the water penetration into the cell matrix. In contrast, the bslA-deficient cells were 

unable to repel the water, which almost immediately and uniformly penetrated throughout them.   
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Figure S3   

Sub-MICs of cerulenin do not affect planktonic growth of B. subtilis cells but impair social surface translocation. 

NCIB3610 (A) and RG4365 (B) wild-type cells were grown in LB broth at 200 rpm and 37°C in the absence or 

presence of different concentrations of cerulenin. The averages from three independent experiments are shown. 

Cerulenin concentrations were as follows: 5.0 µg ⋅ ml−1 (red triangles), 2.0 µg ⋅ ml−1 (blue triangles), 1.0 µg ⋅ ml−1 

(green triangles), 0.1 µg ⋅ ml−1 (yellow circles), and 0 (orange squares). (C and D) Dose-dependent inhibitory effect 

of different cerulenin concentrations on swarming (C) and sliding (D) proficiencies of B. subtilis cells. 
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Figure S4   

(A) Supplementation with straight fatty acids (palmitic [nC16:0] and oleic [nC18:1] fatty acids) does not restore the 

sliding proficiency of wild-type RG4365 cells treated with a sub-MIC of cerulenin (left) but allows restart of the 

growth of RG4365 cells in the presence of the antibiotic under planktonic conditions (right). The graphs are the 

results of one representative experiment repeated five times. Symbols are as follows: red circles, 2.0 µg ⋅ ml−1 

cerulenin (left graph) and 5.0 µg ⋅ ml−1 cerulenin (right graph); blue triangles, 2.0 µg ⋅ ml−1 cerulenin plus nC16:0 and 

nC18:1 and 5.0 µg ⋅ ml−1 cerulenin plus nC16:0 and nC18:1 (left and right graphs, respectively); green circles, no 

cerulenin. (B) Profile of fatty acids (FAs) synthesized de novo by wild-type B. subtilis RG4365 cells under 

conditions of planktonic growth in LB broth (right circle) and active sliding on soft agar LB plates (left circle). The 

averages from eight biological replicates are presented.  
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Figure S5   

Transcomplementation of kinB-deficient and kinC-deficient B. subtilis strains. RG4365-derived kinB and kinC 

mutants were transcomplemented with wild-type kinB and kinC alleles (see Table S1), respectively, which were 

ectopically integrated into the nonessential locus amyE.  
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Figure S6   

KinB harbors a potassium-sensing domain with homology to the selectivity filter of potassium channels. (A) 

Representative cartoon of the membrane topology of a typical prokaryotic potassium channel harboring six 

transmembrane domains. The region of the potassium pore (P) surrounded by two alpha helices that dips into the 

membrane is highlighted to indicate the components of the pore region: turret, pore helix, selectivity filter, and the 

loop that precedes the sixth transmembrane domain (TM6). The membrane-embedded selectivity filter for potassium 

is emphasized in green. (B) Representative drawing of the membrane topology of KinB. The known cytoplasmic 

domains (HK and ATPase) of the kinase are indicated. The position of the putative potassium-sensing domain 

harbored by the kinase is also highlighted in green (see text for details). (C) The 8-amino-acid sequence of KinB (S-

L-K-T-N-G-T-G) with homology to the selectivity filter present in potassium channels (S/T-X-X-T-X-G-X-G) (56, 

60, 78). Out of the 8 amino acids of the motif, position seven of potassium channels is generally assigned to an 

aromatic amino acid (mainly tyrosine [Y] but also phenylalanine can be present) (56, 57, 60, 79). In KinB, this 

position is occupied by a threonine (T). However, it has been shown that nonconservative substitutions of the Y 

residue in position 7 of the selectivity filter leave selectivity for potassium intact, and data show that an aromatic 

group at position 7 is not essential in determining potassium selectivity (56). More recently, it was found that other 

amino acids (i.e., leucine, aspartic acid, etc.) can be present in position 7 of the selectivity filter of functional 

potassium channels (57, 79).  
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Figure S7   

Working model for the spatiotemporal regulation of the different social behaviors in B. subtilis. (A) When B. subtilis 

is attached and committed to a surface (i.e., in soft LB agar plates), its social behaviors fall under the control of the 

master regulator Spo0A. Initially, KinB becomes autophosphorylated under the positive input of a high intracellular 

concentration of potassium ions. At the same time, the high level of potassium inhibits KinC activation 

(autophosphorylation). Not indicated in the cartoon is the possibility that KinB might inhibit KinC in its proficiency 

to trigger biofilm formation (see text for details). At this early time of development, the levels of formed KinB~P i 

are enough to produce low levels of active Spo0A (Spo0A~Pi) that trigger expression of the sliding machinery. 

