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Zusammenfassung  

Das Immunsystem ist grundsätzlich für den Schutz des Wirts vor Infektionen 

verantwortlich. Bei gesunden Individuen kann das Immunsystem im 

Allgemeinen invadierte Pathogene bekämpfen und beseitigen. Im Gegensatz 

dazu haben immunsupprimierte Menschen ein erhöhtes Risiko an durch 

Mikroorganismen verursachten Infektionen zu erkranken. Dies kann bereits 

durch normalerweise kommensale Organismen geschehen.  

In extremen Fällen dringen die invadierten Pathogene in den Blutkreislauf des 

Wirts ein und verursachen somit eine systemische Infektion mit 

schwerwiegenden Folgen. Systemische Infektionen können durch 

verschiedenste Organismen, wie Viren, Pilze oder Bakterien, ausgelöst werden.  

Die adäquate Behandlung dieser Infektionen setzt eine schnelle Identifikation 

des invadierten Pathogens voraus. Das derzeitige Standardverfahren zur 

Detektion von Pathogenen sind Blutkulturen, die jedoch eine relativ lange Zeit 

bis zum Erhalt des Ergebnisses benötigen. Die Anwendung von in situ- 

Methoden führt zwar zu einer Identifizierung der pathogen-spezifischen 

Immunantwort des Wirts, bedarf jedoch häufig heterogener Biomarker, da die 

Variabilität der verwendeten Methoden und Materialien sehr groß ist. Die 

Analyse der Genexpressionsprofile von Immunzellen wird immer häufiger 

eingesetzt. Die Anwendung von Support Vector Machinen (SVMs) erlaubt die 

Unterscheidung zwischen zwei Infektionsarten. Der Vergleich von Genlisten 

unterschiedlicher und unabhängiger Studien zeigt einen hohen Grad an 

Inkonsistenz. Ursachen dafür können verschieden stimulierte Zellarten, 

verschiedene Pathogene oder anderer Faktoren sein. In dieser Arbeit wurden 

SVMs in Verbindung mit Gemischt Ganzzahliger Optimierung (Mixed Integer 

Linear Programming, MILP) angewendet, um konsistente Gensignaturen für die 

Differenzierung zwischen Pilz- und Bakterieninfektionen zu erstellen. Im ersten 

Schritt wurden Klassifikatoren verschiedener Datensätze für die Unterscheidung 

von gesunden und infizierten Proben mittels der Zwangsbedingung, 

gemeinsame Merkmale auszuwählen, kombiniert. Nach der Etablierung der 

Methode und  der Verbesserung der Konsistenz der Gensignaturen verbessert  
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wurdeeine generische Gensignatur, die zur Diskriminierung von bakteriellen und 

fungalen Infektionen, unabhängig von der Art der untersuchten Leukozyten 

oder dem experimentellen Ablauf, ist, entwickelt. Die erstellte Liste dieser 

Biomarker zeigte im Vergleich zu Einzel-Klassifikatoren eine um 42% höhere 

Konsistenz und sagte die infektionsverursachende Pathogenart für einen 

ungesehenen Datensatz mit einer durchschnittlichen Genauigkeit von 87% 

voraus. Zuletzt wurde die jeweilige Fokussierung auf ähnliche 

Leukozytenkompositionen, die die Gensignatur signifikant verändert, überprüft. 

Wie erwartet waren immun- und inflammatorisch-relevante Signalwege wie 

beispielsweise die Signalwege für NOD-like und Toll-like Rezeptoren 

angereichert. Erstaunlicherweise zeigte die Gensignatur des kombinierten 

Klassifikators ebenfalls eine Anreicherung des lysosomalen Signalwegs, welcher 

nicht in den Einzel-Klassifikatoren vorkam. Des Weiteren zeigen die Ergebnisse, 

dass der Lysosomensignalweg nach einer Pilz-Infektion spezifisch in Monozyten 

induziert ist. Die Analysen von relevanten Genen des lysosomalen Signalwegs 

mittels quantitativer PCR bestätigte deren erhöhte Genexpression in Monozyten 

während einer Pilzinfektion. 

Im Endergebnis erhöhte der neuenkombinierte Klassifikator die Konsistenz der 

Gensignaturen im Vergleich zu den Einzel-Klassifikatoren und zeigte darüber 

hinaus auch Signalwege von Leukozyten, wie beispielsweise Monozyten, auf, 

die einen geringen Anteil an der Blutzusammensetzung haben. 
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Summary  

The immune system is responsible for protecting the host from infections. In 

healthy individuals, this system is generally able to fight and clear any pathogen 

it encounters. In turn, people with a compromised immune system are at 

higher risk of acquiring infections from microorganisms which are usually 

commensal in nature. In extreme cases, the invading pathogen can enter the 

blood stream leading to a systemic infection and ultimately severe 

consequences. Blood stream infections can be caused by several pathogens 

such as viruses, fungi and bacteria. Delivery of appropriate treatment requires 

rapid identification of the invading pathogen. The current gold standard for 

pathogen identification relies on blood cultures which require a long time to 

produce a result. The use of in situ experiments attempts to identify pathogen 

specific immune responses but these often lead to heterogeneous biomarkers 

due to the high variability in methods and materials used (e.g. stimulated cell-

type, pathogen strain, culture conditions of the pathogen and experimental 

protocols). The analysis of gene expression of immune cells during infection has 

increased over time. Support Vector Machines (SVMs) allow using gene 

expression patterns to discriminate between two types of infection. Comparing 

gene lists from independent studies shows a high degree of inconsistency. To 

produce consistent gene signatures, capable of discriminating fungal from 

bacterial infection, SVMs using Mixed Integer Linear Programming (MILP) were 

employed. Firstly combined classifiers from several datasets by joint 

optimization with the aim to distinguish infected from healthy samples were 

used. Having employed this method and demonstrated the improvement in 

consistency of the produced gene signatures the next aim was to discover a 

generic gene signature that could distinguish fungal from bacterial infections 

irrespective of the type of the leukocyte or the experimental setup. The 

produced biomarker list showed an increase in consistency of 42% when 

compared to single classifiers, and predicted the infecting pathogen on an 

unseen dataset with an average accuracy of 87%. Lastly, the focus was to 

determine whether restricting the analysis to data with similar leukocyte 

compositions would significantly alter the gene signature. As expected, 
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pathways related to immunity and inflammatory processes such as NOD-like 

receptor signaling and Toll-like receptor signaling were enriched. Surprisingly, 

restricting the analysis to datasets comprised of peripheral blood mononuclear 

cells (PBMCs) and monocytes, the gene signature obtained from the combined 

classifier also showed an enrichment of genes from the lysosome pathway that 

was not shown when using independent classifiers. Moreover, the results 

suggested that the lysosome pathway is specifically induced in monocytes. Real 

time qPCRs of the lysosome-related genes confirmed the distinct gene 

expression increase in monocytes during fungal infections. 

In conclusion, the combined classifier approach increased the consistency of the 

gene signatures, compared to single classifiers. This was shown in both 

discriminating infected from healthy samples as well as in discriminating fungal 

from bacterially infected cells. Additionally, the combination of classifiers 

“unmasked” signaling pathways of less-present immune cell types, such as 

monocytes, when restricting the analysis to only PBMCs and monocyte 

stimulated datasets. 
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1. Introduction  

1.1. Sepsis and septic shock 

Sepsis is a medical condition in individuals with a compromised immune system. 

Efforts have been made to clearly define sepsis and septic shock. A task force 

convened by the Society of Critical Care Medicine and the European Society of 

Intensive Care Medicine was created to tackle this issue (Singer et al. 2016). 

They defined sepsis as “life-threatening organ dysfunction by a dysregulated 

host response to infection”. Additionally, they define septic shock as “a subset 

of sepsis in which particularly profound circulatory, cellular, and metabolic 

abnormalities are associated with a greater risk of mortality than with sepsis 

alone” (Singer et al. 2016). Patients with sepsis are characterized by having low 

blood pressure, fever, rapid breathing and altered mental status among others 

(Levy et al. 2003) In the clinics, diagnosis is carried out by performing blood 

tests to identify infecting pathogens, organ function and oxygen availability 

(Rhodes et al. 2017). Additionally, a rapid form of identifying patients with 

suspected sepsis consists of measuring the qSOFA score which is based on 

three criteria: blood pressure, breath rate and mental status (Vincent et al. 

2009). A single point is assigned to each criteria if the following values are not 

met: blood pressure ≤ 100 mmHG, breath rate ≤ 22 breaths/min, and altered 

mentation < 15 (Glasgow coma scale). A qSOFA score ≥2 indicates that a 

patient is suspected of having sepsis with organ dysfunction with higher risk of 

poor outcome (Singer et al. 2016). Common treatment relies on the 

administration of broad-spectrum antibiotics, intravenous fluids to normalize 

blood pressure as well as insulin to maintain stable blood sugar levels and other 

supportive procedures (Vincent et al. 2009) .  

The invasion of microorganisms into sterile parts of the human body, such as 

the blood stream, can in general lead to sepsis and septic shock if not treated 

promptly (Lever and Mackenzie 2007). In a study by Vincent and colleagues 

(Vincent et al. 2009) the most common source of infections present in patients 

in intensive care units (ICUs) where shown to be from gram negative bacteria 

(62%), gram positive bacteria (47%) and fungal pathogens (19%). Sepsis is 
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among the top 10 leading causes of death in the United States of America 

(USA) (Jawad et al. 2012). Not many studies have been performed 

internationally to determine mortality rates, incidence and prevalence but the 

few that exist, nationwide, refer mortality rates as high as 30% and 80% for 

sepsis and septic shock, respectively (Jawad et al. 2012). Additionally, a study 

carried out in the USA also highlighted the elevated costs (20.3 billion US 

dollars) associated with sepsis (Torio and Andrews 2013). High mortality rates 

are correlated with the lack of effective treatment and diagnosis. Therefore, it is 

important to develop novel methods that can rapidly identify the invading 

microorganism so the adequate treatment can be employed. The use of 

biomarkers capable of identifying the underlying source of infection would 

improve substantially the time required for an accurate diagnosis (Bloos and 

Reinhart 2014). 

 

1.2. Fungal infections 

 

Over the last few decades, the interest in invasive fungal infections has 

increased due to the threat and mortality rates they pose to 

immunocompromised individuals (Shoham and Levitz 2005, Horn et al. 2012). 

The increase in immunocompromised patients, those undergone invasive 

medical procedures or those treated with broad-spectrum antibiotics, has 

greatly increased the risk of acquiring fungal infections (Shoham and Levitz 

2005, Romani 2011, Brown et al. 2012, Netea et al. 2015). The increase of 

fungal induced sepsis shows a considerable increase in morbidity and mortality, 

with C. albicans accounting for 10 to 15% of fungal sepsis in the United States 

of America (Delaloye and Calandra 2014). Fungal species such as C. albicans 

usually are commensal and colonize the mucous membranes and skin of the 

host, whilst others such as A. fumigatus, are ubiquitous molds usually taken up 

by the host via inhalation (Shoham and Levitz 2005). Virulence factors such as 

α-(1,3)-glucan, melanin, glucuronoxylomannan, β-glucans and 

glycosphingolipids, among others, are highly involved in fungal pathogenicity 

(Hogan et al. 1996) . The role of the fungal cell wall is of great importance in 
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pathogenicity because it is the structure that establishes first contact to the 

host carrying antigenic determinants and establishing cross-talk between the 

human hosts and invading fungi. In healthy individuals, these interactions 

usually lead to a mounting of an effective immune response (Ruiz-Herrera et al. 

2006). However, in individuals with a compromised immune system or whose 

tissue barriers are disrupted, these fungal organisms may become pathogenic 

and, in some cases, cause systemic infection possibly leading to the death of 

the patient (Netea et al. 2015). Candida species (spp)., Aspergillus spp. and 

Cryptococcus spp. are among the most frequent causes of invasive fungal 

infections with Candida albicans being ranked fourth in the United States of 

America as the main cause of nosocomial bloodstream infections (Brown et al. 

2012). C. albicans and Aspergillus fumigatus have been shown to be the most 

frequent causes of these types of infections in organ transplant patients 

(Pappas et al. 2010). Significant increased mortality of septic shock patients 

was observed if arising from candidemia (Kollef et al. 2012). Candidemia occurs 

when Candida species enter the blood stream causing systemic infection (Garey 

et al. 2006). Patel and co-workers (Patel et al. 2009) displayed a significant 

increase in survival if appropriate antifungal therapy was administered at the 

early stage of Candida albicans induced septic shock. In a cohort study of 

critically ill surgical patients with severe sepsis in China, Xie and co-workers (Xie 

et al. 2008) showed that more than 28% of the patients were identified as 

having invasive fungal infections. Moreover, out of the 100 identified fungal 

strains C. albicans was the most prevalent fungal species (58%). The authors 

also demonstrated that invasive fungal infections were associated with higher 

mortality rates, hospital costs and prolonged stays in the intensive care unit as 

well as hospital stay in general. However, the toxic effect of antifungals on the 

host’s cells hampers the development of new antifungal therapies due to 

protein homology and similar protein synthesis between human and fungal cells 

(Shoham and Levitz 2005). Although the proportion of fungal induced sepsis is 

less when compared to bacterial induced sepsis, the incidence of fungal 

infections in septic patients is on the rise (Delaloye and Calandra 2014). Since 

time is of the essence in the treatment of sepsis, more rapid and precise 
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diagnostic methods are required in order to deliver the appropriate therapy 

(antibiotic versus antifungal). 

 

1.3. Host response to infection 

The human immune system is highly adaptable and a potent mechanism for 

the clearance of pathogens. The complexity of this system is closely linked to 

the interconnection of the multitude of organs, cells and pathways and how 

they tailor immune responses to infecting agents (Nicholson 2016). The overall 

immune response towards infection has been reviewed extensively (Mogensen 

2009), but it is consensual that innate immunity is the first line of defense 

against infection after the physical barriers are overcome (Rivera et al. 2016) . 

The innate immune system is crucial in the early identification and clearance 

of the invading pathogen and, in later stages of infection, of promoting 

additional adaptive immune responses. Innate immunity relies on the 

recognition of pathogen associated molecular patterns (PAMPs) (Mogensen 

2009). The latter are identified by pattern recognition receptors (PRRs), present 

either on the cell surface of immune cells, such as macrophages and dendritic 

cells (DCs), or in the cytoplasm and trigger pro-inflammatory responses and 

subsequent activation of downstream signaling cascades (Mogensen 2009). The 

most studied types of PRRs are Toll-like receptors (TLRs) and NOD-like 

receptors (NLRs). TLRs are usually present on the cell membrane and are 

capable of recognizing distinct PAMPs originated from very different pathogens 

(e.g. viruses, bacteria, fungi) (Delneste et al. 2007, Mogensen 2009, Arias et al. 

2017). TLRs recognize lipids (e.g. TLR1, TLR2 and TLR4), nucleic acids (e.g. 

TLR3, TLR7, TLR9) and proteins (e.g. TLR5) (Gay et al. 2006, Trinchieri and 

Sher 2007, Barton and Kagan 2009, Mogensen 2009). In turn, NLRs are usually 

located in the cytoplasm of the cell and play a key in the regulation of the host 

immune response (Franchi et al. 2009). The interplay and combination of TLRs 

and NLRs can induce general immune responses such as inflammation but each 

of them alone provides limited information on what pathogen is the cause of 

infection. It has been shown that some TLRs, such as TLR2, can recognize  

both lipopolysaccharide (LPS) and zymosan (which represent cell wall 
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components of gram negative bacteria and fungi, respectively) (Fritz et al. 

2006, Franchi et al. 2009, Mogensen 2009), which limits its use to help 

discriminating fungal from bacterial infections. The ability to mount an adequate 

and effective innate immune response relies on the efficient activation of, but 

not exclusively, neutrophils and monocytes and each account for approximately 

62 and 5.5 % of the total number of leukocytes in the blood, respectively 

(Bhushan 2002). Both have been identified as important antifungal effector 

cells (Shoham and Levitz 2005). Neutrophils are the main effector cells in 

fighting C. albicans and A. fumigatus infections (Traynor and Huffnagle 2001). 

Monocytes not only fight infections but can also differentiate into other immune 

cells such as macrophages and DCs which, in turn, are capable of phagocytic 

activity and provide the necessary stimulus to cells of the adaptive immune 

system (Shi and Pamer 2011). Monocytes express most PRRs related to fungal 

(Netea et al. 2008) and bacterial infections (Hessle et al. 2005) but studies have 

shown that the type of infection will trigger different signaling cascades. 

Monocytes take a pivotal role in the early recognition of candidiasis, a non-

systemic infection caused by any Candida species (Netea et al. 2008, Klassert et 

al. 2014, Ngo et al. 2014).They have been suggested as the most effective 

mononuclear leukocyte in the killing of C. albicans (Netea et al. 2008).  

Immune cells exist in the human body in different abundancies. It is possible 

that the impact of immune cells that are less represented in the blood such as 

monocytes (approximately 5%) is not well characterized due to the presence of 

the more abundant leukocytes such as neutrophils and lymphocytes 

(approximately 62%). Studies have shown that the expression of several genes 

is immune cell type-specific (Wong et al. 2011, Allantaz et al. 2012, Gardinassi 

et al. 2016). Other studies have also shown that genes can activate distinct 

molecular pathways depending on the cell population (Didonna et al. 2016). 

Cell-type specific gene expression studies have demonstrated that the relative 

proportion of each leukocyte type invariably has an impact on the global gene 

expression profile (Palmer et al. 2006). Whilst it is vital to understand how our 

immune system responds to infection in general, it is also crucial to understand 

the pathogen-specific host immune responses both dependent as well as 

independent of leukocyte type and cell population. The ability to clearly identify 
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what type of pathogen (e.g. fungal or bacterial) allows the employment of more 

tailored treatments and administration of specific drugs to eliminate the 

infecting pathogen and thus, improving patient outcome. 

 

1.4. Lysosome 

Lysosomes were first discovered in the 1960’s by Christian de Duve (Sabatini 

and Adesnik 2013). These organelles play an essential role  in the degradation 

of extra and intra-cellular components (Schwake et al. 2013). Among others, 

lysosomes are highly involved in functions such as antigen presentation, innate 

immunity, autophagy, cholesterol homeostasis, cell signaling and death (Saftig 

2006, Parkinson-Lawrence et al. 2010). In innate immunity, lysosomes play an 

important role by providing the necessary enzymes for pathogen degradation. 

In addition, lysosomes are also involved in the regulation of inflammatory 

responses (He et al. 2011). Malfunction of the lysosome leads to several 

disorders such as Niemann-Pick disease type C and Fabry´s disease (Vellodi 

2005). Briefly, individuals with Niemann-Pick disease type C display enlarged 

spleen but also progressive neurological disease such as dementia (Vanier and 

Millat 2003). In the case of Fabry´s disease, individuals present a dysfunctional 

metabolism of sphingolipids which can lead to kidney and heart complications 

(Kint 1970). Pathogens such as bacteria (Koo et al. 2008), fungi (Kaposzta et 

al. 1999, Davis et al. 2015) and viruses (Wei et al. 2005) are usually engulfed 

by phagocytes via phagocytosis. Once phagocytes fuse with lysosomes – 

originating the so-called phagolysosomes, the enzymes required for pathogen 

degradation are released. The indigestible material is later released for disposal 

into the interstitial fluid and blood for recycling or for promoting additional 

immune responses such as apoptosis (Colbert et al. 2009). Certain pathogens 

have however, developed strategies to resist the process of degradation and 

thus evade lysosomal influence in the immune response (Nicholson 2016). 