Because the two phenomena, sliding and biofilm formation, share essentially similar structural components, there is 

the possibility that the expression levels of these components under the initial input of KinB~P i might be different 

during sliding and biofilm formation in order to allow one or the other behavior and/or that other essential 

components of the sliding and biofilm formation machineries are differently regulated and have not yet been 

identified (9, 31–33). (B) At middle times of sliding development, there should be a drop in the intracellular 

concentration of potassium ions in cells located at the inner part of the sliding disc that leads to the downregulation 

of KinB and activation of KinC, respectively. KinC~Pi feeds the phosphorelay to produce higher levels of Spo0A~Pi 

to maintain active sliding in soft LB agar plates. Under special conditions of cultivation (i.e., in soft LBY agar 

plates), KinC~Pi would also trigger biofilm formation at the inner part of the sliding disc. At the border of both 

sliding discs (in LB and LBY agar plates), KinB and KinC remain active and inactive, respectively, due to the high 

intracellular concentration of potassium ions in the cells (not shown in the cartoon). (C) At later times of 

development, KinC remains active and KinB and KinA become activated by nutrient deficiency as previously 

described (53). The three activated kinases (KinA~Pi, KinB~Pi, and KinC~Pi) produce high levels of Spo0A~Pi to 

allow fruiting body formation (filled with spores) at the tips of the biofilm.  
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Table S1. B. subtilis strains used in this study 

Strains Relevant phenotype Reference and/or source 

JH642 Prototroph, domesticated strain (1) 

RG4365 Natto, prototroph, undomesticated strain (2) 

NCIB3610 Prototroph, undomesticated strain Bacillus Genetic Stock Center 

(BGSC) 

GP901 168 hag::aphA3 Jörg Stülke, laboratory collection 

RG4387 natto hag::aphA3 This work, GP901→RG4365 

(DNA from donor strain → 

receptor strain) 

TB24 3610 hag::aphA3 This work, GP901→NCIB3610 

RG551 642 srfAA::cat B. Lazazzera, laboratory collection 

RG4390 natto srfAA::cat This work, RG551→RG4365 

RG4391 3610 srfAA::cat This work, RG551→NCIB3610 

SS995 Δspo0A::eryr (3) 

RG4370 natto Δspo0A::eryr This work, SS995→RG4365 

RG4399 3610 Δspo0A::eryr This work, SS995→NCIB3610 

RG432 642 sinR::pheo (4) 

RG4373 natto sinR::pheo This work, RG432→RG4365 

RG4392 3610 sinR::pheo This work, RG432→NCIB3610 

RG19148 642 spoIIAC::kan (3) 

RG4372 natto spoIIAC::kan This work, RG19148→RG4365 

RG4380 natto Δspo0A::ery, sinR::pheo This work, RG4370→RG4373 

RG12607 642 abrB::spc (3) 

RG12617 Natto abrB::spc This work, RG12607→RG4365 

RG4381 natto Δspo0A::ery, abrB::cat This work, RG4370→RG12607 

SIK31 642 Δspo0A::ery Pspac-spo0Asad67 (1) 

RG4382 natto Δspo0A::ery/ Pspac-spo0A-sad67cat This work, SIK31→RG4365 

RG4385 3610 hag::aphA3, Δspo0A::ery This work, RG4399→TB24 

AGS207 168 tasA::spc (5) 

NRS1502 3610 epsG::pBL601 (spc) (6) 

NRS2097 3610 bslA::cat (6) 
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TB21 natto blsA::cat This work, NRS2097→RG4365 

TB22 natto epsG::pBL601 (spc) This work, NRS1502→RG4365 

TB23 natto tasA::spc This work, AGS207→RG4365 

TB25 3610 bslA::cat, hag::aphA3 This work, NRS2097→TB24 

TB26 3610 epsG::pBL601 (spc), hag::aphA3 This work, NRS1502→TB24 

TB163 3610 tasA::spc This work, AGS207→NCIB3610 

TB228 3610 hag::aphA3 tasA::spc This work, ADS207→TB24 

JH12638 kinA::ery (7) 

RG5000 natto kinA::ery This work, JH12638→RG4365  

JH19980 kinB::tet (7) 

RG5001 natto kinB::tet This work, JH19980→RG4365 

BAL393 kinC::spc B. Lazazzera, laboratory collection 

RG5002 natto kinC::spc This work, BAL393→RG4365 

BAL691 kinD::cat B. Lazazzera, laboratory collection 

RG5003 natto kinD::cat This work, BAL691→RG4365 

BAL692 kinE::cat B. Lazazzera, laboratory collection 

RG5004 natto kinE::cat This work, BAL692→RG4365 

RG5005 natto kinB::tet kinC::spc This work, RG5002→RG5001 

BAL370 spo0F::cat B. Lazazzera, laboratory collection 

RG4371 natto spo0F::cat This work, BAL370→RG4365 

TB40 168 amyE::kinB(wt) kan This work 

TB41 168 amyE::kinB(ΔK*) kan This work 

TB42 168 amyE::kinB(K*→A) kan This work 

TB43 168 amyE::kinC (wt)kan This work 

RG5011 natto kinB::tet amyE::kinB(wt) kan This work, TB40→RG5001 

RG5012 natto kinB::tet amyE::kinB(K*→A) kan This work, TB42→RG5001 

RG5013 natto kinB::tet amyE::kinB(ΔK*) kan This work, TB41→RG5001 

RG5021 natto kinC::spc amyE::kinC (wt)kan This work, TB43→RG5002 

RG5051 natto kinB::tet  kinC::spc  amyE::kinB(wt) kan This work, TB40→RG5005 

RG5052 natto kinB::tet  kinC::spc amyE::kinB(K*→A) kan This work, TB42→RG5005 

RG5053 natto kinB::tet  kinC::spc  amyE::kinB(ΔK*) kan This work, TB41→RG5005 

RG5006 natto kinA::ery kinB::tet  This work, RG5000→RG5001 
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RG5061 natto kinA::ery kinB::tet  amyE::kinB(wt) kan This work, TB40→RG5001 

RG5062 natto kinA::ery kinB::tet  amyE::kinB(K*→A) kan This work, TB42→RG5001 

RG5063 natto kinA::ery kinB::tet  amyE::kinB(ΔK*) kan This work, TB41→RG5001 

RG12604 natto amyE::abrB-lacZ cat (2) 
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Table S2. 

(A) Array analysis of spo0A and wild-type cells under sliding permissive conditions. List of 

significantly (p value <10-4) up or downregulated B. subtilis genes (fold> 3 or < -3) in the spo0A 

mutant compared to the sliding wild type cells. 

(B) Array analysis of wild-type cells under sliding-permissive and sliding-restrictive conditions. 

List of significantly (p value <10-4) up or downregulated B. subtilis genes (fold> 3 or < -3) in the 

samples from 1.5% agar plates compared to the sliding cells from plates with 0.7% agar. 

Table S2 can be found at: 

http://mbio.asm.org/content/6/4/e00581-15.full#sec-23  

 

 

 

Table S3. Oligonucleotides used in this study. Introduced restriction sites (BamHI and EcoRI) 

are underlined. 