Cryptococcus neoformans, an opportunistic fungal pathogen, was shown to be 

able to avoid degradation even when engulfed by macrophages by damaging 

the lysosome (Kaposzta et al. 1999, Davis et al. 2015). This study showed a 

correlation between C. neoformans replication rates and lysosome damage 
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which highlighted the benefits of an adequate functioning of the lysosome. 

Contrastingly, a rapid recruitment of lysosomal compartments to macrophages 

infected with C. albicans demonstrated to be beneficial for the pathogen 

(Kaposzta et al. 1999). The authors suggested that the acidic environment 

promoted by the fusion of lysosome to phagosomes promoted the formation of 

yeast germ tubes allowing the penetration of macrophages and subsequent 

survival of the fungi (Kaposzta et al. 1999). Lysosomal enzymes such as β-

hexosaminidase have also been shown to play an important role in the control 

of bacteria such as Mycobacterium marinum (Koo et al. 2008). The authors 

showed that the secretion of this enzyme restricted M. marinum intracellular 

growth even when phagosome-lysosome fusion was prevented. Inhibition of 

phagosome-lysosome fusion, which prevents excessive acidification of the 

environment, has been suggested as a resistance mechanism for M. 

tuberculosis to avoid killing by macrophages (Vandal et al. 2009). 

Lastly, the inhibition of the lysosome has also been shown to enhance human 

immunodeficiency virus type 1 (HIV-1) infections (Wei et al. 2005)., which 

further highlights the importance of the lysosome in the clearance of viruses. 

The lysosome plays an important role in the clearance of infection. However, 

both within and between groups of pathogens the regulation and effect of 

lysosomal activity can have opposite effects. Understanding how these 

organelles are activated and how they are expressed by different pathogens 

would provide useful information on pathogen discrimination. 

  

1.5. Pathogen identification 

According to the Biomarkers Definitions Working Group from the National 

Institutes of Health, biomarkers can be defined as “a characteristic that is 

objectively measured and evaluated as an indicator of normal processes, 

pathogenic processes, or pharmacologic responses to a therapeutic 

intervention” (Atkinson A.J. et al. 2001).  

Examples of biomarkers range from medical signs, such as blood pressure 

and fever, to molecular interactions and gene expression alterations (e.g. in 
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response to a specific treatment or infection). However, biomarkers must be 

quantifiable in order to guarantee reproducibility (Strimbu and Tavel 2011).  

Methods for detecting and identifying pathogens can either be culture or 

non-culture based. The first consists of growing the microorganism in culture 

media under controlled conditions whilst the latter consists of detecting and 

measuring antigens or microbial products (Bursle and Robson 2016) that reflect 

the presence of a certain pathogen. 

Currently, culture based methods such as blood cultures are the “gold 

standard” for the identification of pathogens in the blood stream. However, this 

approach can take several days to identify the infectious agent (Kirn and 

Weinstein 2013) or even be unable to identify the microorganism if the culture 

media for the invading pathogen is not the most appropriate (Chan and Gu 

2011). Additionally, the required number of pathogens in the blood sample 

might not be sufficient to provide a positive test (Cunnington 2015). 

As stated previously, an alternative form of diagnosis would be based on 

non-culture based methods measuring the host’s immune cells unique response 

to a specific type of infection or by measuring the levels of antibodies and 

antigens in the blood. Current non-culture based biomarkers for fungal 

infections include galactomannan, antimannan and β-D-glucan since these are 

present in the cell wall of fungal pathogens (Chan and Gu 2011, Patterson 

2011). Polysaccharide mannans represent more than 7% of the dry weight of C. 

albicans and are highly immunogenic (Bursle and Robson 2016) which 

demonstrates the usefulness of measuring such compounds. However, the 

variability of diagnostic accuracy (DA) across different experimental setups 

present a challenge to accurately identify the pathogen (Chan and Gu 2011).  

Polymerase Chain reaction (PCR) is also used as a diagnostic method for 

pathogen identification. Briefly, PCR is a method for amplifying DNA (i.e. 

generating many copies of a section of DNA). An advantage of using this 

technique is that it does not require a great amount of initial DNA. Rapid 

identification of a pathogen by this method can take up to one working day 

(Bloos and Reinhart 2014). The use of PCR-based methods for diagnosis of 

infectious diseases has increased over the years due to its broad-spectrum 

detection of pathogens, relatively rapid procedure and cost when compared to 
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the gold standard methods such as blood cultures (Yang and Rothman 2004, 

Maurin 2012).  Despite overcoming some of the limitations of blood cultures 

such as decreased specificity and time required for pathogen identification, the 

detection of fungal pathogens via this method is, however, still challenging. 

PCR-based methods do not distinguish between alive or dead cells since it only 

detects the presence of DNA or RNA in the blood (Soejima et al. 2008). Further, 

the fungal cell wall prevents their efficient lysis impeding the release of DNA 

(Khot and Fredricks 2009). Fungal spores, due to their ubiquitous nature in the 

air and environment, can lead to false positives either by contaminating 

reagents or during any step in the whole procedure (Khot and Fredricks 2009). 

Inversely, the generation of false negatives also has to be considered due to 

PCR detection limits (i.e. the minimum number of copies of DNA per PCR 

required for detection) (Khot and Fredricks 2009). Additionally, the sequences 

for the genes of interest have to be known beforehand (Lorenz 2012). 

The use of transcriptomic data (i.e. data generated from measuring the 

abundance of mRNA transcripts in samples from the host with or without any 

stimulation) has increasingly been used to identify novel biomarkers (Saraiva et 

al. 2017, 2016, Dix et al. 2015, Linde et al. 2016). Generating transcriptional 

profiles are mainly achieved through DNA microarrays (Quackenbush 2006) or 

RNA sequencing (Wang et al. 2009). DNA Microarrays are the most common 

method in gene expression profiling but as RNA sequencing technology (RNA-

Seq) becomes increasingly available so could the method. Contrastingly to 

microarrays, high-throughput DNA sequencing methods such as RNA-Seq can 

directly determine the sequence of cDNA, present very low noise, have a high 

range for detection of gene expression level, require a low amount of RNA and 

have a relatively low cost for mapping transcriptomes of large genomes (Wang 

et al. 2009).  It has been shown that RNA-Seq outperforms microarrays in the 

detection of low abundant transcripts, identification of genetic variants as well 

as avoiding the issues related to probe cross-hybridization and limited detection 

range of individual probes that exist in microarrays (Bursle and Robson 2016). 

Irrespective of the method used for measuring gene expression, changes in 

the host’s cells phenotype during infection is often correlated to changes in 

gene expression (Jenner and Young 2005).  This change can either be 
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pathogen and cell-type independent (general response) or pathogen and/or 

cell-type specific (specialized response). Dix and co-workers used a machine 

learning based approach and identified genes with which bacterial from fungal 

infections could be distinguished as well as infected from non-infected samples 

in whole-blood cell cultures (Dix et al. 2015). A transcript for the S100 calcium-

binding protein (S100B) was identified as a biomarker gene for identifying 

invasive aspergillosis in hematological patients (Linde et al. 2016). Several in 

situ expression profiling studies have been undertaken (Zaas et al. 2010, 

Smeekens et al. 2013, Dix et al. 2015) to gain insight into the distinct gene 

regulation of the host response of immune cells after fungal and bacterial 

infection. However, the gene lists that were generated by these high throughput 

methods lacked consistency when comparing the results across studies from 

different labs. In this context, consistency is defined as, for the same infection 

similar biomarkers or gene signatures are identified in data, even if generated 

in different labs or at different conditions. Hence, even such controlled cell 

culture studies show high heterogeneity. This may be due to the different 

laboratory settings like different multiplicity of infection (MOI, ratio of number 

of pathogen cells to the number of immune cells of the host), different 

pathogen strains and species, different treatments (heat killed, living 

pathogens, surface molecule extracts such as lipopolysaccharides or glucans), 

or different time points of sample extraction after infection. Still, the major aim 

of all these approaches is to find a gene signature, with which the infection can 

be identified, independent of the specific settings in the laboratories, to 

improve diagnosis in patients. 

 

1.6. Classification 

In the field of machine learning and statistics, classification problems are 

considered as instances of supervised learning. The general goal is to identify to 

which class a sample belongs to. Microbiologically, the data used for 

classification would comprise instances (samples) and features (e.g. transcript, 

protein or metabolite measurements). It is considered a supervised machine 

learning approach because the learning algorithm trains on data whose labels 
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for the samples are known. Used data can be of binary, categorical or 

continuous nature (Kotsiantis et al. 2006, Maglogiannis 2007). The classifier 

will, based on the variables, predict to which class (label) new “unseen” data 

belongs to. In simple terms, the training of the classifier “studies” the 

expression pattern of the data, usually whose labels are known, after which it 

will use the learned information and predict the labels of samples of an 

unknown dataset based solely on the features. The classifiers' evaluation is of 

critical importance and usually based on the accuracy of prediction (number of 

correct predictions divided by the total number of predictions) (Kotsiantis et al. 

2006). Ideally, the classifier uses one dataset for training and an independent, 

unused dataset for testing to avoid overfitting. Overfitting usually occurs when 

the model is too complex due to the excess of parameters compared to the 

number of observations. In other words, the model is excessively tailored to the 

training data which leads to poor generalization. Measuring the complexity of 

the model can be determined by the Vapnik-Chervonenkis (VC) dimension. A 

large VC dimension represents a more complex model. In turn, the more 

complex a model, the better it can separate the data points in the training set. 

To get a better understanding of VC-dimension the concept of shattering must 

first be elucidated. A set of classifiers C (e.g. set of linear classifiers) shatters n 

instances if for each of the possible class labels (class 1 and class 2) there 

exists at least one classifier from our set of classifiers ( Cc ) that can separate 

the instances into their classes. For n instances, the number of possible class 

combinations is 2^n. The maximum number of instances n which can be used 

to separate the classes in a data set is considered the VC dimension. Consider a 

dataset X composed of three instances in a two dimension space. The VC-

dimension is equal to 3 since we can find at least one set of 3 instances all of 

whose classes can be separated by a line (Figure 1).  
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Figure 1 - The line that separates the n instances (number of samples) in the 

dataset X with all possible class assignments (red – class 1, blue – class 2). 
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However, when using a margin to separate classes the VC-dimension is 

calculated by,  

1
2

2


w

D
VC  

 

where D is the diameter of the sphere in which the instances exist and w is the 

margin width (Vapnik 1995)(Figure 2). 

 

 

Figure 2 – Linear classifier with margin width w that separates both classes (red 

– class 1, blue – class 2) in the data 

To note that as the margin width increases, the VC-dimension decreases and, 

consequently, the model´s complexity. Generalization refers to the capability of 

the trained model to be applied to data not used during the learning process. 

One should be aware that performance of the model is determined by its 

predictive capabilities on unseen data. Therefore, having a high performance on 

the training data as the result of overfitting, can lead to a poor performance on 

the test data. The higher the generalization the better it will perform when 

making predictions on new data. 

Nevertheless, it is also possible to build and test classifiers using a single 

dataset. Methods for dealing with this scenario exist such as k-fold cross-

validation, leave-one-out cross-validation and Monte Carlo cross-validation. In k-

fold cross-validation the original data is split into k parts of equal size. During 

each iteration one part is used for testing whilst all others are used for training 

of the classifier. Using a leave-one-out cross-validation, the number of parts into 
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which the data is divided equals the total number of observations. As in k-fold 

cross-validation, the number of iterations will be equal to the number of 

observations and each part is used once as a testing set and the remaining 

parts for training. The Monte Carlo method differs from the above mentioned 

due to its independence of the number of iterations. This method relies on a 

simple random sampling. Simple random sampling consists of selecting every 

individual randomly by chance, with each one of these having the same 

probability of being selected. However, this might result in the overlap of 

sample subsets during the training procedure since in each iteration the 

samples have the same probability to be chosen irrespective of their selection in 

the previous iteration. Independently of the method chosen for cross-validation, 

the general aim is to decrease the problem of overfitting and increase 

generalizability (Kotsiantis et al. 2006, Maglogiannis 2007). 

Many methods of classification have been developed over the years such as 

decision trees, neural networks, k-nearest neighbor, random forest and Support 

Vector Machines (SVMs) (Fernández-Delgado et al. 2014).  In the present work  

SVMs were used and are explained more in detail in the subsection 1.8 

 

1.7. Feature Selection 

Omic data generated from high throughput technologies such as microarrays or 

RNA-Seq is highly dimensional due to the measurement of the expression levels 

of thousands of genes. Feature selection is a method that aims to identify the 

most relevant features in the data and exclude the irrelevant ones. To note that 

feature selection does not change the variable representation but basically 

selects a subset of them. Thus, by identifying the most relevant features, the 

model performance and construction speed are improved (Saeys et al. 2007). 

In classification problems, feature selection methods mainly exist in three forms 

filter, wrapper and embedded, and have been nicely reviewed by Sayes and 

colleagues (Saeys et al. 2007).  

Briefly, filter methods select feature subsets by calculating relevance scores 

(e.g. based on variance of the features) rather than the error rates and exclude 

the lowest ranking ones. These features are then used as the input for the 
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classifier. What one can note from this description is the independence of the 

feature selection process from the classification step. In other words, the 

feature subset is not constrained to any specific prediction model. This also 

allows the use of the feature subset in different classifiers. However, the 

generalizability of the feature subset from filter methods usually results in lower 

prediction performances when compared to other feature selection methods 

(Saeys et al. 2007).   

Wrapper methods extract subsets of features from the available search space 

and then test how well they perform in the classification step. It is considered a 

wrapper method exactly because the search for the subsets of features is 

dependent on the classification model.  Genetic algorithms are an example of a 

wrapper method. As an example consider the following: A dataset consists of 

the gene expression of 10000 genes in 20 samples (divided into two classes). 

The objective function is to select the genes whose expression best 

discriminates between these two classes. First, a random amount of k groups of 

n genes are randomly assigned. Next, the fitness (i.e. the capacity of the genes 

in the group to discriminate the two classes) of each k group is calculated. 

Elements n of different groups are then exchanged and the groups are again 

evaluated.  At the end of this iterative process (which can be decided by the 

allowed number of cross-over of genes between groups) the fittest group has 

the highest probability of being selected.   

Lastly, embedded methods are similar to wrapper methods since the search for 

subsets of features is dependent on the performance of the classifier. However, 

in this case, feature selection is performed intrinsically as a step during the 

training of the classifier (e.g. adding a penalty if the number of features is too 

high in order to obtain a certain performance value) (Saeys et al. 2007). 

Examples of embedded methods include decision trees and weight vector usage 

of SVMs (Chow et al. 2001, Guyon et al. 2002, Saeys et al. 2007).  

 

1.8. Support Vector Machines  

The method of Support Vector Machines (SVMs) is a supervised machine 

learning method broadly used in biological context. Besides the possibility to 
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build not only linear classifiers but also nonlinear ones through use of the kernel 

trick (explained further below), one of its main advantages is its generalizability 

by implementation of a margin. One common application of SVMs is the 

classification based on gene expression profiles. In simple terms and in the 

context of data comprised of infected and healthy samples, an SVM will “study” 

the gene expression pattern and determine how well the expression of certain 

genes can separate the samples according to their infection status. The better 

these features can be used to predict the status of an unknown sample the 

higher the generalization of the classifier. Noble (Noble 2006) stated that only 

four basic concepts were required to understand SVMs: (i) separating 

hyperplane, (ii) maximum-margin hyperplane, (iii) soft margin and (iv) kernel 

function. 

As an example, gene expression data of samples from two conditions (infected 

and healthy) are used to “train” the SVM to identify the expression pattern that 

best differentiates the two classes. If the expression pattern of certain features 

(genes) is discriminative for the two classes then it should be able to correctly 

classify new samples whose status (infected or healthy) is unknown based on 

their expression patterns. 

The higher the number of features the higher the probability that the SVM 

might find a feasible solution that is capable of separating the data points into 

two classes.  

(i) Considering that we have linearly separable data composed of two 

conditions (Figure 3), the expression values of the identified features during the 

classification problem can then be used to predict the status of an unknown 

sample (blue point highlighted by the blue arrow in Figure 3). For this, one just 

needs to see in which side of the line the selected features expression values of 

the unknown sample falls (in this case in “green” group).  

However, data obtained from high-throughput technologies (e.g. microarrays, 

RNA-Seq) generates gene expression values for large amounts of features 

(genes). This increase in the number of features results in a higher dimension 

space and a plane is required to separate the features (separating hyperplane). 
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The optimal hyperplane is defined by Vapnik (Vapnik 1982) as the “linear 

decision function with maximal margin between the vectors of the two classes”. 

 

Figure 3 – Two-dimensional representation of expression profile of 2 classes (A: 

red and B: green) where each dimension is the expression value of a given 

gene. Blue dot represents the new data. 

In this study, this is between vectors of infected and healthy samples, and of 

fungal and bacterial samples. Such hyperplanes can easily be constructed by 

considering very few samples from the training data.  

(ii) In two dimensions, the classifier will identify the separating line that 

distinguishes the samples based on their expression profiles (black solid line in 

Figure 3). However, many lines may exist that achieve that goal (black dotted 

lines in Figure 3). In the case of SVMs, the selected line will be the one that 

maximizes the distance w from any of the expression profiles (Figure 4).  

(iii) Ideally, all data could be divided into two groups just by a straight line. 

Unfortunately, this is not possible in some cases since no line (i.e. hyperplane) 

might exist that separates the two classes (Figure 5). 

 



Introduction 

28 
 

 

Figure 4 - The maximum-margin hyperplane is defined by the space that adopts 

the maximal distance w from any of the points (in this case marked in black 

boxes) to the separating line (dotted line). 

 SVMs circumvent this by allowing the introduction of misclassifications. The 

space in which the SVM allows samples to wrongfully be placed is called a soft 

margin. The larger the margin, the more stable it will be when adding new 

data. In the case of Figure 5, the allowance of one misclassification would 

result in the same maximum-margin hyperplane shown in Figure 4. One should 

be aware that there exists a trade-off between the number of allowed 

misclassifications (and the size of the margin) and the degree of confidence 

that the classifier will identify new samples accurately. This cost function 

Figure 5 – Linearly inseparable data. The presence of one red point in the 

green cluster no longer allows the data to be linearly separated. 

w 
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controls the relative weight between maximizing the margin and degree of 

confidence that new samples will be correctly classified. Increasing the number 

of misclassifications might result in a feasible hyperplane and even on an 

increase of the optimal margin but this could also lead to worse performance 

and generalization and hence pay a cost. Inversely, decreasing the number of 

allowed misclassifications might result on a smaller margin hyperplane but 

improve the classification of the training samples.  

Finally, in cases where the separation of the data points is not possible by a 

straight line (Figure 6), (iv) kernel functions are employed. The kernel 

functions, in simple terms, projects the data in a space with higher dimensions 

in order to find one in which the separation between classes is optimal and 

linearly separable. The kernel function does calculations only with the kernel 

products not requiring the calculation of vectors in higher dimensions. As an 

example, the kernel functions can project 1-dimensional data on higher 

dimensions simply by squaring the original expression values (Figure 7). 

 

By doing so, the SVM has now identified a separating line that distinguishes 

between the two classes of data points (orange and blue) (Figure 7).  

 

In summary, SVMs scale well to larger datasets due to their sparseness of 

solutions, allow the use of kernels to operate in higher dimension spaces and 

Figure 6 - A non-separable one-dimension data (group 1: orange; 

group 2: blue) 
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take advantage of prior knowledge (i.e. by training on data with known class 

labels) (Pavlidis et al. 2004). The reduction of the VC-dimension of these 

classifiers by margin optimization also leads to a decrease in model complexity 

and consequent increase in generalizability (as explained in 1.6 Classification). 

SVMs using high-dimensional kernels also have been shown to outperform 

other classification methods (Brown et al. 2000).  

 

However, SVMs are not without limitations: they handle only binary 

classification problems (Noble 2006); and the running times increase 

exponentially when the amount of data doubles.  

 

1.9. Mixed Integer Linear Programming (MILP) 

 Mixed integer linear programming allows formulating linear optimization 

problems where a subset of variables is restricted to be integer. MILPs have 

gained increasing interest in the field of machine learning (Gordon et al. 2005, 

Schacht et al. 2014, Poos et al. 2016). All MILPs can be written in the form, 

 

 

Figure 7 – Separation of the non-separable data in Figure 6 by squaring the 

data values (group 1: orange; group 2: blue). 
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Objective function:       

Linear constraints:      

Boundaries:      

Integrality constraints:   Some or all xj must be integer values. 

where c, b are vectors and A is a matrix. The solution is also limited by the 

upper (u) and lower (l) boundaries and the integrality constraints xj allow the 

models to ascertain the discrete nature of some decisions (e.g. binary variables) 

(Gurobi Optimization 2016).  

A simple example in which the usefulness of MILP is evident is the 0-1 

Knapsack problem and is formulated as follows: 

 

 

 

(1) 

 

 

 

(2) 

 

In this case, a bag exists with a maximum weight capacity W. The objective 

is to maximize the total value ∑vixi of the items (which can only be selected 

once) to place in the knapsack without exceeding the maximum allowed weight 

W. This is a special kind of MILP because all variables are binary and only one 

constraint exists. Despite its apparent simplicity, it is still an NP-hard problem 

which requires efficient solvers (Garey and Johnson 1979). The decision 

problem form of the knapsack problem is NP-complete. NP-complete 

(nondeterministic polynomial time problem) is a decision problem whose 

solutions can be verified rapidly (polynomial time) although without an efficient 

form of obtaining said solution. In other words, the time required to solve the 

decision problem increases rapidly with the size of the problem itself. NP-hard 

problems are optimization problems whose solutions are at least as hard as the 

decision problem to obtain.  
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Another example of the usefulness of employing MILPs is in the mapping of 

pathway networks onto 2-dimension lattice grids. Pathway analysis commonly 

only lists the genes that comprise the pathway without considering their 

interactions. By mapping pathways onto 2-dimension lattice grids, pathway 

analysis can be performed whilst considering their topological structure and 

how elements of the network interact (Piro et al. 2014). Usually gene 

expression profiling by high throughput technologies such as microarray or 

RNA-Seq identifies gene expression patterns that distinguish two conditions. 

Gene set enrichment analysis is then performed on the identified gene lists but 

does not consider the topology of the networks. In the study by Piro and 

colleagues (Piro et al. 2014) the authors aimed to identify enriched pathways 

that show differential regulation on a global scale but also specifically affected 

by the redirection of metabolic fluxes taking into consideration the topological 

information of the data. Consider Figure 8 as an illustrative example of how a 

metabolic network is embedded into a 2-dimensional grid and how the following 

MILP problem is formulated. 

 



Introduction 

33 
 

 

Figure 8 – Example of a metabolic network without considering topology 

Integer variables for all edges in the network are introduced that model the 

Manhattan distance of the two end nodes. Next, binary variables xvij are 

introduced as an indicator for where on the grid (position (i,j)) the node v 

should be placed. The objective function will be the minimization of the sum of 

the Manhattan distances dab in the grid (equation 3). 
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A grid position must exist for all nodes (equation 4). Each position on the grid 

can only have, at most, one node (equation 5). Note that equations 6, which 

compute the Manhattan distances, are not linear. The linearization of the MILP 

involves converting equations 6 to inequalities. 

 

 
 

(6) 

 

In the end, the 2-dimensional grid would appear as that illustrated in Figure 9. 

 

 

Figure 9 – Two-dimensional grid representation of the network exemplified in 

Figure 8. 

 

Using linear programming for classification was already performed in 1990 by 

Wolberg and Mangasarian (Wolberg and Mangasarian 1990) for the diagnosis of 

breast cancer. Multiple criteria linear programming is a classification method 

commonly used in data mining tasks. Similarly to Support Vector Machines, this 

method is also based on a set of classified training samples. It uses linear 

programming for determining the hyperplane which separates two classes.  

However, this method can only be applied to linearly separable data. Zhang and 

coworkers (Zhang et al. 2011) modified this classification method to not only 

deal with nonlinear separable data (by introducing a kernel function) but also to 

include prior knowledge. Incorporating prior knowledge should, in principle, 

improve outcomes when classifying nonlinear separable data (Zhang et al. 
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2011). They used linear constraints both coming from the training problem and 

from prior knowledge of the underlying classification problem. Considering 

Figure 4 as an example, prior knowledge, in this case, refers to polyhedral 

knowledge sets in Figure 10 (green rectangle and black triangle) in the input 

space of the data which can be expressed as a set of logical rules. 

Subsequently, the latter is converted into a series of equalities and inequalities 

in the SVM formulation (Fung et al. 2003, Zhang et al. 2011). 

The addition of prior knowledge reduces the search space of the classifier. 

However, the inclusion of knowledge sets can change the linear classification of 

the SVM without prior knowledge. The inclusion of knowledge sets decreases 

the search space of the classifier which can lead to fewer solutions. However, 

since these knowledge sets are clearly known to identify each class, any new 

data that falls into these polyhedral sets are most likely to have a high 

confidence score.  

 

 

Figure 10 - SVM including prior knowledge (represented as 

polyhedral sets – green rectangle and black triangle). These 

knowledge sets are more beneficial if selected although other points 

can increase the margin hyperplane. 
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Employment of a constrained based method using Mixed Integer Linear 

Programming (MILP) has also been used in the inference of gene regulation 

(Schacht et al. 2014).  
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2. Objectives  

The discovery of new and consistent biomarkers is an essential tool to 

improve diagnostics in the clinics, especially in the context of sepsis where the 

rapid identification of the invading pathogen can improve clinical outcome due 

to a quick and appropriate application of therapy. 

However, studies have yet failed to produce a consistent and robust gene 

signature capable of distinguishing between microorganisms. In this thesis, the 

aim was to identify novel and robust gene signatures that could be used to 

distinguish fungal from bacterial infections in the human host. Novel 

classification methods were applied to produce robust and consistent 

biomarkers, independently of the cell type. 

The goal was also to obtain information on biological functionality of the 

selected genes in the context of infection and how the host immune system 

reacted to fungal infections. Here, differential expression analysis coupled with 

gene set enrichment analysis were performed.  

The heterogeneous composition of immune cells may mask pathogen 

associated molecular patterns (PAMPs) specific to certain cell types. 

Neutrophils, for instance, account for ~65% of leukocytes. Nevertheless, its 

action in fighting infection might shadow expression patterns of monocytes, 

which only make up for ~5% of leukocytes. Thus,  determining existing 

signaling cascades that are specific or enhanced in similar leukocyte type 

compositions was targeted in addition.  
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3. Materials and methods  

3.1. Dataset Assembly 

The normalized gene expression data from three datasets (accession 

numbers: GSE65088, GSE42606 and GSE69723) was obtained via Gene 

Expression Omnibus (GEO) from the National Center for Biotechnology 

Information (NCBI) database. RNA-Seq data was retrieved from NCBI’s 

Sequence Read Archive (SRA). A study performed by Klassert and colleagues 

(Klassert et al. 2017), and hereon identified as “Klassert”, generated RNA-Seq 

data (accession number SRP076532) which consisted of healthy human blood-

derived monocytes stimulated with heat-killed Aspergillus fumigatus AF293, 

Candida albicans SC5314 yeast (both at a MOI of 1), Escherichia coli serotype 

O18:K1:H7 (MOI of 10) or left untreated (control). Cells were stimulated for 3 

and 6 hours after which their RNA was extracted. On the raw reads a sequence 

quality analysis was performed using FastQC version 0.10.1 and a read 

trimming to 150 bp was performed using FASTX Toolkit 0.0.14 and adapter 

trimming using cutadapt version 1.3. The reads had then been mapped to the 

reference genome GRCh38/hg38 from the UCSC server and counted for each 

gene across all samples using HTSeq-count. The read number per gene, total 

read number per sample and gene length was then used to calculate the Reads 

Per Kilobase of transcript per Million mapped reads (RPKM) values across all 

genes and samples. Genes with RPKM values of 0 across all samples were 

removed. A second dataset (accession number GSE65088) was generated by 

Dix and co-workers (Dix et al. 2015), hereby identified as “Dix”, and consisted 

of anticoagulated blood from healthy human donors challenged with C. albicans 

SC5314 (1 x 106/mL), A. fumigatus ATCC46645 (1 x 106/mL), E. coli 

ATCC25922 (4 x 103/mL) and S. aureus (1 x 106/mL). Mock-infected blood 

samples were used as controls. Samples were taken at 4 and 8 hours post-

infection. 

Smeekens and colleagues (Smeekens et al. 2013) performed a study in 

which Peripheral Blood Mononuclear Cells (PBMCs), isolated from blood of 

healthy human donors, were stimulated with heat-killed C. albicans UC820 (1 x 
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106/mL), Mycobacterium tuberculosis (10ng/mL) and LPS derived from E. coli 

(10ng/mL). Cells grown in Roswell Park Memorial Institute Medium (RPMI) 

culture medium were used as controls (accession number GSE42606). Samples 

were taken at 4 and 24 hours after infection. In this dataset, only the 4-hour 

time point was considered for our studies since the main focus was the innate 

immune response. For future reference this dataset will be identified as 

“Smeekens”. 

The dataset (accession number GSE69723) generated from the study by Czakai 

and co-workers (Czakai et al. 2016), and hereby identified as “Czakai”, 

consisted of healthy human blood derived dendritic cells challenged with 

thimerosal treated C. albicans SC5314 (MOI of 1), A. fumigatus ATCC46645 

(MOI of 1) and E. coli-derived LPS (1µg/mL). Samples were collected 6 hours 

post-challenge. Transcriptomic data generated by us, i.e. Saraiva and 

colleagues (Saraiva et al. 2016), and hereby identified as “Saraiva”, was 

generated by challenging healthy human blood-derived PBMCs with either heat-

killed C. albicans MYA-3573 yeast (MOI of 2) or LPS derived from E. coli 

0111:B4 (10 ηg/mL) (InvivoGen). Four samples were extracted 4 hours post-

infection. RNA was extracted using RNAEasy Kit Qiagen and quantity and 

quality of the total RNA was analyzed using a Nanodrop ND-1000 

spectrophotometer (Thermo Fischer Scientific, USA) and a Tape Station 2200 

(Agilent Technologies, USA). Lastly, transcriptional data of human blood 

isolated monocytes challenged with A. fumigatus conidia (MOI of 2) and LPS 

(10 ηg/mL) was downloaded from the European Molecular Biology Laboratory 

(EMBL) ArrayExpress database (E-MEXP-1103) 

(http://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-1103/) and is hereby 

identified as “Mattingsdal”. A total of 5 and 6 samples were extracted 6 hours 

post-challenge (A. fumigatus and LPS, respectively). On the “generic” fungal 

versus bacteria study, this dataset was used for validation of the gene signature 

whilst in the similar leukocyte study was used for feature selection and training 

of the classifiers. 
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3.2. Data preprocessing 

Each dataset was controlled if prior normalization had been executed on the 

expression data. In the absence of normalization, the following was performed: 

a 1 % quantile was added onto all expression values of the RNA-Seq data and 

log2 transformed, whilst microarray data was normalized by employing the 

functions “lumiN” and method “vsn” of the “lumi” R package (Du et al. 2008). 

Elimination of possible duplicate gene entries was carried out by use of the 

“avereps” function in the “limma” R package (Ritchie et al. 2015), which 

calculates the mean expression values for duplicate entries. Genes with an 

intensity and variance below 40 % were removed. Finally, z-scores were 

calculated for each gene. The gene list, to be used for feature selection and 

classification on infected versus healthy and “generic” fungal versus bacterial 

studies, consisted of the intersection of the gene lists from the datasets 

“Smeekens”, “Klassert”, “Czakai”, “Saraiva” and “Dix” and amounted to 1,567 

genes. The gene list used for the study of similar leukocyte composition was 

composed by 1516 genes and was obtained by the intersection of the gene lists 

from the datasets “Smeekens”, ”Klassert”, “Saraiva” and “Mattingsdal”. 

 

In each dataset, the following procedure was employed: In the infected 

versus non-infected sample analysis, cell-infected samples were assigned to 

group 1 whilst healthy samples were assigned to group 2. In the “Fungal versus 

Bacterial” analysis the samples were grouped into either fungal class (group 1) 

or bacterial class (group 2). The number of samples in each dataset for each 

analysis is shown in Table 1 and Table 2. An important aspect of the datasets 

used in this work is their heterogeneity such as sequencing platforms, type of 

immune cells in each dataset, number of samples per stimulus and different 

microorganisms. 
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Table 1 - Number of samples in each dataset divided into infected and non-

infected status 

Dataset Infected class Non-infected class 

Smeekens 73 30 

Dix 18 18 

Klassert 27 9 

Czakai 12 4 

Saraiva 8 4 

 

Table 2 – Number of samples in each dataset assigned to fungal or bacterial 

groups 

Dataset Fungal class Bacterial class 

Smeekens 24 49 

Dix 16 20 

Klassert 18 9 

Czakai 8 4 

Saraiva 4 4 

Mattingsdal 5 6 

 

 

3.3. Support Vector Machine (SVM) Implementation 

In each analysis, the Mixed Integer Linear Programming (MILP) 

implementation of the Support Vector Machine (SVM) was realized by the 

following equations: The objective function was defined as the maximization of 

the margin of the SVM as seen in Equation 7, 

 

 
 

(7) 
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with t1 and t2 are the margins of class 1 and class 2 to the separating 

hyperplane, respectively. The objective function was subjected to the following 

constraints: 

 

 

(8) 

 

 

 

(9) 

 

Equations 8 and 9, define the constraints applied to the classifier, for both class 

1 (C1) and class 2 (C2), respectively. The scalar product of the gene expression 

gij of sample j with the weight n (for all genes i ϵ {1, …, nGenes}) assigned 

them to a specific side of the margin but only for samples whose variables yj ϵ 

{0,1} were equal to 1. If this scalar product was less or equal than t2 the 

samples were classified as group 2 and if greater or equal to t1, classified as 

group 1. M was a large constant (“big M”) that was set to allow exceptions if yj 

equaled 1. Equation 10,  

 

 

(10) 

constrained the number of allowed misclassifications k during the training (with 

nSamples training samples) of the classifier. k was set to 10% of the total 

number of samples |S|. To ensure that only genes i whose corresponding 

variables xi ϵ {0,1} equaled to 1 were used for classification, constraints of 

equations 11 and 12 were established, 

 

 
 

(11) 

 

 
 

(12) 
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The number of features (genes) to be determined was constrained by equation 

13, in our present study this was set to l=30, 

 

 

 

(13) 

x and y were defined as binary variables which belong to the set of genes G 

and samples S by equations 14 and 15, respectively: 

 

 
 

(14) 

 

 
 

(15) 

To note, applying these sets of constraints generated a MILP problem and not 

an ordinary Linear Programming (LP) problem. Selection of consistent genes 

across all datasets required the combination of two independent MILPs. Each 

independent classifier was established by applying all previously defined 

equations. Next, the problems were connected by a combined objective 

function, equation 16, 

 
 

(16) 
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adding the objective functions of each classifier. Using identical x variables in 

both classifiers ensured that they use the same set of features, possibly leading 

to a decrease in performance of the classifiers (Figure 11).  

Figure 11 - The upper two SVM classifiers maximize the margin independently 

from each other (left: g1 and g2; right: g3 and g4). The lower two maximize the 

sum of the two margins subject to that both use the same set of genes (g1 and 

g2) for the SVMs. 

3.4. Machine learning and statistical analysis 

Balancing classes is standard practice when applying Support Vector 

Machines, because sub-optimal results can be obtained whilst having 

unbalanced classes in the datasets. The training of SVM classifiers on 

unbalanced classes may produce models biased towards the class with the 

highest number of samples (Chawla et al. 2004). To eliminate this problem, a 

stratification approach was implemented during each classification problem. A 

k-fold cross-validation was employed in which 2/3 of the samples from the 

minority class (e.g. infected and non-infected or fungal and bacterial) were 

randomly chosen for training. A 10% sample misclassification was allowed. 

Random samples of the majority class were selected that amounted to the 
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number of samples in the minority class. The remaining samples were used for 

validation and for measuring classifier performance (see 3.5. Overall 

performance). This procedure was repeated 100 times generating 100 lists of 

selected genes used as features of the SVMs. For comparing gene lists across 

single and combined classifiers, the number of selected genes was constrained 

to l=30. Performance was assessed by the accuracy (percentage of correct 

predictions on the test set) of the classification on the validation sample sets. 

Average performance values were calculated for combined classifiers. 

Comparison of single with combined classifier performances was achieved by 

their overall average, respectively. Consistency of selected genes was calculated 

for each pair of lists of selected genes by calculating the pairwise overlap (POL) 

between the 100 gene lists generated during classification of the two datasets 

in question. As an example illustrated in Figure 12, every iteration of the “Dix” 

classifier is intersected with every iteration of the “Smeekens” classifier until all 

possible combinations are accounted for. The number of intersecting genes in 

each pairwise calculation is shown above the blue lines. The average POL, in 

this small example, would be 1.78. 

 

Figure 12 – Illustrative example of the calculation of pairwise overlap between 

classifiers. Every iteration of the “Dix” classifier was compared to every iteration 

of the “Smeekens” classifier and the number of genes present in both classifiers 

is extracted (above blue line and next to the arrow). The total number of 

pairwise overlap combinations in this example is 9 with an average POL value of 

1.78 (16/9 = 1.78). 
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 In the end, the average number of intersecting genes between two 

independent classifiers is calculated. The mean POL and standard deviations 

(1σ) were calculated from the list of POL. The final list of intersecting genes 

was obtained by taking the union of genes from each classifier that were 

selected in at least 40% of the cross-validation runs. 

 

3.5. Overall performance  

Determining the overall performance of the generated models provides an 

estimation of their generalization error (i.e. correct prediction of samples not 

included during the training of the classifiers). This would, ideally, be assessed 

on completely unseen data. An alternative to this, as stated above, is to divide 

the data into parts before feature selection and classification and one of them 

used for classification and the other for testing. Several common performance 

metrics exist such as sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV) and accuracy and are described below. 

Calculating such measures relies on the classification results exemplified in 

Table 3 which reports the True positive (TP), True negative (TN), False positive 

(FP) and False negative (FN) predictions.  

Sensitivity reflects the number of samples that were correctly predicted to 

belong to group 1 (equation 17) divided by the total number of samples of 

group 1, where specificity reflects the number of samples that were correctly 

predicted to belong to group 2 (equation 18) divided by the total number of 

samples of group 2. PPV (equation 19) is the probability that the samples 

assigned to group 1 indeed belong to that group. Similarly, NPV (equation 20) 

is the probability that the samples assigned to group 2 truly belong to that 

group. Finally, accuracy (equation 21) is determined by calculating the 

proportion of correct sample classifications. Table 3 illustrates where the values 

are inserted into the confusion matrix. 
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(17) 

 
 

(18) 

 
 

(19) 

 
 

(20) 

 
 

(21) 

 

 

Table 3 – Scheme of a confusion matrix which contains the results of the 

classifier when comparing two groups. In this case, group 1 is regarded as 

positive. 