Name Sequence Target gene or 

vector 

oTB56 5`-CATGGGATCCTGGCGGAGAAGGATTTATG-3` kinB 

oTB57 5`-CACGGAATTCTGTCTCAAACGTGCTCATC-3` kinB 

oTB58 5`-ATAATAAGGTTCGCCGAGTTTTTGC-3` kinB 

oTB59 5-`GCAAAAACTCGGCGAACCTTATTATGGACTCGGCCTCACCGTAACCTTTTCC-3` kinB  

oTB60 5`-

GCAAAAACTCGGCGAACCTTATTATGCCTTAAAAGCGAACGCAACGGGACTCGGC

CTCAC-3` 

kinB  

oTB61 5`-CATGGGATCCATTACGCTAAGCCCTGAG-3` kinC 

oTB62 5`-CACGGAATTCTTGTGCCAGCAAATGATG-3` kinC 

oDG1 5`-AGGCCTCGAGATCTATCGATA-3` pDG782 

oDG2 5`-GGATCCATATGACGTCGACGCG-3` pDG782 

oX1 5`- GGATCCGCTCAACGGCCTCAACCTACTACTG-3` pX 

oX2 5`- AGGCCTGCCGGTCGCTACCATTACCAG-3` pX 
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Figure S1. Ca2+ specifically reduce colony escape. The colony expansion diameters of B. subtilis DK1042 

are shown after 3 (striped), 5 (filled), and 7 (checked) days. Black bars present data in presence, while 

grey bars indicate in absence of KNO3 and SrCl2 in the 2×SG medium. KNO3 was used to observe the 

impact of NO3-, while SrCl2 was applied to assay the influence of another divalent cation. The error bars 

indicate 95% confidence intervals. 
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Figure S2. Impact of Ca2+ on pellicle formation and colony spreading at different nutrient 

concentrations. (A) Pellicle formation of B. subtilis DK1042 on 2×SG medium in the presence (left) and 

absence (right) of Ca2+ supplementation after 3 days. (B) The colony expansion diameters of the B. 

subtilis DK1042 are shown on 1×SG and 4×SG media with 1.5% agar after 3 (striped), 5 (filled), and 7 

(checked) days. The black bars present data in presence, while grey bars indicate in absence of Ca2+ 

supplementation in the media. The error bars indicate 95% confidence intervals. * denotes significant 

differences (p<0.05) analyzed with paired t-test. 

 
Figure S3. Colony escape of various strains on MSgg (A) and 2×SG (B) medium. (A) The colony 

expansion diameters of the B. subtilis DK1042 and its derivatives, Δhag, ΔsrfAA, ΔepsA-O, ΔbslA, and 

ΔkinBΔkinC are shown on MSgg medium after 4 (striped), 6 (filled), and 8 (checked) days. (B) The 

colony expansion diameters of the B. subtilis ΔlcfA, ΔkinA, ΔkinB, ΔkinC, ΔkinD, ΔkinE, ΔkinCΔkinD, and 

ΔdegU are shown on 2×SG medium after 3 (striped), 5 (filled), and 7 (checked) days. Black bars present 

data in presence, while grey bars indicate in absence of Ca2+ supplementation in the respective media in 

both panels. The error bars indicate 95% confidence intervals. * denotes significant differences (p<0.05) 

analyzed with paired t-test. 
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Materials

Name Company Catalog Number Comments

Lennox Broth (LB) Carl Roth GmbH X964

Agar-agar, Kobe I Carl Roth GmbH 5210

Petri dish (90 mm diameter) any NA Use Petri dishes without
ventillation cams

Petri dish (35 mm diameter) any NA Use Petri dishes without
ventillation cams

Difco Nutrient Broth BD Europe 234000

KCl any NA

MgSO,4 7H2O any NA

Ca(NO3)2 4H2O any NA

MnCl24H2O any NA

FeSO4 any NA

D-Glucose any NA

Fluorescence AxioZoom V16
time-lapse microscope

Carl Zeiss Microscopy GmbH see bellow detailed description

AxioZoom V16 Microscope body Carl Zeiss Microscopy GmbH 435080 9030 000

Phototube Z 100:0 for Axio Zoom
V16

Carl Zeiss Microscopy GmbH 435180 9020 000 without eyepieces

Fluar Illuminator Z mot
Fluorescence intermediate tube for
Axio Zoom.V16

Carl Zeiss Microscopy GmbH 435180 9060 000

Controller EMS 3 Carl Zeiss Microscopy GmbH 435610 9010 000

System Control Panel SYCOP 3 Carl Zeiss Microscopy GmbH 435611 9010 000

Reflector module Z Carl Zeiss Microscopy GmbH 435180 9160 000 For Fluar Illuminator Z mot on Axio
Zoom.V16 and SYCOP 3

Filter set 38 HE eGFP shift free (E) Carl Zeiss Microscopy GmbH 489038 9901 000 EX BP 470/40, BS FT 495, EM BP
525/50

Filter set 63 HE mRFP shift free (E) Carl Zeiss Microscopy GmbH 489063 0000 000 EX BP 572/25, BS FT 590, EM BP
629/62

Mount S Carl Zeiss Microscopy GmbH 435402 0000 000

Objektive PlanApo Z 0,5x/0,125
FWD 114 mm

Carl Zeiss Microscopy GmbH 435280 9050 000 164 mm parfocal length; M62x0.75
thread at front

Coarse/fine drive with profile
column

Carl Zeiss Microscopy GmbH 435400 0000 000 490 mm, 10 kg load capacity,
compatible with stand bases
300/450

Stand base 450 Carl Zeiss Microscopy GmbH 435430 9902 000

Cold-light source Zeiss CL 9000
LED CAN

Carl Zeiss Microscopy GmbH 435700 9000 000

CAN-bus cable Carl Zeiss Microscopy GmbH 457411 9011 000 2.5 m length
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Slit-ring illuminator Carl Zeiss Microscopy GmbH 417075 9010 000 d = 66 mm

Flexible light guide 1500 Carl Zeiss Microscopy GmbH 417063 9901 000 8/1,000 mm 

Illumination Adapter for light guide Carl Zeiss Microscopy GmbH 000000 1370 927

Lightguide HXP with liquid fill Carl Zeiss Microscopy GmbH 000000 0482 760 ø3 mm x 2,000 mm

Camera Adapter 60N-C Carl Zeiss Microscopy GmbH 426113 0000 000 2/3" 0.63X

High Resolution Microscopy
Camera AxioCam MRm Rev. 3
FireWire

Carl Zeiss Microscopy GmbH 426509 9901 000

AxioCam FireWire Trigger Cable
Set

Carl Zeiss Microscopy GmbH 426506 0002 000 for direct shutter synchronization

ZEN pro 2012 Carl Zeiss Microscopy GmbH 410135 1002 120 Blue edition, requires min.
Windows 7 64-bit

ZEN Module Time Lapse Carl Zeiss Microscopy GmbH 410136 1031 110

Standard Heating Stage Top
Incubator

Tokai Hit INUL-MS1-F1

Zeiss Stereo Microscope Base
Adapter

Tokai Hit MS-V12

Softwares

ImageJ National Institute of Health,
Bethesda, MD, USA

v 1.49m

BioVoxxel plugin BioVoxxel http://www.biovoxxel.de/
development/
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Supplemental material 

 

Table S1. Strains used in this study 

Strain Genotype Reference 

 

Bacillus subtilis 3610 

TB530 Phyperspank -GFP:Spec hag::Km Mhatre et al., 2017 

TB531 Phyperspank -mKATE2:Spec hag::Km This study 

TB532 Phyperspank -GFP:Spec hag::Km eps::Tet This study 

TB533 Phyperspank -mKATE2:Spec hag::Km eps::Tet This study 

TB534 Phyperspank -GFP:Spec hag::Km bslA::Cm This study 

TB535 Phyperspank -mKATE2:Spec hag::Km bslA::Cm This study 

TB536 Phyperspank -GFP:Spec hag::Km srfAA::MLS This study 

TB537 Phyperspank -mKATE2:Spec hag::Km srfAA::MLS This study 

TB873 Pspachy-bslA:Spec bslA::Cm hag::Km This study 

TB875 Phyperspank -epsA-O:Spec hag::Km This study 

TB977 Phyperspank -srfA:MLS hag::Tet This study 

TB893  hag::Km eps::Tet This study 

TB922 hag::Tet bslA::Cm This study 

TB895 hag::Km srfAA::MLS This study 

DK1042 comIQ12L  Konkol et al., 2013 

TB601 eps::Tet (Dragoš et al., 2017) 

TB602 tasA::Km (Dragoš et al., 2017) 

 

Escherichia coli 

E.coli TB887  MC1061 pTB887 (pTB234:hxlR:lacI:Phy-srfA) This study 

E.coli BL21 Novagen 

E.coli NRS4110 BL21 pGEX_TEV_BslA42-182::Amp Hobley et al., 2013 
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Table S2. Primers 

Primer Sequence (5′-3′) 
oTH1 
(Mhatre et al., 2017) 

GCATCTAGAGTTGCTCGCGGGTAAATGTG 

oTH2 
(Mhatre et al., 2017) 

CGAGAATTCATCCAGAAGCCTTGCATATC 

oTH33 CTGAAGCTTAAGATTAGGGGAGGTATGAC 
oTH34 GGAGCATGCAATGTTCCCGTCACAACATC 
oTH35 GCAGGTACCGCAATGTTCCCGTCACAACATC 
oTH36 CATCTCGAGGTAAATGTGAGCACTCACAATTC 

 

Table S3. Model parameters. 