  Predicted class 

  Group 1 Group 2 

True class 
Group 1 True positive (TP) False Negative (FN) 

Group 2 False positive (FP) True negative (TN) 

 

As benchmark, the average across all single classifiers, of each of these 

performance measures was calculated. For the combined classifiers, each pair 

of classifiers was run within a cross-validation scheme resampling different sets 

of samples for training and validation and counted the pairwise overlaps of 

pairs of classifiers which have been run on two other datasets. As an example, 

the feature lists from a classifier pair of the datasets of Dix and Klassert was 

compared to the pair of classifiers from Czakai and Smeekens and the number 

of the same selected features counted. This was performed for all combinations 

of the different runs of the cross validation and averaged, yielding the average 
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pairwise overlaps (averaged POL). This was done for all combinations of pairs 

of datasets and compared to the benchmark. Note that intersections in which 

the same dataset occurred on both sides were not considered (Figure 13). 

 

Figure 13 - To compare the benchmark results with the combined approach, the 

resulting gene list of each combination containing one of the datasets (here 

exemplarily shown for Dix) was intersected with each combination containing 

the second dataset (here: Smeekens). Note that intersections in which the 

same dataset occurred on both sides were not considered (here shown 

exemplarily for the combinations Dix & Czakai versus Smeekens & Czakai; or 

Dix & Klassert versus Smeekens & Klassert). (D: Dix, S: Smeekens, C: Czakai, 

K: Klassert, Sa: Saraiva). 

3.6. Gene expression analysis and refinement of gene 

signatures 

Differential gene expression was calculated using Student`s t-tests and 

multiple testing correction was performed by the Benjamini-Hochberg method 

(Benjamini and Hochberg 1995). Genes were considered differentially expressed 

between two classes if their adjusted p-value was equal or below 0.05.  

Refinement of the gene signatures produced during the infected versus healthy 

study was achieved by selecting genes that were present in at least 40% of all 

combined classifier combinations, followed by excluding genes whose 

differential expression profile was not consistent in at least 4 out of 5 datasets.  
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In the generic fungal versus bacterial biomarker study (see 4.2), the 

refinement of the gene signature was assessed by selecting only genes that 

were consistently differentially expressed (Class1 versus Class 2) in all datasets 

used in feature selection and classification. In silico validation of the refined 

gene signature generated from the generic fungal versus bacterial analysis, was 

determined by employing random forest classifiers (available through the 

“caret” package, version 6.0-7.1), trained on four datasets (“Dix”, “Smeekens”, 

“Klassert” and “Czakai”) and tested on “Mattingsdal”. This was performed in 

order to demonstrate that the resulting gene signature could be used to 

discriminate two classes even when using other common classification 

methods. The dataset “Saraiva” was not included during this process due to its 

small sample size (4 fungal samples and 4 bacterial samples).  

The study of datasets with similar leukocyte compositions followed the 

workflow depicted in Figure 14 and is described in the following.  

Genes with an intensity and variance below 40 %, in all datasets (“Smeekens”, 

“Saraiva”, ”Klassert”, and “Mattingsdal”), were removed and the others were z-

normalized. The datasets were next used in (blue) classification and feature 

selection and in (green) the determination of differentially expressed genes. 

From each classifier (single or combined approach), genes that were not 

selected in at least 20% of the total number of runs were excluded. The 

resulting gene lists from each group were united and gene set enrichment 

analysis was performed. Differentially expressed genes were determined in 

each dataset. Next, three lists of genes were produced representing genes that 

were differentially expressed in i) all used datasets (S,Sa,K,M), ii) datasets with 

challenged PBMCs (S,Sa) and iii) datasets with challenged monocytes (K,M). 

Gene set enrichment analysis was performed for each separate list of 

differentially expressed genes. The enrichment results derived from the 

classifiers were then compared to those derived from the differential expression 

analysis. Ideally, the enriched pathways from both approaches should be highly 

similar since both approaches identify genes that distinguish samples belonging 

to two classes. Validation of genes of interest identified during this last study 
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was determined via real-time qPCR by collaboration partners of the Host 

Septomics group led by Dr. Hortense Slevogt. 

All statistical analyses, except for those concerning the RT-qPCR (see 0), 

were performed using R software (http://www.r-project.org/) and packages 

from Bioconductor(Huber et al. 2015).  

The MILP approach was implemented in R using the Gurobi interface library 

and solved with the Gurobi solver (version 6.5.1, www.gurobi.com). 

Ascertaining the functional overview of the refined gene signature was 

achieved using functional annotation tools of the Database for Annotation, 

Visualization and Integrated Discovery (DAVID, version 6.7, 

https://david.ncifcrf.gov/home.jsp) (Huang et al. 2009a) with homo sapiens 

genes as background. Briefly, this web-accessible program allows the user to 

upload gene lists for rapid annotation and analysis. It has the benefit of 

integrating several sources of annotation data such as KEGG, UniGene, and 

Gene Ontology among others (Dennis Jr et al. 2003). Besides the association of 

the uploaded genes to a biological process (i.e. gene ontology terms, KEGG 

pathways) thus grouping them into a functional category, DAVID also calculates 

the most enriched pathways by means of a modified Fisher’s exact test which is 

more stringent than the normal Fisher test (Huang et al. 2009).  

 

http://www.gurobi.com/
https://david.ncifcrf.gov/home.jsp
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Figure 14 - Workflow for analyzing datasets with similar leukocyte compositions 

(explanation in page 48) (S: Smeekens, K: Klassert, Sa: Saraiva; M: 

Mattingsdal) 
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3.7. Experimental validation via quantitative reverse 

transcription PCR (RT-qPCR) 

Experimental validation of genes of interest was entirely done by the 

collaboration partners (Tilman Klassert and Cristina Zubíria-Barrera) of the Host 

Septomics group led by Dr. Hortense Slevogt. The full procedure is described as 

follows. 

 

3.7.1. Monocyte isolation 

Buffy coats of healthy male donors for cell isolation were kindly provided by 

Dagmar Barz in anonymized form (Institute of Transfusional Medicine of the 

Jena University Hospital). Human monocytes were isolated from 50 ml buffy 

coats of four healthy male donors as previously described (Müller et al. 2017). 

Briefly, ficoll-density gradient centrifugation was used to isolate first peripheral 

blood mononuclear cells (PBMCs). After restoring the osmolarity of the cells 

with 0.45% NaCl, remaining erythrocytes were lysed using a hypotonic buffer. 

Where needed, 5×106 PBMCs were seeded in 6-well plates (VWR International, 

Germany) and allowed to equilibrate for 1h at 37°C 5% CO2. From the 

remaining PBMCs, monocytes were then isolated using quadro-MACS (Miltenyi 

Biotec, UK) by labeling the non-monocytic cells with a cocktail of Biotin-

conjugated antibodies and Anti-Biotin Microbeads (Monocyte Isolation Kit II, 

Miltenyi Biotec, UK). Cell viability of > 98% was assayed by Trypan blue 

staining. Monocyte concentration was adjusted to 2.5×106 cells/ml in RPMI 

1640 GlutaMAX medium (Gibco, UK) supplemented with 10% fetal bovine 

serum (FBS, Biochrom, Germany) and 1% Penicillin/Streptomycin (Thermo 

Fisher Scientific, USA), 5×106 cells were seeded in 6-well plates (VWR 

International, Germany) and allowed to equilibrate for 1h at 37°C 5% CO2.  
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3.7.2. Preparation of fungi and bacteria 

Overnight culture from Escherichia coli (isolate 018:K1:H7) in LB medium was 

washed twice in PBS and resuspended in 1 ml RPMI 1640 GlutaMAX medium 

(Gibco, UK) supplemented with 10% FBS (Biochrom, Germany) at a 

concentration of 5×108 cfu/ml. Aspergillus fumigatus (AF293) was grown in 

Aspergillus Minimal Medium (AMM) Agar-plates for 6 days at 30°C. 

Conidiospores were harvested by rinsing the plates with sterile 0.05% Tween-

20 (Sigma-Aldrich, Germany) and filtered through 70-μm and 30-μm pre-

separation filters (Miltenyi Biotec, UK) to get rid of mycelium traces. Spores 

were washed twice in PBS and cell-concentration was adjusted to 107 

conidia/ml in RPMI 1640 GlutaMAX medium supplemented with 10% FBS. 

Conidia were then incubated at 37 °C under shaking for 7 h until cells turned to 

germ tubes. Germlings were centrifuged and resuspended at 1×108 cells/ml in 

RPMI 1640 GlutaMAX medium supplemented with 10% FBS. Overnight culture 

of Candida albicans (SC5314) in YPD medium was washed twice in PBS and cell 

concentration was adjusted to 5×107 cfu/ml in RPMI 1640 GlutaMAX medium 

supplemented with 10% FBS.  

 

3.7.3. Monocyte stimulation assay 

Pathogens were all heat-killed by incubation at 65°C for 30 min before 

infection. Monocytes were stimulated with heat-killed pathogens at a 

pathogen:host ratio of 10:1 for bacteria, 1:1 for A. fumigatus germ tubes and 

C. albicans yeasts. In addition, cells were stimulated with pathogen-derived cell 

wall components: LPS (50 ng/ml) and zymosan (1 µg/ml). After 3 h incubation 

at 37°C and 5% CO2, monocytes were lysed for RNA isolation. To analyse the 

expression level of the genes of interest, total RNA was extracted from 5×106 

Monocytes using the Qiagen RNeasy mini kit (Qiagen, Germany). Residual 

genomic DNA was removed by on-column incubation with DNaseI (Qiagen, 

Germany). A NanoDrop D-1000 Spectrophotometer (Thermo-Fisher Scientific, 

USA) was then used to assess the amount and quality of the isolated RNA 

samples. Complementary DNA (cDNA) was synthesized from 1.5 μg of RNA 
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using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 

UK) following manufacturer’s instructions. To detect the expression of the 

genes by PCR, specific primers for each target were designed using the online 

Primer-BLAST tool of the NCBI (http://www.ncbi.nlm.nih.gov/tools/primer-

blast/). Possible secondary structures at the primer binding sites were taken 

into account by characterizing the nucleotide sequence of the regions of 

interest using the Mfold algorithm (Zuker 2003). The sequences of all primers 

used for amplification are listed in Table S1 in the supplementary material. For 

quantification of the relative expression of each gene, we used a CAS-1200 

pipetting robot (Qiagen) to set up the qPCR-reactions and a Corbett Rotor-Gene 

6000 (Qiagen) as Real-Time qPCR apparatus. Each sample was analysed in a 

total reaction volume of 20 μl containing 10 μl of 2× SensiMix SYBR Master Mix 

(Bioline, UK) and 0.2 μM of each primer. The cycling conditions included an 

initial step of 95°C for 10 min followed by 40 cycles of 95°C for 15 s, 60°C for 

20 s and 72°C for 20 s. For each experiment, an RT-negative sample was 

included as a control. Melting curve analysis and primer efficiency was used to 

confirm the specificity of the qPCR reactions. The relative expression of the 

target genes was analysed using the Pfaffl method (Pfaffl et al. 2004, Rieu and 

Powers 2009). To determine significant differences in the mRNA expression 

between different experimental conditions, the relative quantity (RQ) for each 

sample was calculated using the formula 1/ECt, where E is the efficiency and Ct 

the threshold cycle. The RQ was then normalized to the housekeeping gene 

peptidylprolyl isomerase B (PPIB). The stability of the housekeeping gene was 

assessed using the BestKeeper algorithm (Pfaffl et al. 2004). The normalized 

RQ (NRQ) values were log2-transformed for further statistical analysis with 

GraphPad PRISM v7.02. Statistical analysis was performed using repeated 

measures one way ANOVA and Bonferroni correction. 
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Table 4 - Primer sequences for candidate genes employed in qRT-PCR 

GENE NAME SYMBOL FORWARD 
PRIMER (5'-

>3') 

REVERSE 
PRIMER (5'-

>3') 

SIZE (BP) 

PEPTIDYL-PROLYL 
CIS-TRANS 

ISOMERASE B 

PPIB ATGTAGGCCGGG
TGATCTTT 

TGAAGTTCTCAT
CGGGGAAG 

219 

GALACTOSIDASE 

ALPHA 

GLA AGGAAGAGCCAG

ATTCCTGC 

GCGAATCCCATG

AGGAAAGC 

185 

SCAVENGER 
RECEPTOR CLASS B 

MEMBER 2 

SCARB2 GCATGCACCCAA
ATCAGGAA 

GTCGACTCGCCG
TCTCTTTA 

210 

BCL2 ASSOCIATED 

ATHANOGENE 3 

BAG3 CCAGAAACCACT

CAGCCAGA 

CGGAATGGAGAT

GTACCCCC 

204 

PEROXISOME 

PROLIFERATOR 

ACTIVATED 
RECEPTOR GAMMA 

PPARG ACAGATCCAGTG

GTTGCAGA 

AGATGCAGGCTC

CACTTTGA 

81 

FATTY ACID 
BINDING PROTEIN 

5 

FABP5 AAACCACAGCTG
ATGGCAGA 

GCTTTCCTTCCC
ATCCCACT 

92 

CLUSTER OF 
DIFFERENTIATION 

164 

CD164 CCGAACGTGACG
ACTTTAGC 

GAAGTCTGTCGT
GTTCCCCA 

234 

NPC1 - NPC 

INTRACELLULAR 
CHOLESTEROL 

TRANSPORTER 1 

NPC1 AGCCACATAACC

AGAGCGTT 

GAGTGGCTCCCA

GTAAGACC 

221 

HEME OXYGENASE 1  HMOX1 AACTTTCAGAAG
GGCCAGGT 

AGACTGGGCTCT
CCTTGTTG 

115 

C-C MOTIF 
CHEMOKINE 

RECEPTOR 1 

CCR1 TCTTTGGGCTGG
TATTGCCT 

ACAGCCAGGTCC
AAATGTCT 

235 
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4. Results  

The focus of this thesis was to identify a consistent gene signature for systemic 

infection as well as to discriminate between fungal and bacterial infection, 

either dependent or independent of leukocyte type. For this purpose, a novel 

constrained based machine learning approach was used which connected two 

independent classification problems by constraining them to use the same set 

of genes during feature selection. SVMs were used to implement each 

classification problem. Each classification problem was set up to maximize the 

margin of its respective SVM. To note, classifiers were based on different 

datasets/experiments. Dependency of classifiers on each other limited the 

search space from which features could be selected and forced them to select 

genes which were discriminative for both classification problems (Figure 11). In 

this manner, a “collaborative” selection of genes should enable improving 

consistency of the biomarker gene list across datasets. 

 

4.1.  Discriminating infected from non-infected samples 

The classifier was run on different combinations of sample sets (n=100 training 

sets) obtained from each dataset described in Table 1. For each run, a list of 30 

genes was selected by the classifiers which best maximized the separating 

margin between the classes. The pairwise overlap (POL) of the 100 gene lists 

from each single classifier was calculated and returned an average of 1.50 (1σ 

=0.83). For improving the consistency of the gene lists, two single classifiers 

were combined, each respective to different datasets. At this point, the POL of 

the gene lists from each of the 100 runs from the single classifier and the 

combined classifiers were calculated yielding an average POL of 1.99 (1σ 

=0.65). Additionally, the POL between two combined classifiers was calculated 

in the same manner as previously stated and returned an average value of 2.14 

(1σ =0.61). A considerable increase in consistency of 42% was obtained using 

the combined approach when comparing the averaged POL of single vs. single 

1.50 (1σ =0.83) to combined vs. combined 2.14 (1σ =0.61). To note this 
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difference was significant (P=2.95E-10), using a two-sided Kolmogorov-Smirnov 

test. 

Comparing the actual lists of selected genes from the combined to those of the 

single classifiers also revealed an improved consistency. The composition of the 

gene lists was assembled from all cross-validation runs of each dataset.  

The novel approach also yielded an improved consistency when comparing the 

actual lists of selected genes. For each single classifier (D: Dix, S: Smeekens, C: 

Czakai, K: Klassert, Sa: Saraiva), the genes selected in all cross-validation runs 

were united. Next, the resulting union gene lists for each pair of single 

classifiers (e.g. Dix versus Smeekens) was intersected. The percentage of 

intersecting genes, genes selected only in the first classifier, and genes selected 

only in the second classifier were calculated, respectively. The average number 

of intersecting genes was 8%. This was established as the benchmark and the 

results are shown in Table 5. Similarly to the pairwise comparison of single 

classifiers, an average overall intersection of 12 percent was obtained for genes 

which were commonly selected in the investigated infection datasets using the 

combined approach. For each combined classifier, the genes from all cross-

validations were merged resulting in 6 gene lists. Next, the resulting gene lists 

from all combined classifiers were intersected, resulting in 377 unique genes, 

out of which, 33 genes were selected in at least 40% of all runs of all combined 

classifier combinations. As in the case of combined classifiers, the gene lists 

from all cross-validations from each single classifier were merged together 

which resulted in five gene lists. Next, the latter were intersected yielding 149 

unique genes. In this case, only 8 genes were selected in 40% of all single 

classifier combinations. The 33 genes identified through the combined classifier 

approach were proposed as potential biomarkers for infection. 

 

This was done for each possible combination of single classifiers (9 

combinations). This novel approach required the calculation of such 

intersections between pairs of combined classifiers (see explanation in 

subsection 3.5). The averaged results are given in Table 5 (below “Combined 

Approach”).  
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To note, these results were yielded by selecting the number of genes to use for 

classification of l=30.  This parameter seemed not to be crucial as similar 

improved pairwise overlaps were obtained when selecting l=20 (single 

classifiers: 0.5 (1σ=0.37), combined classifiers: 0.73 (1σ =0.48)). 

 

Table 5 - Percentages of the intersections of the benchmark and the combined 

classifier approach  

 Benchmark Combined Approach 

Single Dataset 1 Dataset 2 Intersection Dataset 1 Dataset 2 Intersection 

D vs S 40 54 6 42 47 11 

D vs C 39 57 4 38 52 10 

D vs K 38 56 6 37 50 13 

D vs Sa 23 67 10 33 55 12 

C vs Sa 33 58 9 39 50 12 

C vs S 49 44 7 38 51 11 

C vs K 45 45 9 35 52 13 

Sa vs S 58 25 17 37 50 13 

Sa vs K 58 34 8 39 50 11 

S vs K 44 49 7 34 53 12 

Average   8   12 

D: Dix, S: Smeekens, C: Czakai, K: Klassert, Sa: Saraiva 

 

Table 6 shows the 33 selected genes, their differential gene expression and 

their significance values for each of the investigated datasets. The average 

accuracy of classification using single classifiers was 90%. When using only the 

above mentioned proposed gene signature for classification on each dataset, 

the average accuracy was of 92%. 

To improve the robustness of the gene signature, the number of discriminating 

genes was further decreased by considering only genes whose differential 

expression profile was consistent in at least 4 out of 5 datasets. The resulting 

list was composed of 23 genes and yielded an average accuracy of 90% when 

used for classification on single datasets. 

Testing was also performed to determine if the prediction performances of the 

classifiers suffered greatly by their combination. Single classifier accuracy was, 
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on average, 90%.  Interestingly, a slight increase, to 93%, in performance was 

obtained when combining classifiers (Table 7). 

Table 6 - Selected genes from all combined classifications and their differential 

expression and regulation. 

Gene symbol 

Dix Smeekens Saraiva Klassert Czakai 

Pval Reg Pval Reg Pval Reg Pval Reg Pval Reg 

ADM 2.1E-06 1 6E-11 1 0.00031 1 3.2E-14 1 0.0000035 1 

CD83 4.1E-12 1 2E-14 1 0.00019 1 1.7E-15 1 0.0000044 1 

MSC 4.3E-07 1 5E-20 1 0.0079 1 3.9E-13 1 0.0000058 1 

BTG3 1.8E-06 1 2E-17 1 0.0029 1 4.1E-12 1 3.1E-07 1 

ZC3H12C 2.3E-10 1 4E-18 1 0.0008 1 1.4E-13 1 0.00002 1 

IRAK2 3.4E-06 1 2E-22 1 0.00012 1 3.6E-12 1 4.8E-07 1 

PIM1 5.9E-13 1 4E-17 1 4.8E-06 1 1.6E-11 1 0.00014 1 

TRAF1 0.00006 1 1E-26 1 0.00054 1 3.1E-10 1 1.7E-07 1 

TXN 2.9E-07 1 4E-18 1 4.4E-05 1 2.9E-12 1 0.000044 1 

USP12 0.0043 1 5E-09 1 0.00087 1 7.6E-12 1 0.0000002 1 

CXCL1 2.7E-06 1 3E-35 1 2.2E-05 1 1.5E-10 1 0.000014 1 

DFNA5 1.9E-05 1 2E-14 1 0.0031 1 4.1E-08 1 0.0000036 1 

GJB2 2.7E-11 1 2E-18 1 0.0002 1 3.8E-14 1 0.000097 1 

IL1B 0.0021 1 8E-40 1 3.3E-05 1 9.3E-09 1 7E-08 1 

IL6 1.6E-13 1 2E-41 1 1.1E-10 1 1.5E-07 1 0.0013 1 

MESDC1 0.0035 1 5E-11 1 6.7E-05 1 3.5E-12 1 0.000002 1 

PPP1R15A 8.8E-08 1 1E-11 1 0.00016 1 4.9E-12 1 2E-08 1 

RGS1 6.6E-19 1 1E-05 1 0.0051 1 7.4E-09 1 0.000016 1 

TXNRD1 0.0017 1 2E-10 1 2.2E-05 1 4.3E-06 1 0.0069 1 

CD300LF 0.0045 -1 7E-16 -1 0.0005 -1 3.2E-08 -1 0.00042 -1 

TMEM170B 1.4E-06 -1 1E-29 -1 0.00015 -1 1.3E-08 -1 0.000014 -1 

TRIM8 3.1E-05 -1 5E-28 -1 0.00034 -1 1.3E-13 -1 0.0000081 -1 

LTA4H 0.00017 -1 3E-26 -1 3.9E-05 -1 9.5E-09 -1 0.000043 -1 

LRRC32 5.9E-07 1 1E-07 1 0.028 0 2.4E-09 1 0.0000018 1 

SDC4 1.2E-05 1 6E-07 1 0.017 0 6.7E-11 1 0.0000057 1 

YPEL2 0.064 0 8E-15 -1 0.00073 -1 2E-16 -1 1.2E-07 -1 

TLR6 1.8E-05 -1 2E-15 -1 0.00013 -1 6.2E-10 -1 0.18 0 

YPEL3 0.086 0 4E-17 -1 0.0021 -1 5.5E-13 -1 6.7E-09 -1 

FAM117B 0.24 0 2E-12 -1 0.017 0 5.7E-13 -1 1.4E-12 -1 

KCTD12 0.04 0 1E-09 -1 0.18 0 1.8E-05 -1 0.14 0 

RGS2 0.17 0 8E-24 -1 0.99 0 8E-07 -1 0.085 0 

CLEC5A 1.3E-07 -1 0.24 0 0.4 0 0.063 0 3.8E-07 1 

JDP2 7.5E-07 -1 0.61 0 0.005 -1 1E-08 -1 0.0000032 1 

Reg: regulation; 0: not differentially expressed; 1: up-regulated; -1: down-

regulated, in fungal versus bacterial infected immune cells. Adjusted P-values 

(P-val) below 0.05 are considered significant. 
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Table 7 – Classifier performances 

Single Combined 

Dataset Accuracy Dataset Accuracy 

Smeekens 0.99 D & S 1 

Dix 1 D & K 0.99 

Czakai 0.92 D & C 0.99 

Klassert 0.97 D & Sa 0.87 

Saraiva 0.63 S & K 0.99 

  S & C 0.99 

  S & Sa 0.81 

  K & C 0.98 

  K & Sa 0.87 

  C & Sa 0.847 

Average 0.90  0.93 

D: Dix; S: Smeekens; C: Czakai; K: Klassert; Sa: Saraiva 

 

Gene set enrichment analysis was performed to determine if pathways were 

significantly represented in the gene signature. Two pathways were significantly 

enriched: NOD-like receptor signaling and Toll-like receptor signaling with 

corrected p-values of 0.005 and 0.013, respectively. Both pathways shared the 

genes IL1β and IL6, differing only in the presence of CXCL1 in the NOD-like 

receptor signaling and TLR6 in Toll-like receptor signaling. Only using genes 

that were differentially expressed and consistently upregulated, in at least 4 

datasets (131 genes), also showed an increased enrichment of the identified 

pathways (P=1.5E-5 and P=4.4E-5, NOD-like and Toll-like signaling pathways, 

respectively) as well as the JAK-STAT signaling pathway (P=1.6E-4). The gene 

lists of both consistently up and downregulated differentially expressed genes 

can be found in Table A1 in the Appendix. 

In summary, combining classifiers improved the consistency of the gene 

signatures generated for discriminating infected from non-infected samples. 
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Additionally, genes involved in the regulation of inflammatory signaling 

pathways were significantly enriched. 

 

4.2. Discriminating fungal from bacterial infected samples  

The main goal of this thesis was to identify host genes and pathways that 

discriminated fungal from bacterial infections, irrespective of the immune cell 

populations. Feature selection and classification was performed on each 

individual dataset in Table 2 (except for the “Mattingsdal” dataset which was 

used for validation) using 100 randomly assigned training sets. As before, a list 

of 30 genes was generated in each run which best discriminated samples 

infected with fungal from bacterial pathogens. The pairwise overlap of the 100 

generated gene lists from each single classifier returned an average value of 

1.09 (1σ=0.35). In this case, a consistent gene signature capable of 

distinguishing fungal from bacterial infections, independent of leukocyte type 

was the main objective. To this purpose, the combined classifier approach was 

employed and returned an average POL of 1.57 (1σ=0.46). The combination of 

classifiers significantly (P=2.2E-16 using a two-sided Kolmogorov-Smirnov test) 

improved the POL by 43% when compared to single classifiers. As performed 

during the infected versus healthy sample analysis, genes that were present in 

all single classifier gene lists and selected in at least 40% of the runs were 

extracted. The same procedure was applied to the gene lists from all combined 

classifiers gene lists. The single and combined classifier final gene lists were 

comprised of 72 and 88 genes, respectively (Table A2 in the Appendix).  

Comparison of the two reduced gene lists revealed that out of the 72 single 

classifier genes, 46 also were selected by the combined approach 

corresponding to 64%. Gene set enrichment analysis of the resulting lists 

(intersection, and both classifier-specific approaches) was performed to obtain 

a functional overview of each of them. Gene Ontology terms such as immune 

response (P=4.2E-3), purine nucleotide metabolic process (P=2.7E-3) and cell 

death (P=1.2E-3) were enriched using the combined classifier specific gene list. 

Single classifier specific genes were enriched in negative regulation of catalytic 

activity (P=5.5E-3). Special interest was given to genes which were consistently 
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selected across all classification runs. No KEGG pathways were significantly 

enriched in either gene list. 

For each dataset, differentially expressed genes in fungal versus bacterial 

stimulated samples were determined. In order to improve consistency of the 

gene signature, genes not differentially expressed in at least 4 datasets were 

discarded from further analysis. In the gene signature, only 19 genes met this 

criterion and, out of these, only 12 were consistently up regulated in the 

datasets. Table 8 shows the list of genes and their regulation across all datasets 

and how many times they were selected during feature selection. The 

respective adjusted p-values are shown in Table A3 in the Appendix. Measuring 

increased gene expression rather than inhibition is easier. Therefore, 

consistently up regulated genes were ranked as the highest followed by those 

consistently down regulated. Inconsistently regulated genes across datasets 

were ranked first if, in most datasets, they were up regulated followed by those 

down-regulated. Within each of these groups (up and down regulated) they 

were further ranked according to the average number of runs in which they 

were chosen during each combined classification problem. The higher the 

frequency of a gene being used to discriminate between infections is, the 

higher is the consistency and robustness of the final gene signature. 

 

 

 

 

 

 

 

 

 



Results 

63 
 

Table 8 – Refined gene signature and regulation across datasets in fungal 

versus bacteria. 

Gene Symbol Dix Smeekens Saraiva Klassert Czakai 
Average Nº 

runs 

HMOX1 1 1 1 1 1 71 

CCR1 1 1 1 1 1 61 

GLA 1 1 1 1 1 48 

TNFSF14 1 1 1 1 1 60 

TBC1D7 1 1 1 1 1 65 

SPRY2 1 1 1 1 1 63 

EGR2 1 1 1 1 1 60 

BCAR3 1 1 1 1 1 59 

PAPSS1 1 1 1 1 1 58 

RRAGD 1 1 1 1 1 55 

DHRS9 1 1 1 1 1 54 

SDSL 1 1 1 1 1 53 

RNF144B -1 -1 -1 -1 -1 67 

ADA -1 -1 -1 -1 -1 56 

SCARB2 1 1 1 1 -1 64 

SOWAHC 1 1 1 1 -1 55 

BLVRA -1 1 -1 -1 -1 64 

EDN1 1 1 1 1 -1 97 

TNFSF15 1 1 1 1 -1 53 

(0: not differentially expressed; 1: up-regulated; -1: down-regulated, in fungal 

versus bacterial infected immune cells) 
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The combined classifiers had a mean value of 0.96 for sensitivity (Sens), 0.97 

for specificity (Spec), 0.97 for positive predictive value (PPV), 0.96 for negative 

predictive value (NPV) and 0.96 for accuracy (Acc). Comparing performances 

values between single and combined classifiers showed, at most, a difference of 

one percent (e.g. accuracy of single classifier for “Smeekens” dataset = 96 %; 

accuracy of combined classifiers using the “Smeekens” dataset = 97 %). Full 

performance values for single and combined classifiers are shown in Table 9 

and Table 10, respectively. 

Summarizing, the combination of classifiers increased the consistency and 

robustness of the gene signature for discriminating fungal from bacterial 

infections in human immune cells. GO terms related to immune response and 

cell death were significantly enriched in the gene signature. 

 

Table 9 - Single Classifier Performances 

 
Smeekens Saraiva Klassert Dix Czakai Average 

Sensitivity 0.94 0.94 0.90 0.95 0.97 0.94 

Specificity 0.98 0.97 0.99 0.96 0.99 0.98 

PPV 0.98 0.97 0.99 0.95 0.99 0.98 

NPV 0.94 0.94 0.92 0.95 0.97 0.94 

Accuracy 0.96 0.95 0.95 0.95 0.98 0.96 

(PPV: Positive Predictive Value; NPV, Negative Predictive Value) 
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Table 10 - Combined Classifier Performances 

 S_Sa S_K S_C Sa_K Sa_C K_C D_S D_Sa D_K D_C Mean 

Sens 0.97 0.95 0.95 0.95 0.98 0.97 0.95 0.97 0.94 0.97 0.96 

Spec 0.98 1.00 0.99 0.93 0.93 1.00 0.97 0.94 0.97 0.97 0.97 

PPV 0.98 1.00 0.99 0.93 0.94 1.00 0.97 0.93 0.97 0.97 0.97 

NPV 0.97 0.95 0.95 0.95 0.98 0.98 0.95 0.97 0.94 0.97 0.96 

Acc 0.97 0.97 0.97 0.94 0.96 0.99 0.96 0.95 0.96 0.97 0.96 

(*S: Smeekens; Sa: Saraiva; K: Klassert; C: Czakai; D: Dix; Sens: sensitivity; 

Spec: specificity;PPV: Positive Predictive Value; NPV, Negative Predictive Value) 

 

4.3. In silico validation of the gene signature discriminating 

fungal from bacterial infected samples 

To determine the generalizability of the gene signature in predicting the source 

of infection irrespective of leukocyte type the biomarker list was applied to a 

new, “unseen” dataset (“Mattingsdal”). To this purpose, microarray data of 

human monocytes challenged with LPS or A. fumigatus was used 

(www.ebi.ac.uk/arrayexpress, E-MEXP-1103). Samples were extracted 6 h post-

infection. Only the consistently up regulated and differentially expressed genes 

from the biomarker list (Table 8) in all datasets were considered in this process. 

Performance results are shown in Table 11. All models predicted the fungal 

infected samples with more than 73% accuracy, yielding an average of 87%. 

Mean sensitivity and specificity values were 79% and 100%, respectively. 

Misclassified samples belonged to bacteria-stimulated monocytes. The results 

clearly show that the used gene signature was capable of discriminating the 

infecting pathogens with a high level of accuracy. 
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Table 11 – Gene signature performance on unseen data 

 
Dix Klassert Smeekens Czakai Average 

Sens 0.71 0.83 1 0.63 0.79 

Spec 1 1 1 1 1 

PPV 1 1 1 1 1 

NPV 0.67 0.83 1 0.5 0.75 

Accuracy 0.82 0.91 1 0.73 0.87 

(Sens: sensitivity; Spec: specificity; PPV: Positive Predictive Value; NPV, 

Negative Predictive Value) 

 

 

4.4.  Monocyte-specific fungal immune response 

Whilst it is vital to identify genes whose expression is consistently differentiating 

between fungal and bacterial infections irrespective of leukocyte type, it is also 

important to determine which genes consistently discriminate fungal from 

bacterial infections in specific immune cell populations. The host immune 

response consists of many players which exist at different ratios (Bhushan 

2002). Thus, it is also important to understand how specific immune cells 

respond to specific infecting pathogens and identify possible differences. To this 

purpose, classifiers using only PBMC datasets (“Smeekens” and “Saraiva”) and 

monocyte datasets (“Klassert” and “Mattingsdal”) as cell population were 

combined. The “Dix” dataset due to its high heterogeneity (whole blood) and 

the “Czakai” dataset due to its high specificity (dendritic cells) were 

disregarded.  

A list of 30 genes was generated in each classification run which best 

discriminated samples infected with fungal from bacterial pathogens. The 

averaged POL of the 100 generated gene lists of single versus single, single 

versus combined and combined versus combined classifiers returned values of 

0.78 (1σ=0.41), 1.09 (1σ=0.48) and 1.64 (1σ=0.49), respectively. The mean 
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POL of combined versus single already showed an increase in almost 40% 

when compared to single versus single, increasing to 100% when calculating 

the POLs between combined classifiers. Comparing these results to the previous 

in the study of infected versus non-infected samples (see 4.1), an increase in 

POL of almost 60% was obtained. 

Next, determination of pathways that were significantly enriched in both the 

single and combined classifier gene lists was performed. To this purpose, the 

genes that were not selected in at least 20% of the total number of all runs of 

each classifier (single or combined) were discarded. A total of 175 and 164 

genes, for single and combined classifiers, respectively, remained (Table A4 in 

the appendix). The enriched gene sets of single and combined gene signatures 

are shown in Table 12 and Table 13, respectively. Only one enriched KEGG 

pathway of the combined classifier gene list was not present in that of the 

single classifier – the lysosome pathway. For each dataset, differentially 

expressed genes in fungal versus bacterial infected samples was calculated.  

Intersection of differentially expressed genes was performed not only for all 

datasets but also based on immune cell population. This resulted in the 

generation of 3 gene lists (cell population independent, PBMC-specific and 

monocyte–specific).  

The intersection of the differentially expressed genes across all datasets (cell 

population independent) resulted in a list of 13 genes (ST3GAL5, HMOX1, 

LGALS9, GLA, HAVCR2, TBC1D9, ACADVL, BCAR3, RHOU, MGAT2, CCL23, 

RGS1, SPRY2) and did not reveal any enriched pathways.  

 

 

 

 



Results 

68 
 

Table 12 – Significantly enriched gene sets for the list of genes from single 

classifiers. 

Pathway P-value 

Chemokine signaling 2.3E-17 

Cytokine-cytokine receptor interaction 8.6E-15 

Toll-like receptor signaling 2.7E-5 

Jak-STAT signaling 7.2E-4 

Chronic myeloid leukemia 0.0011 

Leukocyte transendothelial migration 0.011 

Natural killer cell mediated cytotoxicity 0.192 

B cell receptor signaling 0.031 

Fc epsilon RI signaling 0.035 

Intestinal immune network for IgA 

production 
0.042 

 

Table 13 - Significantly enriched gene sets for the list of genes from combined 

classifiers. 

Pathway P-value 

Toll-like receptor signaling 2.2E-4 

Cytokine-cytokine receptor interaction 3.1E-4 

Lysosome 0.014 

Chemokine signaling 0.027 

Jak-STAT signaling 0.042 
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As stated before, monocytes are vital players in the control of infection, either 

by promoting inflammation or by differentiation into other immune cells (Shi 

and Pamer 2011). The processes which they influence, however, can be distinct 

to those of other more present immune cells such as lymphocytes and may be 

“masked” due to the overwhelming expression of said cells. Intersecting 

differentially expressed genes of the datasets encompassing solely monocytes 

resulted in a list of 720 genes, whilst the intersection of datasets comprised of 

PBMCs resulted in a list of 57 genes. The enriched gene sets for PBMC-specific 

and monocyte-specific differentially expressed genes are shown in Table 14. 

The enriched gene sets in all groups suggested that genes coding for the 

lysosome were specifically induced by monocytes during a fungal challenge. To 

note, the combined classifier-originated gene list also showed an enrichment of 

genes coding for the lysosome. Additionally, the differentially expressed and up-

regulated genes (in fungal versus bacterial) from the monocyte datasets 

(Klassert and Mattingsdal) were intersected and gene set enrichment tests were 

performed. Only two pathways were significantly enriched – the lysosome and 

Toll-like receptor signaling (P=3.2E-4 and 0.015, respectively). This strengthens 

the initial finding that cell type specific gene expression is still captured when 

combining classifiers, without the requirement of performing a cell type specific 

analysis beforehand. Performing gene set enrichment tests on differentially 

expressed genes from cell type specific datasets produced the same results. 

 

The lysosome gene set was comprised of 123 genes out of which 13 were 

differentially expressed and upregulated in both monocyte datasets.  

Gene set enrichment was also performed on the gene list that resulted in the 

intersection of differentially expressed and up regulated genes considering only 

the datasets of stimulated PBMCs. Results are shown in Table 15. 
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Table 14 - Enriched gene sets of PBMC-specific and monocyte-specific 

differentially expressed genes in fungal versus bacterial infection 

PBMC-specific Monocyte-specific 

Gene set P-value Gene set P-value 

Jak-STAT 

signaling 

0.0011 Toll-like receptor 

signaling 

2.5E-5 

Toll-like receptor 

signaling 

0.0035 NOD-like receptor 3.5E-5 

Cytokine-cytokine 

receptor 

interaction 

0.046 Hematopoietic 

cell lineage 

2.4E-4 

  Cytokine-cytokine 

receptor 

interaction 

3.9E-4 

  Chemokine 

signaling 

0.0018 

  Jak-STAT 

signaling 

0.0035 

  Lysosome 0.0044 

  Cytosolic DNA-

sensing 

0.0049 

  MAPK signaling 0.0054 

  Adipocytokine 

signaling 

0.016 
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Table 15 - Enriched pathways using PBMC-specific differentially expressed and 

up regulated genes in fungal versus bacterial induced immune cell response. 