Symbol Parameter Value 
T Duration of the simulation 24h 
x Width hexagonial lattice 100mm 
ΔT Discretization of time 1 min-1 
Δx Discretization of space 0.25 mm-1 
Δt Discretization of time for Euler approximation 3 s-1 
ø Diameter of inoculum 10 mm 
μij Production rate molecule i by strain j 0.01 min-1 B-1 
δ Degradation rate of surfactin and eps 0.01 min-1 
m Probability of expansion upon biomass doubling 0.90 
α1 Diffusion coefficient of surfactin 10-3 mm2/s*** 
α2 Diffusion coefficient of eps 10-8 mm2/s 
αR Diffusion coefficient of resources 10-3 mm2/s 
τ Threshold concentration needed for expansion 0.01 

*** Comparable to the diffusion of glycerol in water at a temperature of 25oC. 

 

Table S4. Model variables. 

Symbol Variable 
B Biomass 
R Resource 
M1 Secreted molecule 1, surfactin 
M2 Secreted molecule 2, eps 

 

 

Supplementary methods 

Strain construction 

To create fluorescently labelled strains, the gene of the respective fluorescence marker was 

coupled with a Spectinomycin resistance cassette in plasmid pWK-Sp (Susanna et al., 

2007), resulting in plasmids pTB498 (mKATE2) and pTB497 (GFP) as described in Mhatre 

et al. (2017). Similarly, for pTB498, the Phyperspank-mKATE2 fragment was amplified using 

primers oTH1 and oTH2 (Mhatre et al., 2017) from plasmid phy-mKATE2 (van Gestel et al., 
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2014) and was after digestion with XbaI and EcoRI ligated into pWK-Sp (Susanna et al., 

2007). The plasmid was transformed into E. coli MC1061 and verified by sequencing. B. 

subtilis DK1042 was transformed with the plasmids and successful transformation was 

verified by PCR and fluorescence microscopy. Subsequently, hag::Km as well as eps::Tet, 

bslA::Cm and srfAA::MLS deletion constructs were inserted in each fluorescent strain using 

gDNA of GP901 (J. Stülke lab collection) as well as DL1032 (López et al., 2009), NRS2097 

(Verhamme et al., 2009) and DL107 (López et al., 2009) resulting in strains TB530 and 531, 

TB532 and 533 TB534 and 535 and TB536 and 537, respectively. 

To create TB873, B. subtilis was transformed with plasmid pDRyuaB (Kovács and Kuipers, 

2011) harbouring a copy of the bslA gene (formerly yuaB) under control of an IPTG inducible 

promoter. The insertion in amyE was confirmed by PCR and subsequently, deletion 

constructs bslA::Cm and hag::Km were inserted by transformation with gDNA of NRS2097 

(Verhamme et al., 2009) and GP901, respectively. To create TB875, B. subtilis DK1042 was 

transformed with gDNA of NRS1685 (Verhamme et al., 2009) and GP901. To create TB977, 

the srfA gene was PCR amplified using primers oTH33 and oTH34, digested with HindIII and 

SphI and inserted into pDR111 (D. Rudner). The fragment Phy-srfA was then PCR amplified 

using primers oTH35 and oTH36, digested with XhoI and KpnI, inserted into pTB886 

containing the lacI gene and the region upstream of srfA and transformed into E. coli 

resulting in pTB887. The plasmid pTB887 was then used to transform B. subtilis, successful 

integration was verified by sequencing and subsequent transformation with gDNA of GP902 

(Diethmaier et al., 2011) resulted in strain TB977. For TB893, B. subtilis DK1042 was 

transformed subsequently with gDNA of GP901 and DL1032 (López et al., 2009). To create 

TB922, B. subtilis DK1042 was transformed subsequently with gDNA of NRS2097 and 

GP902 (Diethmaier et al., 2011). For TB895, B. subtilis DK1042 was transformed 

subsequently with gDNA of GP901 and DL107 (López et al., 2009). 