Pathway P-value 

Jak-STAT signaling 4.8E-4 

Cytokine-cytokine receptor interaction 0.026 

Toll-like receptor signaling 0.026 

 

In addition it was also interesting to determine the differences of immune cell 

population specific responses in fungal versus bacterial infections. The 

identification of pathways that were not enriched using the independent-cell 

type gene signature suggested that cell type specific responses were possibly 

being “masked” by the net effect of the whole immune system as expected. 

Since low-present monocytes (when compared to neutrophils) play an 

important role in the identification of pathogens (Lauvau et al. 2015) the 

monocyte-dependent responses were studied in detail.  

 

4.5. Real time quantitative reverse transcription PCR analysis 

of monocytes challenged with fungal and bacterial 

pathogens and cell wall representatives of each 

microorganism 

In order to determine if the gene expression patterns are, in fact, a 

result of the pathogen´s presence, experimental validation was performed via 

in vitro stimulation of monocytes by fungal and bacterial pathogens as well as 

cell wall representatives of each pathogen (zymosan or LPS, respectively) 

following RT-qPCR. Experimental procedures and statistical analysis of the RT-

qPCR results were performed by collaboration partners at the Host Septomics 

group led by Dr. Hortense Slevogt and are described below. 

The gene signature obtained from the combined classifiers that 

discriminated fungal from bacterial infections, independent of cell population, 
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contained four lysosome-related genes. These were selected for real time RT-

qPCR analysis. The genes were Galactosidase A (GLA), Scavenger receptor class 

B member 2 (SCARB2), Niemann-Pick disease, type C1 (NPC1) and CD164 

molecule (CD164). The real-time RT-qPCR plots are shown in Figure 15.  

Additionally, due to their consistent expression across all datasets, five 

further genes were also selected for RT-qPCR, however, unrelated to the 

lysosome. These were the BAG family molecular chaperone regulator 3 (BAG3), 

the fatty acid binding protein 5 (FABP5), the Peroxisome proliferator-activated 

receptor gamma (PPARG), the heme oxygenase 1 (HMOX1) and the C-C 

chemokine receptor type 1 (CCR1) (Figure 18).  

The complete table of the real-time RT-qPCR mean expression values 

across conditions and corresponding p-values is shown in Table A5 in the 

appendix.  
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Figure 15 – Lysosomal genes are significantly upregulated in monocytes 

challenged with fungal pathogens in comparison to bacterial. Relative mRNA 

expression of GLA, SCARB2, CD164 and NPC1 after monocyte stimulation with 

Candida albicans (C.a.), Aspergillus fumigatus (Asp.) and Escherichia coli (E. 

coli). Data were obtained from four independent experiments, each performed 

with cells from different donors. Results are presented as mean ± SE of the fold 

change relative to the control (unstimulated cells). Shown is also the statistical 

significance after repeated measures One-Way ANOVA with Bonferroni 

correction (***p<0.001; **p<0.01; *p<0.05). 
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Almost all lysosome related genes showed a significant increase in their 

expression when the fungi-stimulated group was compared to either the 

unstimulated controls and/or to the bacteria-challenged samples. GLA was 

significantly up-regulated by both fungal pathogens when compared to either 

control or  E. coli-stimulated monocytes. Besides this, the C. albicans stimulated 

monocytes also showed, although not as strongly, a significant increase when 

compared to A. fumigatus. SCARB2 was highly significantly up-regulated in C. 

albicans-stimulated monocytes when compared to E. coli. It also showed a 

significant increase when compared to controls and to A. fumigatus-challenged 

monocytes. In E. coli stimulated monocytes, SCARB2 was significantly down 

regulated when compared to controls. NPC1 showed significant increased 

expression in A. fumigatus-stimulated monocytes when compared to all other 

challenges. C. albicans-stimulated monocytes also showed significant increase 

of NPC1 gene expression when compared to controls. Lastly, CD164 showed 

significant increased expression in both fungal-challenged monocytes when 

compared to E. coli and controls.  

In summary, the expression of the selected genes to be either specifically or 

significantly more up-regulated in monocytes stimulated by fungal pathogens 

when compared to monocytes stimulated by bacterial pathogens confirming 

them as potential biomarkers for fungal versus bacterial induced systemic 

infection could be validated. 

To further strengthen the suggestion that the lysosome genes were, in fact, 

significantly different in monocytes when compared to PBMCs, an additional set 

of experiments was performed. This consisted of stimulating, in parallel, 

monocytes and PBMCs from blood of the same donors, with C. albicans, A. 

fumigatus and E. coli. The fungi-specific pattern observed for lysosome-related 

genes in monocytes was less evident in PBMCs (Figure 16). The results 

obtained are in agreement with the readouts from both microarray and RNA-

Seq datasets (monocytes versus PBMCs). In turn, this could help explain why 

the lysosome pathway was significantly enriched only using the monocyte 

datasets. 
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Figure 16 – Lysosomal genes are significantly differentially expressed in 

monocytes when compared to PBMCs upon challenge with fungal and bacterial 

pathogens. Comparison of lysosomal-related gene expression levels in 

pathogen- stimulated PBMCs and monocytes. The validation experiments were 

repeated with 4 additional donors, from which both monocyte and PBMC 

fractions were isolated. These were then separately and simultaneously 

stimulated with C. albicans (C.a.), A. fumigatus (A.f.) and E. coli (E.c.) as 

detailed in the material and methods section. Results are presented as mean ± 

SE of the fold change relative to the control (unstimulated cells). Shown is also 

the statistical significance after repeated measures Two-Way ANOVA with 

Bonferroni post-hoc test (*p<0.05). 

 

Real time RT-qPCR was also performed on monocytes challenged with cell wall 

components representative for the above-mentioned pathogens (zymosan for 

fungal pathogens and LPS for gram-negative bacteria). The RT-qPCR barplots 
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of the lysosome-related genes are shown in Figure 17 and the table with the 

full results in the appendix (Table A5).  

Figure 17 – GLA and SCARB2 genes are significantly differentially expressed 

(compared to control) in monocytes challenged with bacterial LPS but not with 

fungal zymosan. Relative mRNA expression of GLA, SCARB2, CD164 and NPC1 

after monocyte stimulation with zymosan (1 µg/ml) and LPS (50 ng/ml). Data 

were obtained from four independent experiments, each performed with cells 

from different donors. Results are presented as mean ± SE of the fold change 

relative to the control (unstimulated cells). Shown is also the statistical 

significance after repeated measures One-Way ANOVA with Dunnett post-hoc 

test (*p<0.05). 
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GLA gene expression in monocytes was higher expressed in both stimuli 

(zymosan and LPS) when compared to controls. However, this increase was 

only significant when monocytes were stimulated with LPS. When comparing 

the effects of cell wall representatives to inactivated pathogens, only LPS 

matched that of E. coli. Zymosan did not significantly induce GLA expression 

when compared to fungal pathogens. In the case of SCARB2, both zymosan 

and LPS inhibited the expression when compared to unstimulated monocytes. 

Again, only LPS was capable to inhibit significantly SCARB2 expression which is 

in agreement with the results of monocytes challenged with E. coli. Monocytes 

challenged with zymosan exhibited decreased expression of SCARB2 compared 

to the controls although not significant and this was opposite of the gene 

expression profile of monocytes challenged with C. albicans (significantly up 

regulated - Figure 15). NPC1 expression, although not significant, was 

increased in both zymosan and LPS challenged monocytes when compared to 

controls which exhibited the same trend in expression when compared to 

monocytes challenged with the inactivated pathogens Finally, CD164 did not 

show any significantly increased or decreased expression when comparing 

different pathogenic cell wall components to each other or to controls. This 

result contrasts to that of monocytes challenged by fungal and bacterial 

pathogens, which showed a significant increase of CD164 gene expression 

during C. albicans and A. fumigatus and a decrease during E. coli stimulations. 

In summary, RT-qPCR results show a significant increase in expression of 

all four lysosome related genes when challenged by both fungal and bacterial 

pathogens. The exceptions are the gene expressions of SCARB2 and CD164, 

where a significantly decreased expression was shown during bacterial 

challenge. Monocytes challenged with cell wall representatives of fungal 

(zymosan) or bacterial (LPS) species revealed that SCARB2, GLA and NPC1 

genes (but not CD164) displayed a similar expression pattern as the one seen 

when using inactivated pathogens. However, GLA and SCARB2 expression was 

only significantly different to controls when challenging monocytes with LPS. 

The results for non-lysosome related genes show that all genes were 

significantly up-regulated in monocytes challenged with either C. albicans or A. 
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fumigatus (Figure 18).  Inversely, when monocytes were challenged with E. 

coli, these genes, with the exception of BAG3, were either significantly (CCR1 

and HMOX1) or non-significantly (FABP5 and PPARG) down-regulated (Figure 

18).   

In summary, monocytes challenged with fungal and bacterial pathogens 

clearly showed, with the exception of BAG3, different expression patterns of the 

non-lysosome related genes.  
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Figure 18 – Fungal pathogens induce increased expression of selected non-

lysosome related genes contrastingly to bacterial pathogens. Relative mRNA 

expression of FABP5, PPARG, CCR1, BAG3 and HMOX1 after monocyte 

stimulation with Candida albicans (C.a.), Aspergillus fumigatus (Asp.) and 

Escherichia coli (E. coli). Data were obtained from four independent 

experiments, each performed with cells from different donors. Results are 

presented as mean ± SE of the fold change relative to the control 

(unstimulated cells). Shown is also the statistical significance after repeated 

measures One-Way ANOVA with Bonferroni correction (***p<0.001; **p<0.01; 

*p<0.05). 
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5. Discussion 

As stated in the objectives of this thesis, the main goal was to generate a 

robust and consistent gene signature capable of discriminating fungal from 

bacterial infection in the human host. To this purpose a newly developed 

method capable of increasing consistency in the generated gene signatures 

across several experimental assays was employed.  

MILPs were used for extending the pure classification problem. Allowing 

integer (in this case binary) requirements on a subset of the variables makes 

the classification tool much more flexible and powerful. Unlike Linear 

Programming, MILPs enable the modeling of discrete variables and constraints 

like e.g. the restriction on a small subset of the features used for classification 

or allowing a small amount of exceptions in the training set. Using MILPs 

enabled linking two classifiers, constrained to use the same set of features 

(genes). Additionally, the combination of classifiers did not require prior 

preprocessing for minimizing technical differences such as means, ranges and 

standard deviations, for datasets generated from diverse platforms (Johnson et 

al. 2007). In contrast to Linear Programming problems, the major disadvantage 

of MILPs is their complexity, which requires intensive computational power. But 

in the meanwhile, there exist very efficient solvers which are fast enough to 

find at least nearly optimal solutions within a given time limit.  

 

5.1. Combining classifiers improves consistency of gene 

signatures 

5.1.1. Infected versus Non-infected 

To determine the consistency of gene signatures by combining classifiers 

this novel method was employed to distinguish infected from non-infected 

samples. The pairwise overlap of the combined classifiers increased by 0.64 

when compared to single classifiers. This corresponds to an increase in 

consistency of 42%. Intersection of the gene lists between single classifiers and 
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between combined classifiers also showed an average improvement of 50% 

(i.e. 8 and 12% for single and combined classifiers, respectively). 

A decreased performance when combining classifiers was expected, since 

during feature selection the individual classifiers were “forced” to choose the 

same genes that discriminated between infected and healthy samples. 

Interestingly, the combined classifiers displayed a higher accuracy than single 

classifiers (92% to 90%, respectively). 

 

5.1.2. Fungal versus bacterial independent of cell 

population  

The high consistency and accuracy of the combined classifier approach 

gave confidence to pursue the main goal of the study – generate a consistent 

gene signature capable of discriminating fungal from bacterial infections in the 

human host, irrespective of the leukocyte cell population. This becomes greatly 

important in the context of sepsis where a rapid and accurate identification of 

the underlying pathogen improves the chance of survival by an appropriate 

subsequent treatment of the patient. Employing this novel approach, a gene 

signature was generated capable of distinguishing between fungal and bacterial 

infected samples with an average accuracy of 96%. The pairwise overlap 

(number of genes consistently selected across runs) was 43% higher than that 

of the single classifiers which showed an immediate improvement in feature 

consistency without introducing prior knowledge into the feature selection and 

classification problem. This novel method showed no decrease in performance 

when compared to single classifiers. From the genes consistently selected by 

single classifiers, 64% were also identified by the combined classifier approach 

which demonstrated that combining classifiers did not result in a completely 

different gene list. 

The combined classifier approach produced a consistent list composed of 75 

genes. Following differential expression analysis and imposing that genes 

should be differentially expressed in at least 4 datasets, decreased the list to 19 

genes of which 12 were consistently up-regulated in all datasets. This refined 
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gene list was tested on a new “unseen” dataset (“Mattingsdal”) and classified 

the samples with an average accuracy of 87%. Interestingly, misclassification of 

samples only occurred for bacterial infected samples, shown by a perfect score 

in terms of sensitivity for fungal infections. This may have an advantage for 

clinical transfer as the comparably less often occurring fungal systemic infection 

needs to be precisely identified during sepsis. 

In summary, combining classifiers leads to improved consistency of gene 

signatures with even higher levels of accuracy when compared to single 

classifiers independently of the immune cell population. 

 

5.1.3. Fungal versus bacterial dependent on cell population 

Lastly, employment of the novel method on datasets composed of relatively 

heterogeneous populations of immune cells (PBMCs and monocytes) 

demonstrated its ability to additionally identify cell-specific signatures. As before 

in the previous results of this study, a higher pairwise overlap of genes was 

observed in the gene lists generated from combining classifiers when compared 

to single classifiers. Combining classifiers for discrimination between fungal and 

bacterial infections independently of immune cell population, such as PBMCs 

and monocytes, generated a gene signature enriched for several immune 

signaling pathways. Among them the lysosome gene set was observed to be 

specific for monocytes. This was ascertained by the comparison of the enriched 

signaling pathways of differentially expressed genes in cultures of monocytes 

against PBMCs, both challenged with fungal or bacterial pathogens. The results 

were further experimentally validated by employing qPCR and analyzing a set of 

lysosome-related genes that were either selected by the combined classifier or 

uniquely differentially expressed in the monocyte challenged datasets. As 

shown in the results, all the lysosome-related genes (GLA, SCARB2, NPC1 and 

CD164) exhibited a significant increase in their expression after fungal 

challenge when compared to bacterial stimulation, indicating a fungal-specific 

response by monocytes (Figure 15). Similar results were obtained for other, 

non-lysosome related genes that were part of the fungal-specific signature and 
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also these genes could be validated by qPCR (Figure 18). These genes included 

BAG3, PPARG, FABP5, HMOX1 and CCR1.  

 

5.2. Gene set enrichment analysis of combined classifiers 

Inflammatory signaling pathway genes are enriched in infection and help to 

discriminate fungal from bacterial infections independent of immune cell 

population. 

Gene set enrichment tests revealed that the nucleotide-binding 

oligomerization domain-like receptor (NLRs) signaling and Toll-like receptor 

(TLR) signaling pathways were significantly enriched in the gene signature for 

discriminating infected from non-infected samples. This became even more 

evident when gene set enrichment tests were performed using the whole list of 

differentially expressed genes in at least 4 datasets. TLRs and NLRs have long 

been studied and reviewed in the context of immune response and have been 

proven to play key roles in pathogen-associated molecular pattern (PAMP) and 

damage-associated molecular pattern (DAMP) sensing (Netea et al. 2004a, 

Takeda and Akira 2005, Kanneganti et al. 2007, Rietdijk et al. 2008, Chen et al. 

2009). Not only are they part of the pattern recognition receptor family, but 

they also interact with each other to modulate other cellular processes such as 

inflammation and cell death. Indeed, the NLR signaling cascade is very similar 

to that of the TLR since they share several downstream signaling pathways 

such as Mitogen-activated protein kinase (MAPK) and NF-kB (Chen et al. 2009) 

and this is corroborated by the results. It has also been suggested that the 

interplay between these two signaling pathways is important in the clearance of 

infection due to their synergistic cooperation (Fritz et al. 2006). Netea and 

colleagues (Netea et al. 2005) showed that NOD2 and TLR2 synergized to 

promote cytokine production when induced by peptidoglycan (a key component 

of bacterial cell wall).Toll-like receptors are mainly located on the cell surface or 

the plasma membrane of intracellular organelles (Trinchieri and Sher 2007) 

whilst NOD-like receptors are mainly located in the cytoplasm (Shaw et al. 

2009). NLRs also have been shown to play a role in inflammasome assembly 
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and autophagy (Kim et al. 2016). These receptors are found in several immune 

cells such as lymphocytes and macrophages (Franchi et al. 2009). The 

importance of these pattern recognition receptors (PRRs) in the mounting of an 

inflammatory response upon recognition of DAMPs or PAMPs has also been 

demonstrated by its impact on the NF-Kβ and MAPK signaling pathways (Netea 

et al. 2004b). This took special interest when the selection of genes (IL6 and 

IL1β) was identified by this study. The activation of the above mentioned 

pathways induces a pro-inflammatory and antimicrobial response via induction 

of interleukin-6 (IL6) and interleukin-1 beta (IL1β) (Trinchieri and Sher 2007, 

Carneiro et al. 2008, Chen et al. 2009, Franchi et al. 2009).  

In the list of consistently selected genes using the combined classifier approach 

several cytokines and chemokines were present such as CXCL1, IL1β and IL6, 

all of which have been shown to participate in the immune response during 

infection (Cai et al. 2010, Leal et al. 2010, Netea et al. 2010, 2015, Scheller et 

al. 2011). Cytokines such as IL6 play a key role in the regulation of production 

of specific immune cells and their respective response towards infection. IL6 

activation can lead to neutrophil and macrophage production (Scheller et al. 

2011). 

Next, focus was given to genes that, despite not being in the gene signature for 

discriminating infected from healthy samples, were consistently upregulated in 

at least four datasets and that were present in the enriched pathways. Amongst 

others, these included chemokines (C-C motif) ligand 2 (CCL2) and ligand 3 

(CCL3), chemokines (C-X-C motif) ligand 2 (CXCL2), nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-κB), nuclear factor of kappa-light-

polypeptide gene enhancer in B cells inhibitor, alpha (NF-κβIA), tumor necrosis 

factor, alpha-induced protein 3 (TNFAIP3), interleukins 12 subunits alpha and 

beta (IL12A and IL12B, respectively), and interleukin-1 receptor-associated 

kinase-like 2 (IRAK2). Both CCL2 and CCL3 are potent chemoattractants of 

immune cells to sites of infection. This does not necessarily mean that 

expression of their respective receptors (e.g. CCR2) are always beneficial during 

pathogen clearance (Szymczak and Deepe 2009), but their downstream effects 

rely on the combination of signals depending on the type of infection and 
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ligands. In a study by Szymczak and Deepe (Szymczak and Deepe 2009), 

CCR2-deficient mice where infected with a dimorphic fungus – Histoplasma 

capsulatum and showed that when one of its ligands (CCL7) was also 

neutralized, IL4 and fungal burden were increased.  NF-κB, a protein complex, 

plays an important role in the regulation of transcription of DNA and cytokine 

synthesis. Its role in the regulation of the immune system in response to 

infection has also been shown, particularly in the control of the transcription of 

cytokines and antimicrobial effector cells (Gilmore 2006, Hayden et al. 2006, 

Kanayama et al. 2015, Biswas and Human Bagchi 2016). Interleukins (IL) are a 

group of cytokines that are secreted by several leukocytes such as 

macrophages, neutrophils and dendritic cells and are a key player in the 

modulation of the immune response. IL12 is a heterodimeric cytokine that is 

composed of two separate genes (IL12A and IL12B). This interleukin is involved 

in the differentiation of naive T cells into Th1 cells and in the stimulation of 

interferon gamma (IFNγ) and TNFα, both of which can enhance macrophage 

activity (Sturge and Yarovinsky 2014). Overall, it enhances the cytotoxic activity 

of both natural killer (NK) cells and CD8+ T lymphocytes (Langrish et al. 2004, 

Teng et al. 2015). Last but not least, IRAK2 is involved in the activation of NF-

κB and MAPK signaling pathways upon infection. The activation of NF-κB is not 

performed by IRAK2 alone but rather by its association to IL-1R and the MyD88 

signaling complex (Muzio 1997). Apart from this role, it is also involved in the 

activity of IL1 and several TLRs (Meylan and Tschopp 2008).  Gene set 

enrichment analysis also showed that the selected genes were also linked to 

processes and signaling cascades that are involved in the immune response 

towards infection.  

In summary, the gene signature obtained from combining classifiers to 

distinguish infected from non-infected samples showed a significant enrichment 

of the TLR and NLR signaling pathways. Additionally, analysis of differentially 

expressed genes in all datasets showed that consistently expressed genes were 

also related to immune responses towards infection. 
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Gene set enrichment tests of the gene signature generated from the combined 

classifiers for discriminating fungal from bacterial infections suggested that the 

MAPK signaling pathway was increased during fungal infections. The MAPK 

signaling cascade is highly conserved across species, shown by the high 

sequence similarities of the pathway´s composing genes (Nishida and Gotoh 

1993), and has also been shown to be activated during microbial infections 

leading to pro-inflammatory signals (Ali et al. 2015). However, how these genes 

interact in a global scale still requires further study. 

 

5.3. Lysosome pathway is enriched during fungal infection 

 The  gene set enrichment tests performed in less heterogeneous immune 

cell populations (PBMCs and monocytes) showed similar results to single 

classifiers (e.g. cytokine-cytokine receptor interaction and Toll-like receptor 

signaling) with the exception of the lysosome pathway. The lysosome was 

increasingly enriched when only considering monocyte related datasets. Thus, 

the genes in the gene signature related to the lysosome were further studied. 

 

5.3.1. Functional relevance of the differentially expressed 

lysosome-related genes 

α-Galactosidase A (GLA) is a glycoside hydrolase enzyme encoded by the GLA 

gene. This enzyme hydrolyses the terminal α-galactosyl moieties (especially the 

α-1,6 linkage) of glycoproteins and glycolipids. Specially, GLA is a lysosomal 

enzyme that degrades globotriaosylceramide (Gb3) to lactosylceramide, 

preventing its accumulation in this compartment (Darmoise et al. 2010). 

Deficiency of this enzyme (GLA) and accumulation of the glycolipid Gb3 in the 

lysosome of PBMCs has been shown to contribute to diverse physiopathological 

alterations such as the continuous pro-oxidative and pro-inflammatory state of 

these cells (De Francesco et al. 2013). Moreover, a pro-inflammatory role of 

Gb3 could be demonstrated in that study, which was directly mediated by the 

TLR4-pro-inflammatory signalling pathway (De Francesco et al. 2013). Candida 
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albicans yeast, among other fungi, binds to TLR4 that recognizes short linear O-

bound mannan structures present in the fungal cell wall (Netea et al. 2008). 

Besides this, the GLA product lactosylceramide has been reported to be very 

abundant on plasma membranes of phagocytes, being involved in the 

phagocytosis, chemotaxis and superoxide generation during fungal infection 

(Jimenez-Lucho et al. 1990, Iwabuchi et al. 2015). Our results show that C. 

albicans and A. fumigatus induce a significantly higher expression of the GLA 

gene than E. coli, suggesting the importance of this enzyme in monocytes 

during fungal infection. Thus, GLA may avoid the accumulation of the glycolipid 

Gb3 in the lysosome as a protective, anti-inflammatory response mechanism of 

monocytes. Moreover, the conversion of Gb3 to lactosylceramide, as membrane 

microdomain of immune cells, may increase phagocytosis and clearance of the 

fungi. Nevertheless, the relevance of this lysosomal enzyme in fungal infection 

still needs to be clarified.  

Scavenger receptor class B member 2 (SCARB2) is a gene whose encoding 

protein the lysosomal integral membrane protein type-2 (LIMP-2/SCARB2) has 

been shown to be essential for the normal biogenesis and maintenance of 

lysosomes and endosomes (Gonzalez et al. 2014). As a lysosomal membrane 

protein, SCARB2 has been reported to act as an entry receptor for Enterovirus 

71 (EV71) leading to its internalization to the lysosome (Yamayoshi et al. 2014). 

Other scavenger receptors, such as CD36 and SCARF1 (human homologs of the 

murine C03F11.3 and CED-1, respectively), have been shown to bind C. 

neoformans and C. albicans via ß-glucan structures, providing protection 

against these fungal pathogens in a mice model (Croze et al. 1989). Not much 

is known about the function of SCARB2 during fungal induced immune 

responses, but the results suggest that this scavenger receptor, like other 

similar members of this protein family, may play an important role in fungal 

recognition and internalization to the lysosome.  

In this study, other genes encoding lysosomal transmembrane proteins, CD164 

and NPC1, were also analysed. Sialomucin core protein 24, also known as 

endolyn, is encoded by the CD164 gene. Croze et al. reported endolyn to be 

involved in the maturation of the endosomal-lysosomal compartment (Croze et 
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al. 1989), while  the Niemann-Pick disease type C1 (NPC1) protein encoded by 

the NPC1 gene mediated intracellular cholesterol and sphingolipids trafficking 

into the late endosome and lysosome (Alam et al. 2012). The NPC1 protein  is 

located in the membrane of late endosomes and lysosomes and it might 

promote the creation and/or movement of these compartments to and from the 

cell periphery (Ko et al. 2001). In this study, the up-regulation of CD164 and 

NPC1 in human monocytes specifically after fungal challenge was observed, 

which again suggests the importance of biogenesis and functionality of the 

lysosome for fungal clearance in monocytes. 

Furthermore, analyses were performed to determine whether the most common 

fungal and bacterial cell wall components (the fungal ß-glucan and the bacterial 

lipopolysaccharide, respectively) could explain the differential regulation of the 

genes in question by the different pathogens. In the case of GLA, results 

suggested that LPS was capable of inducing its expression but not ß-glucan 

which suggests that the higher expression of this gene in fungal versus 

bacterial challenge is not dependent on the fungal cell wall component. NPC1  

and CD164 gene expression showed no significant difference to controls. Again, 

in these cases the presence of fungal ß-glucan and bacterial LPS do not appear 

to play a role in the expression of these genes during fungal and bacterial 

infections. Lastly, it was shown that the E. coli-derived LPS resembled the 

downregulation of SCARB2 already observed after stimulation with E. coli cells. 

In contrast, the fungal ß-glucan component seemed to have no effect on the 

regulation of this gene. From these results it was concluded that the bacterial 

liposaccharide seemed to be responsible for the downregulation of SCARB2. 

Zymosan did not induce a significant increased expression of GLA and NPC1 

which suggested that other specific fungal epitopes might induce their 

expression during fungal infection, especially during C. albicans infection (with 

the exception of NPC1 which was higher expressed after A. fumigatus 

infection). 
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5.4. Functional relevance of differentially expressed non-

lysosome-direct related genes 

Most of the genes further analysed in this study are indirectly associated to  

proper biosynthesis and functionality of the lysosome during fungal infection. In 

addition, other mechanisms, such as immune cells recruitment, phagocytosis 

and nutrient metabolism, are also known to be crucial for a successful fungal 

killing and clearance by  phagocytes. Thus, other genes identified in this study 

to be fungal-challenge specific are involved in those pathways and might play 

an important role during fungal infection. For instance, BAG3 encodes the BAG 

family molecular chaperone regulator 3 (BAG3) protein which regulates 

macroautophagy for degradation of polyubiquitinated proteins (Gamerdinger et 

al. 2009). The peroxisome proliferator-activated receptor gamma (PPARG) is a 

gene expressed in macrophages and encodes a protein that plays a central role 

in regulating fatty acid storage and glucose metabolism (Tyagi et al. 2011). 

Fatty Acid Binding Protein 5 (FABP5) is a protein encoded by FABP5 gene and 

plays a role in the uptake of fatty acids, transport phenomena and fatty acid 

metabolism (Moore et al. 2015) Additionally, fatty acid binding proteins play a 

role in inflammation and have been shown to be down regulated in 

macrophages infected with Brucella melitensis (Wang et al. 2011). It has also 

been shown that loss of FABP5 promoted a higher anti-inflammatory response 

in knock out mice (Moore et al. 2015). The increased expression of FABP5 

suggests that fungal infections induce a higher pro-inflammatory response than 

during bacterial infections. The HMOX1 gene encodes heme oxygenase-1 (HO-

1), which has been shown to be required for immune cell protection against 

systemic infections (Silva-Gomes et al. 2013). Primarily, HO-1 degrades heme 

into biliverdin and carbon monoxide (CO). CO has shown different effects 

during infection. It supports anti-inflammatory cytokine expression (Piantadosi 

et al. 2011) but may in turn increase the virulence of the infection due to its 

immunosuppressive effects (Navarathna and Roberts 2010). Additionally, the 

availability of free iron as a result of high degradation of heme allows its uptake 

by pathogens proving to be a nutritional benefit (Navarathna and Roberts 

2010). Concluding, a higher HMOX expression could be an indicator for an 
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active immune response and defense to infection. The C-C Chemokine Receptor 

1 (CCR1), encoded by the CCR1 gene, has been shown to be widely expressed 

in immune cells and it was associated with the maintenance of chemokine 

gradients during infection (Lionakis et al. 2012). Increased expression of CCR1 

and its ligands was shown to be significantly induced in Candida-infected 

organs of mice leading to increased leukocyte accumulation (Lionakis et al. 

2012). 

 

In summary, a gene signature was identified being highly relevant in the 

inflammatory response of human immune cells due to infection. Besides the 

genes being present in the biomarker list that distinguished infected from 

healthy samples, a large number of differentially expressed genes also showed 

a strong interaction and interdependency and link to the immune response. By 

integrating the combined classifier approach with distinct differential gene 

expression analysis in studies with specific immune cell populations (PBMCs and 

monocytes), genes were identified that were up-regulated in monocytes during 

fungal infection, much more or exclusively in comparison to bacterial infection. 

Once fungi are phagocytosed, monocytes display transcriptional and 

translational reprogramming, adapting their physiology, and killing mechanisms 

to fungal-derived stressors. The up-regulation of fungi-specific genes was 

observed, which seemed to be important in the fungal-derived reprogramming. 

Moreover, the application of the combined classifier approach made it possible, 

for the first time, to identify lysosome-related gene expression as a monocyte-

specific footprint of fungal infections and could possibly be used as a diagnostic 

marker. 
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6. Conclusions and perspectives 

Gene signatures proposed as biomarkers often lack consistency across 

studies which was demonstrated by the low pairwise overlaps between single 

classifiers. Throughout this work, this novel proposed approach showed an 

improvement solely by linking classifiers across datasets. Consistency increased 

even further when similar cell-type studies were used.  This method can also 

allow combining more than just 2 datasets at a time, with their inherent 

increase in runtime and complexity. This approach is generic and enables to 

integrate diverse datasets. This was achieved solely by constraining the 

classifiers of each of these datasets to use the same sets of features (e.g. 

genes). This method also allows the integration of additional information such 

as protein-protein interaction networks. This could provide additional insight on 

how these genes are connected and increase the extraction of functional 

relevance during the generation of gene signatures. Another aspect that should 

be followed up in future studies concerns the optimization of the number of 

features to use for the classification problem. Additional analysis on the impact 

of cell wall components and live pathogens might also provide increased insight 

into the host’s response towards each source of infection. The generation of 

future gene signatures should take into consideration that immune cells might 

respond differently to certain pathogens. This was the case of lysosomal related 

genes that were higher induced during fungal infections when compared to 

bacterial. Additional studies focusing on immune cell response specificity would 

increase our understanding of the human host response towards different 

pathogens and possibly lead to newer biomarkers. 

As future work, it would be of interest to apply this method to identify 

co-infected samples. 

 Finally, the resulting gene signatures make functionally sense and have 

the potential to be followed up experimentally paving the way to the clinics.  
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8. Appendix 

Table A1 – Differentially expressed and consistently up and downregulated 

genes in, at least, 4 datasets. 

Up_regulated Down_regulated 

ABCA1 GEM PLEK ABHD14A CRIPT IMP3 OSBPL11 SLC35A1 

ABTB2 GJB2 PLK3 ABHD8 CSF1R IMPA2 OSBPL2 SLC9A3R1 

ANXA5 GK PNPT1 ACAA1 CST3 ING4 P2RY8 SMAD5 

ARFGAP3 GPR137
B 

PPP1R15
A 

ADAP2 CTDSP1 INPPL1 PAFAH2 SMUG1 

ARID5A HES4 PTPN1 AGPAT2 CYB561D
1 

JTB PARVG SNRNP25 

ARL5B ICAM1 PTX3 AIP CYB561D
2 

KATNB1 PCTP SNX30 

ARL8B ID2 RAPGEF2 AKR7A2 CYP2S1 KCNK6 PDHB SPSB2 

ATP13A3 IDO1 RASGEF1
B 

AKTIP DAGLB KCTD15 PDK4 SS18L2 

BASP1 IL10 RFTN1 ANKZF1 DBP KDM3B PECAM1 STK38 

BATF IL12A RGS1 AP2S1 DCAKD KIAA0141 PGLS STMN3 

BAZ1A IL12B RIPK2 APBB1IP DDX28 KIAA0430 PHKG2 STRA13 

BCL2A1 IL1A RSAD2 APEH DEF6 KIAA0513 PIK3CG STX10 

CCL2 IL1B RYBP ARF5 DHRS7 KLF2 PIN1 SYK 

CCL20 IL1RN SDC4 ARHGAP1 DIRC2 KLHDC3 PITPNM1 TADA3 

CCL22 IL23A SERPINB
9 

ARHGAP1
8 

DIS3L KLHL22 PLCB2 TAF10 

CCL3 IL2RA SIAH2 ARHGAP1
9 

DNASE2 LASP1 PLOD1 TAF4 

CCNA1 IL6 SLAMF1 ARHGEF1
8 

DNTTIP1 LDLRAP1 PLSCR3 TBC1D10
C 

CCR7 INSIG1 SLAMF7 ARHGEF6 DOCK11 LRMP PLXDC2 TBCC 

CD274 IRAK2 SLC1A3 ARRDC2 DOCK2 LSM10 POLD4 TBXAS1 

CD40 IRF1 SLC43A3 ASGR1 DOK2 LSM4 POLE3 TCF3 

CD80 ISG20 SLCO4A1 ATG16L1 DPEP2 LST1 POLR3GL TECPR1 
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CD83 ITGB8 SOCS2 ATG16L2 DUSP23 LTA4H POLR3K THAP11 

CDKN1A KLF6 SOCS3 ATG9A ECHS1 LTB4R PPCS TMEM14C 

CSF2 LAMP3 SPINK1 ATP5O EIF2B1 LY86 PPIL3 TMEM154 

CSTB LRRC32 STARD8 ATP6V0E2 EPN1 MAST3 PPP1CA TMEM160 

CXCL1 MAFF STAT4 B9D2 ESYT1 MCEE PQLC3 TMEM170
B 

CXCL2 MAMLD1 STX11 BRMS1 EVI2B MEF2C PRAM1 TMEM45B 

DCUN1D
3 

MAP3K8 TFRC CALHM2 FAM102A METTL7A PRCP TNFAIP8L
2 

DDX60L MASTL TMEM140 CALM2 FAM120A MFNG PYCARD TRABD 

DFNA5 MCOLN2 TNFAIP3 CAMLG FAM173A MFSD1 PYGB TRAPPC5 

DNAJA1 MGLL TNFRSF4 CARD9 FAM32A MGST2 RAB34 TRIM8 

DRAM1 MMP19 TNFSF9 CASP9 FAM98C MID1IP1 RABEPK TRMT12 

DUSP5 MSC TNIP3 CAT FBXL16 MNT RASAL3 TSEN54 

EBI3 MT2A TP53BP2 CBL FGL2 MRFAP1L
1 

RBM4B TSPO 

EDN1 NFKB1 TRAF1 CCDC69 FOXJ2 MRI1 REEP5 TST 

ELOVL7 NFKBIA TRIM25 CD300LF FRAT1 MRPL34 REPS2 TXNIP 

ETS2 NFKBIZ TRIM56 CD302 FRAT2 MRPS15 RGS14 TXNRD2 

F3 NRIP3 TXN CD33 FUCA1 MS4A6A RGS19 TYK2 

FJX1 OASL UBTD2 CDC25B GAL3ST4 MTIF3 RNASE6 UBAC1 

GADD45
B 

P2RX4 ZBTB43 CDC40 GMFG MXD4 RNF130 UFC1 

GBP1 PFKFB3 ZC3H12A CDK2AP1 GNAI2 MYO1F RNF135 VAMP8 

GBP2 PIM1 ZC3H12C CDK2AP2 GPBAR1 NADSYN1 RNF166 WDR81 

GCH1 PIM2 ZNFX1 CHST13 GPD1L NAGA RNF44 XRCC1 

GCLM PIM3  CLN5 GSTP1 NAGPA RNPEP YIPF3 

   CLPP HEBP2 NCKAP1L RPS6KA4 YPEL2 

   CLPTM1L HHEX NDUFA2 RRAS YPEL3 

   CLPX HMHA1 NDUFB10 S100A4 ZBTB48 

   CLTB HSD17B1
1 

NDUFS3 S1PR4 ZFAND2B 
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   CNOT7 HSPBAP1 NDUFS7 SASH3 ZNF266 

   CNPY3 HVCN1 NOSIP SCRN1 ZNF362 

   COMMD3 ID3 NSL1 SERP1 ZNF467 

   COMMD8 IFNGR1 NT5C SIPA1 ZNF792 

   COQ10A IL13RA1 NUP214 SIVA1 ZNHIT1 

   CORO1B IL16 OCEL1 SLC2A4R
G 

 

 

 

Table A2 - List of biomarker genes from each type of classifier 

Common 

Genes 

Unique to single 

classifiers 

Unique to combined 

classifiers 

RRAGD ANTXR2 ATP6V1D 

RGCC PPFIBP2 BLVRA 

IFNB1 AGAP3 TNFRSF14 

KLHL21 RIN2 RNF144B 

TBC1D7 GNPDA1 ADA 

ADGRE1 PPIF CXXC5 

TBC1D2 BATF3 CH25H 

HMOX1 SRXN1 SDSL 

HCAR2 PHACTR1 BCAR3 

PELI1 TAGAP TNFSF15 

DHRS9 CCL8 APOBEC3A 

NCF1 RGS1 TNFSF10 

TNFSF14 TRIM21 DPYSL3 

CCR1 CD86 HK2 

TBC1D9 SATB1 NCF1C 
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SPRY2 GLIPR2 RTP4 