 

Test of BslA containing lysate and isolated EPS for pellicle formation 

To test functionality of the BslA containing lysate and the isolated EPS, both compounds 

were mixed in a 1:4 ratio with concentrated biofilm promoting MSgg medium (1.3x 

concentrated, Branda et al., 2001). As controls for BslA and EPS, PBS buffer and deionized 

water were used, respectively. The compound supplemented medium was inoculated 1:100 

with overnight cultures of the respective mutant (ΔbslA or Δeps) in a 24- or 48-well plate and 

a control with only MSgg medium was inoculated with the wildtype (all strains in Δhag 

background, TB532, TB534 and TB530, respectively). The cultures were incubated for 2-3 d 

to allow for pellicle formation and imaged using a Axio Zoom V16 stereomicroscope (Carl 
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Zeiss, Jena, Germany). Additionally, in the BslA test the hydrophobicity of the pellicles was 

determined by depositing a 5 µl water droplet on the pellicle. The test was determined 

successful since the isolated EPS from wild-type and ΔtasA mutant could promote pellicle 

formation of the Δeps mutant but not EPS isolated from this mutant (negative control) (see 

Fig. S4). Likewise, the BslA containing lysate promoted wild-type like wrinkle formation and 

robustness of the bslA mutant and restored its hydrophobic properties which was not the 

case for the control lysate (see Fig. S5). 

 

 

 

Figure S1. Sliding competition with swapped fluorescence markers. Ratio of occupied area of strain 1 
versus strain 2 (in pixel2) of sliding colonies with initial ratios of 1:1 obtained by quantitative image 
analysis using ImageJ. G indicates a green fluorescent strain; R indicates a red fluorescent strain. 
Asterisks indicate significant differences to 1 (one-sample t-test, test mean = 1: P < 0.05, n = 5), error 
bars indicate the standard deviation. 
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Figure S2. Structure of sliding colonies from competition assays with initial advantage of one strain. 
Representative overlays of green and red fluorescent images of competition assays with initial ratio of 
1:10 (above) and 10:1 (below) are displayed. Green text indicates a green fluorescent strain; red text 
indicates a red fluorescent strain. The scale bar indicates 5 mm. 
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Figure S3. Determination of wild-type level of induction with IPTG. The strains with IPTG inducible 
(Phy) epsA-O (A), bslA (B) and srfA-D (C) genes were tested for wild-type level of sliding at different 
concentrations of IPTG. The sliding assay was conducted as described in Experimental procedures 
with IPTG supplemented medium and was evaluated after 24 h by measuring the diameter and was 
compared to wild-type (Δhag) and the respective mutant. The box indicates the selected IPTG 
concentration used in the fitness experiments. Note, that the sliding colonies of Phy-srfA without and 
with 0.025-0.075 mM IPTG were partly translucent and showed outgrowth of few denser sectors 
indicating additional mutations. Error bars indicate the standard deviation (n= 6). 

A 

B

C
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Figure S4. Test of isolated EPS. Strains were incubated statically in concentrated MSgg medium 
supplemented with deionized water (control WT and Δeps) or isolated EPS from wild-type, ΔtasA 
mutant or Δeps mutant (EPSWT, EPSΔtasA, and EPSΔeps, respectively) for 2-3 d. The displayed pellicles 
are representative examples of three or more replicates. Pellicle images were recorded using a Zeiss 
Axio Zoom stereomicroscope equipped with a black and white camera. 

 

 

Figure S5. Test of BslA containing lysate. Strains were incubated statically in concentrated MSgg 
medium supplemented with PBS (control WT and ΔbslA), BL21 lysate or BslA containing lysate for 2-
3 d. The displayed pellicles are representative examples of three or more replicates and were 
recorded few seconds after application of a water droplet on the pellicle surface. Images were 
recorded using a Zeiss Axio Zoom stereomicroscope equipped with a black and white camera and the 
Camstudio onscreen video program.  
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