SOWAHC UBASH3B GLA 

CEBPB IVNS1ABP ARHGEF3 

PLCXD1 ANAPC4 NSMAF 

NCOA7 TTC14 KLF4 

CXCL11 ACADVL TMEM243 

NRIP3 MGAT2 TRMT5 

LGALS9 CRYGS CMTM7 

TNFSF13B WDFY2 GPAT3 

IL12B CRIPAK TGFBI 

CEP135 HACD3 TMEM106A 

IL27RA  ANKIB1 

ENC1  UBA7 

ATP6V0A1  FAM111A 

PAPSS1  SLC16A3 

ST3GAL5  SPP1 

EVL  TLR7 

SCARB2  EGR2 

SP140  CHST12 

NOP16  CALU 

PCID2  SLC7A7 

RBCK1  EMP1 

SLFN12  PRKAG2 

TRAFD1  C14orf159 

STK26  FXYD6 
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HAVCR2  RHOU 

FAM46A  DDX60L 

EDN1   

CLCF1   

CD40   

PARP4   

 

Table A3 - List of genes selected from the combined approach and their 

respective adjusted p-values (≤0.05 was regarded to be significant) 

Gene symbol Dix Smeekens Saraiva Klassert Czakai 

ADA 3.64E-06 1.12E-03 4.92E-01 1.89E-05 1.04E-03 

BCAR3 2.02E-06 2.51E-06 2.42E-02 5.47E-05 3.44E-03 

BLVRA 3.89E-04 9.37E-03 6.99E-02 4.95E-02 6.14E-06 

CCR1 4.01E-03 4.95E-09 2.99E-01 1.37E-08 1.81E-02 

DHRS9 1.23E-05 1.79E-07 3.15E-01 3.74E-07 2.94E-03 

EDN1 2.57E-02 2.53E-20 1.21E-03 5.08E-01 1.73E-02 

EGR2 4.24E-05 2.30E-14 5.26E-01 1.49E-04 2.10E-04 

GLA 2.40E-08 1.77E-11 1.80E-02 4.58E-07 1.46E-02 

HMOX1 7.92E-07 5.07E-04 3.50E-02 2.05E-06 2.15E-02 

PAPSS1 1.06E-02 1.82E-04 5.51E-01 9.31E-09 7.42E-04 

RNF144B 5.56E-05 3.66E-03 5.05E-01 3.19E-08 3.14E-03 

RRAGD 2.22E-08 1.74E-02 1.57E-01 2.86E-04 2.59E-04 
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SCARB2 5.71E-01 4.62E-20 4.72E-02 2.82E-04 9.94E-04 

SDSL 7.43E-05 2.00E-02 2.22E-01 5.97E-06 1.42E-02 

SOWAHC 3.39E-06 2.04E-01 2.66E-02 3.70E-03 3.00E-03 

SPRY2 5.64E-08 1.66E-02 9.32E-03 3.21E-05 2.05E-03 

TBC1D7 1.88E-11 1.87E-03 1.31E-02 3.55E-03 7.82E-03 

TNFSF14 3.79E-11 4.07E-03 4.30E-02 2.18E-05 7.56E-03 

TNFSF15 1.16E-08 6.08E-02 9.32E-03 1.70E-05 4.15E-04 

 

Table A4 - Single and combined classifier gene lists 

Single classifier Combined classifier 

C5AR1 GLA SMAD3 CCR1 UNC93B1 RPAP2 

CCR1 GLIPR2 SMCHD1 SCARB2 WIPF1 S100A9 

CXCL10 GNAQ SMCO4 STK26 ACVR1 SDSL 

EDN1 GNG2 SOWAHC EVL ANAPC4 SP100 

EVL GPAT3 SP100 GLA APOBEC3A ST6GALNAC6 

FXYD6 GPR18 SP140 LGALS9 ATP6V0A1 STAP1 

HMOX1 GRAMD1A SPRY2 SERPINA1 BATF2 STAT2 

SLC16A3 HACD3 ST3GAL5 SPP1 BLVRA STAT5A 

SLFN12 HAVCR2 STAP1 VAV1 C5AR1 TGFBI 

STK26 HCAR2 STAT5A ANXA1 CCL8 TMEM106A 

ACADVL HDAC1 SUCNR1 BLMH CD14 TMEM243 

ACVR1 HK2 SYNJ2BP C1GALT1 CD68 TNFAIP2 

ADCY3 HSPBAP1 TAGAP CCL23 CDCA4 TNFSF13B 

ADORA2B IFNB1 TBC1D9 CEP135 CEBPB TPMT 
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ANAPC4 IGF2R TGFBI CITED2 CENPW TRAFD1 

ANXA1 IL12A THOC1 EDN1 CEP295 TRANK1 

ARHGEF3 IL27RA TMEM243 FAM46A CHMP5 TRIB2 

BCAR3 IQSEC1 TNFAIP2 FXYD6 CISD1 TRIM21 

BTK IRF2 TNFRSF1B HAVCR2 CISH TSC22D1 

C12orf10 IVNS1ABP TNFSF10 HMOX1 CLEC5A TTC14 

C14orf159 JAK2 TNFSF13B MOV10 CMTM7 TTYH3 

C1GALT1 KLF4 TNFSF15 PCID2 CRIPAK UBA7 

CCL20 KLHL21 TP53INP2 PELI1 CRYGS UBASH3B 

CCL23 LGALS9 TPMT RHOU CUL4A USP11 

CCL5 MAP3K1 TRAFD1 SATB1 CXCL10 VMO1 

CCL8 MASTL TRANK1 SLFN12 CXXC5 WDFY2 

CCR4 MGAT2 TRIB2 SMCO4 DDX60 XRN1 

CCR7 MOV10 TRIM21 SOWAHC DHRS9 ZBTB32 

CD247 MYC TRIM5 ST3GAL5 DHX58 ZNF786 

CD40 NAGK TRIP10 TAGAP EGR2 ZRSR2 

CD68 NCF1 TTC14 TBC1D9 EPB41L3 
 

CD86 NCF1C UBA7 ACADVL FNDC3A 
 

CDCA4 NCOA7 UBASH3B ARHGEF3 GLIPR2 
 

CDK6 NDUFAF7 UNC93B1 BCAR3 GPAT3 
 

CEBPB NDUFV1 USP18 C12orf10 GRHPR 
 

CEP135 NPEPL1 VAV1 C14orf159 HACD3 
 

CEP295 NSMAF VAV3 CD40 HCAR2 
 

CH25H NUB1 VMO1 CD86 HK2 
 

CISD1 PAPSS1 WDFY2 CDK6 HSPA6 
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CISH PARP1 ZNF700 CLCF1 HSPB1 
 

CLCF1 PARP10 ZRSR2 CLDN23 HSPBAP1 
 

CLDN23 PARP4 
 

CTSC IGF2R 
 

CMTM7 PCID2 
 

DDX60L IL27RA 
 

CRIPAK PCNT 
 

EMP1 IQSEC1 
 

CRYGS PELI1 
 

ENC1 IRF2 
 

CXCL1 PIK3CB 
 

ETV3 MICAL1 
 

CXCL11 PIK3CG 
 

GEM MRPS24 
 

CXCL2 PLA2G7 
 

GRAMD1A MYD88 
 

CXCL3 PLCXD1 
 

IFNB1 NCF1 
 

CXCL5 PPBP 
 

IVNS1ABP NCF1C 
 

CXCL6 PRKAG2 
 

JUN NDUFAF7 
 

CXCL8 RAB3IP 
 

KLF4 NDUFV1 
 

CXCL9 RABGAP1L 
 

MGAT2 NISCH 
 

CXCR4 RBCK1 
 

NCOA7 NSMAF 
 

CXCR6 RGS1 
 

PAPSS1 NUB1 
 

DDX60L RHBDD2 
 

PARP10 ORC2 
 

DHRS9 RNF144B 
 

RBCK1 PARP4 
 

EGR2 RPAP2 
 

RGS1 PCNT 
 

EIF2AK3 RPUSD2 
 

SEPT6 PGD 
 

EIF2AK4 S100A9 
 

SLC16A3 PLCXD1 
 

ENC1 S1PR4 
 

SLC7A7 PPM1M 
 

ETV3 SATB1 
 

SP140 PRKAG2 
 

FAM46A SCARB2 
 

SPRY2 RABGAP1L 
 

FPR2 SDSL 
 

TNFRSF1B RASGRP3 
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FPR3 SEPT6 
 

TNFRSF9 RHBDD2 
 

GBP3 SERPINA1 
 

TNFSF10 RHOH 
 

GEM SLC7A7 
 

TRIP10 RNF144B 
 

 

Table A5 - RT-qPCR mean expression values across conditions and 

corresponding p-values for all genes of interest. 

GENE BONFERRONI'

S MULTIPLE 

COMPARISON

S TEST 

MEAN 

DIFF, 

95,00% CI OF 

DIFF 

SIGNIFICANT? SUMMARY ADJUSTED 

P VALUE 

GLA Ctrl vs. LPS -2,231 -2,751 to -1,711 Yes **** <0,0001 

 Ctrl vs. MALP -1,886 -2,406 to -1,366 Yes **** <0,0001 

 Ctrl vs. Zym -3,349 -3,869 to -2,829 Yes **** <0,0001 

 LPS vs. MALP 0,345 -0,175 to 0,865 No ns 0,315 

 LPS vs. Zym -1,118 -1,637 to -0,5975 Yes *** 0,0003 

 MALP vs. Zym -1,463 -1,982 to -0,9425 Yes **** <0,0001 

 Ctrl vs. C.a. -4,589 -5,368 to -3,81 Yes **** <0,0001 

 Ctrl vs. Asp. -3,771 -4,55 to -2,992 Yes **** <0,0001 

 Ctrl vs. E.coli -2,881 -3,66 to -2,102 Yes **** <0,0001 

 C.a. vs. Asp. 0,8175 0,03874 to 1,596 Yes * 0,0384 

 C.a. vs. E.coli 1,708 0,9287 to 2,486 Yes *** 0,0003 

 Asp. vs. E.coli 0,89 0,1112 to 1,669 Yes * 0,0236 

       

SCARB2 Ctrl vs. LPS 1,283 0,7603 to 1,805 Yes *** 0,0001 

 Ctrl vs. MALP 1,046 0,5241 to 1,568 Yes *** 0,0005 

 Ctrl vs. Zym 1,533 1,01 to 2,055 Yes **** <0,0001 

 LPS vs. MALP -0,2363 -0,7584 to 0,2859 No ns 0,9739 

 LPS vs. Zym 0,25 -0,2722 to 0,7722 No ns 0,8502 

 MALP vs. Zym 0,4863 -0,03592 to 1,008 No ns 0,0724 

 Ctrl vs. C.a. -0,5375 -1,074 to -0,001495 Yes * 0,0493 

 Ctrl vs. Asp. 0,0875 -0,4485 to 0,6235 No ns >0,9999 

 Ctrl vs. E.coli 1,735 1,199 to 2,271 Yes **** <0,0001 
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 C.a. vs. Asp. 0,625 0,089 to 1,161 Yes * 0,021 

 C.a. vs. E.coli 2,273 1,736 to 2,809 Yes **** <0,0001 

 Asp. vs. E.coli 1,648 1,111 to 2,184 Yes **** <0,0001 

       

PPARG Ctrl vs. LPS 0,4563 -0,3774 to 1,29 No ns 0,5924 

 Ctrl vs. MALP -0,05 -0,8837 to 0,7837 No ns >0,9999 

 Ctrl vs. Zym 0,1163 -0,7174 to 0,9499 No ns >0,9999 

 LPS vs. MALP -0,5063 -1,34 to 0,3274 No ns 0,4286 

 LPS vs. Zym -0,34 -1,174 to 0,4937 No ns >0,9999 

 MALP vs. Zym 0,1663 -0,6674 to 0,9999 No ns >0,9999 

 Ctrl vs. C.a. -1,931 -3,035 to -0,8278 Yes ** 0,0014 

 Ctrl vs. Asp. -2,455 -3,558 to -1,352 Yes *** 0,0002 

 Ctrl vs. E.coli 0,8488 -0,2547 to 1,952 No ns 0,1759 

 C.a. vs. Asp. -0,5238 -1,627 to 0,5797 No ns 0,8686 

 C.a. vs. E.coli 2,78 1,677 to 3,883 Yes **** <0,0001 

 Asp. vs. E.coli 3,304 2,2 to 4,407 Yes **** <0,0001 

       

CD164 Ctrl vs. LPS 0,2388 -0,1953 to 0,6728 No ns 0,5837 

 Ctrl vs. MALP 0,2613 -0,1728 to 0,6953 No ns 0,4413 

 Ctrl vs. Zym 0,1913 -0,2428 to 0,6253 No ns >0,9999 

 LPS vs. MALP 0,0225 -0,4116 to 0,4566 No ns >0,9999 

 LPS vs. Zym -0,0475 -0,4816 to 0,3866 No ns >0,9999 

 MALP vs. Zym -0,07 -0,5041 to 0,3641 No ns >0,9999 

 Ctrl vs. C.a. -1,015 -1,58 to -0,4504 Yes ** 0,0011 

 Ctrl vs. Asp. -0,5775 -1,142 to -0,01295 Yes * 0,0442 

 Ctrl vs. E.coli 0,4813 -0,0833 to 1,046 No ns 0,1113 

 C.a. vs. Asp. 0,4375 -0,1271 to 1,002 No ns 0,1704 

 C.a. vs. E.coli 1,496 0,9317 to 2,061 Yes **** <0,0001 

 Asp. vs. E.coli 1,059 0,4942 to 1,623 Yes *** 0,0008 

       

FABP5 Ctrl vs. LPS -0,5675 -1,595 to 0,4604 No ns 0,5773 

 Ctrl vs. MALP -0,92 -1,948 to 0,1079 No ns 0,0881 

 Ctrl vs. Zym -

0,0812

5 

-1,109 to 0,9466 No ns >0,9999 

 LPS vs. MALP -0,3525 -1,38 to 0,6754 No ns >0,9999 
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 LPS vs. Zym 0,4863 -0,5416 to 1,514 No ns 0,8758 

 MALP vs. Zym 0,8388 -0,1891 to 1,867 No ns 0,1359 

 Ctrl vs. C.a. -1,405 -2,47 to -0,34 Yes ** 0,0098 

 Ctrl vs. Asp. -2,679 -3,744 to -1,614 Yes **** <0,0001 

 Ctrl vs. E.coli 0,575 -0,49 to 1,64 No ns 0,6162 

 C.a. vs. Asp. -1,274 -2,339 to -0,2087 Yes * 0,018 

 C.a. vs. E.coli 1,98 0,915 to 3,045 Yes *** 0,0009 

 Asp. vs. E.coli 3,254 2,189 to 4,319 Yes **** <0,0001 

       

BAG3 Ctrl vs. LPS -0,4325 -0,9285 to 0,06352 No ns 0,1 

 Ctrl vs. MALP -0,4 -0,896 to 0,09602 No ns 0,1433 

 Ctrl vs. Zym -1,126 -1,622 to -0,6302 Yes *** 0,0002 

 LPS vs. MALP 0,0325 -0,4635 to 0,5285 No ns >0,9999 

 LPS vs. Zym -0,6938 -1,19 to -0,1977 Yes ** 0,0067 

 MALP vs. Zym -0,7263 -1,222 to -0,2302 Yes ** 0,0049 

 Ctrl vs. C.a. -2,763 -3,418 to -2,107 Yes **** <0,0001 

 Ctrl vs. Asp. -2,005 -2,66 to -1,35 Yes **** <0,0001 

 Ctrl vs. E.coli -0,605 -1,26 to 0,05025 No ns 0,0756 

 C.a. vs. Asp. 0,7575 0,1023 to 1,413 Yes * 0,0221 

 C.a. vs. E.coli 2,158 1,502 to 2,813 Yes **** <0,0001 

 Asp. vs. E.coli 1,4 0,7448 to 2,055 Yes *** 0,0003 

       

NPC1 Ctrl vs. LPS -

0,0537

5 

-0,6742 to 0,5667 No ns >0,9999 

 Ctrl vs. MALP -0,365 -0,9854 to 0,2554 No ns 0,475 

 Ctrl vs. Zym -1,426 -2,047 to -0,8058 Yes *** 0,0002 

 LPS vs. MALP -0,3113 -0,9317 to 0,3092 No ns 0,7544 

 LPS vs. Zym -1,373 -1,993 to -0,7521 Yes *** 0,0002 

 MALP vs. Zym -1,061 -1,682 to -0,4408 Yes ** 0,0016 

 Ctrl vs. C.a. -0,8438 -1,571 to -0,1168 Yes * 0,0216 

 Ctrl vs. Asp. -2,191 -2,918 to -1,464 Yes **** <0,0001 

 Ctrl vs. E.coli -0,67 -1,397 to 0,05697 No ns 0,0763 

 C.a. vs. Asp. -1,348 -2,074 to -0,6205 Yes *** 0,0009 

 C.a. vs. E.coli 0,1738 -0,5532 to 0,9007 No ns >0,9999 

 Asp. vs. E.coli 1,521 0,7943 to 2,248 Yes *** 0,0004 
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HMOX1 Ctrl vs. LPS 2,444 1,689 to 3,199 Yes **** <0,0001 

 Ctrl vs. MALP 1,675 0,92 to 2,43 Yes *** 0,0002 

 Ctrl vs. Zym 1,021 0,2663 to 1,776 Yes ** 0,0083 

 LPS vs. MALP -0,7688 -1,524 to -0,01375 Yes * 0,0454 

 LPS vs. Zym -1,423 -2,177 to -0,6675 Yes *** 0,0008 

 MALP vs. Zym -0,6538 -1,409 to 0,1012 No ns 0,1034 

 Ctrl vs. C.a. -

0,0737

5 

-1,063 to 0,9158 No ns >0,9999 

 Ctrl vs. Asp. -3,239 -4,228 to -2,249 Yes **** <0,0001 

 Ctrl vs. E.coli 3,406 2,417 to 4,396 Yes **** <0,0001 

 C.a. vs. Asp. -3,165 -4,155 to -2,175 Yes **** <0,0001 

 C.a. vs. E.coli 3,48 2,49 to 4,47 Yes **** <0,0001 

 Asp. vs. E.coli 6,645 5,655 to 7,635 Yes **** <0,0001 

       

CCR1 Ctrl vs. LPS 1,26 0,6538 to 1,866 Yes *** 0,0004 

 Ctrl vs. MALP 0,6938 0,08753 to 1,3 Yes * 0,0234 

 Ctrl vs. Zym 1,439 0,8325 to 2,045 Yes *** 0,0001 

 LPS vs. MALP -0,5663 -1,172 to 0,03997 No ns 0,0713 

 LPS vs. Zym 0,1788 -0,4275 to 0,785 No ns >0,9999 

 MALP vs. Zym 0,745 0,1388 to 1,351 Yes * 0,0153 

 Ctrl vs. C.a. -1,114 -1,903 to -0,3249 Yes ** 0,0063 

 Ctrl vs. Asp. -1,198 -1,986 to -0,4086 Yes ** 0,0038 

 Ctrl vs. E.coli 2,29 1,501 to 3,079 Yes **** <0,0001 

 C.a. vs. Asp. -

0,0837

5 

-0,8726 to 0,7051 No ns >0,9999 

 C.a. vs. E.coli 3,404 2,615 to 4,193 Yes **** <0,0001 

 Asp. vs. E.coli 3,488 2,699 to 4,276 Yes **** <0,0001 
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